1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // http://code.google.com/p/protobuf/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // Author: robinson@google.com (Will Robinson)
32 //
33 // This module outputs pure-Python protocol message classes that will
34 // largely be constructed at runtime via the metaclass in reflection.py.
35 // In other words, our job is basically to output a Python equivalent
36 // of the C++ *Descriptor objects, and fix up all circular references
37 // within these objects.
38 //
39 // Note that the runtime performance of protocol message classes created in
40 // this way is expected to be lousy. The plan is to create an alternate
41 // generator that outputs a Python/C extension module that lets
42 // performance-minded Python code leverage the fast C++ implementation
43 // directly.
44
45 #include <limits>
46 #include <map>
47 #include <utility>
48 #include <string>
49 #include <vector>
50
51 #include <google/protobuf/compiler/python/python_generator.h>
52 #include <google/protobuf/descriptor.pb.h>
53
54 #include <google/protobuf/stubs/common.h>
55 #include <google/protobuf/stubs/stringprintf.h>
56 #include <google/protobuf/io/printer.h>
57 #include <google/protobuf/descriptor.h>
58 #include <google/protobuf/io/zero_copy_stream.h>
59 #include <google/protobuf/stubs/strutil.h>
60 #include <google/protobuf/stubs/substitute.h>
61
62 namespace google {
63 namespace protobuf {
64 namespace compiler {
65 namespace python {
66
67 namespace {
68
69 // Returns a copy of |filename| with any trailing ".protodevel" or ".proto
70 // suffix stripped.
71 // TODO(robinson): Unify with copy in compiler/cpp/internal/helpers.cc.
StripProto(const string & filename)72 string StripProto(const string& filename) {
73 const char* suffix = HasSuffixString(filename, ".protodevel")
74 ? ".protodevel" : ".proto";
75 return StripSuffixString(filename, suffix);
76 }
77
78
79 // Returns the Python module name expected for a given .proto filename.
ModuleName(const string & filename)80 string ModuleName(const string& filename) {
81 string basename = StripProto(filename);
82 StripString(&basename, "-", '_');
83 StripString(&basename, "/", '.');
84 return basename + "_pb2";
85 }
86
87
88 // Returns the name of all containing types for descriptor,
89 // in order from outermost to innermost, followed by descriptor's
90 // own name. Each name is separated by |separator|.
91 template <typename DescriptorT>
NamePrefixedWithNestedTypes(const DescriptorT & descriptor,const string & separator)92 string NamePrefixedWithNestedTypes(const DescriptorT& descriptor,
93 const string& separator) {
94 string name = descriptor.name();
95 for (const Descriptor* current = descriptor.containing_type();
96 current != NULL; current = current->containing_type()) {
97 name = current->name() + separator + name;
98 }
99 return name;
100 }
101
102
103 // Name of the class attribute where we store the Python
104 // descriptor.Descriptor instance for the generated class.
105 // Must stay consistent with the _DESCRIPTOR_KEY constant
106 // in proto2/public/reflection.py.
107 const char kDescriptorKey[] = "DESCRIPTOR";
108
109
110 // Does the file have top-level enums?
HasTopLevelEnums(const FileDescriptor * file)111 inline bool HasTopLevelEnums(const FileDescriptor *file) {
112 return file->enum_type_count() > 0;
113 }
114
115
116 // Should we generate generic services for this file?
HasGenericServices(const FileDescriptor * file)117 inline bool HasGenericServices(const FileDescriptor *file) {
118 return file->service_count() > 0 &&
119 file->options().py_generic_services();
120 }
121
122
123 // Prints the common boilerplate needed at the top of every .py
124 // file output by this generator.
PrintTopBoilerplate(io::Printer * printer,const FileDescriptor * file,bool descriptor_proto)125 void PrintTopBoilerplate(
126 io::Printer* printer, const FileDescriptor* file, bool descriptor_proto) {
127 // TODO(robinson): Allow parameterization of Python version?
128 printer->Print(
129 "# Generated by the protocol buffer compiler. DO NOT EDIT!\n"
130 "# source: $filename$\n"
131 "\n",
132 "filename", file->name());
133 if (HasTopLevelEnums(file)) {
134 printer->Print(
135 "from google.protobuf.internal import enum_type_wrapper\n");
136 }
137 printer->Print(
138 "from google.protobuf import descriptor as _descriptor\n"
139 "from google.protobuf import message as _message\n"
140 "from google.protobuf import reflection as _reflection\n"
141 );
142 if (HasGenericServices(file)) {
143 printer->Print(
144 "from google.protobuf import service as _service\n"
145 "from google.protobuf import service_reflection\n");
146 }
147
148 // Avoid circular imports if this module is descriptor_pb2.
149 if (!descriptor_proto) {
150 printer->Print(
151 "from google.protobuf import descriptor_pb2\n");
152 }
153 printer->Print(
154 "# @@protoc_insertion_point(imports)\n");
155 printer->Print("\n\n");
156 }
157
158
159 // Returns a Python literal giving the default value for a field.
160 // If the field specifies no explicit default value, we'll return
161 // the default default value for the field type (zero for numbers,
162 // empty string for strings, empty list for repeated fields, and
163 // None for non-repeated, composite fields).
164 //
165 // TODO(robinson): Unify with code from
166 // //compiler/cpp/internal/primitive_field.cc
167 // //compiler/cpp/internal/enum_field.cc
168 // //compiler/cpp/internal/string_field.cc
StringifyDefaultValue(const FieldDescriptor & field)169 string StringifyDefaultValue(const FieldDescriptor& field) {
170 if (field.is_repeated()) {
171 return "[]";
172 }
173
174 switch (field.cpp_type()) {
175 case FieldDescriptor::CPPTYPE_INT32:
176 return SimpleItoa(field.default_value_int32());
177 case FieldDescriptor::CPPTYPE_UINT32:
178 return SimpleItoa(field.default_value_uint32());
179 case FieldDescriptor::CPPTYPE_INT64:
180 return SimpleItoa(field.default_value_int64());
181 case FieldDescriptor::CPPTYPE_UINT64:
182 return SimpleItoa(field.default_value_uint64());
183 case FieldDescriptor::CPPTYPE_DOUBLE: {
184 double value = field.default_value_double();
185 if (value == numeric_limits<double>::infinity()) {
186 // Python pre-2.6 on Windows does not parse "inf" correctly. However,
187 // a numeric literal that is too big for a double will become infinity.
188 return "1e10000";
189 } else if (value == -numeric_limits<double>::infinity()) {
190 // See above.
191 return "-1e10000";
192 } else if (value != value) {
193 // infinity * 0 = nan
194 return "(1e10000 * 0)";
195 } else {
196 return SimpleDtoa(value);
197 }
198 }
199 case FieldDescriptor::CPPTYPE_FLOAT: {
200 float value = field.default_value_float();
201 if (value == numeric_limits<float>::infinity()) {
202 // Python pre-2.6 on Windows does not parse "inf" correctly. However,
203 // a numeric literal that is too big for a double will become infinity.
204 return "1e10000";
205 } else if (value == -numeric_limits<float>::infinity()) {
206 // See above.
207 return "-1e10000";
208 } else if (value != value) {
209 // infinity - infinity = nan
210 return "(1e10000 * 0)";
211 } else {
212 return SimpleFtoa(value);
213 }
214 }
215 case FieldDescriptor::CPPTYPE_BOOL:
216 return field.default_value_bool() ? "True" : "False";
217 case FieldDescriptor::CPPTYPE_ENUM:
218 return SimpleItoa(field.default_value_enum()->number());
219 case FieldDescriptor::CPPTYPE_STRING:
220 if (field.type() == FieldDescriptor::TYPE_STRING) {
221 return "unicode(\"" + CEscape(field.default_value_string()) +
222 "\", \"utf-8\")";
223 } else {
224 return "\"" + CEscape(field.default_value_string()) + "\"";
225 }
226 case FieldDescriptor::CPPTYPE_MESSAGE:
227 return "None";
228 }
229 // (We could add a default case above but then we wouldn't get the nice
230 // compiler warning when a new type is added.)
231 GOOGLE_LOG(FATAL) << "Not reached.";
232 return "";
233 }
234
235
236
237 } // namespace
238
239
Generator()240 Generator::Generator() : file_(NULL) {
241 }
242
~Generator()243 Generator::~Generator() {
244 }
245
Generate(const FileDescriptor * file,const string & parameter,GeneratorContext * context,string * error) const246 bool Generator::Generate(const FileDescriptor* file,
247 const string& parameter,
248 GeneratorContext* context,
249 string* error) const {
250
251 // Completely serialize all Generate() calls on this instance. The
252 // thread-safety constraints of the CodeGenerator interface aren't clear so
253 // just be as conservative as possible. It's easier to relax this later if
254 // we need to, but I doubt it will be an issue.
255 // TODO(kenton): The proper thing to do would be to allocate any state on
256 // the stack and use that, so that the Generator class itself does not need
257 // to have any mutable members. Then it is implicitly thread-safe.
258 MutexLock lock(&mutex_);
259 file_ = file;
260 string module_name = ModuleName(file->name());
261 string filename = module_name;
262 StripString(&filename, ".", '/');
263 filename += ".py";
264
265 FileDescriptorProto fdp;
266 file_->CopyTo(&fdp);
267 fdp.SerializeToString(&file_descriptor_serialized_);
268
269
270 scoped_ptr<io::ZeroCopyOutputStream> output(context->Open(filename));
271 GOOGLE_CHECK(output.get());
272 io::Printer printer(output.get(), '$');
273 printer_ = &printer;
274
275 PrintTopBoilerplate(printer_, file_, GeneratingDescriptorProto());
276 PrintImports();
277 PrintFileDescriptor();
278 PrintTopLevelEnums();
279 PrintTopLevelExtensions();
280 PrintAllNestedEnumsInFile();
281 PrintMessageDescriptors();
282 FixForeignFieldsInDescriptors();
283 PrintMessages();
284 // We have to fix up the extensions after the message classes themselves,
285 // since they need to call static RegisterExtension() methods on these
286 // classes.
287 FixForeignFieldsInExtensions();
288 // Descriptor options may have custom extensions. These custom options
289 // can only be successfully parsed after we register corresponding
290 // extensions. Therefore we parse all options again here to recognize
291 // custom options that may be unknown when we define the descriptors.
292 FixAllDescriptorOptions();
293 if (HasGenericServices(file)) {
294 PrintServices();
295 }
296
297 printer.Print(
298 "# @@protoc_insertion_point(module_scope)\n");
299
300 return !printer.failed();
301 }
302
303 // Prints Python imports for all modules imported by |file|.
PrintImports() const304 void Generator::PrintImports() const {
305 for (int i = 0; i < file_->dependency_count(); ++i) {
306 string module_name = ModuleName(file_->dependency(i)->name());
307 printer_->Print("import $module$\n", "module",
308 module_name);
309 }
310 printer_->Print("\n");
311
312 // Print public imports.
313 for (int i = 0; i < file_->public_dependency_count(); ++i) {
314 string module_name = ModuleName(file_->public_dependency(i)->name());
315 printer_->Print("from $module$ import *\n", "module", module_name);
316 }
317 printer_->Print("\n");
318 }
319
320 // Prints the single file descriptor for this file.
PrintFileDescriptor() const321 void Generator::PrintFileDescriptor() const {
322 map<string, string> m;
323 m["descriptor_name"] = kDescriptorKey;
324 m["name"] = file_->name();
325 m["package"] = file_->package();
326 const char file_descriptor_template[] =
327 "$descriptor_name$ = _descriptor.FileDescriptor(\n"
328 " name='$name$',\n"
329 " package='$package$',\n";
330 printer_->Print(m, file_descriptor_template);
331 printer_->Indent();
332 printer_->Print(
333 "serialized_pb='$value$'",
334 "value", strings::CHexEscape(file_descriptor_serialized_));
335
336 // TODO(falk): Also print options and fix the message_type, enum_type,
337 // service and extension later in the generation.
338
339 printer_->Outdent();
340 printer_->Print(")\n");
341 printer_->Print("\n");
342 }
343
344 // Prints descriptors and module-level constants for all top-level
345 // enums defined in |file|.
PrintTopLevelEnums() const346 void Generator::PrintTopLevelEnums() const {
347 vector<pair<string, int> > top_level_enum_values;
348 for (int i = 0; i < file_->enum_type_count(); ++i) {
349 const EnumDescriptor& enum_descriptor = *file_->enum_type(i);
350 PrintEnum(enum_descriptor);
351 printer_->Print("$name$ = "
352 "enum_type_wrapper.EnumTypeWrapper($descriptor_name$)",
353 "name", enum_descriptor.name(),
354 "descriptor_name",
355 ModuleLevelDescriptorName(enum_descriptor));
356 printer_->Print("\n");
357
358 for (int j = 0; j < enum_descriptor.value_count(); ++j) {
359 const EnumValueDescriptor& value_descriptor = *enum_descriptor.value(j);
360 top_level_enum_values.push_back(
361 make_pair(value_descriptor.name(), value_descriptor.number()));
362 }
363 }
364
365 for (int i = 0; i < top_level_enum_values.size(); ++i) {
366 printer_->Print("$name$ = $value$\n",
367 "name", top_level_enum_values[i].first,
368 "value", SimpleItoa(top_level_enum_values[i].second));
369 }
370 printer_->Print("\n");
371 }
372
373 // Prints all enums contained in all message types in |file|.
PrintAllNestedEnumsInFile() const374 void Generator::PrintAllNestedEnumsInFile() const {
375 for (int i = 0; i < file_->message_type_count(); ++i) {
376 PrintNestedEnums(*file_->message_type(i));
377 }
378 }
379
380 // Prints a Python statement assigning the appropriate module-level
381 // enum name to a Python EnumDescriptor object equivalent to
382 // enum_descriptor.
PrintEnum(const EnumDescriptor & enum_descriptor) const383 void Generator::PrintEnum(const EnumDescriptor& enum_descriptor) const {
384 map<string, string> m;
385 m["descriptor_name"] = ModuleLevelDescriptorName(enum_descriptor);
386 m["name"] = enum_descriptor.name();
387 m["full_name"] = enum_descriptor.full_name();
388 m["file"] = kDescriptorKey;
389 const char enum_descriptor_template[] =
390 "$descriptor_name$ = _descriptor.EnumDescriptor(\n"
391 " name='$name$',\n"
392 " full_name='$full_name$',\n"
393 " filename=None,\n"
394 " file=$file$,\n"
395 " values=[\n";
396 string options_string;
397 enum_descriptor.options().SerializeToString(&options_string);
398 printer_->Print(m, enum_descriptor_template);
399 printer_->Indent();
400 printer_->Indent();
401 for (int i = 0; i < enum_descriptor.value_count(); ++i) {
402 PrintEnumValueDescriptor(*enum_descriptor.value(i));
403 printer_->Print(",\n");
404 }
405 printer_->Outdent();
406 printer_->Print("],\n");
407 printer_->Print("containing_type=None,\n");
408 printer_->Print("options=$options_value$,\n",
409 "options_value",
410 OptionsValue("EnumOptions", options_string));
411 EnumDescriptorProto edp;
412 PrintSerializedPbInterval(enum_descriptor, edp);
413 printer_->Outdent();
414 printer_->Print(")\n");
415 printer_->Print("\n");
416 }
417
418 // Recursively prints enums in nested types within descriptor, then
419 // prints enums contained at the top level in descriptor.
PrintNestedEnums(const Descriptor & descriptor) const420 void Generator::PrintNestedEnums(const Descriptor& descriptor) const {
421 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
422 PrintNestedEnums(*descriptor.nested_type(i));
423 }
424
425 for (int i = 0; i < descriptor.enum_type_count(); ++i) {
426 PrintEnum(*descriptor.enum_type(i));
427 }
428 }
429
PrintTopLevelExtensions() const430 void Generator::PrintTopLevelExtensions() const {
431 const bool is_extension = true;
432 for (int i = 0; i < file_->extension_count(); ++i) {
433 const FieldDescriptor& extension_field = *file_->extension(i);
434 string constant_name = extension_field.name() + "_FIELD_NUMBER";
435 UpperString(&constant_name);
436 printer_->Print("$constant_name$ = $number$\n",
437 "constant_name", constant_name,
438 "number", SimpleItoa(extension_field.number()));
439 printer_->Print("$name$ = ", "name", extension_field.name());
440 PrintFieldDescriptor(extension_field, is_extension);
441 printer_->Print("\n");
442 }
443 printer_->Print("\n");
444 }
445
446 // Prints Python equivalents of all Descriptors in |file|.
PrintMessageDescriptors() const447 void Generator::PrintMessageDescriptors() const {
448 for (int i = 0; i < file_->message_type_count(); ++i) {
449 PrintDescriptor(*file_->message_type(i));
450 printer_->Print("\n");
451 }
452 }
453
PrintServices() const454 void Generator::PrintServices() const {
455 for (int i = 0; i < file_->service_count(); ++i) {
456 PrintServiceDescriptor(*file_->service(i));
457 PrintServiceClass(*file_->service(i));
458 PrintServiceStub(*file_->service(i));
459 printer_->Print("\n");
460 }
461 }
462
PrintServiceDescriptor(const ServiceDescriptor & descriptor) const463 void Generator::PrintServiceDescriptor(
464 const ServiceDescriptor& descriptor) const {
465 printer_->Print("\n");
466 string service_name = ModuleLevelServiceDescriptorName(descriptor);
467 string options_string;
468 descriptor.options().SerializeToString(&options_string);
469
470 printer_->Print(
471 "$service_name$ = _descriptor.ServiceDescriptor(\n",
472 "service_name", service_name);
473 printer_->Indent();
474 map<string, string> m;
475 m["name"] = descriptor.name();
476 m["full_name"] = descriptor.full_name();
477 m["file"] = kDescriptorKey;
478 m["index"] = SimpleItoa(descriptor.index());
479 m["options_value"] = OptionsValue("ServiceOptions", options_string);
480 const char required_function_arguments[] =
481 "name='$name$',\n"
482 "full_name='$full_name$',\n"
483 "file=$file$,\n"
484 "index=$index$,\n"
485 "options=$options_value$,\n";
486 printer_->Print(m, required_function_arguments);
487
488 ServiceDescriptorProto sdp;
489 PrintSerializedPbInterval(descriptor, sdp);
490
491 printer_->Print("methods=[\n");
492 for (int i = 0; i < descriptor.method_count(); ++i) {
493 const MethodDescriptor* method = descriptor.method(i);
494 method->options().SerializeToString(&options_string);
495
496 m.clear();
497 m["name"] = method->name();
498 m["full_name"] = method->full_name();
499 m["index"] = SimpleItoa(method->index());
500 m["serialized_options"] = CEscape(options_string);
501 m["input_type"] = ModuleLevelDescriptorName(*(method->input_type()));
502 m["output_type"] = ModuleLevelDescriptorName(*(method->output_type()));
503 m["options_value"] = OptionsValue("MethodOptions", options_string);
504 printer_->Print("_descriptor.MethodDescriptor(\n");
505 printer_->Indent();
506 printer_->Print(
507 m,
508 "name='$name$',\n"
509 "full_name='$full_name$',\n"
510 "index=$index$,\n"
511 "containing_service=None,\n"
512 "input_type=$input_type$,\n"
513 "output_type=$output_type$,\n"
514 "options=$options_value$,\n");
515 printer_->Outdent();
516 printer_->Print("),\n");
517 }
518
519 printer_->Outdent();
520 printer_->Print("])\n\n");
521 }
522
PrintServiceClass(const ServiceDescriptor & descriptor) const523 void Generator::PrintServiceClass(const ServiceDescriptor& descriptor) const {
524 // Print the service.
525 printer_->Print("class $class_name$(_service.Service):\n",
526 "class_name", descriptor.name());
527 printer_->Indent();
528 printer_->Print(
529 "__metaclass__ = service_reflection.GeneratedServiceType\n"
530 "$descriptor_key$ = $descriptor_name$\n",
531 "descriptor_key", kDescriptorKey,
532 "descriptor_name", ModuleLevelServiceDescriptorName(descriptor));
533 printer_->Outdent();
534 }
535
PrintServiceStub(const ServiceDescriptor & descriptor) const536 void Generator::PrintServiceStub(const ServiceDescriptor& descriptor) const {
537 // Print the service stub.
538 printer_->Print("class $class_name$_Stub($class_name$):\n",
539 "class_name", descriptor.name());
540 printer_->Indent();
541 printer_->Print(
542 "__metaclass__ = service_reflection.GeneratedServiceStubType\n"
543 "$descriptor_key$ = $descriptor_name$\n",
544 "descriptor_key", kDescriptorKey,
545 "descriptor_name", ModuleLevelServiceDescriptorName(descriptor));
546 printer_->Outdent();
547 }
548
549 // Prints statement assigning ModuleLevelDescriptorName(message_descriptor)
550 // to a Python Descriptor object for message_descriptor.
551 //
552 // Mutually recursive with PrintNestedDescriptors().
PrintDescriptor(const Descriptor & message_descriptor) const553 void Generator::PrintDescriptor(const Descriptor& message_descriptor) const {
554 PrintNestedDescriptors(message_descriptor);
555
556 printer_->Print("\n");
557 printer_->Print("$descriptor_name$ = _descriptor.Descriptor(\n",
558 "descriptor_name",
559 ModuleLevelDescriptorName(message_descriptor));
560 printer_->Indent();
561 map<string, string> m;
562 m["name"] = message_descriptor.name();
563 m["full_name"] = message_descriptor.full_name();
564 m["file"] = kDescriptorKey;
565 const char required_function_arguments[] =
566 "name='$name$',\n"
567 "full_name='$full_name$',\n"
568 "filename=None,\n"
569 "file=$file$,\n"
570 "containing_type=None,\n";
571 printer_->Print(m, required_function_arguments);
572 PrintFieldsInDescriptor(message_descriptor);
573 PrintExtensionsInDescriptor(message_descriptor);
574
575 // Nested types
576 printer_->Print("nested_types=[");
577 for (int i = 0; i < message_descriptor.nested_type_count(); ++i) {
578 const string nested_name = ModuleLevelDescriptorName(
579 *message_descriptor.nested_type(i));
580 printer_->Print("$name$, ", "name", nested_name);
581 }
582 printer_->Print("],\n");
583
584 // Enum types
585 printer_->Print("enum_types=[\n");
586 printer_->Indent();
587 for (int i = 0; i < message_descriptor.enum_type_count(); ++i) {
588 const string descriptor_name = ModuleLevelDescriptorName(
589 *message_descriptor.enum_type(i));
590 printer_->Print(descriptor_name.c_str());
591 printer_->Print(",\n");
592 }
593 printer_->Outdent();
594 printer_->Print("],\n");
595 string options_string;
596 message_descriptor.options().SerializeToString(&options_string);
597 printer_->Print(
598 "options=$options_value$,\n"
599 "is_extendable=$extendable$",
600 "options_value", OptionsValue("MessageOptions", options_string),
601 "extendable", message_descriptor.extension_range_count() > 0 ?
602 "True" : "False");
603 printer_->Print(",\n");
604
605 // Extension ranges
606 printer_->Print("extension_ranges=[");
607 for (int i = 0; i < message_descriptor.extension_range_count(); ++i) {
608 const Descriptor::ExtensionRange* range =
609 message_descriptor.extension_range(i);
610 printer_->Print("($start$, $end$), ",
611 "start", SimpleItoa(range->start),
612 "end", SimpleItoa(range->end));
613 }
614 printer_->Print("],\n");
615
616 // Serialization of proto
617 DescriptorProto edp;
618 PrintSerializedPbInterval(message_descriptor, edp);
619
620 printer_->Outdent();
621 printer_->Print(")\n");
622 }
623
624 // Prints Python Descriptor objects for all nested types contained in
625 // message_descriptor.
626 //
627 // Mutually recursive with PrintDescriptor().
PrintNestedDescriptors(const Descriptor & containing_descriptor) const628 void Generator::PrintNestedDescriptors(
629 const Descriptor& containing_descriptor) const {
630 for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
631 PrintDescriptor(*containing_descriptor.nested_type(i));
632 }
633 }
634
635 // Prints all messages in |file|.
PrintMessages() const636 void Generator::PrintMessages() const {
637 for (int i = 0; i < file_->message_type_count(); ++i) {
638 PrintMessage(*file_->message_type(i));
639 printer_->Print("\n");
640 }
641 }
642
643 // Prints a Python class for the given message descriptor. We defer to the
644 // metaclass to do almost all of the work of actually creating a useful class.
645 // The purpose of this function and its many helper functions above is merely
646 // to output a Python version of the descriptors, which the metaclass in
647 // reflection.py will use to construct the meat of the class itself.
648 //
649 // Mutually recursive with PrintNestedMessages().
PrintMessage(const Descriptor & message_descriptor) const650 void Generator::PrintMessage(
651 const Descriptor& message_descriptor) const {
652 printer_->Print("class $name$(_message.Message):\n", "name",
653 message_descriptor.name());
654 printer_->Indent();
655 printer_->Print("__metaclass__ = _reflection.GeneratedProtocolMessageType\n");
656 PrintNestedMessages(message_descriptor);
657 map<string, string> m;
658 m["descriptor_key"] = kDescriptorKey;
659 m["descriptor_name"] = ModuleLevelDescriptorName(message_descriptor);
660 printer_->Print(m, "$descriptor_key$ = $descriptor_name$\n");
661
662 printer_->Print(
663 "\n"
664 "# @@protoc_insertion_point(class_scope:$full_name$)\n",
665 "full_name", message_descriptor.full_name());
666
667 printer_->Outdent();
668 }
669
670 // Prints all nested messages within |containing_descriptor|.
671 // Mutually recursive with PrintMessage().
PrintNestedMessages(const Descriptor & containing_descriptor) const672 void Generator::PrintNestedMessages(
673 const Descriptor& containing_descriptor) const {
674 for (int i = 0; i < containing_descriptor.nested_type_count(); ++i) {
675 printer_->Print("\n");
676 PrintMessage(*containing_descriptor.nested_type(i));
677 }
678 }
679
680 // Recursively fixes foreign fields in all nested types in |descriptor|, then
681 // sets the message_type and enum_type of all message and enum fields to point
682 // to their respective descriptors.
683 // Args:
684 // descriptor: descriptor to print fields for.
685 // containing_descriptor: if descriptor is a nested type, this is its
686 // containing type, or NULL if this is a root/top-level type.
FixForeignFieldsInDescriptor(const Descriptor & descriptor,const Descriptor * containing_descriptor) const687 void Generator::FixForeignFieldsInDescriptor(
688 const Descriptor& descriptor,
689 const Descriptor* containing_descriptor) const {
690 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
691 FixForeignFieldsInDescriptor(*descriptor.nested_type(i), &descriptor);
692 }
693
694 for (int i = 0; i < descriptor.field_count(); ++i) {
695 const FieldDescriptor& field_descriptor = *descriptor.field(i);
696 FixForeignFieldsInField(&descriptor, field_descriptor, "fields_by_name");
697 }
698
699 FixContainingTypeInDescriptor(descriptor, containing_descriptor);
700 for (int i = 0; i < descriptor.enum_type_count(); ++i) {
701 const EnumDescriptor& enum_descriptor = *descriptor.enum_type(i);
702 FixContainingTypeInDescriptor(enum_descriptor, &descriptor);
703 }
704 }
705
AddMessageToFileDescriptor(const Descriptor & descriptor) const706 void Generator::AddMessageToFileDescriptor(const Descriptor& descriptor) const {
707 map<string, string> m;
708 m["descriptor_name"] = kDescriptorKey;
709 m["message_name"] = descriptor.name();
710 m["message_descriptor_name"] = ModuleLevelDescriptorName(descriptor);
711 const char file_descriptor_template[] =
712 "$descriptor_name$.message_types_by_name['$message_name$'] = "
713 "$message_descriptor_name$\n";
714 printer_->Print(m, file_descriptor_template);
715 }
716
717 // Sets any necessary message_type and enum_type attributes
718 // for the Python version of |field|.
719 //
720 // containing_type may be NULL, in which case this is a module-level field.
721 //
722 // python_dict_name is the name of the Python dict where we should
723 // look the field up in the containing type. (e.g., fields_by_name
724 // or extensions_by_name). We ignore python_dict_name if containing_type
725 // is NULL.
FixForeignFieldsInField(const Descriptor * containing_type,const FieldDescriptor & field,const string & python_dict_name) const726 void Generator::FixForeignFieldsInField(const Descriptor* containing_type,
727 const FieldDescriptor& field,
728 const string& python_dict_name) const {
729 const string field_referencing_expression = FieldReferencingExpression(
730 containing_type, field, python_dict_name);
731 map<string, string> m;
732 m["field_ref"] = field_referencing_expression;
733 const Descriptor* foreign_message_type = field.message_type();
734 if (foreign_message_type) {
735 m["foreign_type"] = ModuleLevelDescriptorName(*foreign_message_type);
736 printer_->Print(m, "$field_ref$.message_type = $foreign_type$\n");
737 }
738 const EnumDescriptor* enum_type = field.enum_type();
739 if (enum_type) {
740 m["enum_type"] = ModuleLevelDescriptorName(*enum_type);
741 printer_->Print(m, "$field_ref$.enum_type = $enum_type$\n");
742 }
743 }
744
745 // Returns the module-level expression for the given FieldDescriptor.
746 // Only works for fields in the .proto file this Generator is generating for.
747 //
748 // containing_type may be NULL, in which case this is a module-level field.
749 //
750 // python_dict_name is the name of the Python dict where we should
751 // look the field up in the containing type. (e.g., fields_by_name
752 // or extensions_by_name). We ignore python_dict_name if containing_type
753 // is NULL.
FieldReferencingExpression(const Descriptor * containing_type,const FieldDescriptor & field,const string & python_dict_name) const754 string Generator::FieldReferencingExpression(
755 const Descriptor* containing_type,
756 const FieldDescriptor& field,
757 const string& python_dict_name) const {
758 // We should only ever be looking up fields in the current file.
759 // The only things we refer to from other files are message descriptors.
760 GOOGLE_CHECK_EQ(field.file(), file_) << field.file()->name() << " vs. "
761 << file_->name();
762 if (!containing_type) {
763 return field.name();
764 }
765 return strings::Substitute(
766 "$0.$1['$2']",
767 ModuleLevelDescriptorName(*containing_type),
768 python_dict_name, field.name());
769 }
770
771 // Prints containing_type for nested descriptors or enum descriptors.
772 template <typename DescriptorT>
FixContainingTypeInDescriptor(const DescriptorT & descriptor,const Descriptor * containing_descriptor) const773 void Generator::FixContainingTypeInDescriptor(
774 const DescriptorT& descriptor,
775 const Descriptor* containing_descriptor) const {
776 if (containing_descriptor != NULL) {
777 const string nested_name = ModuleLevelDescriptorName(descriptor);
778 const string parent_name = ModuleLevelDescriptorName(
779 *containing_descriptor);
780 printer_->Print(
781 "$nested_name$.containing_type = $parent_name$;\n",
782 "nested_name", nested_name,
783 "parent_name", parent_name);
784 }
785 }
786
787 // Prints statements setting the message_type and enum_type fields in the
788 // Python descriptor objects we've already output in ths file. We must
789 // do this in a separate step due to circular references (otherwise, we'd
790 // just set everything in the initial assignment statements).
FixForeignFieldsInDescriptors() const791 void Generator::FixForeignFieldsInDescriptors() const {
792 for (int i = 0; i < file_->message_type_count(); ++i) {
793 FixForeignFieldsInDescriptor(*file_->message_type(i), NULL);
794 }
795 for (int i = 0; i < file_->message_type_count(); ++i) {
796 AddMessageToFileDescriptor(*file_->message_type(i));
797 }
798 printer_->Print("\n");
799 }
800
801 // We need to not only set any necessary message_type fields, but
802 // also need to call RegisterExtension() on each message we're
803 // extending.
FixForeignFieldsInExtensions() const804 void Generator::FixForeignFieldsInExtensions() const {
805 // Top-level extensions.
806 for (int i = 0; i < file_->extension_count(); ++i) {
807 FixForeignFieldsInExtension(*file_->extension(i));
808 }
809 // Nested extensions.
810 for (int i = 0; i < file_->message_type_count(); ++i) {
811 FixForeignFieldsInNestedExtensions(*file_->message_type(i));
812 }
813 printer_->Print("\n");
814 }
815
FixForeignFieldsInExtension(const FieldDescriptor & extension_field) const816 void Generator::FixForeignFieldsInExtension(
817 const FieldDescriptor& extension_field) const {
818 GOOGLE_CHECK(extension_field.is_extension());
819 // extension_scope() will be NULL for top-level extensions, which is
820 // exactly what FixForeignFieldsInField() wants.
821 FixForeignFieldsInField(extension_field.extension_scope(), extension_field,
822 "extensions_by_name");
823
824 map<string, string> m;
825 // Confusingly, for FieldDescriptors that happen to be extensions,
826 // containing_type() means "extended type."
827 // On the other hand, extension_scope() will give us what we normally
828 // mean by containing_type().
829 m["extended_message_class"] = ModuleLevelMessageName(
830 *extension_field.containing_type());
831 m["field"] = FieldReferencingExpression(extension_field.extension_scope(),
832 extension_field,
833 "extensions_by_name");
834 printer_->Print(m, "$extended_message_class$.RegisterExtension($field$)\n");
835 }
836
FixForeignFieldsInNestedExtensions(const Descriptor & descriptor) const837 void Generator::FixForeignFieldsInNestedExtensions(
838 const Descriptor& descriptor) const {
839 // Recursively fix up extensions in all nested types.
840 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
841 FixForeignFieldsInNestedExtensions(*descriptor.nested_type(i));
842 }
843 // Fix up extensions directly contained within this type.
844 for (int i = 0; i < descriptor.extension_count(); ++i) {
845 FixForeignFieldsInExtension(*descriptor.extension(i));
846 }
847 }
848
849 // Returns a Python expression that instantiates a Python EnumValueDescriptor
850 // object for the given C++ descriptor.
PrintEnumValueDescriptor(const EnumValueDescriptor & descriptor) const851 void Generator::PrintEnumValueDescriptor(
852 const EnumValueDescriptor& descriptor) const {
853 // TODO(robinson): Fix up EnumValueDescriptor "type" fields.
854 // More circular references. ::sigh::
855 string options_string;
856 descriptor.options().SerializeToString(&options_string);
857 map<string, string> m;
858 m["name"] = descriptor.name();
859 m["index"] = SimpleItoa(descriptor.index());
860 m["number"] = SimpleItoa(descriptor.number());
861 m["options"] = OptionsValue("EnumValueOptions", options_string);
862 printer_->Print(
863 m,
864 "_descriptor.EnumValueDescriptor(\n"
865 " name='$name$', index=$index$, number=$number$,\n"
866 " options=$options$,\n"
867 " type=None)");
868 }
869
870 // Returns a Python expression that calls descriptor._ParseOptions using
871 // the given descriptor class name and serialized options protobuf string.
OptionsValue(const string & class_name,const string & serialized_options) const872 string Generator::OptionsValue(
873 const string& class_name, const string& serialized_options) const {
874 if (serialized_options.length() == 0 || GeneratingDescriptorProto()) {
875 return "None";
876 } else {
877 string full_class_name = "descriptor_pb2." + class_name;
878 return "_descriptor._ParseOptions(" + full_class_name + "(), '"
879 + CEscape(serialized_options)+ "')";
880 }
881 }
882
883 // Prints an expression for a Python FieldDescriptor for |field|.
PrintFieldDescriptor(const FieldDescriptor & field,bool is_extension) const884 void Generator::PrintFieldDescriptor(
885 const FieldDescriptor& field, bool is_extension) const {
886 string options_string;
887 field.options().SerializeToString(&options_string);
888 map<string, string> m;
889 m["name"] = field.name();
890 m["full_name"] = field.full_name();
891 m["index"] = SimpleItoa(field.index());
892 m["number"] = SimpleItoa(field.number());
893 m["type"] = SimpleItoa(field.type());
894 m["cpp_type"] = SimpleItoa(field.cpp_type());
895 m["label"] = SimpleItoa(field.label());
896 m["has_default_value"] = field.has_default_value() ? "True" : "False";
897 m["default_value"] = StringifyDefaultValue(field);
898 m["is_extension"] = is_extension ? "True" : "False";
899 m["options"] = OptionsValue("FieldOptions", options_string);
900 // We always set message_type and enum_type to None at this point, and then
901 // these fields in correctly after all referenced descriptors have been
902 // defined and/or imported (see FixForeignFieldsInDescriptors()).
903 const char field_descriptor_decl[] =
904 "_descriptor.FieldDescriptor(\n"
905 " name='$name$', full_name='$full_name$', index=$index$,\n"
906 " number=$number$, type=$type$, cpp_type=$cpp_type$, label=$label$,\n"
907 " has_default_value=$has_default_value$, default_value=$default_value$,\n"
908 " message_type=None, enum_type=None, containing_type=None,\n"
909 " is_extension=$is_extension$, extension_scope=None,\n"
910 " options=$options$)";
911 printer_->Print(m, field_descriptor_decl);
912 }
913
914 // Helper for Print{Fields,Extensions}InDescriptor().
PrintFieldDescriptorsInDescriptor(const Descriptor & message_descriptor,bool is_extension,const string & list_variable_name,int (Descriptor::* CountFn)()const,const FieldDescriptor * (Descriptor::* GetterFn)(int)const) const915 void Generator::PrintFieldDescriptorsInDescriptor(
916 const Descriptor& message_descriptor,
917 bool is_extension,
918 const string& list_variable_name,
919 int (Descriptor::*CountFn)() const,
920 const FieldDescriptor* (Descriptor::*GetterFn)(int) const) const {
921 printer_->Print("$list$=[\n", "list", list_variable_name);
922 printer_->Indent();
923 for (int i = 0; i < (message_descriptor.*CountFn)(); ++i) {
924 PrintFieldDescriptor(*(message_descriptor.*GetterFn)(i),
925 is_extension);
926 printer_->Print(",\n");
927 }
928 printer_->Outdent();
929 printer_->Print("],\n");
930 }
931
932 // Prints a statement assigning "fields" to a list of Python FieldDescriptors,
933 // one for each field present in message_descriptor.
PrintFieldsInDescriptor(const Descriptor & message_descriptor) const934 void Generator::PrintFieldsInDescriptor(
935 const Descriptor& message_descriptor) const {
936 const bool is_extension = false;
937 PrintFieldDescriptorsInDescriptor(
938 message_descriptor, is_extension, "fields",
939 &Descriptor::field_count, &Descriptor::field);
940 }
941
942 // Prints a statement assigning "extensions" to a list of Python
943 // FieldDescriptors, one for each extension present in message_descriptor.
PrintExtensionsInDescriptor(const Descriptor & message_descriptor) const944 void Generator::PrintExtensionsInDescriptor(
945 const Descriptor& message_descriptor) const {
946 const bool is_extension = true;
947 PrintFieldDescriptorsInDescriptor(
948 message_descriptor, is_extension, "extensions",
949 &Descriptor::extension_count, &Descriptor::extension);
950 }
951
GeneratingDescriptorProto() const952 bool Generator::GeneratingDescriptorProto() const {
953 return file_->name() == "google/protobuf/descriptor.proto";
954 }
955
956 // Returns the unique Python module-level identifier given to a descriptor.
957 // This name is module-qualified iff the given descriptor describes an
958 // entity that doesn't come from the current file.
959 template <typename DescriptorT>
ModuleLevelDescriptorName(const DescriptorT & descriptor) const960 string Generator::ModuleLevelDescriptorName(
961 const DescriptorT& descriptor) const {
962 // FIXME(robinson):
963 // We currently don't worry about collisions with underscores in the type
964 // names, so these would collide in nasty ways if found in the same file:
965 // OuterProto.ProtoA.ProtoB
966 // OuterProto_ProtoA.ProtoB # Underscore instead of period.
967 // As would these:
968 // OuterProto.ProtoA_.ProtoB
969 // OuterProto.ProtoA._ProtoB # Leading vs. trailing underscore.
970 // (Contrived, but certainly possible).
971 //
972 // The C++ implementation doesn't guard against this either. Leaving
973 // it for now...
974 string name = NamePrefixedWithNestedTypes(descriptor, "_");
975 UpperString(&name);
976 // Module-private for now. Easy to make public later; almost impossible
977 // to make private later.
978 name = "_" + name;
979 // We now have the name relative to its own module. Also qualify with
980 // the module name iff this descriptor is from a different .proto file.
981 if (descriptor.file() != file_) {
982 name = ModuleName(descriptor.file()->name()) + "." + name;
983 }
984 return name;
985 }
986
987 // Returns the name of the message class itself, not the descriptor.
988 // Like ModuleLevelDescriptorName(), module-qualifies the name iff
989 // the given descriptor describes an entity that doesn't come from
990 // the current file.
ModuleLevelMessageName(const Descriptor & descriptor) const991 string Generator::ModuleLevelMessageName(const Descriptor& descriptor) const {
992 string name = NamePrefixedWithNestedTypes(descriptor, ".");
993 if (descriptor.file() != file_) {
994 name = ModuleName(descriptor.file()->name()) + "." + name;
995 }
996 return name;
997 }
998
999 // Returns the unique Python module-level identifier given to a service
1000 // descriptor.
ModuleLevelServiceDescriptorName(const ServiceDescriptor & descriptor) const1001 string Generator::ModuleLevelServiceDescriptorName(
1002 const ServiceDescriptor& descriptor) const {
1003 string name = descriptor.name();
1004 UpperString(&name);
1005 name = "_" + name;
1006 if (descriptor.file() != file_) {
1007 name = ModuleName(descriptor.file()->name()) + "." + name;
1008 }
1009 return name;
1010 }
1011
1012 // Prints standard constructor arguments serialized_start and serialized_end.
1013 // Args:
1014 // descriptor: The cpp descriptor to have a serialized reference.
1015 // proto: A proto
1016 // Example printer output:
1017 // serialized_start=41,
1018 // serialized_end=43,
1019 //
1020 template <typename DescriptorT, typename DescriptorProtoT>
PrintSerializedPbInterval(const DescriptorT & descriptor,DescriptorProtoT & proto) const1021 void Generator::PrintSerializedPbInterval(
1022 const DescriptorT& descriptor, DescriptorProtoT& proto) const {
1023 descriptor.CopyTo(&proto);
1024 string sp;
1025 proto.SerializeToString(&sp);
1026 int offset = file_descriptor_serialized_.find(sp);
1027 GOOGLE_CHECK_GE(offset, 0);
1028
1029 printer_->Print("serialized_start=$serialized_start$,\n"
1030 "serialized_end=$serialized_end$,\n",
1031 "serialized_start", SimpleItoa(offset),
1032 "serialized_end", SimpleItoa(offset + sp.size()));
1033 }
1034
1035 namespace {
PrintDescriptorOptionsFixingCode(const string & descriptor,const string & options,io::Printer * printer)1036 void PrintDescriptorOptionsFixingCode(const string& descriptor,
1037 const string& options,
1038 io::Printer* printer) {
1039 // TODO(xiaofeng): I have added a method _SetOptions() to DescriptorBase
1040 // in proto2 python runtime but it couldn't be used here because appengine
1041 // uses a snapshot version of the library in which the new method is not
1042 // yet present. After appengine has synced their runtime library, the code
1043 // below should be cleaned up to use _SetOptions().
1044 printer->Print(
1045 "$descriptor$.has_options = True\n"
1046 "$descriptor$._options = $options$\n",
1047 "descriptor", descriptor, "options", options);
1048 }
1049 } // namespace
1050
1051 // Prints expressions that set the options field of all descriptors.
FixAllDescriptorOptions() const1052 void Generator::FixAllDescriptorOptions() const {
1053 // Prints an expression that sets the file descriptor's options.
1054 string file_options = OptionsValue(
1055 "FileOptions", file_->options().SerializeAsString());
1056 if (file_options != "None") {
1057 PrintDescriptorOptionsFixingCode(kDescriptorKey, file_options, printer_);
1058 }
1059 // Prints expressions that set the options for all top level enums.
1060 for (int i = 0; i < file_->enum_type_count(); ++i) {
1061 const EnumDescriptor& enum_descriptor = *file_->enum_type(i);
1062 FixOptionsForEnum(enum_descriptor);
1063 }
1064 // Prints expressions that set the options for all top level extensions.
1065 for (int i = 0; i < file_->extension_count(); ++i) {
1066 const FieldDescriptor& field = *file_->extension(i);
1067 FixOptionsForField(field);
1068 }
1069 // Prints expressions that set the options for all messages, nested enums,
1070 // nested extensions and message fields.
1071 for (int i = 0; i < file_->message_type_count(); ++i) {
1072 FixOptionsForMessage(*file_->message_type(i));
1073 }
1074 }
1075
1076 // Prints expressions that set the options for an enum descriptor and its
1077 // value descriptors.
FixOptionsForEnum(const EnumDescriptor & enum_descriptor) const1078 void Generator::FixOptionsForEnum(const EnumDescriptor& enum_descriptor) const {
1079 string descriptor_name = ModuleLevelDescriptorName(enum_descriptor);
1080 string enum_options = OptionsValue(
1081 "EnumOptions", enum_descriptor.options().SerializeAsString());
1082 if (enum_options != "None") {
1083 PrintDescriptorOptionsFixingCode(descriptor_name, enum_options, printer_);
1084 }
1085 for (int i = 0; i < enum_descriptor.value_count(); ++i) {
1086 const EnumValueDescriptor& value_descriptor = *enum_descriptor.value(i);
1087 string value_options = OptionsValue(
1088 "EnumValueOptions", value_descriptor.options().SerializeAsString());
1089 if (value_options != "None") {
1090 PrintDescriptorOptionsFixingCode(
1091 StringPrintf("%s.values_by_name[\"%s\"]", descriptor_name.c_str(),
1092 value_descriptor.name().c_str()),
1093 value_options, printer_);
1094 }
1095 }
1096 }
1097
1098 // Prints expressions that set the options for field descriptors (including
1099 // extensions).
FixOptionsForField(const FieldDescriptor & field) const1100 void Generator::FixOptionsForField(
1101 const FieldDescriptor& field) const {
1102 string field_options = OptionsValue(
1103 "FieldOptions", field.options().SerializeAsString());
1104 if (field_options != "None") {
1105 string field_name;
1106 if (field.is_extension()) {
1107 if (field.extension_scope() == NULL) {
1108 // Top level extensions.
1109 field_name = field.name();
1110 } else {
1111 field_name = FieldReferencingExpression(
1112 field.extension_scope(), field, "extensions_by_name");
1113 }
1114 } else {
1115 field_name = FieldReferencingExpression(
1116 field.containing_type(), field, "fields_by_name");
1117 }
1118 PrintDescriptorOptionsFixingCode(field_name, field_options, printer_);
1119 }
1120 }
1121
1122 // Prints expressions that set the options for a message and all its inner
1123 // types (nested messages, nested enums, extensions, fields).
FixOptionsForMessage(const Descriptor & descriptor) const1124 void Generator::FixOptionsForMessage(const Descriptor& descriptor) const {
1125 // Nested messages.
1126 for (int i = 0; i < descriptor.nested_type_count(); ++i) {
1127 FixOptionsForMessage(*descriptor.nested_type(i));
1128 }
1129 // Enums.
1130 for (int i = 0; i < descriptor.enum_type_count(); ++i) {
1131 FixOptionsForEnum(*descriptor.enum_type(i));
1132 }
1133 // Fields.
1134 for (int i = 0; i < descriptor.field_count(); ++i) {
1135 const FieldDescriptor& field = *descriptor.field(i);
1136 FixOptionsForField(field);
1137 }
1138 // Extensions.
1139 for (int i = 0; i < descriptor.extension_count(); ++i) {
1140 const FieldDescriptor& field = *descriptor.extension(i);
1141 FixOptionsForField(field);
1142 }
1143 // Message option for this message.
1144 string message_options = OptionsValue(
1145 "MessageOptions", descriptor.options().SerializeAsString());
1146 if (message_options != "None") {
1147 string descriptor_name = ModuleLevelDescriptorName(descriptor);
1148 PrintDescriptorOptionsFixingCode(descriptor_name,
1149 message_options,
1150 printer_);
1151 }
1152 }
1153
1154 } // namespace python
1155 } // namespace compiler
1156 } // namespace protobuf
1157 } // namespace google
1158