• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: keir@google.com (Keir Mierle)
30 
31 #include "ceres/gradient_checking_cost_function.h"
32 
33 #include <cmath>
34 #include <vector>
35 #include "ceres/cost_function.h"
36 #include "ceres/internal/scoped_ptr.h"
37 #include "ceres/local_parameterization.h"
38 #include "ceres/loss_function.h"
39 #include "ceres/parameter_block.h"
40 #include "ceres/problem_impl.h"
41 #include "ceres/program.h"
42 #include "ceres/random.h"
43 #include "ceres/residual_block.h"
44 #include "ceres/sized_cost_function.h"
45 #include "ceres/types.h"
46 #include "glog/logging.h"
47 #include "gmock/gmock.h"
48 #include "gmock/mock-log.h"
49 #include "gtest/gtest.h"
50 
51 using testing::AllOf;
52 using testing::AnyNumber;
53 using testing::HasSubstr;
54 using testing::ScopedMockLog;
55 using testing::_;
56 
57 namespace ceres {
58 namespace internal {
59 
60 // Pick a (non-quadratic) function whose derivative are easy:
61 //
62 //    f = exp(- a' x).
63 //   df = - f a.
64 //
65 // where 'a' is a vector of the same size as 'x'. In the block
66 // version, they are both block vectors, of course.
67 template<int bad_block = 1, int bad_variable = 2>
68 class TestTerm : public CostFunction {
69  public:
70   // The constructor of this function needs to know the number
71   // of blocks desired, and the size of each block.
TestTerm(int arity,int const * dim)72   TestTerm(int arity, int const *dim) : arity_(arity) {
73     // Make 'arity' random vectors.
74     a_.resize(arity_);
75     for (int j = 0; j < arity_; ++j) {
76       a_[j].resize(dim[j]);
77       for (int u = 0; u < dim[j]; ++u) {
78         a_[j][u] = 2.0 * RandDouble() - 1.0;
79       }
80     }
81 
82     for (int i = 0; i < arity_; i++) {
83       mutable_parameter_block_sizes()->push_back(dim[i]);
84     }
85     set_num_residuals(1);
86   }
87 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const88   bool Evaluate(double const* const* parameters,
89                 double* residuals,
90                 double** jacobians) const {
91     // Compute a . x.
92     double ax = 0;
93     for (int j = 0; j < arity_; ++j) {
94       for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
95         ax += a_[j][u] * parameters[j][u];
96       }
97     }
98 
99     // This is the cost, but also appears as a factor
100     // in the derivatives.
101     double f = *residuals = exp(-ax);
102 
103     // Accumulate 1st order derivatives.
104     if (jacobians) {
105       for (int j = 0; j < arity_; ++j) {
106         if (jacobians[j]) {
107           for (int u = 0; u < parameter_block_sizes()[j]; ++u) {
108             // See comments before class.
109             jacobians[j][u] = - f * a_[j][u];
110 
111             if (bad_block == j && bad_variable == u) {
112               // Whoopsiedoopsie! Deliberately introduce a faulty jacobian entry
113               // like what happens when users make an error in their jacobian
114               // computations. This should get detected.
115               LOG(INFO) << "Poisoning jacobian for parameter block " << j
116                         << ", row 0, column " << u;
117               jacobians[j][u] += 500;
118             }
119           }
120         }
121       }
122     }
123 
124     return true;
125   }
126 
127  private:
128   int arity_;
129   vector<vector<double> > a_;
130 };
131 
TEST(GradientCheckingCostFunction,ResidualsAndJacobiansArePreservedTest)132 TEST(GradientCheckingCostFunction, ResidualsAndJacobiansArePreservedTest) {
133   srand(5);
134 
135   // Test with 3 blocks of size 2, 3 and 4.
136   int const arity = 3;
137   int const dim[arity] = { 2, 3, 4 };
138 
139   // Make a random set of blocks.
140   vector<double*> parameters(arity);
141   for (int j = 0; j < arity; ++j) {
142     parameters[j] = new double[dim[j]];
143     for (int u = 0; u < dim[j]; ++u) {
144       parameters[j][u] = 2.0 * RandDouble() - 1.0;
145     }
146   }
147 
148   double original_residual;
149   double residual;
150   vector<double*> original_jacobians(arity);
151   vector<double*> jacobians(arity);
152 
153   for (int j = 0; j < arity; ++j) {
154     // Since residual is one dimensional the jacobians have the same
155     // size as the parameter blocks.
156     jacobians[j] = new double[dim[j]];
157     original_jacobians[j] = new double[dim[j]];
158   }
159 
160   const double kRelativeStepSize = 1e-6;
161   const double kRelativePrecision = 1e-4;
162 
163   TestTerm<-1, -1> term(arity, dim);
164   scoped_ptr<CostFunction> gradient_checking_cost_function(
165       CreateGradientCheckingCostFunction(&term,
166                                          kRelativeStepSize,
167                                          kRelativePrecision,
168                                          "Ignored."));
169   term.Evaluate(&parameters[0],
170                 &original_residual,
171                 &original_jacobians[0]);
172 
173   gradient_checking_cost_function->Evaluate(&parameters[0],
174                                             &residual,
175                                             &jacobians[0]);
176   EXPECT_EQ(original_residual, residual);
177 
178   for (int j = 0; j < arity; j++) {
179     for (int k = 0; k < dim[j]; ++k) {
180       EXPECT_EQ(original_jacobians[j][k], jacobians[j][k]);
181     }
182 
183     delete[] parameters[j];
184     delete[] jacobians[j];
185     delete[] original_jacobians[j];
186   }
187 }
188 
TEST(GradientCheckingCostFunction,SmokeTest)189 TEST(GradientCheckingCostFunction, SmokeTest) {
190   srand(5);
191 
192   // Test with 3 blocks of size 2, 3 and 4.
193   int const arity = 3;
194   int const dim[arity] = { 2, 3, 4 };
195 
196   // Make a random set of blocks.
197   vector<double*> parameters(arity);
198   for (int j = 0; j < arity; ++j) {
199     parameters[j] = new double[dim[j]];
200     for (int u = 0; u < dim[j]; ++u) {
201       parameters[j][u] = 2.0 * RandDouble() - 1.0;
202     }
203   }
204 
205   double residual;
206   vector<double*> jacobians(arity);
207   for (int j = 0; j < arity; ++j) {
208     // Since residual is one dimensional the jacobians have the same size as the
209     // parameter blocks.
210     jacobians[j] = new double[dim[j]];
211   }
212 
213   const double kRelativeStepSize = 1e-6;
214   const double kRelativePrecision = 1e-4;
215 
216   // Should have one term that's bad, causing everything to get dumped.
217   LOG(INFO) << "Bad gradient";
218   {
219     TestTerm<1, 2> term(arity, dim);
220     scoped_ptr<CostFunction> gradient_checking_cost_function(
221         CreateGradientCheckingCostFunction(&term,
222                                            kRelativeStepSize,
223                                            kRelativePrecision,
224                                            "Fuzzy bananas"));
225 
226     ScopedMockLog log;
227     EXPECT_CALL(log, Log(_, _, _)).Times(AnyNumber());
228     EXPECT_CALL(log, Log(WARNING, _,
229                          AllOf(HasSubstr("(1,0,2) Relative error worse than"),
230                                HasSubstr("Fuzzy bananas"))));
231 
232     gradient_checking_cost_function->Evaluate(&parameters[0],
233                                               &residual,
234                                               &jacobians[0]);
235   }
236 
237   // The gradient is correct, so no errors are reported.
238   LOG(INFO) << "Good gradient";
239   {
240     TestTerm<-1, -1> term(arity, dim);
241     scoped_ptr<CostFunction> gradient_checking_cost_function(
242         CreateGradientCheckingCostFunction(&term,
243                                            kRelativeStepSize,
244                                            kRelativePrecision,
245                                            "Ignored."));
246 
247     ScopedMockLog log;
248     EXPECT_CALL(log, Log(_, _, _)).Times(0);
249 
250     gradient_checking_cost_function->Evaluate(&parameters[0],
251                                               &residual,
252                                               &jacobians[0]);
253   }
254 
255   for (int j = 0; j < arity; j++) {
256     delete[] parameters[j];
257     delete[] jacobians[j];
258   }
259 }
260 
261 // The following three classes are for the purposes of defining
262 // function signatures. They have dummy Evaluate functions.
263 
264 // Trivial cost function that accepts a single argument.
265 class UnaryCostFunction : public CostFunction {
266  public:
UnaryCostFunction(int num_residuals,int16 parameter_block_size)267   UnaryCostFunction(int num_residuals, int16 parameter_block_size) {
268     set_num_residuals(num_residuals);
269     mutable_parameter_block_sizes()->push_back(parameter_block_size);
270   }
~UnaryCostFunction()271   virtual ~UnaryCostFunction() {}
272 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const273   virtual bool Evaluate(double const* const* parameters,
274                         double* residuals,
275                         double** jacobians) const {
276     for (int i = 0; i < num_residuals(); ++i) {
277       residuals[i] = 1;
278     }
279     return true;
280   }
281 };
282 
283 // Trivial cost function that accepts two arguments.
284 class BinaryCostFunction: public CostFunction {
285  public:
BinaryCostFunction(int num_residuals,int16 parameter_block1_size,int16 parameter_block2_size)286   BinaryCostFunction(int num_residuals,
287                      int16 parameter_block1_size,
288                      int16 parameter_block2_size) {
289     set_num_residuals(num_residuals);
290     mutable_parameter_block_sizes()->push_back(parameter_block1_size);
291     mutable_parameter_block_sizes()->push_back(parameter_block2_size);
292   }
293 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const294   virtual bool Evaluate(double const* const* parameters,
295                         double* residuals,
296                         double** jacobians) const {
297     for (int i = 0; i < num_residuals(); ++i) {
298       residuals[i] = 2;
299     }
300     return true;
301   }
302 };
303 
304 // Trivial cost function that accepts three arguments.
305 class TernaryCostFunction: public CostFunction {
306  public:
TernaryCostFunction(int num_residuals,int16 parameter_block1_size,int16 parameter_block2_size,int16 parameter_block3_size)307   TernaryCostFunction(int num_residuals,
308                       int16 parameter_block1_size,
309                       int16 parameter_block2_size,
310                       int16 parameter_block3_size) {
311     set_num_residuals(num_residuals);
312     mutable_parameter_block_sizes()->push_back(parameter_block1_size);
313     mutable_parameter_block_sizes()->push_back(parameter_block2_size);
314     mutable_parameter_block_sizes()->push_back(parameter_block3_size);
315   }
316 
Evaluate(double const * const * parameters,double * residuals,double ** jacobians) const317   virtual bool Evaluate(double const* const* parameters,
318                         double* residuals,
319                         double** jacobians) const {
320     for (int i = 0; i < num_residuals(); ++i) {
321       residuals[i] = 3;
322     }
323     return true;
324   }
325 };
326 
327 // Verify that the two ParameterBlocks are formed from the same user
328 // array and have the same LocalParameterization object.
ParameterBlocksAreEquivalent(const ParameterBlock * left,const ParameterBlock * right)329 void ParameterBlocksAreEquivalent(const ParameterBlock*  left,
330                                   const ParameterBlock* right) {
331   CHECK_NOTNULL(left);
332   CHECK_NOTNULL(right);
333   EXPECT_EQ(left->user_state(), right->user_state());
334   EXPECT_EQ(left->Size(), right->Size());
335   EXPECT_EQ(left->Size(), right->Size());
336   EXPECT_EQ(left->LocalSize(), right->LocalSize());
337   EXPECT_EQ(left->local_parameterization(), right->local_parameterization());
338   EXPECT_EQ(left->IsConstant(), right->IsConstant());
339 }
340 
TEST(GradientCheckingProblemImpl,ProblemDimensionsMatch)341 TEST(GradientCheckingProblemImpl, ProblemDimensionsMatch) {
342   // Parameter blocks with arbitrarily chosen initial values.
343   double x[] = {1.0, 2.0, 3.0};
344   double y[] = {4.0, 5.0, 6.0, 7.0};
345   double z[] = {8.0, 9.0, 10.0, 11.0, 12.0};
346   double w[] = {13.0, 14.0, 15.0, 16.0};
347 
348   ProblemImpl problem_impl;
349   problem_impl.AddParameterBlock(x, 3);
350   problem_impl.AddParameterBlock(y, 4);
351   problem_impl.SetParameterBlockConstant(y);
352   problem_impl.AddParameterBlock(z, 5);
353   problem_impl.AddParameterBlock(w, 4, new QuaternionParameterization);
354   problem_impl.AddResidualBlock(new UnaryCostFunction(2, 3), NULL, x);
355   problem_impl.AddResidualBlock(new BinaryCostFunction(6, 5, 4) ,
356                                 NULL, z, y);
357   problem_impl.AddResidualBlock(new BinaryCostFunction(3, 3, 5),
358                                 new TrivialLoss, x, z);
359   problem_impl.AddResidualBlock(new BinaryCostFunction(7, 5, 3),
360                                 NULL, z, x);
361   problem_impl.AddResidualBlock(new TernaryCostFunction(1, 5, 3, 4),
362                                 NULL, z, x, y);
363 
364   scoped_ptr<ProblemImpl> gradient_checking_problem_impl(
365       CreateGradientCheckingProblemImpl(&problem_impl, 1.0, 1.0));
366 
367   // The dimensions of the two problems match.
368   EXPECT_EQ(problem_impl.NumParameterBlocks(),
369             gradient_checking_problem_impl->NumParameterBlocks());
370   EXPECT_EQ(problem_impl.NumResidualBlocks(),
371             gradient_checking_problem_impl->NumResidualBlocks());
372 
373   EXPECT_EQ(problem_impl.NumParameters(),
374             gradient_checking_problem_impl->NumParameters());
375   EXPECT_EQ(problem_impl.NumResiduals(),
376             gradient_checking_problem_impl->NumResiduals());
377 
378   const Program& program = problem_impl.program();
379   const Program& gradient_checking_program =
380       gradient_checking_problem_impl->program();
381 
382   // Since we added the ParameterBlocks and ResidualBlocks explicitly,
383   // they should be in the same order in the two programs. It is
384   // possible that may change due to implementation changes to
385   // Program. This is not exepected to be the case and writing code to
386   // anticipate that possibility not worth the extra complexity in
387   // this test.
388   for (int i = 0; i < program.parameter_blocks().size(); ++i) {
389     ParameterBlocksAreEquivalent(
390         program.parameter_blocks()[i],
391         gradient_checking_program.parameter_blocks()[i]);
392   }
393 
394   for (int i = 0; i < program.residual_blocks().size(); ++i) {
395     // Compare the sizes of the two ResidualBlocks.
396     const ResidualBlock* original_residual_block =
397         program.residual_blocks()[i];
398     const ResidualBlock* new_residual_block =
399         gradient_checking_program.residual_blocks()[i];
400     EXPECT_EQ(original_residual_block->NumParameterBlocks(),
401               new_residual_block->NumParameterBlocks());
402     EXPECT_EQ(original_residual_block->NumResiduals(),
403               new_residual_block->NumResiduals());
404     EXPECT_EQ(original_residual_block->NumScratchDoublesForEvaluate(),
405               new_residual_block->NumScratchDoublesForEvaluate());
406 
407     // Verify that the ParameterBlocks for the two residuals are equivalent.
408     for (int j = 0; j < original_residual_block->NumParameterBlocks(); ++j) {
409       ParameterBlocksAreEquivalent(
410           original_residual_block->parameter_blocks()[j],
411           new_residual_block->parameter_blocks()[j]);
412     }
413   }
414 }
415 
416 }  // namespace internal
417 }  // namespace ceres
418