• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2013 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #ifndef CERES_PUBLIC_COVARIANCE_H_
32 #define CERES_PUBLIC_COVARIANCE_H_
33 
34 #include <utility>
35 #include <vector>
36 #include "ceres/internal/port.h"
37 #include "ceres/internal/scoped_ptr.h"
38 #include "ceres/types.h"
39 
40 namespace ceres {
41 
42 class Problem;
43 
44 namespace internal {
45 class CovarianceImpl;
46 }  // namespace internal
47 
48 // WARNING
49 // =======
50 // It is very easy to use this class incorrectly without understanding
51 // the underlying mathematics. Please read and understand the
52 // documentation completely before attempting to use this class.
53 //
54 //
55 // This class allows the user to evaluate the covariance for a
56 // non-linear least squares problem and provides random access to its
57 // blocks
58 //
59 // Background
60 // ==========
61 // One way to assess the quality of the solution returned by a
62 // non-linear least squares solve is to analyze the covariance of the
63 // solution.
64 //
65 // Let us consider the non-linear regression problem
66 //
67 //   y = f(x) + N(0, I)
68 //
69 // i.e., the observation y is a random non-linear function of the
70 // independent variable x with mean f(x) and identity covariance. Then
71 // the maximum likelihood estimate of x given observations y is the
72 // solution to the non-linear least squares problem:
73 //
74 //  x* = arg min_x |f(x)|^2
75 //
76 // And the covariance of x* is given by
77 //
78 //  C(x*) = inverse[J'(x*)J(x*)]
79 //
80 // Here J(x*) is the Jacobian of f at x*. The above formula assumes
81 // that J(x*) has full column rank.
82 //
83 // If J(x*) is rank deficient, then the covariance matrix C(x*) is
84 // also rank deficient and is given by
85 //
86 //  C(x*) =  pseudoinverse[J'(x*)J(x*)]
87 //
88 // Note that in the above, we assumed that the covariance
89 // matrix for y was identity. This is an important assumption. If this
90 // is not the case and we have
91 //
92 //  y = f(x) + N(0, S)
93 //
94 // Where S is a positive semi-definite matrix denoting the covariance
95 // of y, then the maximum likelihood problem to be solved is
96 //
97 //  x* = arg min_x f'(x) inverse[S] f(x)
98 //
99 // and the corresponding covariance estimate of x* is given by
100 //
101 //  C(x*) = inverse[J'(x*) inverse[S] J(x*)]
102 //
103 // So, if it is the case that the observations being fitted to have a
104 // covariance matrix not equal to identity, then it is the user's
105 // responsibility that the corresponding cost functions are correctly
106 // scaled, e.g. in the above case the cost function for this problem
107 // should evaluate S^{-1/2} f(x) instead of just f(x), where S^{-1/2}
108 // is the inverse square root of the covariance matrix S.
109 //
110 // This class allows the user to evaluate the covariance for a
111 // non-linear least squares problem and provides random access to its
112 // blocks. The computation assumes that the CostFunctions compute
113 // residuals such that their covariance is identity.
114 //
115 // Since the computation of the covariance matrix requires computing
116 // the inverse of a potentially large matrix, this can involve a
117 // rather large amount of time and memory. However, it is usually the
118 // case that the user is only interested in a small part of the
119 // covariance matrix. Quite often just the block diagonal. This class
120 // allows the user to specify the parts of the covariance matrix that
121 // she is interested in and then uses this information to only compute
122 // and store those parts of the covariance matrix.
123 //
124 // Rank of the Jacobian
125 // --------------------
126 // As we noted above, if the jacobian is rank deficient, then the
127 // inverse of J'J is not defined and instead a pseudo inverse needs to
128 // be computed.
129 //
130 // The rank deficiency in J can be structural -- columns which are
131 // always known to be zero or numerical -- depending on the exact
132 // values in the Jacobian.
133 //
134 // Structural rank deficiency occurs when the problem contains
135 // parameter blocks that are constant. This class correctly handles
136 // structural rank deficiency like that.
137 //
138 // Numerical rank deficiency, where the rank of the matrix cannot be
139 // predicted by its sparsity structure and requires looking at its
140 // numerical values is more complicated. Here again there are two
141 // cases.
142 //
143 //   a. The rank deficiency arises from overparameterization. e.g., a
144 //   four dimensional quaternion used to parameterize SO(3), which is
145 //   a three dimensional manifold. In cases like this, the user should
146 //   use an appropriate LocalParameterization. Not only will this lead
147 //   to better numerical behaviour of the Solver, it will also expose
148 //   the rank deficiency to the Covariance object so that it can
149 //   handle it correctly.
150 //
151 //   b. More general numerical rank deficiency in the Jacobian
152 //   requires the computation of the so called Singular Value
153 //   Decomposition (SVD) of J'J. We do not know how to do this for
154 //   large sparse matrices efficiently. For small and moderate sized
155 //   problems this is done using dense linear algebra.
156 //
157 // Gauge Invariance
158 // ----------------
159 // In structure from motion (3D reconstruction) problems, the
160 // reconstruction is ambiguous upto a similarity transform. This is
161 // known as a Gauge Ambiguity. Handling Gauges correctly requires the
162 // use of SVD or custom inversion algorithms. For small problems the
163 // user can use the dense algorithm. For more details see
164 //
165 // Ken-ichi Kanatani, Daniel D. Morris: Gauges and gauge
166 // transformations for uncertainty description of geometric structure
167 // with indeterminacy. IEEE Transactions on Information Theory 47(5):
168 // 2017-2028 (2001)
169 //
170 // Example Usage
171 // =============
172 //
173 //  double x[3];
174 //  double y[2];
175 //
176 //  Problem problem;
177 //  problem.AddParameterBlock(x, 3);
178 //  problem.AddParameterBlock(y, 2);
179 //  <Build Problem>
180 //  <Solve Problem>
181 //
182 //  Covariance::Options options;
183 //  Covariance covariance(options);
184 //
185 //  vector<pair<const double*, const double*> > covariance_blocks;
186 //  covariance_blocks.push_back(make_pair(x, x));
187 //  covariance_blocks.push_back(make_pair(y, y));
188 //  covariance_blocks.push_back(make_pair(x, y));
189 //
190 //  CHECK(covariance.Compute(covariance_blocks, &problem));
191 //
192 //  double covariance_xx[3 * 3];
193 //  double covariance_yy[2 * 2];
194 //  double covariance_xy[3 * 2];
195 //  covariance.GetCovarianceBlock(x, x, covariance_xx)
196 //  covariance.GetCovarianceBlock(y, y, covariance_yy)
197 //  covariance.GetCovarianceBlock(x, y, covariance_xy)
198 //
199 class Covariance {
200  public:
201   struct Options {
OptionsOptions202     Options()
203 #ifndef CERES_NO_SUITESPARSE
204         : algorithm_type(SPARSE_QR),
205 #else
206         : algorithm_type(DENSE_SVD),
207 #endif
208           min_reciprocal_condition_number(1e-14),
209           null_space_rank(0),
210           num_threads(1),
211           apply_loss_function(true) {
212     }
213 
214     // Ceres supports three different algorithms for covariance
215     // estimation, which represent different tradeoffs in speed,
216     // accuracy and reliability.
217     //
218     // 1. DENSE_SVD uses Eigen's JacobiSVD to perform the
219     //    computations. It computes the singular value decomposition
220     //
221     //      U * S * V' = J
222     //
223     //    and then uses it to compute the pseudo inverse of J'J as
224     //
225     //      pseudoinverse[J'J]^ = V * pseudoinverse[S] * V'
226     //
227     //    It is an accurate but slow method and should only be used
228     //    for small to moderate sized problems. It can handle
229     //    full-rank as well as rank deficient Jacobians.
230     //
231     // 2. SPARSE_CHOLESKY uses the CHOLMOD sparse Cholesky
232     //    factorization library to compute the decomposition :
233     //
234     //      R'R = J'J
235     //
236     //    and then
237     //
238     //      [J'J]^-1  = [R'R]^-1
239     //
240     //    It a fast algorithm for sparse matrices that should be used
241     //    when the Jacobian matrix J is well conditioned. For
242     //    ill-conditioned matrices, this algorithm can fail
243     //    unpredictabily. This is because Cholesky factorization is
244     //    not a rank-revealing factorization, i.e., it cannot reliably
245     //    detect when the matrix being factorized is not of full
246     //    rank. SuiteSparse/CHOLMOD supplies a heuristic for checking
247     //    if the matrix is rank deficient (cholmod_rcond), but it is
248     //    only a heuristic and can have both false positive and false
249     //    negatives.
250     //
251     //    Recent versions of SuiteSparse (>= 4.2.0) provide a much
252     //    more efficient method for solving for rows of the covariance
253     //    matrix. Therefore, if you are doing SPARSE_CHOLESKY, we
254     //    strongly recommend using a recent version of SuiteSparse.
255     //
256     // 3. SPARSE_QR uses the SuiteSparseQR sparse QR factorization
257     //    library to compute the decomposition
258     //
259     //      Q * R = J
260     //
261     //    [J'J]^-1 = [R*R']^-1
262     //
263     //    It is a moderately fast algorithm for sparse matrices, which
264     //    at the price of more time and memory than the
265     //    SPARSE_CHOLESKY algorithm is numerically better behaved and
266     //    is rank revealing, i.e., it can reliably detect when the
267     //    Jacobian matrix is rank deficient.
268     //
269     // Neither SPARSE_CHOLESKY or SPARSE_QR are capable of computing
270     // the covariance if the Jacobian is rank deficient.
271 
272     CovarianceAlgorithmType algorithm_type;
273 
274     // If the Jacobian matrix is near singular, then inverting J'J
275     // will result in unreliable results, e.g, if
276     //
277     //   J = [1.0 1.0         ]
278     //       [1.0 1.0000001   ]
279     //
280     // which is essentially a rank deficient matrix, we have
281     //
282     //   inv(J'J) = [ 2.0471e+14  -2.0471e+14]
283     //              [-2.0471e+14   2.0471e+14]
284     //
285     // This is not a useful result. Therefore, by default
286     // Covariance::Compute will return false if a rank deficient
287     // Jacobian is encountered. How rank deficiency is detected
288     // depends on the algorithm being used.
289     //
290     // 1. DENSE_SVD
291     //
292     //      min_sigma / max_sigma < sqrt(min_reciprocal_condition_number)
293     //
294     //    where min_sigma and max_sigma are the minimum and maxiumum
295     //    singular values of J respectively.
296     //
297     // 2. SPARSE_CHOLESKY
298     //
299     //      cholmod_rcond < min_reciprocal_conditioner_number
300     //
301     //    Here cholmod_rcond is a crude estimate of the reciprocal
302     //    condition number of J'J by using the maximum and minimum
303     //    diagonal entries of the Cholesky factor R. There are no
304     //    theoretical guarantees associated with this test. It can
305     //    give false positives and negatives. Use at your own
306     //    risk. The default value of min_reciprocal_condition_number
307     //    has been set to a conservative value, and sometimes the
308     //    Covariance::Compute may return false even if it is possible
309     //    to estimate the covariance reliably. In such cases, the user
310     //    should exercise their judgement before lowering the value of
311     //    min_reciprocal_condition_number.
312     //
313     // 3. SPARSE_QR
314     //
315     //      rank(J) < num_col(J)
316     //
317     //   Here rank(J) is the estimate of the rank of J returned by the
318     //   SuiteSparseQR algorithm. It is a fairly reliable indication
319     //   of rank deficiency.
320     //
321     double min_reciprocal_condition_number;
322 
323     // When using DENSE_SVD, the user has more control in dealing with
324     // singular and near singular covariance matrices.
325     //
326     // As mentioned above, when the covariance matrix is near
327     // singular, instead of computing the inverse of J'J, the
328     // Moore-Penrose pseudoinverse of J'J should be computed.
329     //
330     // If J'J has the eigen decomposition (lambda_i, e_i), where
331     // lambda_i is the i^th eigenvalue and e_i is the corresponding
332     // eigenvector, then the inverse of J'J is
333     //
334     //   inverse[J'J] = sum_i e_i e_i' / lambda_i
335     //
336     // and computing the pseudo inverse involves dropping terms from
337     // this sum that correspond to small eigenvalues.
338     //
339     // How terms are dropped is controlled by
340     // min_reciprocal_condition_number and null_space_rank.
341     //
342     // If null_space_rank is non-negative, then the smallest
343     // null_space_rank eigenvalue/eigenvectors are dropped
344     // irrespective of the magnitude of lambda_i. If the ratio of the
345     // smallest non-zero eigenvalue to the largest eigenvalue in the
346     // truncated matrix is still below
347     // min_reciprocal_condition_number, then the Covariance::Compute()
348     // will fail and return false.
349     //
350     // Setting null_space_rank = -1 drops all terms for which
351     //
352     //   lambda_i / lambda_max < min_reciprocal_condition_number.
353     //
354     // This option has no effect on the SPARSE_CHOLESKY or SPARSE_QR
355     // algorithms.
356     int null_space_rank;
357 
358     int num_threads;
359 
360     // Even though the residual blocks in the problem may contain loss
361     // functions, setting apply_loss_function to false will turn off
362     // the application of the loss function to the output of the cost
363     // function and in turn its effect on the covariance.
364     //
365     // TODO(sameergaarwal): Expand this based on Jim's experiments.
366     bool apply_loss_function;
367   };
368 
369   explicit Covariance(const Options& options);
370   ~Covariance();
371 
372   // Compute a part of the covariance matrix.
373   //
374   // The vector covariance_blocks, indexes into the covariance matrix
375   // block-wise using pairs of parameter blocks. This allows the
376   // covariance estimation algorithm to only compute and store these
377   // blocks.
378   //
379   // Since the covariance matrix is symmetric, if the user passes
380   // (block1, block2), then GetCovarianceBlock can be called with
381   // block1, block2 as well as block2, block1.
382   //
383   // covariance_blocks cannot contain duplicates. Bad things will
384   // happen if they do.
385   //
386   // Note that the list of covariance_blocks is only used to determine
387   // what parts of the covariance matrix are computed. The full
388   // Jacobian is used to do the computation, i.e. they do not have an
389   // impact on what part of the Jacobian is used for computation.
390   //
391   // The return value indicates the success or failure of the
392   // covariance computation. Please see the documentation for
393   // Covariance::Options for more on the conditions under which this
394   // function returns false.
395   bool Compute(
396       const vector<pair<const double*, const double*> >& covariance_blocks,
397       Problem* problem);
398 
399   // Return the block of the covariance matrix corresponding to
400   // parameter_block1 and parameter_block2.
401   //
402   // Compute must be called before the first call to
403   // GetCovarianceBlock and the pair <parameter_block1,
404   // parameter_block2> OR the pair <parameter_block2,
405   // parameter_block1> must have been present in the vector
406   // covariance_blocks when Compute was called. Otherwise
407   // GetCovarianceBlock will return false.
408   //
409   // covariance_block must point to a memory location that can store a
410   // parameter_block1_size x parameter_block2_size matrix. The
411   // returned covariance will be a row-major matrix.
412   bool GetCovarianceBlock(const double* parameter_block1,
413                           const double* parameter_block2,
414                           double* covariance_block) const;
415 
416  private:
417   internal::scoped_ptr<internal::CovarianceImpl> impl_;
418 };
419 
420 }  // namespace ceres
421 
422 #endif  // CERES_PUBLIC_COVARIANCE_H_
423