• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Interface for and implementation of various Line search algorithms.
32 
33 #ifndef CERES_INTERNAL_LINE_SEARCH_H_
34 #define CERES_INTERNAL_LINE_SEARCH_H_
35 
36 #ifndef CERES_NO_LINE_SEARCH_MINIMIZER
37 
38 #include <string>
39 #include <vector>
40 #include "ceres/internal/eigen.h"
41 #include "ceres/internal/port.h"
42 #include "ceres/types.h"
43 
44 namespace ceres {
45 namespace internal {
46 
47 class Evaluator;
48 struct FunctionSample;
49 
50 // Line search is another name for a one dimensional optimization
51 // algorithm. The name "line search" comes from the fact one
52 // dimensional optimization problems that arise as subproblems of
53 // general multidimensional optimization problems.
54 //
55 // While finding the exact minimum of a one dimensionl function is
56 // hard, instances of LineSearch find a point that satisfies a
57 // sufficient decrease condition. Depending on the particular
58 // condition used, we get a variety of different line search
59 // algorithms, e.g., Armijo, Wolfe etc.
60 class LineSearch {
61  public:
62   class Function;
63 
64   struct Options {
OptionsOptions65     Options()
66         : interpolation_type(CUBIC),
67           sufficient_decrease(1e-4),
68           max_step_contraction(1e-3),
69           min_step_contraction(0.9),
70           min_step_size(1e-9),
71           max_num_iterations(20),
72           sufficient_curvature_decrease(0.9),
73           max_step_expansion(10.0),
74           function(NULL) {}
75 
76     // Degree of the polynomial used to approximate the objective
77     // function.
78     LineSearchInterpolationType interpolation_type;
79 
80     // Armijo and Wolfe line search parameters.
81 
82     // Solving the line search problem exactly is computationally
83     // prohibitive. Fortunately, line search based optimization
84     // algorithms can still guarantee convergence if instead of an
85     // exact solution, the line search algorithm returns a solution
86     // which decreases the value of the objective function
87     // sufficiently. More precisely, we are looking for a step_size
88     // s.t.
89     //
90     //  f(step_size) <= f(0) + sufficient_decrease * f'(0) * step_size
91     double sufficient_decrease;
92 
93     // In each iteration of the Armijo / Wolfe line search,
94     //
95     // new_step_size >= max_step_contraction * step_size
96     //
97     // Note that by definition, for contraction:
98     //
99     //  0 < max_step_contraction < min_step_contraction < 1
100     //
101     double max_step_contraction;
102 
103     // In each iteration of the Armijo / Wolfe line search,
104     //
105     // new_step_size <= min_step_contraction * step_size
106     // Note that by definition, for contraction:
107     //
108     //  0 < max_step_contraction < min_step_contraction < 1
109     //
110     double min_step_contraction;
111 
112     // If during the line search, the step_size falls below this
113     // value, it is truncated to zero.
114     double min_step_size;
115 
116     // Maximum number of trial step size iterations during each line search,
117     // if a step size satisfying the search conditions cannot be found within
118     // this number of trials, the line search will terminate.
119     int max_num_iterations;
120 
121     // Wolfe-specific line search parameters.
122 
123     // The strong Wolfe conditions consist of the Armijo sufficient
124     // decrease condition, and an additional requirement that the
125     // step-size be chosen s.t. the _magnitude_ ('strong' Wolfe
126     // conditions) of the gradient along the search direction
127     // decreases sufficiently. Precisely, this second condition
128     // is that we seek a step_size s.t.
129     //
130     //   |f'(step_size)| <= sufficient_curvature_decrease * |f'(0)|
131     //
132     // Where f() is the line search objective and f'() is the derivative
133     // of f w.r.t step_size (d f / d step_size).
134     double sufficient_curvature_decrease;
135 
136     // During the bracketing phase of the Wolfe search, the step size is
137     // increased until either a point satisfying the Wolfe conditions is
138     // found, or an upper bound for a bracket containing a point satisfying
139     // the conditions is found.  Precisely, at each iteration of the
140     // expansion:
141     //
142     //   new_step_size <= max_step_expansion * step_size.
143     //
144     // By definition for expansion, max_step_expansion > 1.0.
145     double max_step_expansion;
146 
147     // The one dimensional function that the line search algorithm
148     // minimizes.
149     Function* function;
150   };
151 
152   // An object used by the line search to access the function values
153   // and gradient of the one dimensional function being optimized.
154   //
155   // In practice, this object will provide access to the objective
156   // function value and the directional derivative of the underlying
157   // optimization problem along a specific search direction.
158   //
159   // See LineSearchFunction for an example implementation.
160   class Function {
161    public:
~Function()162     virtual ~Function() {}
163     // Evaluate the line search objective
164     //
165     //   f(x) = p(position + x * direction)
166     //
167     // Where, p is the objective function of the general optimization
168     // problem.
169     //
170     // g is the gradient f'(x) at x.
171     //
172     // f must not be null. The gradient is computed only if g is not null.
173     virtual bool Evaluate(double x, double* f, double* g) = 0;
174   };
175 
176   // Result of the line search.
177   struct Summary {
SummarySummary178     Summary()
179         : success(false),
180           optimal_step_size(0.0),
181           num_function_evaluations(0),
182           num_gradient_evaluations(0),
183           num_iterations(0) {}
184 
185     bool success;
186     double optimal_step_size;
187     int num_function_evaluations;
188     int num_gradient_evaluations;
189     int num_iterations;
190     string error;
191   };
192 
193   explicit LineSearch(const LineSearch::Options& options);
~LineSearch()194   virtual ~LineSearch() {}
195 
196   static LineSearch* Create(const LineSearchType line_search_type,
197                             const LineSearch::Options& options,
198                             string* error);
199 
200   // Perform the line search.
201   //
202   // step_size_estimate must be a positive number.
203   //
204   // initial_cost and initial_gradient are the values and gradient of
205   // the function at zero.
206   // summary must not be null and will contain the result of the line
207   // search.
208   //
209   // Summary::success is true if a non-zero step size is found.
210   virtual void Search(double step_size_estimate,
211                       double initial_cost,
212                       double initial_gradient,
213                       Summary* summary) = 0;
214   double InterpolatingPolynomialMinimizingStepSize(
215       const LineSearchInterpolationType& interpolation_type,
216       const FunctionSample& lowerbound_sample,
217       const FunctionSample& previous_sample,
218       const FunctionSample& current_sample,
219       const double min_step_size,
220       const double max_step_size) const;
221 
222  protected:
options()223   const LineSearch::Options& options() const { return options_; }
224 
225  private:
226   LineSearch::Options options_;
227 };
228 
229 class LineSearchFunction : public LineSearch::Function {
230  public:
231   explicit LineSearchFunction(Evaluator* evaluator);
~LineSearchFunction()232   virtual ~LineSearchFunction() {}
233   void Init(const Vector& position, const Vector& direction);
234   virtual bool Evaluate(double x, double* f, double* g);
235   double DirectionInfinityNorm() const;
236 
237  private:
238   Evaluator* evaluator_;
239   Vector position_;
240   Vector direction_;
241 
242   // evaluation_point = Evaluator::Plus(position_,  x * direction_);
243   Vector evaluation_point_;
244 
245   // scaled_direction = x * direction_;
246   Vector scaled_direction_;
247   Vector gradient_;
248 };
249 
250 // Backtracking and interpolation based Armijo line search. This
251 // implementation is based on the Armijo line search that ships in the
252 // minFunc package by Mark Schmidt.
253 //
254 // For more details: http://www.di.ens.fr/~mschmidt/Software/minFunc.html
255 class ArmijoLineSearch : public LineSearch {
256  public:
257   explicit ArmijoLineSearch(const LineSearch::Options& options);
~ArmijoLineSearch()258   virtual ~ArmijoLineSearch() {}
259   virtual void Search(double step_size_estimate,
260                       double initial_cost,
261                       double initial_gradient,
262                       Summary* summary);
263 };
264 
265 // Bracketing / Zoom Strong Wolfe condition line search.  This implementation
266 // is based on the pseudo-code algorithm presented in Nocedal & Wright [1]
267 // (p60-61) with inspiration from the WolfeLineSearch which ships with the
268 // minFunc package by Mark Schmidt [2].
269 //
270 // [1] Nocedal J., Wright S., Numerical Optimization, 2nd Ed., Springer, 1999.
271 // [2] http://www.di.ens.fr/~mschmidt/Software/minFunc.html.
272 class WolfeLineSearch : public LineSearch {
273  public:
274   explicit WolfeLineSearch(const LineSearch::Options& options);
~WolfeLineSearch()275   virtual ~WolfeLineSearch() {}
276   virtual void Search(double step_size_estimate,
277                       double initial_cost,
278                       double initial_gradient,
279                       Summary* summary);
280   // Returns true iff either a valid point, or valid bracket are found.
281   bool BracketingPhase(const FunctionSample& initial_position,
282                        const double step_size_estimate,
283                        FunctionSample* bracket_low,
284                        FunctionSample* bracket_high,
285                        bool* perform_zoom_search,
286                        Summary* summary);
287   // Returns true iff final_line_sample satisfies strong Wolfe conditions.
288   bool ZoomPhase(const FunctionSample& initial_position,
289                  FunctionSample bracket_low,
290                  FunctionSample bracket_high,
291                  FunctionSample* solution,
292                  Summary* summary);
293 };
294 
295 }  // namespace internal
296 }  // namespace ceres
297 
298 #endif  // CERES_NO_LINE_SEARCH_MINIMIZER
299 #endif  // CERES_INTERNAL_LINE_SEARCH_H_
300