• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <cmath>
29 
30 #include "../include/v8stdint.h"
31 #include "checks.h"
32 #include "utils.h"
33 
34 #include "bignum-dtoa.h"
35 
36 #include "bignum.h"
37 #include "double.h"
38 
39 namespace v8 {
40 namespace internal {
41 
NormalizedExponent(uint64_t significand,int exponent)42 static int NormalizedExponent(uint64_t significand, int exponent) {
43   ASSERT(significand != 0);
44   while ((significand & Double::kHiddenBit) == 0) {
45     significand = significand << 1;
46     exponent = exponent - 1;
47   }
48   return exponent;
49 }
50 
51 
52 // Forward declarations:
53 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
54 static int EstimatePower(int exponent);
55 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
56 // and denominator.
57 static void InitialScaledStartValues(double v,
58                                      int estimated_power,
59                                      bool need_boundary_deltas,
60                                      Bignum* numerator,
61                                      Bignum* denominator,
62                                      Bignum* delta_minus,
63                                      Bignum* delta_plus);
64 // Multiplies numerator/denominator so that its values lies in the range 1-10.
65 // Returns decimal_point s.t.
66 //  v = numerator'/denominator' * 10^(decimal_point-1)
67 //     where numerator' and denominator' are the values of numerator and
68 //     denominator after the call to this function.
69 static void FixupMultiply10(int estimated_power, bool is_even,
70                             int* decimal_point,
71                             Bignum* numerator, Bignum* denominator,
72                             Bignum* delta_minus, Bignum* delta_plus);
73 // Generates digits from the left to the right and stops when the generated
74 // digits yield the shortest decimal representation of v.
75 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
76                                    Bignum* delta_minus, Bignum* delta_plus,
77                                    bool is_even,
78                                    Vector<char> buffer, int* length);
79 // Generates 'requested_digits' after the decimal point.
80 static void BignumToFixed(int requested_digits, int* decimal_point,
81                           Bignum* numerator, Bignum* denominator,
82                           Vector<char>(buffer), int* length);
83 // Generates 'count' digits of numerator/denominator.
84 // Once 'count' digits have been produced rounds the result depending on the
85 // remainder (remainders of exactly .5 round upwards). Might update the
86 // decimal_point when rounding up (for example for 0.9999).
87 static void GenerateCountedDigits(int count, int* decimal_point,
88                                   Bignum* numerator, Bignum* denominator,
89                                   Vector<char>(buffer), int* length);
90 
91 
BignumDtoa(double v,BignumDtoaMode mode,int requested_digits,Vector<char> buffer,int * length,int * decimal_point)92 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
93                 Vector<char> buffer, int* length, int* decimal_point) {
94   ASSERT(v > 0);
95   ASSERT(!Double(v).IsSpecial());
96   uint64_t significand = Double(v).Significand();
97   bool is_even = (significand & 1) == 0;
98   int exponent = Double(v).Exponent();
99   int normalized_exponent = NormalizedExponent(significand, exponent);
100   // estimated_power might be too low by 1.
101   int estimated_power = EstimatePower(normalized_exponent);
102 
103   // Shortcut for Fixed.
104   // The requested digits correspond to the digits after the point. If the
105   // number is much too small, then there is no need in trying to get any
106   // digits.
107   if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits) {
108     buffer[0] = '\0';
109     *length = 0;
110     // Set decimal-point to -requested_digits. This is what Gay does.
111     // Note that it should not have any effect anyways since the string is
112     // empty.
113     *decimal_point = -requested_digits;
114     return;
115   }
116 
117   Bignum numerator;
118   Bignum denominator;
119   Bignum delta_minus;
120   Bignum delta_plus;
121   // Make sure the bignum can grow large enough. The smallest double equals
122   // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
123   // The maximum double is 1.7976931348623157e308 which needs fewer than
124   // 308*4 binary digits.
125   ASSERT(Bignum::kMaxSignificantBits >= 324*4);
126   bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
127   InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
128                            &numerator, &denominator,
129                            &delta_minus, &delta_plus);
130   // We now have v = (numerator / denominator) * 10^estimated_power.
131   FixupMultiply10(estimated_power, is_even, decimal_point,
132                   &numerator, &denominator,
133                   &delta_minus, &delta_plus);
134   // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
135   //  1 <= (numerator + delta_plus) / denominator < 10
136   switch (mode) {
137     case BIGNUM_DTOA_SHORTEST:
138       GenerateShortestDigits(&numerator, &denominator,
139                              &delta_minus, &delta_plus,
140                              is_even, buffer, length);
141       break;
142     case BIGNUM_DTOA_FIXED:
143       BignumToFixed(requested_digits, decimal_point,
144                     &numerator, &denominator,
145                     buffer, length);
146       break;
147     case BIGNUM_DTOA_PRECISION:
148       GenerateCountedDigits(requested_digits, decimal_point,
149                             &numerator, &denominator,
150                             buffer, length);
151       break;
152     default:
153       UNREACHABLE();
154   }
155   buffer[*length] = '\0';
156 }
157 
158 
159 // The procedure starts generating digits from the left to the right and stops
160 // when the generated digits yield the shortest decimal representation of v. A
161 // decimal representation of v is a number lying closer to v than to any other
162 // double, so it converts to v when read.
163 //
164 // This is true if d, the decimal representation, is between m- and m+, the
165 // upper and lower boundaries. d must be strictly between them if !is_even.
166 //           m- := (numerator - delta_minus) / denominator
167 //           m+ := (numerator + delta_plus) / denominator
168 //
169 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
170 //   If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 digit
171 //   will be produced. This should be the standard precondition.
GenerateShortestDigits(Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus,bool is_even,Vector<char> buffer,int * length)172 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
173                                    Bignum* delta_minus, Bignum* delta_plus,
174                                    bool is_even,
175                                    Vector<char> buffer, int* length) {
176   // Small optimization: if delta_minus and delta_plus are the same just reuse
177   // one of the two bignums.
178   if (Bignum::Equal(*delta_minus, *delta_plus)) {
179     delta_plus = delta_minus;
180   }
181   *length = 0;
182   while (true) {
183     uint16_t digit;
184     digit = numerator->DivideModuloIntBignum(*denominator);
185     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
186     // digit = numerator / denominator (integer division).
187     // numerator = numerator % denominator.
188     buffer[(*length)++] = digit + '0';
189 
190     // Can we stop already?
191     // If the remainder of the division is less than the distance to the lower
192     // boundary we can stop. In this case we simply round down (discarding the
193     // remainder).
194     // Similarly we test if we can round up (using the upper boundary).
195     bool in_delta_room_minus;
196     bool in_delta_room_plus;
197     if (is_even) {
198       in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus);
199     } else {
200       in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
201     }
202     if (is_even) {
203       in_delta_room_plus =
204           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
205     } else {
206       in_delta_room_plus =
207           Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
208     }
209     if (!in_delta_room_minus && !in_delta_room_plus) {
210       // Prepare for next iteration.
211       numerator->Times10();
212       delta_minus->Times10();
213       // We optimized delta_plus to be equal to delta_minus (if they share the
214       // same value). So don't multiply delta_plus if they point to the same
215       // object.
216       if (delta_minus != delta_plus) {
217         delta_plus->Times10();
218       }
219     } else if (in_delta_room_minus && in_delta_room_plus) {
220       // Let's see if 2*numerator < denominator.
221       // If yes, then the next digit would be < 5 and we can round down.
222       int compare = Bignum::PlusCompare(*numerator, *numerator, *denominator);
223       if (compare < 0) {
224         // Remaining digits are less than .5. -> Round down (== do nothing).
225       } else if (compare > 0) {
226         // Remaining digits are more than .5 of denominator. -> Round up.
227         // Note that the last digit could not be a '9' as otherwise the whole
228         // loop would have stopped earlier.
229         // We still have an assert here in case the preconditions were not
230         // satisfied.
231         ASSERT(buffer[(*length) - 1] != '9');
232         buffer[(*length) - 1]++;
233       } else {
234         // Halfway case.
235         // TODO(floitsch): need a way to solve half-way cases.
236         //   For now let's round towards even (since this is what Gay seems to
237         //   do).
238 
239         if ((buffer[(*length) - 1] - '0') % 2 == 0) {
240           // Round down => Do nothing.
241         } else {
242           ASSERT(buffer[(*length) - 1] != '9');
243           buffer[(*length) - 1]++;
244         }
245       }
246       return;
247     } else if (in_delta_room_minus) {
248       // Round down (== do nothing).
249       return;
250     } else {  // in_delta_room_plus
251       // Round up.
252       // Note again that the last digit could not be '9' since this would have
253       // stopped the loop earlier.
254       // We still have an ASSERT here, in case the preconditions were not
255       // satisfied.
256       ASSERT(buffer[(*length) -1] != '9');
257       buffer[(*length) - 1]++;
258       return;
259     }
260   }
261 }
262 
263 
264 // Let v = numerator / denominator < 10.
265 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal point)
266 // from left to right. Once 'count' digits have been produced we decide wether
267 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
268 // as 9.999999 propagate a carry all the way, and change the
269 // exponent (decimal_point), when rounding upwards.
GenerateCountedDigits(int count,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)270 static void GenerateCountedDigits(int count, int* decimal_point,
271                                   Bignum* numerator, Bignum* denominator,
272                                   Vector<char>(buffer), int* length) {
273   ASSERT(count >= 0);
274   for (int i = 0; i < count - 1; ++i) {
275     uint16_t digit;
276     digit = numerator->DivideModuloIntBignum(*denominator);
277     ASSERT(digit <= 9);  // digit is a uint16_t and therefore always positive.
278     // digit = numerator / denominator (integer division).
279     // numerator = numerator % denominator.
280     buffer[i] = digit + '0';
281     // Prepare for next iteration.
282     numerator->Times10();
283   }
284   // Generate the last digit.
285   uint16_t digit;
286   digit = numerator->DivideModuloIntBignum(*denominator);
287   if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
288     digit++;
289   }
290   buffer[count - 1] = digit + '0';
291   // Correct bad digits (in case we had a sequence of '9's). Propagate the
292   // carry until we hat a non-'9' or til we reach the first digit.
293   for (int i = count - 1; i > 0; --i) {
294     if (buffer[i] != '0' + 10) break;
295     buffer[i] = '0';
296     buffer[i - 1]++;
297   }
298   if (buffer[0] == '0' + 10) {
299     // Propagate a carry past the top place.
300     buffer[0] = '1';
301     (*decimal_point)++;
302   }
303   *length = count;
304 }
305 
306 
307 // Generates 'requested_digits' after the decimal point. It might omit
308 // trailing '0's. If the input number is too small then no digits at all are
309 // generated (ex.: 2 fixed digits for 0.00001).
310 //
311 // Input verifies:  1 <= (numerator + delta) / denominator < 10.
BignumToFixed(int requested_digits,int * decimal_point,Bignum * numerator,Bignum * denominator,Vector<char> (buffer),int * length)312 static void BignumToFixed(int requested_digits, int* decimal_point,
313                           Bignum* numerator, Bignum* denominator,
314                           Vector<char>(buffer), int* length) {
315   // Note that we have to look at more than just the requested_digits, since
316   // a number could be rounded up. Example: v=0.5 with requested_digits=0.
317   // Even though the power of v equals 0 we can't just stop here.
318   if (-(*decimal_point) > requested_digits) {
319     // The number is definitively too small.
320     // Ex: 0.001 with requested_digits == 1.
321     // Set decimal-point to -requested_digits. This is what Gay does.
322     // Note that it should not have any effect anyways since the string is
323     // empty.
324     *decimal_point = -requested_digits;
325     *length = 0;
326     return;
327   } else if (-(*decimal_point) == requested_digits) {
328     // We only need to verify if the number rounds down or up.
329     // Ex: 0.04 and 0.06 with requested_digits == 1.
330     ASSERT(*decimal_point == -requested_digits);
331     // Initially the fraction lies in range (1, 10]. Multiply the denominator
332     // by 10 so that we can compare more easily.
333     denominator->Times10();
334     if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
335       // If the fraction is >= 0.5 then we have to include the rounded
336       // digit.
337       buffer[0] = '1';
338       *length = 1;
339       (*decimal_point)++;
340     } else {
341       // Note that we caught most of similar cases earlier.
342       *length = 0;
343     }
344     return;
345   } else {
346     // The requested digits correspond to the digits after the point.
347     // The variable 'needed_digits' includes the digits before the point.
348     int needed_digits = (*decimal_point) + requested_digits;
349     GenerateCountedDigits(needed_digits, decimal_point,
350                           numerator, denominator,
351                           buffer, length);
352   }
353 }
354 
355 
356 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
357 // v = f * 2^exponent and 2^52 <= f < 2^53.
358 // v is hence a normalized double with the given exponent. The output is an
359 // approximation for the exponent of the decimal approimation .digits * 10^k.
360 //
361 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
362 // Note: this property holds for v's upper boundary m+ too.
363 //    10^k <= m+ < 10^k+1.
364 //   (see explanation below).
365 //
366 // Examples:
367 //  EstimatePower(0)   => 16
368 //  EstimatePower(-52) => 0
369 //
370 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e<0.
EstimatePower(int exponent)371 static int EstimatePower(int exponent) {
372   // This function estimates log10 of v where v = f*2^e (with e == exponent).
373   // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
374   // Note that f is bounded by its container size. Let p = 53 (the double's
375   // significand size). Then 2^(p-1) <= f < 2^p.
376   //
377   // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite close
378   // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
379   // The computed number undershoots by less than 0.631 (when we compute log3
380   // and not log10).
381   //
382   // Optimization: since we only need an approximated result this computation
383   // can be performed on 64 bit integers. On x86/x64 architecture the speedup is
384   // not really measurable, though.
385   //
386   // Since we want to avoid overshooting we decrement by 1e10 so that
387   // floating-point imprecisions don't affect us.
388   //
389   // Explanation for v's boundary m+: the computation takes advantage of
390   // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requirement
391   // (even for denormals where the delta can be much more important).
392 
393   const double k1Log10 = 0.30102999566398114;  // 1/lg(10)
394 
395   // For doubles len(f) == 53 (don't forget the hidden bit).
396   const int kSignificandSize = 53;
397   double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e-10);
398   return static_cast<int>(estimate);
399 }
400 
401 
402 // See comments for InitialScaledStartValues.
InitialScaledStartValuesPositiveExponent(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)403 static void InitialScaledStartValuesPositiveExponent(
404     double v, int estimated_power, bool need_boundary_deltas,
405     Bignum* numerator, Bignum* denominator,
406     Bignum* delta_minus, Bignum* delta_plus) {
407   // A positive exponent implies a positive power.
408   ASSERT(estimated_power >= 0);
409   // Since the estimated_power is positive we simply multiply the denominator
410   // by 10^estimated_power.
411 
412   // numerator = v.
413   numerator->AssignUInt64(Double(v).Significand());
414   numerator->ShiftLeft(Double(v).Exponent());
415   // denominator = 10^estimated_power.
416   denominator->AssignPowerUInt16(10, estimated_power);
417 
418   if (need_boundary_deltas) {
419     // Introduce a common denominator so that the deltas to the boundaries are
420     // integers.
421     denominator->ShiftLeft(1);
422     numerator->ShiftLeft(1);
423     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
424     // denominator (of 2) delta_plus equals 2^e.
425     delta_plus->AssignUInt16(1);
426     delta_plus->ShiftLeft(Double(v).Exponent());
427     // Same for delta_minus (with adjustments below if f == 2^p-1).
428     delta_minus->AssignUInt16(1);
429     delta_minus->ShiftLeft(Double(v).Exponent());
430 
431     // If the significand (without the hidden bit) is 0, then the lower
432     // boundary is closer than just half a ulp (unit in the last place).
433     // There is only one exception: if the next lower number is a denormal then
434     // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
435     // have to test it in the other function where exponent < 0).
436     uint64_t v_bits = Double(v).AsUint64();
437     if ((v_bits & Double::kSignificandMask) == 0) {
438       // The lower boundary is closer at half the distance of "normal" numbers.
439       // Increase the common denominator and adapt all but the delta_minus.
440       denominator->ShiftLeft(1);  // *2
441       numerator->ShiftLeft(1);    // *2
442       delta_plus->ShiftLeft(1);   // *2
443     }
444   }
445 }
446 
447 
448 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentPositivePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)449 static void InitialScaledStartValuesNegativeExponentPositivePower(
450     double v, int estimated_power, bool need_boundary_deltas,
451     Bignum* numerator, Bignum* denominator,
452     Bignum* delta_minus, Bignum* delta_plus) {
453   uint64_t significand = Double(v).Significand();
454   int exponent = Double(v).Exponent();
455   // v = f * 2^e with e < 0, and with estimated_power >= 0.
456   // This means that e is close to 0 (have a look at how estimated_power is
457   // computed).
458 
459   // numerator = significand
460   //  since v = significand * 2^exponent this is equivalent to
461   //  numerator = v * / 2^-exponent
462   numerator->AssignUInt64(significand);
463   // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
464   denominator->AssignPowerUInt16(10, estimated_power);
465   denominator->ShiftLeft(-exponent);
466 
467   if (need_boundary_deltas) {
468     // Introduce a common denominator so that the deltas to the boundaries are
469     // integers.
470     denominator->ShiftLeft(1);
471     numerator->ShiftLeft(1);
472     // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
473     // denominator (of 2) delta_plus equals 2^e.
474     // Given that the denominator already includes v's exponent the distance
475     // to the boundaries is simply 1.
476     delta_plus->AssignUInt16(1);
477     // Same for delta_minus (with adjustments below if f == 2^p-1).
478     delta_minus->AssignUInt16(1);
479 
480     // If the significand (without the hidden bit) is 0, then the lower
481     // boundary is closer than just one ulp (unit in the last place).
482     // There is only one exception: if the next lower number is a denormal
483     // then the distance is 1 ulp. Since the exponent is close to zero
484     // (otherwise estimated_power would have been negative) this cannot happen
485     // here either.
486     uint64_t v_bits = Double(v).AsUint64();
487     if ((v_bits & Double::kSignificandMask) == 0) {
488       // The lower boundary is closer at half the distance of "normal" numbers.
489       // Increase the denominator and adapt all but the delta_minus.
490       denominator->ShiftLeft(1);  // *2
491       numerator->ShiftLeft(1);    // *2
492       delta_plus->ShiftLeft(1);   // *2
493     }
494   }
495 }
496 
497 
498 // See comments for InitialScaledStartValues
InitialScaledStartValuesNegativeExponentNegativePower(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)499 static void InitialScaledStartValuesNegativeExponentNegativePower(
500     double v, int estimated_power, bool need_boundary_deltas,
501     Bignum* numerator, Bignum* denominator,
502     Bignum* delta_minus, Bignum* delta_plus) {
503   const uint64_t kMinimalNormalizedExponent =
504       V8_2PART_UINT64_C(0x00100000, 00000000);
505   uint64_t significand = Double(v).Significand();
506   int exponent = Double(v).Exponent();
507   // Instead of multiplying the denominator with 10^estimated_power we
508   // multiply all values (numerator and deltas) by 10^-estimated_power.
509 
510   // Use numerator as temporary container for power_ten.
511   Bignum* power_ten = numerator;
512   power_ten->AssignPowerUInt16(10, -estimated_power);
513 
514   if (need_boundary_deltas) {
515     // Since power_ten == numerator we must make a copy of 10^estimated_power
516     // before we complete the computation of the numerator.
517     // delta_plus = delta_minus = 10^estimated_power
518     delta_plus->AssignBignum(*power_ten);
519     delta_minus->AssignBignum(*power_ten);
520   }
521 
522   // numerator = significand * 2 * 10^-estimated_power
523   //  since v = significand * 2^exponent this is equivalent to
524   // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
525   // Remember: numerator has been abused as power_ten. So no need to assign it
526   //  to itself.
527   ASSERT(numerator == power_ten);
528   numerator->MultiplyByUInt64(significand);
529 
530   // denominator = 2 * 2^-exponent with exponent < 0.
531   denominator->AssignUInt16(1);
532   denominator->ShiftLeft(-exponent);
533 
534   if (need_boundary_deltas) {
535     // Introduce a common denominator so that the deltas to the boundaries are
536     // integers.
537     numerator->ShiftLeft(1);
538     denominator->ShiftLeft(1);
539     // With this shift the boundaries have their correct value, since
540     // delta_plus = 10^-estimated_power, and
541     // delta_minus = 10^-estimated_power.
542     // These assignments have been done earlier.
543 
544     // The special case where the lower boundary is twice as close.
545     // This time we have to look out for the exception too.
546     uint64_t v_bits = Double(v).AsUint64();
547     if ((v_bits & Double::kSignificandMask) == 0 &&
548         // The only exception where a significand == 0 has its boundaries at
549         // "normal" distances:
550         (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
551       numerator->ShiftLeft(1);    // *2
552       denominator->ShiftLeft(1);  // *2
553       delta_plus->ShiftLeft(1);   // *2
554     }
555   }
556 }
557 
558 
559 // Let v = significand * 2^exponent.
560 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numerator
561 // and denominator. The functions GenerateShortestDigits and
562 // GenerateCountedDigits will then convert this ratio to its decimal
563 // representation d, with the required accuracy.
564 // Then d * 10^estimated_power is the representation of v.
565 // (Note: the fraction and the estimated_power might get adjusted before
566 // generating the decimal representation.)
567 //
568 // The initial start values consist of:
569 //  - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_power.
570 //  - a scaled (common) denominator.
571 //  optionally (used by GenerateShortestDigits to decide if it has the shortest
572 //  decimal converting back to v):
573 //  - v - m-: the distance to the lower boundary.
574 //  - m+ - v: the distance to the upper boundary.
575 //
576 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator.
577 //
578 // Let ep == estimated_power, then the returned values will satisfy:
579 //  v / 10^ep = numerator / denominator.
580 //  v's boundarys m- and m+:
581 //    m- / 10^ep == v / 10^ep - delta_minus / denominator
582 //    m+ / 10^ep == v / 10^ep + delta_plus / denominator
583 //  Or in other words:
584 //    m- == v - delta_minus * 10^ep / denominator;
585 //    m+ == v + delta_plus * 10^ep / denominator;
586 //
587 // Since 10^(k-1) <= v < 10^k    (with k == estimated_power)
588 //  or       10^k <= v < 10^(k+1)
589 //  we then have 0.1 <= numerator/denominator < 1
590 //           or    1 <= numerator/denominator < 10
591 //
592 // It is then easy to kickstart the digit-generation routine.
593 //
594 // The boundary-deltas are only filled if need_boundary_deltas is set.
InitialScaledStartValues(double v,int estimated_power,bool need_boundary_deltas,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)595 static void InitialScaledStartValues(double v,
596                                      int estimated_power,
597                                      bool need_boundary_deltas,
598                                      Bignum* numerator,
599                                      Bignum* denominator,
600                                      Bignum* delta_minus,
601                                      Bignum* delta_plus) {
602   if (Double(v).Exponent() >= 0) {
603     InitialScaledStartValuesPositiveExponent(
604         v, estimated_power, need_boundary_deltas,
605         numerator, denominator, delta_minus, delta_plus);
606   } else if (estimated_power >= 0) {
607     InitialScaledStartValuesNegativeExponentPositivePower(
608         v, estimated_power, need_boundary_deltas,
609         numerator, denominator, delta_minus, delta_plus);
610   } else {
611     InitialScaledStartValuesNegativeExponentNegativePower(
612         v, estimated_power, need_boundary_deltas,
613         numerator, denominator, delta_minus, delta_plus);
614   }
615 }
616 
617 
618 // This routine multiplies numerator/denominator so that its values lies in the
619 // range 1-10. That is after a call to this function we have:
620 //    1 <= (numerator + delta_plus) /denominator < 10.
621 // Let numerator the input before modification and numerator' the argument
622 // after modification, then the output-parameter decimal_point is such that
623 //  numerator / denominator * 10^estimated_power ==
624 //    numerator' / denominator' * 10^(decimal_point - 1)
625 // In some cases estimated_power was too low, and this is already the case. We
626 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
627 // estimated_power) but do not touch the numerator or denominator.
628 // Otherwise the routine multiplies the numerator and the deltas by 10.
FixupMultiply10(int estimated_power,bool is_even,int * decimal_point,Bignum * numerator,Bignum * denominator,Bignum * delta_minus,Bignum * delta_plus)629 static void FixupMultiply10(int estimated_power, bool is_even,
630                             int* decimal_point,
631                             Bignum* numerator, Bignum* denominator,
632                             Bignum* delta_minus, Bignum* delta_plus) {
633   bool in_range;
634   if (is_even) {
635     // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
636     // are rounded to the closest floating-point number with even significand.
637     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
638   } else {
639     in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
640   }
641   if (in_range) {
642     // Since numerator + delta_plus >= denominator we already have
643     // 1 <= numerator/denominator < 10. Simply update the estimated_power.
644     *decimal_point = estimated_power + 1;
645   } else {
646     *decimal_point = estimated_power;
647     numerator->Times10();
648     if (Bignum::Equal(*delta_minus, *delta_plus)) {
649       delta_minus->Times10();
650       delta_plus->AssignBignum(*delta_minus);
651     } else {
652       delta_minus->Times10();
653       delta_plus->Times10();
654     }
655   }
656 }
657 
658 } }  // namespace v8::internal
659