• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include "v8.h"
29 
30 #if V8_TARGET_ARCH_IA32
31 
32 #include "codegen.h"
33 #include "deoptimizer.h"
34 #include "full-codegen.h"
35 
36 namespace v8 {
37 namespace internal {
38 
39 
40 #define __ ACCESS_MASM(masm)
41 
42 
Generate_Adaptor(MacroAssembler * masm,CFunctionId id,BuiltinExtraArguments extra_args)43 void Builtins::Generate_Adaptor(MacroAssembler* masm,
44                                 CFunctionId id,
45                                 BuiltinExtraArguments extra_args) {
46   // ----------- S t a t e -------------
47   //  -- eax                : number of arguments excluding receiver
48   //  -- edi                : called function (only guaranteed when
49   //                          extra_args requires it)
50   //  -- esi                : context
51   //  -- esp[0]             : return address
52   //  -- esp[4]             : last argument
53   //  -- ...
54   //  -- esp[4 * argc]      : first argument (argc == eax)
55   //  -- esp[4 * (argc +1)] : receiver
56   // -----------------------------------
57 
58   // Insert extra arguments.
59   int num_extra_args = 0;
60   if (extra_args == NEEDS_CALLED_FUNCTION) {
61     num_extra_args = 1;
62     Register scratch = ebx;
63     __ pop(scratch);  // Save return address.
64     __ push(edi);
65     __ push(scratch);  // Restore return address.
66   } else {
67     ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
68   }
69 
70   // JumpToExternalReference expects eax to contain the number of arguments
71   // including the receiver and the extra arguments.
72   __ add(eax, Immediate(num_extra_args + 1));
73   __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
74 }
75 
76 
CallRuntimePassFunction(MacroAssembler * masm,Runtime::FunctionId function_id)77 static void CallRuntimePassFunction(MacroAssembler* masm,
78                                     Runtime::FunctionId function_id) {
79   FrameScope scope(masm, StackFrame::INTERNAL);
80   // Push a copy of the function.
81   __ push(edi);
82   // Push call kind information.
83   __ push(ecx);
84   // Function is also the parameter to the runtime call.
85   __ push(edi);
86 
87   __ CallRuntime(function_id, 1);
88   // Restore call kind information.
89   __ pop(ecx);
90   // Restore receiver.
91   __ pop(edi);
92 }
93 
94 
GenerateTailCallToSharedCode(MacroAssembler * masm)95 static void GenerateTailCallToSharedCode(MacroAssembler* masm) {
96   __ mov(eax, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
97   __ mov(eax, FieldOperand(eax, SharedFunctionInfo::kCodeOffset));
98   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
99   __ jmp(eax);
100 }
101 
102 
Generate_InRecompileQueue(MacroAssembler * masm)103 void Builtins::Generate_InRecompileQueue(MacroAssembler* masm) {
104   // Checking whether the queued function is ready for install is optional,
105   // since we come across interrupts and stack checks elsewhere.  However,
106   // not checking may delay installing ready functions, and always checking
107   // would be quite expensive.  A good compromise is to first check against
108   // stack limit as a cue for an interrupt signal.
109   Label ok;
110   ExternalReference stack_limit =
111       ExternalReference::address_of_stack_limit(masm->isolate());
112   __ cmp(esp, Operand::StaticVariable(stack_limit));
113   __ j(above_equal, &ok, Label::kNear);
114 
115   CallRuntimePassFunction(masm, Runtime::kTryInstallRecompiledCode);
116   // Tail call to returned code.
117   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
118   __ jmp(eax);
119 
120   __ bind(&ok);
121   GenerateTailCallToSharedCode(masm);
122 }
123 
124 
Generate_ConcurrentRecompile(MacroAssembler * masm)125 void Builtins::Generate_ConcurrentRecompile(MacroAssembler* masm) {
126   CallRuntimePassFunction(masm, Runtime::kConcurrentRecompile);
127   GenerateTailCallToSharedCode(masm);
128 }
129 
130 
Generate_JSConstructStubHelper(MacroAssembler * masm,bool is_api_function,bool count_constructions)131 static void Generate_JSConstructStubHelper(MacroAssembler* masm,
132                                            bool is_api_function,
133                                            bool count_constructions) {
134   // ----------- S t a t e -------------
135   //  -- eax: number of arguments
136   //  -- edi: constructor function
137   // -----------------------------------
138 
139   // Should never count constructions for api objects.
140   ASSERT(!is_api_function || !count_constructions);
141 
142   // Enter a construct frame.
143   {
144     FrameScope scope(masm, StackFrame::CONSTRUCT);
145 
146     // Store a smi-tagged arguments count on the stack.
147     __ SmiTag(eax);
148     __ push(eax);
149 
150     // Push the function to invoke on the stack.
151     __ push(edi);
152 
153     // Try to allocate the object without transitioning into C code. If any of
154     // the preconditions is not met, the code bails out to the runtime call.
155     Label rt_call, allocated;
156     if (FLAG_inline_new) {
157       Label undo_allocation;
158 #ifdef ENABLE_DEBUGGER_SUPPORT
159       ExternalReference debug_step_in_fp =
160           ExternalReference::debug_step_in_fp_address(masm->isolate());
161       __ cmp(Operand::StaticVariable(debug_step_in_fp), Immediate(0));
162       __ j(not_equal, &rt_call);
163 #endif
164 
165       // Verified that the constructor is a JSFunction.
166       // Load the initial map and verify that it is in fact a map.
167       // edi: constructor
168       __ mov(eax, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
169       // Will both indicate a NULL and a Smi
170       __ JumpIfSmi(eax, &rt_call);
171       // edi: constructor
172       // eax: initial map (if proven valid below)
173       __ CmpObjectType(eax, MAP_TYPE, ebx);
174       __ j(not_equal, &rt_call);
175 
176       // Check that the constructor is not constructing a JSFunction (see
177       // comments in Runtime_NewObject in runtime.cc). In which case the
178       // initial map's instance type would be JS_FUNCTION_TYPE.
179       // edi: constructor
180       // eax: initial map
181       __ CmpInstanceType(eax, JS_FUNCTION_TYPE);
182       __ j(equal, &rt_call);
183 
184       if (count_constructions) {
185         Label allocate;
186         // Decrease generous allocation count.
187         __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
188         __ dec_b(FieldOperand(ecx,
189                               SharedFunctionInfo::kConstructionCountOffset));
190         __ j(not_zero, &allocate);
191 
192         __ push(eax);
193         __ push(edi);
194 
195         __ push(edi);  // constructor
196         // The call will replace the stub, so the countdown is only done once.
197         __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
198 
199         __ pop(edi);
200         __ pop(eax);
201 
202         __ bind(&allocate);
203       }
204 
205       // Now allocate the JSObject on the heap.
206       // edi: constructor
207       // eax: initial map
208       __ movzx_b(edi, FieldOperand(eax, Map::kInstanceSizeOffset));
209       __ shl(edi, kPointerSizeLog2);
210       __ Allocate(edi, ebx, edi, no_reg, &rt_call, NO_ALLOCATION_FLAGS);
211       // Allocated the JSObject, now initialize the fields.
212       // eax: initial map
213       // ebx: JSObject
214       // edi: start of next object
215       __ mov(Operand(ebx, JSObject::kMapOffset), eax);
216       Factory* factory = masm->isolate()->factory();
217       __ mov(ecx, factory->empty_fixed_array());
218       __ mov(Operand(ebx, JSObject::kPropertiesOffset), ecx);
219       __ mov(Operand(ebx, JSObject::kElementsOffset), ecx);
220       // Set extra fields in the newly allocated object.
221       // eax: initial map
222       // ebx: JSObject
223       // edi: start of next object
224       __ lea(ecx, Operand(ebx, JSObject::kHeaderSize));
225       __ mov(edx, factory->undefined_value());
226       if (count_constructions) {
227         __ movzx_b(esi,
228                    FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
229         __ lea(esi,
230                Operand(ebx, esi, times_pointer_size, JSObject::kHeaderSize));
231         // esi: offset of first field after pre-allocated fields
232         if (FLAG_debug_code) {
233           __ cmp(esi, edi);
234           __ Assert(less_equal,
235                     kUnexpectedNumberOfPreAllocatedPropertyFields);
236         }
237         __ InitializeFieldsWithFiller(ecx, esi, edx);
238         __ mov(edx, factory->one_pointer_filler_map());
239       }
240       __ InitializeFieldsWithFiller(ecx, edi, edx);
241 
242       // Add the object tag to make the JSObject real, so that we can continue
243       // and jump into the continuation code at any time from now on. Any
244       // failures need to undo the allocation, so that the heap is in a
245       // consistent state and verifiable.
246       // eax: initial map
247       // ebx: JSObject
248       // edi: start of next object
249       __ or_(ebx, Immediate(kHeapObjectTag));
250 
251       // Check if a non-empty properties array is needed.
252       // Allocate and initialize a FixedArray if it is.
253       // eax: initial map
254       // ebx: JSObject
255       // edi: start of next object
256       // Calculate the total number of properties described by the map.
257       __ movzx_b(edx, FieldOperand(eax, Map::kUnusedPropertyFieldsOffset));
258       __ movzx_b(ecx,
259                  FieldOperand(eax, Map::kPreAllocatedPropertyFieldsOffset));
260       __ add(edx, ecx);
261       // Calculate unused properties past the end of the in-object properties.
262       __ movzx_b(ecx, FieldOperand(eax, Map::kInObjectPropertiesOffset));
263       __ sub(edx, ecx);
264       // Done if no extra properties are to be allocated.
265       __ j(zero, &allocated);
266       __ Assert(positive, kPropertyAllocationCountFailed);
267 
268       // Scale the number of elements by pointer size and add the header for
269       // FixedArrays to the start of the next object calculation from above.
270       // ebx: JSObject
271       // edi: start of next object (will be start of FixedArray)
272       // edx: number of elements in properties array
273       __ Allocate(FixedArray::kHeaderSize,
274                   times_pointer_size,
275                   edx,
276                   REGISTER_VALUE_IS_INT32,
277                   edi,
278                   ecx,
279                   no_reg,
280                   &undo_allocation,
281                   RESULT_CONTAINS_TOP);
282 
283       // Initialize the FixedArray.
284       // ebx: JSObject
285       // edi: FixedArray
286       // edx: number of elements
287       // ecx: start of next object
288       __ mov(eax, factory->fixed_array_map());
289       __ mov(Operand(edi, FixedArray::kMapOffset), eax);  // setup the map
290       __ SmiTag(edx);
291       __ mov(Operand(edi, FixedArray::kLengthOffset), edx);  // and length
292 
293       // Initialize the fields to undefined.
294       // ebx: JSObject
295       // edi: FixedArray
296       // ecx: start of next object
297       { Label loop, entry;
298         __ mov(edx, factory->undefined_value());
299         __ lea(eax, Operand(edi, FixedArray::kHeaderSize));
300         __ jmp(&entry);
301         __ bind(&loop);
302         __ mov(Operand(eax, 0), edx);
303         __ add(eax, Immediate(kPointerSize));
304         __ bind(&entry);
305         __ cmp(eax, ecx);
306         __ j(below, &loop);
307       }
308 
309       // Store the initialized FixedArray into the properties field of
310       // the JSObject
311       // ebx: JSObject
312       // edi: FixedArray
313       __ or_(edi, Immediate(kHeapObjectTag));  // add the heap tag
314       __ mov(FieldOperand(ebx, JSObject::kPropertiesOffset), edi);
315 
316 
317       // Continue with JSObject being successfully allocated
318       // ebx: JSObject
319       __ jmp(&allocated);
320 
321       // Undo the setting of the new top so that the heap is verifiable. For
322       // example, the map's unused properties potentially do not match the
323       // allocated objects unused properties.
324       // ebx: JSObject (previous new top)
325       __ bind(&undo_allocation);
326       __ UndoAllocationInNewSpace(ebx);
327     }
328 
329     // Allocate the new receiver object using the runtime call.
330     __ bind(&rt_call);
331     // Must restore edi (constructor) before calling runtime.
332     __ mov(edi, Operand(esp, 0));
333     // edi: function (constructor)
334     __ push(edi);
335     __ CallRuntime(Runtime::kNewObject, 1);
336     __ mov(ebx, eax);  // store result in ebx
337 
338     // New object allocated.
339     // ebx: newly allocated object
340     __ bind(&allocated);
341     // Retrieve the function from the stack.
342     __ pop(edi);
343 
344     // Retrieve smi-tagged arguments count from the stack.
345     __ mov(eax, Operand(esp, 0));
346     __ SmiUntag(eax);
347 
348     // Push the allocated receiver to the stack. We need two copies
349     // because we may have to return the original one and the calling
350     // conventions dictate that the called function pops the receiver.
351     __ push(ebx);
352     __ push(ebx);
353 
354     // Set up pointer to last argument.
355     __ lea(ebx, Operand(ebp, StandardFrameConstants::kCallerSPOffset));
356 
357     // Copy arguments and receiver to the expression stack.
358     Label loop, entry;
359     __ mov(ecx, eax);
360     __ jmp(&entry);
361     __ bind(&loop);
362     __ push(Operand(ebx, ecx, times_4, 0));
363     __ bind(&entry);
364     __ dec(ecx);
365     __ j(greater_equal, &loop);
366 
367     // Call the function.
368     if (is_api_function) {
369       __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
370       Handle<Code> code =
371           masm->isolate()->builtins()->HandleApiCallConstruct();
372       ParameterCount expected(0);
373       __ InvokeCode(code, expected, expected, RelocInfo::CODE_TARGET,
374                     CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD);
375     } else {
376       ParameterCount actual(eax);
377       __ InvokeFunction(edi, actual, CALL_FUNCTION,
378                         NullCallWrapper(), CALL_AS_METHOD);
379     }
380 
381     // Store offset of return address for deoptimizer.
382     if (!is_api_function && !count_constructions) {
383       masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset());
384     }
385 
386     // Restore context from the frame.
387     __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
388 
389     // If the result is an object (in the ECMA sense), we should get rid
390     // of the receiver and use the result; see ECMA-262 section 13.2.2-7
391     // on page 74.
392     Label use_receiver, exit;
393 
394     // If the result is a smi, it is *not* an object in the ECMA sense.
395     __ JumpIfSmi(eax, &use_receiver);
396 
397     // If the type of the result (stored in its map) is less than
398     // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
399     __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx);
400     __ j(above_equal, &exit);
401 
402     // Throw away the result of the constructor invocation and use the
403     // on-stack receiver as the result.
404     __ bind(&use_receiver);
405     __ mov(eax, Operand(esp, 0));
406 
407     // Restore the arguments count and leave the construct frame.
408     __ bind(&exit);
409     __ mov(ebx, Operand(esp, kPointerSize));  // Get arguments count.
410 
411     // Leave construct frame.
412   }
413 
414   // Remove caller arguments from the stack and return.
415   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
416   __ pop(ecx);
417   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
418   __ push(ecx);
419   __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1);
420   __ ret(0);
421 }
422 
423 
Generate_JSConstructStubCountdown(MacroAssembler * masm)424 void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
425   Generate_JSConstructStubHelper(masm, false, true);
426 }
427 
428 
Generate_JSConstructStubGeneric(MacroAssembler * masm)429 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
430   Generate_JSConstructStubHelper(masm, false, false);
431 }
432 
433 
Generate_JSConstructStubApi(MacroAssembler * masm)434 void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
435   Generate_JSConstructStubHelper(masm, true, false);
436 }
437 
438 
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)439 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
440                                              bool is_construct) {
441   ProfileEntryHookStub::MaybeCallEntryHook(masm);
442 
443   // Clear the context before we push it when entering the internal frame.
444   __ Set(esi, Immediate(0));
445 
446   {
447     FrameScope scope(masm, StackFrame::INTERNAL);
448 
449     // Load the previous frame pointer (ebx) to access C arguments
450     __ mov(ebx, Operand(ebp, 0));
451 
452     // Get the function from the frame and setup the context.
453     __ mov(ecx, Operand(ebx, EntryFrameConstants::kFunctionArgOffset));
454     __ mov(esi, FieldOperand(ecx, JSFunction::kContextOffset));
455 
456     // Push the function and the receiver onto the stack.
457     __ push(ecx);
458     __ push(Operand(ebx, EntryFrameConstants::kReceiverArgOffset));
459 
460     // Load the number of arguments and setup pointer to the arguments.
461     __ mov(eax, Operand(ebx, EntryFrameConstants::kArgcOffset));
462     __ mov(ebx, Operand(ebx, EntryFrameConstants::kArgvOffset));
463 
464     // Copy arguments to the stack in a loop.
465     Label loop, entry;
466     __ Set(ecx, Immediate(0));
467     __ jmp(&entry);
468     __ bind(&loop);
469     __ mov(edx, Operand(ebx, ecx, times_4, 0));  // push parameter from argv
470     __ push(Operand(edx, 0));  // dereference handle
471     __ inc(ecx);
472     __ bind(&entry);
473     __ cmp(ecx, eax);
474     __ j(not_equal, &loop);
475 
476     // Get the function from the stack and call it.
477     // kPointerSize for the receiver.
478     __ mov(edi, Operand(esp, eax, times_4, kPointerSize));
479 
480     // Invoke the code.
481     if (is_construct) {
482       // No type feedback cell is available
483       Handle<Object> undefined_sentinel(
484           masm->isolate()->heap()->undefined_value(), masm->isolate());
485       __ mov(ebx, Immediate(undefined_sentinel));
486       CallConstructStub stub(NO_CALL_FUNCTION_FLAGS);
487       __ CallStub(&stub);
488     } else {
489       ParameterCount actual(eax);
490       __ InvokeFunction(edi, actual, CALL_FUNCTION,
491                         NullCallWrapper(), CALL_AS_METHOD);
492     }
493 
494     // Exit the internal frame. Notice that this also removes the empty.
495     // context and the function left on the stack by the code
496     // invocation.
497   }
498   __ ret(kPointerSize);  // Remove receiver.
499 }
500 
501 
Generate_JSEntryTrampoline(MacroAssembler * masm)502 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
503   Generate_JSEntryTrampolineHelper(masm, false);
504 }
505 
506 
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)507 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
508   Generate_JSEntryTrampolineHelper(masm, true);
509 }
510 
511 
Generate_LazyCompile(MacroAssembler * masm)512 void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
513   CallRuntimePassFunction(masm, Runtime::kLazyCompile);
514   // Do a tail-call of the compiled function.
515   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
516   __ jmp(eax);
517 }
518 
519 
Generate_LazyRecompile(MacroAssembler * masm)520 void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
521   CallRuntimePassFunction(masm, Runtime::kLazyRecompile);
522   // Do a tail-call of the compiled function.
523   __ lea(eax, FieldOperand(eax, Code::kHeaderSize));
524   __ jmp(eax);
525 }
526 
527 
GenerateMakeCodeYoungAgainCommon(MacroAssembler * masm)528 static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) {
529   // For now, we are relying on the fact that make_code_young doesn't do any
530   // garbage collection which allows us to save/restore the registers without
531   // worrying about which of them contain pointers. We also don't build an
532   // internal frame to make the code faster, since we shouldn't have to do stack
533   // crawls in MakeCodeYoung. This seems a bit fragile.
534 
535   // Re-execute the code that was patched back to the young age when
536   // the stub returns.
537   __ sub(Operand(esp, 0), Immediate(5));
538   __ pushad();
539   __ mov(eax, Operand(esp, 8 * kPointerSize));
540   {
541     FrameScope scope(masm, StackFrame::MANUAL);
542     __ PrepareCallCFunction(2, ebx);
543     __ mov(Operand(esp, 1 * kPointerSize),
544            Immediate(ExternalReference::isolate_address(masm->isolate())));
545     __ mov(Operand(esp, 0), eax);
546     __ CallCFunction(
547         ExternalReference::get_make_code_young_function(masm->isolate()), 2);
548   }
549   __ popad();
550   __ ret(0);
551 }
552 
553 #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C)                 \
554 void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking(  \
555     MacroAssembler* masm) {                                  \
556   GenerateMakeCodeYoungAgainCommon(masm);                    \
557 }                                                            \
558 void Builtins::Generate_Make##C##CodeYoungAgainOddMarking(   \
559     MacroAssembler* masm) {                                  \
560   GenerateMakeCodeYoungAgainCommon(masm);                    \
561 }
CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)562 CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR)
563 #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR
564 
565 
566 void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) {
567   // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact
568   // that make_code_young doesn't do any garbage collection which allows us to
569   // save/restore the registers without worrying about which of them contain
570   // pointers.
571   __ pushad();
572   __ mov(eax, Operand(esp, 8 * kPointerSize));
573   __ sub(eax, Immediate(Assembler::kCallInstructionLength));
574   {  // NOLINT
575     FrameScope scope(masm, StackFrame::MANUAL);
576     __ PrepareCallCFunction(2, ebx);
577     __ mov(Operand(esp, 1 * kPointerSize),
578            Immediate(ExternalReference::isolate_address(masm->isolate())));
579     __ mov(Operand(esp, 0), eax);
580     __ CallCFunction(
581         ExternalReference::get_mark_code_as_executed_function(masm->isolate()),
582         2);
583   }
584   __ popad();
585 
586   // Perform prologue operations usually performed by the young code stub.
587   __ pop(eax);   // Pop return address into scratch register.
588   __ push(ebp);  // Caller's frame pointer.
589   __ mov(ebp, esp);
590   __ push(esi);  // Callee's context.
591   __ push(edi);  // Callee's JS Function.
592   __ push(eax);  // Push return address after frame prologue.
593 
594   // Jump to point after the code-age stub.
595   __ ret(0);
596 }
597 
598 
Generate_MarkCodeAsExecutedTwice(MacroAssembler * masm)599 void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) {
600   GenerateMakeCodeYoungAgainCommon(masm);
601 }
602 
603 
Generate_NotifyStubFailureHelper(MacroAssembler * masm,SaveFPRegsMode save_doubles)604 static void Generate_NotifyStubFailureHelper(MacroAssembler* masm,
605                                              SaveFPRegsMode save_doubles) {
606   // Enter an internal frame.
607   {
608     FrameScope scope(masm, StackFrame::INTERNAL);
609 
610     // Preserve registers across notification, this is important for compiled
611     // stubs that tail call the runtime on deopts passing their parameters in
612     // registers.
613     __ pushad();
614     __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles);
615     __ popad();
616     // Tear down internal frame.
617   }
618 
619   __ pop(MemOperand(esp, 0));  // Ignore state offset
620   __ ret(0);  // Return to IC Miss stub, continuation still on stack.
621 }
622 
623 
Generate_NotifyStubFailure(MacroAssembler * masm)624 void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) {
625   Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs);
626 }
627 
628 
Generate_NotifyStubFailureSaveDoubles(MacroAssembler * masm)629 void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) {
630   if (Serializer::enabled()) {
631     PlatformFeatureScope sse2(SSE2);
632     Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
633   } else {
634     Generate_NotifyStubFailureHelper(masm, kSaveFPRegs);
635   }
636 }
637 
638 
Generate_NotifyDeoptimizedHelper(MacroAssembler * masm,Deoptimizer::BailoutType type)639 static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm,
640                                              Deoptimizer::BailoutType type) {
641   {
642     FrameScope scope(masm, StackFrame::INTERNAL);
643 
644     // Pass deoptimization type to the runtime system.
645     __ push(Immediate(Smi::FromInt(static_cast<int>(type))));
646     __ CallRuntime(Runtime::kNotifyDeoptimized, 1);
647 
648     // Tear down internal frame.
649   }
650 
651   // Get the full codegen state from the stack and untag it.
652   __ mov(ecx, Operand(esp, 1 * kPointerSize));
653   __ SmiUntag(ecx);
654 
655   // Switch on the state.
656   Label not_no_registers, not_tos_eax;
657   __ cmp(ecx, FullCodeGenerator::NO_REGISTERS);
658   __ j(not_equal, &not_no_registers, Label::kNear);
659   __ ret(1 * kPointerSize);  // Remove state.
660 
661   __ bind(&not_no_registers);
662   __ mov(eax, Operand(esp, 2 * kPointerSize));
663   __ cmp(ecx, FullCodeGenerator::TOS_REG);
664   __ j(not_equal, &not_tos_eax, Label::kNear);
665   __ ret(2 * kPointerSize);  // Remove state, eax.
666 
667   __ bind(&not_tos_eax);
668   __ Abort(kNoCasesLeft);
669 }
670 
671 
Generate_NotifyDeoptimized(MacroAssembler * masm)672 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
673   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER);
674 }
675 
676 
Generate_NotifySoftDeoptimized(MacroAssembler * masm)677 void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) {
678   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT);
679 }
680 
681 
Generate_NotifyLazyDeoptimized(MacroAssembler * masm)682 void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
683   Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY);
684 }
685 
686 
Generate_FunctionCall(MacroAssembler * masm)687 void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
688   Factory* factory = masm->isolate()->factory();
689 
690   // 1. Make sure we have at least one argument.
691   { Label done;
692     __ test(eax, eax);
693     __ j(not_zero, &done);
694     __ pop(ebx);
695     __ push(Immediate(factory->undefined_value()));
696     __ push(ebx);
697     __ inc(eax);
698     __ bind(&done);
699   }
700 
701   // 2. Get the function to call (passed as receiver) from the stack, check
702   //    if it is a function.
703   Label slow, non_function;
704   // 1 ~ return address.
705   __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
706   __ JumpIfSmi(edi, &non_function);
707   __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
708   __ j(not_equal, &slow);
709 
710 
711   // 3a. Patch the first argument if necessary when calling a function.
712   Label shift_arguments;
713   __ Set(edx, Immediate(0));  // indicate regular JS_FUNCTION
714   { Label convert_to_object, use_global_receiver, patch_receiver;
715     // Change context eagerly in case we need the global receiver.
716     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
717 
718     // Do not transform the receiver for strict mode functions.
719     __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
720     __ test_b(FieldOperand(ebx, SharedFunctionInfo::kStrictModeByteOffset),
721               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
722     __ j(not_equal, &shift_arguments);
723 
724     // Do not transform the receiver for natives (shared already in ebx).
725     __ test_b(FieldOperand(ebx, SharedFunctionInfo::kNativeByteOffset),
726               1 << SharedFunctionInfo::kNativeBitWithinByte);
727     __ j(not_equal, &shift_arguments);
728 
729     // Compute the receiver in non-strict mode.
730     __ mov(ebx, Operand(esp, eax, times_4, 0));  // First argument.
731 
732     // Call ToObject on the receiver if it is not an object, or use the
733     // global object if it is null or undefined.
734     __ JumpIfSmi(ebx, &convert_to_object);
735     __ cmp(ebx, factory->null_value());
736     __ j(equal, &use_global_receiver);
737     __ cmp(ebx, factory->undefined_value());
738     __ j(equal, &use_global_receiver);
739     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
740     __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
741     __ j(above_equal, &shift_arguments);
742 
743     __ bind(&convert_to_object);
744 
745     { // In order to preserve argument count.
746       FrameScope scope(masm, StackFrame::INTERNAL);
747       __ SmiTag(eax);
748       __ push(eax);
749 
750       __ push(ebx);
751       __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
752       __ mov(ebx, eax);
753       __ Set(edx, Immediate(0));  // restore
754 
755       __ pop(eax);
756       __ SmiUntag(eax);
757     }
758 
759     // Restore the function to edi.
760     __ mov(edi, Operand(esp, eax, times_4, 1 * kPointerSize));
761     __ jmp(&patch_receiver);
762 
763     // Use the global receiver object from the called function as the
764     // receiver.
765     __ bind(&use_global_receiver);
766     const int kGlobalIndex =
767         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
768     __ mov(ebx, FieldOperand(esi, kGlobalIndex));
769     __ mov(ebx, FieldOperand(ebx, GlobalObject::kNativeContextOffset));
770     __ mov(ebx, FieldOperand(ebx, kGlobalIndex));
771     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
772 
773     __ bind(&patch_receiver);
774     __ mov(Operand(esp, eax, times_4, 0), ebx);
775 
776     __ jmp(&shift_arguments);
777   }
778 
779   // 3b. Check for function proxy.
780   __ bind(&slow);
781   __ Set(edx, Immediate(1));  // indicate function proxy
782   __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE);
783   __ j(equal, &shift_arguments);
784   __ bind(&non_function);
785   __ Set(edx, Immediate(2));  // indicate non-function
786 
787   // 3c. Patch the first argument when calling a non-function.  The
788   //     CALL_NON_FUNCTION builtin expects the non-function callee as
789   //     receiver, so overwrite the first argument which will ultimately
790   //     become the receiver.
791   __ mov(Operand(esp, eax, times_4, 0), edi);
792 
793   // 4. Shift arguments and return address one slot down on the stack
794   //    (overwriting the original receiver).  Adjust argument count to make
795   //    the original first argument the new receiver.
796   __ bind(&shift_arguments);
797   { Label loop;
798     __ mov(ecx, eax);
799     __ bind(&loop);
800     __ mov(ebx, Operand(esp, ecx, times_4, 0));
801     __ mov(Operand(esp, ecx, times_4, kPointerSize), ebx);
802     __ dec(ecx);
803     __ j(not_sign, &loop);  // While non-negative (to copy return address).
804     __ pop(ebx);  // Discard copy of return address.
805     __ dec(eax);  // One fewer argument (first argument is new receiver).
806   }
807 
808   // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin,
809   //     or a function proxy via CALL_FUNCTION_PROXY.
810   { Label function, non_proxy;
811     __ test(edx, edx);
812     __ j(zero, &function);
813     __ Set(ebx, Immediate(0));
814     __ cmp(edx, Immediate(1));
815     __ j(not_equal, &non_proxy);
816 
817     __ pop(edx);   // return address
818     __ push(edi);  // re-add proxy object as additional argument
819     __ push(edx);
820     __ inc(eax);
821     __ SetCallKind(ecx, CALL_AS_FUNCTION);
822     __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
823     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
824            RelocInfo::CODE_TARGET);
825 
826     __ bind(&non_proxy);
827     __ SetCallKind(ecx, CALL_AS_METHOD);
828     __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION);
829     __ jmp(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
830            RelocInfo::CODE_TARGET);
831     __ bind(&function);
832   }
833 
834   // 5b. Get the code to call from the function and check that the number of
835   //     expected arguments matches what we're providing.  If so, jump
836   //     (tail-call) to the code in register edx without checking arguments.
837   __ mov(edx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
838   __ mov(ebx,
839          FieldOperand(edx, SharedFunctionInfo::kFormalParameterCountOffset));
840   __ mov(edx, FieldOperand(edi, JSFunction::kCodeEntryOffset));
841   __ SmiUntag(ebx);
842   __ SetCallKind(ecx, CALL_AS_METHOD);
843   __ cmp(eax, ebx);
844   __ j(not_equal,
845        masm->isolate()->builtins()->ArgumentsAdaptorTrampoline());
846 
847   ParameterCount expected(0);
848   __ InvokeCode(edx, expected, expected, JUMP_FUNCTION, NullCallWrapper(),
849                 CALL_AS_METHOD);
850 }
851 
852 
Generate_FunctionApply(MacroAssembler * masm)853 void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
854   static const int kArgumentsOffset = 2 * kPointerSize;
855   static const int kReceiverOffset = 3 * kPointerSize;
856   static const int kFunctionOffset = 4 * kPointerSize;
857   {
858     FrameScope frame_scope(masm, StackFrame::INTERNAL);
859 
860     __ push(Operand(ebp, kFunctionOffset));  // push this
861     __ push(Operand(ebp, kArgumentsOffset));  // push arguments
862     __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
863 
864     // Check the stack for overflow. We are not trying to catch
865     // interruptions (e.g. debug break and preemption) here, so the "real stack
866     // limit" is checked.
867     Label okay;
868     ExternalReference real_stack_limit =
869         ExternalReference::address_of_real_stack_limit(masm->isolate());
870     __ mov(edi, Operand::StaticVariable(real_stack_limit));
871     // Make ecx the space we have left. The stack might already be overflowed
872     // here which will cause ecx to become negative.
873     __ mov(ecx, esp);
874     __ sub(ecx, edi);
875     // Make edx the space we need for the array when it is unrolled onto the
876     // stack.
877     __ mov(edx, eax);
878     __ shl(edx, kPointerSizeLog2 - kSmiTagSize);
879     // Check if the arguments will overflow the stack.
880     __ cmp(ecx, edx);
881     __ j(greater, &okay);  // Signed comparison.
882 
883     // Out of stack space.
884     __ push(Operand(ebp, 4 * kPointerSize));  // push this
885     __ push(eax);
886     __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
887     __ bind(&okay);
888     // End of stack check.
889 
890     // Push current index and limit.
891     const int kLimitOffset =
892         StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize;
893     const int kIndexOffset = kLimitOffset - 1 * kPointerSize;
894     __ push(eax);  // limit
895     __ push(Immediate(0));  // index
896 
897     // Get the receiver.
898     __ mov(ebx, Operand(ebp, kReceiverOffset));
899 
900     // Check that the function is a JS function (otherwise it must be a proxy).
901     Label push_receiver;
902     __ mov(edi, Operand(ebp, kFunctionOffset));
903     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
904     __ j(not_equal, &push_receiver);
905 
906     // Change context eagerly to get the right global object if necessary.
907     __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
908 
909     // Compute the receiver.
910     // Do not transform the receiver for strict mode functions.
911     Label call_to_object, use_global_receiver;
912     __ mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
913     __ test_b(FieldOperand(ecx, SharedFunctionInfo::kStrictModeByteOffset),
914               1 << SharedFunctionInfo::kStrictModeBitWithinByte);
915     __ j(not_equal, &push_receiver);
916 
917     Factory* factory = masm->isolate()->factory();
918 
919     // Do not transform the receiver for natives (shared already in ecx).
920     __ test_b(FieldOperand(ecx, SharedFunctionInfo::kNativeByteOffset),
921               1 << SharedFunctionInfo::kNativeBitWithinByte);
922     __ j(not_equal, &push_receiver);
923 
924     // Compute the receiver in non-strict mode.
925     // Call ToObject on the receiver if it is not an object, or use the
926     // global object if it is null or undefined.
927     __ JumpIfSmi(ebx, &call_to_object);
928     __ cmp(ebx, factory->null_value());
929     __ j(equal, &use_global_receiver);
930     __ cmp(ebx, factory->undefined_value());
931     __ j(equal, &use_global_receiver);
932     STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
933     __ CmpObjectType(ebx, FIRST_SPEC_OBJECT_TYPE, ecx);
934     __ j(above_equal, &push_receiver);
935 
936     __ bind(&call_to_object);
937     __ push(ebx);
938     __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
939     __ mov(ebx, eax);
940     __ jmp(&push_receiver);
941 
942     // Use the current global receiver object as the receiver.
943     __ bind(&use_global_receiver);
944     const int kGlobalOffset =
945         Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
946     __ mov(ebx, FieldOperand(esi, kGlobalOffset));
947     __ mov(ebx, FieldOperand(ebx, GlobalObject::kNativeContextOffset));
948     __ mov(ebx, FieldOperand(ebx, kGlobalOffset));
949     __ mov(ebx, FieldOperand(ebx, GlobalObject::kGlobalReceiverOffset));
950 
951     // Push the receiver.
952     __ bind(&push_receiver);
953     __ push(ebx);
954 
955     // Copy all arguments from the array to the stack.
956     Label entry, loop;
957     __ mov(ecx, Operand(ebp, kIndexOffset));
958     __ jmp(&entry);
959     __ bind(&loop);
960     __ mov(edx, Operand(ebp, kArgumentsOffset));  // load arguments
961 
962     // Use inline caching to speed up access to arguments.
963     Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Initialize();
964     __ call(ic, RelocInfo::CODE_TARGET);
965     // It is important that we do not have a test instruction after the
966     // call.  A test instruction after the call is used to indicate that
967     // we have generated an inline version of the keyed load.  In this
968     // case, we know that we are not generating a test instruction next.
969 
970     // Push the nth argument.
971     __ push(eax);
972 
973     // Update the index on the stack and in register eax.
974     __ mov(ecx, Operand(ebp, kIndexOffset));
975     __ add(ecx, Immediate(1 << kSmiTagSize));
976     __ mov(Operand(ebp, kIndexOffset), ecx);
977 
978     __ bind(&entry);
979     __ cmp(ecx, Operand(ebp, kLimitOffset));
980     __ j(not_equal, &loop);
981 
982     // Invoke the function.
983     Label call_proxy;
984     __ mov(eax, ecx);
985     ParameterCount actual(eax);
986     __ SmiUntag(eax);
987     __ mov(edi, Operand(ebp, kFunctionOffset));
988     __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx);
989     __ j(not_equal, &call_proxy);
990     __ InvokeFunction(edi, actual, CALL_FUNCTION,
991                       NullCallWrapper(), CALL_AS_METHOD);
992 
993     frame_scope.GenerateLeaveFrame();
994     __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
995 
996     // Invoke the function proxy.
997     __ bind(&call_proxy);
998     __ push(edi);  // add function proxy as last argument
999     __ inc(eax);
1000     __ Set(ebx, Immediate(0));
1001     __ SetCallKind(ecx, CALL_AS_METHOD);
1002     __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY);
1003     __ call(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
1004             RelocInfo::CODE_TARGET);
1005 
1006     // Leave internal frame.
1007   }
1008   __ ret(3 * kPointerSize);  // remove this, receiver, and arguments
1009 }
1010 
1011 
Generate_InternalArrayCode(MacroAssembler * masm)1012 void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) {
1013   // ----------- S t a t e -------------
1014   //  -- eax : argc
1015   //  -- esp[0] : return address
1016   //  -- esp[4] : last argument
1017   // -----------------------------------
1018   Label generic_array_code;
1019 
1020   // Get the InternalArray function.
1021   __ LoadGlobalFunction(Context::INTERNAL_ARRAY_FUNCTION_INDEX, edi);
1022 
1023   if (FLAG_debug_code) {
1024     // Initial map for the builtin InternalArray function should be a map.
1025     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
1026     // Will both indicate a NULL and a Smi.
1027     __ test(ebx, Immediate(kSmiTagMask));
1028     __ Assert(not_zero, kUnexpectedInitialMapForInternalArrayFunction);
1029     __ CmpObjectType(ebx, MAP_TYPE, ecx);
1030     __ Assert(equal, kUnexpectedInitialMapForInternalArrayFunction);
1031   }
1032 
1033   // Run the native code for the InternalArray function called as a normal
1034   // function.
1035   // tail call a stub
1036   InternalArrayConstructorStub stub(masm->isolate());
1037   __ TailCallStub(&stub);
1038 }
1039 
1040 
Generate_ArrayCode(MacroAssembler * masm)1041 void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
1042   // ----------- S t a t e -------------
1043   //  -- eax : argc
1044   //  -- esp[0] : return address
1045   //  -- esp[4] : last argument
1046   // -----------------------------------
1047   Label generic_array_code;
1048 
1049   // Get the Array function.
1050   __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, edi);
1051 
1052   if (FLAG_debug_code) {
1053     // Initial map for the builtin Array function should be a map.
1054     __ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
1055     // Will both indicate a NULL and a Smi.
1056     __ test(ebx, Immediate(kSmiTagMask));
1057     __ Assert(not_zero, kUnexpectedInitialMapForArrayFunction);
1058     __ CmpObjectType(ebx, MAP_TYPE, ecx);
1059     __ Assert(equal, kUnexpectedInitialMapForArrayFunction);
1060   }
1061 
1062   // Run the native code for the Array function called as a normal function.
1063   // tail call a stub
1064   Handle<Object> undefined_sentinel(
1065       masm->isolate()->heap()->undefined_value(),
1066       masm->isolate());
1067   __ mov(ebx, Immediate(undefined_sentinel));
1068   ArrayConstructorStub stub(masm->isolate());
1069   __ TailCallStub(&stub);
1070 }
1071 
1072 
Generate_StringConstructCode(MacroAssembler * masm)1073 void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
1074   // ----------- S t a t e -------------
1075   //  -- eax                 : number of arguments
1076   //  -- edi                 : constructor function
1077   //  -- esp[0]              : return address
1078   //  -- esp[(argc - n) * 4] : arg[n] (zero-based)
1079   //  -- esp[(argc + 1) * 4] : receiver
1080   // -----------------------------------
1081   Counters* counters = masm->isolate()->counters();
1082   __ IncrementCounter(counters->string_ctor_calls(), 1);
1083 
1084   if (FLAG_debug_code) {
1085     __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, ecx);
1086     __ cmp(edi, ecx);
1087     __ Assert(equal, kUnexpectedStringFunction);
1088   }
1089 
1090   // Load the first argument into eax and get rid of the rest
1091   // (including the receiver).
1092   Label no_arguments;
1093   __ test(eax, eax);
1094   __ j(zero, &no_arguments);
1095   __ mov(ebx, Operand(esp, eax, times_pointer_size, 0));
1096   __ pop(ecx);
1097   __ lea(esp, Operand(esp, eax, times_pointer_size, kPointerSize));
1098   __ push(ecx);
1099   __ mov(eax, ebx);
1100 
1101   // Lookup the argument in the number to string cache.
1102   Label not_cached, argument_is_string;
1103   __ LookupNumberStringCache(eax,  // Input.
1104                              ebx,  // Result.
1105                              ecx,  // Scratch 1.
1106                              edx,  // Scratch 2.
1107                              &not_cached);
1108   __ IncrementCounter(counters->string_ctor_cached_number(), 1);
1109   __ bind(&argument_is_string);
1110   // ----------- S t a t e -------------
1111   //  -- ebx    : argument converted to string
1112   //  -- edi    : constructor function
1113   //  -- esp[0] : return address
1114   // -----------------------------------
1115 
1116   // Allocate a JSValue and put the tagged pointer into eax.
1117   Label gc_required;
1118   __ Allocate(JSValue::kSize,
1119               eax,  // Result.
1120               ecx,  // New allocation top (we ignore it).
1121               no_reg,
1122               &gc_required,
1123               TAG_OBJECT);
1124 
1125   // Set the map.
1126   __ LoadGlobalFunctionInitialMap(edi, ecx);
1127   if (FLAG_debug_code) {
1128     __ cmpb(FieldOperand(ecx, Map::kInstanceSizeOffset),
1129             JSValue::kSize >> kPointerSizeLog2);
1130     __ Assert(equal, kUnexpectedStringWrapperInstanceSize);
1131     __ cmpb(FieldOperand(ecx, Map::kUnusedPropertyFieldsOffset), 0);
1132     __ Assert(equal, kUnexpectedUnusedPropertiesOfStringWrapper);
1133   }
1134   __ mov(FieldOperand(eax, HeapObject::kMapOffset), ecx);
1135 
1136   // Set properties and elements.
1137   Factory* factory = masm->isolate()->factory();
1138   __ Set(ecx, Immediate(factory->empty_fixed_array()));
1139   __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx);
1140   __ mov(FieldOperand(eax, JSObject::kElementsOffset), ecx);
1141 
1142   // Set the value.
1143   __ mov(FieldOperand(eax, JSValue::kValueOffset), ebx);
1144 
1145   // Ensure the object is fully initialized.
1146   STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
1147 
1148   // We're done. Return.
1149   __ ret(0);
1150 
1151   // The argument was not found in the number to string cache. Check
1152   // if it's a string already before calling the conversion builtin.
1153   Label convert_argument;
1154   __ bind(&not_cached);
1155   STATIC_ASSERT(kSmiTag == 0);
1156   __ JumpIfSmi(eax, &convert_argument);
1157   Condition is_string = masm->IsObjectStringType(eax, ebx, ecx);
1158   __ j(NegateCondition(is_string), &convert_argument);
1159   __ mov(ebx, eax);
1160   __ IncrementCounter(counters->string_ctor_string_value(), 1);
1161   __ jmp(&argument_is_string);
1162 
1163   // Invoke the conversion builtin and put the result into ebx.
1164   __ bind(&convert_argument);
1165   __ IncrementCounter(counters->string_ctor_conversions(), 1);
1166   {
1167     FrameScope scope(masm, StackFrame::INTERNAL);
1168     __ push(edi);  // Preserve the function.
1169     __ push(eax);
1170     __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
1171     __ pop(edi);
1172   }
1173   __ mov(ebx, eax);
1174   __ jmp(&argument_is_string);
1175 
1176   // Load the empty string into ebx, remove the receiver from the
1177   // stack, and jump back to the case where the argument is a string.
1178   __ bind(&no_arguments);
1179   __ Set(ebx, Immediate(factory->empty_string()));
1180   __ pop(ecx);
1181   __ lea(esp, Operand(esp, kPointerSize));
1182   __ push(ecx);
1183   __ jmp(&argument_is_string);
1184 
1185   // At this point the argument is already a string. Call runtime to
1186   // create a string wrapper.
1187   __ bind(&gc_required);
1188   __ IncrementCounter(counters->string_ctor_gc_required(), 1);
1189   {
1190     FrameScope scope(masm, StackFrame::INTERNAL);
1191     __ push(ebx);
1192     __ CallRuntime(Runtime::kNewStringWrapper, 1);
1193   }
1194   __ ret(0);
1195 }
1196 
1197 
EnterArgumentsAdaptorFrame(MacroAssembler * masm)1198 static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
1199   __ push(ebp);
1200   __ mov(ebp, esp);
1201 
1202   // Store the arguments adaptor context sentinel.
1203   __ push(Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
1204 
1205   // Push the function on the stack.
1206   __ push(edi);
1207 
1208   // Preserve the number of arguments on the stack. Must preserve eax,
1209   // ebx and ecx because these registers are used when copying the
1210   // arguments and the receiver.
1211   STATIC_ASSERT(kSmiTagSize == 1);
1212   __ lea(edi, Operand(eax, eax, times_1, kSmiTag));
1213   __ push(edi);
1214 }
1215 
1216 
LeaveArgumentsAdaptorFrame(MacroAssembler * masm)1217 static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
1218   // Retrieve the number of arguments from the stack.
1219   __ mov(ebx, Operand(ebp, ArgumentsAdaptorFrameConstants::kLengthOffset));
1220 
1221   // Leave the frame.
1222   __ leave();
1223 
1224   // Remove caller arguments from the stack.
1225   STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
1226   __ pop(ecx);
1227   __ lea(esp, Operand(esp, ebx, times_2, 1 * kPointerSize));  // 1 ~ receiver
1228   __ push(ecx);
1229 }
1230 
1231 
Generate_ArgumentsAdaptorTrampoline(MacroAssembler * masm)1232 void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
1233   // ----------- S t a t e -------------
1234   //  -- eax : actual number of arguments
1235   //  -- ebx : expected number of arguments
1236   //  -- ecx : call kind information
1237   //  -- edx : code entry to call
1238   // -----------------------------------
1239 
1240   Label invoke, dont_adapt_arguments;
1241   __ IncrementCounter(masm->isolate()->counters()->arguments_adaptors(), 1);
1242 
1243   Label enough, too_few;
1244   __ cmp(eax, ebx);
1245   __ j(less, &too_few);
1246   __ cmp(ebx, SharedFunctionInfo::kDontAdaptArgumentsSentinel);
1247   __ j(equal, &dont_adapt_arguments);
1248 
1249   {  // Enough parameters: Actual >= expected.
1250     __ bind(&enough);
1251     EnterArgumentsAdaptorFrame(masm);
1252 
1253     // Copy receiver and all expected arguments.
1254     const int offset = StandardFrameConstants::kCallerSPOffset;
1255     __ lea(eax, Operand(ebp, eax, times_4, offset));
1256     __ mov(edi, -1);  // account for receiver
1257 
1258     Label copy;
1259     __ bind(&copy);
1260     __ inc(edi);
1261     __ push(Operand(eax, 0));
1262     __ sub(eax, Immediate(kPointerSize));
1263     __ cmp(edi, ebx);
1264     __ j(less, &copy);
1265     __ jmp(&invoke);
1266   }
1267 
1268   {  // Too few parameters: Actual < expected.
1269     __ bind(&too_few);
1270     EnterArgumentsAdaptorFrame(masm);
1271 
1272     // Copy receiver and all actual arguments.
1273     const int offset = StandardFrameConstants::kCallerSPOffset;
1274     __ lea(edi, Operand(ebp, eax, times_4, offset));
1275     // ebx = expected - actual.
1276     __ sub(ebx, eax);
1277     // eax = -actual - 1
1278     __ neg(eax);
1279     __ sub(eax, Immediate(1));
1280 
1281     Label copy;
1282     __ bind(&copy);
1283     __ inc(eax);
1284     __ push(Operand(edi, 0));
1285     __ sub(edi, Immediate(kPointerSize));
1286     __ test(eax, eax);
1287     __ j(not_zero, &copy);
1288 
1289     // Fill remaining expected arguments with undefined values.
1290     Label fill;
1291     __ bind(&fill);
1292     __ inc(eax);
1293     __ push(Immediate(masm->isolate()->factory()->undefined_value()));
1294     __ cmp(eax, ebx);
1295     __ j(less, &fill);
1296   }
1297 
1298   // Call the entry point.
1299   __ bind(&invoke);
1300   // Restore function pointer.
1301   __ mov(edi, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1302   __ call(edx);
1303 
1304   // Store offset of return address for deoptimizer.
1305   masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset());
1306 
1307   // Leave frame and return.
1308   LeaveArgumentsAdaptorFrame(masm);
1309   __ ret(0);
1310 
1311   // -------------------------------------------
1312   // Dont adapt arguments.
1313   // -------------------------------------------
1314   __ bind(&dont_adapt_arguments);
1315   __ jmp(edx);
1316 }
1317 
1318 
Generate_OnStackReplacement(MacroAssembler * masm)1319 void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
1320   // Lookup the function in the JavaScript frame.
1321   __ mov(eax, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
1322   {
1323     FrameScope scope(masm, StackFrame::INTERNAL);
1324     // Lookup and calculate pc offset.
1325     __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerPCOffset));
1326     __ mov(ebx, FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset));
1327     __ sub(edx, Immediate(Code::kHeaderSize - kHeapObjectTag));
1328     __ sub(edx, FieldOperand(ebx, SharedFunctionInfo::kCodeOffset));
1329     __ SmiTag(edx);
1330 
1331     // Pass both function and pc offset as arguments.
1332     __ push(eax);
1333     __ push(edx);
1334     __ CallRuntime(Runtime::kCompileForOnStackReplacement, 2);
1335   }
1336 
1337   Label skip;
1338   // If the code object is null, just return to the unoptimized code.
1339   __ cmp(eax, Immediate(0));
1340   __ j(not_equal, &skip, Label::kNear);
1341   __ ret(0);
1342 
1343   __ bind(&skip);
1344 
1345   // Load deoptimization data from the code object.
1346   __ mov(ebx, Operand(eax, Code::kDeoptimizationDataOffset - kHeapObjectTag));
1347 
1348   // Load the OSR entrypoint offset from the deoptimization data.
1349   __ mov(ebx, Operand(ebx, FixedArray::OffsetOfElementAt(
1350       DeoptimizationInputData::kOsrPcOffsetIndex) - kHeapObjectTag));
1351   __ SmiUntag(ebx);
1352 
1353   // Compute the target address = code_obj + header_size + osr_offset
1354   __ lea(eax, Operand(eax, ebx, times_1, Code::kHeaderSize - kHeapObjectTag));
1355 
1356   // Overwrite the return address on the stack.
1357   __ mov(Operand(esp, 0), eax);
1358 
1359   // And "return" to the OSR entry point of the function.
1360   __ ret(0);
1361 }
1362 
1363 
Generate_OsrAfterStackCheck(MacroAssembler * masm)1364 void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) {
1365   // We check the stack limit as indicator that recompilation might be done.
1366   Label ok;
1367   ExternalReference stack_limit =
1368       ExternalReference::address_of_stack_limit(masm->isolate());
1369   __ cmp(esp, Operand::StaticVariable(stack_limit));
1370   __ j(above_equal, &ok, Label::kNear);
1371   {
1372     FrameScope scope(masm, StackFrame::INTERNAL);
1373     __ CallRuntime(Runtime::kStackGuard, 0);
1374   }
1375   __ jmp(masm->isolate()->builtins()->OnStackReplacement(),
1376          RelocInfo::CODE_TARGET);
1377 
1378   __ bind(&ok);
1379   __ ret(0);
1380 }
1381 
1382 #undef __
1383 }
1384 }  // namespace v8::internal
1385 
1386 #endif  // V8_TARGET_ARCH_IA32
1387