1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/ValueSymbolTable.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 using namespace llvm;
26
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)27 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
28 return V.first->getType()->isIntOrIntVectorTy();
29 }
30
31 /// ValueEnumerator - Enumerate module-level information.
ValueEnumerator(const Module * M)32 ValueEnumerator::ValueEnumerator(const Module *M) {
33 // Enumerate the global variables.
34 for (Module::const_global_iterator I = M->global_begin(),
35 E = M->global_end(); I != E; ++I)
36 EnumerateValue(I);
37
38 // Enumerate the functions.
39 for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
40 EnumerateValue(I);
41 EnumerateAttributes(cast<Function>(I)->getAttributes());
42 }
43
44 // Enumerate the aliases.
45 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
46 I != E; ++I)
47 EnumerateValue(I);
48
49 // Remember what is the cutoff between globalvalue's and other constants.
50 unsigned FirstConstant = Values.size();
51
52 // Enumerate the global variable initializers.
53 for (Module::const_global_iterator I = M->global_begin(),
54 E = M->global_end(); I != E; ++I)
55 if (I->hasInitializer())
56 EnumerateValue(I->getInitializer());
57
58 // Enumerate the aliasees.
59 for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
60 I != E; ++I)
61 EnumerateValue(I->getAliasee());
62
63 // Insert constants and metadata that are named at module level into the slot
64 // pool so that the module symbol table can refer to them...
65 EnumerateValueSymbolTable(M->getValueSymbolTable());
66 EnumerateNamedMetadata(M);
67
68 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
69
70 // Enumerate types used by function bodies and argument lists.
71 for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
72
73 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
74 I != E; ++I)
75 EnumerateType(I->getType());
76
77 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
78 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
79 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
80 OI != E; ++OI) {
81 if (MDNode *MD = dyn_cast<MDNode>(*OI))
82 if (MD->isFunctionLocal() && MD->getFunction())
83 // These will get enumerated during function-incorporation.
84 continue;
85 EnumerateOperandType(*OI);
86 }
87 EnumerateType(I->getType());
88 if (const CallInst *CI = dyn_cast<CallInst>(I))
89 EnumerateAttributes(CI->getAttributes());
90 else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
91 EnumerateAttributes(II->getAttributes());
92
93 // Enumerate metadata attached with this instruction.
94 MDs.clear();
95 I->getAllMetadataOtherThanDebugLoc(MDs);
96 for (unsigned i = 0, e = MDs.size(); i != e; ++i)
97 EnumerateMetadata(MDs[i].second);
98
99 if (!I->getDebugLoc().isUnknown()) {
100 MDNode *Scope, *IA;
101 I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
102 if (Scope) EnumerateMetadata(Scope);
103 if (IA) EnumerateMetadata(IA);
104 }
105 }
106 }
107
108 // Optimize constant ordering.
109 OptimizeConstants(FirstConstant, Values.size());
110 }
111
getInstructionID(const Instruction * Inst) const112 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
113 InstructionMapType::const_iterator I = InstructionMap.find(Inst);
114 assert(I != InstructionMap.end() && "Instruction is not mapped!");
115 return I->second;
116 }
117
setInstructionID(const Instruction * I)118 void ValueEnumerator::setInstructionID(const Instruction *I) {
119 InstructionMap[I] = InstructionCount++;
120 }
121
getValueID(const Value * V) const122 unsigned ValueEnumerator::getValueID(const Value *V) const {
123 if (isa<MDNode>(V) || isa<MDString>(V)) {
124 ValueMapType::const_iterator I = MDValueMap.find(V);
125 assert(I != MDValueMap.end() && "Value not in slotcalculator!");
126 return I->second-1;
127 }
128
129 ValueMapType::const_iterator I = ValueMap.find(V);
130 assert(I != ValueMap.end() && "Value not in slotcalculator!");
131 return I->second-1;
132 }
133
dump() const134 void ValueEnumerator::dump() const {
135 print(dbgs(), ValueMap, "Default");
136 dbgs() << '\n';
137 print(dbgs(), MDValueMap, "MetaData");
138 dbgs() << '\n';
139 }
140
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const141 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
142 const char *Name) const {
143
144 OS << "Map Name: " << Name << "\n";
145 OS << "Size: " << Map.size() << "\n";
146 for (ValueMapType::const_iterator I = Map.begin(),
147 E = Map.end(); I != E; ++I) {
148
149 const Value *V = I->first;
150 if (V->hasName())
151 OS << "Value: " << V->getName();
152 else
153 OS << "Value: [null]\n";
154 V->dump();
155
156 OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
157 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
158 UI != UE; ++UI) {
159 if (UI != V->use_begin())
160 OS << ",";
161 if((*UI)->hasName())
162 OS << " " << (*UI)->getName();
163 else
164 OS << " [null]";
165
166 }
167 OS << "\n\n";
168 }
169 }
170
171 // Optimize constant ordering.
172 namespace {
173 struct CstSortPredicate {
174 ValueEnumerator &VE;
CstSortPredicate__anon025eb7f00111::CstSortPredicate175 explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
operator ()__anon025eb7f00111::CstSortPredicate176 bool operator()(const std::pair<const Value*, unsigned> &LHS,
177 const std::pair<const Value*, unsigned> &RHS) {
178 // Sort by plane.
179 if (LHS.first->getType() != RHS.first->getType())
180 return VE.getTypeID(LHS.first->getType()) <
181 VE.getTypeID(RHS.first->getType());
182 // Then by frequency.
183 return LHS.second > RHS.second;
184 }
185 };
186 }
187
188 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)189 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
190 if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
191
192 CstSortPredicate P(*this);
193 std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
194
195 // Ensure that integer and vector of integer constants are at the start of the
196 // constant pool. This is important so that GEP structure indices come before
197 // gep constant exprs.
198 std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
199 isIntOrIntVectorValue);
200
201 // Rebuild the modified portion of ValueMap.
202 for (; CstStart != CstEnd; ++CstStart)
203 ValueMap[Values[CstStart].first] = CstStart+1;
204 }
205
206
207 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
208 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)209 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
210 for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
211 VI != VE; ++VI)
212 EnumerateValue(VI->getValue());
213 }
214
215 /// EnumerateNamedMetadata - Insert all of the values referenced by
216 /// named metadata in the specified module.
EnumerateNamedMetadata(const Module * M)217 void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
218 for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
219 E = M->named_metadata_end(); I != E; ++I)
220 EnumerateNamedMDNode(I);
221 }
222
EnumerateNamedMDNode(const NamedMDNode * MD)223 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
224 for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
225 EnumerateMetadata(MD->getOperand(i));
226 }
227
228 /// EnumerateMDNodeOperands - Enumerate all non-function-local values
229 /// and types referenced by the given MDNode.
EnumerateMDNodeOperands(const MDNode * N)230 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
231 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
232 if (Value *V = N->getOperand(i)) {
233 if (isa<MDNode>(V) || isa<MDString>(V))
234 EnumerateMetadata(V);
235 else if (!isa<Instruction>(V) && !isa<Argument>(V))
236 EnumerateValue(V);
237 } else
238 EnumerateType(Type::getVoidTy(N->getContext()));
239 }
240 }
241
EnumerateMetadata(const Value * MD)242 void ValueEnumerator::EnumerateMetadata(const Value *MD) {
243 assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
244
245 // Enumerate the type of this value.
246 EnumerateType(MD->getType());
247
248 const MDNode *N = dyn_cast<MDNode>(MD);
249
250 // In the module-level pass, skip function-local nodes themselves, but
251 // do walk their operands.
252 if (N && N->isFunctionLocal() && N->getFunction()) {
253 EnumerateMDNodeOperands(N);
254 return;
255 }
256
257 // Check to see if it's already in!
258 unsigned &MDValueID = MDValueMap[MD];
259 if (MDValueID) {
260 // Increment use count.
261 MDValues[MDValueID-1].second++;
262 return;
263 }
264 MDValues.push_back(std::make_pair(MD, 1U));
265 MDValueID = MDValues.size();
266
267 // Enumerate all non-function-local operands.
268 if (N)
269 EnumerateMDNodeOperands(N);
270 }
271
272 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
273 /// information reachable from the given MDNode.
EnumerateFunctionLocalMetadata(const MDNode * N)274 void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
275 assert(N->isFunctionLocal() && N->getFunction() &&
276 "EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
277
278 // Enumerate the type of this value.
279 EnumerateType(N->getType());
280
281 // Check to see if it's already in!
282 unsigned &MDValueID = MDValueMap[N];
283 if (MDValueID) {
284 // Increment use count.
285 MDValues[MDValueID-1].second++;
286 return;
287 }
288 MDValues.push_back(std::make_pair(N, 1U));
289 MDValueID = MDValues.size();
290
291 // To incoroporate function-local information visit all function-local
292 // MDNodes and all function-local values they reference.
293 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
294 if (Value *V = N->getOperand(i)) {
295 if (MDNode *O = dyn_cast<MDNode>(V)) {
296 if (O->isFunctionLocal() && O->getFunction())
297 EnumerateFunctionLocalMetadata(O);
298 } else if (isa<Instruction>(V) || isa<Argument>(V))
299 EnumerateValue(V);
300 }
301
302 // Also, collect all function-local MDNodes for easy access.
303 FunctionLocalMDs.push_back(N);
304 }
305
EnumerateValue(const Value * V)306 void ValueEnumerator::EnumerateValue(const Value *V) {
307 assert(!V->getType()->isVoidTy() && "Can't insert void values!");
308 assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
309 "EnumerateValue doesn't handle Metadata!");
310
311 // Check to see if it's already in!
312 unsigned &ValueID = ValueMap[V];
313 if (ValueID) {
314 // Increment use count.
315 Values[ValueID-1].second++;
316 return;
317 }
318
319 // Enumerate the type of this value.
320 EnumerateType(V->getType());
321
322 if (const Constant *C = dyn_cast<Constant>(V)) {
323 if (isa<GlobalValue>(C)) {
324 // Initializers for globals are handled explicitly elsewhere.
325 } else if (C->getNumOperands()) {
326 // If a constant has operands, enumerate them. This makes sure that if a
327 // constant has uses (for example an array of const ints), that they are
328 // inserted also.
329
330 // We prefer to enumerate them with values before we enumerate the user
331 // itself. This makes it more likely that we can avoid forward references
332 // in the reader. We know that there can be no cycles in the constants
333 // graph that don't go through a global variable.
334 for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
335 I != E; ++I)
336 if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
337 EnumerateValue(*I);
338
339 // Finally, add the value. Doing this could make the ValueID reference be
340 // dangling, don't reuse it.
341 Values.push_back(std::make_pair(V, 1U));
342 ValueMap[V] = Values.size();
343 return;
344 }
345 }
346
347 // Add the value.
348 Values.push_back(std::make_pair(V, 1U));
349 ValueID = Values.size();
350 }
351
352
EnumerateType(Type * Ty)353 void ValueEnumerator::EnumerateType(Type *Ty) {
354 unsigned *TypeID = &TypeMap[Ty];
355
356 // We've already seen this type.
357 if (*TypeID)
358 return;
359
360 // If it is a non-anonymous struct, mark the type as being visited so that we
361 // don't recursively visit it. This is safe because we allow forward
362 // references of these in the bitcode reader.
363 if (StructType *STy = dyn_cast<StructType>(Ty))
364 if (!STy->isLiteral())
365 *TypeID = ~0U;
366
367 // Enumerate all of the subtypes before we enumerate this type. This ensures
368 // that the type will be enumerated in an order that can be directly built.
369 for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
370 I != E; ++I)
371 EnumerateType(*I);
372
373 // Refresh the TypeID pointer in case the table rehashed.
374 TypeID = &TypeMap[Ty];
375
376 // Check to see if we got the pointer another way. This can happen when
377 // enumerating recursive types that hit the base case deeper than they start.
378 //
379 // If this is actually a struct that we are treating as forward ref'able,
380 // then emit the definition now that all of its contents are available.
381 if (*TypeID && *TypeID != ~0U)
382 return;
383
384 // Add this type now that its contents are all happily enumerated.
385 Types.push_back(Ty);
386
387 *TypeID = Types.size();
388 }
389
390 // Enumerate the types for the specified value. If the value is a constant,
391 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)392 void ValueEnumerator::EnumerateOperandType(const Value *V) {
393 EnumerateType(V->getType());
394
395 if (const Constant *C = dyn_cast<Constant>(V)) {
396 // If this constant is already enumerated, ignore it, we know its type must
397 // be enumerated.
398 if (ValueMap.count(V)) return;
399
400 // This constant may have operands, make sure to enumerate the types in
401 // them.
402 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
403 const Value *Op = C->getOperand(i);
404
405 // Don't enumerate basic blocks here, this happens as operands to
406 // blockaddress.
407 if (isa<BasicBlock>(Op)) continue;
408
409 EnumerateOperandType(Op);
410 }
411
412 if (const MDNode *N = dyn_cast<MDNode>(V)) {
413 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
414 if (Value *Elem = N->getOperand(i))
415 EnumerateOperandType(Elem);
416 }
417 } else if (isa<MDString>(V) || isa<MDNode>(V))
418 EnumerateMetadata(V);
419 }
420
EnumerateAttributes(AttributeSet PAL)421 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
422 if (PAL.isEmpty()) return; // null is always 0.
423
424 // Do a lookup.
425 unsigned &Entry = AttributeMap[PAL];
426 if (Entry == 0) {
427 // Never saw this before, add it.
428 Attribute.push_back(PAL);
429 Entry = Attribute.size();
430 }
431
432 // Do lookups for all attribute groups.
433 for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
434 AttributeSet AS = PAL.getSlotAttributes(i);
435 unsigned &Entry = AttributeGroupMap[AS];
436 if (Entry == 0) {
437 AttributeGroups.push_back(AS);
438 Entry = AttributeGroups.size();
439 }
440 }
441 }
442
incorporateFunction(const Function & F)443 void ValueEnumerator::incorporateFunction(const Function &F) {
444 InstructionCount = 0;
445 NumModuleValues = Values.size();
446 NumModuleMDValues = MDValues.size();
447
448 // Adding function arguments to the value table.
449 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
450 I != E; ++I)
451 EnumerateValue(I);
452
453 FirstFuncConstantID = Values.size();
454
455 // Add all function-level constants to the value table.
456 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
457 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
458 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
459 OI != E; ++OI) {
460 if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
461 isa<InlineAsm>(*OI))
462 EnumerateValue(*OI);
463 }
464 BasicBlocks.push_back(BB);
465 ValueMap[BB] = BasicBlocks.size();
466 }
467
468 // Optimize the constant layout.
469 OptimizeConstants(FirstFuncConstantID, Values.size());
470
471 // Add the function's parameter attributes so they are available for use in
472 // the function's instruction.
473 EnumerateAttributes(F.getAttributes());
474
475 FirstInstID = Values.size();
476
477 SmallVector<MDNode *, 8> FnLocalMDVector;
478 // Add all of the instructions.
479 for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
480 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
481 for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
482 OI != E; ++OI) {
483 if (MDNode *MD = dyn_cast<MDNode>(*OI))
484 if (MD->isFunctionLocal() && MD->getFunction())
485 // Enumerate metadata after the instructions they might refer to.
486 FnLocalMDVector.push_back(MD);
487 }
488
489 SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
490 I->getAllMetadataOtherThanDebugLoc(MDs);
491 for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
492 MDNode *N = MDs[i].second;
493 if (N->isFunctionLocal() && N->getFunction())
494 FnLocalMDVector.push_back(N);
495 }
496
497 if (!I->getType()->isVoidTy())
498 EnumerateValue(I);
499 }
500 }
501
502 // Add all of the function-local metadata.
503 for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
504 EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
505 }
506
purgeFunction()507 void ValueEnumerator::purgeFunction() {
508 /// Remove purged values from the ValueMap.
509 for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
510 ValueMap.erase(Values[i].first);
511 for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
512 MDValueMap.erase(MDValues[i].first);
513 for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
514 ValueMap.erase(BasicBlocks[i]);
515
516 Values.resize(NumModuleValues);
517 MDValues.resize(NumModuleMDValues);
518 BasicBlocks.clear();
519 FunctionLocalMDs.clear();
520 }
521
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)522 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
523 DenseMap<const BasicBlock*, unsigned> &IDMap) {
524 unsigned Counter = 0;
525 for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
526 IDMap[BB] = ++Counter;
527 }
528
529 /// getGlobalBasicBlockID - This returns the function-specific ID for the
530 /// specified basic block. This is relatively expensive information, so it
531 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const532 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
533 unsigned &Idx = GlobalBasicBlockIDs[BB];
534 if (Idx != 0)
535 return Idx-1;
536
537 IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
538 return getGlobalBasicBlockID(BB);
539 }
540
541