• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the ValueEnumerator class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "ValueEnumerator.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/Instructions.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/ValueSymbolTable.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include <algorithm>
25 using namespace llvm;
26 
isIntOrIntVectorValue(const std::pair<const Value *,unsigned> & V)27 static bool isIntOrIntVectorValue(const std::pair<const Value*, unsigned> &V) {
28   return V.first->getType()->isIntOrIntVectorTy();
29 }
30 
31 /// ValueEnumerator - Enumerate module-level information.
ValueEnumerator(const Module * M)32 ValueEnumerator::ValueEnumerator(const Module *M) {
33   // Enumerate the global variables.
34   for (Module::const_global_iterator I = M->global_begin(),
35          E = M->global_end(); I != E; ++I)
36     EnumerateValue(I);
37 
38   // Enumerate the functions.
39   for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) {
40     EnumerateValue(I);
41     EnumerateAttributes(cast<Function>(I)->getAttributes());
42   }
43 
44   // Enumerate the aliases.
45   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
46        I != E; ++I)
47     EnumerateValue(I);
48 
49   // Remember what is the cutoff between globalvalue's and other constants.
50   unsigned FirstConstant = Values.size();
51 
52   // Enumerate the global variable initializers.
53   for (Module::const_global_iterator I = M->global_begin(),
54          E = M->global_end(); I != E; ++I)
55     if (I->hasInitializer())
56       EnumerateValue(I->getInitializer());
57 
58   // Enumerate the aliasees.
59   for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end();
60        I != E; ++I)
61     EnumerateValue(I->getAliasee());
62 
63   // Insert constants and metadata that are named at module level into the slot
64   // pool so that the module symbol table can refer to them...
65   EnumerateValueSymbolTable(M->getValueSymbolTable());
66   EnumerateNamedMetadata(M);
67 
68   SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
69 
70   // Enumerate types used by function bodies and argument lists.
71   for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) {
72 
73     for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
74          I != E; ++I)
75       EnumerateType(I->getType());
76 
77     for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
78       for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){
79         for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
80              OI != E; ++OI) {
81           if (MDNode *MD = dyn_cast<MDNode>(*OI))
82             if (MD->isFunctionLocal() && MD->getFunction())
83               // These will get enumerated during function-incorporation.
84               continue;
85           EnumerateOperandType(*OI);
86         }
87         EnumerateType(I->getType());
88         if (const CallInst *CI = dyn_cast<CallInst>(I))
89           EnumerateAttributes(CI->getAttributes());
90         else if (const InvokeInst *II = dyn_cast<InvokeInst>(I))
91           EnumerateAttributes(II->getAttributes());
92 
93         // Enumerate metadata attached with this instruction.
94         MDs.clear();
95         I->getAllMetadataOtherThanDebugLoc(MDs);
96         for (unsigned i = 0, e = MDs.size(); i != e; ++i)
97           EnumerateMetadata(MDs[i].second);
98 
99         if (!I->getDebugLoc().isUnknown()) {
100           MDNode *Scope, *IA;
101           I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext());
102           if (Scope) EnumerateMetadata(Scope);
103           if (IA) EnumerateMetadata(IA);
104         }
105       }
106   }
107 
108   // Optimize constant ordering.
109   OptimizeConstants(FirstConstant, Values.size());
110 }
111 
getInstructionID(const Instruction * Inst) const112 unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
113   InstructionMapType::const_iterator I = InstructionMap.find(Inst);
114   assert(I != InstructionMap.end() && "Instruction is not mapped!");
115   return I->second;
116 }
117 
setInstructionID(const Instruction * I)118 void ValueEnumerator::setInstructionID(const Instruction *I) {
119   InstructionMap[I] = InstructionCount++;
120 }
121 
getValueID(const Value * V) const122 unsigned ValueEnumerator::getValueID(const Value *V) const {
123   if (isa<MDNode>(V) || isa<MDString>(V)) {
124     ValueMapType::const_iterator I = MDValueMap.find(V);
125     assert(I != MDValueMap.end() && "Value not in slotcalculator!");
126     return I->second-1;
127   }
128 
129   ValueMapType::const_iterator I = ValueMap.find(V);
130   assert(I != ValueMap.end() && "Value not in slotcalculator!");
131   return I->second-1;
132 }
133 
dump() const134 void ValueEnumerator::dump() const {
135   print(dbgs(), ValueMap, "Default");
136   dbgs() << '\n';
137   print(dbgs(), MDValueMap, "MetaData");
138   dbgs() << '\n';
139 }
140 
print(raw_ostream & OS,const ValueMapType & Map,const char * Name) const141 void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
142                             const char *Name) const {
143 
144   OS << "Map Name: " << Name << "\n";
145   OS << "Size: " << Map.size() << "\n";
146   for (ValueMapType::const_iterator I = Map.begin(),
147          E = Map.end(); I != E; ++I) {
148 
149     const Value *V = I->first;
150     if (V->hasName())
151       OS << "Value: " << V->getName();
152     else
153       OS << "Value: [null]\n";
154     V->dump();
155 
156     OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):";
157     for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
158          UI != UE; ++UI) {
159       if (UI != V->use_begin())
160         OS << ",";
161       if((*UI)->hasName())
162         OS << " " << (*UI)->getName();
163       else
164         OS << " [null]";
165 
166     }
167     OS <<  "\n\n";
168   }
169 }
170 
171 // Optimize constant ordering.
172 namespace {
173   struct CstSortPredicate {
174     ValueEnumerator &VE;
CstSortPredicate__anon025eb7f00111::CstSortPredicate175     explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {}
operator ()__anon025eb7f00111::CstSortPredicate176     bool operator()(const std::pair<const Value*, unsigned> &LHS,
177                     const std::pair<const Value*, unsigned> &RHS) {
178       // Sort by plane.
179       if (LHS.first->getType() != RHS.first->getType())
180         return VE.getTypeID(LHS.first->getType()) <
181                VE.getTypeID(RHS.first->getType());
182       // Then by frequency.
183       return LHS.second > RHS.second;
184     }
185   };
186 }
187 
188 /// OptimizeConstants - Reorder constant pool for denser encoding.
OptimizeConstants(unsigned CstStart,unsigned CstEnd)189 void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) {
190   if (CstStart == CstEnd || CstStart+1 == CstEnd) return;
191 
192   CstSortPredicate P(*this);
193   std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P);
194 
195   // Ensure that integer and vector of integer constants are at the start of the
196   // constant pool.  This is important so that GEP structure indices come before
197   // gep constant exprs.
198   std::partition(Values.begin()+CstStart, Values.begin()+CstEnd,
199                  isIntOrIntVectorValue);
200 
201   // Rebuild the modified portion of ValueMap.
202   for (; CstStart != CstEnd; ++CstStart)
203     ValueMap[Values[CstStart].first] = CstStart+1;
204 }
205 
206 
207 /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
208 /// table into the values table.
EnumerateValueSymbolTable(const ValueSymbolTable & VST)209 void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
210   for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
211        VI != VE; ++VI)
212     EnumerateValue(VI->getValue());
213 }
214 
215 /// EnumerateNamedMetadata - Insert all of the values referenced by
216 /// named metadata in the specified module.
EnumerateNamedMetadata(const Module * M)217 void ValueEnumerator::EnumerateNamedMetadata(const Module *M) {
218   for (Module::const_named_metadata_iterator I = M->named_metadata_begin(),
219        E = M->named_metadata_end(); I != E; ++I)
220     EnumerateNamedMDNode(I);
221 }
222 
EnumerateNamedMDNode(const NamedMDNode * MD)223 void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
224   for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
225     EnumerateMetadata(MD->getOperand(i));
226 }
227 
228 /// EnumerateMDNodeOperands - Enumerate all non-function-local values
229 /// and types referenced by the given MDNode.
EnumerateMDNodeOperands(const MDNode * N)230 void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) {
231   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
232     if (Value *V = N->getOperand(i)) {
233       if (isa<MDNode>(V) || isa<MDString>(V))
234         EnumerateMetadata(V);
235       else if (!isa<Instruction>(V) && !isa<Argument>(V))
236         EnumerateValue(V);
237     } else
238       EnumerateType(Type::getVoidTy(N->getContext()));
239   }
240 }
241 
EnumerateMetadata(const Value * MD)242 void ValueEnumerator::EnumerateMetadata(const Value *MD) {
243   assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind");
244 
245   // Enumerate the type of this value.
246   EnumerateType(MD->getType());
247 
248   const MDNode *N = dyn_cast<MDNode>(MD);
249 
250   // In the module-level pass, skip function-local nodes themselves, but
251   // do walk their operands.
252   if (N && N->isFunctionLocal() && N->getFunction()) {
253     EnumerateMDNodeOperands(N);
254     return;
255   }
256 
257   // Check to see if it's already in!
258   unsigned &MDValueID = MDValueMap[MD];
259   if (MDValueID) {
260     // Increment use count.
261     MDValues[MDValueID-1].second++;
262     return;
263   }
264   MDValues.push_back(std::make_pair(MD, 1U));
265   MDValueID = MDValues.size();
266 
267   // Enumerate all non-function-local operands.
268   if (N)
269     EnumerateMDNodeOperands(N);
270 }
271 
272 /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata
273 /// information reachable from the given MDNode.
EnumerateFunctionLocalMetadata(const MDNode * N)274 void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) {
275   assert(N->isFunctionLocal() && N->getFunction() &&
276          "EnumerateFunctionLocalMetadata called on non-function-local mdnode!");
277 
278   // Enumerate the type of this value.
279   EnumerateType(N->getType());
280 
281   // Check to see if it's already in!
282   unsigned &MDValueID = MDValueMap[N];
283   if (MDValueID) {
284     // Increment use count.
285     MDValues[MDValueID-1].second++;
286     return;
287   }
288   MDValues.push_back(std::make_pair(N, 1U));
289   MDValueID = MDValues.size();
290 
291   // To incoroporate function-local information visit all function-local
292   // MDNodes and all function-local values they reference.
293   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
294     if (Value *V = N->getOperand(i)) {
295       if (MDNode *O = dyn_cast<MDNode>(V)) {
296         if (O->isFunctionLocal() && O->getFunction())
297           EnumerateFunctionLocalMetadata(O);
298       } else if (isa<Instruction>(V) || isa<Argument>(V))
299         EnumerateValue(V);
300     }
301 
302   // Also, collect all function-local MDNodes for easy access.
303   FunctionLocalMDs.push_back(N);
304 }
305 
EnumerateValue(const Value * V)306 void ValueEnumerator::EnumerateValue(const Value *V) {
307   assert(!V->getType()->isVoidTy() && "Can't insert void values!");
308   assert(!isa<MDNode>(V) && !isa<MDString>(V) &&
309          "EnumerateValue doesn't handle Metadata!");
310 
311   // Check to see if it's already in!
312   unsigned &ValueID = ValueMap[V];
313   if (ValueID) {
314     // Increment use count.
315     Values[ValueID-1].second++;
316     return;
317   }
318 
319   // Enumerate the type of this value.
320   EnumerateType(V->getType());
321 
322   if (const Constant *C = dyn_cast<Constant>(V)) {
323     if (isa<GlobalValue>(C)) {
324       // Initializers for globals are handled explicitly elsewhere.
325     } else if (C->getNumOperands()) {
326       // If a constant has operands, enumerate them.  This makes sure that if a
327       // constant has uses (for example an array of const ints), that they are
328       // inserted also.
329 
330       // We prefer to enumerate them with values before we enumerate the user
331       // itself.  This makes it more likely that we can avoid forward references
332       // in the reader.  We know that there can be no cycles in the constants
333       // graph that don't go through a global variable.
334       for (User::const_op_iterator I = C->op_begin(), E = C->op_end();
335            I != E; ++I)
336         if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
337           EnumerateValue(*I);
338 
339       // Finally, add the value.  Doing this could make the ValueID reference be
340       // dangling, don't reuse it.
341       Values.push_back(std::make_pair(V, 1U));
342       ValueMap[V] = Values.size();
343       return;
344     }
345   }
346 
347   // Add the value.
348   Values.push_back(std::make_pair(V, 1U));
349   ValueID = Values.size();
350 }
351 
352 
EnumerateType(Type * Ty)353 void ValueEnumerator::EnumerateType(Type *Ty) {
354   unsigned *TypeID = &TypeMap[Ty];
355 
356   // We've already seen this type.
357   if (*TypeID)
358     return;
359 
360   // If it is a non-anonymous struct, mark the type as being visited so that we
361   // don't recursively visit it.  This is safe because we allow forward
362   // references of these in the bitcode reader.
363   if (StructType *STy = dyn_cast<StructType>(Ty))
364     if (!STy->isLiteral())
365       *TypeID = ~0U;
366 
367   // Enumerate all of the subtypes before we enumerate this type.  This ensures
368   // that the type will be enumerated in an order that can be directly built.
369   for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end();
370        I != E; ++I)
371     EnumerateType(*I);
372 
373   // Refresh the TypeID pointer in case the table rehashed.
374   TypeID = &TypeMap[Ty];
375 
376   // Check to see if we got the pointer another way.  This can happen when
377   // enumerating recursive types that hit the base case deeper than they start.
378   //
379   // If this is actually a struct that we are treating as forward ref'able,
380   // then emit the definition now that all of its contents are available.
381   if (*TypeID && *TypeID != ~0U)
382     return;
383 
384   // Add this type now that its contents are all happily enumerated.
385   Types.push_back(Ty);
386 
387   *TypeID = Types.size();
388 }
389 
390 // Enumerate the types for the specified value.  If the value is a constant,
391 // walk through it, enumerating the types of the constant.
EnumerateOperandType(const Value * V)392 void ValueEnumerator::EnumerateOperandType(const Value *V) {
393   EnumerateType(V->getType());
394 
395   if (const Constant *C = dyn_cast<Constant>(V)) {
396     // If this constant is already enumerated, ignore it, we know its type must
397     // be enumerated.
398     if (ValueMap.count(V)) return;
399 
400     // This constant may have operands, make sure to enumerate the types in
401     // them.
402     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
403       const Value *Op = C->getOperand(i);
404 
405       // Don't enumerate basic blocks here, this happens as operands to
406       // blockaddress.
407       if (isa<BasicBlock>(Op)) continue;
408 
409       EnumerateOperandType(Op);
410     }
411 
412     if (const MDNode *N = dyn_cast<MDNode>(V)) {
413       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
414         if (Value *Elem = N->getOperand(i))
415           EnumerateOperandType(Elem);
416     }
417   } else if (isa<MDString>(V) || isa<MDNode>(V))
418     EnumerateMetadata(V);
419 }
420 
EnumerateAttributes(AttributeSet PAL)421 void ValueEnumerator::EnumerateAttributes(AttributeSet PAL) {
422   if (PAL.isEmpty()) return;  // null is always 0.
423 
424   // Do a lookup.
425   unsigned &Entry = AttributeMap[PAL];
426   if (Entry == 0) {
427     // Never saw this before, add it.
428     Attribute.push_back(PAL);
429     Entry = Attribute.size();
430   }
431 
432   // Do lookups for all attribute groups.
433   for (unsigned i = 0, e = PAL.getNumSlots(); i != e; ++i) {
434     AttributeSet AS = PAL.getSlotAttributes(i);
435     unsigned &Entry = AttributeGroupMap[AS];
436     if (Entry == 0) {
437       AttributeGroups.push_back(AS);
438       Entry = AttributeGroups.size();
439     }
440   }
441 }
442 
incorporateFunction(const Function & F)443 void ValueEnumerator::incorporateFunction(const Function &F) {
444   InstructionCount = 0;
445   NumModuleValues = Values.size();
446   NumModuleMDValues = MDValues.size();
447 
448   // Adding function arguments to the value table.
449   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
450        I != E; ++I)
451     EnumerateValue(I);
452 
453   FirstFuncConstantID = Values.size();
454 
455   // Add all function-level constants to the value table.
456   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
457     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
458       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
459            OI != E; ++OI) {
460         if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) ||
461             isa<InlineAsm>(*OI))
462           EnumerateValue(*OI);
463       }
464     BasicBlocks.push_back(BB);
465     ValueMap[BB] = BasicBlocks.size();
466   }
467 
468   // Optimize the constant layout.
469   OptimizeConstants(FirstFuncConstantID, Values.size());
470 
471   // Add the function's parameter attributes so they are available for use in
472   // the function's instruction.
473   EnumerateAttributes(F.getAttributes());
474 
475   FirstInstID = Values.size();
476 
477   SmallVector<MDNode *, 8> FnLocalMDVector;
478   // Add all of the instructions.
479   for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
480     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) {
481       for (User::const_op_iterator OI = I->op_begin(), E = I->op_end();
482            OI != E; ++OI) {
483         if (MDNode *MD = dyn_cast<MDNode>(*OI))
484           if (MD->isFunctionLocal() && MD->getFunction())
485             // Enumerate metadata after the instructions they might refer to.
486             FnLocalMDVector.push_back(MD);
487       }
488 
489       SmallVector<std::pair<unsigned, MDNode*>, 8> MDs;
490       I->getAllMetadataOtherThanDebugLoc(MDs);
491       for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
492         MDNode *N = MDs[i].second;
493         if (N->isFunctionLocal() && N->getFunction())
494           FnLocalMDVector.push_back(N);
495       }
496 
497       if (!I->getType()->isVoidTy())
498         EnumerateValue(I);
499     }
500   }
501 
502   // Add all of the function-local metadata.
503   for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i)
504     EnumerateFunctionLocalMetadata(FnLocalMDVector[i]);
505 }
506 
purgeFunction()507 void ValueEnumerator::purgeFunction() {
508   /// Remove purged values from the ValueMap.
509   for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
510     ValueMap.erase(Values[i].first);
511   for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i)
512     MDValueMap.erase(MDValues[i].first);
513   for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i)
514     ValueMap.erase(BasicBlocks[i]);
515 
516   Values.resize(NumModuleValues);
517   MDValues.resize(NumModuleMDValues);
518   BasicBlocks.clear();
519   FunctionLocalMDs.clear();
520 }
521 
IncorporateFunctionInfoGlobalBBIDs(const Function * F,DenseMap<const BasicBlock *,unsigned> & IDMap)522 static void IncorporateFunctionInfoGlobalBBIDs(const Function *F,
523                                  DenseMap<const BasicBlock*, unsigned> &IDMap) {
524   unsigned Counter = 0;
525   for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
526     IDMap[BB] = ++Counter;
527 }
528 
529 /// getGlobalBasicBlockID - This returns the function-specific ID for the
530 /// specified basic block.  This is relatively expensive information, so it
531 /// should only be used by rare constructs such as address-of-label.
getGlobalBasicBlockID(const BasicBlock * BB) const532 unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
533   unsigned &Idx = GlobalBasicBlockIDs[BB];
534   if (Idx != 0)
535     return Idx-1;
536 
537   IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
538   return getGlobalBasicBlockID(BB);
539 }
540 
541