Name |
Date |
Size |
#Lines |
LOC |
||
---|---|---|---|---|---|---|
.. | - | - | ||||
AArch64/ | 03-May-2024 | - | 25,218 | 19,051 | ||
ARM/ | 03-May-2024 | - | 102,002 | 82,372 | ||
CppBackend/ | 03-May-2024 | - | 2,292 | 1,978 | ||
Hexagon/ | 03-May-2024 | - | 29,733 | 22,301 | ||
MSP430/ | 03-May-2024 | - | 6,138 | 4,417 | ||
Mips/ | 03-May-2024 | - | 29,735 | 21,713 | ||
NVPTX/ | 03-May-2024 | - | 18,144 | 14,563 | ||
PowerPC/ | 03-May-2024 | - | 40,398 | 32,044 | ||
R600/ | 03-May-2024 | - | 24,899 | 19,064 | ||
Sparc/ | 03-May-2024 | - | 6,833 | 4,911 | ||
SystemZ/ | 03-May-2024 | - | 14,663 | 10,893 | ||
X86/ | 03-May-2024 | - | 82,640 | 63,497 | ||
XCore/ | 03-May-2024 | - | 7,624 | 5,563 | ||
Android.mk | D | 03-May-2024 | 787 | 39 | 23 | |
CMakeLists.txt | D | 03-May-2024 | 337 | 17 | 15 | |
LLVMBuild.txt | D | 03-May-2024 | 1.7 KiB | 57 | 50 | |
Makefile | D | 03-May-2024 | 662 | 21 | 6 | |
Mangler.cpp | D | 03-May-2024 | 8.9 KiB | 249 | 156 | |
README.txt | D | 03-May-2024 | 71.6 KiB | 2,355 | 1,770 | |
Target.cpp | D | 03-May-2024 | 4.3 KiB | 135 | 94 | |
TargetIntrinsicInfo.cpp | D | 03-May-2024 | 926 | 31 | 14 | |
TargetJITInfo.cpp | D | 03-May-2024 | 438 | 15 | 3 | |
TargetLibraryInfo.cpp | D | 03-May-2024 | 17.3 KiB | 653 | 568 | |
TargetLoweringObjectFile.cpp | D | 03-May-2024 | 12.3 KiB | 326 | 186 | |
TargetMachine.cpp | D | 03-May-2024 | 6 KiB | 190 | 133 | |
TargetMachineC.cpp | D | 03-May-2024 | 6.2 KiB | 228 | 180 | |
TargetSubtargetInfo.cpp | D | 03-May-2024 | 1.1 KiB | 38 | 16 |
README.txt
1Target Independent Opportunities: 2 3//===---------------------------------------------------------------------===// 4 5We should recognized various "overflow detection" idioms and translate them into 6llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom: 7 8unsigned int mul(unsigned int a,unsigned int b) { 9 if ((unsigned long long)a*b>0xffffffff) 10 exit(0); 11 return a*b; 12} 13 14The legalization code for mul-with-overflow needs to be made more robust before 15this can be implemented though. 16 17//===---------------------------------------------------------------------===// 18 19Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and 20precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't 21safe in general, even on darwin. See the libm implementation of hypot for 22examples (which special case when x/y are exactly zero to get signed zeros etc 23right). 24 25//===---------------------------------------------------------------------===// 26 27On targets with expensive 64-bit multiply, we could LSR this: 28 29for (i = ...; ++i) { 30 x = 1ULL << i; 31 32into: 33 long long tmp = 1; 34 for (i = ...; ++i, tmp+=tmp) 35 x = tmp; 36 37This would be a win on ppc32, but not x86 or ppc64. 38 39//===---------------------------------------------------------------------===// 40 41Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0) 42 43//===---------------------------------------------------------------------===// 44 45Reassociate should turn things like: 46 47int factorial(int X) { 48 return X*X*X*X*X*X*X*X; 49} 50 51into llvm.powi calls, allowing the code generator to produce balanced 52multiplication trees. 53 54First, the intrinsic needs to be extended to support integers, and second the 55code generator needs to be enhanced to lower these to multiplication trees. 56 57//===---------------------------------------------------------------------===// 58 59Interesting? testcase for add/shift/mul reassoc: 60 61int bar(int x, int y) { 62 return x*x*x+y+x*x*x*x*x*y*y*y*y; 63} 64int foo(int z, int n) { 65 return bar(z, n) + bar(2*z, 2*n); 66} 67 68This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue 69is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X, 70which is the same number of multiplies and is canonical, because the 2*X has 71multiple uses. Here's a simple example: 72 73define i32 @test15(i32 %X1) { 74 %B = mul i32 %X1, 47 ; X1*47 75 %C = mul i32 %B, %B 76 ret i32 %C 77} 78 79 80//===---------------------------------------------------------------------===// 81 82Reassociate should handle the example in GCC PR16157: 83 84extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; 85void f () { /* this can be optimized to four additions... */ 86 b4 = a4 + a3 + a2 + a1 + a0; 87 b3 = a3 + a2 + a1 + a0; 88 b2 = a2 + a1 + a0; 89 b1 = a1 + a0; 90} 91 92This requires reassociating to forms of expressions that are already available, 93something that reassoc doesn't think about yet. 94 95 96//===---------------------------------------------------------------------===// 97 98This function: (derived from GCC PR19988) 99double foo(double x, double y) { 100 return ((x + 0.1234 * y) * (x + -0.1234 * y)); 101} 102 103compiles to: 104_foo: 105 movapd %xmm1, %xmm2 106 mulsd LCPI1_1(%rip), %xmm1 107 mulsd LCPI1_0(%rip), %xmm2 108 addsd %xmm0, %xmm1 109 addsd %xmm0, %xmm2 110 movapd %xmm1, %xmm0 111 mulsd %xmm2, %xmm0 112 ret 113 114Reassociate should be able to turn it into: 115 116double foo(double x, double y) { 117 return ((x + 0.1234 * y) * (x - 0.1234 * y)); 118} 119 120Which allows the multiply by constant to be CSE'd, producing: 121 122_foo: 123 mulsd LCPI1_0(%rip), %xmm1 124 movapd %xmm1, %xmm2 125 addsd %xmm0, %xmm2 126 subsd %xmm1, %xmm0 127 mulsd %xmm2, %xmm0 128 ret 129 130This doesn't need -ffast-math support at all. This is particularly bad because 131the llvm-gcc frontend is canonicalizing the later into the former, but clang 132doesn't have this problem. 133 134//===---------------------------------------------------------------------===// 135 136These two functions should generate the same code on big-endian systems: 137 138int g(int *j,int *l) { return memcmp(j,l,4); } 139int h(int *j, int *l) { return *j - *l; } 140 141this could be done in SelectionDAGISel.cpp, along with other special cases, 142for 1,2,4,8 bytes. 143 144//===---------------------------------------------------------------------===// 145 146It would be nice to revert this patch: 147http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html 148 149And teach the dag combiner enough to simplify the code expanded before 150legalize. It seems plausible that this knowledge would let it simplify other 151stuff too. 152 153//===---------------------------------------------------------------------===// 154 155For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal 156to the type size. It works but can be overly conservative as the alignment of 157specific vector types are target dependent. 158 159//===---------------------------------------------------------------------===// 160 161We should produce an unaligned load from code like this: 162 163v4sf example(float *P) { 164 return (v4sf){P[0], P[1], P[2], P[3] }; 165} 166 167//===---------------------------------------------------------------------===// 168 169Add support for conditional increments, and other related patterns. Instead 170of: 171 172 movl 136(%esp), %eax 173 cmpl $0, %eax 174 je LBB16_2 #cond_next 175LBB16_1: #cond_true 176 incl _foo 177LBB16_2: #cond_next 178 179emit: 180 movl _foo, %eax 181 cmpl $1, %edi 182 sbbl $-1, %eax 183 movl %eax, _foo 184 185//===---------------------------------------------------------------------===// 186 187Combine: a = sin(x), b = cos(x) into a,b = sincos(x). 188 189Expand these to calls of sin/cos and stores: 190 double sincos(double x, double *sin, double *cos); 191 float sincosf(float x, float *sin, float *cos); 192 long double sincosl(long double x, long double *sin, long double *cos); 193 194Doing so could allow SROA of the destination pointers. See also: 195http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687 196 197This is now easily doable with MRVs. We could even make an intrinsic for this 198if anyone cared enough about sincos. 199 200//===---------------------------------------------------------------------===// 201 202quantum_sigma_x in 462.libquantum contains the following loop: 203 204 for(i=0; i<reg->size; i++) 205 { 206 /* Flip the target bit of each basis state */ 207 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target); 208 } 209 210Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just 211so cool to turn it into something like: 212 213 long long Res = ((MAX_UNSIGNED) 1 << target); 214 if (target < 32) { 215 for(i=0; i<reg->size; i++) 216 reg->node[i].state ^= Res & 0xFFFFFFFFULL; 217 } else { 218 for(i=0; i<reg->size; i++) 219 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL 220 } 221 222... which would only do one 32-bit XOR per loop iteration instead of two. 223 224It would also be nice to recognize the reg->size doesn't alias reg->node[i], but 225this requires TBAA. 226 227//===---------------------------------------------------------------------===// 228 229This isn't recognized as bswap by instcombine (yes, it really is bswap): 230 231unsigned long reverse(unsigned v) { 232 unsigned t; 233 t = v ^ ((v << 16) | (v >> 16)); 234 t &= ~0xff0000; 235 v = (v << 24) | (v >> 8); 236 return v ^ (t >> 8); 237} 238 239//===---------------------------------------------------------------------===// 240 241[LOOP DELETION] 242 243We don't delete this output free loop, because trip count analysis doesn't 244realize that it is finite (if it were infinite, it would be undefined). Not 245having this blocks Loop Idiom from matching strlen and friends. 246 247void foo(char *C) { 248 int x = 0; 249 while (*C) 250 ++x,++C; 251} 252 253//===---------------------------------------------------------------------===// 254 255[LOOP RECOGNITION] 256 257These idioms should be recognized as popcount (see PR1488): 258 259unsigned countbits_slow(unsigned v) { 260 unsigned c; 261 for (c = 0; v; v >>= 1) 262 c += v & 1; 263 return c; 264} 265 266unsigned int popcount(unsigned int input) { 267 unsigned int count = 0; 268 for (unsigned int i = 0; i < 4 * 8; i++) 269 count += (input >> i) & i; 270 return count; 271} 272 273This should be recognized as CLZ: rdar://8459039 274 275unsigned clz_a(unsigned a) { 276 int i; 277 for (i=0;i<32;i++) 278 if (a & (1<<(31-i))) 279 return i; 280 return 32; 281} 282 283This sort of thing should be added to the loop idiom pass. 284 285//===---------------------------------------------------------------------===// 286 287These should turn into single 16-bit (unaligned?) loads on little/big endian 288processors. 289 290unsigned short read_16_le(const unsigned char *adr) { 291 return adr[0] | (adr[1] << 8); 292} 293unsigned short read_16_be(const unsigned char *adr) { 294 return (adr[0] << 8) | adr[1]; 295} 296 297//===---------------------------------------------------------------------===// 298 299-instcombine should handle this transform: 300 icmp pred (sdiv X / C1 ), C2 301when X, C1, and C2 are unsigned. Similarly for udiv and signed operands. 302 303Currently InstCombine avoids this transform but will do it when the signs of 304the operands and the sign of the divide match. See the FIXME in 305InstructionCombining.cpp in the visitSetCondInst method after the switch case 306for Instruction::UDiv (around line 4447) for more details. 307 308The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of 309this construct. 310 311//===---------------------------------------------------------------------===// 312 313[LOOP OPTIMIZATION] 314 315SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization 316opportunities in its double_array_divs_variable function: it needs loop 317interchange, memory promotion (which LICM already does), vectorization and 318variable trip count loop unrolling (since it has a constant trip count). ICC 319apparently produces this very nice code with -ffast-math: 320 321..B1.70: # Preds ..B1.70 ..B1.69 322 mulpd %xmm0, %xmm1 #108.2 323 mulpd %xmm0, %xmm1 #108.2 324 mulpd %xmm0, %xmm1 #108.2 325 mulpd %xmm0, %xmm1 #108.2 326 addl $8, %edx # 327 cmpl $131072, %edx #108.2 328 jb ..B1.70 # Prob 99% #108.2 329 330It would be better to count down to zero, but this is a lot better than what we 331do. 332 333//===---------------------------------------------------------------------===// 334 335Consider: 336 337typedef unsigned U32; 338typedef unsigned long long U64; 339int test (U32 *inst, U64 *regs) { 340 U64 effective_addr2; 341 U32 temp = *inst; 342 int r1 = (temp >> 20) & 0xf; 343 int b2 = (temp >> 16) & 0xf; 344 effective_addr2 = temp & 0xfff; 345 if (b2) effective_addr2 += regs[b2]; 346 b2 = (temp >> 12) & 0xf; 347 if (b2) effective_addr2 += regs[b2]; 348 effective_addr2 &= regs[4]; 349 if ((effective_addr2 & 3) == 0) 350 return 1; 351 return 0; 352} 353 354Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems, 355we don't eliminate the computation of the top half of effective_addr2 because 356we don't have whole-function selection dags. On x86, this means we use one 357extra register for the function when effective_addr2 is declared as U64 than 358when it is declared U32. 359 360PHI Slicing could be extended to do this. 361 362//===---------------------------------------------------------------------===// 363 364Tail call elim should be more aggressive, checking to see if the call is 365followed by an uncond branch to an exit block. 366 367; This testcase is due to tail-duplication not wanting to copy the return 368; instruction into the terminating blocks because there was other code 369; optimized out of the function after the taildup happened. 370; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call 371 372define i32 @t4(i32 %a) { 373entry: 374 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1] 375 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1] 376 br i1 %tmp.2, label %then.0, label %else.0 377 378then.0: ; preds = %entry 379 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1] 380 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1] 381 br label %return 382 383else.0: ; preds = %entry 384 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1] 385 br i1 %tmp.7, label %then.1, label %return 386 387then.1: ; preds = %else.0 388 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1] 389 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1] 390 br label %return 391 392return: ; preds = %then.1, %else.0, %then.0 393 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ], 394 [ %tmp.9, %then.1 ] 395 ret i32 %result.0 396} 397 398//===---------------------------------------------------------------------===// 399 400Tail recursion elimination should handle: 401 402int pow2m1(int n) { 403 if (n == 0) 404 return 0; 405 return 2 * pow2m1 (n - 1) + 1; 406} 407 408Also, multiplies can be turned into SHL's, so they should be handled as if 409they were associative. "return foo() << 1" can be tail recursion eliminated. 410 411//===---------------------------------------------------------------------===// 412 413Argument promotion should promote arguments for recursive functions, like 414this: 415 416; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val 417 418define internal i32 @foo(i32* %x) { 419entry: 420 %tmp = load i32* %x ; <i32> [#uses=0] 421 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1] 422 ret i32 %tmp.foo 423} 424 425define i32 @bar(i32* %x) { 426entry: 427 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1] 428 ret i32 %tmp3 429} 430 431//===---------------------------------------------------------------------===// 432 433We should investigate an instruction sinking pass. Consider this silly 434example in pic mode: 435 436#include <assert.h> 437void foo(int x) { 438 assert(x); 439 //... 440} 441 442we compile this to: 443_foo: 444 subl $28, %esp 445 call "L1$pb" 446"L1$pb": 447 popl %eax 448 cmpl $0, 32(%esp) 449 je LBB1_2 # cond_true 450LBB1_1: # return 451 # ... 452 addl $28, %esp 453 ret 454LBB1_2: # cond_true 455... 456 457The PIC base computation (call+popl) is only used on one path through the 458code, but is currently always computed in the entry block. It would be 459better to sink the picbase computation down into the block for the 460assertion, as it is the only one that uses it. This happens for a lot of 461code with early outs. 462 463Another example is loads of arguments, which are usually emitted into the 464entry block on targets like x86. If not used in all paths through a 465function, they should be sunk into the ones that do. 466 467In this case, whole-function-isel would also handle this. 468 469//===---------------------------------------------------------------------===// 470 471Investigate lowering of sparse switch statements into perfect hash tables: 472http://burtleburtle.net/bob/hash/perfect.html 473 474//===---------------------------------------------------------------------===// 475 476We should turn things like "load+fabs+store" and "load+fneg+store" into the 477corresponding integer operations. On a yonah, this loop: 478 479double a[256]; 480void foo() { 481 int i, b; 482 for (b = 0; b < 10000000; b++) 483 for (i = 0; i < 256; i++) 484 a[i] = -a[i]; 485} 486 487is twice as slow as this loop: 488 489long long a[256]; 490void foo() { 491 int i, b; 492 for (b = 0; b < 10000000; b++) 493 for (i = 0; i < 256; i++) 494 a[i] ^= (1ULL << 63); 495} 496 497and I suspect other processors are similar. On X86 in particular this is a 498big win because doing this with integers allows the use of read/modify/write 499instructions. 500 501//===---------------------------------------------------------------------===// 502 503DAG Combiner should try to combine small loads into larger loads when 504profitable. For example, we compile this C++ example: 505 506struct THotKey { short Key; bool Control; bool Shift; bool Alt; }; 507extern THotKey m_HotKey; 508THotKey GetHotKey () { return m_HotKey; } 509 510into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer): 511 512__Z9GetHotKeyv: ## @_Z9GetHotKeyv 513 movq _m_HotKey@GOTPCREL(%rip), %rax 514 movzwl (%rax), %ecx 515 movzbl 2(%rax), %edx 516 shlq $16, %rdx 517 orq %rcx, %rdx 518 movzbl 3(%rax), %ecx 519 shlq $24, %rcx 520 orq %rdx, %rcx 521 movzbl 4(%rax), %eax 522 shlq $32, %rax 523 orq %rcx, %rax 524 ret 525 526//===---------------------------------------------------------------------===// 527 528We should add an FRINT node to the DAG to model targets that have legal 529implementations of ceil/floor/rint. 530 531//===---------------------------------------------------------------------===// 532 533Consider: 534 535int test() { 536 long long input[8] = {1,0,1,0,1,0,1,0}; 537 foo(input); 538} 539 540Clang compiles this into: 541 542 call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false) 543 %0 = getelementptr [8 x i64]* %input, i64 0, i64 0 544 store i64 1, i64* %0, align 16 545 %1 = getelementptr [8 x i64]* %input, i64 0, i64 2 546 store i64 1, i64* %1, align 16 547 %2 = getelementptr [8 x i64]* %input, i64 0, i64 4 548 store i64 1, i64* %2, align 16 549 %3 = getelementptr [8 x i64]* %input, i64 0, i64 6 550 store i64 1, i64* %3, align 16 551 552Which gets codegen'd into: 553 554 pxor %xmm0, %xmm0 555 movaps %xmm0, -16(%rbp) 556 movaps %xmm0, -32(%rbp) 557 movaps %xmm0, -48(%rbp) 558 movaps %xmm0, -64(%rbp) 559 movq $1, -64(%rbp) 560 movq $1, -48(%rbp) 561 movq $1, -32(%rbp) 562 movq $1, -16(%rbp) 563 564It would be better to have 4 movq's of 0 instead of the movaps's. 565 566//===---------------------------------------------------------------------===// 567 568http://llvm.org/PR717: 569 570The following code should compile into "ret int undef". Instead, LLVM 571produces "ret int 0": 572 573int f() { 574 int x = 4; 575 int y; 576 if (x == 3) y = 0; 577 return y; 578} 579 580//===---------------------------------------------------------------------===// 581 582The loop unroller should partially unroll loops (instead of peeling them) 583when code growth isn't too bad and when an unroll count allows simplification 584of some code within the loop. One trivial example is: 585 586#include <stdio.h> 587int main() { 588 int nRet = 17; 589 int nLoop; 590 for ( nLoop = 0; nLoop < 1000; nLoop++ ) { 591 if ( nLoop & 1 ) 592 nRet += 2; 593 else 594 nRet -= 1; 595 } 596 return nRet; 597} 598 599Unrolling by 2 would eliminate the '&1' in both copies, leading to a net 600reduction in code size. The resultant code would then also be suitable for 601exit value computation. 602 603//===---------------------------------------------------------------------===// 604 605We miss a bunch of rotate opportunities on various targets, including ppc, x86, 606etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate 607matching code in dag combine doesn't look through truncates aggressively 608enough. Here are some testcases reduces from GCC PR17886: 609 610unsigned long long f5(unsigned long long x, unsigned long long y) { 611 return (x << 8) | ((y >> 48) & 0xffull); 612} 613unsigned long long f6(unsigned long long x, unsigned long long y, int z) { 614 switch(z) { 615 case 1: 616 return (x << 8) | ((y >> 48) & 0xffull); 617 case 2: 618 return (x << 16) | ((y >> 40) & 0xffffull); 619 case 3: 620 return (x << 24) | ((y >> 32) & 0xffffffull); 621 case 4: 622 return (x << 32) | ((y >> 24) & 0xffffffffull); 623 default: 624 return (x << 40) | ((y >> 16) & 0xffffffffffull); 625 } 626} 627 628//===---------------------------------------------------------------------===// 629 630This (and similar related idioms): 631 632unsigned int foo(unsigned char i) { 633 return i | (i<<8) | (i<<16) | (i<<24); 634} 635 636compiles into: 637 638define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone { 639entry: 640 %conv = zext i8 %i to i32 641 %shl = shl i32 %conv, 8 642 %shl5 = shl i32 %conv, 16 643 %shl9 = shl i32 %conv, 24 644 %or = or i32 %shl9, %conv 645 %or6 = or i32 %or, %shl5 646 %or10 = or i32 %or6, %shl 647 ret i32 %or10 648} 649 650it would be better as: 651 652unsigned int bar(unsigned char i) { 653 unsigned int j=i | (i << 8); 654 return j | (j<<16); 655} 656 657aka: 658 659define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone { 660entry: 661 %conv = zext i8 %i to i32 662 %shl = shl i32 %conv, 8 663 %or = or i32 %shl, %conv 664 %shl5 = shl i32 %or, 16 665 %or6 = or i32 %shl5, %or 666 ret i32 %or6 667} 668 669or even i*0x01010101, depending on the speed of the multiplier. The best way to 670handle this is to canonicalize it to a multiply in IR and have codegen handle 671lowering multiplies to shifts on cpus where shifts are faster. 672 673//===---------------------------------------------------------------------===// 674 675We do a number of simplifications in simplify libcalls to strength reduce 676standard library functions, but we don't currently merge them together. For 677example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only 678be done safely if "b" isn't modified between the strlen and memcpy of course. 679 680//===---------------------------------------------------------------------===// 681 682We compile this program: (from GCC PR11680) 683http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487 684 685Into code that runs the same speed in fast/slow modes, but both modes run 2x 686slower than when compile with GCC (either 4.0 or 4.2): 687 688$ llvm-g++ perf.cpp -O3 -fno-exceptions 689$ time ./a.out fast 6901.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w 691 692$ g++ perf.cpp -O3 -fno-exceptions 693$ time ./a.out fast 6940.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w 695 696It looks like we are making the same inlining decisions, so this may be raw 697codegen badness or something else (haven't investigated). 698 699//===---------------------------------------------------------------------===// 700 701Divisibility by constant can be simplified (according to GCC PR12849) from 702being a mulhi to being a mul lo (cheaper). Testcase: 703 704void bar(unsigned n) { 705 if (n % 3 == 0) 706 true(); 707} 708 709This is equivalent to the following, where 2863311531 is the multiplicative 710inverse of 3, and 1431655766 is ((2^32)-1)/3+1: 711void bar(unsigned n) { 712 if (n * 2863311531U < 1431655766U) 713 true(); 714} 715 716The same transformation can work with an even modulo with the addition of a 717rotate: rotate the result of the multiply to the right by the number of bits 718which need to be zero for the condition to be true, and shrink the compare RHS 719by the same amount. Unless the target supports rotates, though, that 720transformation probably isn't worthwhile. 721 722The transformation can also easily be made to work with non-zero equality 723comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0". 724 725//===---------------------------------------------------------------------===// 726 727Better mod/ref analysis for scanf would allow us to eliminate the vtable and a 728bunch of other stuff from this example (see PR1604): 729 730#include <cstdio> 731struct test { 732 int val; 733 virtual ~test() {} 734}; 735 736int main() { 737 test t; 738 std::scanf("%d", &t.val); 739 std::printf("%d\n", t.val); 740} 741 742//===---------------------------------------------------------------------===// 743 744These functions perform the same computation, but produce different assembly. 745 746define i8 @select(i8 %x) readnone nounwind { 747 %A = icmp ult i8 %x, 250 748 %B = select i1 %A, i8 0, i8 1 749 ret i8 %B 750} 751 752define i8 @addshr(i8 %x) readnone nounwind { 753 %A = zext i8 %x to i9 754 %B = add i9 %A, 6 ;; 256 - 250 == 6 755 %C = lshr i9 %B, 8 756 %D = trunc i9 %C to i8 757 ret i8 %D 758} 759 760//===---------------------------------------------------------------------===// 761 762From gcc bug 24696: 763int 764f (unsigned long a, unsigned long b, unsigned long c) 765{ 766 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0); 767} 768int 769f (unsigned long a, unsigned long b, unsigned long c) 770{ 771 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0); 772} 773Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with 774"clang -emit-llvm-bc | opt -std-compile-opts". 775 776//===---------------------------------------------------------------------===// 777 778From GCC Bug 20192: 779#define PMD_MASK (~((1UL << 23) - 1)) 780void clear_pmd_range(unsigned long start, unsigned long end) 781{ 782 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK)) 783 f(); 784} 785The expression should optimize to something like 786"!((start|end)&~PMD_MASK). Currently not optimized with "clang 787-emit-llvm-bc | opt -std-compile-opts". 788 789//===---------------------------------------------------------------------===// 790 791unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return 792i;} 793unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;} 794These should combine to the same thing. Currently, the first function 795produces better code on X86. 796 797//===---------------------------------------------------------------------===// 798 799From GCC Bug 15784: 800#define abs(x) x>0?x:-x 801int f(int x, int y) 802{ 803 return (abs(x)) >= 0; 804} 805This should optimize to x == INT_MIN. (With -fwrapv.) Currently not 806optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 807 808//===---------------------------------------------------------------------===// 809 810From GCC Bug 14753: 811void 812rotate_cst (unsigned int a) 813{ 814 a = (a << 10) | (a >> 22); 815 if (a == 123) 816 bar (); 817} 818void 819minus_cst (unsigned int a) 820{ 821 unsigned int tem; 822 823 tem = 20 - a; 824 if (tem == 5) 825 bar (); 826} 827void 828mask_gt (unsigned int a) 829{ 830 /* This is equivalent to a > 15. */ 831 if ((a & ~7) > 8) 832 bar (); 833} 834void 835rshift_gt (unsigned int a) 836{ 837 /* This is equivalent to a > 23. */ 838 if ((a >> 2) > 5) 839 bar (); 840} 841 842All should simplify to a single comparison. All of these are 843currently not optimized with "clang -emit-llvm-bc | opt 844-std-compile-opts". 845 846//===---------------------------------------------------------------------===// 847 848From GCC Bug 32605: 849int c(int* x) {return (char*)x+2 == (char*)x;} 850Should combine to 0. Currently not optimized with "clang 851-emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it). 852 853//===---------------------------------------------------------------------===// 854 855int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;} 856Should be combined to "((b >> 1) | b) & 1". Currently not optimized 857with "clang -emit-llvm-bc | opt -std-compile-opts". 858 859//===---------------------------------------------------------------------===// 860 861unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);} 862Should combine to "x | (y & 3)". Currently not optimized with "clang 863-emit-llvm-bc | opt -std-compile-opts". 864 865//===---------------------------------------------------------------------===// 866 867int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);} 868Should fold to "(~a & c) | (a & b)". Currently not optimized with 869"clang -emit-llvm-bc | opt -std-compile-opts". 870 871//===---------------------------------------------------------------------===// 872 873int a(int a,int b) {return (~(a|b))|a;} 874Should fold to "a|~b". Currently not optimized with "clang 875-emit-llvm-bc | opt -std-compile-opts". 876 877//===---------------------------------------------------------------------===// 878 879int a(int a, int b) {return (a&&b) || (a&&!b);} 880Should fold to "a". Currently not optimized with "clang -emit-llvm-bc 881| opt -std-compile-opts". 882 883//===---------------------------------------------------------------------===// 884 885int a(int a, int b, int c) {return (a&&b) || (!a&&c);} 886Should fold to "a ? b : c", or at least something sane. Currently not 887optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 888 889//===---------------------------------------------------------------------===// 890 891int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);} 892Should fold to a && (b || c). Currently not optimized with "clang 893-emit-llvm-bc | opt -std-compile-opts". 894 895//===---------------------------------------------------------------------===// 896 897int a(int x) {return x | ((x & 8) ^ 8);} 898Should combine to x | 8. Currently not optimized with "clang 899-emit-llvm-bc | opt -std-compile-opts". 900 901//===---------------------------------------------------------------------===// 902 903int a(int x) {return x ^ ((x & 8) ^ 8);} 904Should also combine to x | 8. Currently not optimized with "clang 905-emit-llvm-bc | opt -std-compile-opts". 906 907//===---------------------------------------------------------------------===// 908 909int a(int x) {return ((x | -9) ^ 8) & x;} 910Should combine to x & -9. Currently not optimized with "clang 911-emit-llvm-bc | opt -std-compile-opts". 912 913//===---------------------------------------------------------------------===// 914 915unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;} 916Should combine to "a * 0x88888888 >> 31". Currently not optimized 917with "clang -emit-llvm-bc | opt -std-compile-opts". 918 919//===---------------------------------------------------------------------===// 920 921unsigned a(char* x) {if ((*x & 32) == 0) return b();} 922There's an unnecessary zext in the generated code with "clang 923-emit-llvm-bc | opt -std-compile-opts". 924 925//===---------------------------------------------------------------------===// 926 927unsigned a(unsigned long long x) {return 40 * (x >> 1);} 928Should combine to "20 * (((unsigned)x) & -2)". Currently not 929optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 930 931//===---------------------------------------------------------------------===// 932 933int g(int x) { return (x - 10) < 0; } 934Should combine to "x <= 9" (the sub has nsw). Currently not 935optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 936 937//===---------------------------------------------------------------------===// 938 939int g(int x) { return (x + 10) < 0; } 940Should combine to "x < -10" (the add has nsw). Currently not 941optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 942 943//===---------------------------------------------------------------------===// 944 945int f(int i, int j) { return i < j + 1; } 946int g(int i, int j) { return j > i - 1; } 947Should combine to "i <= j" (the add/sub has nsw). Currently not 948optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 949 950//===---------------------------------------------------------------------===// 951 952unsigned f(unsigned x) { return ((x & 7) + 1) & 15; } 953The & 15 part should be optimized away, it doesn't change the result. Currently 954not optimized with "clang -emit-llvm-bc | opt -std-compile-opts". 955 956//===---------------------------------------------------------------------===// 957 958This was noticed in the entryblock for grokdeclarator in 403.gcc: 959 960 %tmp = icmp eq i32 %decl_context, 4 961 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context 962 %tmp1 = icmp eq i32 %decl_context_addr.0, 1 963 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0 964 965tmp1 should be simplified to something like: 966 (!tmp || decl_context == 1) 967 968This allows recursive simplifications, tmp1 is used all over the place in 969the function, e.g. by: 970 971 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1] 972 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1] 973 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1] 974 975later. 976 977//===---------------------------------------------------------------------===// 978 979[STORE SINKING] 980 981Store sinking: This code: 982 983void f (int n, int *cond, int *res) { 984 int i; 985 *res = 0; 986 for (i = 0; i < n; i++) 987 if (*cond) 988 *res ^= 234; /* (*) */ 989} 990 991On this function GVN hoists the fully redundant value of *res, but nothing 992moves the store out. This gives us this code: 993 994bb: ; preds = %bb2, %entry 995 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ] 996 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ] 997 %1 = load i32* %cond, align 4 998 %2 = icmp eq i32 %1, 0 999 br i1 %2, label %bb2, label %bb1 1000 1001bb1: ; preds = %bb 1002 %3 = xor i32 %.rle, 234 1003 store i32 %3, i32* %res, align 4 1004 br label %bb2 1005 1006bb2: ; preds = %bb, %bb1 1007 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ] 1008 %indvar.next = add i32 %i.05, 1 1009 %exitcond = icmp eq i32 %indvar.next, %n 1010 br i1 %exitcond, label %return, label %bb 1011 1012DSE should sink partially dead stores to get the store out of the loop. 1013 1014Here's another partial dead case: 1015http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395 1016 1017//===---------------------------------------------------------------------===// 1018 1019Scalar PRE hoists the mul in the common block up to the else: 1020 1021int test (int a, int b, int c, int g) { 1022 int d, e; 1023 if (a) 1024 d = b * c; 1025 else 1026 d = b - c; 1027 e = b * c + g; 1028 return d + e; 1029} 1030 1031It would be better to do the mul once to reduce codesize above the if. 1032This is GCC PR38204. 1033 1034 1035//===---------------------------------------------------------------------===// 1036This simple function from 179.art: 1037 1038int winner, numf2s; 1039struct { double y; int reset; } *Y; 1040 1041void find_match() { 1042 int i; 1043 winner = 0; 1044 for (i=0;i<numf2s;i++) 1045 if (Y[i].y > Y[winner].y) 1046 winner =i; 1047} 1048 1049Compiles into (with clang TBAA): 1050 1051for.body: ; preds = %for.inc, %bb.nph 1052 %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ] 1053 %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ] 1054 %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0 1055 %tmp5 = load double* %tmp4, align 8, !tbaa !4 1056 %idxprom7 = sext i32 %i.01718 to i64 1057 %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0 1058 %tmp11 = load double* %tmp10, align 8, !tbaa !4 1059 %cmp12 = fcmp ogt double %tmp5, %tmp11 1060 br i1 %cmp12, label %if.then, label %for.inc 1061 1062if.then: ; preds = %for.body 1063 %i.017 = trunc i64 %indvar to i32 1064 br label %for.inc 1065 1066for.inc: ; preds = %for.body, %if.then 1067 %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ] 1068 %indvar.next = add i64 %indvar, 1 1069 %exitcond = icmp eq i64 %indvar.next, %tmp22 1070 br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body 1071 1072 1073It is good that we hoisted the reloads of numf2's, and Y out of the loop and 1074sunk the store to winner out. 1075 1076However, this is awful on several levels: the conditional truncate in the loop 1077(-indvars at fault? why can't we completely promote the IV to i64?). 1078 1079Beyond that, we have a partially redundant load in the loop: if "winner" (aka 1080%i.01718) isn't updated, we reload Y[winner].y the next time through the loop. 1081Similarly, the addressing that feeds it (including the sext) is redundant. In 1082the end we get this generated assembly: 1083 1084LBB0_2: ## %for.body 1085 ## =>This Inner Loop Header: Depth=1 1086 movsd (%rdi), %xmm0 1087 movslq %edx, %r8 1088 shlq $4, %r8 1089 ucomisd (%rcx,%r8), %xmm0 1090 jbe LBB0_4 1091 movl %esi, %edx 1092LBB0_4: ## %for.inc 1093 addq $16, %rdi 1094 incq %rsi 1095 cmpq %rsi, %rax 1096 jne LBB0_2 1097 1098All things considered this isn't too bad, but we shouldn't need the movslq or 1099the shlq instruction, or the load folded into ucomisd every time through the 1100loop. 1101 1102On an x86-specific topic, if the loop can't be restructure, the movl should be a 1103cmov. 1104 1105//===---------------------------------------------------------------------===// 1106 1107[STORE SINKING] 1108 1109GCC PR37810 is an interesting case where we should sink load/store reload 1110into the if block and outside the loop, so we don't reload/store it on the 1111non-call path. 1112 1113for () { 1114 *P += 1; 1115 if () 1116 call(); 1117 else 1118 ... 1119-> 1120tmp = *P 1121for () { 1122 tmp += 1; 1123 if () { 1124 *P = tmp; 1125 call(); 1126 tmp = *P; 1127 } else ... 1128} 1129*P = tmp; 1130 1131We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but 1132we don't sink the store. We need partially dead store sinking. 1133 1134//===---------------------------------------------------------------------===// 1135 1136[LOAD PRE CRIT EDGE SPLITTING] 1137 1138GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack 1139leading to excess stack traffic. This could be handled by GVN with some crazy 1140symbolic phi translation. The code we get looks like (g is on the stack): 1141 1142bb2: ; preds = %bb1 1143.. 1144 %9 = getelementptr %struct.f* %g, i32 0, i32 0 1145 store i32 %8, i32* %9, align bel %bb3 1146 1147bb3: ; preds = %bb1, %bb2, %bb 1148 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ] 1149 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ] 1150 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0 1151 %11 = load i32* %10, align 4 1152 1153%11 is partially redundant, an in BB2 it should have the value %8. 1154 1155GCC PR33344 and PR35287 are similar cases. 1156 1157 1158//===---------------------------------------------------------------------===// 1159 1160[LOAD PRE] 1161 1162There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the 1163GCC testsuite, ones we don't get yet are (checked through loadpre25): 1164 1165[CRIT EDGE BREAKING] 1166loadpre3.c predcom-4.c 1167 1168[PRE OF READONLY CALL] 1169loadpre5.c 1170 1171[TURN SELECT INTO BRANCH] 1172loadpre14.c loadpre15.c 1173 1174actually a conditional increment: loadpre18.c loadpre19.c 1175 1176//===---------------------------------------------------------------------===// 1177 1178[LOAD PRE / STORE SINKING / SPEC HACK] 1179 1180This is a chunk of code from 456.hmmer: 1181 1182int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp, 1183 int *tpdm, int xmb, int *bp, int *ms) { 1184 int k, sc; 1185 for (k = 1; k <= M; k++) { 1186 mc[k] = mpp[k-1] + tpmm[k-1]; 1187 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc; 1188 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc; 1189 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc; 1190 mc[k] += ms[k]; 1191 } 1192} 1193 1194It is very profitable for this benchmark to turn the conditional stores to mc[k] 1195into a conditional move (select instr in IR) and allow the final store to do the 1196store. See GCC PR27313 for more details. Note that this is valid to xform even 1197with the new C++ memory model, since mc[k] is previously loaded and later 1198stored. 1199 1200//===---------------------------------------------------------------------===// 1201 1202[SCALAR PRE] 1203There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the 1204GCC testsuite. 1205 1206//===---------------------------------------------------------------------===// 1207 1208There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the 1209GCC testsuite. For example, we get the first example in predcom-1.c, but 1210miss the second one: 1211 1212unsigned fib[1000]; 1213unsigned avg[1000]; 1214 1215__attribute__ ((noinline)) 1216void count_averages(int n) { 1217 int i; 1218 for (i = 1; i < n; i++) 1219 avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff; 1220} 1221 1222which compiles into two loads instead of one in the loop. 1223 1224predcom-2.c is the same as predcom-1.c 1225 1226predcom-3.c is very similar but needs loads feeding each other instead of 1227store->load. 1228 1229 1230//===---------------------------------------------------------------------===// 1231 1232[ALIAS ANALYSIS] 1233 1234Type based alias analysis: 1235http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705 1236 1237We should do better analysis of posix_memalign. At the least it should 1238no-capture its pointer argument, at best, we should know that the out-value 1239result doesn't point to anything (like malloc). One example of this is in 1240SingleSource/Benchmarks/Misc/dt.c 1241 1242//===---------------------------------------------------------------------===// 1243 1244Interesting missed case because of control flow flattening (should be 2 loads): 1245http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629 1246With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | 1247 opt -mem2reg -gvn -instcombine | llvm-dis 1248we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT 1249VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS 1250 1251//===---------------------------------------------------------------------===// 1252 1253http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633 1254We could eliminate the branch condition here, loading from null is undefined: 1255 1256struct S { int w, x, y, z; }; 1257struct T { int r; struct S s; }; 1258void bar (struct S, int); 1259void foo (int a, struct T b) 1260{ 1261 struct S *c = 0; 1262 if (a) 1263 c = &b.s; 1264 bar (*c, a); 1265} 1266 1267//===---------------------------------------------------------------------===// 1268 1269simplifylibcalls should do several optimizations for strspn/strcspn: 1270 1271strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn): 1272 1273size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2, 1274 int __reject3) { 1275 register size_t __result = 0; 1276 while (__s[__result] != '\0' && __s[__result] != __reject1 && 1277 __s[__result] != __reject2 && __s[__result] != __reject3) 1278 ++__result; 1279 return __result; 1280} 1281 1282This should turn into a switch on the character. See PR3253 for some notes on 1283codegen. 1284 1285456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn. 1286 1287//===---------------------------------------------------------------------===// 1288 1289simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917) 1290 1291char buf1[6], buf2[6], buf3[4], buf4[4]; 1292int i; 1293 1294int foo (void) { 1295 int ret = snprintf (buf1, sizeof buf1, "abcde"); 1296 ret += snprintf (buf2, sizeof buf2, "abcdef") * 16; 1297 ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256; 1298 ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096; 1299 return ret; 1300} 1301 1302//===---------------------------------------------------------------------===// 1303 1304"gas" uses this idiom: 1305 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string)) 1306.. 1307 else if (strchr ("<>", *intel_parser.op_string) 1308 1309Those should be turned into a switch. 1310 1311//===---------------------------------------------------------------------===// 1312 1313252.eon contains this interesting code: 1314 1315 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0 1316 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind 1317 %strlen = call i32 @strlen(i8* %3072) ; uses = 1 1318 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen 1319 call void @llvm.memcpy.i32(i8* %endptr, 1320 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1) 1321 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly 1322 1323This is interesting for a couple reasons. First, in this: 1324 1325The memcpy+strlen strlen can be replaced with: 1326 1327 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly 1328 1329Because the destination was just copied into the specified memory buffer. This, 1330in turn, can be constant folded to "4". 1331 1332In other code, it contains: 1333 1334 %endptr6978 = bitcast i8* %endptr69 to i32* 1335 store i32 7107374, i32* %endptr6978, align 1 1336 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly 1337 1338Which could also be constant folded. Whatever is producing this should probably 1339be fixed to leave this as a memcpy from a string. 1340 1341Further, eon also has an interesting partially redundant strlen call: 1342 1343bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit 1344 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2] 1345 %683 = load i8** %682, align 4 ; <i8*> [#uses=4] 1346 %684 = load i8* %683, align 1 ; <i8> [#uses=1] 1347 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1] 1348 br i1 %685, label %bb10, label %bb9 1349 1350bb9: ; preds = %bb8 1351 %686 = call i32 @strlen(i8* %683) nounwind readonly 1352 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1] 1353 br i1 %687, label %bb10, label %bb11 1354 1355bb10: ; preds = %bb9, %bb8 1356 %688 = call i32 @strlen(i8* %683) nounwind readonly 1357 1358This could be eliminated by doing the strlen once in bb8, saving code size and 1359improving perf on the bb8->9->10 path. 1360 1361//===---------------------------------------------------------------------===// 1362 1363I see an interesting fully redundant call to strlen left in 186.crafty:InputMove 1364which looks like: 1365 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 1366 1367 1368bb62: ; preds = %bb55, %bb53 1369 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ] 1370 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 1371 %172 = add i32 %171, -1 ; <i32> [#uses=1] 1372 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172 1373 1374... no stores ... 1375 br i1 %or.cond, label %bb65, label %bb72 1376 1377bb65: ; preds = %bb62 1378 store i8 0, i8* %173, align 1 1379 br label %bb72 1380 1381bb72: ; preds = %bb65, %bb62 1382 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ] 1383 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1 1384 1385Note that on the bb62->bb72 path, that the %177 strlen call is partially 1386redundant with the %171 call. At worst, we could shove the %177 strlen call 1387up into the bb65 block moving it out of the bb62->bb72 path. However, note 1388that bb65 stores to the string, zeroing out the last byte. This means that on 1389that path the value of %177 is actually just %171-1. A sub is cheaper than a 1390strlen! 1391 1392This pattern repeats several times, basically doing: 1393 1394 A = strlen(P); 1395 P[A-1] = 0; 1396 B = strlen(P); 1397 where it is "obvious" that B = A-1. 1398 1399//===---------------------------------------------------------------------===// 1400 1401186.crafty has this interesting pattern with the "out.4543" variable: 1402 1403call void @llvm.memcpy.i32( 1404 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0), 1405 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) 1406%101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind 1407 1408It is basically doing: 1409 1410 memcpy(globalarray, "string"); 1411 printf(..., globalarray); 1412 1413Anyway, by knowing that printf just reads the memory and forward substituting 1414the string directly into the printf, this eliminates reads from globalarray. 1415Since this pattern occurs frequently in crafty (due to the "DisplayTime" and 1416other similar functions) there are many stores to "out". Once all the printfs 1417stop using "out", all that is left is the memcpy's into it. This should allow 1418globalopt to remove the "stored only" global. 1419 1420//===---------------------------------------------------------------------===// 1421 1422This code: 1423 1424define inreg i32 @foo(i8* inreg %p) nounwind { 1425 %tmp0 = load i8* %p 1426 %tmp1 = ashr i8 %tmp0, 5 1427 %tmp2 = sext i8 %tmp1 to i32 1428 ret i32 %tmp2 1429} 1430 1431could be dagcombine'd to a sign-extending load with a shift. 1432For example, on x86 this currently gets this: 1433 1434 movb (%eax), %al 1435 sarb $5, %al 1436 movsbl %al, %eax 1437 1438while it could get this: 1439 1440 movsbl (%eax), %eax 1441 sarl $5, %eax 1442 1443//===---------------------------------------------------------------------===// 1444 1445GCC PR31029: 1446 1447int test(int x) { return 1-x == x; } // --> return false 1448int test2(int x) { return 2-x == x; } // --> return x == 1 ? 1449 1450Always foldable for odd constants, what is the rule for even? 1451 1452//===---------------------------------------------------------------------===// 1453 1454PR 3381: GEP to field of size 0 inside a struct could be turned into GEP 1455for next field in struct (which is at same address). 1456 1457For example: store of float into { {{}}, float } could be turned into a store to 1458the float directly. 1459 1460//===---------------------------------------------------------------------===// 1461 1462The arg promotion pass should make use of nocapture to make its alias analysis 1463stuff much more precise. 1464 1465//===---------------------------------------------------------------------===// 1466 1467The following functions should be optimized to use a select instead of a 1468branch (from gcc PR40072): 1469 1470char char_int(int m) {if(m>7) return 0; return m;} 1471int int_char(char m) {if(m>7) return 0; return m;} 1472 1473//===---------------------------------------------------------------------===// 1474 1475int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; } 1476 1477Generates this: 1478 1479define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { 1480entry: 1481 %0 = and i32 %a, 128 ; <i32> [#uses=1] 1482 %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1] 1483 %2 = or i32 %b, 128 ; <i32> [#uses=1] 1484 %3 = and i32 %b, -129 ; <i32> [#uses=1] 1485 %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1] 1486 ret i32 %b_addr.0 1487} 1488 1489However, it's functionally equivalent to: 1490 1491 b = (b & ~0x80) | (a & 0x80); 1492 1493Which generates this: 1494 1495define i32 @func(i32 %a, i32 %b) nounwind readnone ssp { 1496entry: 1497 %0 = and i32 %b, -129 ; <i32> [#uses=1] 1498 %1 = and i32 %a, 128 ; <i32> [#uses=1] 1499 %2 = or i32 %0, %1 ; <i32> [#uses=1] 1500 ret i32 %2 1501} 1502 1503This can be generalized for other forms: 1504 1505 b = (b & ~0x80) | (a & 0x40) << 1; 1506 1507//===---------------------------------------------------------------------===// 1508 1509These two functions produce different code. They shouldn't: 1510 1511#include <stdint.h> 1512 1513uint8_t p1(uint8_t b, uint8_t a) { 1514 b = (b & ~0xc0) | (a & 0xc0); 1515 return (b); 1516} 1517 1518uint8_t p2(uint8_t b, uint8_t a) { 1519 b = (b & ~0x40) | (a & 0x40); 1520 b = (b & ~0x80) | (a & 0x80); 1521 return (b); 1522} 1523 1524define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { 1525entry: 1526 %0 = and i8 %b, 63 ; <i8> [#uses=1] 1527 %1 = and i8 %a, -64 ; <i8> [#uses=1] 1528 %2 = or i8 %1, %0 ; <i8> [#uses=1] 1529 ret i8 %2 1530} 1531 1532define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp { 1533entry: 1534 %0 = and i8 %b, 63 ; <i8> [#uses=1] 1535 %.masked = and i8 %a, 64 ; <i8> [#uses=1] 1536 %1 = and i8 %a, -128 ; <i8> [#uses=1] 1537 %2 = or i8 %1, %0 ; <i8> [#uses=1] 1538 %3 = or i8 %2, %.masked ; <i8> [#uses=1] 1539 ret i8 %3 1540} 1541 1542//===---------------------------------------------------------------------===// 1543 1544IPSCCP does not currently propagate argument dependent constants through 1545functions where it does not not all of the callers. This includes functions 1546with normal external linkage as well as templates, C99 inline functions etc. 1547Specifically, it does nothing to: 1548 1549define i32 @test(i32 %x, i32 %y, i32 %z) nounwind { 1550entry: 1551 %0 = add nsw i32 %y, %z 1552 %1 = mul i32 %0, %x 1553 %2 = mul i32 %y, %z 1554 %3 = add nsw i32 %1, %2 1555 ret i32 %3 1556} 1557 1558define i32 @test2() nounwind { 1559entry: 1560 %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind 1561 ret i32 %0 1562} 1563 1564It would be interesting extend IPSCCP to be able to handle simple cases like 1565this, where all of the arguments to a call are constant. Because IPSCCP runs 1566before inlining, trivial templates and inline functions are not yet inlined. 1567The results for a function + set of constant arguments should be memoized in a 1568map. 1569 1570//===---------------------------------------------------------------------===// 1571 1572The libcall constant folding stuff should be moved out of SimplifyLibcalls into 1573libanalysis' constantfolding logic. This would allow IPSCCP to be able to 1574handle simple things like this: 1575 1576static int foo(const char *X) { return strlen(X); } 1577int bar() { return foo("abcd"); } 1578 1579//===---------------------------------------------------------------------===// 1580 1581functionattrs doesn't know much about memcpy/memset. This function should be 1582marked readnone rather than readonly, since it only twiddles local memory, but 1583functionattrs doesn't handle memset/memcpy/memmove aggressively: 1584 1585struct X { int *p; int *q; }; 1586int foo() { 1587 int i = 0, j = 1; 1588 struct X x, y; 1589 int **p; 1590 y.p = &i; 1591 x.q = &j; 1592 p = __builtin_memcpy (&x, &y, sizeof (int *)); 1593 return **p; 1594} 1595 1596This can be seen at: 1597$ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S 1598 1599 1600//===---------------------------------------------------------------------===// 1601 1602Missed instcombine transformation: 1603define i1 @a(i32 %x) nounwind readnone { 1604entry: 1605 %cmp = icmp eq i32 %x, 30 1606 %sub = add i32 %x, -30 1607 %cmp2 = icmp ugt i32 %sub, 9 1608 %or = or i1 %cmp, %cmp2 1609 ret i1 %or 1610} 1611This should be optimized to a single compare. Testcase derived from gcc. 1612 1613//===---------------------------------------------------------------------===// 1614 1615Missed instcombine or reassociate transformation: 1616int a(int a, int b) { return (a==12)&(b>47)&(b<58); } 1617 1618The sgt and slt should be combined into a single comparison. Testcase derived 1619from gcc. 1620 1621//===---------------------------------------------------------------------===// 1622 1623Missed instcombine transformation: 1624 1625 %382 = srem i32 %tmp14.i, 64 ; [#uses=1] 1626 %383 = zext i32 %382 to i64 ; [#uses=1] 1627 %384 = shl i64 %381, %383 ; [#uses=1] 1628 %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1] 1629 1630The srem can be transformed to an and because if %tmp14.i is negative, the 1631shift is undefined. Testcase derived from 403.gcc. 1632 1633//===---------------------------------------------------------------------===// 1634 1635This is a range comparison on a divided result (from 403.gcc): 1636 1637 %1337 = sdiv i32 %1336, 8 ; [#uses=1] 1638 %.off.i208 = add i32 %1336, 7 ; [#uses=1] 1639 %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1] 1640 1641We already catch this (removing the sdiv) if there isn't an add, we should 1642handle the 'add' as well. This is a common idiom with it's builtin_alloca code. 1643C testcase: 1644 1645int a(int x) { return (unsigned)(x/16+7) < 15; } 1646 1647Another similar case involves truncations on 64-bit targets: 1648 1649 %361 = sdiv i64 %.046, 8 ; [#uses=1] 1650 %362 = trunc i64 %361 to i32 ; [#uses=2] 1651... 1652 %367 = icmp eq i32 %362, 0 ; [#uses=1] 1653 1654//===---------------------------------------------------------------------===// 1655 1656Missed instcombine/dagcombine transformation: 1657define void @lshift_lt(i8 zeroext %a) nounwind { 1658entry: 1659 %conv = zext i8 %a to i32 1660 %shl = shl i32 %conv, 3 1661 %cmp = icmp ult i32 %shl, 33 1662 br i1 %cmp, label %if.then, label %if.end 1663 1664if.then: 1665 tail call void @bar() nounwind 1666 ret void 1667 1668if.end: 1669 ret void 1670} 1671declare void @bar() nounwind 1672 1673The shift should be eliminated. Testcase derived from gcc. 1674 1675//===---------------------------------------------------------------------===// 1676 1677These compile into different code, one gets recognized as a switch and the 1678other doesn't due to phase ordering issues (PR6212): 1679 1680int test1(int mainType, int subType) { 1681 if (mainType == 7) 1682 subType = 4; 1683 else if (mainType == 9) 1684 subType = 6; 1685 else if (mainType == 11) 1686 subType = 9; 1687 return subType; 1688} 1689 1690int test2(int mainType, int subType) { 1691 if (mainType == 7) 1692 subType = 4; 1693 if (mainType == 9) 1694 subType = 6; 1695 if (mainType == 11) 1696 subType = 9; 1697 return subType; 1698} 1699 1700//===---------------------------------------------------------------------===// 1701 1702The following test case (from PR6576): 1703 1704define i32 @mul(i32 %a, i32 %b) nounwind readnone { 1705entry: 1706 %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1] 1707 br i1 %cond1, label %exit, label %bb.nph 1708bb.nph: ; preds = %entry 1709 %tmp = mul i32 %b, %a ; <i32> [#uses=1] 1710 ret i32 %tmp 1711exit: ; preds = %entry 1712 ret i32 0 1713} 1714 1715could be reduced to: 1716 1717define i32 @mul(i32 %a, i32 %b) nounwind readnone { 1718entry: 1719 %tmp = mul i32 %b, %a 1720 ret i32 %tmp 1721} 1722 1723//===---------------------------------------------------------------------===// 1724 1725We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates. 1726See GCC PR34949 1727 1728Another interesting case is that something related could be used for variables 1729that go const after their ctor has finished. In these cases, globalopt (which 1730can statically run the constructor) could mark the global const (so it gets put 1731in the readonly section). A testcase would be: 1732 1733#include <complex> 1734using namespace std; 1735const complex<char> should_be_in_rodata (42,-42); 1736complex<char> should_be_in_data (42,-42); 1737complex<char> should_be_in_bss; 1738 1739Where we currently evaluate the ctors but the globals don't become const because 1740the optimizer doesn't know they "become const" after the ctor is done. See 1741GCC PR4131 for more examples. 1742 1743//===---------------------------------------------------------------------===// 1744 1745In this code: 1746 1747long foo(long x) { 1748 return x > 1 ? x : 1; 1749} 1750 1751LLVM emits a comparison with 1 instead of 0. 0 would be equivalent 1752and cheaper on most targets. 1753 1754LLVM prefers comparisons with zero over non-zero in general, but in this 1755case it choses instead to keep the max operation obvious. 1756 1757//===---------------------------------------------------------------------===// 1758 1759define void @a(i32 %x) nounwind { 1760entry: 1761 switch i32 %x, label %if.end [ 1762 i32 0, label %if.then 1763 i32 1, label %if.then 1764 i32 2, label %if.then 1765 i32 3, label %if.then 1766 i32 5, label %if.then 1767 ] 1768if.then: 1769 tail call void @foo() nounwind 1770 ret void 1771if.end: 1772 ret void 1773} 1774declare void @foo() 1775 1776Generated code on x86-64 (other platforms give similar results): 1777a: 1778 cmpl $5, %edi 1779 ja LBB2_2 1780 cmpl $4, %edi 1781 jne LBB2_3 1782.LBB0_2: 1783 ret 1784.LBB0_3: 1785 jmp foo # TAILCALL 1786 1787If we wanted to be really clever, we could simplify the whole thing to 1788something like the following, which eliminates a branch: 1789 xorl $1, %edi 1790 cmpl $4, %edi 1791 ja .LBB0_2 1792 ret 1793.LBB0_2: 1794 jmp foo # TAILCALL 1795 1796//===---------------------------------------------------------------------===// 1797 1798We compile this: 1799 1800int foo(int a) { return (a & (~15)) / 16; } 1801 1802Into: 1803 1804define i32 @foo(i32 %a) nounwind readnone ssp { 1805entry: 1806 %and = and i32 %a, -16 1807 %div = sdiv i32 %and, 16 1808 ret i32 %div 1809} 1810 1811but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case 1812should be instcombined into just "a >> 4". 1813 1814We do get this at the codegen level, so something knows about it, but 1815instcombine should catch it earlier: 1816 1817_foo: ## @foo 1818## BB#0: ## %entry 1819 movl %edi, %eax 1820 sarl $4, %eax 1821 ret 1822 1823//===---------------------------------------------------------------------===// 1824 1825This code (from GCC PR28685): 1826 1827int test(int a, int b) { 1828 int lt = a < b; 1829 int eq = a == b; 1830 if (lt) 1831 return 1; 1832 return eq; 1833} 1834 1835Is compiled to: 1836 1837define i32 @test(i32 %a, i32 %b) nounwind readnone ssp { 1838entry: 1839 %cmp = icmp slt i32 %a, %b 1840 br i1 %cmp, label %return, label %if.end 1841 1842if.end: ; preds = %entry 1843 %cmp5 = icmp eq i32 %a, %b 1844 %conv6 = zext i1 %cmp5 to i32 1845 ret i32 %conv6 1846 1847return: ; preds = %entry 1848 ret i32 1 1849} 1850 1851it could be: 1852 1853define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp { 1854entry: 1855 %0 = icmp sle i32 %a, %b 1856 %retval = zext i1 %0 to i32 1857 ret i32 %retval 1858} 1859 1860//===---------------------------------------------------------------------===// 1861 1862This code can be seen in viterbi: 1863 1864 %64 = call noalias i8* @malloc(i64 %62) nounwind 1865... 1866 %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind 1867 %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind 1868 1869llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to 1870fold to %62. This is a security win (overflows of malloc will get caught) 1871and also a performance win by exposing more memsets to the optimizer. 1872 1873This occurs several times in viterbi. 1874 1875Note that this would change the semantics of @llvm.objectsize which by its 1876current definition always folds to a constant. We also should make sure that 1877we remove checking in code like 1878 1879 char *p = malloc(strlen(s)+1); 1880 __strcpy_chk(p, s, __builtin_objectsize(p, 0)); 1881 1882//===---------------------------------------------------------------------===// 1883 1884This code (from Benchmarks/Dhrystone/dry.c): 1885 1886define i32 @Func1(i32, i32) nounwind readnone optsize ssp { 1887entry: 1888 %sext = shl i32 %0, 24 1889 %conv = ashr i32 %sext, 24 1890 %sext6 = shl i32 %1, 24 1891 %conv4 = ashr i32 %sext6, 24 1892 %cmp = icmp eq i32 %conv, %conv4 1893 %. = select i1 %cmp, i32 10000, i32 0 1894 ret i32 %. 1895} 1896 1897Should be simplified into something like: 1898 1899define i32 @Func1(i32, i32) nounwind readnone optsize ssp { 1900entry: 1901 %sext = shl i32 %0, 24 1902 %conv = and i32 %sext, 0xFF000000 1903 %sext6 = shl i32 %1, 24 1904 %conv4 = and i32 %sext6, 0xFF000000 1905 %cmp = icmp eq i32 %conv, %conv4 1906 %. = select i1 %cmp, i32 10000, i32 0 1907 ret i32 %. 1908} 1909 1910and then to: 1911 1912define i32 @Func1(i32, i32) nounwind readnone optsize ssp { 1913entry: 1914 %conv = and i32 %0, 0xFF 1915 %conv4 = and i32 %1, 0xFF 1916 %cmp = icmp eq i32 %conv, %conv4 1917 %. = select i1 %cmp, i32 10000, i32 0 1918 ret i32 %. 1919} 1920//===---------------------------------------------------------------------===// 1921 1922clang -O3 currently compiles this code 1923 1924int g(unsigned int a) { 1925 unsigned int c[100]; 1926 c[10] = a; 1927 c[11] = a; 1928 unsigned int b = c[10] + c[11]; 1929 if(b > a*2) a = 4; 1930 else a = 8; 1931 return a + 7; 1932} 1933 1934into 1935 1936define i32 @g(i32 a) nounwind readnone { 1937 %add = shl i32 %a, 1 1938 %mul = shl i32 %a, 1 1939 %cmp = icmp ugt i32 %add, %mul 1940 %a.addr.0 = select i1 %cmp, i32 11, i32 15 1941 ret i32 %a.addr.0 1942} 1943 1944The icmp should fold to false. This CSE opportunity is only available 1945after GVN and InstCombine have run. 1946 1947//===---------------------------------------------------------------------===// 1948 1949memcpyopt should turn this: 1950 1951define i8* @test10(i32 %x) { 1952 %alloc = call noalias i8* @malloc(i32 %x) nounwind 1953 call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false) 1954 ret i8* %alloc 1955} 1956 1957into a call to calloc. We should make sure that we analyze calloc as 1958aggressively as malloc though. 1959 1960//===---------------------------------------------------------------------===// 1961 1962clang -O3 doesn't optimize this: 1963 1964void f1(int* begin, int* end) { 1965 std::fill(begin, end, 0); 1966} 1967 1968into a memset. This is PR8942. 1969 1970//===---------------------------------------------------------------------===// 1971 1972clang -O3 -fno-exceptions currently compiles this code: 1973 1974void f(int N) { 1975 std::vector<int> v(N); 1976 1977 extern void sink(void*); sink(&v); 1978} 1979 1980into 1981 1982define void @_Z1fi(i32 %N) nounwind { 1983entry: 1984 %v2 = alloca [3 x i32*], align 8 1985 %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0 1986 %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"* 1987 %conv = sext i32 %N to i64 1988 store i32* null, i32** %v2.sub, align 8, !tbaa !0 1989 %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1 1990 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 1991 %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2 1992 store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 1993 %cmp.i.i.i.i = icmp eq i32 %N, 0 1994 br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i 1995 1996_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry 1997 store i32* null, i32** %v2.sub, align 8, !tbaa !0 1998 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 1999 %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv 2000 store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 2001 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit 2002 2003cond.true.i.i.i.i: ; preds = %entry 2004 %cmp.i.i.i.i.i = icmp slt i32 %N, 0 2005 br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i 2006 2007if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i 2008 call void @_ZSt17__throw_bad_allocv() noreturn nounwind 2009 unreachable 2010 2011_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i 2012 %mul.i.i.i.i.i = shl i64 %conv, 2 2013 %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind 2014 %0 = bitcast i8* %call3.i.i.i.i.i to i32* 2015 store i32* %0, i32** %v2.sub, align 8, !tbaa !0 2016 store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0 2017 %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv 2018 store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0 2019 call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false) 2020 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit 2021 2022This is just the handling the construction of the vector. Most surprising here 2023is the fact that all three null stores in %entry are dead (because we do no 2024cross-block DSE). 2025 2026Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i. 2027This is a because the client of LazyValueInfo doesn't simplify all instruction 2028operands, just selected ones. 2029 2030//===---------------------------------------------------------------------===// 2031 2032clang -O3 -fno-exceptions currently compiles this code: 2033 2034void f(char* a, int n) { 2035 __builtin_memset(a, 0, n); 2036 for (int i = 0; i < n; ++i) 2037 a[i] = 0; 2038} 2039 2040into: 2041 2042define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind { 2043entry: 2044 %conv = sext i32 %n to i64 2045 tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false) 2046 %cmp8 = icmp sgt i32 %n, 0 2047 br i1 %cmp8, label %for.body.lr.ph, label %for.end 2048 2049for.body.lr.ph: ; preds = %entry 2050 %tmp10 = add i32 %n, -1 2051 %tmp11 = zext i32 %tmp10 to i64 2052 %tmp12 = add i64 %tmp11, 1 2053 call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false) 2054 ret void 2055 2056for.end: ; preds = %entry 2057 ret void 2058} 2059 2060This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold 2061the two memset's together. 2062 2063The issue with the addition only occurs in 64-bit mode, and appears to be at 2064least partially caused by Scalar Evolution not keeping its cache updated: it 2065returns the "wrong" result immediately after indvars runs, but figures out the 2066expected result if it is run from scratch on IR resulting from running indvars. 2067 2068//===---------------------------------------------------------------------===// 2069 2070clang -O3 -fno-exceptions currently compiles this code: 2071 2072struct S { 2073 unsigned short m1, m2; 2074 unsigned char m3, m4; 2075}; 2076 2077void f(int N) { 2078 std::vector<S> v(N); 2079 extern void sink(void*); sink(&v); 2080} 2081 2082into poor code for zero-initializing 'v' when N is >0. The problem is that 2083S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and 20844 stores on each iteration. If the struct were 8 bytes, this gets turned into 2085a memset. 2086 2087In order to handle this we have to: 2088 A) Teach clang to generate metadata for memsets of structs that have holes in 2089 them. 2090 B) Teach clang to use such a memset for zero init of this struct (since it has 2091 a hole), instead of doing elementwise zeroing. 2092 2093//===---------------------------------------------------------------------===// 2094 2095clang -O3 currently compiles this code: 2096 2097extern const int magic; 2098double f() { return 0.0 * magic; } 2099 2100into 2101 2102@magic = external constant i32 2103 2104define double @_Z1fv() nounwind readnone { 2105entry: 2106 %tmp = load i32* @magic, align 4, !tbaa !0 2107 %conv = sitofp i32 %tmp to double 2108 %mul = fmul double %conv, 0.000000e+00 2109 ret double %mul 2110} 2111 2112We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0) 2113can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and 2114not an INF. The CannotBeNegativeZero predicate in value tracking should be 2115extended to support general "fpclassify" operations that can return 2116yes/no/unknown for each of these predicates. 2117 2118In this predicate, we know that uitofp is trivially never NaN or -0.0, and 2119we know that it isn't +/-Inf if the floating point type has enough exponent bits 2120to represent the largest integer value as < inf. 2121 2122//===---------------------------------------------------------------------===// 2123 2124When optimizing a transformation that can change the sign of 0.0 (such as the 21250.0*val -> 0.0 transformation above), it might be provable that the sign of the 2126expression doesn't matter. For example, by the above rules, we can't transform 2127fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the 2128expression is defined to be -0.0. 2129 2130If we look at the uses of the fmul for example, we might be able to prove that 2131all uses don't care about the sign of zero. For example, if we have: 2132 2133 fadd(fmul(sitofp(x), 0.0), 2.0) 2134 2135Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can 2136transform the fmul to 0.0, and then the fadd to 2.0. 2137 2138//===---------------------------------------------------------------------===// 2139 2140We should enhance memcpy/memcpy/memset to allow a metadata node on them 2141indicating that some bytes of the transfer are undefined. This is useful for 2142frontends like clang when lowering struct copies, when some elements of the 2143struct are undefined. Consider something like this: 2144 2145struct x { 2146 char a; 2147 int b[4]; 2148}; 2149void foo(struct x*P); 2150struct x testfunc() { 2151 struct x V1, V2; 2152 foo(&V1); 2153 V2 = V1; 2154 2155 return V2; 2156} 2157 2158We currently compile this to: 2159$ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S 2160 2161 2162%struct.x = type { i8, [4 x i32] } 2163 2164define void @testfunc(%struct.x* sret %agg.result) nounwind ssp { 2165entry: 2166 %V1 = alloca %struct.x, align 4 2167 call void @foo(%struct.x* %V1) 2168 %tmp1 = bitcast %struct.x* %V1 to i8* 2169 %0 = bitcast %struct.x* %V1 to i160* 2170 %srcval1 = load i160* %0, align 4 2171 %tmp2 = bitcast %struct.x* %agg.result to i8* 2172 %1 = bitcast %struct.x* %agg.result to i160* 2173 store i160 %srcval1, i160* %1, align 4 2174 ret void 2175} 2176 2177This happens because SRoA sees that the temp alloca has is being memcpy'd into 2178and out of and it has holes and it has to be conservative. If we knew about the 2179holes, then this could be much much better. 2180 2181Having information about these holes would also improve memcpy (etc) lowering at 2182llc time when it gets inlined, because we can use smaller transfers. This also 2183avoids partial register stalls in some important cases. 2184 2185//===---------------------------------------------------------------------===// 2186 2187We don't fold (icmp (add) (add)) unless the two adds only have a single use. 2188There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for 2189example: 2190 2191 %indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses 2192 %tmp96 = add i64 %tmp95, 1 ;; Has 1 use 2193 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96 2194 2195We don't fold this because we don't want to introduce an overlapped live range 2196of the ivar. However if we can make this more aggressive without causing 2197performance issues in two ways: 2198 21991. If *either* the LHS or RHS has a single use, we can definitely do the 2200 transformation. In the overlapping liverange case we're trading one register 2201 use for one fewer operation, which is a reasonable trade. Before doing this 2202 we should verify that the llc output actually shrinks for some benchmarks. 22032. If both ops have multiple uses, we can still fold it if the operations are 2204 both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't 2205 increase register pressure. 2206 2207There are a ton of icmp's we aren't simplifying because of the reg pressure 2208concern. Care is warranted here though because many of these are induction 2209variables and other cases that matter a lot to performance, like the above. 2210Here's a blob of code that you can drop into the bottom of visitICmp to see some 2211missed cases: 2212 2213 { Value *A, *B, *C, *D; 2214 if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 2215 match(Op1, m_Add(m_Value(C), m_Value(D))) && 2216 (A == C || A == D || B == C || B == D)) { 2217 errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n"; 2218 errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n"; 2219 errs() << "CMP = " << I << "\n\n"; 2220 } 2221 } 2222 2223//===---------------------------------------------------------------------===// 2224 2225define i1 @test1(i32 %x) nounwind { 2226 %and = and i32 %x, 3 2227 %cmp = icmp ult i32 %and, 2 2228 ret i1 %cmp 2229} 2230 2231Can be folded to (x & 2) == 0. 2232 2233define i1 @test2(i32 %x) nounwind { 2234 %and = and i32 %x, 3 2235 %cmp = icmp ugt i32 %and, 1 2236 ret i1 %cmp 2237} 2238 2239Can be folded to (x & 2) != 0. 2240 2241SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the 2242icmp transform. 2243 2244//===---------------------------------------------------------------------===// 2245 2246This code: 2247 2248typedef struct { 2249int f1:1; 2250int f2:1; 2251int f3:1; 2252int f4:29; 2253} t1; 2254 2255typedef struct { 2256int f1:1; 2257int f2:1; 2258int f3:30; 2259} t2; 2260 2261t1 s1; 2262t2 s2; 2263 2264void func1(void) 2265{ 2266s1.f1 = s2.f1; 2267s1.f2 = s2.f2; 2268} 2269 2270Compiles into this IR (on x86-64 at least): 2271 2272%struct.t1 = type { i8, [3 x i8] } 2273@s2 = global %struct.t1 zeroinitializer, align 4 2274@s1 = global %struct.t1 zeroinitializer, align 4 2275define void @func1() nounwind ssp noredzone { 2276entry: 2277 %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4 2278 %bf.val.sext5 = and i32 %0, 1 2279 %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4 2280 %2 = and i32 %1, -4 2281 %3 = or i32 %2, %bf.val.sext5 2282 %bf.val.sext26 = and i32 %0, 2 2283 %4 = or i32 %3, %bf.val.sext26 2284 store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4 2285 ret void 2286} 2287 2288The two or/and's should be merged into one each. 2289 2290//===---------------------------------------------------------------------===// 2291 2292Machine level code hoisting can be useful in some cases. For example, PR9408 2293is about: 2294 2295typedef union { 2296 void (*f1)(int); 2297 void (*f2)(long); 2298} funcs; 2299 2300void foo(funcs f, int which) { 2301 int a = 5; 2302 if (which) { 2303 f.f1(a); 2304 } else { 2305 f.f2(a); 2306 } 2307} 2308 2309which we compile to: 2310 2311foo: # @foo 2312# BB#0: # %entry 2313 pushq %rbp 2314 movq %rsp, %rbp 2315 testl %esi, %esi 2316 movq %rdi, %rax 2317 je .LBB0_2 2318# BB#1: # %if.then 2319 movl $5, %edi 2320 callq *%rax 2321 popq %rbp 2322 ret 2323.LBB0_2: # %if.else 2324 movl $5, %edi 2325 callq *%rax 2326 popq %rbp 2327 ret 2328 2329Note that bb1 and bb2 are the same. This doesn't happen at the IR level 2330because one call is passing an i32 and the other is passing an i64. 2331 2332//===---------------------------------------------------------------------===// 2333 2334I see this sort of pattern in 176.gcc in a few places (e.g. the start of 2335store_bit_field). The rem should be replaced with a multiply and subtract: 2336 2337 %3 = sdiv i32 %A, %B 2338 %4 = srem i32 %A, %B 2339 2340Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM, 2341which can do this in a single operation (instruction or libcall). It is 2342probably best to do this in the code generator. 2343 2344//===---------------------------------------------------------------------===// 2345 2346unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; } 2347should fold to (x & y) == 0. 2348 2349//===---------------------------------------------------------------------===// 2350 2351unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; } 2352should fold to x > y. 2353 2354//===---------------------------------------------------------------------===// 2355