/* * * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "builder.h" #include "class_linker.h" #include "dex_file.h" #include "dex_file-inl.h" #include "dex_instruction.h" #include "dex_instruction-inl.h" #include "driver/compiler_driver-inl.h" #include "mirror/art_field.h" #include "mirror/art_field-inl.h" #include "mirror/class_loader.h" #include "mirror/dex_cache.h" #include "nodes.h" #include "primitive.h" #include "scoped_thread_state_change.h" #include "thread.h" namespace art { /** * Helper class to add HTemporary instructions. This class is used when * converting a DEX instruction to multiple HInstruction, and where those * instructions do not die at the following instruction, but instead spans * multiple instructions. */ class Temporaries : public ValueObject { public: Temporaries(HGraph* graph, size_t count) : graph_(graph), count_(count), index_(0) { graph_->UpdateNumberOfTemporaries(count_); } void Add(HInstruction* instruction) { // We currently only support vreg size temps. DCHECK(instruction->GetType() != Primitive::kPrimLong && instruction->GetType() != Primitive::kPrimDouble); HInstruction* temp = new (graph_->GetArena()) HTemporary(index_++); instruction->GetBlock()->AddInstruction(temp); DCHECK(temp->GetPrevious() == instruction); } private: HGraph* const graph_; // The total number of temporaries that will be used. const size_t count_; // Current index in the temporary stack, updated by `Add`. size_t index_; }; static bool IsTypeSupported(Primitive::Type type) { return type != Primitive::kPrimFloat && type != Primitive::kPrimDouble; } void HGraphBuilder::InitializeLocals(uint16_t count) { graph_->SetNumberOfVRegs(count); locals_.SetSize(count); for (int i = 0; i < count; i++) { HLocal* local = new (arena_) HLocal(i); entry_block_->AddInstruction(local); locals_.Put(i, local); } } bool HGraphBuilder::InitializeParameters(uint16_t number_of_parameters) { // dex_compilation_unit_ is null only when unit testing. if (dex_compilation_unit_ == nullptr) { return true; } graph_->SetNumberOfInVRegs(number_of_parameters); const char* shorty = dex_compilation_unit_->GetShorty(); int locals_index = locals_.Size() - number_of_parameters; int parameter_index = 0; if (!dex_compilation_unit_->IsStatic()) { // Add the implicit 'this' argument, not expressed in the signature. HParameterValue* parameter = new (arena_) HParameterValue(parameter_index++, Primitive::kPrimNot); entry_block_->AddInstruction(parameter); HLocal* local = GetLocalAt(locals_index++); entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter)); number_of_parameters--; } uint32_t pos = 1; for (int i = 0; i < number_of_parameters; i++) { switch (shorty[pos++]) { case 'F': case 'D': { return false; } default: { // integer and reference parameters. HParameterValue* parameter = new (arena_) HParameterValue(parameter_index++, Primitive::GetType(shorty[pos - 1])); entry_block_->AddInstruction(parameter); HLocal* local = GetLocalAt(locals_index++); // Store the parameter value in the local that the dex code will use // to reference that parameter. entry_block_->AddInstruction(new (arena_) HStoreLocal(local, parameter)); if (parameter->GetType() == Primitive::kPrimLong) { i++; locals_index++; parameter_index++; } break; } } } return true; } static bool CanHandleCodeItem(const DexFile::CodeItem& code_item) { if (code_item.tries_size_ > 0) { return false; } return true; } template void HGraphBuilder::If_22t(const Instruction& instruction, uint32_t dex_offset) { HInstruction* first = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); HInstruction* second = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); T* comparison = new (arena_) T(first, second); current_block_->AddInstruction(comparison); HInstruction* ifinst = new (arena_) HIf(comparison); current_block_->AddInstruction(ifinst); HBasicBlock* target = FindBlockStartingAt(dex_offset + instruction.GetTargetOffset()); DCHECK(target != nullptr); current_block_->AddSuccessor(target); target = FindBlockStartingAt(dex_offset + instruction.SizeInCodeUnits()); DCHECK(target != nullptr); current_block_->AddSuccessor(target); current_block_ = nullptr; } template void HGraphBuilder::If_21t(const Instruction& instruction, uint32_t dex_offset) { HInstruction* value = LoadLocal(instruction.VRegA(), Primitive::kPrimInt); T* comparison = new (arena_) T(value, GetIntConstant(0)); current_block_->AddInstruction(comparison); HInstruction* ifinst = new (arena_) HIf(comparison); current_block_->AddInstruction(ifinst); HBasicBlock* target = FindBlockStartingAt(dex_offset + instruction.GetTargetOffset()); DCHECK(target != nullptr); current_block_->AddSuccessor(target); target = FindBlockStartingAt(dex_offset + instruction.SizeInCodeUnits()); DCHECK(target != nullptr); current_block_->AddSuccessor(target); current_block_ = nullptr; } HGraph* HGraphBuilder::BuildGraph(const DexFile::CodeItem& code_item) { if (!CanHandleCodeItem(code_item)) { return nullptr; } const uint16_t* code_ptr = code_item.insns_; const uint16_t* code_end = code_item.insns_ + code_item.insns_size_in_code_units_; // Setup the graph with the entry block and exit block. graph_ = new (arena_) HGraph(arena_); entry_block_ = new (arena_) HBasicBlock(graph_); graph_->AddBlock(entry_block_); exit_block_ = new (arena_) HBasicBlock(graph_); graph_->SetEntryBlock(entry_block_); graph_->SetExitBlock(exit_block_); InitializeLocals(code_item.registers_size_); graph_->UpdateMaximumNumberOfOutVRegs(code_item.outs_size_); // To avoid splitting blocks, we compute ahead of time the instructions that // start a new block, and create these blocks. ComputeBranchTargets(code_ptr, code_end); if (!InitializeParameters(code_item.ins_size_)) { return nullptr; } size_t dex_offset = 0; while (code_ptr < code_end) { // Update the current block if dex_offset starts a new block. MaybeUpdateCurrentBlock(dex_offset); const Instruction& instruction = *Instruction::At(code_ptr); if (!AnalyzeDexInstruction(instruction, dex_offset)) return nullptr; dex_offset += instruction.SizeInCodeUnits(); code_ptr += instruction.SizeInCodeUnits(); } // Add the exit block at the end to give it the highest id. graph_->AddBlock(exit_block_); exit_block_->AddInstruction(new (arena_) HExit()); entry_block_->AddInstruction(new (arena_) HGoto()); return graph_; } void HGraphBuilder::MaybeUpdateCurrentBlock(size_t index) { HBasicBlock* block = FindBlockStartingAt(index); if (block == nullptr) { return; } if (current_block_ != nullptr) { // Branching instructions clear current_block, so we know // the last instruction of the current block is not a branching // instruction. We add an unconditional goto to the found block. current_block_->AddInstruction(new (arena_) HGoto()); current_block_->AddSuccessor(block); } graph_->AddBlock(block); current_block_ = block; } void HGraphBuilder::ComputeBranchTargets(const uint16_t* code_ptr, const uint16_t* code_end) { // TODO: Support switch instructions. branch_targets_.SetSize(code_end - code_ptr); // Create the first block for the dex instructions, single successor of the entry block. HBasicBlock* block = new (arena_) HBasicBlock(graph_); branch_targets_.Put(0, block); entry_block_->AddSuccessor(block); // Iterate over all instructions and find branching instructions. Create blocks for // the locations these instructions branch to. size_t dex_offset = 0; while (code_ptr < code_end) { const Instruction& instruction = *Instruction::At(code_ptr); if (instruction.IsBranch()) { int32_t target = instruction.GetTargetOffset() + dex_offset; // Create a block for the target instruction. if (FindBlockStartingAt(target) == nullptr) { block = new (arena_) HBasicBlock(graph_); branch_targets_.Put(target, block); } dex_offset += instruction.SizeInCodeUnits(); code_ptr += instruction.SizeInCodeUnits(); if ((code_ptr < code_end) && (FindBlockStartingAt(dex_offset) == nullptr)) { block = new (arena_) HBasicBlock(graph_); branch_targets_.Put(dex_offset, block); } } else { code_ptr += instruction.SizeInCodeUnits(); dex_offset += instruction.SizeInCodeUnits(); } } } HBasicBlock* HGraphBuilder::FindBlockStartingAt(int32_t index) const { DCHECK_GE(index, 0); return branch_targets_.Get(index); } template void HGraphBuilder::Binop_23x(const Instruction& instruction, Primitive::Type type) { HInstruction* first = LoadLocal(instruction.VRegB(), type); HInstruction* second = LoadLocal(instruction.VRegC(), type); current_block_->AddInstruction(new (arena_) T(type, first, second)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HGraphBuilder::Binop_12x(const Instruction& instruction, Primitive::Type type) { HInstruction* first = LoadLocal(instruction.VRegA(), type); HInstruction* second = LoadLocal(instruction.VRegB(), type); current_block_->AddInstruction(new (arena_) T(type, first, second)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HGraphBuilder::Binop_22s(const Instruction& instruction, bool reverse) { HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); HInstruction* second = GetIntConstant(instruction.VRegC_22s()); if (reverse) { std::swap(first, second); } current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } template void HGraphBuilder::Binop_22b(const Instruction& instruction, bool reverse) { HInstruction* first = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); HInstruction* second = GetIntConstant(instruction.VRegC_22b()); if (reverse) { std::swap(first, second); } current_block_->AddInstruction(new (arena_) T(Primitive::kPrimInt, first, second)); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); } void HGraphBuilder::BuildReturn(const Instruction& instruction, Primitive::Type type) { if (type == Primitive::kPrimVoid) { current_block_->AddInstruction(new (arena_) HReturnVoid()); } else { HInstruction* value = LoadLocal(instruction.VRegA(), type); current_block_->AddInstruction(new (arena_) HReturn(value)); } current_block_->AddSuccessor(exit_block_); current_block_ = nullptr; } bool HGraphBuilder::BuildInvoke(const Instruction& instruction, uint32_t dex_offset, uint32_t method_idx, uint32_t number_of_vreg_arguments, bool is_range, uint32_t* args, uint32_t register_index) { const DexFile::MethodId& method_id = dex_file_->GetMethodId(method_idx); const DexFile::ProtoId& proto_id = dex_file_->GetProtoId(method_id.proto_idx_); const char* descriptor = dex_file_->StringDataByIdx(proto_id.shorty_idx_); Primitive::Type return_type = Primitive::GetType(descriptor[0]); bool is_instance_call = instruction.Opcode() != Instruction::INVOKE_STATIC && instruction.Opcode() != Instruction::INVOKE_STATIC_RANGE; const size_t number_of_arguments = strlen(descriptor) - (is_instance_call ? 0 : 1); // Treat invoke-direct like static calls for now. HInvoke* invoke = new (arena_) HInvokeStatic( arena_, number_of_arguments, return_type, dex_offset, method_idx); size_t start_index = 0; Temporaries temps(graph_, is_instance_call ? 1 : 0); if (is_instance_call) { HInstruction* arg = LoadLocal(is_range ? register_index : args[0], Primitive::kPrimNot); HNullCheck* null_check = new (arena_) HNullCheck(arg, dex_offset); current_block_->AddInstruction(null_check); temps.Add(null_check); invoke->SetArgumentAt(0, null_check); start_index = 1; } uint32_t descriptor_index = 1; uint32_t argument_index = start_index; for (size_t i = start_index; i < number_of_vreg_arguments; i++, argument_index++) { Primitive::Type type = Primitive::GetType(descriptor[descriptor_index++]); if (!IsTypeSupported(type)) { return false; } if (!is_range && type == Primitive::kPrimLong && args[i] + 1 != args[i + 1]) { LOG(WARNING) << "Non sequential register pair in " << dex_compilation_unit_->GetSymbol() << " at " << dex_offset; // We do not implement non sequential register pair. return false; } HInstruction* arg = LoadLocal(is_range ? register_index + i : args[i], type); invoke->SetArgumentAt(argument_index, arg); if (type == Primitive::kPrimLong) { i++; } } if (!IsTypeSupported(return_type)) { return false; } DCHECK_EQ(argument_index, number_of_arguments); current_block_->AddInstruction(invoke); return true; } bool HGraphBuilder::BuildFieldAccess(const Instruction& instruction, uint32_t dex_offset, bool is_put) { uint32_t source_or_dest_reg = instruction.VRegA_22c(); uint32_t obj_reg = instruction.VRegB_22c(); uint16_t field_index = instruction.VRegC_22c(); ScopedObjectAccess soa(Thread::Current()); StackHandleScope<1> hs(soa.Self()); Handle resolved_field(hs.NewHandle( compiler_driver_->ComputeInstanceFieldInfo(field_index, dex_compilation_unit_, is_put, soa))); if (resolved_field.Get() == nullptr) { return false; } if (resolved_field->IsVolatile()) { return false; } Primitive::Type field_type = resolved_field->GetTypeAsPrimitiveType(); if (!IsTypeSupported(field_type)) { return false; } HInstruction* object = LoadLocal(obj_reg, Primitive::kPrimNot); current_block_->AddInstruction(new (arena_) HNullCheck(object, dex_offset)); if (is_put) { Temporaries temps(graph_, 1); HInstruction* null_check = current_block_->GetLastInstruction(); // We need one temporary for the null check. temps.Add(null_check); HInstruction* value = LoadLocal(source_or_dest_reg, field_type); current_block_->AddInstruction(new (arena_) HInstanceFieldSet( null_check, value, resolved_field->GetOffset())); } else { current_block_->AddInstruction(new (arena_) HInstanceFieldGet( current_block_->GetLastInstruction(), field_type, resolved_field->GetOffset())); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } return true; } void HGraphBuilder::BuildArrayAccess(const Instruction& instruction, uint32_t dex_offset, bool is_put, Primitive::Type anticipated_type) { uint8_t source_or_dest_reg = instruction.VRegA_23x(); uint8_t array_reg = instruction.VRegB_23x(); uint8_t index_reg = instruction.VRegC_23x(); DCHECK(IsTypeSupported(anticipated_type)); // We need one temporary for the null check, one for the index, and one for the length. Temporaries temps(graph_, 3); HInstruction* object = LoadLocal(array_reg, Primitive::kPrimNot); object = new (arena_) HNullCheck(object, dex_offset); current_block_->AddInstruction(object); temps.Add(object); HInstruction* length = new (arena_) HArrayLength(object); current_block_->AddInstruction(length); temps.Add(length); HInstruction* index = LoadLocal(index_reg, Primitive::kPrimInt); index = new (arena_) HBoundsCheck(index, length, dex_offset); current_block_->AddInstruction(index); temps.Add(index); if (is_put) { HInstruction* value = LoadLocal(source_or_dest_reg, anticipated_type); // TODO: Insert a type check node if the type is Object. current_block_->AddInstruction(new (arena_) HArraySet(object, index, value, dex_offset)); } else { current_block_->AddInstruction(new (arena_) HArrayGet(object, index, anticipated_type)); UpdateLocal(source_or_dest_reg, current_block_->GetLastInstruction()); } } bool HGraphBuilder::AnalyzeDexInstruction(const Instruction& instruction, int32_t dex_offset) { if (current_block_ == nullptr) { return true; // Dead code } switch (instruction.Opcode()) { case Instruction::CONST_4: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = GetIntConstant(instruction.VRegB_11n()); UpdateLocal(register_index, constant); break; } case Instruction::CONST_16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = GetIntConstant(instruction.VRegB_21s()); UpdateLocal(register_index, constant); break; } case Instruction::CONST: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = GetIntConstant(instruction.VRegB_31i()); UpdateLocal(register_index, constant); break; } case Instruction::CONST_HIGH16: { int32_t register_index = instruction.VRegA(); HIntConstant* constant = GetIntConstant(instruction.VRegB_21h() << 16); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_16: { int32_t register_index = instruction.VRegA(); // Get 16 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_21s(); value <<= 48; value >>= 48; HLongConstant* constant = GetLongConstant(value); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_32: { int32_t register_index = instruction.VRegA(); // Get 32 bits of constant value, sign extended to 64 bits. int64_t value = instruction.VRegB_31i(); value <<= 32; value >>= 32; HLongConstant* constant = GetLongConstant(value); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE: { int32_t register_index = instruction.VRegA(); HLongConstant* constant = GetLongConstant(instruction.VRegB_51l()); UpdateLocal(register_index, constant); break; } case Instruction::CONST_WIDE_HIGH16: { int32_t register_index = instruction.VRegA(); int64_t value = static_cast(instruction.VRegB_21h()) << 48; HLongConstant* constant = GetLongConstant(value); UpdateLocal(register_index, constant); break; } // TODO: these instructions are also used to move floating point values, so what is // the type (int or float)? case Instruction::MOVE: case Instruction::MOVE_FROM16: case Instruction::MOVE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimInt); UpdateLocal(instruction.VRegA(), value); break; } // TODO: these instructions are also used to move floating point values, so what is // the type (long or double)? case Instruction::MOVE_WIDE: case Instruction::MOVE_WIDE_FROM16: case Instruction::MOVE_WIDE_16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimLong); UpdateLocal(instruction.VRegA(), value); break; } case Instruction::MOVE_OBJECT: case Instruction::MOVE_OBJECT_16: case Instruction::MOVE_OBJECT_FROM16: { HInstruction* value = LoadLocal(instruction.VRegB(), Primitive::kPrimNot); UpdateLocal(instruction.VRegA(), value); break; } case Instruction::RETURN_VOID: { BuildReturn(instruction, Primitive::kPrimVoid); break; } #define IF_XX(comparison, cond) \ case Instruction::IF_##cond: If_22t(instruction, dex_offset); break; \ case Instruction::IF_##cond##Z: If_21t(instruction, dex_offset); break IF_XX(HEqual, EQ); IF_XX(HNotEqual, NE); IF_XX(HLessThan, LT); IF_XX(HLessThanOrEqual, LE); IF_XX(HGreaterThan, GT); IF_XX(HGreaterThanOrEqual, GE); case Instruction::GOTO: case Instruction::GOTO_16: case Instruction::GOTO_32: { HBasicBlock* target = FindBlockStartingAt(instruction.GetTargetOffset() + dex_offset); DCHECK(target != nullptr); current_block_->AddInstruction(new (arena_) HGoto()); current_block_->AddSuccessor(target); current_block_ = nullptr; break; } case Instruction::RETURN: { BuildReturn(instruction, Primitive::kPrimInt); break; } case Instruction::RETURN_OBJECT: { BuildReturn(instruction, Primitive::kPrimNot); break; } case Instruction::RETURN_WIDE: { BuildReturn(instruction, Primitive::kPrimLong); break; } case Instruction::INVOKE_STATIC: case Instruction::INVOKE_DIRECT: { uint32_t method_idx = instruction.VRegB_35c(); uint32_t number_of_vreg_arguments = instruction.VRegA_35c(); uint32_t args[5]; instruction.GetVarArgs(args); if (!BuildInvoke(instruction, dex_offset, method_idx, number_of_vreg_arguments, false, args, -1)) { return false; } break; } case Instruction::INVOKE_STATIC_RANGE: case Instruction::INVOKE_DIRECT_RANGE: { uint32_t method_idx = instruction.VRegB_3rc(); uint32_t number_of_vreg_arguments = instruction.VRegA_3rc(); uint32_t register_index = instruction.VRegC(); if (!BuildInvoke(instruction, dex_offset, method_idx, number_of_vreg_arguments, true, nullptr, register_index)) { return false; } break; } case Instruction::ADD_INT: { Binop_23x(instruction, Primitive::kPrimInt); break; } case Instruction::ADD_LONG: { Binop_23x(instruction, Primitive::kPrimLong); break; } case Instruction::SUB_INT: { Binop_23x(instruction, Primitive::kPrimInt); break; } case Instruction::SUB_LONG: { Binop_23x(instruction, Primitive::kPrimLong); break; } case Instruction::ADD_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt); break; } case Instruction::ADD_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong); break; } case Instruction::SUB_INT_2ADDR: { Binop_12x(instruction, Primitive::kPrimInt); break; } case Instruction::SUB_LONG_2ADDR: { Binop_12x(instruction, Primitive::kPrimLong); break; } case Instruction::ADD_INT_LIT16: { Binop_22s(instruction, false); break; } case Instruction::RSUB_INT: { Binop_22s(instruction, true); break; } case Instruction::ADD_INT_LIT8: { Binop_22b(instruction, false); break; } case Instruction::RSUB_INT_LIT8: { Binop_22b(instruction, true); break; } case Instruction::NEW_INSTANCE: { current_block_->AddInstruction( new (arena_) HNewInstance(dex_offset, instruction.VRegB_21c())); UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); break; } case Instruction::MOVE_RESULT: case Instruction::MOVE_RESULT_WIDE: case Instruction::MOVE_RESULT_OBJECT: UpdateLocal(instruction.VRegA(), current_block_->GetLastInstruction()); break; case Instruction::CMP_LONG: { Binop_23x(instruction, Primitive::kPrimLong); break; } case Instruction::NOP: break; case Instruction::IGET: case Instruction::IGET_WIDE: case Instruction::IGET_OBJECT: case Instruction::IGET_BOOLEAN: case Instruction::IGET_BYTE: case Instruction::IGET_CHAR: case Instruction::IGET_SHORT: { if (!BuildFieldAccess(instruction, dex_offset, false)) { return false; } break; } case Instruction::IPUT: case Instruction::IPUT_WIDE: case Instruction::IPUT_OBJECT: case Instruction::IPUT_BOOLEAN: case Instruction::IPUT_BYTE: case Instruction::IPUT_CHAR: case Instruction::IPUT_SHORT: { if (!BuildFieldAccess(instruction, dex_offset, true)) { return false; } break; } #define ARRAY_XX(kind, anticipated_type) \ case Instruction::AGET##kind: { \ BuildArrayAccess(instruction, dex_offset, false, anticipated_type); \ break; \ } \ case Instruction::APUT##kind: { \ BuildArrayAccess(instruction, dex_offset, true, anticipated_type); \ break; \ } ARRAY_XX(, Primitive::kPrimInt); ARRAY_XX(_WIDE, Primitive::kPrimLong); ARRAY_XX(_OBJECT, Primitive::kPrimNot); ARRAY_XX(_BOOLEAN, Primitive::kPrimBoolean); ARRAY_XX(_BYTE, Primitive::kPrimByte); ARRAY_XX(_CHAR, Primitive::kPrimChar); ARRAY_XX(_SHORT, Primitive::kPrimShort); default: return false; } return true; } HIntConstant* HGraphBuilder::GetIntConstant0() { if (constant0_ != nullptr) { return constant0_; } constant0_ = new(arena_) HIntConstant(0); entry_block_->AddInstruction(constant0_); return constant0_; } HIntConstant* HGraphBuilder::GetIntConstant1() { if (constant1_ != nullptr) { return constant1_; } constant1_ = new(arena_) HIntConstant(1); entry_block_->AddInstruction(constant1_); return constant1_; } HIntConstant* HGraphBuilder::GetIntConstant(int32_t constant) { switch (constant) { case 0: return GetIntConstant0(); case 1: return GetIntConstant1(); default: { HIntConstant* instruction = new (arena_) HIntConstant(constant); entry_block_->AddInstruction(instruction); return instruction; } } } HLongConstant* HGraphBuilder::GetLongConstant(int64_t constant) { HLongConstant* instruction = new (arena_) HLongConstant(constant); entry_block_->AddInstruction(instruction); return instruction; } HLocal* HGraphBuilder::GetLocalAt(int register_index) const { return locals_.Get(register_index); } void HGraphBuilder::UpdateLocal(int register_index, HInstruction* instruction) const { HLocal* local = GetLocalAt(register_index); current_block_->AddInstruction(new (arena_) HStoreLocal(local, instruction)); } HInstruction* HGraphBuilder::LoadLocal(int register_index, Primitive::Type type) const { HLocal* local = GetLocalAt(register_index); current_block_->AddInstruction(new (arena_) HLoadLocal(local, type)); return current_block_->GetLastInstruction(); } } // namespace art