/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "code_generator.h" #include "code_generator_arm.h" #include "code_generator_x86.h" #include "code_generator_x86_64.h" #include "dex/verified_method.h" #include "driver/dex_compilation_unit.h" #include "gc_map_builder.h" #include "leb128.h" #include "mapping_table.h" #include "utils/assembler.h" #include "verifier/dex_gc_map.h" #include "vmap_table.h" namespace art { void CodeGenerator::CompileBaseline(CodeAllocator* allocator, bool is_leaf) { const GrowableArray& blocks = GetGraph()->GetBlocks(); DCHECK(blocks.Get(0) == GetGraph()->GetEntryBlock()); DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), blocks.Get(1))); block_labels_.SetSize(blocks.Size()); DCHECK_EQ(frame_size_, kUninitializedFrameSize); if (!is_leaf) { MarkNotLeaf(); } ComputeFrameSize(GetGraph()->GetMaximumNumberOfOutVRegs() + GetGraph()->GetNumberOfLocalVRegs() + GetGraph()->GetNumberOfTemporaries() + 1 /* filler */); GenerateFrameEntry(); for (size_t i = 0, e = blocks.Size(); i < e; ++i) { HBasicBlock* block = blocks.Get(i); Bind(GetLabelOf(block)); HGraphVisitor* location_builder = GetLocationBuilder(); HGraphVisitor* instruction_visitor = GetInstructionVisitor(); for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); current->Accept(location_builder); InitLocations(current); current->Accept(instruction_visitor); } } GenerateSlowPaths(); size_t code_size = GetAssembler()->CodeSize(); uint8_t* buffer = allocator->Allocate(code_size); MemoryRegion code(buffer, code_size); GetAssembler()->FinalizeInstructions(code); } void CodeGenerator::CompileOptimized(CodeAllocator* allocator) { // The frame size has already been computed during register allocation. DCHECK_NE(frame_size_, kUninitializedFrameSize); const GrowableArray& blocks = GetGraph()->GetBlocks(); DCHECK(blocks.Get(0) == GetGraph()->GetEntryBlock()); DCHECK(GoesToNextBlock(GetGraph()->GetEntryBlock(), blocks.Get(1))); block_labels_.SetSize(blocks.Size()); GenerateFrameEntry(); for (size_t i = 0, e = blocks.Size(); i < e; ++i) { HBasicBlock* block = blocks.Get(i); Bind(GetLabelOf(block)); HGraphVisitor* instruction_visitor = GetInstructionVisitor(); for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) { HInstruction* current = it.Current(); current->Accept(instruction_visitor); } } GenerateSlowPaths(); size_t code_size = GetAssembler()->CodeSize(); uint8_t* buffer = allocator->Allocate(code_size); MemoryRegion code(buffer, code_size); GetAssembler()->FinalizeInstructions(code); } void CodeGenerator::GenerateSlowPaths() { for (size_t i = 0, e = slow_paths_.Size(); i < e; ++i) { slow_paths_.Get(i)->EmitNativeCode(this); } } size_t CodeGenerator::AllocateFreeRegisterInternal( bool* blocked_registers, size_t number_of_registers) const { for (size_t regno = 0; regno < number_of_registers; regno++) { if (!blocked_registers[regno]) { blocked_registers[regno] = true; return regno; } } return -1; } void CodeGenerator::ComputeFrameSize(size_t number_of_spill_slots) { SetFrameSize(RoundUp( number_of_spill_slots * kVRegSize + kVRegSize // Art method + FrameEntrySpillSize(), kStackAlignment)); } Location CodeGenerator::GetTemporaryLocation(HTemporary* temp) const { uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); // Use the temporary region (right below the dex registers). int32_t slot = GetFrameSize() - FrameEntrySpillSize() - kVRegSize // filler - (number_of_locals * kVRegSize) - ((1 + temp->GetIndex()) * kVRegSize); return Location::StackSlot(slot); } int32_t CodeGenerator::GetStackSlot(HLocal* local) const { uint16_t reg_number = local->GetRegNumber(); uint16_t number_of_locals = GetGraph()->GetNumberOfLocalVRegs(); if (reg_number >= number_of_locals) { // Local is a parameter of the method. It is stored in the caller's frame. return GetFrameSize() + kVRegSize // ART method + (reg_number - number_of_locals) * kVRegSize; } else { // Local is a temporary in this method. It is stored in this method's frame. return GetFrameSize() - FrameEntrySpillSize() - kVRegSize // filler. - (number_of_locals * kVRegSize) + (reg_number * kVRegSize); } } void CodeGenerator::AllocateRegistersLocally(HInstruction* instruction) const { LocationSummary* locations = instruction->GetLocations(); if (locations == nullptr) return; for (size_t i = 0, e = GetNumberOfRegisters(); i < e; ++i) { blocked_registers_[i] = false; } // Mark all fixed input, temp and output registers as used. for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { Location loc = locations->InAt(i); if (loc.IsRegister()) { // Check that a register is not specified twice in the summary. DCHECK(!blocked_registers_[loc.GetEncoding()]); blocked_registers_[loc.GetEncoding()] = true; } } for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { Location loc = locations->GetTemp(i); if (loc.IsRegister()) { // Check that a register is not specified twice in the summary. DCHECK(!blocked_registers_[loc.GetEncoding()]); blocked_registers_[loc.GetEncoding()] = true; } } SetupBlockedRegisters(blocked_registers_); // Allocate all unallocated input locations. for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) { Location loc = locations->InAt(i); HInstruction* input = instruction->InputAt(i); if (loc.IsUnallocated()) { if (loc.GetPolicy() == Location::kRequiresRegister) { loc = Location::RegisterLocation( AllocateFreeRegister(input->GetType(), blocked_registers_)); } else { DCHECK_EQ(loc.GetPolicy(), Location::kAny); HLoadLocal* load = input->AsLoadLocal(); if (load != nullptr) { loc = GetStackLocation(load); } else { loc = Location::RegisterLocation( AllocateFreeRegister(input->GetType(), blocked_registers_)); } } locations->SetInAt(i, loc); } } // Allocate all unallocated temp locations. for (size_t i = 0, e = locations->GetTempCount(); i < e; ++i) { Location loc = locations->GetTemp(i); if (loc.IsUnallocated()) { DCHECK_EQ(loc.GetPolicy(), Location::kRequiresRegister); // TODO: Adjust handling of temps. We currently consider temps to use // core registers. They may also use floating point registers at some point. loc = Location::RegisterLocation(static_cast( AllocateFreeRegister(Primitive::kPrimInt, blocked_registers_))); locations->SetTempAt(i, loc); } } Location result_location = locations->Out(); if (result_location.IsUnallocated()) { switch (result_location.GetPolicy()) { case Location::kAny: case Location::kRequiresRegister: result_location = Location::RegisterLocation( AllocateFreeRegister(instruction->GetType(), blocked_registers_)); break; case Location::kSameAsFirstInput: result_location = locations->InAt(0); break; } locations->SetOut(result_location); } } void CodeGenerator::InitLocations(HInstruction* instruction) { if (instruction->GetLocations() == nullptr) { if (instruction->IsTemporary()) { HInstruction* previous = instruction->GetPrevious(); Location temp_location = GetTemporaryLocation(instruction->AsTemporary()); Move(previous, temp_location, instruction); previous->GetLocations()->SetOut(temp_location); } return; } AllocateRegistersLocally(instruction); for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) { Location location = instruction->GetLocations()->InAt(i); if (location.IsValid()) { // Move the input to the desired location. Move(instruction->InputAt(i), location, instruction); } } } bool CodeGenerator::GoesToNextBlock(HBasicBlock* current, HBasicBlock* next) const { // We currently iterate over the block in insertion order. return current->GetBlockId() + 1 == next->GetBlockId(); } Label* CodeGenerator::GetLabelOf(HBasicBlock* block) const { return block_labels_.GetRawStorage() + block->GetBlockId(); } CodeGenerator* CodeGenerator::Create(ArenaAllocator* allocator, HGraph* graph, InstructionSet instruction_set) { switch (instruction_set) { case kArm: case kThumb2: { return new (allocator) arm::CodeGeneratorARM(graph); } case kMips: return nullptr; case kX86: { return new (allocator) x86::CodeGeneratorX86(graph); } case kX86_64: { return new (allocator) x86_64::CodeGeneratorX86_64(graph); } default: return nullptr; } } void CodeGenerator::BuildNativeGCMap( std::vector* data, const DexCompilationUnit& dex_compilation_unit) const { const std::vector& gc_map_raw = dex_compilation_unit.GetVerifiedMethod()->GetDexGcMap(); verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]); uint32_t max_native_offset = 0; for (size_t i = 0; i < pc_infos_.Size(); i++) { uint32_t native_offset = pc_infos_.Get(i).native_pc; if (native_offset > max_native_offset) { max_native_offset = native_offset; } } GcMapBuilder builder(data, pc_infos_.Size(), max_native_offset, dex_gc_map.RegWidth()); for (size_t i = 0; i < pc_infos_.Size(); i++) { struct PcInfo pc_info = pc_infos_.Get(i); uint32_t native_offset = pc_info.native_pc; uint32_t dex_pc = pc_info.dex_pc; const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false); CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc; builder.AddEntry(native_offset, references); } } void CodeGenerator::BuildMappingTable(std::vector* data) const { uint32_t pc2dex_data_size = 0u; uint32_t pc2dex_entries = pc_infos_.Size(); uint32_t pc2dex_offset = 0u; int32_t pc2dex_dalvik_offset = 0; uint32_t dex2pc_data_size = 0u; uint32_t dex2pc_entries = 0u; // We currently only have pc2dex entries. for (size_t i = 0; i < pc2dex_entries; i++) { struct PcInfo pc_info = pc_infos_.Get(i); pc2dex_data_size += UnsignedLeb128Size(pc_info.native_pc - pc2dex_offset); pc2dex_data_size += SignedLeb128Size(pc_info.dex_pc - pc2dex_dalvik_offset); pc2dex_offset = pc_info.native_pc; pc2dex_dalvik_offset = pc_info.dex_pc; } uint32_t total_entries = pc2dex_entries + dex2pc_entries; uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries); uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size; data->resize(data_size); uint8_t* data_ptr = &(*data)[0]; uint8_t* write_pos = data_ptr; write_pos = EncodeUnsignedLeb128(write_pos, total_entries); write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries); DCHECK_EQ(static_cast(write_pos - data_ptr), hdr_data_size); uint8_t* write_pos2 = write_pos + pc2dex_data_size; pc2dex_offset = 0u; pc2dex_dalvik_offset = 0u; for (size_t i = 0; i < pc2dex_entries; i++) { struct PcInfo pc_info = pc_infos_.Get(i); DCHECK(pc2dex_offset <= pc_info.native_pc); write_pos = EncodeUnsignedLeb128(write_pos, pc_info.native_pc - pc2dex_offset); write_pos = EncodeSignedLeb128(write_pos, pc_info.dex_pc - pc2dex_dalvik_offset); pc2dex_offset = pc_info.native_pc; pc2dex_dalvik_offset = pc_info.dex_pc; } DCHECK_EQ(static_cast(write_pos - data_ptr), hdr_data_size + pc2dex_data_size); DCHECK_EQ(static_cast(write_pos2 - data_ptr), data_size); if (kIsDebugBuild) { // Verify the encoded table holds the expected data. MappingTable table(data_ptr); CHECK_EQ(table.TotalSize(), total_entries); CHECK_EQ(table.PcToDexSize(), pc2dex_entries); auto it = table.PcToDexBegin(); auto it2 = table.DexToPcBegin(); for (size_t i = 0; i < pc2dex_entries; i++) { struct PcInfo pc_info = pc_infos_.Get(i); CHECK_EQ(pc_info.native_pc, it.NativePcOffset()); CHECK_EQ(pc_info.dex_pc, it.DexPc()); ++it; } CHECK(it == table.PcToDexEnd()); CHECK(it2 == table.DexToPcEnd()); } } void CodeGenerator::BuildVMapTable(std::vector* data) const { Leb128EncodingVector vmap_encoder; // We currently don't use callee-saved registers. size_t size = 0 + 1 /* marker */ + 0; vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128). vmap_encoder.PushBackUnsigned(size); vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker); *data = vmap_encoder.GetData(); } } // namespace art