// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2013 Google Inc. All rights reserved. // http://code.google.com/p/ceres-solver/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // keir@google.com (Keir Mierle) // // The Problem object is used to build and hold least squares problems. #ifndef CERES_PUBLIC_PROBLEM_H_ #define CERES_PUBLIC_PROBLEM_H_ #include #include #include #include #include "glog/logging.h" #include "ceres/internal/macros.h" #include "ceres/internal/port.h" #include "ceres/internal/scoped_ptr.h" #include "ceres/types.h" #include "ceres/internal/disable_warnings.h" namespace ceres { class CostFunction; class LossFunction; class LocalParameterization; class Solver; struct CRSMatrix; namespace internal { class Preprocessor; class ProblemImpl; class ParameterBlock; class ResidualBlock; } // namespace internal // A ResidualBlockId is an opaque handle clients can use to remove residual // blocks from a Problem after adding them. typedef internal::ResidualBlock* ResidualBlockId; // A class to represent non-linear least squares problems. Such // problems have a cost function that is a sum of error terms (known // as "residuals"), where each residual is a function of some subset // of the parameters. The cost function takes the form // // N 1 // SUM --- loss( || r_i1, r_i2,..., r_ik ||^2 ), // i=1 2 // // where // // r_ij is residual number i, component j; the residual is a // function of some subset of the parameters x1...xk. For // example, in a structure from motion problem a residual // might be the difference between a measured point in an // image and the reprojected position for the matching // camera, point pair. The residual would have two // components, error in x and error in y. // // loss(y) is the loss function; for example, squared error or // Huber L1 loss. If loss(y) = y, then the cost function is // non-robustified least squares. // // This class is specifically designed to address the important subset // of "sparse" least squares problems, where each component of the // residual depends only on a small number number of parameters, even // though the total number of residuals and parameters may be very // large. This property affords tremendous gains in scale, allowing // efficient solving of large problems that are otherwise // inaccessible. // // The canonical example of a sparse least squares problem is // "structure-from-motion" (SFM), where the parameters are points and // cameras, and residuals are reprojection errors. Typically a single // residual will depend only on 9 parameters (3 for the point, 6 for // the camera). // // To create a least squares problem, use the AddResidualBlock() and // AddParameterBlock() methods, documented below. Here is an example least // squares problem containing 3 parameter blocks of sizes 3, 4 and 5 // respectively and two residual terms of size 2 and 6: // // double x1[] = { 1.0, 2.0, 3.0 }; // double x2[] = { 1.0, 2.0, 3.0, 5.0 }; // double x3[] = { 1.0, 2.0, 3.0, 6.0, 7.0 }; // // Problem problem; // // problem.AddResidualBlock(new MyUnaryCostFunction(...), x1); // problem.AddResidualBlock(new MyBinaryCostFunction(...), x2, x3); // // Please see cost_function.h for details of the CostFunction object. class CERES_EXPORT Problem { public: struct CERES_EXPORT Options { Options() : cost_function_ownership(TAKE_OWNERSHIP), loss_function_ownership(TAKE_OWNERSHIP), local_parameterization_ownership(TAKE_OWNERSHIP), enable_fast_removal(false), disable_all_safety_checks(false) {} // These flags control whether the Problem object owns the cost // functions, loss functions, and parameterizations passed into // the Problem. If set to TAKE_OWNERSHIP, then the problem object // will delete the corresponding cost or loss functions on // destruction. The destructor is careful to delete the pointers // only once, since sharing cost/loss/parameterizations is // allowed. Ownership cost_function_ownership; Ownership loss_function_ownership; Ownership local_parameterization_ownership; // If true, trades memory for faster RemoveResidualBlock() and // RemoveParameterBlock() operations. // // By default, RemoveParameterBlock() and RemoveResidualBlock() take time // proportional to the size of the entire problem. If you only ever remove // parameters or residuals from the problem occassionally, this might be // acceptable. However, if you have memory to spare, enable this option to // make RemoveParameterBlock() take time proportional to the number of // residual blocks that depend on it, and RemoveResidualBlock() take (on // average) constant time. // // The increase in memory usage is twofold: an additonal hash set per // parameter block containing all the residuals that depend on the parameter // block; and a hash set in the problem containing all residuals. bool enable_fast_removal; // By default, Ceres performs a variety of safety checks when constructing // the problem. There is a small but measurable performance penalty to // these checks, typically around 5% of construction time. If you are sure // your problem construction is correct, and 5% of the problem construction // time is truly an overhead you want to avoid, then you can set // disable_all_safety_checks to true. // // WARNING: Do not set this to true, unless you are absolutely sure of what // you are doing. bool disable_all_safety_checks; }; // The default constructor is equivalent to the // invocation Problem(Problem::Options()). Problem(); explicit Problem(const Options& options); ~Problem(); // Add a residual block to the overall cost function. The cost // function carries with it information about the sizes of the // parameter blocks it expects. The function checks that these match // the sizes of the parameter blocks listed in parameter_blocks. The // program aborts if a mismatch is detected. loss_function can be // NULL, in which case the cost of the term is just the squared norm // of the residuals. // // The user has the option of explicitly adding the parameter blocks // using AddParameterBlock. This causes additional correctness // checking; however, AddResidualBlock implicitly adds the parameter // blocks if they are not present, so calling AddParameterBlock // explicitly is not required. // // The Problem object by default takes ownership of the // cost_function and loss_function pointers. These objects remain // live for the life of the Problem object. If the user wishes to // keep control over the destruction of these objects, then they can // do this by setting the corresponding enums in the Options struct. // // Note: Even though the Problem takes ownership of cost_function // and loss_function, it does not preclude the user from re-using // them in another residual block. The destructor takes care to call // delete on each cost_function or loss_function pointer only once, // regardless of how many residual blocks refer to them. // // Example usage: // // double x1[] = {1.0, 2.0, 3.0}; // double x2[] = {1.0, 2.0, 5.0, 6.0}; // double x3[] = {3.0, 6.0, 2.0, 5.0, 1.0}; // // Problem problem; // // problem.AddResidualBlock(new MyUnaryCostFunction(...), NULL, x1); // problem.AddResidualBlock(new MyBinaryCostFunction(...), NULL, x2, x1); // ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, const vector& parameter_blocks); // Convenience methods for adding residuals with a small number of // parameters. This is the common case. Instead of specifying the // parameter block arguments as a vector, list them as pointers. ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6, double* x7); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6, double* x7, double* x8); ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, double* x1, double* x2, double* x3, double* x4, double* x5, double* x6, double* x7, double* x8, double* x9); // Add a parameter block with appropriate size to the problem. // Repeated calls with the same arguments are ignored. Repeated // calls with the same double pointer but a different size results // in undefined behaviour. void AddParameterBlock(double* values, int size); // Add a parameter block with appropriate size and parameterization // to the problem. Repeated calls with the same arguments are // ignored. Repeated calls with the same double pointer but a // different size results in undefined behaviour. void AddParameterBlock(double* values, int size, LocalParameterization* local_parameterization); // Remove a parameter block from the problem. The parameterization of the // parameter block, if it exists, will persist until the deletion of the // problem (similar to cost/loss functions in residual block removal). Any // residual blocks that depend on the parameter are also removed, as // described above in RemoveResidualBlock(). // // If Problem::Options::enable_fast_removal is true, then the // removal is fast (almost constant time). Otherwise, removing a parameter // block will incur a scan of the entire Problem object. // // WARNING: Removing a residual or parameter block will destroy the implicit // ordering, rendering the jacobian or residuals returned from the solver // uninterpretable. If you depend on the evaluated jacobian, do not use // remove! This may change in a future release. void RemoveParameterBlock(double* values); // Remove a residual block from the problem. Any parameters that the residual // block depends on are not removed. The cost and loss functions for the // residual block will not get deleted immediately; won't happen until the // problem itself is deleted. // // WARNING: Removing a residual or parameter block will destroy the implicit // ordering, rendering the jacobian or residuals returned from the solver // uninterpretable. If you depend on the evaluated jacobian, do not use // remove! This may change in a future release. void RemoveResidualBlock(ResidualBlockId residual_block); // Hold the indicated parameter block constant during optimization. void SetParameterBlockConstant(double* values); // Allow the indicated parameter block to vary during optimization. void SetParameterBlockVariable(double* values); // Set the local parameterization for one of the parameter blocks. // The local_parameterization is owned by the Problem by default. It // is acceptable to set the same parameterization for multiple // parameters; the destructor is careful to delete local // parameterizations only once. The local parameterization can only // be set once per parameter, and cannot be changed once set. void SetParameterization(double* values, LocalParameterization* local_parameterization); // Get the local parameterization object associated with this // parameter block. If there is no parameterization object // associated then NULL is returned. const LocalParameterization* GetParameterization(double* values) const; // Set the lower/upper bound for the parameter with position "index". void SetParameterLowerBound(double* values, int index, double lower_bound); void SetParameterUpperBound(double* values, int index, double upper_bound); // Number of parameter blocks in the problem. Always equals // parameter_blocks().size() and parameter_block_sizes().size(). int NumParameterBlocks() const; // The size of the parameter vector obtained by summing over the // sizes of all the parameter blocks. int NumParameters() const; // Number of residual blocks in the problem. Always equals // residual_blocks().size(). int NumResidualBlocks() const; // The size of the residual vector obtained by summing over the // sizes of all of the residual blocks. int NumResiduals() const; // The size of the parameter block. int ParameterBlockSize(const double* values) const; // The size of local parameterization for the parameter block. If // there is no local parameterization associated with this parameter // block, then ParameterBlockLocalSize = ParameterBlockSize. int ParameterBlockLocalSize(const double* values) const; // Is the given parameter block present in this problem or not? bool HasParameterBlock(const double* values) const; // Fills the passed parameter_blocks vector with pointers to the // parameter blocks currently in the problem. After this call, // parameter_block.size() == NumParameterBlocks. void GetParameterBlocks(vector* parameter_blocks) const; // Fills the passed residual_blocks vector with pointers to the // residual blocks currently in the problem. After this call, // residual_blocks.size() == NumResidualBlocks. void GetResidualBlocks(vector* residual_blocks) const; // Get all the parameter blocks that depend on the given residual block. void GetParameterBlocksForResidualBlock( const ResidualBlockId residual_block, vector* parameter_blocks) const; // Get all the residual blocks that depend on the given parameter block. // // If Problem::Options::enable_fast_removal is true, then // getting the residual blocks is fast and depends only on the number of // residual blocks. Otherwise, getting the residual blocks for a parameter // block will incur a scan of the entire Problem object. void GetResidualBlocksForParameterBlock( const double* values, vector* residual_blocks) const; // Options struct to control Problem::Evaluate. struct EvaluateOptions { EvaluateOptions() : apply_loss_function(true), num_threads(1) { } // The set of parameter blocks for which evaluation should be // performed. This vector determines the order that parameter // blocks occur in the gradient vector and in the columns of the // jacobian matrix. If parameter_blocks is empty, then it is // assumed to be equal to vector containing ALL the parameter // blocks. Generally speaking the parameter blocks will occur in // the order in which they were added to the problem. But, this // may change if the user removes any parameter blocks from the // problem. // // NOTE: This vector should contain the same pointers as the ones // used to add parameter blocks to the Problem. These parameter // block should NOT point to new memory locations. Bad things will // happen otherwise. vector parameter_blocks; // The set of residual blocks to evaluate. This vector determines // the order in which the residuals occur, and how the rows of the // jacobian are ordered. If residual_blocks is empty, then it is // assumed to be equal to the vector containing all the residual // blocks. If this vector is empty, then it is assumed to be equal // to a vector containing ALL the residual blocks. Generally // speaking the residual blocks will occur in the order in which // they were added to the problem. But, this may change if the // user removes any residual blocks from the problem. vector residual_blocks; // Even though the residual blocks in the problem may contain loss // functions, setting apply_loss_function to false will turn off // the application of the loss function to the output of the cost // function. This is of use for example if the user wishes to // analyse the solution quality by studying the distribution of // residuals before and after the solve. bool apply_loss_function; int num_threads; }; // Evaluate Problem. Any of the output pointers can be NULL. Which // residual blocks and parameter blocks are used is controlled by // the EvaluateOptions struct above. // // Note 1: The evaluation will use the values stored in the memory // locations pointed to by the parameter block pointers used at the // time of the construction of the problem. i.e., // // Problem problem; // double x = 1; // problem.AddResidualBlock(new MyCostFunction, NULL, &x); // // double cost = 0.0; // problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL); // // The cost is evaluated at x = 1. If you wish to evaluate the // problem at x = 2, then // // x = 2; // problem.Evaluate(Problem::EvaluateOptions(), &cost, NULL, NULL, NULL); // // is the way to do so. // // Note 2: If no local parameterizations are used, then the size of // the gradient vector (and the number of columns in the jacobian) // is the sum of the sizes of all the parameter blocks. If a // parameter block has a local parameterization, then it contributes // "LocalSize" entries to the gradient vector (and the number of // columns in the jacobian). bool Evaluate(const EvaluateOptions& options, double* cost, vector* residuals, vector* gradient, CRSMatrix* jacobian); private: friend class Solver; friend class Covariance; internal::scoped_ptr problem_impl_; CERES_DISALLOW_COPY_AND_ASSIGN(Problem); }; } // namespace ceres #include "ceres/internal/reenable_warnings.h" #endif // CERES_PUBLIC_PROBLEM_H_