// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "media/base/vector_math.h" #include "media/base/vector_math_testing.h" #include #include "base/logging.h" #include "build/build_config.h" // NaCl does not allow intrinsics. #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL) #include #define FMAC_FUNC FMAC_SSE #define FMUL_FUNC FMUL_SSE #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_SSE #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) #include #define FMAC_FUNC FMAC_NEON #define FMUL_FUNC FMUL_NEON #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_NEON #else #define FMAC_FUNC FMAC_C #define FMUL_FUNC FMUL_C #define EWMAAndMaxPower_FUNC EWMAAndMaxPower_C #endif namespace media { namespace vector_math { void FMAC(const float src[], float scale, int len, float dest[]) { // Ensure |src| and |dest| are 16-byte aligned. DCHECK_EQ(0u, reinterpret_cast(src) & (kRequiredAlignment - 1)); DCHECK_EQ(0u, reinterpret_cast(dest) & (kRequiredAlignment - 1)); return FMAC_FUNC(src, scale, len, dest); } void FMAC_C(const float src[], float scale, int len, float dest[]) { for (int i = 0; i < len; ++i) dest[i] += src[i] * scale; } void FMUL(const float src[], float scale, int len, float dest[]) { // Ensure |src| and |dest| are 16-byte aligned. DCHECK_EQ(0u, reinterpret_cast(src) & (kRequiredAlignment - 1)); DCHECK_EQ(0u, reinterpret_cast(dest) & (kRequiredAlignment - 1)); return FMUL_FUNC(src, scale, len, dest); } void FMUL_C(const float src[], float scale, int len, float dest[]) { for (int i = 0; i < len; ++i) dest[i] = src[i] * scale; } void Crossfade(const float src[], int len, float dest[]) { float cf_ratio = 0; const float cf_increment = 1.0f / len; for (int i = 0; i < len; ++i, cf_ratio += cf_increment) dest[i] = (1.0f - cf_ratio) * src[i] + cf_ratio * dest[i]; } std::pair EWMAAndMaxPower( float initial_value, const float src[], int len, float smoothing_factor) { // Ensure |src| is 16-byte aligned. DCHECK_EQ(0u, reinterpret_cast(src) & (kRequiredAlignment - 1)); return EWMAAndMaxPower_FUNC(initial_value, src, len, smoothing_factor); } std::pair EWMAAndMaxPower_C( float initial_value, const float src[], int len, float smoothing_factor) { std::pair result(initial_value, 0.0f); const float weight_prev = 1.0f - smoothing_factor; for (int i = 0; i < len; ++i) { result.first *= weight_prev; const float sample = src[i]; const float sample_squared = sample * sample; result.first += sample_squared * smoothing_factor; result.second = std::max(result.second, sample_squared); } return result; } #if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_NACL) void FMUL_SSE(const float src[], float scale, int len, float dest[]) { const int rem = len % 4; const int last_index = len - rem; __m128 m_scale = _mm_set_ps1(scale); for (int i = 0; i < last_index; i += 4) _mm_store_ps(dest + i, _mm_mul_ps(_mm_load_ps(src + i), m_scale)); // Handle any remaining values that wouldn't fit in an SSE pass. for (int i = last_index; i < len; ++i) dest[i] = src[i] * scale; } void FMAC_SSE(const float src[], float scale, int len, float dest[]) { const int rem = len % 4; const int last_index = len - rem; __m128 m_scale = _mm_set_ps1(scale); for (int i = 0; i < last_index; i += 4) { _mm_store_ps(dest + i, _mm_add_ps(_mm_load_ps(dest + i), _mm_mul_ps(_mm_load_ps(src + i), m_scale))); } // Handle any remaining values that wouldn't fit in an SSE pass. for (int i = last_index; i < len; ++i) dest[i] += src[i] * scale; } // Convenience macro to extract float 0 through 3 from the vector |a|. This is // needed because compilers other than clang don't support access via // operator[](). #define EXTRACT_FLOAT(a, i) \ (i == 0 ? \ _mm_cvtss_f32(a) : \ _mm_cvtss_f32(_mm_shuffle_ps(a, a, i))) std::pair EWMAAndMaxPower_SSE( float initial_value, const float src[], int len, float smoothing_factor) { // When the recurrence is unrolled, we see that we can split it into 4 // separate lanes of evaluation: // // y[n] = a(S[n]^2) + (1-a)(y[n-1]) // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ... // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) // // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ... // // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in // each of the 4 lanes, and then combine them to give y[n]. const int rem = len % 4; const int last_index = len - rem; const __m128 smoothing_factor_x4 = _mm_set_ps1(smoothing_factor); const float weight_prev = 1.0f - smoothing_factor; const __m128 weight_prev_x4 = _mm_set_ps1(weight_prev); const __m128 weight_prev_squared_x4 = _mm_mul_ps(weight_prev_x4, weight_prev_x4); const __m128 weight_prev_4th_x4 = _mm_mul_ps(weight_prev_squared_x4, weight_prev_squared_x4); // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and // 0, respectively. __m128 max_x4 = _mm_setzero_ps(); __m128 ewma_x4 = _mm_setr_ps(0.0f, 0.0f, 0.0f, initial_value); int i; for (i = 0; i < last_index; i += 4) { ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_4th_x4); const __m128 sample_x4 = _mm_load_ps(src + i); const __m128 sample_squared_x4 = _mm_mul_ps(sample_x4, sample_x4); max_x4 = _mm_max_ps(max_x4, sample_squared_x4); // Note: The compiler optimizes this to a single multiply-and-accumulate // instruction: ewma_x4 = _mm_add_ps(ewma_x4, _mm_mul_ps(sample_squared_x4, smoothing_factor_x4)); } // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) float ewma = EXTRACT_FLOAT(ewma_x4, 3); ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4); ewma += EXTRACT_FLOAT(ewma_x4, 2); ewma_x4 = _mm_mul_ps(ewma_x4, weight_prev_x4); ewma += EXTRACT_FLOAT(ewma_x4, 1); ewma_x4 = _mm_mul_ss(ewma_x4, weight_prev_x4); ewma += EXTRACT_FLOAT(ewma_x4, 0); // Fold the maximums together to get the overall maximum. max_x4 = _mm_max_ps(max_x4, _mm_shuffle_ps(max_x4, max_x4, _MM_SHUFFLE(3, 3, 1, 1))); max_x4 = _mm_max_ss(max_x4, _mm_shuffle_ps(max_x4, max_x4, 2)); std::pair result(ewma, EXTRACT_FLOAT(max_x4, 0)); // Handle remaining values at the end of |src|. for (; i < len; ++i) { result.first *= weight_prev; const float sample = src[i]; const float sample_squared = sample * sample; result.first += sample_squared * smoothing_factor; result.second = std::max(result.second, sample_squared); } return result; } #endif #if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON) void FMAC_NEON(const float src[], float scale, int len, float dest[]) { const int rem = len % 4; const int last_index = len - rem; float32x4_t m_scale = vmovq_n_f32(scale); for (int i = 0; i < last_index; i += 4) { vst1q_f32(dest + i, vmlaq_f32( vld1q_f32(dest + i), vld1q_f32(src + i), m_scale)); } // Handle any remaining values that wouldn't fit in an NEON pass. for (int i = last_index; i < len; ++i) dest[i] += src[i] * scale; } void FMUL_NEON(const float src[], float scale, int len, float dest[]) { const int rem = len % 4; const int last_index = len - rem; float32x4_t m_scale = vmovq_n_f32(scale); for (int i = 0; i < last_index; i += 4) vst1q_f32(dest + i, vmulq_f32(vld1q_f32(src + i), m_scale)); // Handle any remaining values that wouldn't fit in an NEON pass. for (int i = last_index; i < len; ++i) dest[i] = src[i] * scale; } std::pair EWMAAndMaxPower_NEON( float initial_value, const float src[], int len, float smoothing_factor) { // When the recurrence is unrolled, we see that we can split it into 4 // separate lanes of evaluation: // // y[n] = a(S[n]^2) + (1-a)(y[n-1]) // = a(S[n]^2) + (1-a)^1(aS[n-1]^2) + (1-a)^2(aS[n-2]^2) + ... // = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) // // where z[n] = a(S[n]^2) + (1-a)^4(z[n-4]) + (1-a)^8(z[n-8]) + ... // // Thus, the strategy here is to compute z[n], z[n-1], z[n-2], and z[n-3] in // each of the 4 lanes, and then combine them to give y[n]. const int rem = len % 4; const int last_index = len - rem; const float32x4_t smoothing_factor_x4 = vdupq_n_f32(smoothing_factor); const float weight_prev = 1.0f - smoothing_factor; const float32x4_t weight_prev_x4 = vdupq_n_f32(weight_prev); const float32x4_t weight_prev_squared_x4 = vmulq_f32(weight_prev_x4, weight_prev_x4); const float32x4_t weight_prev_4th_x4 = vmulq_f32(weight_prev_squared_x4, weight_prev_squared_x4); // Compute z[n], z[n-1], z[n-2], and z[n-3] in parallel in lanes 3, 2, 1 and // 0, respectively. float32x4_t max_x4 = vdupq_n_f32(0.0f); float32x4_t ewma_x4 = vsetq_lane_f32(initial_value, vdupq_n_f32(0.0f), 3); int i; for (i = 0; i < last_index; i += 4) { ewma_x4 = vmulq_f32(ewma_x4, weight_prev_4th_x4); const float32x4_t sample_x4 = vld1q_f32(src + i); const float32x4_t sample_squared_x4 = vmulq_f32(sample_x4, sample_x4); max_x4 = vmaxq_f32(max_x4, sample_squared_x4); ewma_x4 = vmlaq_f32(ewma_x4, sample_squared_x4, smoothing_factor_x4); } // y[n] = z[n] + (1-a)^1(z[n-1]) + (1-a)^2(z[n-2]) + (1-a)^3(z[n-3]) float ewma = vgetq_lane_f32(ewma_x4, 3); ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); ewma += vgetq_lane_f32(ewma_x4, 2); ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); ewma += vgetq_lane_f32(ewma_x4, 1); ewma_x4 = vmulq_f32(ewma_x4, weight_prev_x4); ewma += vgetq_lane_f32(ewma_x4, 0); // Fold the maximums together to get the overall maximum. float32x2_t max_x2 = vpmax_f32(vget_low_f32(max_x4), vget_high_f32(max_x4)); max_x2 = vpmax_f32(max_x2, max_x2); std::pair result(ewma, vget_lane_f32(max_x2, 0)); // Handle remaining values at the end of |src|. for (; i < len; ++i) { result.first *= weight_prev; const float sample = src[i]; const float sample_squared = sample * sample; result.first += sample_squared * smoothing_factor; result.second = std::max(result.second, sample_squared); } return result; } #endif } // namespace vector_math } // namespace media