// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "base/logging.h" #include "skia/ext/convolver.h" #include "skia/ext/convolver_SSE2.h" #include "skia/ext/convolver_mips_dspr2.h" #include "third_party/skia/include/core/SkSize.h" #include "third_party/skia/include/core/SkTypes.h" namespace skia { namespace { // Converts the argument to an 8-bit unsigned value by clamping to the range // 0-255. inline unsigned char ClampTo8(int a) { if (static_cast(a) < 256) return a; // Avoid the extra check in the common case. if (a < 0) return 0; return 255; } // Takes the value produced by accumulating element-wise product of image with // a kernel and brings it back into range. // All of the filter scaling factors are in fixed point with kShiftBits bits of // fractional part. inline unsigned char BringBackTo8(int a, bool take_absolute) { a >>= ConvolutionFilter1D::kShiftBits; if (take_absolute) a = std::abs(a); return ClampTo8(a); } // Stores a list of rows in a circular buffer. The usage is you write into it // by calling AdvanceRow. It will keep track of which row in the buffer it // should use next, and the total number of rows added. class CircularRowBuffer { public: // The number of pixels in each row is given in |source_row_pixel_width|. // The maximum number of rows needed in the buffer is |max_y_filter_size| // (we only need to store enough rows for the biggest filter). // // We use the |first_input_row| to compute the coordinates of all of the // following rows returned by Advance(). CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, int first_input_row) : row_byte_width_(dest_row_pixel_width * 4), num_rows_(max_y_filter_size), next_row_(0), next_row_coordinate_(first_input_row) { buffer_.resize(row_byte_width_ * max_y_filter_size); row_addresses_.resize(num_rows_); } // Moves to the next row in the buffer, returning a pointer to the beginning // of it. unsigned char* AdvanceRow() { unsigned char* row = &buffer_[next_row_ * row_byte_width_]; next_row_coordinate_++; // Set the pointer to the next row to use, wrapping around if necessary. next_row_++; if (next_row_ == num_rows_) next_row_ = 0; return row; } // Returns a pointer to an "unrolled" array of rows. These rows will start // at the y coordinate placed into |*first_row_index| and will continue in // order for the maximum number of rows in this circular buffer. // // The |first_row_index_| may be negative. This means the circular buffer // starts before the top of the image (it hasn't been filled yet). unsigned char* const* GetRowAddresses(int* first_row_index) { // Example for a 4-element circular buffer holding coords 6-9. // Row 0 Coord 8 // Row 1 Coord 9 // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. // Row 3 Coord 7 // // The "next" row is also the first (lowest) coordinate. This computation // may yield a negative value, but that's OK, the math will work out // since the user of this buffer will compute the offset relative // to the first_row_index and the negative rows will never be used. *first_row_index = next_row_coordinate_ - num_rows_; int cur_row = next_row_; for (int i = 0; i < num_rows_; i++) { row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; // Advance to the next row, wrapping if necessary. cur_row++; if (cur_row == num_rows_) cur_row = 0; } return &row_addresses_[0]; } private: // The buffer storing the rows. They are packed, each one row_byte_width_. std::vector buffer_; // Number of bytes per row in the |buffer_|. int row_byte_width_; // The number of rows available in the buffer. int num_rows_; // The next row index we should write into. This wraps around as the // circular buffer is used. int next_row_; // The y coordinate of the |next_row_|. This is incremented each time a // new row is appended and does not wrap. int next_row_coordinate_; // Buffer used by GetRowAddresses(). std::vector row_addresses_; }; // Convolves horizontally along a single row. The row data is given in // |src_data| and continues for the num_values() of the filter. template void ConvolveHorizontally(const unsigned char* src_data, const ConvolutionFilter1D& filter, unsigned char* out_row) { // Loop over each pixel on this row in the output image. int num_values = filter.num_values(); for (int out_x = 0; out_x < num_values; out_x++) { // Get the filter that determines the current output pixel. int filter_offset, filter_length; const ConvolutionFilter1D::Fixed* filter_values = filter.FilterForValue(out_x, &filter_offset, &filter_length); // Compute the first pixel in this row that the filter affects. It will // touch |filter_length| pixels (4 bytes each) after this. const unsigned char* row_to_filter = &src_data[filter_offset * 4]; // Apply the filter to the row to get the destination pixel in |accum|. int accum[4] = {0}; for (int filter_x = 0; filter_x < filter_length; filter_x++) { ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; if (has_alpha) accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of fractional part. accum[0] >>= ConvolutionFilter1D::kShiftBits; accum[1] >>= ConvolutionFilter1D::kShiftBits; accum[2] >>= ConvolutionFilter1D::kShiftBits; if (has_alpha) accum[3] >>= ConvolutionFilter1D::kShiftBits; // Store the new pixel. out_row[out_x * 4 + 0] = ClampTo8(accum[0]); out_row[out_x * 4 + 1] = ClampTo8(accum[1]); out_row[out_x * 4 + 2] = ClampTo8(accum[2]); if (has_alpha) out_row[out_x * 4 + 3] = ClampTo8(accum[3]); } } // Does vertical convolution to produce one output row. The filter values and // length are given in the first two parameters. These are applied to each // of the rows pointed to in the |source_data_rows| array, with each row // being |pixel_width| wide. // // The output must have room for |pixel_width * 4| bytes. template void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row) { // We go through each column in the output and do a vertical convolution, // generating one output pixel each time. for (int out_x = 0; out_x < pixel_width; out_x++) { // Compute the number of bytes over in each row that the current column // we're convolving starts at. The pixel will cover the next 4 bytes. int byte_offset = out_x * 4; // Apply the filter to one column of pixels. int accum[4] = {0}; for (int filter_y = 0; filter_y < filter_length; filter_y++) { ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; if (has_alpha) accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; } // Bring this value back in range. All of the filter scaling factors // are in fixed point with kShiftBits bits of precision. accum[0] >>= ConvolutionFilter1D::kShiftBits; accum[1] >>= ConvolutionFilter1D::kShiftBits; accum[2] >>= ConvolutionFilter1D::kShiftBits; if (has_alpha) accum[3] >>= ConvolutionFilter1D::kShiftBits; // Store the new pixel. out_row[byte_offset + 0] = ClampTo8(accum[0]); out_row[byte_offset + 1] = ClampTo8(accum[1]); out_row[byte_offset + 2] = ClampTo8(accum[2]); if (has_alpha) { unsigned char alpha = ClampTo8(accum[3]); // Make sure the alpha channel doesn't come out smaller than any of the // color channels. We use premultipled alpha channels, so this should // never happen, but rounding errors will cause this from time to time. // These "impossible" colors will cause overflows (and hence random pixel // values) when the resulting bitmap is drawn to the screen. // // We only need to do this when generating the final output row (here). int max_color_channel = std::max(out_row[byte_offset + 0], std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); if (alpha < max_color_channel) out_row[byte_offset + 3] = max_color_channel; else out_row[byte_offset + 3] = alpha; } else { // No alpha channel, the image is opaque. out_row[byte_offset + 3] = 0xff; } } } void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row, bool source_has_alpha) { if (source_has_alpha) { ConvolveVertically(filter_values, filter_length, source_data_rows, pixel_width, out_row); } else { ConvolveVertically(filter_values, filter_length, source_data_rows, pixel_width, out_row); } } } // namespace // ConvolutionFilter1D --------------------------------------------------------- ConvolutionFilter1D::ConvolutionFilter1D() : max_filter_(0) { } ConvolutionFilter1D::~ConvolutionFilter1D() { } void ConvolutionFilter1D::AddFilter(int filter_offset, const float* filter_values, int filter_length) { SkASSERT(filter_length > 0); std::vector fixed_values; fixed_values.reserve(filter_length); for (int i = 0; i < filter_length; ++i) fixed_values.push_back(FloatToFixed(filter_values[i])); AddFilter(filter_offset, &fixed_values[0], filter_length); } void ConvolutionFilter1D::AddFilter(int filter_offset, const Fixed* filter_values, int filter_length) { // It is common for leading/trailing filter values to be zeros. In such // cases it is beneficial to only store the central factors. // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on // a 1080p image this optimization gives a ~10% speed improvement. int filter_size = filter_length; int first_non_zero = 0; while (first_non_zero < filter_length && filter_values[first_non_zero] == 0) first_non_zero++; if (first_non_zero < filter_length) { // Here we have at least one non-zero factor. int last_non_zero = filter_length - 1; while (last_non_zero >= 0 && filter_values[last_non_zero] == 0) last_non_zero--; filter_offset += first_non_zero; filter_length = last_non_zero + 1 - first_non_zero; SkASSERT(filter_length > 0); for (int i = first_non_zero; i <= last_non_zero; i++) filter_values_.push_back(filter_values[i]); } else { // Here all the factors were zeroes. filter_length = 0; } FilterInstance instance; // We pushed filter_length elements onto filter_values_ instance.data_location = (static_cast(filter_values_.size()) - filter_length); instance.offset = filter_offset; instance.trimmed_length = filter_length; instance.length = filter_size; filters_.push_back(instance); max_filter_ = std::max(max_filter_, filter_length); } const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter( int* specified_filter_length, int* filter_offset, int* filter_length) const { const FilterInstance& filter = filters_[0]; *filter_offset = filter.offset; *filter_length = filter.trimmed_length; *specified_filter_length = filter.length; if (filter.trimmed_length == 0) return NULL; return &filter_values_[filter.data_location]; } typedef void (*ConvolveVertically_pointer)( const ConvolutionFilter1D::Fixed* filter_values, int filter_length, unsigned char* const* source_data_rows, int pixel_width, unsigned char* out_row, bool has_alpha); typedef void (*Convolve4RowsHorizontally_pointer)( const unsigned char* src_data[4], const ConvolutionFilter1D& filter, unsigned char* out_row[4]); typedef void (*ConvolveHorizontally_pointer)( const unsigned char* src_data, const ConvolutionFilter1D& filter, unsigned char* out_row, bool has_alpha); struct ConvolveProcs { // This is how many extra pixels may be read by the // conolve*horizontally functions. int extra_horizontal_reads; ConvolveVertically_pointer convolve_vertically; Convolve4RowsHorizontally_pointer convolve_4rows_horizontally; ConvolveHorizontally_pointer convolve_horizontally; }; void SetupSIMD(ConvolveProcs *procs) { #ifdef SIMD_SSE2 base::CPU cpu; if (cpu.has_sse2()) { procs->extra_horizontal_reads = 3; procs->convolve_vertically = &ConvolveVertically_SSE2; procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2; procs->convolve_horizontally = &ConvolveHorizontally_SSE2; } #elif defined SIMD_MIPS_DSPR2 procs->extra_horizontal_reads = 3; procs->convolve_vertically = &ConvolveVertically_mips_dspr2; procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2; #endif } void BGRAConvolve2D(const unsigned char* source_data, int source_byte_row_stride, bool source_has_alpha, const ConvolutionFilter1D& filter_x, const ConvolutionFilter1D& filter_y, int output_byte_row_stride, unsigned char* output, bool use_simd_if_possible) { ConvolveProcs simd; simd.extra_horizontal_reads = 0; simd.convolve_vertically = NULL; simd.convolve_4rows_horizontally = NULL; simd.convolve_horizontally = NULL; if (use_simd_if_possible) { SetupSIMD(&simd); } int max_y_filter_size = filter_y.max_filter(); // The next row in the input that we will generate a horizontally // convolved row for. If the filter doesn't start at the beginning of the // image (this is the case when we are only resizing a subset), then we // don't want to generate any output rows before that. Compute the starting // row for convolution as the first pixel for the first vertical filter. int filter_offset, filter_length; const ConvolutionFilter1D::Fixed* filter_values = filter_y.FilterForValue(0, &filter_offset, &filter_length); int next_x_row = filter_offset; // We loop over each row in the input doing a horizontal convolution. This // will result in a horizontally convolved image. We write the results into // a circular buffer of convolved rows and do vertical convolution as rows // are available. This prevents us from having to store the entire // intermediate image and helps cache coherency. // We will need four extra rows to allow horizontal convolution could be done // simultaneously. We also padding each row in row buffer to be aligned-up to // 16 bytes. // TODO(jiesun): We do not use aligned load from row buffer in vertical // convolution pass yet. Somehow Windows does not like it. int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; int row_buffer_height = max_y_filter_size + (simd.convolve_4rows_horizontally ? 4 : 0); CircularRowBuffer row_buffer(row_buffer_width, row_buffer_height, filter_offset); // Loop over every possible output row, processing just enough horizontal // convolutions to run each subsequent vertical convolution. SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); int num_output_rows = filter_y.num_values(); // We need to check which is the last line to convolve before we advance 4 // lines in one iteration. int last_filter_offset, last_filter_length; // SSE2 can access up to 3 extra pixels past the end of the // buffer. At the bottom of the image, we have to be careful // not to access data past the end of the buffer. Normally // we fall back to the C++ implementation for the last row. // If the last row is less than 3 pixels wide, we may have to fall // back to the C++ version for more rows. Compute how many // rows we need to avoid the SSE implementation for here. filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, &last_filter_length); int avoid_simd_rows = 1 + simd.extra_horizontal_reads / (last_filter_offset + last_filter_length); filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, &last_filter_length); for (int out_y = 0; out_y < num_output_rows; out_y++) { filter_values = filter_y.FilterForValue(out_y, &filter_offset, &filter_length); // Generate output rows until we have enough to run the current filter. while (next_x_row < filter_offset + filter_length) { if (simd.convolve_4rows_horizontally && next_x_row + 3 < last_filter_offset + last_filter_length - avoid_simd_rows) { const unsigned char* src[4]; unsigned char* out_row[4]; for (int i = 0; i < 4; ++i) { src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; out_row[i] = row_buffer.AdvanceRow(); } simd.convolve_4rows_horizontally(src, filter_x, out_row); next_x_row += 4; } else { // Check if we need to avoid SSE2 for this row. if (simd.convolve_horizontally && next_x_row < last_filter_offset + last_filter_length - avoid_simd_rows) { simd.convolve_horizontally( &source_data[next_x_row * source_byte_row_stride], filter_x, row_buffer.AdvanceRow(), source_has_alpha); } else { if (source_has_alpha) { ConvolveHorizontally( &source_data[next_x_row * source_byte_row_stride], filter_x, row_buffer.AdvanceRow()); } else { ConvolveHorizontally( &source_data[next_x_row * source_byte_row_stride], filter_x, row_buffer.AdvanceRow()); } } next_x_row++; } } // Compute where in the output image this row of final data will go. unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; // Get the list of rows that the circular buffer has, in order. int first_row_in_circular_buffer; unsigned char* const* rows_to_convolve = row_buffer.GetRowAddresses(&first_row_in_circular_buffer); // Now compute the start of the subset of those rows that the filter // needs. unsigned char* const* first_row_for_filter = &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; if (simd.convolve_vertically) { simd.convolve_vertically(filter_values, filter_length, first_row_for_filter, filter_x.num_values(), cur_output_row, source_has_alpha); } else { ConvolveVertically(filter_values, filter_length, first_row_for_filter, filter_x.num_values(), cur_output_row, source_has_alpha); } } } void SingleChannelConvolveX1D(const unsigned char* source_data, int source_byte_row_stride, int input_channel_index, int input_channel_count, const ConvolutionFilter1D& filter, const SkISize& image_size, unsigned char* output, int output_byte_row_stride, int output_channel_index, int output_channel_count, bool absolute_values) { int filter_offset, filter_length, filter_size; // Very much unlike BGRAConvolve2D, here we expect to have the same filter // for all pixels. const ConvolutionFilter1D::Fixed* filter_values = filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); if (filter_values == NULL || image_size.width() < filter_size) { NOTREACHED(); return; } int centrepoint = filter_length / 2; if (filter_size - filter_offset != 2 * filter_offset) { // This means the original filter was not symmetrical AND // got clipped from one side more than from the other. centrepoint = filter_size / 2 - filter_offset; } const unsigned char* source_data_row = source_data; unsigned char* output_row = output; for (int r = 0; r < image_size.height(); ++r) { unsigned char* target_byte = output_row + output_channel_index; // Process the lead part, padding image to the left with the first pixel. int c = 0; for (; c < centrepoint; ++c, target_byte += output_channel_count) { int accval = 0; int i = 0; int pixel_byte_index = input_channel_index; for (; i < centrepoint - c; ++i) // Padding part. accval += filter_values[i] * source_data_row[pixel_byte_index]; for (; i < filter_length; ++i, pixel_byte_index += input_channel_count) accval += filter_values[i] * source_data_row[pixel_byte_index]; *target_byte = BringBackTo8(accval, absolute_values); } // Now for the main event. for (; c < image_size.width() - centrepoint; ++c, target_byte += output_channel_count) { int accval = 0; int pixel_byte_index = (c - centrepoint) * input_channel_count + input_channel_index; for (int i = 0; i < filter_length; ++i, pixel_byte_index += input_channel_count) { accval += filter_values[i] * source_data_row[pixel_byte_index]; } *target_byte = BringBackTo8(accval, absolute_values); } for (; c < image_size.width(); ++c, target_byte += output_channel_count) { int accval = 0; int overlap_taps = image_size.width() - c + centrepoint; int pixel_byte_index = (c - centrepoint) * input_channel_count + input_channel_index; int i = 0; for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count) accval += filter_values[i] * source_data_row[pixel_byte_index]; for (; i < filter_length; ++i) accval += filter_values[i] * source_data_row[pixel_byte_index]; *target_byte = BringBackTo8(accval, absolute_values); } source_data_row += source_byte_row_stride; output_row += output_byte_row_stride; } } void SingleChannelConvolveY1D(const unsigned char* source_data, int source_byte_row_stride, int input_channel_index, int input_channel_count, const ConvolutionFilter1D& filter, const SkISize& image_size, unsigned char* output, int output_byte_row_stride, int output_channel_index, int output_channel_count, bool absolute_values) { int filter_offset, filter_length, filter_size; // Very much unlike BGRAConvolve2D, here we expect to have the same filter // for all pixels. const ConvolutionFilter1D::Fixed* filter_values = filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); if (filter_values == NULL || image_size.height() < filter_size) { NOTREACHED(); return; } int centrepoint = filter_length / 2; if (filter_size - filter_offset != 2 * filter_offset) { // This means the original filter was not symmetrical AND // got clipped from one side more than from the other. centrepoint = filter_size / 2 - filter_offset; } for (int c = 0; c < image_size.width(); ++c) { unsigned char* target_byte = output + c * output_channel_count + output_channel_index; int r = 0; for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) { int accval = 0; int i = 0; int pixel_byte_index = c * input_channel_count + input_channel_index; for (; i < centrepoint - r; ++i) // Padding part. accval += filter_values[i] * source_data[pixel_byte_index]; for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride) accval += filter_values[i] * source_data[pixel_byte_index]; *target_byte = BringBackTo8(accval, absolute_values); } for (; r < image_size.height() - centrepoint; ++r, target_byte += output_byte_row_stride) { int accval = 0; int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + c * input_channel_count + input_channel_index; for (int i = 0; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride) { accval += filter_values[i] * source_data[pixel_byte_index]; } *target_byte = BringBackTo8(accval, absolute_values); } for (; r < image_size.height(); ++r, target_byte += output_byte_row_stride) { int accval = 0; int overlap_taps = image_size.height() - r + centrepoint; int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + c * input_channel_count + input_channel_index; int i = 0; for (; i < overlap_taps - 1; ++i, pixel_byte_index += source_byte_row_stride) { accval += filter_values[i] * source_data[pixel_byte_index]; } for (; i < filter_length; ++i) accval += filter_values[i] * source_data[pixel_byte_index]; *target_byte = BringBackTo8(accval, absolute_values); } } } void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter, float kernel_sigma, bool derivative) { DCHECK(filter != NULL); DCHECK_GT(kernel_sigma, 0.0); const int tail_length = static_cast(4.0f * kernel_sigma + 0.5f); const int kernel_size = tail_length * 2 + 1; const float sigmasq = kernel_sigma * kernel_sigma; std::vector kernel_weights(kernel_size, 0.0); float kernel_sum = 1.0f; kernel_weights[tail_length] = 1.0f; for (int ii = 1; ii <= tail_length; ++ii) { float v = std::exp(-0.5f * ii * ii / sigmasq); kernel_weights[tail_length + ii] = v; kernel_weights[tail_length - ii] = v; kernel_sum += 2.0f * v; } for (int i = 0; i < kernel_size; ++i) kernel_weights[i] /= kernel_sum; if (derivative) { kernel_weights[tail_length] = 0.0; for (int ii = 1; ii <= tail_length; ++ii) { float v = sigmasq * kernel_weights[tail_length + ii] / ii; kernel_weights[tail_length + ii] = v; kernel_weights[tail_length - ii] = -v; } } filter->AddFilter(0, &kernel_weights[0], kernel_weights.size()); } } // namespace skia