/* * Copyright (C) 2013 Google Inc. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following disclaimer * in the documentation and/or other materials provided with the * distribution. * * Neither the name of Google Inc. nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef WTF_PartitionAlloc_h #define WTF_PartitionAlloc_h // DESCRIPTION // partitionAlloc() / partitionAllocGeneric() and partitionFree() / // partitionFreeGeneric() are approximately analagous to malloc() and free(). // // The main difference is that a PartitionRoot / PartitionRootGeneric object // must be supplied to these functions, representing a specific "heap partition" // that will be used to satisfy the allocation. Different partitions are // guaranteed to exist in separate address spaces, including being separate from // the main system heap. If the contained objects are all freed, physical memory // is returned to the system but the address space remains reserved. // // THE ONLY LEGITIMATE WAY TO OBTAIN A PartitionRoot IS THROUGH THE // SizeSpecificPartitionAllocator / PartitionAllocatorGeneric classes. To // minimize the instruction count to the fullest extent possible, the // PartitonRoot is really just a header adjacent to other data areas provided // by the allocator class. // // The partitionAlloc() variant of the API has the following caveats: // - Allocations and frees against a single partition must be single threaded. // - Allocations must not exceed a max size, chosen at compile-time via a // templated parameter to PartitionAllocator. // - Allocation sizes must be aligned to the system pointer size. // - Allocations are bucketed exactly according to size. // // And for partitionAllocGeneric(): // - Multi-threaded use against a single partition is ok; locking is handled. // - Allocations of any arbitrary size can be handled (subject to a limit of // INT_MAX bytes for security reasons). // - Bucketing is by approximate size, for example an allocation of 4000 bytes // might be placed into a 4096-byte bucket. Bucket sizes are chosen to try and // keep worst-case waste to ~10%. // // The allocators are designed to be extremely fast, thanks to the following // properties and design: // - Just a single (reasonably predicatable) branch in the hot / fast path for // both allocating and (significantly) freeing. // - A minimal number of operations in the hot / fast path, with the slow paths // in separate functions, leading to the possibility of inlining. // - Each partition page (which is usually multiple physical pages) has a // metadata structure which allows fast mapping of free() address to an // underlying bucket. // - Supports a lock-free API for fast performance in single-threaded cases. // - The freelist for a given bucket is split across a number of partition // pages, enabling various simple tricks to try and minimize fragmentation. // - Fine-grained bucket sizes leading to less waste and better packing. // // The following security properties are provided at this time: // - Linear overflows cannot corrupt into the partition. // - Linear overflows cannot corrupt out of the partition. // - Freed pages will only be re-used within the partition. // (exception: large allocations > ~1MB) // - Freed pages will only hold same-sized objects when re-used. // - Dereference of freelist pointer should fault. // - Out-of-line main metadata: linear over or underflow cannot corrupt it. // - Partial pointer overwrite of freelist pointer should fault. // - Rudimentary double-free detection. // - Large allocations (> ~1MB) are guard-paged at the beginning and end. // // The following security properties could be investigated in the future: // - Per-object bucketing (instead of per-size) is mostly available at the API, // but not used yet. // - No randomness of freelist entries or bucket position. // - Better checking for wild pointers in free(). // - Better freelist masking function to guarantee fault on 32-bit. #include "wtf/Assertions.h" #include "wtf/BitwiseOperations.h" #include "wtf/ByteSwap.h" #include "wtf/CPU.h" #include "wtf/PageAllocator.h" #include "wtf/SpinLock.h" #include #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) #include #endif #ifndef NDEBUG #include #endif namespace WTF { // Maximum size of a partition's mappings. 2046MB. Note that the total amount of // bytes allocatable at the API will be smaller. This is because things like // guard pages, metadata, page headers and wasted space come out of the total. // The 2GB is not necessarily contiguous in virtual address space. static const size_t kMaxPartitionSize = 2046u * 1024u * 1024u; // Allocation granularity of sizeof(void*) bytes. static const size_t kAllocationGranularity = sizeof(void*); static const size_t kAllocationGranularityMask = kAllocationGranularity - 1; static const size_t kBucketShift = (kAllocationGranularity == 8) ? 3 : 2; // Underlying partition storage pages are a power-of-two size. It is typical // for a partition page to be based on multiple system pages. Most references to // "page" refer to partition pages. // We also have the concept of "super pages" -- these are the underlying system // allocations we make. Super pages contain multiple partition pages inside them // and include space for a small amount of metadata per partition page. // Inside super pages, we store "slot spans". A slot span is a continguous range // of one or more partition pages that stores allocations of the same size. // Slot span sizes are adjusted depending on the allocation size, to make sure // the packing does not lead to unused (wasted) space at the end of the last // system page of the span. For our current max slot span size of 64k and other // constant values, we pack _all_ partitionAllocGeneric() sizes perfectly up // against the end of a system page. static const size_t kPartitionPageShift = 14; // 16KB static const size_t kPartitionPageSize = 1 << kPartitionPageShift; static const size_t kPartitionPageOffsetMask = kPartitionPageSize - 1; static const size_t kPartitionPageBaseMask = ~kPartitionPageOffsetMask; static const size_t kMaxPartitionPagesPerSlotSpan = 4; // To avoid fragmentation via never-used freelist entries, we hand out partition // freelist sections gradually, in units of the dominant system page size. // What we're actually doing is avoiding filling the full partition page // (typically 16KB) will freelist pointers right away. Writing freelist // pointers will fault and dirty a private page, which is very wasteful if we // never actually store objects there. static const size_t kNumSystemPagesPerPartitionPage = kPartitionPageSize / kSystemPageSize; static const size_t kMaxSystemPagesPerSlotSpan = kNumSystemPagesPerPartitionPage * kMaxPartitionPagesPerSlotSpan; // We reserve virtual address space in 2MB chunks (aligned to 2MB as well). // These chunks are called "super pages". We do this so that we can store // metadata in the first few pages of each 2MB aligned section. This leads to // a very fast free(). We specifically choose 2MB because this virtual address // block represents a full but single PTE allocation on ARM, ia32 and x64. static const size_t kSuperPageShift = 21; // 2MB static const size_t kSuperPageSize = 1 << kSuperPageShift; static const size_t kSuperPageOffsetMask = kSuperPageSize - 1; static const size_t kSuperPageBaseMask = ~kSuperPageOffsetMask; static const size_t kNumPartitionPagesPerSuperPage = kSuperPageSize / kPartitionPageSize; static const size_t kPageMetadataShift = 5; // 32 bytes per partition page. static const size_t kPageMetadataSize = 1 << kPageMetadataShift; // The following kGeneric* constants apply to the generic variants of the API. // The "order" of an allocation is closely related to the power-of-two size of // the allocation. More precisely, the order is the bit index of the // most-significant-bit in the allocation size, where the bit numbers starts // at index 1 for the least-significant-bit. // In terms of allocation sizes, order 0 covers 0, order 1 covers 1, order 2 // covers 2->3, order 3 covers 4->7, order 4 covers 8->15. static const size_t kGenericMinBucketedOrder = 4; // 8 bytes. static const size_t kGenericMaxBucketedOrder = 20; // Largest bucketed order is 1<<(20-1) (storing 512KB -> almost 1MB) static const size_t kGenericNumBucketedOrders = (kGenericMaxBucketedOrder - kGenericMinBucketedOrder) + 1; static const size_t kGenericNumBucketsPerOrderBits = 3; // Eight buckets per order (for the higher orders), e.g. order 8 is 128, 144, 160, ..., 240 static const size_t kGenericNumBucketsPerOrder = 1 << kGenericNumBucketsPerOrderBits; static const size_t kGenericSmallestBucket = 1 << (kGenericMinBucketedOrder - 1); static const size_t kGenericMaxBucketSpacing = 1 << ((kGenericMaxBucketedOrder - 1) - kGenericNumBucketsPerOrderBits); static const size_t kGenericMaxBucketed = (1 << (kGenericMaxBucketedOrder - 1)) + ((kGenericNumBucketsPerOrder - 1) * kGenericMaxBucketSpacing); static const size_t kGenericMinDirectMappedDownsize = kGenericMaxBucketed + 1; // Limit when downsizing a direct mapping using realloc(). static const size_t kGenericMaxDirectMapped = INT_MAX - kSystemPageSize; static const size_t kBitsPerSizet = sizeof(void*) * CHAR_BIT; // Constants for the memory reclaim logic. static const size_t kMaxFreeableSpans = 16; #ifndef NDEBUG // These two byte values match tcmalloc. static const unsigned char kUninitializedByte = 0xAB; static const unsigned char kFreedByte = 0xCD; static const uint32_t kCookieValue = 0xDEADBEEFu; static const size_t kCookieSize = 16; // Handles alignment up to XMM instructions on Intel. #endif struct PartitionBucket; struct PartitionRootBase; struct PartitionFreelistEntry { PartitionFreelistEntry* next; }; // Some notes on page states. A page can be in one of three major states: // 1) Active. // 2) Full. // 3) Free. // An active page has available free slots. A full page has no free slots. A // free page has had its backing memory released back to the system. // There are two linked lists tracking the pages. The "active page" list is an // approximation of a list of active pages. It is an approximation because both // free and full pages may briefly be present in the list until we next do a // scan over it. The "free page" list is an accurate list of pages which have // been returned back to the system. // The significant page transitions are: // - free() will detect when a full page has a slot free()'d and immediately // return the page to the head of the active list. // - free() will detect when a page is fully emptied. It _may_ add it to the // free list and it _may_ leave it on the active list until a future list scan. // - malloc() _may_ scan the active page list in order to fulfil the request. // If it does this, full and free pages encountered will be booted out of the // active list. If there are no suitable active pages found, a free page (if one // exists) will be pulled from the free list on to the active list. struct PartitionPage { PartitionFreelistEntry* freelistHead; PartitionPage* nextPage; PartitionBucket* bucket; int16_t numAllocatedSlots; // Deliberately signed, -1 for free page, -n for full pages. uint16_t numUnprovisionedSlots; uint16_t pageOffset; int16_t freeCacheIndex; // -1 if not in the free cache. }; struct PartitionBucket { PartitionPage* activePagesHead; // Accessed most in hot path => goes first. PartitionPage* freePagesHead; uint32_t slotSize; uint16_t numSystemPagesPerSlotSpan; uint16_t numFullPages; }; // An "extent" is a span of consecutive superpages. We link to the partition's // next extent (if there is one) at the very start of a superpage's metadata // area. struct PartitionSuperPageExtentEntry { PartitionRootBase* root; char* superPageBase; char* superPagesEnd; PartitionSuperPageExtentEntry* next; }; struct WTF_EXPORT PartitionRootBase { size_t totalSizeOfCommittedPages; size_t totalSizeOfSuperPages; unsigned numBuckets; unsigned maxAllocation; bool initialized; char* nextSuperPage; char* nextPartitionPage; char* nextPartitionPageEnd; PartitionSuperPageExtentEntry* currentExtent; PartitionSuperPageExtentEntry* firstExtent; PartitionPage* globalEmptyPageRing[kMaxFreeableSpans]; size_t globalEmptyPageRingIndex; uintptr_t invertedSelf; static int gInitializedLock; static bool gInitialized; static PartitionPage gSeedPage; static PartitionBucket gPagedBucket; }; // Never instantiate a PartitionRoot directly, instead use PartitionAlloc. struct PartitionRoot : public PartitionRootBase { // The PartitionAlloc templated class ensures the following is correct. ALWAYS_INLINE PartitionBucket* buckets() { return reinterpret_cast(this + 1); } ALWAYS_INLINE const PartitionBucket* buckets() const { return reinterpret_cast(this + 1); } }; // Never instantiate a PartitionRootGeneric directly, instead use PartitionAllocatorGeneric. struct PartitionRootGeneric : public PartitionRootBase { int lock; // Some pre-computed constants. size_t orderIndexShifts[kBitsPerSizet + 1]; size_t orderSubIndexMasks[kBitsPerSizet + 1]; // The bucket lookup table lets us map a size_t to a bucket quickly. // The trailing +1 caters for the overflow case for very large allocation sizes. // It is one flat array instead of a 2D array because in the 2D world, we'd // need to index array[blah][max+1] which risks undefined behavior. PartitionBucket* bucketLookups[((kBitsPerSizet + 1) * kGenericNumBucketsPerOrder) + 1]; PartitionBucket buckets[kGenericNumBucketedOrders * kGenericNumBucketsPerOrder]; }; // Flags for partitionAllocGenericFlags. enum PartitionAllocFlags { PartitionAllocReturnNull = 1 << 0, }; WTF_EXPORT void partitionAllocInit(PartitionRoot*, size_t numBuckets, size_t maxAllocation); WTF_EXPORT bool partitionAllocShutdown(PartitionRoot*); WTF_EXPORT void partitionAllocGenericInit(PartitionRootGeneric*); WTF_EXPORT bool partitionAllocGenericShutdown(PartitionRootGeneric*); WTF_EXPORT NEVER_INLINE void* partitionAllocSlowPath(PartitionRootBase*, int, size_t, PartitionBucket*); WTF_EXPORT NEVER_INLINE void partitionFreeSlowPath(PartitionPage*); WTF_EXPORT NEVER_INLINE void* partitionReallocGeneric(PartitionRootGeneric*, void*, size_t); #ifndef NDEBUG WTF_EXPORT void partitionDumpStats(const PartitionRoot&); #endif ALWAYS_INLINE PartitionFreelistEntry* partitionFreelistMask(PartitionFreelistEntry* ptr) { // We use bswap on little endian as a fast mask for two reasons: // 1) If an object is freed and its vtable used where the attacker doesn't // get the chance to run allocations between the free and use, the vtable // dereference is likely to fault. // 2) If the attacker has a linear buffer overflow and elects to try and // corrupt a freelist pointer, partial pointer overwrite attacks are // thwarted. // For big endian, similar guarantees are arrived at with a negation. #if CPU(BIG_ENDIAN) uintptr_t masked = ~reinterpret_cast(ptr); #else uintptr_t masked = bswapuintptrt(reinterpret_cast(ptr)); #endif return reinterpret_cast(masked); } ALWAYS_INLINE size_t partitionCookieSizeAdjustAdd(size_t size) { #ifndef NDEBUG // Add space for cookies, checking for integer overflow. ASSERT(size + (2 * kCookieSize) > size); size += 2 * kCookieSize; #endif return size; } ALWAYS_INLINE size_t partitionCookieSizeAdjustSubtract(size_t size) { #ifndef NDEBUG // Remove space for cookies. ASSERT(size >= 2 * kCookieSize); size -= 2 * kCookieSize; #endif return size; } ALWAYS_INLINE void* partitionCookieFreePointerAdjust(void* ptr) { #ifndef NDEBUG // The value given to the application is actually just after the cookie. ptr = static_cast(ptr) - kCookieSize; #endif return ptr; } ALWAYS_INLINE void partitionCookieWriteValue(void* ptr) { #ifndef NDEBUG uint32_t* cookiePtr = reinterpret_cast(ptr); for (size_t i = 0; i < kCookieSize / sizeof(kCookieValue); ++i, ++cookiePtr) *cookiePtr = kCookieValue; #endif } ALWAYS_INLINE void partitionCookieCheckValue(void* ptr) { #ifndef NDEBUG uint32_t* cookiePtr = reinterpret_cast(ptr); for (size_t i = 0; i < kCookieSize / sizeof(kCookieValue); ++i, ++cookiePtr) ASSERT(*cookiePtr == kCookieValue); #endif } ALWAYS_INLINE char* partitionSuperPageToMetadataArea(char* ptr) { uintptr_t pointerAsUint = reinterpret_cast(ptr); ASSERT(!(pointerAsUint & kSuperPageOffsetMask)); // The metadata area is exactly one system page (the guard page) into the // super page. return reinterpret_cast(pointerAsUint + kSystemPageSize); } ALWAYS_INLINE PartitionPage* partitionPointerToPageNoAlignmentCheck(void* ptr) { uintptr_t pointerAsUint = reinterpret_cast(ptr); char* superPagePtr = reinterpret_cast(pointerAsUint & kSuperPageBaseMask); uintptr_t partitionPageIndex = (pointerAsUint & kSuperPageOffsetMask) >> kPartitionPageShift; // Index 0 is invalid because it is the metadata area and the last index is invalid because it is a guard page. ASSERT(partitionPageIndex); ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1); PartitionPage* page = reinterpret_cast(partitionSuperPageToMetadataArea(superPagePtr) + (partitionPageIndex << kPageMetadataShift)); // Many partition pages can share the same page object. Adjust for that. size_t delta = page->pageOffset << kPageMetadataShift; page = reinterpret_cast(reinterpret_cast(page) - delta); return page; } ALWAYS_INLINE void* partitionPageToPointer(PartitionPage* page) { uintptr_t pointerAsUint = reinterpret_cast(page); uintptr_t superPageOffset = (pointerAsUint & kSuperPageOffsetMask); ASSERT(superPageOffset > kSystemPageSize); ASSERT(superPageOffset < kSystemPageSize + (kNumPartitionPagesPerSuperPage * kPageMetadataSize)); uintptr_t partitionPageIndex = (superPageOffset - kSystemPageSize) >> kPageMetadataShift; // Index 0 is invalid because it is the metadata area and the last index is invalid because it is a guard page. ASSERT(partitionPageIndex); ASSERT(partitionPageIndex < kNumPartitionPagesPerSuperPage - 1); uintptr_t superPageBase = (pointerAsUint & kSuperPageBaseMask); void* ret = reinterpret_cast(superPageBase + (partitionPageIndex << kPartitionPageShift)); return ret; } ALWAYS_INLINE PartitionPage* partitionPointerToPage(void* ptr) { PartitionPage* page = partitionPointerToPageNoAlignmentCheck(ptr); // Checks that the pointer is a multiple of bucket size. ASSERT(!((reinterpret_cast(ptr) - reinterpret_cast(partitionPageToPointer(page))) % page->bucket->slotSize)); return page; } ALWAYS_INLINE PartitionRootBase* partitionPageToRoot(PartitionPage* page) { PartitionSuperPageExtentEntry* extentEntry = reinterpret_cast(reinterpret_cast(page) & kSystemPageBaseMask); return extentEntry->root; } ALWAYS_INLINE bool partitionPointerIsValid(void* ptr) { PartitionPage* page = partitionPointerToPage(ptr); PartitionRootBase* root = partitionPageToRoot(page); return root->invertedSelf == ~reinterpret_cast(root); } ALWAYS_INLINE void* partitionBucketAlloc(PartitionRootBase* root, int flags, size_t size, PartitionBucket* bucket) { PartitionPage* page = bucket->activePagesHead; ASSERT(page->numAllocatedSlots >= 0); void* ret = page->freelistHead; if (LIKELY(ret != 0)) { // If these asserts fire, you probably corrupted memory. ASSERT(partitionPointerIsValid(ret)); PartitionFreelistEntry* newHead = partitionFreelistMask(static_cast(ret)->next); page->freelistHead = newHead; ASSERT(!ret || partitionPointerIsValid(ret)); page->numAllocatedSlots++; } else { ret = partitionAllocSlowPath(root, flags, size, bucket); } #ifndef NDEBUG if (!ret) return 0; // Fill the uninitialized pattern. and write the cookies. page = partitionPointerToPage(ret); size_t bucketSize = page->bucket->slotSize; memset(ret, kUninitializedByte, bucketSize); partitionCookieWriteValue(ret); partitionCookieWriteValue(reinterpret_cast(ret) + bucketSize - kCookieSize); // The value given to the application is actually just after the cookie. ret = static_cast(ret) + kCookieSize; #endif return ret; } ALWAYS_INLINE void* partitionAlloc(PartitionRoot* root, size_t size) { #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) void* result = malloc(size); RELEASE_ASSERT(result); return result; #else size = partitionCookieSizeAdjustAdd(size); ASSERT(root->initialized); size_t index = size >> kBucketShift; ASSERT(index < root->numBuckets); ASSERT(size == index << kBucketShift); PartitionBucket* bucket = &root->buckets()[index]; return partitionBucketAlloc(root, 0, size, bucket); #endif // defined(MEMORY_TOOL_REPLACES_ALLOCATOR) } ALWAYS_INLINE void partitionFreeWithPage(void* ptr, PartitionPage* page) { // If these asserts fire, you probably corrupted memory. #ifndef NDEBUG size_t bucketSize = page->bucket->slotSize; partitionCookieCheckValue(ptr); partitionCookieCheckValue(reinterpret_cast(ptr) + bucketSize - kCookieSize); memset(ptr, kFreedByte, bucketSize); #endif ASSERT(page->numAllocatedSlots); PartitionFreelistEntry* freelistHead = page->freelistHead; ASSERT(!freelistHead || partitionPointerIsValid(freelistHead)); RELEASE_ASSERT(ptr != freelistHead); // Catches an immediate double free. ASSERT(!freelistHead || ptr != partitionFreelistMask(freelistHead->next)); // Look for double free one level deeper in debug. PartitionFreelistEntry* entry = static_cast(ptr); entry->next = partitionFreelistMask(freelistHead); page->freelistHead = entry; --page->numAllocatedSlots; if (UNLIKELY(page->numAllocatedSlots <= 0)) partitionFreeSlowPath(page); } ALWAYS_INLINE void partitionFree(void* ptr) { #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) free(ptr); #else ptr = partitionCookieFreePointerAdjust(ptr); ASSERT(partitionPointerIsValid(ptr)); PartitionPage* page = partitionPointerToPage(ptr); partitionFreeWithPage(ptr, page); #endif } ALWAYS_INLINE PartitionBucket* partitionGenericSizeToBucket(PartitionRootGeneric* root, size_t size) { size_t order = kBitsPerSizet - countLeadingZerosSizet(size); // The order index is simply the next few bits after the most significant bit. size_t orderIndex = (size >> root->orderIndexShifts[order]) & (kGenericNumBucketsPerOrder - 1); // And if the remaining bits are non-zero we must bump the bucket up. size_t subOrderIndex = size & root->orderSubIndexMasks[order]; PartitionBucket* bucket = root->bucketLookups[(order << kGenericNumBucketsPerOrderBits) + orderIndex + !!subOrderIndex]; ASSERT(!bucket->slotSize || bucket->slotSize >= size); ASSERT(!(bucket->slotSize % kGenericSmallestBucket)); return bucket; } ALWAYS_INLINE void* partitionAllocGenericFlags(PartitionRootGeneric* root, int flags, size_t size) { #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) void* result = malloc(size); RELEASE_ASSERT(result); return result; #else ASSERT(root->initialized); size = partitionCookieSizeAdjustAdd(size); PartitionBucket* bucket = partitionGenericSizeToBucket(root, size); spinLockLock(&root->lock); void* ret = partitionBucketAlloc(root, flags, size, bucket); spinLockUnlock(&root->lock); return ret; #endif } ALWAYS_INLINE void* partitionAllocGeneric(PartitionRootGeneric* root, size_t size) { return partitionAllocGenericFlags(root, 0, size); } ALWAYS_INLINE void partitionFreeGeneric(PartitionRootGeneric* root, void* ptr) { #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) free(ptr); #else ASSERT(root->initialized); if (UNLIKELY(!ptr)) return; ptr = partitionCookieFreePointerAdjust(ptr); ASSERT(partitionPointerIsValid(ptr)); PartitionPage* page = partitionPointerToPage(ptr); spinLockLock(&root->lock); partitionFreeWithPage(ptr, page); spinLockUnlock(&root->lock); #endif } ALWAYS_INLINE bool partitionBucketIsDirectMapped(PartitionBucket* bucket) { return !bucket->numSystemPagesPerSlotSpan; } ALWAYS_INLINE size_t partitionDirectMapSize(size_t size) { // Caller must check that the size is not above the kGenericMaxDirectMapped // limit before calling. This also guards against integer overflow in the // calculation here. ASSERT(size <= kGenericMaxDirectMapped); return (size + kSystemPageOffsetMask) & kSystemPageBaseMask; } ALWAYS_INLINE size_t partitionAllocActualSize(PartitionRootGeneric* root, size_t size) { #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) return size; #else ASSERT(root->initialized); size = partitionCookieSizeAdjustAdd(size); PartitionBucket* bucket = partitionGenericSizeToBucket(root, size); if (LIKELY(!partitionBucketIsDirectMapped(bucket))) { size = bucket->slotSize; } else if (size > kGenericMaxDirectMapped) { // Too large to allocate => return the size unchanged. } else { ASSERT(bucket == &PartitionRootBase::gPagedBucket); size = partitionDirectMapSize(size); } return partitionCookieSizeAdjustSubtract(size); #endif } ALWAYS_INLINE bool partitionAllocSupportsGetSize() { #if defined(MEMORY_TOOL_REPLACES_ALLOCATOR) return false; #else return true; #endif } ALWAYS_INLINE size_t partitionAllocGetSize(void* ptr) { // No need to lock here. Only 'ptr' being freed by another thread could // cause trouble, and the caller is responsible for that not happening. ASSERT(partitionAllocSupportsGetSize()); ptr = partitionCookieFreePointerAdjust(ptr); ASSERT(partitionPointerIsValid(ptr)); PartitionPage* page = partitionPointerToPage(ptr); size_t size = page->bucket->slotSize; return partitionCookieSizeAdjustSubtract(size); } // N (or more accurately, N - sizeof(void*)) represents the largest size in // bytes that will be handled by a SizeSpecificPartitionAllocator. // Attempts to partitionAlloc() more than this amount will fail. template class SizeSpecificPartitionAllocator { public: static const size_t kMaxAllocation = N - kAllocationGranularity; static const size_t kNumBuckets = N / kAllocationGranularity; void init() { partitionAllocInit(&m_partitionRoot, kNumBuckets, kMaxAllocation); } bool shutdown() { return partitionAllocShutdown(&m_partitionRoot); } ALWAYS_INLINE PartitionRoot* root() { return &m_partitionRoot; } private: PartitionRoot m_partitionRoot; PartitionBucket m_actualBuckets[kNumBuckets]; }; class PartitionAllocatorGeneric { public: void init() { partitionAllocGenericInit(&m_partitionRoot); } bool shutdown() { return partitionAllocGenericShutdown(&m_partitionRoot); } ALWAYS_INLINE PartitionRootGeneric* root() { return &m_partitionRoot; } private: PartitionRootGeneric m_partitionRoot; }; } // namespace WTF using WTF::SizeSpecificPartitionAllocator; using WTF::PartitionAllocatorGeneric; using WTF::PartitionRoot; using WTF::partitionAllocInit; using WTF::partitionAllocShutdown; using WTF::partitionAlloc; using WTF::partitionFree; using WTF::partitionAllocGeneric; using WTF::partitionFreeGeneric; using WTF::partitionReallocGeneric; using WTF::partitionAllocActualSize; using WTF::partitionAllocSupportsGetSize; using WTF::partitionAllocGetSize; #endif // WTF_PartitionAlloc_h