/* * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "webrtc/video_engine/vie_encoder.h" #include #include #include "webrtc/common_video/interface/video_image.h" #include "webrtc/common_video/libyuv/include/webrtc_libyuv.h" #include "webrtc/modules/pacing/include/paced_sender.h" #include "webrtc/modules/rtp_rtcp/interface/rtp_rtcp.h" #include "webrtc/modules/utility/interface/process_thread.h" #include "webrtc/modules/video_coding/codecs/interface/video_codec_interface.h" #include "webrtc/modules/video_coding/main/interface/video_coding.h" #include "webrtc/modules/video_coding/main/interface/video_coding_defines.h" #include "webrtc/modules/video_coding/main/source/encoded_frame.h" #include "webrtc/system_wrappers/interface/critical_section_wrapper.h" #include "webrtc/system_wrappers/interface/logging.h" #include "webrtc/system_wrappers/interface/tick_util.h" #include "webrtc/system_wrappers/interface/trace_event.h" #include "webrtc/video_engine/include/vie_codec.h" #include "webrtc/video_engine/include/vie_image_process.h" #include "webrtc/frame_callback.h" #include "webrtc/video_engine/vie_defines.h" namespace webrtc { // Pace in kbits/s until we receive first estimate. static const int kInitialPace = 2000; // Pacing-rate relative to our target send rate. // Multiplicative factor that is applied to the target bitrate to calculate the // number of bytes that can be transmitted per interval. // Increasing this factor will result in lower delays in cases of bitrate // overshoots from the encoder. static const float kPaceMultiplier = 2.5f; // Margin on when we pause the encoder when the pacing buffer overflows relative // to the configured buffer delay. static const float kEncoderPausePacerMargin = 2.0f; // Don't stop the encoder unless the delay is above this configured value. static const int kMinPacingDelayMs = 200; // Allow packets to be transmitted in up to 2 times max video bitrate if the // bandwidth estimate allows it. // TODO(holmer): Expose transmission start, min and max bitrates in the // VideoEngine API and remove the kTransmissionMaxBitrateMultiplier. static const int kTransmissionMaxBitrateMultiplier = 2; static const float kStopPaddingThresholdMs = 2000; std::vector AllocateStreamBitrates( uint32_t total_bitrate, const SimulcastStream* stream_configs, size_t number_of_streams) { if (number_of_streams == 0) { std::vector stream_bitrates(1, 0); stream_bitrates[0] = total_bitrate; return stream_bitrates; } std::vector stream_bitrates(number_of_streams, 0); uint32_t bitrate_remainder = total_bitrate; for (size_t i = 0; i < stream_bitrates.size() && bitrate_remainder > 0; ++i) { if (stream_configs[i].maxBitrate * 1000 > bitrate_remainder) { stream_bitrates[i] = bitrate_remainder; } else { stream_bitrates[i] = stream_configs[i].maxBitrate * 1000; } bitrate_remainder -= stream_bitrates[i]; } return stream_bitrates; } class QMVideoSettingsCallback : public VCMQMSettingsCallback { public: explicit QMVideoSettingsCallback(VideoProcessingModule* vpm); ~QMVideoSettingsCallback(); // Update VPM with QM (quality modes: frame size & frame rate) settings. int32_t SetVideoQMSettings(const uint32_t frame_rate, const uint32_t width, const uint32_t height); private: VideoProcessingModule* vpm_; }; class ViEBitrateObserver : public BitrateObserver { public: explicit ViEBitrateObserver(ViEEncoder* owner) : owner_(owner) { } virtual ~ViEBitrateObserver() {} // Implements BitrateObserver. virtual void OnNetworkChanged(const uint32_t bitrate_bps, const uint8_t fraction_lost, const uint32_t rtt) { owner_->OnNetworkChanged(bitrate_bps, fraction_lost, rtt); } private: ViEEncoder* owner_; }; class ViEPacedSenderCallback : public PacedSender::Callback { public: explicit ViEPacedSenderCallback(ViEEncoder* owner) : owner_(owner) { } virtual ~ViEPacedSenderCallback() {} virtual bool TimeToSendPacket(uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, bool retransmission) { return owner_->TimeToSendPacket(ssrc, sequence_number, capture_time_ms, retransmission); } virtual int TimeToSendPadding(int bytes) { return owner_->TimeToSendPadding(bytes); } private: ViEEncoder* owner_; }; ViEEncoder::ViEEncoder(int32_t engine_id, int32_t channel_id, uint32_t number_of_cores, const Config& config, ProcessThread& module_process_thread, BitrateController* bitrate_controller) : engine_id_(engine_id), channel_id_(channel_id), number_of_cores_(number_of_cores), vcm_(*webrtc::VideoCodingModule::Create()), vpm_(*webrtc::VideoProcessingModule::Create(ViEModuleId(engine_id, channel_id))), callback_cs_(CriticalSectionWrapper::CreateCriticalSection()), data_cs_(CriticalSectionWrapper::CreateCriticalSection()), bitrate_controller_(bitrate_controller), time_of_last_incoming_frame_ms_(0), send_padding_(false), min_transmit_bitrate_kbps_(0), target_delay_ms_(0), network_is_transmitting_(true), encoder_paused_(false), encoder_paused_and_dropped_frame_(false), fec_enabled_(false), nack_enabled_(false), codec_observer_(NULL), effect_filter_(NULL), module_process_thread_(module_process_thread), has_received_sli_(false), picture_id_sli_(0), has_received_rpsi_(false), picture_id_rpsi_(0), qm_callback_(NULL), video_suspended_(false), pre_encode_callback_(NULL) { RtpRtcp::Configuration configuration; configuration.id = ViEModuleId(engine_id_, channel_id_); configuration.audio = false; // Video. default_rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(configuration)); bitrate_observer_.reset(new ViEBitrateObserver(this)); pacing_callback_.reset(new ViEPacedSenderCallback(this)); paced_sender_.reset( new PacedSender(pacing_callback_.get(), kInitialPace, kPaceMultiplier)); } bool ViEEncoder::Init() { if (vcm_.InitializeSender() != 0) { return false; } vpm_.EnableTemporalDecimation(true); // Enable/disable content analysis: off by default for now. vpm_.EnableContentAnalysis(false); if (module_process_thread_.RegisterModule(&vcm_) != 0 || module_process_thread_.RegisterModule(default_rtp_rtcp_.get()) != 0 || module_process_thread_.RegisterModule(paced_sender_.get()) != 0) { return false; } if (qm_callback_) { delete qm_callback_; } qm_callback_ = new QMVideoSettingsCallback(&vpm_); #ifdef VIDEOCODEC_VP8 VideoCodec video_codec; if (vcm_.Codec(webrtc::kVideoCodecVP8, &video_codec) != VCM_OK) { return false; } { CriticalSectionScoped cs(data_cs_.get()); send_padding_ = video_codec.numberOfSimulcastStreams > 1; } if (vcm_.RegisterSendCodec(&video_codec, number_of_cores_, default_rtp_rtcp_->MaxDataPayloadLength()) != 0) { return false; } if (default_rtp_rtcp_->RegisterSendPayload(video_codec) != 0) { return false; } #else VideoCodec video_codec; if (vcm_.Codec(webrtc::kVideoCodecI420, &video_codec) == VCM_OK) { { CriticalSectionScoped cs(data_cs_.get()); send_padding_ = video_codec.numberOfSimulcastStreams > 1; } vcm_.RegisterSendCodec(&video_codec, number_of_cores_, default_rtp_rtcp_->MaxDataPayloadLength()); default_rtp_rtcp_->RegisterSendPayload(video_codec); } else { return false; } #endif if (vcm_.RegisterTransportCallback(this) != 0) { return false; } if (vcm_.RegisterSendStatisticsCallback(this) != 0) { return false; } if (vcm_.RegisterVideoQMCallback(qm_callback_) != 0) { return false; } return true; } ViEEncoder::~ViEEncoder() { if (bitrate_controller_) { bitrate_controller_->RemoveBitrateObserver(bitrate_observer_.get()); } module_process_thread_.DeRegisterModule(&vcm_); module_process_thread_.DeRegisterModule(&vpm_); module_process_thread_.DeRegisterModule(default_rtp_rtcp_.get()); module_process_thread_.DeRegisterModule(paced_sender_.get()); VideoCodingModule::Destroy(&vcm_); VideoProcessingModule::Destroy(&vpm_); delete qm_callback_; } int ViEEncoder::Owner() const { return channel_id_; } void ViEEncoder::SetNetworkTransmissionState(bool is_transmitting) { { CriticalSectionScoped cs(data_cs_.get()); network_is_transmitting_ = is_transmitting; } if (is_transmitting) { paced_sender_->Resume(); } else { paced_sender_->Pause(); } } void ViEEncoder::Pause() { CriticalSectionScoped cs(data_cs_.get()); encoder_paused_ = true; } void ViEEncoder::Restart() { CriticalSectionScoped cs(data_cs_.get()); encoder_paused_ = false; } uint8_t ViEEncoder::NumberOfCodecs() { return vcm_.NumberOfCodecs(); } int32_t ViEEncoder::GetCodec(uint8_t list_index, VideoCodec* video_codec) { if (vcm_.Codec(list_index, video_codec) != 0) { return -1; } return 0; } int32_t ViEEncoder::RegisterExternalEncoder(webrtc::VideoEncoder* encoder, uint8_t pl_type, bool internal_source) { if (encoder == NULL) return -1; if (vcm_.RegisterExternalEncoder(encoder, pl_type, internal_source) != VCM_OK) { return -1; } return 0; } int32_t ViEEncoder::DeRegisterExternalEncoder(uint8_t pl_type) { webrtc::VideoCodec current_send_codec; if (vcm_.SendCodec(¤t_send_codec) == VCM_OK) { uint32_t current_bitrate_bps = 0; if (vcm_.Bitrate(¤t_bitrate_bps) != 0) { LOG(LS_WARNING) << "Failed to get the current encoder target bitrate."; } current_send_codec.startBitrate = (current_bitrate_bps + 500) / 1000; } if (vcm_.RegisterExternalEncoder(NULL, pl_type) != VCM_OK) { return -1; } // If the external encoder is the current send codec, use vcm internal // encoder. if (current_send_codec.plType == pl_type) { uint16_t max_data_payload_length = default_rtp_rtcp_->MaxDataPayloadLength(); { CriticalSectionScoped cs(data_cs_.get()); send_padding_ = current_send_codec.numberOfSimulcastStreams > 1; } // TODO(mflodman): Unfortunately the VideoCodec that VCM has cached a // raw pointer to an |extra_options| that's long gone. Clearing it here is // a hack to prevent the following code from crashing. This should be fixed // for realz. https://code.google.com/p/chromium/issues/detail?id=348222 current_send_codec.extra_options = NULL; if (vcm_.RegisterSendCodec(¤t_send_codec, number_of_cores_, max_data_payload_length) != VCM_OK) { return -1; } } return 0; } int32_t ViEEncoder::SetEncoder(const webrtc::VideoCodec& video_codec) { // Setting target width and height for VPM. if (vpm_.SetTargetResolution(video_codec.width, video_codec.height, video_codec.maxFramerate) != VPM_OK) { return -1; } if (default_rtp_rtcp_->RegisterSendPayload(video_codec) != 0) { return -1; } // Convert from kbps to bps. std::vector stream_bitrates = AllocateStreamBitrates( video_codec.startBitrate * 1000, video_codec.simulcastStream, video_codec.numberOfSimulcastStreams); default_rtp_rtcp_->SetTargetSendBitrate(stream_bitrates); uint16_t max_data_payload_length = default_rtp_rtcp_->MaxDataPayloadLength(); { CriticalSectionScoped cs(data_cs_.get()); send_padding_ = video_codec.numberOfSimulcastStreams > 1; } if (vcm_.RegisterSendCodec(&video_codec, number_of_cores_, max_data_payload_length) != VCM_OK) { return -1; } // Set this module as sending right away, let the slave module in the channel // start and stop sending. if (default_rtp_rtcp_->Sending() == false) { if (default_rtp_rtcp_->SetSendingStatus(true) != 0) { return -1; } } bitrate_controller_->SetBitrateObserver(bitrate_observer_.get(), video_codec.startBitrate * 1000, video_codec.minBitrate * 1000, kTransmissionMaxBitrateMultiplier * video_codec.maxBitrate * 1000); CriticalSectionScoped crit(data_cs_.get()); int pad_up_to_bitrate_kbps = video_codec.startBitrate; if (pad_up_to_bitrate_kbps < min_transmit_bitrate_kbps_) pad_up_to_bitrate_kbps = min_transmit_bitrate_kbps_; paced_sender_->UpdateBitrate(kPaceMultiplier * video_codec.startBitrate, pad_up_to_bitrate_kbps); return 0; } int32_t ViEEncoder::GetEncoder(VideoCodec* video_codec) { if (vcm_.SendCodec(video_codec) != 0) { return -1; } return 0; } int32_t ViEEncoder::GetCodecConfigParameters( unsigned char config_parameters[kConfigParameterSize], unsigned char& config_parameters_size) { int32_t num_parameters = vcm_.CodecConfigParameters(config_parameters, kConfigParameterSize); if (num_parameters <= 0) { config_parameters_size = 0; return -1; } config_parameters_size = static_cast(num_parameters); return 0; } int32_t ViEEncoder::ScaleInputImage(bool enable) { VideoFrameResampling resampling_mode = kFastRescaling; // TODO(mflodman) What? if (enable) { // kInterpolation is currently not supported. LOG_F(LS_ERROR) << "Not supported."; return -1; } vpm_.SetInputFrameResampleMode(resampling_mode); return 0; } bool ViEEncoder::TimeToSendPacket(uint32_t ssrc, uint16_t sequence_number, int64_t capture_time_ms, bool retransmission) { return default_rtp_rtcp_->TimeToSendPacket(ssrc, sequence_number, capture_time_ms, retransmission); } int ViEEncoder::TimeToSendPadding(int bytes) { bool send_padding; { CriticalSectionScoped cs(data_cs_.get()); send_padding = send_padding_ || video_suspended_ || min_transmit_bitrate_kbps_ > 0; } if (send_padding) { return default_rtp_rtcp_->TimeToSendPadding(bytes); } return 0; } bool ViEEncoder::EncoderPaused() const { // Pause video if paused by caller or as long as the network is down or the // pacer queue has grown too large in buffered mode. if (encoder_paused_) { return true; } if (target_delay_ms_ > 0) { // Buffered mode. // TODO(pwestin): Workaround until nack is configured as a time and not // number of packets. return paced_sender_->QueueInMs() >= std::max(static_cast(target_delay_ms_ * kEncoderPausePacerMargin), kMinPacingDelayMs); } return !network_is_transmitting_; } RtpRtcp* ViEEncoder::SendRtpRtcpModule() { return default_rtp_rtcp_.get(); } void ViEEncoder::DeliverFrame(int id, I420VideoFrame* video_frame, int num_csrcs, const uint32_t CSRC[kRtpCsrcSize]) { if (default_rtp_rtcp_->SendingMedia() == false) { // We've paused or we have no channels attached, don't encode. return; } { CriticalSectionScoped cs(data_cs_.get()); time_of_last_incoming_frame_ms_ = TickTime::MillisecondTimestamp(); if (EncoderPaused()) { if (!encoder_paused_and_dropped_frame_) { TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this); } encoder_paused_and_dropped_frame_ = true; return; } if (encoder_paused_and_dropped_frame_) { TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this); } encoder_paused_and_dropped_frame_ = false; } if (video_frame->native_handle() != NULL) { // TODO(wuchengli): add texture support. http://crbug.com/362437 return; } // Convert render time, in ms, to RTP timestamp. const int kMsToRtpTimestamp = 90; const uint32_t time_stamp = kMsToRtpTimestamp * static_cast(video_frame->render_time_ms()); TRACE_EVENT_ASYNC_STEP0("webrtc", "Video", video_frame->render_time_ms(), "Encode"); video_frame->set_timestamp(time_stamp); { CriticalSectionScoped cs(callback_cs_.get()); if (effect_filter_) { unsigned int length = CalcBufferSize(kI420, video_frame->width(), video_frame->height()); scoped_ptr video_buffer(new uint8_t[length]); ExtractBuffer(*video_frame, length, video_buffer.get()); effect_filter_->Transform(length, video_buffer.get(), video_frame->ntp_time_ms(), video_frame->timestamp(), video_frame->width(), video_frame->height()); } } // Make sure the CSRC list is correct. if (num_csrcs > 0) { uint32_t tempCSRC[kRtpCsrcSize]; for (int i = 0; i < num_csrcs; i++) { if (CSRC[i] == 1) { tempCSRC[i] = default_rtp_rtcp_->SSRC(); } else { tempCSRC[i] = CSRC[i]; } } default_rtp_rtcp_->SetCSRCs(tempCSRC, (uint8_t) num_csrcs); } // Pass frame via preprocessor. I420VideoFrame* decimated_frame = NULL; const int ret = vpm_.PreprocessFrame(*video_frame, &decimated_frame); if (ret == 1) { // Drop this frame. return; } if (ret != VPM_OK) { return; } // Frame was not sampled => use original. if (decimated_frame == NULL) { decimated_frame = video_frame; } { CriticalSectionScoped cs(callback_cs_.get()); if (pre_encode_callback_) pre_encode_callback_->FrameCallback(decimated_frame); } #ifdef VIDEOCODEC_VP8 if (vcm_.SendCodec() == webrtc::kVideoCodecVP8) { webrtc::CodecSpecificInfo codec_specific_info; codec_specific_info.codecType = webrtc::kVideoCodecVP8; codec_specific_info.codecSpecific.VP8.hasReceivedRPSI = has_received_rpsi_; codec_specific_info.codecSpecific.VP8.hasReceivedSLI = has_received_sli_; codec_specific_info.codecSpecific.VP8.pictureIdRPSI = picture_id_rpsi_; codec_specific_info.codecSpecific.VP8.pictureIdSLI = picture_id_sli_; has_received_sli_ = false; has_received_rpsi_ = false; vcm_.AddVideoFrame(*decimated_frame, vpm_.ContentMetrics(), &codec_specific_info); return; } #endif vcm_.AddVideoFrame(*decimated_frame); } void ViEEncoder::DelayChanged(int id, int frame_delay) { default_rtp_rtcp_->SetCameraDelay(frame_delay); } int ViEEncoder::GetPreferedFrameSettings(int* width, int* height, int* frame_rate) { webrtc::VideoCodec video_codec; memset(&video_codec, 0, sizeof(video_codec)); if (vcm_.SendCodec(&video_codec) != VCM_OK) { return -1; } *width = video_codec.width; *height = video_codec.height; *frame_rate = video_codec.maxFramerate; return 0; } int ViEEncoder::SendKeyFrame() { return vcm_.IntraFrameRequest(0); } int32_t ViEEncoder::SendCodecStatistics( uint32_t* num_key_frames, uint32_t* num_delta_frames) { webrtc::VCMFrameCount sent_frames; if (vcm_.SentFrameCount(sent_frames) != VCM_OK) { return -1; } *num_key_frames = sent_frames.numKeyFrames; *num_delta_frames = sent_frames.numDeltaFrames; return 0; } int32_t ViEEncoder::PacerQueuingDelayMs() const { return paced_sender_->QueueInMs(); } int ViEEncoder::CodecTargetBitrate(uint32_t* bitrate) const { if (vcm_.Bitrate(bitrate) != 0) return -1; return 0; } int32_t ViEEncoder::UpdateProtectionMethod(bool enable_nack) { bool fec_enabled = false; uint8_t dummy_ptype_red = 0; uint8_t dummy_ptypeFEC = 0; // Updated protection method to VCM to get correct packetization sizes. // FEC has larger overhead than NACK -> set FEC if used. int32_t error = default_rtp_rtcp_->GenericFECStatus(fec_enabled, dummy_ptype_red, dummy_ptypeFEC); if (error) { return -1; } if (fec_enabled_ == fec_enabled && nack_enabled_ == enable_nack) { // No change needed, we're already in correct state. return 0; } fec_enabled_ = fec_enabled; nack_enabled_ = enable_nack; // Set Video Protection for VCM. if (fec_enabled && nack_enabled_) { vcm_.SetVideoProtection(webrtc::kProtectionNackFEC, true); } else { vcm_.SetVideoProtection(webrtc::kProtectionFEC, fec_enabled_); vcm_.SetVideoProtection(webrtc::kProtectionNackSender, nack_enabled_); vcm_.SetVideoProtection(webrtc::kProtectionNackFEC, false); } if (fec_enabled_ || nack_enabled_) { vcm_.RegisterProtectionCallback(this); // The send codec must be registered to set correct MTU. webrtc::VideoCodec codec; if (vcm_.SendCodec(&codec) == 0) { uint16_t max_pay_load = default_rtp_rtcp_->MaxDataPayloadLength(); uint32_t current_bitrate_bps = 0; if (vcm_.Bitrate(¤t_bitrate_bps) != 0) { LOG_F(LS_WARNING) << "Failed to get the current encoder target bitrate."; } // Convert to start bitrate in kbps. codec.startBitrate = (current_bitrate_bps + 500) / 1000; if (vcm_.RegisterSendCodec(&codec, number_of_cores_, max_pay_load) != 0) { return -1; } } return 0; } else { // FEC and NACK are disabled. vcm_.RegisterProtectionCallback(NULL); } return 0; } void ViEEncoder::SetSenderBufferingMode(int target_delay_ms) { { CriticalSectionScoped cs(data_cs_.get()); target_delay_ms_ = target_delay_ms; } if (target_delay_ms > 0) { // Disable external frame-droppers. vcm_.EnableFrameDropper(false); vpm_.EnableTemporalDecimation(false); // We don't put any limits on the pacer queue when running in buffered mode // since the encoder will be paused if the queue grow too large. paced_sender_->set_max_queue_length_ms(-1); } else { // Real-time mode - enable frame droppers. vpm_.EnableTemporalDecimation(true); vcm_.EnableFrameDropper(true); paced_sender_->set_max_queue_length_ms( PacedSender::kDefaultMaxQueueLengthMs); } } int32_t ViEEncoder::SendData( const FrameType frame_type, const uint8_t payload_type, const uint32_t time_stamp, int64_t capture_time_ms, const uint8_t* payload_data, const uint32_t payload_size, const webrtc::RTPFragmentationHeader& fragmentation_header, const RTPVideoHeader* rtp_video_hdr) { // New encoded data, hand over to the rtp module. return default_rtp_rtcp_->SendOutgoingData(frame_type, payload_type, time_stamp, capture_time_ms, payload_data, payload_size, &fragmentation_header, rtp_video_hdr); } int32_t ViEEncoder::ProtectionRequest( const FecProtectionParams* delta_fec_params, const FecProtectionParams* key_fec_params, uint32_t* sent_video_rate_bps, uint32_t* sent_nack_rate_bps, uint32_t* sent_fec_rate_bps) { default_rtp_rtcp_->SetFecParameters(delta_fec_params, key_fec_params); default_rtp_rtcp_->BitrateSent(NULL, sent_video_rate_bps, sent_fec_rate_bps, sent_nack_rate_bps); return 0; } int32_t ViEEncoder::SendStatistics(const uint32_t bit_rate, const uint32_t frame_rate) { CriticalSectionScoped cs(callback_cs_.get()); if (codec_observer_) { codec_observer_->OutgoingRate(channel_id_, frame_rate, bit_rate); } return 0; } int32_t ViEEncoder::RegisterCodecObserver(ViEEncoderObserver* observer) { CriticalSectionScoped cs(callback_cs_.get()); if (observer && codec_observer_) { LOG_F(LS_ERROR) << "Observer already set."; return -1; } codec_observer_ = observer; return 0; } void ViEEncoder::OnReceivedSLI(uint32_t /*ssrc*/, uint8_t picture_id) { picture_id_sli_ = picture_id; has_received_sli_ = true; } void ViEEncoder::OnReceivedRPSI(uint32_t /*ssrc*/, uint64_t picture_id) { picture_id_rpsi_ = picture_id; has_received_rpsi_ = true; } void ViEEncoder::OnReceivedIntraFrameRequest(uint32_t ssrc) { // Key frame request from remote side, signal to VCM. TRACE_EVENT0("webrtc", "OnKeyFrameRequest"); int idx = 0; { CriticalSectionScoped cs(data_cs_.get()); std::map::iterator stream_it = ssrc_streams_.find(ssrc); if (stream_it == ssrc_streams_.end()) { LOG_F(LS_WARNING) << "ssrc not found: " << ssrc << ", map size " << ssrc_streams_.size(); return; } std::map::iterator time_it = time_last_intra_request_ms_.find(ssrc); if (time_it == time_last_intra_request_ms_.end()) { time_last_intra_request_ms_[ssrc] = 0; } int64_t now = TickTime::MillisecondTimestamp(); if (time_last_intra_request_ms_[ssrc] + kViEMinKeyRequestIntervalMs > now) { return; } time_last_intra_request_ms_[ssrc] = now; idx = stream_it->second; } // Release the critsect before triggering key frame. vcm_.IntraFrameRequest(idx); } void ViEEncoder::OnLocalSsrcChanged(uint32_t old_ssrc, uint32_t new_ssrc) { CriticalSectionScoped cs(data_cs_.get()); std::map::iterator it = ssrc_streams_.find(old_ssrc); if (it == ssrc_streams_.end()) { return; } ssrc_streams_[new_ssrc] = it->second; ssrc_streams_.erase(it); std::map::iterator time_it = time_last_intra_request_ms_.find(old_ssrc); int64_t last_intra_request_ms = 0; if (time_it != time_last_intra_request_ms_.end()) { last_intra_request_ms = time_it->second; time_last_intra_request_ms_.erase(time_it); } time_last_intra_request_ms_[new_ssrc] = last_intra_request_ms; } bool ViEEncoder::SetSsrcs(const std::list& ssrcs) { VideoCodec codec; if (vcm_.SendCodec(&codec) != 0) return false; if (codec.numberOfSimulcastStreams > 0 && ssrcs.size() != codec.numberOfSimulcastStreams) { return false; } CriticalSectionScoped cs(data_cs_.get()); ssrc_streams_.clear(); time_last_intra_request_ms_.clear(); int idx = 0; for (std::list::const_iterator it = ssrcs.begin(); it != ssrcs.end(); ++it, ++idx) { unsigned int ssrc = *it; ssrc_streams_[ssrc] = idx; } return true; } void ViEEncoder::SetMinTransmitBitrate(int min_transmit_bitrate_kbps) { assert(min_transmit_bitrate_kbps >= 0); CriticalSectionScoped crit(data_cs_.get()); min_transmit_bitrate_kbps_ = min_transmit_bitrate_kbps; } // Called from ViEBitrateObserver. void ViEEncoder::OnNetworkChanged(const uint32_t bitrate_bps, const uint8_t fraction_lost, const uint32_t round_trip_time_ms) { LOG(LS_VERBOSE) << "OnNetworkChanged, bitrate" << bitrate_bps << " packet loss " << fraction_lost << " rtt " << round_trip_time_ms; vcm_.SetChannelParameters(bitrate_bps, fraction_lost, round_trip_time_ms); bool video_is_suspended = vcm_.VideoSuspended(); int bitrate_kbps = bitrate_bps / 1000; VideoCodec send_codec; if (vcm_.SendCodec(&send_codec) != 0) { return; } SimulcastStream* stream_configs = send_codec.simulcastStream; // Allocate the bandwidth between the streams. std::vector stream_bitrates = AllocateStreamBitrates( bitrate_bps, stream_configs, send_codec.numberOfSimulcastStreams); // Find the max amount of padding we can allow ourselves to send at this // point, based on which streams are currently active and what our current // available bandwidth is. int pad_up_to_bitrate_kbps = 0; if (send_codec.numberOfSimulcastStreams == 0) { pad_up_to_bitrate_kbps = send_codec.minBitrate; } else { pad_up_to_bitrate_kbps = stream_configs[send_codec.numberOfSimulcastStreams - 1].minBitrate; for (int i = 0; i < send_codec.numberOfSimulcastStreams - 1; ++i) { pad_up_to_bitrate_kbps += stream_configs[i].targetBitrate; } } // Disable padding if only sending one stream and video isn't suspended and // min-transmit bitrate isn't used (applied later). if (!video_is_suspended && send_codec.numberOfSimulcastStreams <= 1) pad_up_to_bitrate_kbps = 0; { CriticalSectionScoped cs(data_cs_.get()); // The amount of padding should decay to zero if no frames are being // captured unless a min-transmit bitrate is used. int64_t now_ms = TickTime::MillisecondTimestamp(); if (now_ms - time_of_last_incoming_frame_ms_ > kStopPaddingThresholdMs) pad_up_to_bitrate_kbps = 0; // Pad up to min bitrate. if (pad_up_to_bitrate_kbps < min_transmit_bitrate_kbps_) pad_up_to_bitrate_kbps = min_transmit_bitrate_kbps_; // Padding may never exceed bitrate estimate. if (pad_up_to_bitrate_kbps > bitrate_kbps) pad_up_to_bitrate_kbps = bitrate_kbps; paced_sender_->UpdateBitrate(kPaceMultiplier * bitrate_kbps, pad_up_to_bitrate_kbps); default_rtp_rtcp_->SetTargetSendBitrate(stream_bitrates); if (video_suspended_ == video_is_suspended) return; video_suspended_ = video_is_suspended; } // Video suspend-state changed, inform codec observer. CriticalSectionScoped crit(callback_cs_.get()); if (codec_observer_) { LOG(LS_INFO) << "Video suspended " << video_is_suspended << " for channel " << channel_id_; codec_observer_->SuspendChange(channel_id_, video_is_suspended); } } PacedSender* ViEEncoder::GetPacedSender() { return paced_sender_.get(); } int32_t ViEEncoder::RegisterEffectFilter(ViEEffectFilter* effect_filter) { CriticalSectionScoped cs(callback_cs_.get()); if (effect_filter != NULL && effect_filter_ != NULL) { LOG_F(LS_ERROR) << "Filter already set."; return -1; } effect_filter_ = effect_filter; return 0; } int ViEEncoder::StartDebugRecording(const char* fileNameUTF8) { return vcm_.StartDebugRecording(fileNameUTF8); } int ViEEncoder::StopDebugRecording() { return vcm_.StopDebugRecording(); } void ViEEncoder::SuspendBelowMinBitrate() { vcm_.SuspendBelowMinBitrate(); bitrate_controller_->EnforceMinBitrate(false); } void ViEEncoder::RegisterPreEncodeCallback( I420FrameCallback* pre_encode_callback) { CriticalSectionScoped cs(callback_cs_.get()); pre_encode_callback_ = pre_encode_callback; } void ViEEncoder::DeRegisterPreEncodeCallback() { CriticalSectionScoped cs(callback_cs_.get()); pre_encode_callback_ = NULL; } void ViEEncoder::RegisterPostEncodeImageCallback( EncodedImageCallback* post_encode_callback) { vcm_.RegisterPostEncodeImageCallback(post_encode_callback); } void ViEEncoder::DeRegisterPostEncodeImageCallback() { vcm_.RegisterPostEncodeImageCallback(NULL); } QMVideoSettingsCallback::QMVideoSettingsCallback(VideoProcessingModule* vpm) : vpm_(vpm) { } QMVideoSettingsCallback::~QMVideoSettingsCallback() { } int32_t QMVideoSettingsCallback::SetVideoQMSettings( const uint32_t frame_rate, const uint32_t width, const uint32_t height) { return vpm_->SetTargetResolution(width, height, frame_rate); } } // namespace webrtc