// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include "src/v8.h" #if V8_TARGET_ARCH_X87 #include "src/disasm.h" namespace disasm { enum OperandOrder { UNSET_OP_ORDER = 0, REG_OPER_OP_ORDER, OPER_REG_OP_ORDER }; //------------------------------------------------------------------ // Tables //------------------------------------------------------------------ struct ByteMnemonic { int b; // -1 terminates, otherwise must be in range (0..255) const char* mnem; OperandOrder op_order_; }; static const ByteMnemonic two_operands_instr[] = { {0x01, "add", OPER_REG_OP_ORDER}, {0x03, "add", REG_OPER_OP_ORDER}, {0x09, "or", OPER_REG_OP_ORDER}, {0x0B, "or", REG_OPER_OP_ORDER}, {0x1B, "sbb", REG_OPER_OP_ORDER}, {0x21, "and", OPER_REG_OP_ORDER}, {0x23, "and", REG_OPER_OP_ORDER}, {0x29, "sub", OPER_REG_OP_ORDER}, {0x2A, "subb", REG_OPER_OP_ORDER}, {0x2B, "sub", REG_OPER_OP_ORDER}, {0x31, "xor", OPER_REG_OP_ORDER}, {0x33, "xor", REG_OPER_OP_ORDER}, {0x38, "cmpb", OPER_REG_OP_ORDER}, {0x3A, "cmpb", REG_OPER_OP_ORDER}, {0x3B, "cmp", REG_OPER_OP_ORDER}, {0x84, "test_b", REG_OPER_OP_ORDER}, {0x85, "test", REG_OPER_OP_ORDER}, {0x87, "xchg", REG_OPER_OP_ORDER}, {0x8A, "mov_b", REG_OPER_OP_ORDER}, {0x8B, "mov", REG_OPER_OP_ORDER}, {0x8D, "lea", REG_OPER_OP_ORDER}, {-1, "", UNSET_OP_ORDER} }; static const ByteMnemonic zero_operands_instr[] = { {0xC3, "ret", UNSET_OP_ORDER}, {0xC9, "leave", UNSET_OP_ORDER}, {0x90, "nop", UNSET_OP_ORDER}, {0xF4, "hlt", UNSET_OP_ORDER}, {0xCC, "int3", UNSET_OP_ORDER}, {0x60, "pushad", UNSET_OP_ORDER}, {0x61, "popad", UNSET_OP_ORDER}, {0x9C, "pushfd", UNSET_OP_ORDER}, {0x9D, "popfd", UNSET_OP_ORDER}, {0x9E, "sahf", UNSET_OP_ORDER}, {0x99, "cdq", UNSET_OP_ORDER}, {0x9B, "fwait", UNSET_OP_ORDER}, {0xFC, "cld", UNSET_OP_ORDER}, {0xAB, "stos", UNSET_OP_ORDER}, {-1, "", UNSET_OP_ORDER} }; static const ByteMnemonic call_jump_instr[] = { {0xE8, "call", UNSET_OP_ORDER}, {0xE9, "jmp", UNSET_OP_ORDER}, {-1, "", UNSET_OP_ORDER} }; static const ByteMnemonic short_immediate_instr[] = { {0x05, "add", UNSET_OP_ORDER}, {0x0D, "or", UNSET_OP_ORDER}, {0x15, "adc", UNSET_OP_ORDER}, {0x25, "and", UNSET_OP_ORDER}, {0x2D, "sub", UNSET_OP_ORDER}, {0x35, "xor", UNSET_OP_ORDER}, {0x3D, "cmp", UNSET_OP_ORDER}, {-1, "", UNSET_OP_ORDER} }; // Generally we don't want to generate these because they are subject to partial // register stalls. They are included for completeness and because the cmp // variant is used by the RecordWrite stub. Because it does not update the // register it is not subject to partial register stalls. static ByteMnemonic byte_immediate_instr[] = { {0x0c, "or", UNSET_OP_ORDER}, {0x24, "and", UNSET_OP_ORDER}, {0x34, "xor", UNSET_OP_ORDER}, {0x3c, "cmp", UNSET_OP_ORDER}, {-1, "", UNSET_OP_ORDER} }; static const char* const jump_conditional_mnem[] = { /*0*/ "jo", "jno", "jc", "jnc", /*4*/ "jz", "jnz", "jna", "ja", /*8*/ "js", "jns", "jpe", "jpo", /*12*/ "jl", "jnl", "jng", "jg" }; static const char* const set_conditional_mnem[] = { /*0*/ "seto", "setno", "setc", "setnc", /*4*/ "setz", "setnz", "setna", "seta", /*8*/ "sets", "setns", "setpe", "setpo", /*12*/ "setl", "setnl", "setng", "setg" }; static const char* const conditional_move_mnem[] = { /*0*/ "cmovo", "cmovno", "cmovc", "cmovnc", /*4*/ "cmovz", "cmovnz", "cmovna", "cmova", /*8*/ "cmovs", "cmovns", "cmovpe", "cmovpo", /*12*/ "cmovl", "cmovnl", "cmovng", "cmovg" }; enum InstructionType { NO_INSTR, ZERO_OPERANDS_INSTR, TWO_OPERANDS_INSTR, JUMP_CONDITIONAL_SHORT_INSTR, REGISTER_INSTR, MOVE_REG_INSTR, CALL_JUMP_INSTR, SHORT_IMMEDIATE_INSTR, BYTE_IMMEDIATE_INSTR }; struct InstructionDesc { const char* mnem; InstructionType type; OperandOrder op_order_; }; class InstructionTable { public: InstructionTable(); const InstructionDesc& Get(byte x) const { return instructions_[x]; } static InstructionTable* get_instance() { static InstructionTable table; return &table; } private: InstructionDesc instructions_[256]; void Clear(); void Init(); void CopyTable(const ByteMnemonic bm[], InstructionType type); void SetTableRange(InstructionType type, byte start, byte end, const char* mnem); void AddJumpConditionalShort(); }; InstructionTable::InstructionTable() { Clear(); Init(); } void InstructionTable::Clear() { for (int i = 0; i < 256; i++) { instructions_[i].mnem = ""; instructions_[i].type = NO_INSTR; instructions_[i].op_order_ = UNSET_OP_ORDER; } } void InstructionTable::Init() { CopyTable(two_operands_instr, TWO_OPERANDS_INSTR); CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR); CopyTable(call_jump_instr, CALL_JUMP_INSTR); CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR); CopyTable(byte_immediate_instr, BYTE_IMMEDIATE_INSTR); AddJumpConditionalShort(); SetTableRange(REGISTER_INSTR, 0x40, 0x47, "inc"); SetTableRange(REGISTER_INSTR, 0x48, 0x4F, "dec"); SetTableRange(REGISTER_INSTR, 0x50, 0x57, "push"); SetTableRange(REGISTER_INSTR, 0x58, 0x5F, "pop"); SetTableRange(REGISTER_INSTR, 0x91, 0x97, "xchg eax,"); // 0x90 is nop. SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, "mov"); } void InstructionTable::CopyTable(const ByteMnemonic bm[], InstructionType type) { for (int i = 0; bm[i].b >= 0; i++) { InstructionDesc* id = &instructions_[bm[i].b]; id->mnem = bm[i].mnem; id->op_order_ = bm[i].op_order_; ASSERT_EQ(NO_INSTR, id->type); // Information not already entered. id->type = type; } } void InstructionTable::SetTableRange(InstructionType type, byte start, byte end, const char* mnem) { for (byte b = start; b <= end; b++) { InstructionDesc* id = &instructions_[b]; ASSERT_EQ(NO_INSTR, id->type); // Information not already entered. id->mnem = mnem; id->type = type; } } void InstructionTable::AddJumpConditionalShort() { for (byte b = 0x70; b <= 0x7F; b++) { InstructionDesc* id = &instructions_[b]; ASSERT_EQ(NO_INSTR, id->type); // Information not already entered. id->mnem = jump_conditional_mnem[b & 0x0F]; id->type = JUMP_CONDITIONAL_SHORT_INSTR; } } // The X87 disassembler implementation. class DisassemblerX87 { public: DisassemblerX87(const NameConverter& converter, bool abort_on_unimplemented = true) : converter_(converter), instruction_table_(InstructionTable::get_instance()), tmp_buffer_pos_(0), abort_on_unimplemented_(abort_on_unimplemented) { tmp_buffer_[0] = '\0'; } virtual ~DisassemblerX87() {} // Writes one disassembled instruction into 'buffer' (0-terminated). // Returns the length of the disassembled machine instruction in bytes. int InstructionDecode(v8::internal::Vector buffer, byte* instruction); private: const NameConverter& converter_; InstructionTable* instruction_table_; v8::internal::EmbeddedVector tmp_buffer_; unsigned int tmp_buffer_pos_; bool abort_on_unimplemented_; enum { eax = 0, ecx = 1, edx = 2, ebx = 3, esp = 4, ebp = 5, esi = 6, edi = 7 }; enum ShiftOpcodeExtension { kROL = 0, kROR = 1, kRCL = 2, kRCR = 3, kSHL = 4, KSHR = 5, kSAR = 7 }; const char* NameOfCPURegister(int reg) const { return converter_.NameOfCPURegister(reg); } const char* NameOfByteCPURegister(int reg) const { return converter_.NameOfByteCPURegister(reg); } const char* NameOfXMMRegister(int reg) const { return converter_.NameOfXMMRegister(reg); } const char* NameOfAddress(byte* addr) const { return converter_.NameOfAddress(addr); } // Disassembler helper functions. static void get_modrm(byte data, int* mod, int* regop, int* rm) { *mod = (data >> 6) & 3; *regop = (data & 0x38) >> 3; *rm = data & 7; } static void get_sib(byte data, int* scale, int* index, int* base) { *scale = (data >> 6) & 3; *index = (data >> 3) & 7; *base = data & 7; } typedef const char* (DisassemblerX87::*RegisterNameMapping)(int reg) const; int PrintRightOperandHelper(byte* modrmp, RegisterNameMapping register_name); int PrintRightOperand(byte* modrmp); int PrintRightByteOperand(byte* modrmp); int PrintRightXMMOperand(byte* modrmp); int PrintOperands(const char* mnem, OperandOrder op_order, byte* data); int PrintImmediateOp(byte* data); int F7Instruction(byte* data); int D1D3C1Instruction(byte* data); int JumpShort(byte* data); int JumpConditional(byte* data, const char* comment); int JumpConditionalShort(byte* data, const char* comment); int SetCC(byte* data); int CMov(byte* data); int FPUInstruction(byte* data); int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start); int RegisterFPUInstruction(int escape_opcode, byte modrm_byte); void AppendToBuffer(const char* format, ...); void UnimplementedInstruction() { if (abort_on_unimplemented_) { UNIMPLEMENTED(); } else { AppendToBuffer("'Unimplemented Instruction'"); } } }; void DisassemblerX87::AppendToBuffer(const char* format, ...) { v8::internal::Vector buf = tmp_buffer_ + tmp_buffer_pos_; va_list args; va_start(args, format); int result = v8::internal::VSNPrintF(buf, format, args); va_end(args); tmp_buffer_pos_ += result; } int DisassemblerX87::PrintRightOperandHelper( byte* modrmp, RegisterNameMapping direct_register_name) { int mod, regop, rm; get_modrm(*modrmp, &mod, ®op, &rm); RegisterNameMapping register_name = (mod == 3) ? direct_register_name : &DisassemblerX87::NameOfCPURegister; switch (mod) { case 0: if (rm == ebp) { int32_t disp = *reinterpret_cast(modrmp+1); AppendToBuffer("[0x%x]", disp); return 5; } else if (rm == esp) { byte sib = *(modrmp + 1); int scale, index, base; get_sib(sib, &scale, &index, &base); if (index == esp && base == esp && scale == 0 /*times_1*/) { AppendToBuffer("[%s]", (this->*register_name)(rm)); return 2; } else if (base == ebp) { int32_t disp = *reinterpret_cast(modrmp + 2); AppendToBuffer("[%s*%d%s0x%x]", (this->*register_name)(index), 1 << scale, disp < 0 ? "-" : "+", disp < 0 ? -disp : disp); return 6; } else if (index != esp && base != ebp) { // [base+index*scale] AppendToBuffer("[%s+%s*%d]", (this->*register_name)(base), (this->*register_name)(index), 1 << scale); return 2; } else { UnimplementedInstruction(); return 1; } } else { AppendToBuffer("[%s]", (this->*register_name)(rm)); return 1; } break; case 1: // fall through case 2: if (rm == esp) { byte sib = *(modrmp + 1); int scale, index, base; get_sib(sib, &scale, &index, &base); int disp = mod == 2 ? *reinterpret_cast(modrmp + 2) : *reinterpret_cast(modrmp + 2); if (index == base && index == rm /*esp*/ && scale == 0 /*times_1*/) { AppendToBuffer("[%s%s0x%x]", (this->*register_name)(rm), disp < 0 ? "-" : "+", disp < 0 ? -disp : disp); } else { AppendToBuffer("[%s+%s*%d%s0x%x]", (this->*register_name)(base), (this->*register_name)(index), 1 << scale, disp < 0 ? "-" : "+", disp < 0 ? -disp : disp); } return mod == 2 ? 6 : 3; } else { // No sib. int disp = mod == 2 ? *reinterpret_cast(modrmp + 1) : *reinterpret_cast(modrmp + 1); AppendToBuffer("[%s%s0x%x]", (this->*register_name)(rm), disp < 0 ? "-" : "+", disp < 0 ? -disp : disp); return mod == 2 ? 5 : 2; } break; case 3: AppendToBuffer("%s", (this->*register_name)(rm)); return 1; default: UnimplementedInstruction(); return 1; } UNREACHABLE(); } int DisassemblerX87::PrintRightOperand(byte* modrmp) { return PrintRightOperandHelper(modrmp, &DisassemblerX87::NameOfCPURegister); } int DisassemblerX87::PrintRightByteOperand(byte* modrmp) { return PrintRightOperandHelper(modrmp, &DisassemblerX87::NameOfByteCPURegister); } int DisassemblerX87::PrintRightXMMOperand(byte* modrmp) { return PrintRightOperandHelper(modrmp, &DisassemblerX87::NameOfXMMRegister); } // Returns number of bytes used including the current *data. // Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'. int DisassemblerX87::PrintOperands(const char* mnem, OperandOrder op_order, byte* data) { byte modrm = *data; int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); int advance = 0; switch (op_order) { case REG_OPER_OP_ORDER: { AppendToBuffer("%s %s,", mnem, NameOfCPURegister(regop)); advance = PrintRightOperand(data); break; } case OPER_REG_OP_ORDER: { AppendToBuffer("%s ", mnem); advance = PrintRightOperand(data); AppendToBuffer(",%s", NameOfCPURegister(regop)); break; } default: UNREACHABLE(); break; } return advance; } // Returns number of bytes used by machine instruction, including *data byte. // Writes immediate instructions to 'tmp_buffer_'. int DisassemblerX87::PrintImmediateOp(byte* data) { bool sign_extension_bit = (*data & 0x02) != 0; byte modrm = *(data+1); int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); const char* mnem = "Imm???"; switch (regop) { case 0: mnem = "add"; break; case 1: mnem = "or"; break; case 2: mnem = "adc"; break; case 4: mnem = "and"; break; case 5: mnem = "sub"; break; case 6: mnem = "xor"; break; case 7: mnem = "cmp"; break; default: UnimplementedInstruction(); } AppendToBuffer("%s ", mnem); int count = PrintRightOperand(data+1); if (sign_extension_bit) { AppendToBuffer(",0x%x", *(data + 1 + count)); return 1 + count + 1 /*int8*/; } else { AppendToBuffer(",0x%x", *reinterpret_cast(data + 1 + count)); return 1 + count + 4 /*int32_t*/; } } // Returns number of bytes used, including *data. int DisassemblerX87::F7Instruction(byte* data) { ASSERT_EQ(0xF7, *data); byte modrm = *(data+1); int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); if (mod == 3 && regop != 0) { const char* mnem = NULL; switch (regop) { case 2: mnem = "not"; break; case 3: mnem = "neg"; break; case 4: mnem = "mul"; break; case 5: mnem = "imul"; break; case 7: mnem = "idiv"; break; default: UnimplementedInstruction(); } AppendToBuffer("%s %s", mnem, NameOfCPURegister(rm)); return 2; } else if (mod == 3 && regop == eax) { int32_t imm = *reinterpret_cast(data+2); AppendToBuffer("test %s,0x%x", NameOfCPURegister(rm), imm); return 6; } else if (regop == eax) { AppendToBuffer("test "); int count = PrintRightOperand(data+1); int32_t imm = *reinterpret_cast(data+1+count); AppendToBuffer(",0x%x", imm); return 1+count+4 /*int32_t*/; } else { UnimplementedInstruction(); return 2; } } int DisassemblerX87::D1D3C1Instruction(byte* data) { byte op = *data; ASSERT(op == 0xD1 || op == 0xD3 || op == 0xC1); byte modrm = *(data+1); int mod, regop, rm; get_modrm(modrm, &mod, ®op, &rm); int imm8 = -1; int num_bytes = 2; if (mod == 3) { const char* mnem = NULL; switch (regop) { case kROL: mnem = "rol"; break; case kROR: mnem = "ror"; break; case kRCL: mnem = "rcl"; break; case kRCR: mnem = "rcr"; break; case kSHL: mnem = "shl"; break; case KSHR: mnem = "shr"; break; case kSAR: mnem = "sar"; break; default: UnimplementedInstruction(); } if (op == 0xD1) { imm8 = 1; } else if (op == 0xC1) { imm8 = *(data+2); num_bytes = 3; } else if (op == 0xD3) { // Shift/rotate by cl. } ASSERT_NE(NULL, mnem); AppendToBuffer("%s %s,", mnem, NameOfCPURegister(rm)); if (imm8 >= 0) { AppendToBuffer("%d", imm8); } else { AppendToBuffer("cl"); } } else { UnimplementedInstruction(); } return num_bytes; } // Returns number of bytes used, including *data. int DisassemblerX87::JumpShort(byte* data) { ASSERT_EQ(0xEB, *data); byte b = *(data+1); byte* dest = data + static_cast(b) + 2; AppendToBuffer("jmp %s", NameOfAddress(dest)); return 2; } // Returns number of bytes used, including *data. int DisassemblerX87::JumpConditional(byte* data, const char* comment) { ASSERT_EQ(0x0F, *data); byte cond = *(data+1) & 0x0F; byte* dest = data + *reinterpret_cast(data+2) + 6; const char* mnem = jump_conditional_mnem[cond]; AppendToBuffer("%s %s", mnem, NameOfAddress(dest)); if (comment != NULL) { AppendToBuffer(", %s", comment); } return 6; // includes 0x0F } // Returns number of bytes used, including *data. int DisassemblerX87::JumpConditionalShort(byte* data, const char* comment) { byte cond = *data & 0x0F; byte b = *(data+1); byte* dest = data + static_cast(b) + 2; const char* mnem = jump_conditional_mnem[cond]; AppendToBuffer("%s %s", mnem, NameOfAddress(dest)); if (comment != NULL) { AppendToBuffer(", %s", comment); } return 2; } // Returns number of bytes used, including *data. int DisassemblerX87::SetCC(byte* data) { ASSERT_EQ(0x0F, *data); byte cond = *(data+1) & 0x0F; const char* mnem = set_conditional_mnem[cond]; AppendToBuffer("%s ", mnem); PrintRightByteOperand(data+2); return 3; // Includes 0x0F. } // Returns number of bytes used, including *data. int DisassemblerX87::CMov(byte* data) { ASSERT_EQ(0x0F, *data); byte cond = *(data + 1) & 0x0F; const char* mnem = conditional_move_mnem[cond]; int op_size = PrintOperands(mnem, REG_OPER_OP_ORDER, data + 2); return 2 + op_size; // includes 0x0F } // Returns number of bytes used, including *data. int DisassemblerX87::FPUInstruction(byte* data) { byte escape_opcode = *data; ASSERT_EQ(0xD8, escape_opcode & 0xF8); byte modrm_byte = *(data+1); if (modrm_byte >= 0xC0) { return RegisterFPUInstruction(escape_opcode, modrm_byte); } else { return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1); } } int DisassemblerX87::MemoryFPUInstruction(int escape_opcode, int modrm_byte, byte* modrm_start) { const char* mnem = "?"; int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte. switch (escape_opcode) { case 0xD9: switch (regop) { case 0: mnem = "fld_s"; break; case 2: mnem = "fst_s"; break; case 3: mnem = "fstp_s"; break; case 7: mnem = "fstcw"; break; default: UnimplementedInstruction(); } break; case 0xDB: switch (regop) { case 0: mnem = "fild_s"; break; case 1: mnem = "fisttp_s"; break; case 2: mnem = "fist_s"; break; case 3: mnem = "fistp_s"; break; default: UnimplementedInstruction(); } break; case 0xDD: switch (regop) { case 0: mnem = "fld_d"; break; case 1: mnem = "fisttp_d"; break; case 2: mnem = "fst_d"; break; case 3: mnem = "fstp_d"; break; default: UnimplementedInstruction(); } break; case 0xDF: switch (regop) { case 5: mnem = "fild_d"; break; case 7: mnem = "fistp_d"; break; default: UnimplementedInstruction(); } break; default: UnimplementedInstruction(); } AppendToBuffer("%s ", mnem); int count = PrintRightOperand(modrm_start); return count + 1; } int DisassemblerX87::RegisterFPUInstruction(int escape_opcode, byte modrm_byte) { bool has_register = false; // Is the FPU register encoded in modrm_byte? const char* mnem = "?"; switch (escape_opcode) { case 0xD8: has_register = true; switch (modrm_byte & 0xF8) { case 0xC0: mnem = "fadd_i"; break; case 0xE0: mnem = "fsub_i"; break; case 0xC8: mnem = "fmul_i"; break; case 0xF0: mnem = "fdiv_i"; break; default: UnimplementedInstruction(); } break; case 0xD9: switch (modrm_byte & 0xF8) { case 0xC0: mnem = "fld"; has_register = true; break; case 0xC8: mnem = "fxch"; has_register = true; break; default: switch (modrm_byte) { case 0xE0: mnem = "fchs"; break; case 0xE1: mnem = "fabs"; break; case 0xE4: mnem = "ftst"; break; case 0xE8: mnem = "fld1"; break; case 0xEB: mnem = "fldpi"; break; case 0xED: mnem = "fldln2"; break; case 0xEE: mnem = "fldz"; break; case 0xF0: mnem = "f2xm1"; break; case 0xF1: mnem = "fyl2x"; break; case 0xF4: mnem = "fxtract"; break; case 0xF5: mnem = "fprem1"; break; case 0xF7: mnem = "fincstp"; break; case 0xF8: mnem = "fprem"; break; case 0xFC: mnem = "frndint"; break; case 0xFD: mnem = "fscale"; break; case 0xFE: mnem = "fsin"; break; case 0xFF: mnem = "fcos"; break; default: UnimplementedInstruction(); } } break; case 0xDA: if (modrm_byte == 0xE9) { mnem = "fucompp"; } else { UnimplementedInstruction(); } break; case 0xDB: if ((modrm_byte & 0xF8) == 0xE8) { mnem = "fucomi"; has_register = true; } else if (modrm_byte == 0xE2) { mnem = "fclex"; } else if (modrm_byte == 0xE3) { mnem = "fninit"; } else { UnimplementedInstruction(); } break; case 0xDC: has_register = true; switch (modrm_byte & 0xF8) { case 0xC0: mnem = "fadd"; break; case 0xE8: mnem = "fsub"; break; case 0xC8: mnem = "fmul"; break; case 0xF8: mnem = "fdiv"; break; default: UnimplementedInstruction(); } break; case 0xDD: has_register = true; switch (modrm_byte & 0xF8) { case 0xC0: mnem = "ffree"; break; case 0xD0: mnem = "fst"; break; case 0xD8: mnem = "fstp"; break; default: UnimplementedInstruction(); } break; case 0xDE: if (modrm_byte == 0xD9) { mnem = "fcompp"; } else { has_register = true; switch (modrm_byte & 0xF8) { case 0xC0: mnem = "faddp"; break; case 0xE8: mnem = "fsubp"; break; case 0xC8: mnem = "fmulp"; break; case 0xF8: mnem = "fdivp"; break; default: UnimplementedInstruction(); } } break; case 0xDF: if (modrm_byte == 0xE0) { mnem = "fnstsw_ax"; } else if ((modrm_byte & 0xF8) == 0xE8) { mnem = "fucomip"; has_register = true; } break; default: UnimplementedInstruction(); } if (has_register) { AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7); } else { AppendToBuffer("%s", mnem); } return 2; } // Mnemonics for instructions 0xF0 byte. // Returns NULL if the instruction is not handled here. static const char* F0Mnem(byte f0byte) { switch (f0byte) { case 0x18: return "prefetch"; case 0xA2: return "cpuid"; case 0xBE: return "movsx_b"; case 0xBF: return "movsx_w"; case 0xB6: return "movzx_b"; case 0xB7: return "movzx_w"; case 0xAF: return "imul"; case 0xA5: return "shld"; case 0xAD: return "shrd"; case 0xAC: return "shrd"; // 3-operand version. case 0xAB: return "bts"; case 0xBD: return "bsr"; default: return NULL; } } // Disassembled instruction '*instr' and writes it into 'out_buffer'. int DisassemblerX87::InstructionDecode(v8::internal::Vector out_buffer, byte* instr) { tmp_buffer_pos_ = 0; // starting to write as position 0 byte* data = instr; // Check for hints. const char* branch_hint = NULL; // We use these two prefixes only with branch prediction if (*data == 0x3E /*ds*/) { branch_hint = "predicted taken"; data++; } else if (*data == 0x2E /*cs*/) { branch_hint = "predicted not taken"; data++; } bool processed = true; // Will be set to false if the current instruction // is not in 'instructions' table. const InstructionDesc& idesc = instruction_table_->Get(*data); switch (idesc.type) { case ZERO_OPERANDS_INSTR: AppendToBuffer(idesc.mnem); data++; break; case TWO_OPERANDS_INSTR: data++; data += PrintOperands(idesc.mnem, idesc.op_order_, data); break; case JUMP_CONDITIONAL_SHORT_INSTR: data += JumpConditionalShort(data, branch_hint); break; case REGISTER_INSTR: AppendToBuffer("%s %s", idesc.mnem, NameOfCPURegister(*data & 0x07)); data++; break; case MOVE_REG_INSTR: { byte* addr = reinterpret_cast(*reinterpret_cast(data+1)); AppendToBuffer("mov %s,%s", NameOfCPURegister(*data & 0x07), NameOfAddress(addr)); data += 5; break; } case CALL_JUMP_INSTR: { byte* addr = data + *reinterpret_cast(data+1) + 5; AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr)); data += 5; break; } case SHORT_IMMEDIATE_INSTR: { byte* addr = reinterpret_cast(*reinterpret_cast(data+1)); AppendToBuffer("%s eax,%s", idesc.mnem, NameOfAddress(addr)); data += 5; break; } case BYTE_IMMEDIATE_INSTR: { AppendToBuffer("%s al,0x%x", idesc.mnem, data[1]); data += 2; break; } case NO_INSTR: processed = false; break; default: UNIMPLEMENTED(); // This type is not implemented. } //---------------------------- if (!processed) { switch (*data) { case 0xC2: AppendToBuffer("ret 0x%x", *reinterpret_cast(data+1)); data += 3; break; case 0x69: // fall through case 0x6B: { int mod, regop, rm; get_modrm(*(data+1), &mod, ®op, &rm); int32_t imm = *data == 0x6B ? *(data+2) : *reinterpret_cast(data+2); AppendToBuffer("imul %s,%s,0x%x", NameOfCPURegister(regop), NameOfCPURegister(rm), imm); data += 2 + (*data == 0x6B ? 1 : 4); } break; case 0xF6: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (regop == eax) { AppendToBuffer("test_b "); data += PrintRightByteOperand(data); int32_t imm = *data; AppendToBuffer(",0x%x", imm); data++; } else { UnimplementedInstruction(); } } break; case 0x81: // fall through case 0x83: // 0x81 with sign extension bit set data += PrintImmediateOp(data); break; case 0x0F: { byte f0byte = data[1]; const char* f0mnem = F0Mnem(f0byte); if (f0byte == 0x18) { data += 2; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); const char* suffix[] = {"nta", "1", "2", "3"}; AppendToBuffer("%s%s ", f0mnem, suffix[regop & 0x03]); data += PrintRightOperand(data); } else if (f0byte == 0x1F && data[2] == 0) { AppendToBuffer("nop"); // 3 byte nop. data += 3; } else if (f0byte == 0x1F && data[2] == 0x40 && data[3] == 0) { AppendToBuffer("nop"); // 4 byte nop. data += 4; } else if (f0byte == 0x1F && data[2] == 0x44 && data[3] == 0 && data[4] == 0) { AppendToBuffer("nop"); // 5 byte nop. data += 5; } else if (f0byte == 0x1F && data[2] == 0x80 && data[3] == 0 && data[4] == 0 && data[5] == 0 && data[6] == 0) { AppendToBuffer("nop"); // 7 byte nop. data += 7; } else if (f0byte == 0x1F && data[2] == 0x84 && data[3] == 0 && data[4] == 0 && data[5] == 0 && data[6] == 0 && data[7] == 0) { AppendToBuffer("nop"); // 8 byte nop. data += 8; } else if (f0byte == 0xA2 || f0byte == 0x31) { AppendToBuffer("%s", f0mnem); data += 2; } else if (f0byte == 0x28) { data += 2; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movaps %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (f0byte >= 0x53 && f0byte <= 0x5F) { const char* const pseudo_op[] = { "rcpps", "andps", "andnps", "orps", "xorps", "addps", "mulps", "cvtps2pd", "cvtdq2ps", "subps", "minps", "divps", "maxps", }; data += 2; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("%s %s,", pseudo_op[f0byte - 0x53], NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } else if (f0byte == 0x50) { data += 2; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movmskps %s,%s", NameOfCPURegister(regop), NameOfXMMRegister(rm)); data++; } else if (f0byte== 0xC6) { // shufps xmm, xmm/m128, imm8 data += 2; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); int8_t imm8 = static_cast(data[1]); AppendToBuffer("shufps %s,%s,%d", NameOfXMMRegister(rm), NameOfXMMRegister(regop), static_cast(imm8)); data += 2; } else if ((f0byte & 0xF0) == 0x80) { data += JumpConditional(data, branch_hint); } else if (f0byte == 0xBE || f0byte == 0xBF || f0byte == 0xB6 || f0byte == 0xB7 || f0byte == 0xAF) { data += 2; data += PrintOperands(f0mnem, REG_OPER_OP_ORDER, data); } else if ((f0byte & 0xF0) == 0x90) { data += SetCC(data); } else if ((f0byte & 0xF0) == 0x40) { data += CMov(data); } else if (f0byte == 0xAB || f0byte == 0xA5 || f0byte == 0xAD) { // shrd, shld, bts data += 2; AppendToBuffer("%s ", f0mnem); int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); data += PrintRightOperand(data); if (f0byte == 0xAB) { AppendToBuffer(",%s", NameOfCPURegister(regop)); } else { AppendToBuffer(",%s,cl", NameOfCPURegister(regop)); } } else if (f0byte == 0xBD) { data += 2; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("%s %s,", f0mnem, NameOfCPURegister(regop)); data += PrintRightOperand(data); } else { UnimplementedInstruction(); } } break; case 0x8F: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (regop == eax) { AppendToBuffer("pop "); data += PrintRightOperand(data); } } break; case 0xFF: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); const char* mnem = NULL; switch (regop) { case esi: mnem = "push"; break; case eax: mnem = "inc"; break; case ecx: mnem = "dec"; break; case edx: mnem = "call"; break; case esp: mnem = "jmp"; break; default: mnem = "???"; } AppendToBuffer("%s ", mnem); data += PrintRightOperand(data); } break; case 0xC7: // imm32, fall through case 0xC6: // imm8 { bool is_byte = *data == 0xC6; data++; if (is_byte) { AppendToBuffer("%s ", "mov_b"); data += PrintRightByteOperand(data); int32_t imm = *data; AppendToBuffer(",0x%x", imm); data++; } else { AppendToBuffer("%s ", "mov"); data += PrintRightOperand(data); int32_t imm = *reinterpret_cast(data); AppendToBuffer(",0x%x", imm); data += 4; } } break; case 0x80: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); const char* mnem = NULL; switch (regop) { case 5: mnem = "subb"; break; case 7: mnem = "cmpb"; break; default: UnimplementedInstruction(); } AppendToBuffer("%s ", mnem); data += PrintRightByteOperand(data); int32_t imm = *data; AppendToBuffer(",0x%x", imm); data++; } break; case 0x88: // 8bit, fall through case 0x89: // 32bit { bool is_byte = *data == 0x88; int mod, regop, rm; data++; get_modrm(*data, &mod, ®op, &rm); if (is_byte) { AppendToBuffer("%s ", "mov_b"); data += PrintRightByteOperand(data); AppendToBuffer(",%s", NameOfByteCPURegister(regop)); } else { AppendToBuffer("%s ", "mov"); data += PrintRightOperand(data); AppendToBuffer(",%s", NameOfCPURegister(regop)); } } break; case 0x66: // prefix while (*data == 0x66) data++; if (*data == 0xf && data[1] == 0x1f) { AppendToBuffer("nop"); // 0x66 prefix } else if (*data == 0x90) { AppendToBuffer("nop"); // 0x66 prefix } else if (*data == 0x8B) { data++; data += PrintOperands("mov_w", REG_OPER_OP_ORDER, data); } else if (*data == 0x89) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("mov_w "); data += PrintRightOperand(data); AppendToBuffer(",%s", NameOfCPURegister(regop)); } else if (*data == 0xC7) { data++; AppendToBuffer("%s ", "mov_w"); data += PrintRightOperand(data); int imm = *reinterpret_cast(data); AppendToBuffer(",0x%x", imm); data += 2; } else if (*data == 0x0F) { data++; if (*data == 0x38) { data++; if (*data == 0x17) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("ptest %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x2A) { // movntdqa data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movntdqa %s,", NameOfXMMRegister(regop)); data += PrintRightOperand(data); } else { UnimplementedInstruction(); } } else if (*data == 0x3A) { data++; if (*data == 0x0B) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); int8_t imm8 = static_cast(data[1]); AppendToBuffer("roundsd %s,%s,%d", NameOfXMMRegister(regop), NameOfXMMRegister(rm), static_cast(imm8)); data += 2; } else if (*data == 0x16) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); int8_t imm8 = static_cast(data[1]); AppendToBuffer("pextrd %s,%s,%d", NameOfCPURegister(regop), NameOfXMMRegister(rm), static_cast(imm8)); data += 2; } else if (*data == 0x17) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); int8_t imm8 = static_cast(data[1]); AppendToBuffer("extractps %s,%s,%d", NameOfCPURegister(rm), NameOfXMMRegister(regop), static_cast(imm8)); data += 2; } else if (*data == 0x22) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); int8_t imm8 = static_cast(data[1]); AppendToBuffer("pinsrd %s,%s,%d", NameOfXMMRegister(regop), NameOfCPURegister(rm), static_cast(imm8)); data += 2; } else { UnimplementedInstruction(); } } else if (*data == 0x2E || *data == 0x2F) { const char* mnem = (*data == 0x2E) ? "ucomisd" : "comisd"; data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (mod == 0x3) { AppendToBuffer("%s %s,%s", mnem, NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else { AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop)); data += PrintRightOperand(data); } } else if (*data == 0x50) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movmskpd %s,%s", NameOfCPURegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x54) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("andpd %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x56) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("orpd %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x57) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("xorpd %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x6E) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movd %s,", NameOfXMMRegister(regop)); data += PrintRightOperand(data); } else if (*data == 0x6F) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movdqa %s,", NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } else if (*data == 0x70) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); int8_t imm8 = static_cast(data[1]); AppendToBuffer("pshufd %s,%s,%d", NameOfXMMRegister(regop), NameOfXMMRegister(rm), static_cast(imm8)); data += 2; } else if (*data == 0x76) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("pcmpeqd %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x90) { data++; AppendToBuffer("nop"); // 2 byte nop. } else if (*data == 0xF3) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("psllq %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x73) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); int8_t imm8 = static_cast(data[1]); ASSERT(regop == esi || regop == edx); AppendToBuffer("%s %s,%d", (regop == esi) ? "psllq" : "psrlq", NameOfXMMRegister(rm), static_cast(imm8)); data += 2; } else if (*data == 0xD3) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("psrlq %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0x7F) { AppendToBuffer("movdqa "); data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); data += PrintRightXMMOperand(data); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else if (*data == 0x7E) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movd "); data += PrintRightOperand(data); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else if (*data == 0xDB) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("pand %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0xE7) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (mod == 3) { AppendToBuffer("movntdq "); data += PrintRightOperand(data); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else { UnimplementedInstruction(); } } else if (*data == 0xEF) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("pxor %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else if (*data == 0xEB) { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("por %s,%s", NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data++; } else { UnimplementedInstruction(); } } else { UnimplementedInstruction(); } break; case 0xFE: { data++; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (regop == ecx) { AppendToBuffer("dec_b "); data += PrintRightOperand(data); } else { UnimplementedInstruction(); } } break; case 0x68: AppendToBuffer("push 0x%x", *reinterpret_cast(data+1)); data += 5; break; case 0x6A: AppendToBuffer("push 0x%x", *reinterpret_cast(data + 1)); data += 2; break; case 0xA8: AppendToBuffer("test al,0x%x", *reinterpret_cast(data+1)); data += 2; break; case 0xA9: AppendToBuffer("test eax,0x%x", *reinterpret_cast(data+1)); data += 5; break; case 0xD1: // fall through case 0xD3: // fall through case 0xC1: data += D1D3C1Instruction(data); break; case 0xD8: // fall through case 0xD9: // fall through case 0xDA: // fall through case 0xDB: // fall through case 0xDC: // fall through case 0xDD: // fall through case 0xDE: // fall through case 0xDF: data += FPUInstruction(data); break; case 0xEB: data += JumpShort(data); break; case 0xF2: if (*(data+1) == 0x0F) { byte b2 = *(data+2); if (b2 == 0x11) { AppendToBuffer("movsd "); data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); data += PrintRightXMMOperand(data); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else if (b2 == 0x10) { data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movsd %s,", NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } else if (b2 == 0x5A) { data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("cvtsd2ss %s,", NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } else { const char* mnem = "?"; switch (b2) { case 0x2A: mnem = "cvtsi2sd"; break; case 0x2C: mnem = "cvttsd2si"; break; case 0x2D: mnem = "cvtsd2si"; break; case 0x51: mnem = "sqrtsd"; break; case 0x58: mnem = "addsd"; break; case 0x59: mnem = "mulsd"; break; case 0x5C: mnem = "subsd"; break; case 0x5E: mnem = "divsd"; break; } data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); if (b2 == 0x2A) { AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop)); data += PrintRightOperand(data); } else if (b2 == 0x2C || b2 == 0x2D) { AppendToBuffer("%s %s,", mnem, NameOfCPURegister(regop)); data += PrintRightXMMOperand(data); } else if (b2 == 0xC2) { // Intel manual 2A, Table 3-18. const char* const pseudo_op[] = { "cmpeqsd", "cmpltsd", "cmplesd", "cmpunordsd", "cmpneqsd", "cmpnltsd", "cmpnlesd", "cmpordsd" }; AppendToBuffer("%s %s,%s", pseudo_op[data[1]], NameOfXMMRegister(regop), NameOfXMMRegister(rm)); data += 2; } else { AppendToBuffer("%s %s,", mnem, NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } } } else { UnimplementedInstruction(); } break; case 0xF3: if (*(data+1) == 0x0F) { byte b2 = *(data+2); if (b2 == 0x11) { AppendToBuffer("movss "); data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); data += PrintRightXMMOperand(data); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else if (b2 == 0x10) { data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movss %s,", NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } else if (b2 == 0x2C) { data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("cvttss2si %s,", NameOfCPURegister(regop)); data += PrintRightXMMOperand(data); } else if (b2 == 0x5A) { data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } else if (b2 == 0x6F) { data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); AppendToBuffer("movdqu %s,", NameOfXMMRegister(regop)); data += PrintRightXMMOperand(data); } else if (b2 == 0x7F) { AppendToBuffer("movdqu "); data += 3; int mod, regop, rm; get_modrm(*data, &mod, ®op, &rm); data += PrintRightXMMOperand(data); AppendToBuffer(",%s", NameOfXMMRegister(regop)); } else { UnimplementedInstruction(); } } else if (*(data+1) == 0xA5) { data += 2; AppendToBuffer("rep_movs"); } else if (*(data+1) == 0xAB) { data += 2; AppendToBuffer("rep_stos"); } else { UnimplementedInstruction(); } break; case 0xF7: data += F7Instruction(data); break; default: UnimplementedInstruction(); } } if (tmp_buffer_pos_ < sizeof tmp_buffer_) { tmp_buffer_[tmp_buffer_pos_] = '\0'; } int instr_len = data - instr; if (instr_len == 0) { printf("%02x", *data); } ASSERT(instr_len > 0); // Ensure progress. int outp = 0; // Instruction bytes. for (byte* bp = instr; bp < data; bp++) { outp += v8::internal::SNPrintF(out_buffer + outp, "%02x", *bp); } for (int i = 6 - instr_len; i >= 0; i--) { outp += v8::internal::SNPrintF(out_buffer + outp, " "); } outp += v8::internal::SNPrintF(out_buffer + outp, " %s", tmp_buffer_.start()); return instr_len; } // NOLINT (function is too long) //------------------------------------------------------------------------------ static const char* cpu_regs[8] = { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi" }; static const char* byte_cpu_regs[8] = { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh" }; static const char* xmm_regs[8] = { "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7" }; const char* NameConverter::NameOfAddress(byte* addr) const { v8::internal::SNPrintF(tmp_buffer_, "%p", addr); return tmp_buffer_.start(); } const char* NameConverter::NameOfConstant(byte* addr) const { return NameOfAddress(addr); } const char* NameConverter::NameOfCPURegister(int reg) const { if (0 <= reg && reg < 8) return cpu_regs[reg]; return "noreg"; } const char* NameConverter::NameOfByteCPURegister(int reg) const { if (0 <= reg && reg < 8) return byte_cpu_regs[reg]; return "noreg"; } const char* NameConverter::NameOfXMMRegister(int reg) const { if (0 <= reg && reg < 8) return xmm_regs[reg]; return "noxmmreg"; } const char* NameConverter::NameInCode(byte* addr) const { // X87 does not embed debug strings at the moment. UNREACHABLE(); return ""; } //------------------------------------------------------------------------------ Disassembler::Disassembler(const NameConverter& converter) : converter_(converter) {} Disassembler::~Disassembler() {} int Disassembler::InstructionDecode(v8::internal::Vector buffer, byte* instruction) { DisassemblerX87 d(converter_, false /*do not crash if unimplemented*/); return d.InstructionDecode(buffer, instruction); } // The IA-32 assembler does not currently use constant pools. int Disassembler::ConstantPoolSizeAt(byte* instruction) { return -1; } /*static*/ void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) { NameConverter converter; Disassembler d(converter); for (byte* pc = begin; pc < end;) { v8::internal::EmbeddedVector buffer; buffer[0] = '\0'; byte* prev_pc = pc; pc += d.InstructionDecode(buffer, pc); fprintf(f, "%p", prev_pc); fprintf(f, " "); for (byte* bp = prev_pc; bp < pc; bp++) { fprintf(f, "%02x", *bp); } for (int i = 6 - (pc - prev_pc); i >= 0; i--) { fprintf(f, " "); } fprintf(f, " %s\n", buffer.start()); } } } // namespace disasm #endif // V8_TARGET_ARCH_X87