//===- ThreadSafety.cpp ----------------------------------------*- C++ --*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A intra-procedural analysis for thread safety (e.g. deadlocks and race // conditions), based off of an annotation system. // // See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html // for more information. // //===----------------------------------------------------------------------===// #include "clang/AST/Attr.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtVisitor.h" #include "clang/Analysis/Analyses/PostOrderCFGView.h" #include "clang/Analysis/Analyses/ThreadSafety.h" #include "clang/Analysis/Analyses/ThreadSafetyLogical.h" #include "clang/Analysis/Analyses/ThreadSafetyTIL.h" #include "clang/Analysis/Analyses/ThreadSafetyTraverse.h" #include "clang/Analysis/Analyses/ThreadSafetyCommon.h" #include "clang/Analysis/AnalysisContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/CFGStmtMap.h" #include "clang/Basic/OperatorKinds.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/PostOrderIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace clang; using namespace thread_safety; // Key method definition ThreadSafetyHandler::~ThreadSafetyHandler() {} namespace { /// SExpr implements a simple expression language that is used to store, /// compare, and pretty-print C++ expressions. Unlike a clang Expr, a SExpr /// does not capture surface syntax, and it does not distinguish between /// C++ concepts, like pointers and references, that have no real semantic /// differences. This simplicity allows SExprs to be meaningfully compared, /// e.g. /// (x) = x /// (*this).foo = this->foo /// *&a = a /// /// Thread-safety analysis works by comparing lock expressions. Within the /// body of a function, an expression such as "x->foo->bar.mu" will resolve to /// a particular mutex object at run-time. Subsequent occurrences of the same /// expression (where "same" means syntactic equality) will refer to the same /// run-time object if three conditions hold: /// (1) Local variables in the expression, such as "x" have not changed. /// (2) Values on the heap that affect the expression have not changed. /// (3) The expression involves only pure function calls. /// /// The current implementation assumes, but does not verify, that multiple uses /// of the same lock expression satisfies these criteria. class SExpr { private: enum ExprOp { EOP_Nop, ///< No-op EOP_Wildcard, ///< Matches anything. EOP_Universal, ///< Universal lock. EOP_This, ///< This keyword. EOP_NVar, ///< Named variable. EOP_LVar, ///< Local variable. EOP_Dot, ///< Field access EOP_Call, ///< Function call EOP_MCall, ///< Method call EOP_Index, ///< Array index EOP_Unary, ///< Unary operation EOP_Binary, ///< Binary operation EOP_Unknown ///< Catchall for everything else }; class SExprNode { private: unsigned char Op; ///< Opcode of the root node unsigned char Flags; ///< Additional opcode-specific data unsigned short Sz; ///< Number of child nodes const void* Data; ///< Additional opcode-specific data public: SExprNode(ExprOp O, unsigned F, const void* D) : Op(static_cast(O)), Flags(static_cast(F)), Sz(1), Data(D) { } unsigned size() const { return Sz; } void setSize(unsigned S) { Sz = S; } ExprOp kind() const { return static_cast(Op); } const NamedDecl* getNamedDecl() const { assert(Op == EOP_NVar || Op == EOP_LVar || Op == EOP_Dot); return reinterpret_cast(Data); } const NamedDecl* getFunctionDecl() const { assert(Op == EOP_Call || Op == EOP_MCall); return reinterpret_cast(Data); } bool isArrow() const { return Op == EOP_Dot && Flags == 1; } void setArrow(bool A) { Flags = A ? 1 : 0; } unsigned arity() const { switch (Op) { case EOP_Nop: return 0; case EOP_Wildcard: return 0; case EOP_Universal: return 0; case EOP_NVar: return 0; case EOP_LVar: return 0; case EOP_This: return 0; case EOP_Dot: return 1; case EOP_Call: return Flags+1; // First arg is function. case EOP_MCall: return Flags+1; // First arg is implicit obj. case EOP_Index: return 2; case EOP_Unary: return 1; case EOP_Binary: return 2; case EOP_Unknown: return Flags; } return 0; } bool operator==(const SExprNode& Other) const { // Ignore flags and size -- they don't matter. return (Op == Other.Op && Data == Other.Data); } bool operator!=(const SExprNode& Other) const { return !(*this == Other); } bool matches(const SExprNode& Other) const { return (*this == Other) || (Op == EOP_Wildcard) || (Other.Op == EOP_Wildcard); } }; /// \brief Encapsulates the lexical context of a function call. The lexical /// context includes the arguments to the call, including the implicit object /// argument. When an attribute containing a mutex expression is attached to /// a method, the expression may refer to formal parameters of the method. /// Actual arguments must be substituted for formal parameters to derive /// the appropriate mutex expression in the lexical context where the function /// is called. PrevCtx holds the context in which the arguments themselves /// should be evaluated; multiple calling contexts can be chained together /// by the lock_returned attribute. struct CallingContext { const NamedDecl* AttrDecl; // The decl to which the attribute is attached. const Expr* SelfArg; // Implicit object argument -- e.g. 'this' bool SelfArrow; // is Self referred to with -> or .? unsigned NumArgs; // Number of funArgs const Expr* const* FunArgs; // Function arguments CallingContext* PrevCtx; // The previous context; or 0 if none. CallingContext(const NamedDecl *D) : AttrDecl(D), SelfArg(nullptr), SelfArrow(false), NumArgs(0), FunArgs(nullptr), PrevCtx(nullptr) {} }; typedef SmallVector NodeVector; private: // A SExpr is a list of SExprNodes in prefix order. The Size field allows // the list to be traversed as a tree. NodeVector NodeVec; private: unsigned make(ExprOp O, unsigned F = 0, const void *D = nullptr) { NodeVec.push_back(SExprNode(O, F, D)); return NodeVec.size() - 1; } unsigned makeNop() { return make(EOP_Nop); } unsigned makeWildcard() { return make(EOP_Wildcard); } unsigned makeUniversal() { return make(EOP_Universal); } unsigned makeNamedVar(const NamedDecl *D) { return make(EOP_NVar, 0, D); } unsigned makeLocalVar(const NamedDecl *D) { return make(EOP_LVar, 0, D); } unsigned makeThis() { return make(EOP_This); } unsigned makeDot(const NamedDecl *D, bool Arrow) { return make(EOP_Dot, Arrow ? 1 : 0, D); } unsigned makeCall(unsigned NumArgs, const NamedDecl *D) { return make(EOP_Call, NumArgs, D); } // Grab the very first declaration of virtual method D const CXXMethodDecl* getFirstVirtualDecl(const CXXMethodDecl *D) { while (true) { D = D->getCanonicalDecl(); CXXMethodDecl::method_iterator I = D->begin_overridden_methods(), E = D->end_overridden_methods(); if (I == E) return D; // Method does not override anything D = *I; // FIXME: this does not work with multiple inheritance. } return nullptr; } unsigned makeMCall(unsigned NumArgs, const CXXMethodDecl *D) { return make(EOP_MCall, NumArgs, getFirstVirtualDecl(D)); } unsigned makeIndex() { return make(EOP_Index); } unsigned makeUnary() { return make(EOP_Unary); } unsigned makeBinary() { return make(EOP_Binary); } unsigned makeUnknown(unsigned Arity) { return make(EOP_Unknown, Arity); } inline bool isCalleeArrow(const Expr *E) { const MemberExpr *ME = dyn_cast(E->IgnoreParenCasts()); return ME ? ME->isArrow() : false; } /// Build an SExpr from the given C++ expression. /// Recursive function that terminates on DeclRefExpr. /// Note: this function merely creates a SExpr; it does not check to /// ensure that the original expression is a valid mutex expression. /// /// NDeref returns the number of Derefence and AddressOf operations /// preceding the Expr; this is used to decide whether to pretty-print /// SExprs with . or ->. unsigned buildSExpr(const Expr *Exp, CallingContext *CallCtx, int *NDeref = nullptr) { if (!Exp) return 0; if (const DeclRefExpr *DRE = dyn_cast(Exp)) { const NamedDecl *ND = cast(DRE->getDecl()->getCanonicalDecl()); const ParmVarDecl *PV = dyn_cast_or_null(ND); if (PV) { const FunctionDecl *FD = cast(PV->getDeclContext())->getCanonicalDecl(); unsigned i = PV->getFunctionScopeIndex(); if (CallCtx && CallCtx->FunArgs && FD == CallCtx->AttrDecl->getCanonicalDecl()) { // Substitute call arguments for references to function parameters assert(i < CallCtx->NumArgs); return buildSExpr(CallCtx->FunArgs[i], CallCtx->PrevCtx, NDeref); } // Map the param back to the param of the original function declaration. makeNamedVar(FD->getParamDecl(i)); return 1; } // Not a function parameter -- just store the reference. makeNamedVar(ND); return 1; } else if (isa(Exp)) { // Substitute parent for 'this' if (CallCtx && CallCtx->SelfArg) { if (!CallCtx->SelfArrow && NDeref) // 'this' is a pointer, but self is not, so need to take address. --(*NDeref); return buildSExpr(CallCtx->SelfArg, CallCtx->PrevCtx, NDeref); } else { makeThis(); return 1; } } else if (const MemberExpr *ME = dyn_cast(Exp)) { const NamedDecl *ND = ME->getMemberDecl(); int ImplicitDeref = ME->isArrow() ? 1 : 0; unsigned Root = makeDot(ND, false); unsigned Sz = buildSExpr(ME->getBase(), CallCtx, &ImplicitDeref); NodeVec[Root].setArrow(ImplicitDeref > 0); NodeVec[Root].setSize(Sz + 1); return Sz + 1; } else if (const CXXMemberCallExpr *CMCE = dyn_cast(Exp)) { // When calling a function with a lock_returned attribute, replace // the function call with the expression in lock_returned. const CXXMethodDecl *MD = CMCE->getMethodDecl()->getMostRecentDecl(); if (LockReturnedAttr* At = MD->getAttr()) { CallingContext LRCallCtx(CMCE->getMethodDecl()); LRCallCtx.SelfArg = CMCE->getImplicitObjectArgument(); LRCallCtx.SelfArrow = isCalleeArrow(CMCE->getCallee()); LRCallCtx.NumArgs = CMCE->getNumArgs(); LRCallCtx.FunArgs = CMCE->getArgs(); LRCallCtx.PrevCtx = CallCtx; return buildSExpr(At->getArg(), &LRCallCtx); } // Hack to treat smart pointers and iterators as pointers; // ignore any method named get(). if (CMCE->getMethodDecl()->getNameAsString() == "get" && CMCE->getNumArgs() == 0) { if (NDeref && isCalleeArrow(CMCE->getCallee())) ++(*NDeref); return buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx, NDeref); } unsigned NumCallArgs = CMCE->getNumArgs(); unsigned Root = makeMCall(NumCallArgs, CMCE->getMethodDecl()); unsigned Sz = buildSExpr(CMCE->getImplicitObjectArgument(), CallCtx); const Expr* const* CallArgs = CMCE->getArgs(); for (unsigned i = 0; i < NumCallArgs; ++i) { Sz += buildSExpr(CallArgs[i], CallCtx); } NodeVec[Root].setSize(Sz + 1); return Sz + 1; } else if (const CallExpr *CE = dyn_cast(Exp)) { const FunctionDecl *FD = CE->getDirectCallee()->getMostRecentDecl(); if (LockReturnedAttr* At = FD->getAttr()) { CallingContext LRCallCtx(CE->getDirectCallee()); LRCallCtx.NumArgs = CE->getNumArgs(); LRCallCtx.FunArgs = CE->getArgs(); LRCallCtx.PrevCtx = CallCtx; return buildSExpr(At->getArg(), &LRCallCtx); } // Treat smart pointers and iterators as pointers; // ignore the * and -> operators. if (const CXXOperatorCallExpr *OE = dyn_cast(CE)) { OverloadedOperatorKind k = OE->getOperator(); if (k == OO_Star) { if (NDeref) ++(*NDeref); return buildSExpr(OE->getArg(0), CallCtx, NDeref); } else if (k == OO_Arrow) { return buildSExpr(OE->getArg(0), CallCtx, NDeref); } } unsigned NumCallArgs = CE->getNumArgs(); unsigned Root = makeCall(NumCallArgs, nullptr); unsigned Sz = buildSExpr(CE->getCallee(), CallCtx); const Expr* const* CallArgs = CE->getArgs(); for (unsigned i = 0; i < NumCallArgs; ++i) { Sz += buildSExpr(CallArgs[i], CallCtx); } NodeVec[Root].setSize(Sz+1); return Sz+1; } else if (const BinaryOperator *BOE = dyn_cast(Exp)) { unsigned Root = makeBinary(); unsigned Sz = buildSExpr(BOE->getLHS(), CallCtx); Sz += buildSExpr(BOE->getRHS(), CallCtx); NodeVec[Root].setSize(Sz); return Sz; } else if (const UnaryOperator *UOE = dyn_cast(Exp)) { // Ignore & and * operators -- they're no-ops. // However, we try to figure out whether the expression is a pointer, // so we can use . and -> appropriately in error messages. if (UOE->getOpcode() == UO_Deref) { if (NDeref) ++(*NDeref); return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); } if (UOE->getOpcode() == UO_AddrOf) { if (DeclRefExpr* DRE = dyn_cast(UOE->getSubExpr())) { if (DRE->getDecl()->isCXXInstanceMember()) { // This is a pointer-to-member expression, e.g. &MyClass::mu_. // We interpret this syntax specially, as a wildcard. unsigned Root = makeDot(DRE->getDecl(), false); makeWildcard(); NodeVec[Root].setSize(2); return 2; } } if (NDeref) --(*NDeref); return buildSExpr(UOE->getSubExpr(), CallCtx, NDeref); } unsigned Root = makeUnary(); unsigned Sz = buildSExpr(UOE->getSubExpr(), CallCtx); NodeVec[Root].setSize(Sz); return Sz; } else if (const ArraySubscriptExpr *ASE = dyn_cast(Exp)) { unsigned Root = makeIndex(); unsigned Sz = buildSExpr(ASE->getBase(), CallCtx); Sz += buildSExpr(ASE->getIdx(), CallCtx); NodeVec[Root].setSize(Sz); return Sz; } else if (const AbstractConditionalOperator *CE = dyn_cast(Exp)) { unsigned Root = makeUnknown(3); unsigned Sz = buildSExpr(CE->getCond(), CallCtx); Sz += buildSExpr(CE->getTrueExpr(), CallCtx); Sz += buildSExpr(CE->getFalseExpr(), CallCtx); NodeVec[Root].setSize(Sz); return Sz; } else if (const ChooseExpr *CE = dyn_cast(Exp)) { unsigned Root = makeUnknown(3); unsigned Sz = buildSExpr(CE->getCond(), CallCtx); Sz += buildSExpr(CE->getLHS(), CallCtx); Sz += buildSExpr(CE->getRHS(), CallCtx); NodeVec[Root].setSize(Sz); return Sz; } else if (const CastExpr *CE = dyn_cast(Exp)) { return buildSExpr(CE->getSubExpr(), CallCtx, NDeref); } else if (const ParenExpr *PE = dyn_cast(Exp)) { return buildSExpr(PE->getSubExpr(), CallCtx, NDeref); } else if (const ExprWithCleanups *EWC = dyn_cast(Exp)) { return buildSExpr(EWC->getSubExpr(), CallCtx, NDeref); } else if (const CXXBindTemporaryExpr *E = dyn_cast(Exp)) { return buildSExpr(E->getSubExpr(), CallCtx, NDeref); } else if (isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp) || isa(Exp)) { makeNop(); return 1; // FIXME: Ignore literals for now } else { makeNop(); return 1; // Ignore. FIXME: mark as invalid expression? } } /// \brief Construct a SExpr from an expression. /// \param MutexExp The original mutex expression within an attribute /// \param DeclExp An expression involving the Decl on which the attribute /// occurs. /// \param D The declaration to which the lock/unlock attribute is attached. void buildSExprFromExpr(const Expr *MutexExp, const Expr *DeclExp, const NamedDecl *D, VarDecl *SelfDecl = nullptr) { CallingContext CallCtx(D); if (MutexExp) { if (const StringLiteral* SLit = dyn_cast(MutexExp)) { if (SLit->getString() == StringRef("*")) // The "*" expr is a universal lock, which essentially turns off // checks until it is removed from the lockset. makeUniversal(); else // Ignore other string literals for now. makeNop(); return; } } // If we are processing a raw attribute expression, with no substitutions. if (!DeclExp) { buildSExpr(MutexExp, nullptr); return; } // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute // for formal parameters when we call buildMutexID later. if (const MemberExpr *ME = dyn_cast(DeclExp)) { CallCtx.SelfArg = ME->getBase(); CallCtx.SelfArrow = ME->isArrow(); } else if (const CXXMemberCallExpr *CE = dyn_cast(DeclExp)) { CallCtx.SelfArg = CE->getImplicitObjectArgument(); CallCtx.SelfArrow = isCalleeArrow(CE->getCallee()); CallCtx.NumArgs = CE->getNumArgs(); CallCtx.FunArgs = CE->getArgs(); } else if (const CallExpr *CE = dyn_cast(DeclExp)) { CallCtx.NumArgs = CE->getNumArgs(); CallCtx.FunArgs = CE->getArgs(); } else if (const CXXConstructExpr *CE = dyn_cast(DeclExp)) { CallCtx.SelfArg = nullptr; // Will be set below CallCtx.NumArgs = CE->getNumArgs(); CallCtx.FunArgs = CE->getArgs(); } else if (D && isa(D)) { // There's no such thing as a "destructor call" in the AST. CallCtx.SelfArg = DeclExp; } // Hack to handle constructors, where self cannot be recovered from // the expression. if (SelfDecl && !CallCtx.SelfArg) { DeclRefExpr SelfDRE(SelfDecl, false, SelfDecl->getType(), VK_LValue, SelfDecl->getLocation()); CallCtx.SelfArg = &SelfDRE; // If the attribute has no arguments, then assume the argument is "this". if (!MutexExp) buildSExpr(CallCtx.SelfArg, nullptr); else // For most attributes. buildSExpr(MutexExp, &CallCtx); return; } // If the attribute has no arguments, then assume the argument is "this". if (!MutexExp) buildSExpr(CallCtx.SelfArg, nullptr); else // For most attributes. buildSExpr(MutexExp, &CallCtx); } /// \brief Get index of next sibling of node i. unsigned getNextSibling(unsigned i) const { return i + NodeVec[i].size(); } public: explicit SExpr(clang::Decl::EmptyShell e) { NodeVec.clear(); } /// \param MutexExp The original mutex expression within an attribute /// \param DeclExp An expression involving the Decl on which the attribute /// occurs. /// \param D The declaration to which the lock/unlock attribute is attached. /// Caller must check isValid() after construction. SExpr(const Expr *MutexExp, const Expr *DeclExp, const NamedDecl *D, VarDecl *SelfDecl = nullptr) { buildSExprFromExpr(MutexExp, DeclExp, D, SelfDecl); } /// Return true if this is a valid decl sequence. /// Caller must call this by hand after construction to handle errors. bool isValid() const { return !NodeVec.empty(); } bool shouldIgnore() const { // Nop is a mutex that we have decided to deliberately ignore. assert(NodeVec.size() > 0 && "Invalid Mutex"); return NodeVec[0].kind() == EOP_Nop; } bool isUniversal() const { assert(NodeVec.size() > 0 && "Invalid Mutex"); return NodeVec[0].kind() == EOP_Universal; } /// Issue a warning about an invalid lock expression static void warnInvalidLock(ThreadSafetyHandler &Handler, const Expr *MutexExp, const Expr *DeclExp, const NamedDecl *D, StringRef Kind) { SourceLocation Loc; if (DeclExp) Loc = DeclExp->getExprLoc(); // FIXME: add a note about the attribute location in MutexExp or D if (Loc.isValid()) Handler.handleInvalidLockExp(Kind, Loc); } bool operator==(const SExpr &other) const { return NodeVec == other.NodeVec; } bool operator!=(const SExpr &other) const { return !(*this == other); } bool matches(const SExpr &Other, unsigned i = 0, unsigned j = 0) const { if (NodeVec[i].matches(Other.NodeVec[j])) { unsigned ni = NodeVec[i].arity(); unsigned nj = Other.NodeVec[j].arity(); unsigned n = (ni < nj) ? ni : nj; bool Result = true; unsigned ci = i+1; // first child of i unsigned cj = j+1; // first child of j for (unsigned k = 0; k < n; ++k, ci=getNextSibling(ci), cj = Other.getNextSibling(cj)) { Result = Result && matches(Other, ci, cj); } return Result; } return false; } // A partial match between a.mu and b.mu returns true a and b have the same // type (and thus mu refers to the same mutex declaration), regardless of // whether a and b are different objects or not. bool partiallyMatches(const SExpr &Other) const { if (NodeVec[0].kind() == EOP_Dot) return NodeVec[0].matches(Other.NodeVec[0]); return false; } /// \brief Pretty print a lock expression for use in error messages. std::string toString(unsigned i = 0) const { assert(isValid()); if (i >= NodeVec.size()) return ""; const SExprNode* N = &NodeVec[i]; switch (N->kind()) { case EOP_Nop: return "_"; case EOP_Wildcard: return "(?)"; case EOP_Universal: return "*"; case EOP_This: return "this"; case EOP_NVar: case EOP_LVar: { return N->getNamedDecl()->getNameAsString(); } case EOP_Dot: { if (NodeVec[i+1].kind() == EOP_Wildcard) { std::string S = "&"; S += N->getNamedDecl()->getQualifiedNameAsString(); return S; } std::string FieldName = N->getNamedDecl()->getNameAsString(); if (NodeVec[i+1].kind() == EOP_This) return FieldName; std::string S = toString(i+1); if (N->isArrow()) return S + "->" + FieldName; else return S + "." + FieldName; } case EOP_Call: { std::string S = toString(i+1) + "("; unsigned NumArgs = N->arity()-1; unsigned ci = getNextSibling(i+1); for (unsigned k=0; kgetFunctionDecl()) S += D->getNameAsString() + "("; else S += "#("; unsigned NumArgs = N->arity()-1; unsigned ci = getNextSibling(i+1); for (unsigned k=0; karity(); if (NumChildren == 0) return "(...)"; std::string S = "("; unsigned ci = i+1; for (unsigned j = 0; j < NumChildren; ++j, ci = getNextSibling(ci)) { S += toString(ci); if (j+1 < NumChildren) S += "#"; } S += ")"; return S; } } return ""; } }; /// \brief A short list of SExprs class MutexIDList : public SmallVector { public: /// \brief Push M onto list, but discard duplicates. void push_back_nodup(const SExpr& M) { if (end() == std::find(begin(), end(), M)) push_back(M); } }; /// \brief This is a helper class that stores info about the most recent /// accquire of a Lock. /// /// The main body of the analysis maps MutexIDs to LockDatas. struct LockData { SourceLocation AcquireLoc; /// \brief LKind stores whether a lock is held shared or exclusively. /// Note that this analysis does not currently support either re-entrant /// locking or lock "upgrading" and "downgrading" between exclusive and /// shared. /// /// FIXME: add support for re-entrant locking and lock up/downgrading LockKind LKind; bool Asserted; // for asserted locks bool Managed; // for ScopedLockable objects SExpr UnderlyingMutex; // for ScopedLockable objects LockData(SourceLocation AcquireLoc, LockKind LKind, bool M=false, bool Asrt=false) : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(Asrt), Managed(M), UnderlyingMutex(Decl::EmptyShell()) {} LockData(SourceLocation AcquireLoc, LockKind LKind, const SExpr &Mu) : AcquireLoc(AcquireLoc), LKind(LKind), Asserted(false), Managed(false), UnderlyingMutex(Mu) {} bool operator==(const LockData &other) const { return AcquireLoc == other.AcquireLoc && LKind == other.LKind; } bool operator!=(const LockData &other) const { return !(*this == other); } void Profile(llvm::FoldingSetNodeID &ID) const { ID.AddInteger(AcquireLoc.getRawEncoding()); ID.AddInteger(LKind); } bool isAtLeast(LockKind LK) { return (LK == LK_Shared) || (LKind == LK_Exclusive); } }; /// \brief A FactEntry stores a single fact that is known at a particular point /// in the program execution. Currently, this is information regarding a lock /// that is held at that point. struct FactEntry { SExpr MutID; LockData LDat; FactEntry(const SExpr& M, const LockData& L) : MutID(M), LDat(L) { } }; typedef unsigned short FactID; /// \brief FactManager manages the memory for all facts that are created during /// the analysis of a single routine. class FactManager { private: std::vector Facts; public: FactID newLock(const SExpr& M, const LockData& L) { Facts.push_back(FactEntry(M,L)); return static_cast(Facts.size() - 1); } const FactEntry& operator[](FactID F) const { return Facts[F]; } FactEntry& operator[](FactID F) { return Facts[F]; } }; /// \brief A FactSet is the set of facts that are known to be true at a /// particular program point. FactSets must be small, because they are /// frequently copied, and are thus implemented as a set of indices into a /// table maintained by a FactManager. A typical FactSet only holds 1 or 2 /// locks, so we can get away with doing a linear search for lookup. Note /// that a hashtable or map is inappropriate in this case, because lookups /// may involve partial pattern matches, rather than exact matches. class FactSet { private: typedef SmallVector FactVec; FactVec FactIDs; public: typedef FactVec::iterator iterator; typedef FactVec::const_iterator const_iterator; iterator begin() { return FactIDs.begin(); } const_iterator begin() const { return FactIDs.begin(); } iterator end() { return FactIDs.end(); } const_iterator end() const { return FactIDs.end(); } bool isEmpty() const { return FactIDs.size() == 0; } FactID addLock(FactManager& FM, const SExpr& M, const LockData& L) { FactID F = FM.newLock(M, L); FactIDs.push_back(F); return F; } bool removeLock(FactManager& FM, const SExpr& M) { unsigned n = FactIDs.size(); if (n == 0) return false; for (unsigned i = 0; i < n-1; ++i) { if (FM[FactIDs[i]].MutID.matches(M)) { FactIDs[i] = FactIDs[n-1]; FactIDs.pop_back(); return true; } } if (FM[FactIDs[n-1]].MutID.matches(M)) { FactIDs.pop_back(); return true; } return false; } iterator findLockIter(FactManager &FM, const SExpr &M) { return std::find_if(begin(), end(), [&](FactID ID) { return FM[ID].MutID.matches(M); }); } LockData *findLock(FactManager &FM, const SExpr &M) const { auto I = std::find_if(begin(), end(), [&](FactID ID) { return FM[ID].MutID.matches(M); }); return I != end() ? &FM[*I].LDat : nullptr; } LockData *findLockUniv(FactManager &FM, const SExpr &M) const { auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool { const SExpr &Expr = FM[ID].MutID; return Expr.isUniversal() || Expr.matches(M); }); return I != end() ? &FM[*I].LDat : nullptr; } FactEntry *findPartialMatch(FactManager &FM, const SExpr &M) const { auto I = std::find_if(begin(), end(), [&](FactID ID) { return FM[ID].MutID.partiallyMatches(M); }); return I != end() ? &FM[*I] : nullptr; } }; /// A Lockset maps each SExpr (defined above) to information about how it has /// been locked. typedef llvm::ImmutableMap Lockset; typedef llvm::ImmutableMap LocalVarContext; class LocalVariableMap; /// A side (entry or exit) of a CFG node. enum CFGBlockSide { CBS_Entry, CBS_Exit }; /// CFGBlockInfo is a struct which contains all the information that is /// maintained for each block in the CFG. See LocalVariableMap for more /// information about the contexts. struct CFGBlockInfo { FactSet EntrySet; // Lockset held at entry to block FactSet ExitSet; // Lockset held at exit from block LocalVarContext EntryContext; // Context held at entry to block LocalVarContext ExitContext; // Context held at exit from block SourceLocation EntryLoc; // Location of first statement in block SourceLocation ExitLoc; // Location of last statement in block. unsigned EntryIndex; // Used to replay contexts later bool Reachable; // Is this block reachable? const FactSet &getSet(CFGBlockSide Side) const { return Side == CBS_Entry ? EntrySet : ExitSet; } SourceLocation getLocation(CFGBlockSide Side) const { return Side == CBS_Entry ? EntryLoc : ExitLoc; } private: CFGBlockInfo(LocalVarContext EmptyCtx) : EntryContext(EmptyCtx), ExitContext(EmptyCtx), Reachable(false) { } public: static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M); }; // A LocalVariableMap maintains a map from local variables to their currently // valid definitions. It provides SSA-like functionality when traversing the // CFG. Like SSA, each definition or assignment to a variable is assigned a // unique name (an integer), which acts as the SSA name for that definition. // The total set of names is shared among all CFG basic blocks. // Unlike SSA, we do not rewrite expressions to replace local variables declrefs // with their SSA-names. Instead, we compute a Context for each point in the // code, which maps local variables to the appropriate SSA-name. This map // changes with each assignment. // // The map is computed in a single pass over the CFG. Subsequent analyses can // then query the map to find the appropriate Context for a statement, and use // that Context to look up the definitions of variables. class LocalVariableMap { public: typedef LocalVarContext Context; /// A VarDefinition consists of an expression, representing the value of the /// variable, along with the context in which that expression should be /// interpreted. A reference VarDefinition does not itself contain this /// information, but instead contains a pointer to a previous VarDefinition. struct VarDefinition { public: friend class LocalVariableMap; const NamedDecl *Dec; // The original declaration for this variable. const Expr *Exp; // The expression for this variable, OR unsigned Ref; // Reference to another VarDefinition Context Ctx; // The map with which Exp should be interpreted. bool isReference() { return !Exp; } private: // Create ordinary variable definition VarDefinition(const NamedDecl *D, const Expr *E, Context C) : Dec(D), Exp(E), Ref(0), Ctx(C) { } // Create reference to previous definition VarDefinition(const NamedDecl *D, unsigned R, Context C) : Dec(D), Exp(nullptr), Ref(R), Ctx(C) { } }; private: Context::Factory ContextFactory; std::vector VarDefinitions; std::vector CtxIndices; std::vector > SavedContexts; public: LocalVariableMap() { // index 0 is a placeholder for undefined variables (aka phi-nodes). VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext())); } /// Look up a definition, within the given context. const VarDefinition* lookup(const NamedDecl *D, Context Ctx) { const unsigned *i = Ctx.lookup(D); if (!i) return nullptr; assert(*i < VarDefinitions.size()); return &VarDefinitions[*i]; } /// Look up the definition for D within the given context. Returns /// NULL if the expression is not statically known. If successful, also /// modifies Ctx to hold the context of the return Expr. const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) { const unsigned *P = Ctx.lookup(D); if (!P) return nullptr; unsigned i = *P; while (i > 0) { if (VarDefinitions[i].Exp) { Ctx = VarDefinitions[i].Ctx; return VarDefinitions[i].Exp; } i = VarDefinitions[i].Ref; } return nullptr; } Context getEmptyContext() { return ContextFactory.getEmptyMap(); } /// Return the next context after processing S. This function is used by /// clients of the class to get the appropriate context when traversing the /// CFG. It must be called for every assignment or DeclStmt. Context getNextContext(unsigned &CtxIndex, Stmt *S, Context C) { if (SavedContexts[CtxIndex+1].first == S) { CtxIndex++; Context Result = SavedContexts[CtxIndex].second; return Result; } return C; } void dumpVarDefinitionName(unsigned i) { if (i == 0) { llvm::errs() << "Undefined"; return; } const NamedDecl *Dec = VarDefinitions[i].Dec; if (!Dec) { llvm::errs() << "<>"; return; } Dec->printName(llvm::errs()); llvm::errs() << "." << i << " " << ((const void*) Dec); } /// Dumps an ASCII representation of the variable map to llvm::errs() void dump() { for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) { const Expr *Exp = VarDefinitions[i].Exp; unsigned Ref = VarDefinitions[i].Ref; dumpVarDefinitionName(i); llvm::errs() << " = "; if (Exp) Exp->dump(); else { dumpVarDefinitionName(Ref); llvm::errs() << "\n"; } } } /// Dumps an ASCII representation of a Context to llvm::errs() void dumpContext(Context C) { for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) { const NamedDecl *D = I.getKey(); D->printName(llvm::errs()); const unsigned *i = C.lookup(D); llvm::errs() << " -> "; dumpVarDefinitionName(*i); llvm::errs() << "\n"; } } /// Builds the variable map. void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, std::vector &BlockInfo); protected: // Get the current context index unsigned getContextIndex() { return SavedContexts.size()-1; } // Save the current context for later replay void saveContext(Stmt *S, Context C) { SavedContexts.push_back(std::make_pair(S,C)); } // Adds a new definition to the given context, and returns a new context. // This method should be called when declaring a new variable. Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) { assert(!Ctx.contains(D)); unsigned newID = VarDefinitions.size(); Context NewCtx = ContextFactory.add(Ctx, D, newID); VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); return NewCtx; } // Add a new reference to an existing definition. Context addReference(const NamedDecl *D, unsigned i, Context Ctx) { unsigned newID = VarDefinitions.size(); Context NewCtx = ContextFactory.add(Ctx, D, newID); VarDefinitions.push_back(VarDefinition(D, i, Ctx)); return NewCtx; } // Updates a definition only if that definition is already in the map. // This method should be called when assigning to an existing variable. Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) { if (Ctx.contains(D)) { unsigned newID = VarDefinitions.size(); Context NewCtx = ContextFactory.remove(Ctx, D); NewCtx = ContextFactory.add(NewCtx, D, newID); VarDefinitions.push_back(VarDefinition(D, Exp, Ctx)); return NewCtx; } return Ctx; } // Removes a definition from the context, but keeps the variable name // as a valid variable. The index 0 is a placeholder for cleared definitions. Context clearDefinition(const NamedDecl *D, Context Ctx) { Context NewCtx = Ctx; if (NewCtx.contains(D)) { NewCtx = ContextFactory.remove(NewCtx, D); NewCtx = ContextFactory.add(NewCtx, D, 0); } return NewCtx; } // Remove a definition entirely frmo the context. Context removeDefinition(const NamedDecl *D, Context Ctx) { Context NewCtx = Ctx; if (NewCtx.contains(D)) { NewCtx = ContextFactory.remove(NewCtx, D); } return NewCtx; } Context intersectContexts(Context C1, Context C2); Context createReferenceContext(Context C); void intersectBackEdge(Context C1, Context C2); friend class VarMapBuilder; }; // This has to be defined after LocalVariableMap. CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) { return CFGBlockInfo(M.getEmptyContext()); } /// Visitor which builds a LocalVariableMap class VarMapBuilder : public StmtVisitor { public: LocalVariableMap* VMap; LocalVariableMap::Context Ctx; VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C) : VMap(VM), Ctx(C) {} void VisitDeclStmt(DeclStmt *S); void VisitBinaryOperator(BinaryOperator *BO); }; // Add new local variables to the variable map void VarMapBuilder::VisitDeclStmt(DeclStmt *S) { bool modifiedCtx = false; DeclGroupRef DGrp = S->getDeclGroup(); for (const auto *D : DGrp) { if (const auto *VD = dyn_cast_or_null(D)) { const Expr *E = VD->getInit(); // Add local variables with trivial type to the variable map QualType T = VD->getType(); if (T.isTrivialType(VD->getASTContext())) { Ctx = VMap->addDefinition(VD, E, Ctx); modifiedCtx = true; } } } if (modifiedCtx) VMap->saveContext(S, Ctx); } // Update local variable definitions in variable map void VarMapBuilder::VisitBinaryOperator(BinaryOperator *BO) { if (!BO->isAssignmentOp()) return; Expr *LHSExp = BO->getLHS()->IgnoreParenCasts(); // Update the variable map and current context. if (DeclRefExpr *DRE = dyn_cast(LHSExp)) { ValueDecl *VDec = DRE->getDecl(); if (Ctx.lookup(VDec)) { if (BO->getOpcode() == BO_Assign) Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx); else // FIXME -- handle compound assignment operators Ctx = VMap->clearDefinition(VDec, Ctx); VMap->saveContext(BO, Ctx); } } } // Computes the intersection of two contexts. The intersection is the // set of variables which have the same definition in both contexts; // variables with different definitions are discarded. LocalVariableMap::Context LocalVariableMap::intersectContexts(Context C1, Context C2) { Context Result = C1; for (const auto &P : C1) { const NamedDecl *Dec = P.first; const unsigned *i2 = C2.lookup(Dec); if (!i2) // variable doesn't exist on second path Result = removeDefinition(Dec, Result); else if (*i2 != P.second) // variable exists, but has different definition Result = clearDefinition(Dec, Result); } return Result; } // For every variable in C, create a new variable that refers to the // definition in C. Return a new context that contains these new variables. // (We use this for a naive implementation of SSA on loop back-edges.) LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) { Context Result = getEmptyContext(); for (const auto &P : C) Result = addReference(P.first, P.second, Result); return Result; } // This routine also takes the intersection of C1 and C2, but it does so by // altering the VarDefinitions. C1 must be the result of an earlier call to // createReferenceContext. void LocalVariableMap::intersectBackEdge(Context C1, Context C2) { for (const auto &P : C1) { unsigned i1 = P.second; VarDefinition *VDef = &VarDefinitions[i1]; assert(VDef->isReference()); const unsigned *i2 = C2.lookup(P.first); if (!i2 || (*i2 != i1)) VDef->Ref = 0; // Mark this variable as undefined } } // Traverse the CFG in topological order, so all predecessors of a block // (excluding back-edges) are visited before the block itself. At // each point in the code, we calculate a Context, which holds the set of // variable definitions which are visible at that point in execution. // Visible variables are mapped to their definitions using an array that // contains all definitions. // // At join points in the CFG, the set is computed as the intersection of // the incoming sets along each edge, E.g. // // { Context | VarDefinitions } // int x = 0; { x -> x1 | x1 = 0 } // int y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } // if (b) x = 1; { x -> x2, y -> y1 | x2 = 1, y1 = 0, ... } // else x = 2; { x -> x3, y -> y1 | x3 = 2, x2 = 1, ... } // ... { y -> y1 (x is unknown) | x3 = 2, x2 = 1, ... } // // This is essentially a simpler and more naive version of the standard SSA // algorithm. Those definitions that remain in the intersection are from blocks // that strictly dominate the current block. We do not bother to insert proper // phi nodes, because they are not used in our analysis; instead, wherever // a phi node would be required, we simply remove that definition from the // context (E.g. x above). // // The initial traversal does not capture back-edges, so those need to be // handled on a separate pass. Whenever the first pass encounters an // incoming back edge, it duplicates the context, creating new definitions // that refer back to the originals. (These correspond to places where SSA // might have to insert a phi node.) On the second pass, these definitions are // set to NULL if the variable has changed on the back-edge (i.e. a phi // node was actually required.) E.g. // // { Context | VarDefinitions } // int x = 0, y = 0; { x -> x1, y -> y1 | y1 = 0, x1 = 0 } // while (b) { x -> x2, y -> y1 | [1st:] x2=x1; [2nd:] x2=NULL; } // x = x+1; { x -> x3, y -> y1 | x3 = x2 + 1, ... } // ... { y -> y1 | x3 = 2, x2 = 1, ... } // void LocalVariableMap::traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph, std::vector &BlockInfo) { PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); CtxIndices.resize(CFGraph->getNumBlockIDs()); for (const auto *CurrBlock : *SortedGraph) { int CurrBlockID = CurrBlock->getBlockID(); CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; VisitedBlocks.insert(CurrBlock); // Calculate the entry context for the current block bool HasBackEdges = false; bool CtxInit = true; for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), PE = CurrBlock->pred_end(); PI != PE; ++PI) { // if *PI -> CurrBlock is a back edge, so skip it if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) { HasBackEdges = true; continue; } int PrevBlockID = (*PI)->getBlockID(); CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; if (CtxInit) { CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext; CtxInit = false; } else { CurrBlockInfo->EntryContext = intersectContexts(CurrBlockInfo->EntryContext, PrevBlockInfo->ExitContext); } } // Duplicate the context if we have back-edges, so we can call // intersectBackEdges later. if (HasBackEdges) CurrBlockInfo->EntryContext = createReferenceContext(CurrBlockInfo->EntryContext); // Create a starting context index for the current block saveContext(nullptr, CurrBlockInfo->EntryContext); CurrBlockInfo->EntryIndex = getContextIndex(); // Visit all the statements in the basic block. VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext); for (CFGBlock::const_iterator BI = CurrBlock->begin(), BE = CurrBlock->end(); BI != BE; ++BI) { switch (BI->getKind()) { case CFGElement::Statement: { CFGStmt CS = BI->castAs(); VMapBuilder.Visit(const_cast(CS.getStmt())); break; } default: break; } } CurrBlockInfo->ExitContext = VMapBuilder.Ctx; // Mark variables on back edges as "unknown" if they've been changed. for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), SE = CurrBlock->succ_end(); SI != SE; ++SI) { // if CurrBlock -> *SI is *not* a back edge if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) continue; CFGBlock *FirstLoopBlock = *SI; Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext; Context LoopEnd = CurrBlockInfo->ExitContext; intersectBackEdge(LoopBegin, LoopEnd); } } // Put an extra entry at the end of the indexed context array unsigned exitID = CFGraph->getExit().getBlockID(); saveContext(nullptr, BlockInfo[exitID].ExitContext); } /// Find the appropriate source locations to use when producing diagnostics for /// each block in the CFG. static void findBlockLocations(CFG *CFGraph, const PostOrderCFGView *SortedGraph, std::vector &BlockInfo) { for (const auto *CurrBlock : *SortedGraph) { CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()]; // Find the source location of the last statement in the block, if the // block is not empty. if (const Stmt *S = CurrBlock->getTerminator()) { CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getLocStart(); } else { for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(), BE = CurrBlock->rend(); BI != BE; ++BI) { // FIXME: Handle other CFGElement kinds. if (Optional CS = BI->getAs()) { CurrBlockInfo->ExitLoc = CS->getStmt()->getLocStart(); break; } } } if (!CurrBlockInfo->ExitLoc.isInvalid()) { // This block contains at least one statement. Find the source location // of the first statement in the block. for (CFGBlock::const_iterator BI = CurrBlock->begin(), BE = CurrBlock->end(); BI != BE; ++BI) { // FIXME: Handle other CFGElement kinds. if (Optional CS = BI->getAs()) { CurrBlockInfo->EntryLoc = CS->getStmt()->getLocStart(); break; } } } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() && CurrBlock != &CFGraph->getExit()) { // The block is empty, and has a single predecessor. Use its exit // location. CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc; } } } /// \brief Class which implements the core thread safety analysis routines. class ThreadSafetyAnalyzer { friend class BuildLockset; ThreadSafetyHandler &Handler; LocalVariableMap LocalVarMap; FactManager FactMan; std::vector BlockInfo; public: ThreadSafetyAnalyzer(ThreadSafetyHandler &H) : Handler(H) {} void addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat, StringRef DiagKind); void removeLock(FactSet &FSet, const SExpr &Mutex, SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind, StringRef DiagKind); template void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, const NamedDecl *D, VarDecl *SelfDecl = nullptr); template void getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, const NamedDecl *D, const CFGBlock *PredBlock, const CFGBlock *CurrBlock, Expr *BrE, bool Neg); const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, bool &Negate); void getEdgeLockset(FactSet &Result, const FactSet &ExitSet, const CFGBlock* PredBlock, const CFGBlock *CurrBlock); void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, SourceLocation JoinLoc, LockErrorKind LEK1, LockErrorKind LEK2, bool Modify=true); void intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, SourceLocation JoinLoc, LockErrorKind LEK1, bool Modify=true) { intersectAndWarn(FSet1, FSet2, JoinLoc, LEK1, LEK1, Modify); } void runAnalysis(AnalysisDeclContext &AC); }; /// \brief Gets the value decl pointer from DeclRefExprs or MemberExprs. static const ValueDecl *getValueDecl(const Expr *Exp) { if (const auto *CE = dyn_cast(Exp)) return getValueDecl(CE->getSubExpr()); if (const auto *DR = dyn_cast(Exp)) return DR->getDecl(); if (const auto *ME = dyn_cast(Exp)) return ME->getMemberDecl(); return nullptr; } template class has_arg_iterator_range { typedef char yes[1]; typedef char no[2]; template static yes& test(Inner *I, decltype(I->args()) * = nullptr); template static no& test(...); public: static const bool value = sizeof(test(nullptr)) == sizeof(yes); }; static StringRef ClassifyDiagnostic(const CapabilityAttr *A) { return A->getName(); } static StringRef ClassifyDiagnostic(QualType VDT) { // We need to look at the declaration of the type of the value to determine // which it is. The type should either be a record or a typedef, or a pointer // or reference thereof. if (const auto *RT = VDT->getAs()) { if (const auto *RD = RT->getDecl()) if (const auto *CA = RD->getAttr()) return ClassifyDiagnostic(CA); } else if (const auto *TT = VDT->getAs()) { if (const auto *TD = TT->getDecl()) if (const auto *CA = TD->getAttr()) return ClassifyDiagnostic(CA); } else if (VDT->isPointerType() || VDT->isReferenceType()) return ClassifyDiagnostic(VDT->getPointeeType()); return "mutex"; } static StringRef ClassifyDiagnostic(const ValueDecl *VD) { assert(VD && "No ValueDecl passed"); // The ValueDecl is the declaration of a mutex or role (hopefully). return ClassifyDiagnostic(VD->getType()); } template static typename std::enable_if::value, StringRef>::type ClassifyDiagnostic(const AttrTy *A) { if (const ValueDecl *VD = getValueDecl(A->getArg())) return ClassifyDiagnostic(VD); return "mutex"; } template static typename std::enable_if::value, StringRef>::type ClassifyDiagnostic(const AttrTy *A) { for (const auto *Arg : A->args()) { if (const ValueDecl *VD = getValueDecl(Arg)) return ClassifyDiagnostic(VD); } return "mutex"; } /// \brief Add a new lock to the lockset, warning if the lock is already there. /// \param Mutex -- the Mutex expression for the lock /// \param LDat -- the LockData for the lock void ThreadSafetyAnalyzer::addLock(FactSet &FSet, const SExpr &Mutex, const LockData &LDat, StringRef DiagKind) { // FIXME: deal with acquired before/after annotations. // FIXME: Don't always warn when we have support for reentrant locks. if (Mutex.shouldIgnore()) return; if (FSet.findLock(FactMan, Mutex)) { if (!LDat.Asserted) Handler.handleDoubleLock(DiagKind, Mutex.toString(), LDat.AcquireLoc); } else { FSet.addLock(FactMan, Mutex, LDat); } } /// \brief Remove a lock from the lockset, warning if the lock is not there. /// \param Mutex The lock expression corresponding to the lock to be removed /// \param UnlockLoc The source location of the unlock (only used in error msg) void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const SExpr &Mutex, SourceLocation UnlockLoc, bool FullyRemove, LockKind ReceivedKind, StringRef DiagKind) { if (Mutex.shouldIgnore()) return; const LockData *LDat = FSet.findLock(FactMan, Mutex); if (!LDat) { Handler.handleUnmatchedUnlock(DiagKind, Mutex.toString(), UnlockLoc); return; } // Generic lock removal doesn't care about lock kind mismatches, but // otherwise diagnose when the lock kinds are mismatched. if (ReceivedKind != LK_Generic && LDat->LKind != ReceivedKind) { Handler.handleIncorrectUnlockKind(DiagKind, Mutex.toString(), LDat->LKind, ReceivedKind, UnlockLoc); return; } if (LDat->UnderlyingMutex.isValid()) { // This is scoped lockable object, which manages the real mutex. if (FullyRemove) { // We're destroying the managing object. // Remove the underlying mutex if it exists; but don't warn. if (FSet.findLock(FactMan, LDat->UnderlyingMutex)) FSet.removeLock(FactMan, LDat->UnderlyingMutex); } else { // We're releasing the underlying mutex, but not destroying the // managing object. Warn on dual release. if (!FSet.findLock(FactMan, LDat->UnderlyingMutex)) { Handler.handleUnmatchedUnlock( DiagKind, LDat->UnderlyingMutex.toString(), UnlockLoc); } FSet.removeLock(FactMan, LDat->UnderlyingMutex); return; } } FSet.removeLock(FactMan, Mutex); } /// \brief Extract the list of mutexIDs from the attribute on an expression, /// and push them onto Mtxs, discarding any duplicates. template void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, const NamedDecl *D, VarDecl *SelfDecl) { if (Attr->args_size() == 0) { // The mutex held is the "this" object. SExpr Mu(nullptr, Exp, D, SelfDecl); if (!Mu.isValid()) SExpr::warnInvalidLock(Handler, nullptr, Exp, D, ClassifyDiagnostic(Attr)); else Mtxs.push_back_nodup(Mu); return; } for (const auto *Arg : Attr->args()) { SExpr Mu(Arg, Exp, D, SelfDecl); if (!Mu.isValid()) SExpr::warnInvalidLock(Handler, Arg, Exp, D, ClassifyDiagnostic(Attr)); else Mtxs.push_back_nodup(Mu); } } /// \brief Extract the list of mutexIDs from a trylock attribute. If the /// trylock applies to the given edge, then push them onto Mtxs, discarding /// any duplicates. template void ThreadSafetyAnalyzer::getMutexIDs(MutexIDList &Mtxs, AttrType *Attr, Expr *Exp, const NamedDecl *D, const CFGBlock *PredBlock, const CFGBlock *CurrBlock, Expr *BrE, bool Neg) { // Find out which branch has the lock bool branch = false; if (CXXBoolLiteralExpr *BLE = dyn_cast_or_null(BrE)) branch = BLE->getValue(); else if (IntegerLiteral *ILE = dyn_cast_or_null(BrE)) branch = ILE->getValue().getBoolValue(); int branchnum = branch ? 0 : 1; if (Neg) branchnum = !branchnum; // If we've taken the trylock branch, then add the lock int i = 0; for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(), SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) { if (*SI == CurrBlock && i == branchnum) getMutexIDs(Mtxs, Attr, Exp, D); } } bool getStaticBooleanValue(Expr* E, bool& TCond) { if (isa(E) || isa(E)) { TCond = false; return true; } else if (CXXBoolLiteralExpr *BLE = dyn_cast(E)) { TCond = BLE->getValue(); return true; } else if (IntegerLiteral *ILE = dyn_cast(E)) { TCond = ILE->getValue().getBoolValue(); return true; } else if (ImplicitCastExpr *CE = dyn_cast(E)) { return getStaticBooleanValue(CE->getSubExpr(), TCond); } return false; } // If Cond can be traced back to a function call, return the call expression. // The negate variable should be called with false, and will be set to true // if the function call is negated, e.g. if (!mu.tryLock(...)) const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond, LocalVarContext C, bool &Negate) { if (!Cond) return nullptr; if (const CallExpr *CallExp = dyn_cast(Cond)) { return CallExp; } else if (const ParenExpr *PE = dyn_cast(Cond)) { return getTrylockCallExpr(PE->getSubExpr(), C, Negate); } else if (const ImplicitCastExpr *CE = dyn_cast(Cond)) { return getTrylockCallExpr(CE->getSubExpr(), C, Negate); } else if (const ExprWithCleanups* EWC = dyn_cast(Cond)) { return getTrylockCallExpr(EWC->getSubExpr(), C, Negate); } else if (const DeclRefExpr *DRE = dyn_cast(Cond)) { const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C); return getTrylockCallExpr(E, C, Negate); } else if (const UnaryOperator *UOP = dyn_cast(Cond)) { if (UOP->getOpcode() == UO_LNot) { Negate = !Negate; return getTrylockCallExpr(UOP->getSubExpr(), C, Negate); } return nullptr; } else if (const BinaryOperator *BOP = dyn_cast(Cond)) { if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) { if (BOP->getOpcode() == BO_NE) Negate = !Negate; bool TCond = false; if (getStaticBooleanValue(BOP->getRHS(), TCond)) { if (!TCond) Negate = !Negate; return getTrylockCallExpr(BOP->getLHS(), C, Negate); } TCond = false; if (getStaticBooleanValue(BOP->getLHS(), TCond)) { if (!TCond) Negate = !Negate; return getTrylockCallExpr(BOP->getRHS(), C, Negate); } return nullptr; } if (BOP->getOpcode() == BO_LAnd) { // LHS must have been evaluated in a different block. return getTrylockCallExpr(BOP->getRHS(), C, Negate); } if (BOP->getOpcode() == BO_LOr) { return getTrylockCallExpr(BOP->getRHS(), C, Negate); } return nullptr; } return nullptr; } /// \brief Find the lockset that holds on the edge between PredBlock /// and CurrBlock. The edge set is the exit set of PredBlock (passed /// as the ExitSet parameter) plus any trylocks, which are conditionally held. void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result, const FactSet &ExitSet, const CFGBlock *PredBlock, const CFGBlock *CurrBlock) { Result = ExitSet; const Stmt *Cond = PredBlock->getTerminatorCondition(); if (!Cond) return; bool Negate = false; const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()]; const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext; StringRef CapDiagKind = "mutex"; CallExpr *Exp = const_cast(getTrylockCallExpr(Cond, LVarCtx, Negate)); if (!Exp) return; NamedDecl *FunDecl = dyn_cast_or_null(Exp->getCalleeDecl()); if(!FunDecl || !FunDecl->hasAttrs()) return; MutexIDList ExclusiveLocksToAdd; MutexIDList SharedLocksToAdd; // If the condition is a call to a Trylock function, then grab the attributes for (auto *Attr : FunDecl->getAttrs()) { switch (Attr->getKind()) { case attr::ExclusiveTrylockFunction: { ExclusiveTrylockFunctionAttr *A = cast(Attr); getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), Negate); CapDiagKind = ClassifyDiagnostic(A); break; } case attr::SharedTrylockFunction: { SharedTrylockFunctionAttr *A = cast(Attr); getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(), Negate); CapDiagKind = ClassifyDiagnostic(A); break; } default: break; } } // Add and remove locks. SourceLocation Loc = Exp->getExprLoc(); for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) addLock(Result, ExclusiveLockToAdd, LockData(Loc, LK_Exclusive), CapDiagKind); for (const auto &SharedLockToAdd : SharedLocksToAdd) addLock(Result, SharedLockToAdd, LockData(Loc, LK_Shared), CapDiagKind); } /// \brief We use this class to visit different types of expressions in /// CFGBlocks, and build up the lockset. /// An expression may cause us to add or remove locks from the lockset, or else /// output error messages related to missing locks. /// FIXME: In future, we may be able to not inherit from a visitor. class BuildLockset : public StmtVisitor { friend class ThreadSafetyAnalyzer; ThreadSafetyAnalyzer *Analyzer; FactSet FSet; LocalVariableMap::Context LVarCtx; unsigned CtxIndex; // Helper functions void warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, Expr *MutexExp, ProtectedOperationKind POK, StringRef DiagKind); void warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, StringRef DiagKind); void checkAccess(const Expr *Exp, AccessKind AK); void checkPtAccess(const Expr *Exp, AccessKind AK); void handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD = nullptr); public: BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info) : StmtVisitor(), Analyzer(Anlzr), FSet(Info.EntrySet), LVarCtx(Info.EntryContext), CtxIndex(Info.EntryIndex) {} void VisitUnaryOperator(UnaryOperator *UO); void VisitBinaryOperator(BinaryOperator *BO); void VisitCastExpr(CastExpr *CE); void VisitCallExpr(CallExpr *Exp); void VisitCXXConstructExpr(CXXConstructExpr *Exp); void VisitDeclStmt(DeclStmt *S); }; /// \brief Warn if the LSet does not contain a lock sufficient to protect access /// of at least the passed in AccessKind. void BuildLockset::warnIfMutexNotHeld(const NamedDecl *D, const Expr *Exp, AccessKind AK, Expr *MutexExp, ProtectedOperationKind POK, StringRef DiagKind) { LockKind LK = getLockKindFromAccessKind(AK); SExpr Mutex(MutexExp, Exp, D); if (!Mutex.isValid()) { SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind); return; } else if (Mutex.shouldIgnore()) { return; } LockData* LDat = FSet.findLockUniv(Analyzer->FactMan, Mutex); bool NoError = true; if (!LDat) { // No exact match found. Look for a partial match. FactEntry* FEntry = FSet.findPartialMatch(Analyzer->FactMan, Mutex); if (FEntry) { // Warn that there's no precise match. LDat = &FEntry->LDat; std::string PartMatchStr = FEntry->MutID.toString(); StringRef PartMatchName(PartMatchStr); Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(), LK, Exp->getExprLoc(), &PartMatchName); } else { // Warn that there's no match at all. Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(), LK, Exp->getExprLoc()); } NoError = false; } // Make sure the mutex we found is the right kind. if (NoError && LDat && !LDat->isAtLeast(LK)) Analyzer->Handler.handleMutexNotHeld(DiagKind, D, POK, Mutex.toString(), LK, Exp->getExprLoc()); } /// \brief Warn if the LSet contains the given lock. void BuildLockset::warnIfMutexHeld(const NamedDecl *D, const Expr *Exp, Expr *MutexExp, StringRef DiagKind) { SExpr Mutex(MutexExp, Exp, D); if (!Mutex.isValid()) { SExpr::warnInvalidLock(Analyzer->Handler, MutexExp, Exp, D, DiagKind); return; } LockData* LDat = FSet.findLock(Analyzer->FactMan, Mutex); if (LDat) Analyzer->Handler.handleFunExcludesLock( DiagKind, D->getNameAsString(), Mutex.toString(), Exp->getExprLoc()); } /// \brief Checks guarded_by and pt_guarded_by attributes. /// Whenever we identify an access (read or write) to a DeclRefExpr that is /// marked with guarded_by, we must ensure the appropriate mutexes are held. /// Similarly, we check if the access is to an expression that dereferences /// a pointer marked with pt_guarded_by. void BuildLockset::checkAccess(const Expr *Exp, AccessKind AK) { Exp = Exp->IgnoreParenCasts(); if (const UnaryOperator *UO = dyn_cast(Exp)) { // For dereferences if (UO->getOpcode() == clang::UO_Deref) checkPtAccess(UO->getSubExpr(), AK); return; } if (const ArraySubscriptExpr *AE = dyn_cast(Exp)) { checkPtAccess(AE->getLHS(), AK); return; } if (const MemberExpr *ME = dyn_cast(Exp)) { if (ME->isArrow()) checkPtAccess(ME->getBase(), AK); else checkAccess(ME->getBase(), AK); } const ValueDecl *D = getValueDecl(Exp); if (!D || !D->hasAttrs()) return; if (D->hasAttr() && FSet.isEmpty()) Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarAccess, AK, Exp->getExprLoc()); for (const auto *I : D->specific_attrs()) warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarAccess, ClassifyDiagnostic(I)); } /// \brief Checks pt_guarded_by and pt_guarded_var attributes. void BuildLockset::checkPtAccess(const Expr *Exp, AccessKind AK) { while (true) { if (const ParenExpr *PE = dyn_cast(Exp)) { Exp = PE->getSubExpr(); continue; } if (const CastExpr *CE = dyn_cast(Exp)) { if (CE->getCastKind() == CK_ArrayToPointerDecay) { // If it's an actual array, and not a pointer, then it's elements // are protected by GUARDED_BY, not PT_GUARDED_BY; checkAccess(CE->getSubExpr(), AK); return; } Exp = CE->getSubExpr(); continue; } break; } const ValueDecl *D = getValueDecl(Exp); if (!D || !D->hasAttrs()) return; if (D->hasAttr() && FSet.isEmpty()) Analyzer->Handler.handleNoMutexHeld("mutex", D, POK_VarDereference, AK, Exp->getExprLoc()); for (auto const *I : D->specific_attrs()) warnIfMutexNotHeld(D, Exp, AK, I->getArg(), POK_VarDereference, ClassifyDiagnostic(I)); } /// \brief Process a function call, method call, constructor call, /// or destructor call. This involves looking at the attributes on the /// corresponding function/method/constructor/destructor, issuing warnings, /// and updating the locksets accordingly. /// /// FIXME: For classes annotated with one of the guarded annotations, we need /// to treat const method calls as reads and non-const method calls as writes, /// and check that the appropriate locks are held. Non-const method calls with /// the same signature as const method calls can be also treated as reads. /// void BuildLockset::handleCall(Expr *Exp, const NamedDecl *D, VarDecl *VD) { SourceLocation Loc = Exp->getExprLoc(); const AttrVec &ArgAttrs = D->getAttrs(); MutexIDList ExclusiveLocksToAdd, SharedLocksToAdd; MutexIDList ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove; StringRef CapDiagKind = "mutex"; for(unsigned i = 0; i < ArgAttrs.size(); ++i) { Attr *At = const_cast(ArgAttrs[i]); switch (At->getKind()) { // When we encounter a lock function, we need to add the lock to our // lockset. case attr::AcquireCapability: { auto *A = cast(At); Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, Exp, D, VD); CapDiagKind = ClassifyDiagnostic(A); break; } // An assert will add a lock to the lockset, but will not generate // a warning if it is already there, and will not generate a warning // if it is not removed. case attr::AssertExclusiveLock: { AssertExclusiveLockAttr *A = cast(At); MutexIDList AssertLocks; Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); for (const auto &AssertLock : AssertLocks) Analyzer->addLock(FSet, AssertLock, LockData(Loc, LK_Exclusive, false, true), ClassifyDiagnostic(A)); break; } case attr::AssertSharedLock: { AssertSharedLockAttr *A = cast(At); MutexIDList AssertLocks; Analyzer->getMutexIDs(AssertLocks, A, Exp, D, VD); for (const auto &AssertLock : AssertLocks) Analyzer->addLock(FSet, AssertLock, LockData(Loc, LK_Shared, false, true), ClassifyDiagnostic(A)); break; } // When we encounter an unlock function, we need to remove unlocked // mutexes from the lockset, and flag a warning if they are not there. case attr::ReleaseCapability: { auto *A = cast(At); if (A->isGeneric()) Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, VD); else if (A->isShared()) Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, VD); else Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, VD); CapDiagKind = ClassifyDiagnostic(A); break; } case attr::RequiresCapability: { RequiresCapabilityAttr *A = cast(At); for (auto *Arg : A->args()) warnIfMutexNotHeld(D, Exp, A->isShared() ? AK_Read : AK_Written, Arg, POK_FunctionCall, ClassifyDiagnostic(A)); break; } case attr::LocksExcluded: { LocksExcludedAttr *A = cast(At); for (auto *Arg : A->args()) warnIfMutexHeld(D, Exp, Arg, ClassifyDiagnostic(A)); break; } // Ignore attributes unrelated to thread-safety default: break; } } // Figure out if we're calling the constructor of scoped lockable class bool isScopedVar = false; if (VD) { if (const CXXConstructorDecl *CD = dyn_cast(D)) { const CXXRecordDecl* PD = CD->getParent(); if (PD && PD->hasAttr()) isScopedVar = true; } } // Add locks. for (const auto &M : ExclusiveLocksToAdd) Analyzer->addLock(FSet, M, LockData(Loc, LK_Exclusive, isScopedVar), CapDiagKind); for (const auto &M : SharedLocksToAdd) Analyzer->addLock(FSet, M, LockData(Loc, LK_Shared, isScopedVar), CapDiagKind); // Add the managing object as a dummy mutex, mapped to the underlying mutex. // FIXME -- this doesn't work if we acquire multiple locks. if (isScopedVar) { SourceLocation MLoc = VD->getLocation(); DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, VD->getLocation()); SExpr SMutex(&DRE, nullptr, nullptr); for (const auto &M : ExclusiveLocksToAdd) Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Exclusive, M), CapDiagKind); for (const auto &M : SharedLocksToAdd) Analyzer->addLock(FSet, SMutex, LockData(MLoc, LK_Shared, M), CapDiagKind); } // Remove locks. // FIXME -- should only fully remove if the attribute refers to 'this'. bool Dtor = isa(D); for (const auto &M : ExclusiveLocksToRemove) Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive, CapDiagKind); for (const auto &M : SharedLocksToRemove) Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared, CapDiagKind); for (const auto &M : GenericLocksToRemove) Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic, CapDiagKind); } /// \brief For unary operations which read and write a variable, we need to /// check whether we hold any required mutexes. Reads are checked in /// VisitCastExpr. void BuildLockset::VisitUnaryOperator(UnaryOperator *UO) { switch (UO->getOpcode()) { case clang::UO_PostDec: case clang::UO_PostInc: case clang::UO_PreDec: case clang::UO_PreInc: { checkAccess(UO->getSubExpr(), AK_Written); break; } default: break; } } /// For binary operations which assign to a variable (writes), we need to check /// whether we hold any required mutexes. /// FIXME: Deal with non-primitive types. void BuildLockset::VisitBinaryOperator(BinaryOperator *BO) { if (!BO->isAssignmentOp()) return; // adjust the context LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx); checkAccess(BO->getLHS(), AK_Written); } /// Whenever we do an LValue to Rvalue cast, we are reading a variable and /// need to ensure we hold any required mutexes. /// FIXME: Deal with non-primitive types. void BuildLockset::VisitCastExpr(CastExpr *CE) { if (CE->getCastKind() != CK_LValueToRValue) return; checkAccess(CE->getSubExpr(), AK_Read); } void BuildLockset::VisitCallExpr(CallExpr *Exp) { if (CXXMemberCallExpr *CE = dyn_cast(Exp)) { MemberExpr *ME = dyn_cast(CE->getCallee()); // ME can be null when calling a method pointer CXXMethodDecl *MD = CE->getMethodDecl(); if (ME && MD) { if (ME->isArrow()) { if (MD->isConst()) { checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); } else { // FIXME -- should be AK_Written checkPtAccess(CE->getImplicitObjectArgument(), AK_Read); } } else { if (MD->isConst()) checkAccess(CE->getImplicitObjectArgument(), AK_Read); else // FIXME -- should be AK_Written checkAccess(CE->getImplicitObjectArgument(), AK_Read); } } } else if (CXXOperatorCallExpr *OE = dyn_cast(Exp)) { switch (OE->getOperator()) { case OO_Equal: { const Expr *Target = OE->getArg(0); const Expr *Source = OE->getArg(1); checkAccess(Target, AK_Written); checkAccess(Source, AK_Read); break; } case OO_Star: case OO_Arrow: case OO_Subscript: { const Expr *Obj = OE->getArg(0); checkAccess(Obj, AK_Read); checkPtAccess(Obj, AK_Read); break; } default: { const Expr *Obj = OE->getArg(0); checkAccess(Obj, AK_Read); break; } } } NamedDecl *D = dyn_cast_or_null(Exp->getCalleeDecl()); if(!D || !D->hasAttrs()) return; handleCall(Exp, D); } void BuildLockset::VisitCXXConstructExpr(CXXConstructExpr *Exp) { const CXXConstructorDecl *D = Exp->getConstructor(); if (D && D->isCopyConstructor()) { const Expr* Source = Exp->getArg(0); checkAccess(Source, AK_Read); } // FIXME -- only handles constructors in DeclStmt below. } void BuildLockset::VisitDeclStmt(DeclStmt *S) { // adjust the context LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx); for (auto *D : S->getDeclGroup()) { if (VarDecl *VD = dyn_cast_or_null(D)) { Expr *E = VD->getInit(); // handle constructors that involve temporaries if (ExprWithCleanups *EWC = dyn_cast_or_null(E)) E = EWC->getSubExpr(); if (CXXConstructExpr *CE = dyn_cast_or_null(E)) { NamedDecl *CtorD = dyn_cast_or_null(CE->getConstructor()); if (!CtorD || !CtorD->hasAttrs()) return; handleCall(CE, CtorD, VD); } } } } /// \brief Compute the intersection of two locksets and issue warnings for any /// locks in the symmetric difference. /// /// This function is used at a merge point in the CFG when comparing the lockset /// of each branch being merged. For example, given the following sequence: /// A; if () then B; else C; D; we need to check that the lockset after B and C /// are the same. In the event of a difference, we use the intersection of these /// two locksets at the start of D. /// /// \param FSet1 The first lockset. /// \param FSet2 The second lockset. /// \param JoinLoc The location of the join point for error reporting /// \param LEK1 The error message to report if a mutex is missing from LSet1 /// \param LEK2 The error message to report if a mutex is missing from Lset2 void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &FSet1, const FactSet &FSet2, SourceLocation JoinLoc, LockErrorKind LEK1, LockErrorKind LEK2, bool Modify) { FactSet FSet1Orig = FSet1; // Find locks in FSet2 that conflict or are not in FSet1, and warn. for (const auto &Fact : FSet2) { const SExpr &FSet2Mutex = FactMan[Fact].MutID; const LockData &LDat2 = FactMan[Fact].LDat; FactSet::iterator I1 = FSet1.findLockIter(FactMan, FSet2Mutex); if (I1 != FSet1.end()) { const LockData* LDat1 = &FactMan[*I1].LDat; if (LDat1->LKind != LDat2.LKind) { Handler.handleExclusiveAndShared("mutex", FSet2Mutex.toString(), LDat2.AcquireLoc, LDat1->AcquireLoc); if (Modify && LDat1->LKind != LK_Exclusive) { // Take the exclusive lock, which is the one in FSet2. *I1 = Fact; } } else if (LDat1->Asserted && !LDat2.Asserted) { // The non-asserted lock in FSet2 is the one we want to track. *I1 = Fact; } } else { if (LDat2.UnderlyingMutex.isValid()) { if (FSet2.findLock(FactMan, LDat2.UnderlyingMutex)) { // If this is a scoped lock that manages another mutex, and if the // underlying mutex is still held, then warn about the underlying // mutex. Handler.handleMutexHeldEndOfScope("mutex", LDat2.UnderlyingMutex.toString(), LDat2.AcquireLoc, JoinLoc, LEK1); } } else if (!LDat2.Managed && !FSet2Mutex.isUniversal() && !LDat2.Asserted) Handler.handleMutexHeldEndOfScope("mutex", FSet2Mutex.toString(), LDat2.AcquireLoc, JoinLoc, LEK1); } } // Find locks in FSet1 that are not in FSet2, and remove them. for (const auto &Fact : FSet1Orig) { const SExpr &FSet1Mutex = FactMan[Fact].MutID; const LockData &LDat1 = FactMan[Fact].LDat; if (!FSet2.findLock(FactMan, FSet1Mutex)) { if (LDat1.UnderlyingMutex.isValid()) { if (FSet1Orig.findLock(FactMan, LDat1.UnderlyingMutex)) { // If this is a scoped lock that manages another mutex, and if the // underlying mutex is still held, then warn about the underlying // mutex. Handler.handleMutexHeldEndOfScope("mutex", LDat1.UnderlyingMutex.toString(), LDat1.AcquireLoc, JoinLoc, LEK1); } } else if (!LDat1.Managed && !FSet1Mutex.isUniversal() && !LDat1.Asserted) Handler.handleMutexHeldEndOfScope("mutex", FSet1Mutex.toString(), LDat1.AcquireLoc, JoinLoc, LEK2); if (Modify) FSet1.removeLock(FactMan, FSet1Mutex); } } } // Return true if block B never continues to its successors. inline bool neverReturns(const CFGBlock* B) { if (B->hasNoReturnElement()) return true; if (B->empty()) return false; CFGElement Last = B->back(); if (Optional S = Last.getAs()) { if (isa(S->getStmt())) return true; } return false; } /// \brief Check a function's CFG for thread-safety violations. /// /// We traverse the blocks in the CFG, compute the set of mutexes that are held /// at the end of each block, and issue warnings for thread safety violations. /// Each block in the CFG is traversed exactly once. void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) { // TODO: this whole function needs be rewritten as a visitor for CFGWalker. // For now, we just use the walker to set things up. threadSafety::CFGWalker walker; if (!walker.init(AC)) return; // AC.dumpCFG(true); // threadSafety::printSCFG(walker); CFG *CFGraph = walker.getGraph(); const NamedDecl *D = walker.getDecl(); if (D->hasAttr()) return; // FIXME: Do something a bit more intelligent inside constructor and // destructor code. Constructors and destructors must assume unique access // to 'this', so checks on member variable access is disabled, but we should // still enable checks on other objects. if (isa(D)) return; // Don't check inside constructors. if (isa(D)) return; // Don't check inside destructors. BlockInfo.resize(CFGraph->getNumBlockIDs(), CFGBlockInfo::getEmptyBlockInfo(LocalVarMap)); // We need to explore the CFG via a "topological" ordering. // That way, we will be guaranteed to have information about required // predecessor locksets when exploring a new block. const PostOrderCFGView *SortedGraph = walker.getSortedGraph(); PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph); // Mark entry block as reachable BlockInfo[CFGraph->getEntry().getBlockID()].Reachable = true; // Compute SSA names for local variables LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo); // Fill in source locations for all CFGBlocks. findBlockLocations(CFGraph, SortedGraph, BlockInfo); MutexIDList ExclusiveLocksAcquired; MutexIDList SharedLocksAcquired; MutexIDList LocksReleased; // Add locks from exclusive_locks_required and shared_locks_required // to initial lockset. Also turn off checking for lock and unlock functions. // FIXME: is there a more intelligent way to check lock/unlock functions? if (!SortedGraph->empty() && D->hasAttrs()) { const CFGBlock *FirstBlock = *SortedGraph->begin(); FactSet &InitialLockset = BlockInfo[FirstBlock->getBlockID()].EntrySet; const AttrVec &ArgAttrs = D->getAttrs(); MutexIDList ExclusiveLocksToAdd; MutexIDList SharedLocksToAdd; StringRef CapDiagKind = "mutex"; SourceLocation Loc = D->getLocation(); for (const auto *Attr : ArgAttrs) { Loc = Attr->getLocation(); if (const auto *A = dyn_cast(Attr)) { getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A, nullptr, D); CapDiagKind = ClassifyDiagnostic(A); } else if (const auto *A = dyn_cast(Attr)) { // UNLOCK_FUNCTION() is used to hide the underlying lock implementation. // We must ignore such methods. if (A->args_size() == 0) return; // FIXME -- deal with exclusive vs. shared unlock functions? getMutexIDs(ExclusiveLocksToAdd, A, nullptr, D); getMutexIDs(LocksReleased, A, nullptr, D); CapDiagKind = ClassifyDiagnostic(A); } else if (const auto *A = dyn_cast(Attr)) { if (A->args_size() == 0) return; getMutexIDs(A->isShared() ? SharedLocksAcquired : ExclusiveLocksAcquired, A, nullptr, D); CapDiagKind = ClassifyDiagnostic(A); } else if (isa(Attr)) { // Don't try to check trylock functions for now return; } else if (isa(Attr)) { // Don't try to check trylock functions for now return; } } // FIXME -- Loc can be wrong here. for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd) addLock(InitialLockset, ExclusiveLockToAdd, LockData(Loc, LK_Exclusive), CapDiagKind); for (const auto &SharedLockToAdd : SharedLocksToAdd) addLock(InitialLockset, SharedLockToAdd, LockData(Loc, LK_Shared), CapDiagKind); } for (const auto *CurrBlock : *SortedGraph) { int CurrBlockID = CurrBlock->getBlockID(); CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID]; // Use the default initial lockset in case there are no predecessors. VisitedBlocks.insert(CurrBlock); // Iterate through the predecessor blocks and warn if the lockset for all // predecessors is not the same. We take the entry lockset of the current // block to be the intersection of all previous locksets. // FIXME: By keeping the intersection, we may output more errors in future // for a lock which is not in the intersection, but was in the union. We // may want to also keep the union in future. As an example, let's say // the intersection contains Mutex L, and the union contains L and M. // Later we unlock M. At this point, we would output an error because we // never locked M; although the real error is probably that we forgot to // lock M on all code paths. Conversely, let's say that later we lock M. // In this case, we should compare against the intersection instead of the // union because the real error is probably that we forgot to unlock M on // all code paths. bool LocksetInitialized = false; SmallVector SpecialBlocks; for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(), PE = CurrBlock->pred_end(); PI != PE; ++PI) { // if *PI -> CurrBlock is a back edge if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) continue; int PrevBlockID = (*PI)->getBlockID(); CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; // Ignore edges from blocks that can't return. if (neverReturns(*PI) || !PrevBlockInfo->Reachable) continue; // Okay, we can reach this block from the entry. CurrBlockInfo->Reachable = true; // If the previous block ended in a 'continue' or 'break' statement, then // a difference in locksets is probably due to a bug in that block, rather // than in some other predecessor. In that case, keep the other // predecessor's lockset. if (const Stmt *Terminator = (*PI)->getTerminator()) { if (isa(Terminator) || isa(Terminator)) { SpecialBlocks.push_back(*PI); continue; } } FactSet PrevLockset; getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock); if (!LocksetInitialized) { CurrBlockInfo->EntrySet = PrevLockset; LocksetInitialized = true; } else { intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc, LEK_LockedSomePredecessors); } } // Skip rest of block if it's not reachable. if (!CurrBlockInfo->Reachable) continue; // Process continue and break blocks. Assume that the lockset for the // resulting block is unaffected by any discrepancies in them. for (const auto *PrevBlock : SpecialBlocks) { int PrevBlockID = PrevBlock->getBlockID(); CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID]; if (!LocksetInitialized) { CurrBlockInfo->EntrySet = PrevBlockInfo->ExitSet; LocksetInitialized = true; } else { // Determine whether this edge is a loop terminator for diagnostic // purposes. FIXME: A 'break' statement might be a loop terminator, but // it might also be part of a switch. Also, a subsequent destructor // might add to the lockset, in which case the real issue might be a // double lock on the other path. const Stmt *Terminator = PrevBlock->getTerminator(); bool IsLoop = Terminator && isa(Terminator); FactSet PrevLockset; getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, PrevBlock, CurrBlock); // Do not update EntrySet. intersectAndWarn(CurrBlockInfo->EntrySet, PrevLockset, PrevBlockInfo->ExitLoc, IsLoop ? LEK_LockedSomeLoopIterations : LEK_LockedSomePredecessors, false); } } BuildLockset LocksetBuilder(this, *CurrBlockInfo); // Visit all the statements in the basic block. for (CFGBlock::const_iterator BI = CurrBlock->begin(), BE = CurrBlock->end(); BI != BE; ++BI) { switch (BI->getKind()) { case CFGElement::Statement: { CFGStmt CS = BI->castAs(); LocksetBuilder.Visit(const_cast(CS.getStmt())); break; } // Ignore BaseDtor, MemberDtor, and TemporaryDtor for now. case CFGElement::AutomaticObjectDtor: { CFGAutomaticObjDtor AD = BI->castAs(); CXXDestructorDecl *DD = const_cast( AD.getDestructorDecl(AC.getASTContext())); if (!DD->hasAttrs()) break; // Create a dummy expression, VarDecl *VD = const_cast(AD.getVarDecl()); DeclRefExpr DRE(VD, false, VD->getType(), VK_LValue, AD.getTriggerStmt()->getLocEnd()); LocksetBuilder.handleCall(&DRE, DD); break; } default: break; } } CurrBlockInfo->ExitSet = LocksetBuilder.FSet; // For every back edge from CurrBlock (the end of the loop) to another block // (FirstLoopBlock) we need to check that the Lockset of Block is equal to // the one held at the beginning of FirstLoopBlock. We can look up the // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map. for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(), SE = CurrBlock->succ_end(); SI != SE; ++SI) { // if CurrBlock -> *SI is *not* a back edge if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI)) continue; CFGBlock *FirstLoopBlock = *SI; CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()]; CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID]; intersectAndWarn(LoopEnd->ExitSet, PreLoop->EntrySet, PreLoop->EntryLoc, LEK_LockedSomeLoopIterations, false); } } CFGBlockInfo *Initial = &BlockInfo[CFGraph->getEntry().getBlockID()]; CFGBlockInfo *Final = &BlockInfo[CFGraph->getExit().getBlockID()]; // Skip the final check if the exit block is unreachable. if (!Final->Reachable) return; // By default, we expect all locks held on entry to be held on exit. FactSet ExpectedExitSet = Initial->EntrySet; // Adjust the expected exit set by adding or removing locks, as declared // by *-LOCK_FUNCTION and UNLOCK_FUNCTION. The intersect below will then // issue the appropriate warning. // FIXME: the location here is not quite right. for (const auto &Lock : ExclusiveLocksAcquired) ExpectedExitSet.addLock(FactMan, Lock, LockData(D->getLocation(), LK_Exclusive)); for (const auto &Lock : SharedLocksAcquired) ExpectedExitSet.addLock(FactMan, Lock, LockData(D->getLocation(), LK_Shared)); for (const auto &Lock : LocksReleased) ExpectedExitSet.removeLock(FactMan, Lock); // FIXME: Should we call this function for all blocks which exit the function? intersectAndWarn(ExpectedExitSet, Final->ExitSet, Final->ExitLoc, LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction, false); } } // end anonymous namespace namespace clang { namespace thread_safety { /// \brief Check a function's CFG for thread-safety violations. /// /// We traverse the blocks in the CFG, compute the set of mutexes that are held /// at the end of each block, and issue warnings for thread safety violations. /// Each block in the CFG is traversed exactly once. void runThreadSafetyAnalysis(AnalysisDeclContext &AC, ThreadSafetyHandler &Handler) { ThreadSafetyAnalyzer Analyzer(Handler); Analyzer.runAnalysis(AC); } /// \brief Helper function that returns a LockKind required for the given level /// of access. LockKind getLockKindFromAccessKind(AccessKind AK) { switch (AK) { case AK_Read : return LK_Shared; case AK_Written : return LK_Exclusive; } llvm_unreachable("Unknown AccessKind"); } }} // end namespace clang::thread_safety