//===-- msan_interceptors.cc ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of MemorySanitizer. // // Interceptors for standard library functions. // // FIXME: move as many interceptors as possible into // sanitizer_common/sanitizer_common_interceptors.h //===----------------------------------------------------------------------===// #include "msan.h" #include "msan_chained_origin_depot.h" #include "msan_origin.h" #include "msan_thread.h" #include "sanitizer_common/sanitizer_platform_limits_posix.h" #include "sanitizer_common/sanitizer_allocator.h" #include "sanitizer_common/sanitizer_allocator_interface.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_atomic.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_interception.h" #include "sanitizer_common/sanitizer_stackdepot.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_linux.h" #include "sanitizer_common/sanitizer_tls_get_addr.h" #include // ACHTUNG! No other system header includes in this file. // Ideally, we should get rid of stdarg.h as well. using namespace __msan; using __sanitizer::memory_order; using __sanitizer::atomic_load; using __sanitizer::atomic_store; using __sanitizer::atomic_uintptr_t; // True if this is a nested interceptor. static THREADLOCAL int in_interceptor_scope; extern "C" int *__errno_location(void); struct InterceptorScope { InterceptorScope() { ++in_interceptor_scope; } ~InterceptorScope() { --in_interceptor_scope; } }; bool IsInInterceptorScope() { return in_interceptor_scope; } #define ENSURE_MSAN_INITED() do { \ CHECK(!msan_init_is_running); \ if (!msan_inited) { \ __msan_init(); \ } \ } while (0) // Check that [x, x+n) range is unpoisoned. #define CHECK_UNPOISONED_0(x, n) \ do { \ sptr offset = __msan_test_shadow(x, n); \ if (__msan::IsInSymbolizer()) break; \ if (offset >= 0 && __msan::flags()->report_umrs) { \ GET_CALLER_PC_BP_SP; \ (void) sp; \ ReportUMRInsideAddressRange(__func__, x, n, offset); \ __msan::PrintWarningWithOrigin(pc, bp, \ __msan_get_origin((char *)x + offset)); \ if (__msan::flags()->halt_on_error) { \ Printf("Exiting\n"); \ Die(); \ } \ } \ } while (0) // Check that [x, x+n) range is unpoisoned unless we are in a nested // interceptor. #define CHECK_UNPOISONED(x, n) \ do { \ if (!IsInInterceptorScope()) CHECK_UNPOISONED_0(x, n); \ } while (0); static void *fast_memset(void *ptr, int c, SIZE_T n); static void *fast_memcpy(void *dst, const void *src, SIZE_T n); INTERCEPTOR(SIZE_T, fread, void *ptr, SIZE_T size, SIZE_T nmemb, void *file) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(fread)(ptr, size, nmemb, file); if (res > 0) __msan_unpoison(ptr, res *size); return res; } INTERCEPTOR(SIZE_T, fread_unlocked, void *ptr, SIZE_T size, SIZE_T nmemb, void *file) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(fread_unlocked)(ptr, size, nmemb, file); if (res > 0) __msan_unpoison(ptr, res *size); return res; } INTERCEPTOR(SSIZE_T, readlink, const char *path, char *buf, SIZE_T bufsiz) { ENSURE_MSAN_INITED(); SSIZE_T res = REAL(readlink)(path, buf, bufsiz); if (res > 0) __msan_unpoison(buf, res); return res; } INTERCEPTOR(void *, memcpy, void *dest, const void *src, SIZE_T n) { return __msan_memcpy(dest, src, n); } INTERCEPTOR(void *, mempcpy, void *dest, const void *src, SIZE_T n) { return (char *)__msan_memcpy(dest, src, n) + n; } INTERCEPTOR(void *, memccpy, void *dest, const void *src, int c, SIZE_T n) { ENSURE_MSAN_INITED(); void *res = REAL(memccpy)(dest, src, c, n); CHECK(!res || (res >= dest && res <= (char *)dest + n)); SIZE_T sz = res ? (char *)res - (char *)dest : n; CHECK_UNPOISONED(src, sz); __msan_unpoison(dest, sz); return res; } INTERCEPTOR(void *, memmove, void *dest, const void *src, SIZE_T n) { return __msan_memmove(dest, src, n); } INTERCEPTOR(void *, memset, void *s, int c, SIZE_T n) { return __msan_memset(s, c, n); } INTERCEPTOR(void *, bcopy, const void *src, void *dest, SIZE_T n) { return __msan_memmove(dest, src, n); } INTERCEPTOR(int, posix_memalign, void **memptr, SIZE_T alignment, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(alignment & (alignment - 1), 0); CHECK_NE(memptr, 0); *memptr = MsanReallocate(&stack, 0, size, alignment, false); CHECK_NE(*memptr, 0); __msan_unpoison(memptr, sizeof(*memptr)); return 0; } INTERCEPTOR(void *, memalign, SIZE_T boundary, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(boundary & (boundary - 1), 0); void *ptr = MsanReallocate(&stack, 0, size, boundary, false); return ptr; } INTERCEPTOR(void *, aligned_alloc, SIZE_T boundary, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(boundary & (boundary - 1), 0); void *ptr = MsanReallocate(&stack, 0, size, boundary, false); return ptr; } INTERCEPTOR(void *, __libc_memalign, SIZE_T boundary, SIZE_T size) { GET_MALLOC_STACK_TRACE; CHECK_EQ(boundary & (boundary - 1), 0); void *ptr = MsanReallocate(&stack, 0, size, boundary, false); DTLS_on_libc_memalign(ptr, size * boundary); return ptr; } INTERCEPTOR(void *, valloc, SIZE_T size) { GET_MALLOC_STACK_TRACE; void *ptr = MsanReallocate(&stack, 0, size, GetPageSizeCached(), false); return ptr; } INTERCEPTOR(void *, pvalloc, SIZE_T size) { GET_MALLOC_STACK_TRACE; uptr PageSize = GetPageSizeCached(); size = RoundUpTo(size, PageSize); if (size == 0) { // pvalloc(0) should allocate one page. size = PageSize; } void *ptr = MsanReallocate(&stack, 0, size, PageSize, false); return ptr; } INTERCEPTOR(void, free, void *ptr) { GET_MALLOC_STACK_TRACE; if (ptr == 0) return; MsanDeallocate(&stack, ptr); } INTERCEPTOR(void, cfree, void *ptr) { GET_MALLOC_STACK_TRACE; if (ptr == 0) return; MsanDeallocate(&stack, ptr); } INTERCEPTOR(uptr, malloc_usable_size, void *ptr) { return __sanitizer_get_allocated_size(ptr); } // This function actually returns a struct by value, but we can't unpoison a // temporary! The following is equivalent on all supported platforms, and we // have a test to confirm that. INTERCEPTOR(void, mallinfo, __sanitizer_mallinfo *sret) { REAL(memset)(sret, 0, sizeof(*sret)); __msan_unpoison(sret, sizeof(*sret)); } INTERCEPTOR(int, mallopt, int cmd, int value) { return -1; } INTERCEPTOR(void, malloc_stats, void) { // FIXME: implement, but don't call REAL(malloc_stats)! } INTERCEPTOR(SIZE_T, strlen, const char *s) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(strlen)(s); CHECK_UNPOISONED(s, res + 1); return res; } INTERCEPTOR(SIZE_T, strnlen, const char *s, SIZE_T n) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(strnlen)(s, n); SIZE_T scan_size = (res == n) ? res : res + 1; CHECK_UNPOISONED(s, scan_size); return res; } // FIXME: Add stricter shadow checks in str* interceptors (ex.: strcpy should // check the shadow of the terminating \0 byte). INTERCEPTOR(char *, strcpy, char *dest, const char *src) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T n = REAL(strlen)(src); char *res = REAL(strcpy)(dest, src); // NOLINT CopyPoison(dest, src, n + 1, &stack); return res; } INTERCEPTOR(char *, strncpy, char *dest, const char *src, SIZE_T n) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T copy_size = REAL(strnlen)(src, n); if (copy_size < n) copy_size++; // trailing \0 char *res = REAL(strncpy)(dest, src, n); // NOLINT CopyPoison(dest, src, copy_size, &stack); return res; } INTERCEPTOR(char *, stpcpy, char *dest, const char *src) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T n = REAL(strlen)(src); char *res = REAL(stpcpy)(dest, src); // NOLINT CopyPoison(dest, src, n + 1, &stack); return res; } INTERCEPTOR(char *, strdup, char *src) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T n = REAL(strlen)(src); char *res = REAL(strdup)(src); CopyPoison(res, src, n + 1, &stack); return res; } INTERCEPTOR(char *, __strdup, char *src) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T n = REAL(strlen)(src); char *res = REAL(__strdup)(src); CopyPoison(res, src, n + 1, &stack); return res; } INTERCEPTOR(char *, strndup, char *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T copy_size = REAL(strnlen)(src, n); char *res = REAL(strndup)(src, n); CopyPoison(res, src, copy_size, &stack); __msan_unpoison(res + copy_size, 1); // \0 return res; } INTERCEPTOR(char *, __strndup, char *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T copy_size = REAL(strnlen)(src, n); char *res = REAL(__strndup)(src, n); CopyPoison(res, src, copy_size, &stack); __msan_unpoison(res + copy_size, 1); // \0 return res; } INTERCEPTOR(char *, gcvt, double number, SIZE_T ndigit, char *buf) { ENSURE_MSAN_INITED(); char *res = REAL(gcvt)(number, ndigit, buf); // DynamoRio tool will take care of unpoisoning gcvt result for us. if (!__msan_has_dynamic_component()) { SIZE_T n = REAL(strlen)(buf); __msan_unpoison(buf, n + 1); } return res; } INTERCEPTOR(char *, strcat, char *dest, const char *src) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T src_size = REAL(strlen)(src); SIZE_T dest_size = REAL(strlen)(dest); char *res = REAL(strcat)(dest, src); // NOLINT CopyPoison(dest + dest_size, src, src_size + 1, &stack); return res; } INTERCEPTOR(char *, strncat, char *dest, const char *src, SIZE_T n) { // NOLINT ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; SIZE_T dest_size = REAL(strlen)(dest); SIZE_T copy_size = REAL(strnlen)(src, n); char *res = REAL(strncat)(dest, src, n); // NOLINT CopyPoison(dest + dest_size, src, copy_size, &stack); __msan_unpoison(dest + dest_size + copy_size, 1); // \0 return res; } // Hack: always pass nptr and endptr as part of __VA_ARGS_ to avoid having to // deal with empty __VA_ARGS__ in the case of INTERCEPTOR_STRTO. #define INTERCEPTOR_STRTO_BODY(ret_type, func, ...) \ ENSURE_MSAN_INITED(); \ ret_type res = REAL(func)(__VA_ARGS__); \ if (!__msan_has_dynamic_component()) { \ __msan_unpoison(endptr, sizeof(*endptr)); \ } \ return res; #define INTERCEPTOR_STRTO(ret_type, func) \ INTERCEPTOR(ret_type, func, const char *nptr, char **endptr) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr); \ } #define INTERCEPTOR_STRTO_BASE(ret_type, func) \ INTERCEPTOR(ret_type, func, const char *nptr, char **endptr, int base) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, base); \ } #define INTERCEPTOR_STRTO_LOC(ret_type, func) \ INTERCEPTOR(ret_type, func, const char *nptr, char **endptr, void *loc) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, loc); \ } #define INTERCEPTOR_STRTO_BASE_LOC(ret_type, func) \ INTERCEPTOR(ret_type, func, const char *nptr, char **endptr, int base, \ void *loc) { \ INTERCEPTOR_STRTO_BODY(ret_type, func, nptr, endptr, base, loc); \ } INTERCEPTOR_STRTO(double, strtod) // NOLINT INTERCEPTOR_STRTO(float, strtof) // NOLINT INTERCEPTOR_STRTO(long double, strtold) // NOLINT INTERCEPTOR_STRTO_BASE(long, strtol) // NOLINT INTERCEPTOR_STRTO_BASE(long long, strtoll) // NOLINT INTERCEPTOR_STRTO_BASE(unsigned long, strtoul) // NOLINT INTERCEPTOR_STRTO_BASE(unsigned long long, strtoull) // NOLINT INTERCEPTOR_STRTO_LOC(double, strtod_l) // NOLINT INTERCEPTOR_STRTO_LOC(double, __strtod_l) // NOLINT INTERCEPTOR_STRTO_LOC(double, __strtod_internal) // NOLINT INTERCEPTOR_STRTO_LOC(float, strtof_l) // NOLINT INTERCEPTOR_STRTO_LOC(float, __strtof_l) // NOLINT INTERCEPTOR_STRTO_LOC(float, __strtof_internal) // NOLINT INTERCEPTOR_STRTO_LOC(long double, strtold_l) // NOLINT INTERCEPTOR_STRTO_LOC(long double, __strtold_l) // NOLINT INTERCEPTOR_STRTO_LOC(long double, __strtold_internal) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(long, strtol_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(long, __strtol_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(long, __strtol_internal) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(long long, strtoll_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(long long, __strtoll_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(long long, __strtoll_internal) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(unsigned long, strtoul_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(unsigned long, __strtoul_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(unsigned long, __strtoul_internal) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(unsigned long long, strtoull_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(unsigned long long, __strtoull_l) // NOLINT INTERCEPTOR_STRTO_BASE_LOC(unsigned long long, __strtoull_internal) // NOLINT // FIXME: support *wprintf in common format interceptors. INTERCEPTOR(int, vswprintf, void *str, uptr size, void *format, va_list ap) { ENSURE_MSAN_INITED(); int res = REAL(vswprintf)(str, size, format, ap); if (res >= 0 && !__msan_has_dynamic_component()) { __msan_unpoison(str, 4 * (res + 1)); } return res; } INTERCEPTOR(int, swprintf, void *str, uptr size, void *format, ...) { ENSURE_MSAN_INITED(); va_list ap; va_start(ap, format); int res = vswprintf(str, size, format, ap); va_end(ap); return res; } INTERCEPTOR(SIZE_T, strxfrm, char *dest, const char *src, SIZE_T n) { ENSURE_MSAN_INITED(); CHECK_UNPOISONED(src, REAL(strlen)(src) + 1); SIZE_T res = REAL(strxfrm)(dest, src, n); if (res < n) __msan_unpoison(dest, res + 1); return res; } INTERCEPTOR(SIZE_T, strxfrm_l, char *dest, const char *src, SIZE_T n, void *loc) { ENSURE_MSAN_INITED(); CHECK_UNPOISONED(src, REAL(strlen)(src) + 1); SIZE_T res = REAL(strxfrm_l)(dest, src, n, loc); if (res < n) __msan_unpoison(dest, res + 1); return res; } #define INTERCEPTOR_STRFTIME_BODY(char_type, ret_type, func, s, ...) \ ENSURE_MSAN_INITED(); \ ret_type res = REAL(func)(s, __VA_ARGS__); \ if (s) __msan_unpoison(s, sizeof(char_type) * (res + 1)); \ return res; INTERCEPTOR(SIZE_T, strftime, char *s, SIZE_T max, const char *format, __sanitizer_tm *tm) { INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, strftime, s, max, format, tm); } INTERCEPTOR(SIZE_T, strftime_l, char *s, SIZE_T max, const char *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, strftime_l, s, max, format, tm, loc); } INTERCEPTOR(SIZE_T, __strftime_l, char *s, SIZE_T max, const char *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(char, SIZE_T, __strftime_l, s, max, format, tm, loc); } INTERCEPTOR(SIZE_T, wcsftime, wchar_t *s, SIZE_T max, const wchar_t *format, __sanitizer_tm *tm) { INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, wcsftime, s, max, format, tm); } INTERCEPTOR(SIZE_T, wcsftime_l, wchar_t *s, SIZE_T max, const wchar_t *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, wcsftime_l, s, max, format, tm, loc); } INTERCEPTOR(SIZE_T, __wcsftime_l, wchar_t *s, SIZE_T max, const wchar_t *format, __sanitizer_tm *tm, void *loc) { INTERCEPTOR_STRFTIME_BODY(wchar_t, SIZE_T, __wcsftime_l, s, max, format, tm, loc); } INTERCEPTOR(int, mbtowc, wchar_t *dest, const char *src, SIZE_T n) { ENSURE_MSAN_INITED(); int res = REAL(mbtowc)(dest, src, n); if (res != -1 && dest) __msan_unpoison(dest, sizeof(wchar_t)); return res; } INTERCEPTOR(int, mbrtowc, wchar_t *dest, const char *src, SIZE_T n, void *ps) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(mbrtowc)(dest, src, n, ps); if (res != (SIZE_T)-1 && dest) __msan_unpoison(dest, sizeof(wchar_t)); return res; } INTERCEPTOR(SIZE_T, wcslen, const wchar_t *s) { ENSURE_MSAN_INITED(); SIZE_T res = REAL(wcslen)(s); CHECK_UNPOISONED(s, sizeof(wchar_t) * (res + 1)); return res; } // wchar_t *wcschr(const wchar_t *wcs, wchar_t wc); INTERCEPTOR(wchar_t *, wcschr, void *s, wchar_t wc, void *ps) { ENSURE_MSAN_INITED(); wchar_t *res = REAL(wcschr)(s, wc, ps); return res; } // wchar_t *wcscpy(wchar_t *dest, const wchar_t *src); INTERCEPTOR(wchar_t *, wcscpy, wchar_t *dest, const wchar_t *src) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wcscpy)(dest, src); CopyPoison(dest, src, sizeof(wchar_t) * (REAL(wcslen)(src) + 1), &stack); return res; } // wchar_t *wmemcpy(wchar_t *dest, const wchar_t *src, SIZE_T n); INTERCEPTOR(wchar_t *, wmemcpy, wchar_t *dest, const wchar_t *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wmemcpy)(dest, src, n); CopyPoison(dest, src, n * sizeof(wchar_t), &stack); return res; } INTERCEPTOR(wchar_t *, wmempcpy, wchar_t *dest, const wchar_t *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wmempcpy)(dest, src, n); CopyPoison(dest, src, n * sizeof(wchar_t), &stack); return res; } INTERCEPTOR(wchar_t *, wmemset, wchar_t *s, wchar_t c, SIZE_T n) { CHECK(MEM_IS_APP(s)); ENSURE_MSAN_INITED(); wchar_t *res = (wchar_t *)fast_memset(s, c, n * sizeof(wchar_t)); __msan_unpoison(s, n * sizeof(wchar_t)); return res; } INTERCEPTOR(wchar_t *, wmemmove, wchar_t *dest, const wchar_t *src, SIZE_T n) { ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; wchar_t *res = REAL(wmemmove)(dest, src, n); MovePoison(dest, src, n * sizeof(wchar_t), &stack); return res; } INTERCEPTOR(int, wcscmp, const wchar_t *s1, const wchar_t *s2) { ENSURE_MSAN_INITED(); int res = REAL(wcscmp)(s1, s2); return res; } INTERCEPTOR(double, wcstod, const wchar_t *nptr, wchar_t **endptr) { ENSURE_MSAN_INITED(); double res = REAL(wcstod)(nptr, endptr); __msan_unpoison(endptr, sizeof(*endptr)); return res; } INTERCEPTOR(int, gettimeofday, void *tv, void *tz) { ENSURE_MSAN_INITED(); int res = REAL(gettimeofday)(tv, tz); if (tv) __msan_unpoison(tv, 16); if (tz) __msan_unpoison(tz, 8); return res; } INTERCEPTOR(char *, fcvt, double x, int a, int *b, int *c) { ENSURE_MSAN_INITED(); char *res = REAL(fcvt)(x, a, b, c); if (!__msan_has_dynamic_component()) { __msan_unpoison(b, sizeof(*b)); __msan_unpoison(c, sizeof(*c)); } return res; } INTERCEPTOR(char *, getenv, char *name) { ENSURE_MSAN_INITED(); char *res = REAL(getenv)(name); if (!__msan_has_dynamic_component()) { if (res) __msan_unpoison(res, REAL(strlen)(res) + 1); } return res; } extern char **environ; static void UnpoisonEnviron() { char **envp = environ; for (; *envp; ++envp) { __msan_unpoison(envp, sizeof(*envp)); __msan_unpoison(*envp, REAL(strlen)(*envp) + 1); } // Trailing NULL pointer. __msan_unpoison(envp, sizeof(*envp)); } INTERCEPTOR(int, setenv, const char *name, const char *value, int overwrite) { ENSURE_MSAN_INITED(); int res = REAL(setenv)(name, value, overwrite); if (!res) UnpoisonEnviron(); return res; } INTERCEPTOR(int, putenv, char *string) { ENSURE_MSAN_INITED(); int res = REAL(putenv)(string); if (!res) UnpoisonEnviron(); return res; } INTERCEPTOR(int, __fxstat, int magic, int fd, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__fxstat)(magic, fd, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz); return res; } INTERCEPTOR(int, __fxstat64, int magic, int fd, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__fxstat64)(magic, fd, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat64_sz); return res; } INTERCEPTOR(int, __fxstatat, int magic, int fd, char *pathname, void *buf, int flags) { ENSURE_MSAN_INITED(); int res = REAL(__fxstatat)(magic, fd, pathname, buf, flags); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz); return res; } INTERCEPTOR(int, __fxstatat64, int magic, int fd, char *pathname, void *buf, int flags) { ENSURE_MSAN_INITED(); int res = REAL(__fxstatat64)(magic, fd, pathname, buf, flags); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat64_sz); return res; } INTERCEPTOR(int, __xstat, int magic, char *path, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__xstat)(magic, path, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz); return res; } INTERCEPTOR(int, __xstat64, int magic, char *path, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__xstat64)(magic, path, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat64_sz); return res; } INTERCEPTOR(int, __lxstat, int magic, char *path, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__lxstat)(magic, path, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat_sz); return res; } INTERCEPTOR(int, __lxstat64, int magic, char *path, void *buf) { ENSURE_MSAN_INITED(); int res = REAL(__lxstat64)(magic, path, buf); if (!res) __msan_unpoison(buf, __sanitizer::struct_stat64_sz); return res; } INTERCEPTOR(int, pipe, int pipefd[2]) { if (msan_init_is_running) return REAL(pipe)(pipefd); ENSURE_MSAN_INITED(); int res = REAL(pipe)(pipefd); if (!res) __msan_unpoison(pipefd, sizeof(int[2])); return res; } INTERCEPTOR(int, pipe2, int pipefd[2], int flags) { ENSURE_MSAN_INITED(); int res = REAL(pipe2)(pipefd, flags); if (!res) __msan_unpoison(pipefd, sizeof(int[2])); return res; } INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int sv[2]) { ENSURE_MSAN_INITED(); int res = REAL(socketpair)(domain, type, protocol, sv); if (!res) __msan_unpoison(sv, sizeof(int[2])); return res; } INTERCEPTOR(char *, fgets, char *s, int size, void *stream) { ENSURE_MSAN_INITED(); char *res = REAL(fgets)(s, size, stream); if (res) __msan_unpoison(s, REAL(strlen)(s) + 1); return res; } INTERCEPTOR(char *, fgets_unlocked, char *s, int size, void *stream) { ENSURE_MSAN_INITED(); char *res = REAL(fgets_unlocked)(s, size, stream); if (res) __msan_unpoison(s, REAL(strlen)(s) + 1); return res; } INTERCEPTOR(int, getrlimit, int resource, void *rlim) { if (msan_init_is_running) return REAL(getrlimit)(resource, rlim); ENSURE_MSAN_INITED(); int res = REAL(getrlimit)(resource, rlim); if (!res) __msan_unpoison(rlim, __sanitizer::struct_rlimit_sz); return res; } INTERCEPTOR(int, getrlimit64, int resource, void *rlim) { if (msan_init_is_running) return REAL(getrlimit64)(resource, rlim); ENSURE_MSAN_INITED(); int res = REAL(getrlimit64)(resource, rlim); if (!res) __msan_unpoison(rlim, __sanitizer::struct_rlimit64_sz); return res; } INTERCEPTOR(int, uname, void *utsname) { ENSURE_MSAN_INITED(); int res = REAL(uname)(utsname); if (!res) { __msan_unpoison(utsname, __sanitizer::struct_utsname_sz); } return res; } INTERCEPTOR(int, gethostname, char *name, SIZE_T len) { ENSURE_MSAN_INITED(); int res = REAL(gethostname)(name, len); if (!res) { SIZE_T real_len = REAL(strnlen)(name, len); if (real_len < len) ++real_len; __msan_unpoison(name, real_len); } return res; } INTERCEPTOR(int, epoll_wait, int epfd, void *events, int maxevents, int timeout) { ENSURE_MSAN_INITED(); int res = REAL(epoll_wait)(epfd, events, maxevents, timeout); if (res > 0) { __msan_unpoison(events, __sanitizer::struct_epoll_event_sz * res); } return res; } INTERCEPTOR(int, epoll_pwait, int epfd, void *events, int maxevents, int timeout, void *sigmask) { ENSURE_MSAN_INITED(); int res = REAL(epoll_pwait)(epfd, events, maxevents, timeout, sigmask); if (res > 0) { __msan_unpoison(events, __sanitizer::struct_epoll_event_sz * res); } return res; } INTERCEPTOR(SSIZE_T, recv, int fd, void *buf, SIZE_T len, int flags) { ENSURE_MSAN_INITED(); SSIZE_T res = REAL(recv)(fd, buf, len, flags); if (res > 0) __msan_unpoison(buf, res); return res; } INTERCEPTOR(SSIZE_T, recvfrom, int fd, void *buf, SIZE_T len, int flags, void *srcaddr, int *addrlen) { ENSURE_MSAN_INITED(); SIZE_T srcaddr_sz; if (srcaddr) srcaddr_sz = *addrlen; SSIZE_T res = REAL(recvfrom)(fd, buf, len, flags, srcaddr, addrlen); if (res > 0) { __msan_unpoison(buf, res); if (srcaddr) { SIZE_T sz = *addrlen; __msan_unpoison(srcaddr, (sz < srcaddr_sz) ? sz : srcaddr_sz); } } return res; } INTERCEPTOR(void *, calloc, SIZE_T nmemb, SIZE_T size) { if (CallocShouldReturnNullDueToOverflow(size, nmemb)) return AllocatorReturnNull(); GET_MALLOC_STACK_TRACE; if (!msan_inited) { // Hack: dlsym calls calloc before REAL(calloc) is retrieved from dlsym. const SIZE_T kCallocPoolSize = 1024; static uptr calloc_memory_for_dlsym[kCallocPoolSize]; static SIZE_T allocated; SIZE_T size_in_words = ((nmemb * size) + kWordSize - 1) / kWordSize; void *mem = (void*)&calloc_memory_for_dlsym[allocated]; allocated += size_in_words; CHECK(allocated < kCallocPoolSize); return mem; } return MsanReallocate(&stack, 0, nmemb * size, sizeof(u64), true); } INTERCEPTOR(void *, realloc, void *ptr, SIZE_T size) { GET_MALLOC_STACK_TRACE; return MsanReallocate(&stack, ptr, size, sizeof(u64), false); } INTERCEPTOR(void *, malloc, SIZE_T size) { GET_MALLOC_STACK_TRACE; return MsanReallocate(&stack, 0, size, sizeof(u64), false); } void __msan_allocated_memory(const void* data, uptr size) { GET_MALLOC_STACK_TRACE; if (flags()->poison_in_malloc) __msan_poison(data, size); if (__msan_get_track_origins()) { u32 stack_id = StackDepotPut(stack.trace, stack.size); u32 id; ChainedOriginDepotPut(stack_id, Origin::kHeapRoot, &id); __msan_set_origin(data, size, Origin(id, 1).raw_id()); } } INTERCEPTOR(void *, mmap, void *addr, SIZE_T length, int prot, int flags, int fd, OFF_T offset) { ENSURE_MSAN_INITED(); if (addr && !MEM_IS_APP(addr)) { if (flags & map_fixed) { *__errno_location() = errno_EINVAL; return (void *)-1; } else { addr = 0; } } void *res = REAL(mmap)(addr, length, prot, flags, fd, offset); if (res != (void*)-1) __msan_unpoison(res, RoundUpTo(length, GetPageSize())); return res; } INTERCEPTOR(void *, mmap64, void *addr, SIZE_T length, int prot, int flags, int fd, OFF64_T offset) { ENSURE_MSAN_INITED(); if (addr && !MEM_IS_APP(addr)) { if (flags & map_fixed) { *__errno_location() = errno_EINVAL; return (void *)-1; } else { addr = 0; } } void *res = REAL(mmap64)(addr, length, prot, flags, fd, offset); if (res != (void*)-1) __msan_unpoison(res, RoundUpTo(length, GetPageSize())); return res; } struct dlinfo { char *dli_fname; void *dli_fbase; char *dli_sname; void *dli_saddr; }; INTERCEPTOR(int, dladdr, void *addr, dlinfo *info) { ENSURE_MSAN_INITED(); int res = REAL(dladdr)(addr, info); if (res != 0) { __msan_unpoison(info, sizeof(*info)); if (info->dli_fname) __msan_unpoison(info->dli_fname, REAL(strlen)(info->dli_fname) + 1); if (info->dli_sname) __msan_unpoison(info->dli_sname, REAL(strlen)(info->dli_sname) + 1); } return res; } INTERCEPTOR(char *, dlerror, int fake) { ENSURE_MSAN_INITED(); char *res = REAL(dlerror)(fake); if (res != 0) __msan_unpoison(res, REAL(strlen)(res) + 1); return res; } typedef int (*dl_iterate_phdr_cb)(__sanitizer_dl_phdr_info *info, SIZE_T size, void *data); struct dl_iterate_phdr_data { dl_iterate_phdr_cb callback; void *data; }; static int msan_dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size, void *data) { if (info) { __msan_unpoison(info, size); if (info->dlpi_name) __msan_unpoison(info->dlpi_name, REAL(strlen)(info->dlpi_name) + 1); } dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data; UnpoisonParam(3); return IndirectExternCall(cbdata->callback)(info, size, cbdata->data); } INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb callback, void *data) { ENSURE_MSAN_INITED(); EnterLoader(); dl_iterate_phdr_data cbdata; cbdata.callback = callback; cbdata.data = data; int res = REAL(dl_iterate_phdr)(msan_dl_iterate_phdr_cb, (void *)&cbdata); ExitLoader(); return res; } INTERCEPTOR(int, getrusage, int who, void *usage) { ENSURE_MSAN_INITED(); int res = REAL(getrusage)(who, usage); if (res == 0) { __msan_unpoison(usage, __sanitizer::struct_rusage_sz); } return res; } class SignalHandlerScope { public: SignalHandlerScope() { if (MsanThread *t = GetCurrentThread()) t->EnterSignalHandler(); } ~SignalHandlerScope() { if (MsanThread *t = GetCurrentThread()) t->LeaveSignalHandler(); } }; // sigactions_mu guarantees atomicity of sigaction() and signal() calls. // Access to sigactions[] is gone with relaxed atomics to avoid data race with // the signal handler. const int kMaxSignals = 1024; static atomic_uintptr_t sigactions[kMaxSignals]; static StaticSpinMutex sigactions_mu; static void SignalHandler(int signo) { SignalHandlerScope signal_handler_scope; ScopedThreadLocalStateBackup stlsb; UnpoisonParam(1); typedef void (*signal_cb)(int x); signal_cb cb = (signal_cb)atomic_load(&sigactions[signo], memory_order_relaxed); IndirectExternCall(cb)(signo); } static void SignalAction(int signo, void *si, void *uc) { SignalHandlerScope signal_handler_scope; ScopedThreadLocalStateBackup stlsb; UnpoisonParam(3); __msan_unpoison(si, sizeof(__sanitizer_sigaction)); __msan_unpoison(uc, __sanitizer::ucontext_t_sz); typedef void (*sigaction_cb)(int, void *, void *); sigaction_cb cb = (sigaction_cb)atomic_load(&sigactions[signo], memory_order_relaxed); IndirectExternCall(cb)(signo, si, uc); } INTERCEPTOR(int, sigaction, int signo, const __sanitizer_sigaction *act, __sanitizer_sigaction *oldact) { ENSURE_MSAN_INITED(); // FIXME: check that *act is unpoisoned. // That requires intercepting all of sigemptyset, sigfillset, etc. int res; if (flags()->wrap_signals) { SpinMutexLock lock(&sigactions_mu); CHECK_LT(signo, kMaxSignals); uptr old_cb = atomic_load(&sigactions[signo], memory_order_relaxed); __sanitizer_sigaction new_act; __sanitizer_sigaction *pnew_act = act ? &new_act : 0; if (act) { internal_memcpy(pnew_act, act, sizeof(__sanitizer_sigaction)); uptr cb = (uptr)pnew_act->sigaction; uptr new_cb = (pnew_act->sa_flags & __sanitizer::sa_siginfo) ? (uptr)SignalAction : (uptr)SignalHandler; if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) { atomic_store(&sigactions[signo], cb, memory_order_relaxed); pnew_act->sigaction = (void (*)(int, void *, void *))new_cb; } } res = REAL(sigaction)(signo, pnew_act, oldact); if (res == 0 && oldact) { uptr cb = (uptr)oldact->sigaction; if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) { oldact->sigaction = (void (*)(int, void *, void *))old_cb; } } } else { res = REAL(sigaction)(signo, act, oldact); } if (res == 0 && oldact) { __msan_unpoison(oldact, sizeof(__sanitizer_sigaction)); } return res; } INTERCEPTOR(int, signal, int signo, uptr cb) { ENSURE_MSAN_INITED(); if (flags()->wrap_signals) { CHECK_LT(signo, kMaxSignals); SpinMutexLock lock(&sigactions_mu); if (cb != __sanitizer::sig_ign && cb != __sanitizer::sig_dfl) { atomic_store(&sigactions[signo], cb, memory_order_relaxed); cb = (uptr) SignalHandler; } return REAL(signal)(signo, cb); } else { return REAL(signal)(signo, cb); } } extern "C" int pthread_attr_init(void *attr); extern "C" int pthread_attr_destroy(void *attr); static void *MsanThreadStartFunc(void *arg) { MsanThread *t = (MsanThread *)arg; SetCurrentThread(t); return t->ThreadStart(); } INTERCEPTOR(int, pthread_create, void *th, void *attr, void *(*callback)(void*), void * param) { ENSURE_MSAN_INITED(); // for GetTlsSize() __sanitizer_pthread_attr_t myattr; if (attr == 0) { pthread_attr_init(&myattr); attr = &myattr; } AdjustStackSize(attr); MsanThread *t = MsanThread::Create(callback, param); int res = REAL(pthread_create)(th, attr, MsanThreadStartFunc, t); if (attr == &myattr) pthread_attr_destroy(&myattr); if (!res) { __msan_unpoison(th, __sanitizer::pthread_t_sz); } return res; } INTERCEPTOR(int, pthread_key_create, __sanitizer_pthread_key_t *key, void (*dtor)(void *value)) { if (msan_init_is_running) return REAL(pthread_key_create)(key, dtor); ENSURE_MSAN_INITED(); int res = REAL(pthread_key_create)(key, dtor); if (!res && key) __msan_unpoison(key, sizeof(*key)); return res; } INTERCEPTOR(int, pthread_join, void *th, void **retval) { ENSURE_MSAN_INITED(); int res = REAL(pthread_join)(th, retval); if (!res && retval) __msan_unpoison(retval, sizeof(*retval)); return res; } extern char *tzname[2]; INTERCEPTOR(void, tzset, int fake) { ENSURE_MSAN_INITED(); REAL(tzset)(fake); if (tzname[0]) __msan_unpoison(tzname[0], REAL(strlen)(tzname[0]) + 1); if (tzname[1]) __msan_unpoison(tzname[1], REAL(strlen)(tzname[1]) + 1); return; } struct MSanAtExitRecord { void (*func)(void *arg); void *arg; }; void MSanAtExitWrapper(void *arg) { UnpoisonParam(1); MSanAtExitRecord *r = (MSanAtExitRecord *)arg; IndirectExternCall(r->func)(r->arg); InternalFree(r); } // Unpoison argument shadow for C++ module destructors. INTERCEPTOR(int, __cxa_atexit, void (*func)(void *), void *arg, void *dso_handle) { if (msan_init_is_running) return REAL(__cxa_atexit)(func, arg, dso_handle); ENSURE_MSAN_INITED(); MSanAtExitRecord *r = (MSanAtExitRecord *)InternalAlloc(sizeof(MSanAtExitRecord)); r->func = func; r->arg = arg; return REAL(__cxa_atexit)(MSanAtExitWrapper, r, dso_handle); } DECLARE_REAL(int, shmctl, int shmid, int cmd, void *buf) INTERCEPTOR(void *, shmat, int shmid, const void *shmaddr, int shmflg) { ENSURE_MSAN_INITED(); void *p = REAL(shmat)(shmid, shmaddr, shmflg); if (p != (void *)-1) { __sanitizer_shmid_ds ds; int res = REAL(shmctl)(shmid, shmctl_ipc_stat, &ds); if (!res) { __msan_unpoison(p, ds.shm_segsz); } } return p; } // Linux kernel has a bug that leads to kernel deadlock if a process // maps TBs of memory and then calls mlock(). static void MlockIsUnsupported() { static atomic_uint8_t printed; if (atomic_exchange(&printed, 1, memory_order_relaxed)) return; VPrintf(1, "INFO: MemorySanitizer ignores mlock/mlockall/munlock/munlockall\n"); } INTERCEPTOR(int, mlock, const void *addr, uptr len) { MlockIsUnsupported(); return 0; } INTERCEPTOR(int, munlock, const void *addr, uptr len) { MlockIsUnsupported(); return 0; } INTERCEPTOR(int, mlockall, int flags) { MlockIsUnsupported(); return 0; } INTERCEPTOR(int, munlockall, void) { MlockIsUnsupported(); return 0; } struct MSanInterceptorContext { bool in_interceptor_scope; }; namespace __msan { int OnExit() { // FIXME: ask frontend whether we need to return failure. return 0; } } // namespace __msan // A version of CHECK_UNPOISONED using a saved scope value. Used in common // interceptors. #define CHECK_UNPOISONED_CTX(ctx, x, n) \ do { \ if (!((MSanInterceptorContext *)ctx)->in_interceptor_scope) \ CHECK_UNPOISONED_0(x, n); \ } while (0) #define MSAN_INTERCEPT_FUNC(name) \ do { \ if ((!INTERCEPT_FUNCTION(name) || !REAL(name))) \ VReport(1, "MemorySanitizer: failed to intercept '" #name "'\n"); \ } while (0) #define COMMON_INTERCEPT_FUNCTION(name) MSAN_INTERCEPT_FUNC(name) #define COMMON_INTERCEPTOR_UNPOISON_PARAM(count) \ UnpoisonParam(count) #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \ __msan_unpoison(ptr, size) #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \ CHECK_UNPOISONED_CTX(ctx, ptr, size) #define COMMON_INTERCEPTOR_INITIALIZE_RANGE(ptr, size) \ __msan_unpoison(ptr, size) #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \ if (msan_init_is_running) return REAL(func)(__VA_ARGS__); \ MSanInterceptorContext msan_ctx = {IsInInterceptorScope()}; \ ctx = (void *)&msan_ctx; \ (void)ctx; \ InterceptorScope interceptor_scope; \ __msan_unpoison(__errno_location(), sizeof(int)); /* NOLINT */ \ ENSURE_MSAN_INITED(); #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \ do { \ } while (false) #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \ do { \ } while (false) #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \ do { \ } while (false) #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \ do { \ } while (false) // FIXME #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \ do { \ } while (false) // FIXME #define COMMON_INTERCEPTOR_BLOCK_REAL(name) REAL(name) #define COMMON_INTERCEPTOR_ON_EXIT(ctx) OnExit() #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, map) \ if (!__msan_has_dynamic_component() && map) { \ /* If msandr didn't clear the shadow before the initializers ran, we do */ \ /* it ourselves afterwards. */ \ ForEachMappedRegion((link_map *)map, __msan_unpoison); \ } #include "sanitizer_common/sanitizer_common_interceptors.inc" #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) CHECK_UNPOISONED(p, s) #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \ do { \ } while (false) #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \ do { \ } while (false) #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) __msan_unpoison(p, s) #include "sanitizer_common/sanitizer_common_syscalls.inc" // static void *fast_memset(void *ptr, int c, SIZE_T n) { // hack until we have a really fast internal_memset if (sizeof(uptr) == 8 && (n % 8) == 0 && ((uptr)ptr % 8) == 0) { uptr c8 = (unsigned)c & 0xFF; c8 = (c8 << 8) | c8; c8 = (c8 << 16) | c8; c8 = (c8 << 32) | c8; uptr *p = (uptr*)ptr; for (SIZE_T i = 0; i < n / 8; i++) p[i] = c8; return ptr; } return internal_memset(ptr, c, n); } // static void *fast_memcpy(void *dst, const void *src, SIZE_T n) { // Same hack as in fast_memset above. if (sizeof(uptr) == 8 && (n % 8) == 0 && ((uptr)dst % 8) == 0 && ((uptr)src % 8) == 0) { uptr *d = (uptr*)dst; uptr *s = (uptr*)src; for (SIZE_T i = 0; i < n / 8; i++) d[i] = s[i]; return dst; } return internal_memcpy(dst, src, n); } static void PoisonShadow(uptr ptr, uptr size, u8 value) { uptr PageSize = GetPageSizeCached(); uptr shadow_beg = MEM_TO_SHADOW(ptr); uptr shadow_end = MEM_TO_SHADOW(ptr + size); if (value || shadow_end - shadow_beg < common_flags()->clear_shadow_mmap_threshold) { fast_memset((void*)shadow_beg, value, shadow_end - shadow_beg); } else { uptr page_beg = RoundUpTo(shadow_beg, PageSize); uptr page_end = RoundDownTo(shadow_end, PageSize); if (page_beg >= page_end) { fast_memset((void *)shadow_beg, 0, shadow_end - shadow_beg); } else { if (page_beg != shadow_beg) { fast_memset((void *)shadow_beg, 0, page_beg - shadow_beg); } if (page_end != shadow_end) { fast_memset((void *)page_end, 0, shadow_end - page_end); } MmapFixedNoReserve(page_beg, page_end - page_beg); } } } // These interface functions reside here so that they can use // fast_memset, etc. void __msan_unpoison(const void *a, uptr size) { if (!MEM_IS_APP(a)) return; PoisonShadow((uptr)a, size, 0); } void __msan_poison(const void *a, uptr size) { if (!MEM_IS_APP(a)) return; PoisonShadow((uptr)a, size, __msan::flags()->poison_heap_with_zeroes ? 0 : -1); } void __msan_poison_stack(void *a, uptr size) { if (!MEM_IS_APP(a)) return; PoisonShadow((uptr)a, size, __msan::flags()->poison_stack_with_zeroes ? 0 : -1); } void __msan_clear_and_unpoison(void *a, uptr size) { fast_memset(a, 0, size); PoisonShadow((uptr)a, size, 0); } void *__msan_memcpy(void *dest, const void *src, SIZE_T n) { if (!msan_inited) return internal_memcpy(dest, src, n); if (msan_init_is_running) return REAL(memcpy)(dest, src, n); ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; void *res = fast_memcpy(dest, src, n); CopyPoison(dest, src, n, &stack); return res; } void *__msan_memset(void *s, int c, SIZE_T n) { if (!msan_inited) return internal_memset(s, c, n); if (msan_init_is_running) return REAL(memset)(s, c, n); ENSURE_MSAN_INITED(); void *res = fast_memset(s, c, n); __msan_unpoison(s, n); return res; } void *__msan_memmove(void *dest, const void *src, SIZE_T n) { if (!msan_inited) return internal_memmove(dest, src, n); if (msan_init_is_running) return REAL(memmove)(dest, src, n); ENSURE_MSAN_INITED(); GET_STORE_STACK_TRACE; void *res = REAL(memmove)(dest, src, n); MovePoison(dest, src, n, &stack); return res; } void __msan_unpoison_string(const char* s) { if (!MEM_IS_APP(s)) return; __msan_unpoison(s, REAL(strlen)(s) + 1); } namespace __msan { u32 GetOriginIfPoisoned(uptr addr, uptr size) { unsigned char *s = (unsigned char *)MEM_TO_SHADOW(addr); for (uptr i = 0; i < size; ++i) if (s[i]) return *(u32 *)SHADOW_TO_ORIGIN((s + i) & ~3UL); return 0; } void SetOriginIfPoisoned(uptr addr, uptr src_shadow, uptr size, u32 src_origin) { uptr dst_s = MEM_TO_SHADOW(addr); uptr src_s = src_shadow; uptr src_s_end = src_s + size; for (; src_s < src_s_end; ++dst_s, ++src_s) if (*(u8 *)src_s) *(u32 *)SHADOW_TO_ORIGIN(dst_s &~3UL) = src_origin; } void CopyOrigin(void *dst, const void *src, uptr size, StackTrace *stack) { if (!__msan_get_track_origins()) return; if (!MEM_IS_APP(dst) || !MEM_IS_APP(src)) return; uptr d = (uptr)dst; uptr beg = d & ~3UL; // Copy left unaligned origin if that memory is poisoned. if (beg < d) { u32 o = GetOriginIfPoisoned((uptr)src, d - beg); if (o) { if (__msan_get_track_origins() > 1) o = ChainOrigin(o, stack); *(u32 *)MEM_TO_ORIGIN(beg) = o; } beg += 4; } uptr end = (d + size) & ~3UL; // If both ends fall into the same 4-byte slot, we are done. if (end < beg) return; // Copy right unaligned origin if that memory is poisoned. if (end < d + size) { u32 o = GetOriginIfPoisoned((uptr)src + (end - d), (d + size) - end); if (o) { if (__msan_get_track_origins() > 1) o = ChainOrigin(o, stack); *(u32 *)MEM_TO_ORIGIN(end) = o; } } if (beg < end) { // Align src up. uptr s = ((uptr)src + 3) & ~3UL; // FIXME: factor out to msan_copy_origin_aligned if (__msan_get_track_origins() > 1) { u32 *src = (u32 *)MEM_TO_ORIGIN(s); u32 *src_s = (u32 *)MEM_TO_SHADOW(s); u32 *src_end = (u32 *)MEM_TO_ORIGIN(s + (end - beg)); u32 *dst = (u32 *)MEM_TO_ORIGIN(beg); u32 src_o = 0; u32 dst_o = 0; for (; src < src_end; ++src, ++src_s, ++dst) { if (!*src_s) continue; if (*src != src_o) { src_o = *src; dst_o = ChainOrigin(src_o, stack); } *dst = dst_o; } } else { fast_memcpy((void *)MEM_TO_ORIGIN(beg), (void *)MEM_TO_ORIGIN(s), end - beg); } } } void MovePoison(void *dst, const void *src, uptr size, StackTrace *stack) { if (!MEM_IS_APP(dst)) return; if (!MEM_IS_APP(src)) return; if (src == dst) return; internal_memmove((void *)MEM_TO_SHADOW((uptr)dst), (void *)MEM_TO_SHADOW((uptr)src), size); CopyOrigin(dst, src, size, stack); } void CopyPoison(void *dst, const void *src, uptr size, StackTrace *stack) { if (!MEM_IS_APP(dst)) return; if (!MEM_IS_APP(src)) return; fast_memcpy((void *)MEM_TO_SHADOW((uptr)dst), (void *)MEM_TO_SHADOW((uptr)src), size); CopyOrigin(dst, src, size, stack); } void InitializeInterceptors() { static int inited = 0; CHECK_EQ(inited, 0); InitializeCommonInterceptors(); INTERCEPT_FUNCTION(mmap); INTERCEPT_FUNCTION(mmap64); INTERCEPT_FUNCTION(posix_memalign); INTERCEPT_FUNCTION(memalign); INTERCEPT_FUNCTION(__libc_memalign); INTERCEPT_FUNCTION(valloc); INTERCEPT_FUNCTION(pvalloc); INTERCEPT_FUNCTION(malloc); INTERCEPT_FUNCTION(calloc); INTERCEPT_FUNCTION(realloc); INTERCEPT_FUNCTION(free); INTERCEPT_FUNCTION(cfree); INTERCEPT_FUNCTION(malloc_usable_size); INTERCEPT_FUNCTION(mallinfo); INTERCEPT_FUNCTION(mallopt); INTERCEPT_FUNCTION(malloc_stats); INTERCEPT_FUNCTION(fread); INTERCEPT_FUNCTION(fread_unlocked); INTERCEPT_FUNCTION(readlink); INTERCEPT_FUNCTION(memcpy); INTERCEPT_FUNCTION(memccpy); INTERCEPT_FUNCTION(mempcpy); INTERCEPT_FUNCTION(memset); INTERCEPT_FUNCTION(memmove); INTERCEPT_FUNCTION(bcopy); INTERCEPT_FUNCTION(wmemset); INTERCEPT_FUNCTION(wmemcpy); INTERCEPT_FUNCTION(wmempcpy); INTERCEPT_FUNCTION(wmemmove); INTERCEPT_FUNCTION(strcpy); // NOLINT INTERCEPT_FUNCTION(stpcpy); // NOLINT INTERCEPT_FUNCTION(strdup); INTERCEPT_FUNCTION(__strdup); INTERCEPT_FUNCTION(strndup); INTERCEPT_FUNCTION(__strndup); INTERCEPT_FUNCTION(strncpy); // NOLINT INTERCEPT_FUNCTION(strlen); INTERCEPT_FUNCTION(strnlen); INTERCEPT_FUNCTION(gcvt); INTERCEPT_FUNCTION(strcat); // NOLINT INTERCEPT_FUNCTION(strncat); // NOLINT INTERCEPT_FUNCTION(strtod); INTERCEPT_FUNCTION(strtof); INTERCEPT_FUNCTION(strtold); INTERCEPT_FUNCTION(strtol); INTERCEPT_FUNCTION(strtoll); INTERCEPT_FUNCTION(strtoul); INTERCEPT_FUNCTION(strtoull); INTERCEPT_FUNCTION(strtod_l); INTERCEPT_FUNCTION(__strtod_l); INTERCEPT_FUNCTION(__strtod_internal); INTERCEPT_FUNCTION(strtof_l); INTERCEPT_FUNCTION(__strtof_l); INTERCEPT_FUNCTION(__strtof_internal); INTERCEPT_FUNCTION(strtold_l); INTERCEPT_FUNCTION(__strtold_l); INTERCEPT_FUNCTION(__strtold_internal); INTERCEPT_FUNCTION(strtol_l); INTERCEPT_FUNCTION(__strtol_l); INTERCEPT_FUNCTION(__strtol_internal); INTERCEPT_FUNCTION(strtoll_l); INTERCEPT_FUNCTION(__strtoll_l); INTERCEPT_FUNCTION(__strtoll_internal); INTERCEPT_FUNCTION(strtoul_l); INTERCEPT_FUNCTION(__strtoul_l); INTERCEPT_FUNCTION(__strtoul_internal); INTERCEPT_FUNCTION(strtoull_l); INTERCEPT_FUNCTION(__strtoull_l); INTERCEPT_FUNCTION(__strtoull_internal); INTERCEPT_FUNCTION(vswprintf); INTERCEPT_FUNCTION(swprintf); INTERCEPT_FUNCTION(strxfrm); INTERCEPT_FUNCTION(strxfrm_l); INTERCEPT_FUNCTION(strftime); INTERCEPT_FUNCTION(strftime_l); INTERCEPT_FUNCTION(__strftime_l); INTERCEPT_FUNCTION(wcsftime); INTERCEPT_FUNCTION(wcsftime_l); INTERCEPT_FUNCTION(__wcsftime_l); INTERCEPT_FUNCTION(mbtowc); INTERCEPT_FUNCTION(mbrtowc); INTERCEPT_FUNCTION(wcslen); INTERCEPT_FUNCTION(wcschr); INTERCEPT_FUNCTION(wcscpy); INTERCEPT_FUNCTION(wcscmp); INTERCEPT_FUNCTION(wcstod); INTERCEPT_FUNCTION(getenv); INTERCEPT_FUNCTION(setenv); INTERCEPT_FUNCTION(putenv); INTERCEPT_FUNCTION(gettimeofday); INTERCEPT_FUNCTION(fcvt); INTERCEPT_FUNCTION(__fxstat); INTERCEPT_FUNCTION(__fxstatat); INTERCEPT_FUNCTION(__xstat); INTERCEPT_FUNCTION(__lxstat); INTERCEPT_FUNCTION(__fxstat64); INTERCEPT_FUNCTION(__fxstatat64); INTERCEPT_FUNCTION(__xstat64); INTERCEPT_FUNCTION(__lxstat64); INTERCEPT_FUNCTION(pipe); INTERCEPT_FUNCTION(pipe2); INTERCEPT_FUNCTION(socketpair); INTERCEPT_FUNCTION(fgets); INTERCEPT_FUNCTION(fgets_unlocked); INTERCEPT_FUNCTION(getrlimit); INTERCEPT_FUNCTION(getrlimit64); INTERCEPT_FUNCTION(uname); INTERCEPT_FUNCTION(gethostname); INTERCEPT_FUNCTION(epoll_wait); INTERCEPT_FUNCTION(epoll_pwait); INTERCEPT_FUNCTION(recv); INTERCEPT_FUNCTION(recvfrom); INTERCEPT_FUNCTION(dladdr); INTERCEPT_FUNCTION(dlerror); INTERCEPT_FUNCTION(dl_iterate_phdr); INTERCEPT_FUNCTION(getrusage); INTERCEPT_FUNCTION(sigaction); INTERCEPT_FUNCTION(signal); INTERCEPT_FUNCTION(pthread_create); INTERCEPT_FUNCTION(pthread_key_create); INTERCEPT_FUNCTION(pthread_join); INTERCEPT_FUNCTION(tzset); INTERCEPT_FUNCTION(__cxa_atexit); INTERCEPT_FUNCTION(shmat); inited = 1; } } // namespace __msan