/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // Intel License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000, Intel Corporation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of Intel Corporation may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #include "_cv.h" CV_IMPL CvRect cvMaxRect( const CvRect* rect1, const CvRect* rect2 ) { if( rect1 && rect2 ) { CvRect max_rect; int a, b; max_rect.x = a = rect1->x; b = rect2->x; if( max_rect.x > b ) max_rect.x = b; max_rect.width = a += rect1->width; b += rect2->width; if( max_rect.width < b ) max_rect.width = b; max_rect.width -= max_rect.x; max_rect.y = a = rect1->y; b = rect2->y; if( max_rect.y > b ) max_rect.y = b; max_rect.height = a += rect1->height; b += rect2->height; if( max_rect.height < b ) max_rect.height = b; max_rect.height -= max_rect.y; return max_rect; } else if( rect1 ) return *rect1; else if( rect2 ) return *rect2; else return cvRect(0,0,0,0); } CV_IMPL void cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] ) { CV_FUNCNAME( "cvBoxPoints" ); __BEGIN__; double angle = box.angle*CV_PI/180.; float a = (float)cos(angle)*0.5f; float b = (float)sin(angle)*0.5f; if( !pt ) CV_ERROR( CV_StsNullPtr, "NULL vertex array pointer" ); pt[0].x = box.center.x - a*box.size.height - b*box.size.width; pt[0].y = box.center.y + b*box.size.height - a*box.size.width; pt[1].x = box.center.x + a*box.size.height - b*box.size.width; pt[1].y = box.center.y - b*box.size.height - a*box.size.width; pt[2].x = 2*box.center.x - pt[0].x; pt[2].y = 2*box.center.y - pt[0].y; pt[3].x = 2*box.center.x - pt[1].x; pt[3].y = 2*box.center.y - pt[1].y; __END__; } int icvIntersectLines( double x1, double dx1, double y1, double dy1, double x2, double dx2, double y2, double dy2, double *t2 ) { double d = dx1 * dy2 - dx2 * dy1; int result = -1; if( d != 0 ) { *t2 = ((x2 - x1) * dy1 - (y2 - y1) * dx1) / d; result = 0; } return result; } void icvCreateCenterNormalLine( CvSubdiv2DEdge edge, double *_a, double *_b, double *_c ) { CvPoint2D32f org = cvSubdiv2DEdgeOrg( edge )->pt; CvPoint2D32f dst = cvSubdiv2DEdgeDst( edge )->pt; double a = dst.x - org.x; double b = dst.y - org.y; double c = -(a * (dst.x + org.x) + b * (dst.y + org.y)); *_a = a + a; *_b = b + b; *_c = c; } void icvIntersectLines3( double *a0, double *b0, double *c0, double *a1, double *b1, double *c1, CvPoint2D32f * point ) { double det = a0[0] * b1[0] - a1[0] * b0[0]; if( det != 0 ) { det = 1. / det; point->x = (float) ((b0[0] * c1[0] - b1[0] * c0[0]) * det); point->y = (float) ((a1[0] * c0[0] - a0[0] * c1[0]) * det); } else { point->x = point->y = FLT_MAX; } } CV_IMPL double cvPointPolygonTest( const CvArr* _contour, CvPoint2D32f pt, int measure_dist ) { double result = 0; CV_FUNCNAME( "cvCheckPointPolygon" ); __BEGIN__; CvSeqBlock block; CvContour header; CvSeq* contour = (CvSeq*)_contour; CvSeqReader reader; int i, total, counter = 0; int is_float; double min_dist_num = FLT_MAX, min_dist_denom = 1; CvPoint ip = {0,0}; if( !CV_IS_SEQ(contour) ) { CV_CALL( contour = cvPointSeqFromMat( CV_SEQ_KIND_CURVE + CV_SEQ_FLAG_CLOSED, _contour, &header, &block )); } else if( CV_IS_SEQ_POLYGON(contour) ) { if( contour->header_size == sizeof(CvContour) && !measure_dist ) { CvRect r = ((CvContour*)contour)->rect; if( pt.x < r.x || pt.y < r.y || pt.x >= r.x + r.width || pt.y >= r.y + r.height ) return -100; } } else if( CV_IS_SEQ_CHAIN(contour) ) { CV_ERROR( CV_StsBadArg, "Chains are not supported. Convert them to polygonal representation using cvApproxChains()" ); } else CV_ERROR( CV_StsBadArg, "Input contour is neither a valid sequence nor a matrix" ); total = contour->total; is_float = CV_SEQ_ELTYPE(contour) == CV_32FC2; cvStartReadSeq( contour, &reader, -1 ); if( !is_float && !measure_dist && (ip.x = cvRound(pt.x)) == pt.x && (ip.y = cvRound(pt.y)) == pt.y ) { // the fastest "pure integer" branch CvPoint v0, v; CV_READ_SEQ_ELEM( v, reader ); for( i = 0; i < total; i++ ) { int dist; v0 = v; CV_READ_SEQ_ELEM( v, reader ); if( (v0.y <= ip.y && v.y <= ip.y) || (v0.y > ip.y && v.y > ip.y) || (v0.x < ip.x && v.x < ip.x) ) { if( ip.y == v.y && (ip.x == v.x || (ip.y == v0.y && ((v0.x <= ip.x && ip.x <= v.x) || (v.x <= ip.x && ip.x <= v0.x)))) ) EXIT; continue; } dist = (ip.y - v0.y)*(v.x - v0.x) - (ip.x - v0.x)*(v.y - v0.y); if( dist == 0 ) EXIT; if( v.y < v0.y ) dist = -dist; counter += dist > 0; } result = counter % 2 == 0 ? -100 : 100; } else { CvPoint2D32f v0, v; CvPoint iv; if( is_float ) { CV_READ_SEQ_ELEM( v, reader ); } else { CV_READ_SEQ_ELEM( iv, reader ); v = cvPointTo32f( iv ); } if( !measure_dist ) { for( i = 0; i < total; i++ ) { double dist; v0 = v; if( is_float ) { CV_READ_SEQ_ELEM( v, reader ); } else { CV_READ_SEQ_ELEM( iv, reader ); v = cvPointTo32f( iv ); } if( (v0.y <= pt.y && v.y <= pt.y) || (v0.y > pt.y && v.y > pt.y) || (v0.x < pt.x && v.x < pt.x) ) { if( pt.y == v.y && (pt.x == v.x || (pt.y == v0.y && ((v0.x <= pt.x && pt.x <= v.x) || (v.x <= pt.x && pt.x <= v0.x)))) ) EXIT; continue; } dist = (double)(pt.y - v0.y)*(v.x - v0.x) - (double)(pt.x - v0.x)*(v.y - v0.y); if( dist == 0 ) EXIT; if( v.y < v0.y ) dist = -dist; counter += dist > 0; } result = counter % 2 == 0 ? -100 : 100; } else { for( i = 0; i < total; i++ ) { double dx, dy, dx1, dy1, dx2, dy2, dist_num, dist_denom = 1; v0 = v; if( is_float ) { CV_READ_SEQ_ELEM( v, reader ); } else { CV_READ_SEQ_ELEM( iv, reader ); v = cvPointTo32f( iv ); } dx = v.x - v0.x; dy = v.y - v0.y; dx1 = pt.x - v0.x; dy1 = pt.y - v0.y; dx2 = pt.x - v.x; dy2 = pt.y - v.y; if( dx1*dx + dy1*dy <= 0 ) dist_num = dx1*dx1 + dy1*dy1; else if( dx2*dx + dy2*dy >= 0 ) dist_num = dx2*dx2 + dy2*dy2; else { dist_num = (dy1*dx - dx1*dy); dist_num *= dist_num; dist_denom = dx*dx + dy*dy; } if( dist_num*min_dist_denom < min_dist_num*dist_denom ) { min_dist_num = dist_num; min_dist_denom = dist_denom; if( min_dist_num == 0 ) break; } if( (v0.y <= pt.y && v.y <= pt.y) || (v0.y > pt.y && v.y > pt.y) || (v0.x < pt.x && v.x < pt.x) ) continue; dist_num = dy1*dx - dx1*dy; if( dy < 0 ) dist_num = -dist_num; counter += dist_num > 0; } result = sqrt(min_dist_num/min_dist_denom); if( counter % 2 == 0 ) result = -result; } } __END__; return result; } CV_IMPL void cvRQDecomp3x3( const CvMat *matrixM, CvMat *matrixR, CvMat *matrixQ, CvMat *matrixQx, CvMat *matrixQy, CvMat *matrixQz, CvPoint3D64f *eulerAngles) { CV_FUNCNAME("cvRQDecomp3x3"); __BEGIN__; double _M[3][3], _R[3][3], _Q[3][3]; CvMat M = cvMat(3, 3, CV_64F, _M); CvMat R = cvMat(3, 3, CV_64F, _R); CvMat Q = cvMat(3, 3, CV_64F, _Q); double z, c, s; /* Validate parameters. */ CV_ASSERT( CV_IS_MAT(matrixM) && CV_IS_MAT(matrixR) && CV_IS_MAT(matrixQ) && matrixM->cols == 3 && matrixM->rows == 3 && CV_ARE_SIZES_EQ(matrixM, matrixR) && CV_ARE_SIZES_EQ(matrixM, matrixQ)); cvConvert(matrixM, &M); { /* Find Givens rotation Q_x for x axis (left multiplication). */ /* ( 1 0 0 ) Qx = ( 0 c s ), c = m33/sqrt(m32^2 + m33^2), s = m32/sqrt(m32^2 + m33^2) ( 0 -s c ) */ s = _M[2][1]; c = _M[2][2]; z = 1./sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qx[3][3] = { {1, 0, 0}, {0, c, s}, {0, -s, c} }; CvMat Qx = cvMat(3, 3, CV_64F, _Qx); cvMatMul(&M, &Qx, &R); assert(fabs(_R[2][1]) < FLT_EPSILON); _R[2][1] = 0; /* Find Givens rotation for y axis. */ /* ( c 0 s ) Qy = ( 0 1 0 ), c = m33/sqrt(m31^2 + m33^2), s = m31/sqrt(m31^2 + m33^2) (-s 0 c ) */ s = _R[2][0]; c = _R[2][2]; z = 1./sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qy[3][3] = { {c, 0, s}, {0, 1, 0}, {-s, 0, c} }; CvMat Qy = cvMat(3, 3, CV_64F, _Qy); cvMatMul(&R, &Qy, &M); assert(fabs(_M[2][0]) < FLT_EPSILON); _M[2][0] = 0; /* Find Givens rotation for z axis. */ /* ( c s 0 ) Qz = (-s c 0 ), c = m22/sqrt(m21^2 + m22^2), s = m21/sqrt(m21^2 + m22^2) ( 0 0 1 ) */ s = _M[1][0]; c = _M[1][1]; z = 1./sqrt(c * c + s * s + DBL_EPSILON); c *= z; s *= z; double _Qz[3][3] = { {c, s, 0}, {-s, c, 0}, {0, 0, 1} }; CvMat Qz = cvMat(3, 3, CV_64F, _Qz); cvMatMul(&M, &Qz, &R); assert(fabs(_R[1][0]) < FLT_EPSILON); _R[1][0] = 0; // Solve the decomposition ambiguity. // Diagonal entries of R, except the last one, shall be positive. // Further rotate R by 180 degree if necessary if( _R[0][0] < 0 ) { if( _R[1][1] < 0 ) { // rotate around z for 180 degree, i.e. a rotation matrix of // [-1, 0, 0], // [ 0, -1, 0], // [ 0, 0, 1] _R[0][0] *= -1; _R[0][1] *= -1; _R[1][1] *= -1; _Qz[0][0] *= -1; _Qz[0][1] *= -1; _Qz[1][0] *= -1; _Qz[1][1] *= -1; } else { // rotate around y for 180 degree, i.e. a rotation matrix of // [-1, 0, 0], // [ 0, 1, 0], // [ 0, 0, -1] _R[0][0] *= -1; _R[0][2] *= -1; _R[1][2] *= -1; _R[2][2] *= -1; cvTranspose( &Qz, &Qz ); _Qy[0][0] *= -1; _Qy[0][2] *= -1; _Qy[2][0] *= -1; _Qy[2][2] *= -1; } } else if( _R[1][1] < 0 ) { // ??? for some reason, we never get here ??? // rotate around x for 180 degree, i.e. a rotation matrix of // [ 1, 0, 0], // [ 0, -1, 0], // [ 0, 0, -1] _R[0][1] *= -1; _R[0][2] *= -1; _R[1][1] *= -1; _R[1][2] *= -1; _R[2][2] *= -1; cvTranspose( &Qz, &Qz ); cvTranspose( &Qy, &Qy ); _Qx[1][1] *= -1; _Qx[1][2] *= -1; _Qx[2][1] *= -1; _Qx[2][2] *= -1; } // calculate the euler angle if( eulerAngles ) { eulerAngles->x = acos(_Qx[1][1]) * (_Qx[1][2] >= 0 ? 1 : -1) * (180.0 / CV_PI); eulerAngles->y = acos(_Qy[0][0]) * (_Qy[0][2] >= 0 ? 1 : -1) * (180.0 / CV_PI); eulerAngles->z = acos(_Qz[0][0]) * (_Qz[0][1] >= 0 ? 1 : -1) * (180.0 / CV_PI); } /* Calulate orthogonal matrix. */ /* Q = QzT * QyT * QxT */ cvGEMM( &Qz, &Qy, 1, 0, 0, &M, CV_GEMM_A_T + CV_GEMM_B_T ); cvGEMM( &M, &Qx, 1, 0, 0, &Q, CV_GEMM_B_T ); /* Save R and Q matrices. */ cvConvert( &R, matrixR ); cvConvert( &Q, matrixQ ); if( matrixQx ) cvConvert(&Qx, matrixQx); if( matrixQy ) cvConvert(&Qy, matrixQy); if( matrixQz ) cvConvert(&Qz, matrixQz); } __END__; } CV_IMPL void cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr, CvMat *rotMatr, CvMat *posVect, CvMat *rotMatrX, CvMat *rotMatrY, CvMat *rotMatrZ, CvPoint3D64f *eulerAngles) { CvMat *tmpProjMatr = 0; CvMat *tmpMatrixD = 0; CvMat *tmpMatrixV = 0; CvMat *tmpMatrixM = 0; CV_FUNCNAME("cvDecomposeProjectionMatrix"); __BEGIN__; /* Validate parameters. */ if(projMatr == 0 || calibMatr == 0 || rotMatr == 0 || posVect == 0) CV_ERROR(CV_StsNullPtr, "Some of parameters is a NULL pointer!"); if(!CV_IS_MAT(projMatr) || !CV_IS_MAT(calibMatr) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(posVect)) CV_ERROR(CV_StsUnsupportedFormat, "Input parameters must be a matrices!"); if(projMatr->cols != 4 || projMatr->rows != 3) CV_ERROR(CV_StsUnmatchedSizes, "Size of projection matrix must be 3x4!"); if(calibMatr->cols != 3 || calibMatr->rows != 3 || rotMatr->cols != 3 || rotMatr->rows != 3) CV_ERROR(CV_StsUnmatchedSizes, "Size of calibration and rotation matrices must be 3x3!"); if(posVect->cols != 1 || posVect->rows != 4) CV_ERROR(CV_StsUnmatchedSizes, "Size of position vector must be 4x1!"); CV_CALL(tmpProjMatr = cvCreateMat(4, 4, CV_64F)); CV_CALL(tmpMatrixD = cvCreateMat(4, 4, CV_64F)); CV_CALL(tmpMatrixV = cvCreateMat(4, 4, CV_64F)); CV_CALL(tmpMatrixM = cvCreateMat(3, 3, CV_64F)); /* Compute position vector. */ cvSetZero(tmpProjMatr); // Add zero row to make matrix square. int i, k; for(i = 0; i < 3; i++) for(k = 0; k < 4; k++) cvmSet(tmpProjMatr, i, k, cvmGet(projMatr, i, k)); CV_CALL(cvSVD(tmpProjMatr, tmpMatrixD, NULL, tmpMatrixV, CV_SVD_MODIFY_A + CV_SVD_V_T)); /* Save position vector. */ for(i = 0; i < 4; i++) cvmSet(posVect, i, 0, cvmGet(tmpMatrixV, 3, i)); // Solution is last row of V. /* Compute calibration and rotation matrices via RQ decomposition. */ cvGetCols(projMatr, tmpMatrixM, 0, 3); // M is first square matrix of P. assert(cvDet(tmpMatrixM) != 0.0); // So far only finite cameras could be decomposed, so M has to be nonsingular [det(M) != 0]. CV_CALL(cvRQDecomp3x3(tmpMatrixM, calibMatr, rotMatr, rotMatrX, rotMatrY, rotMatrZ, eulerAngles)); __END__; cvReleaseMat(&tmpProjMatr); cvReleaseMat(&tmpMatrixD); cvReleaseMat(&tmpMatrixV); cvReleaseMat(&tmpMatrixM); } /* End of file. */