• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/v8.h"
6 
7 #include "src/base/atomicops.h"
8 #include "src/code-stubs.h"
9 #include "src/compilation-cache.h"
10 #include "src/cpu-profiler.h"
11 #include "src/deoptimizer.h"
12 #include "src/execution.h"
13 #include "src/gdb-jit.h"
14 #include "src/global-handles.h"
15 #include "src/heap-profiler.h"
16 #include "src/ic-inl.h"
17 #include "src/incremental-marking.h"
18 #include "src/mark-compact.h"
19 #include "src/objects-visiting.h"
20 #include "src/objects-visiting-inl.h"
21 #include "src/spaces-inl.h"
22 #include "src/stub-cache.h"
23 #include "src/sweeper-thread.h"
24 
25 namespace v8 {
26 namespace internal {
27 
28 
29 const char* Marking::kWhiteBitPattern = "00";
30 const char* Marking::kBlackBitPattern = "10";
31 const char* Marking::kGreyBitPattern = "11";
32 const char* Marking::kImpossibleBitPattern = "01";
33 
34 
35 // -------------------------------------------------------------------------
36 // MarkCompactCollector
37 
MarkCompactCollector(Heap * heap)38 MarkCompactCollector::MarkCompactCollector(Heap* heap) :  // NOLINT
39 #ifdef DEBUG
40       state_(IDLE),
41 #endif
42       sweep_precisely_(false),
43       reduce_memory_footprint_(false),
44       abort_incremental_marking_(false),
45       marking_parity_(ODD_MARKING_PARITY),
46       compacting_(false),
47       was_marked_incrementally_(false),
48       sweeping_pending_(false),
49       pending_sweeper_jobs_semaphore_(0),
50       sequential_sweeping_(false),
51       tracer_(NULL),
52       migration_slots_buffer_(NULL),
53       heap_(heap),
54       code_flusher_(NULL),
55       have_code_to_deoptimize_(false) { }
56 
57 #ifdef VERIFY_HEAP
58 class VerifyMarkingVisitor: public ObjectVisitor {
59  public:
VerifyMarkingVisitor(Heap * heap)60   explicit VerifyMarkingVisitor(Heap* heap) : heap_(heap) {}
61 
VisitPointers(Object ** start,Object ** end)62   void VisitPointers(Object** start, Object** end) {
63     for (Object** current = start; current < end; current++) {
64       if ((*current)->IsHeapObject()) {
65         HeapObject* object = HeapObject::cast(*current);
66         CHECK(heap_->mark_compact_collector()->IsMarked(object));
67       }
68     }
69   }
70 
VisitEmbeddedPointer(RelocInfo * rinfo)71   void VisitEmbeddedPointer(RelocInfo* rinfo) {
72     ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
73     if (!rinfo->host()->IsWeakObject(rinfo->target_object())) {
74       Object* p = rinfo->target_object();
75       VisitPointer(&p);
76     }
77   }
78 
VisitCell(RelocInfo * rinfo)79   void VisitCell(RelocInfo* rinfo) {
80     Code* code = rinfo->host();
81     ASSERT(rinfo->rmode() == RelocInfo::CELL);
82     if (!code->IsWeakObject(rinfo->target_cell())) {
83       ObjectVisitor::VisitCell(rinfo);
84     }
85   }
86 
87  private:
88   Heap* heap_;
89 };
90 
91 
VerifyMarking(Heap * heap,Address bottom,Address top)92 static void VerifyMarking(Heap* heap, Address bottom, Address top) {
93   VerifyMarkingVisitor visitor(heap);
94   HeapObject* object;
95   Address next_object_must_be_here_or_later = bottom;
96 
97   for (Address current = bottom;
98        current < top;
99        current += kPointerSize) {
100     object = HeapObject::FromAddress(current);
101     if (MarkCompactCollector::IsMarked(object)) {
102       CHECK(current >= next_object_must_be_here_or_later);
103       object->Iterate(&visitor);
104       next_object_must_be_here_or_later = current + object->Size();
105     }
106   }
107 }
108 
109 
VerifyMarking(NewSpace * space)110 static void VerifyMarking(NewSpace* space) {
111   Address end = space->top();
112   NewSpacePageIterator it(space->bottom(), end);
113   // The bottom position is at the start of its page. Allows us to use
114   // page->area_start() as start of range on all pages.
115   CHECK_EQ(space->bottom(),
116             NewSpacePage::FromAddress(space->bottom())->area_start());
117   while (it.has_next()) {
118     NewSpacePage* page = it.next();
119     Address limit = it.has_next() ? page->area_end() : end;
120     CHECK(limit == end || !page->Contains(end));
121     VerifyMarking(space->heap(), page->area_start(), limit);
122   }
123 }
124 
125 
VerifyMarking(PagedSpace * space)126 static void VerifyMarking(PagedSpace* space) {
127   PageIterator it(space);
128 
129   while (it.has_next()) {
130     Page* p = it.next();
131     VerifyMarking(space->heap(), p->area_start(), p->area_end());
132   }
133 }
134 
135 
VerifyMarking(Heap * heap)136 static void VerifyMarking(Heap* heap) {
137   VerifyMarking(heap->old_pointer_space());
138   VerifyMarking(heap->old_data_space());
139   VerifyMarking(heap->code_space());
140   VerifyMarking(heap->cell_space());
141   VerifyMarking(heap->property_cell_space());
142   VerifyMarking(heap->map_space());
143   VerifyMarking(heap->new_space());
144 
145   VerifyMarkingVisitor visitor(heap);
146 
147   LargeObjectIterator it(heap->lo_space());
148   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
149     if (MarkCompactCollector::IsMarked(obj)) {
150       obj->Iterate(&visitor);
151     }
152   }
153 
154   heap->IterateStrongRoots(&visitor, VISIT_ONLY_STRONG);
155 }
156 
157 
158 class VerifyEvacuationVisitor: public ObjectVisitor {
159  public:
VisitPointers(Object ** start,Object ** end)160   void VisitPointers(Object** start, Object** end) {
161     for (Object** current = start; current < end; current++) {
162       if ((*current)->IsHeapObject()) {
163         HeapObject* object = HeapObject::cast(*current);
164         CHECK(!MarkCompactCollector::IsOnEvacuationCandidate(object));
165       }
166     }
167   }
168 };
169 
170 
VerifyEvacuation(Address bottom,Address top)171 static void VerifyEvacuation(Address bottom, Address top) {
172   VerifyEvacuationVisitor visitor;
173   HeapObject* object;
174   Address next_object_must_be_here_or_later = bottom;
175 
176   for (Address current = bottom;
177        current < top;
178        current += kPointerSize) {
179     object = HeapObject::FromAddress(current);
180     if (MarkCompactCollector::IsMarked(object)) {
181       CHECK(current >= next_object_must_be_here_or_later);
182       object->Iterate(&visitor);
183       next_object_must_be_here_or_later = current + object->Size();
184     }
185   }
186 }
187 
188 
VerifyEvacuation(NewSpace * space)189 static void VerifyEvacuation(NewSpace* space) {
190   NewSpacePageIterator it(space->bottom(), space->top());
191   VerifyEvacuationVisitor visitor;
192 
193   while (it.has_next()) {
194     NewSpacePage* page = it.next();
195     Address current = page->area_start();
196     Address limit = it.has_next() ? page->area_end() : space->top();
197     CHECK(limit == space->top() || !page->Contains(space->top()));
198     while (current < limit) {
199       HeapObject* object = HeapObject::FromAddress(current);
200       object->Iterate(&visitor);
201       current += object->Size();
202     }
203   }
204 }
205 
206 
VerifyEvacuation(PagedSpace * space)207 static void VerifyEvacuation(PagedSpace* space) {
208   // TODO(hpayer): Bring back VerifyEvacuation for parallel-concurrently
209   // swept pages.
210   if ((FLAG_concurrent_sweeping || FLAG_parallel_sweeping) &&
211       space->was_swept_conservatively()) return;
212   PageIterator it(space);
213 
214   while (it.has_next()) {
215     Page* p = it.next();
216     if (p->IsEvacuationCandidate()) continue;
217     VerifyEvacuation(p->area_start(), p->area_end());
218   }
219 }
220 
221 
VerifyEvacuation(Heap * heap)222 static void VerifyEvacuation(Heap* heap) {
223   VerifyEvacuation(heap->old_pointer_space());
224   VerifyEvacuation(heap->old_data_space());
225   VerifyEvacuation(heap->code_space());
226   VerifyEvacuation(heap->cell_space());
227   VerifyEvacuation(heap->property_cell_space());
228   VerifyEvacuation(heap->map_space());
229   VerifyEvacuation(heap->new_space());
230 
231   VerifyEvacuationVisitor visitor;
232   heap->IterateStrongRoots(&visitor, VISIT_ALL);
233 }
234 #endif  // VERIFY_HEAP
235 
236 
237 #ifdef DEBUG
238 class VerifyNativeContextSeparationVisitor: public ObjectVisitor {
239  public:
VerifyNativeContextSeparationVisitor()240   VerifyNativeContextSeparationVisitor() : current_native_context_(NULL) {}
241 
VisitPointers(Object ** start,Object ** end)242   void VisitPointers(Object** start, Object** end) {
243     for (Object** current = start; current < end; current++) {
244       if ((*current)->IsHeapObject()) {
245         HeapObject* object = HeapObject::cast(*current);
246         if (object->IsString()) continue;
247         switch (object->map()->instance_type()) {
248           case JS_FUNCTION_TYPE:
249             CheckContext(JSFunction::cast(object)->context());
250             break;
251           case JS_GLOBAL_PROXY_TYPE:
252             CheckContext(JSGlobalProxy::cast(object)->native_context());
253             break;
254           case JS_GLOBAL_OBJECT_TYPE:
255           case JS_BUILTINS_OBJECT_TYPE:
256             CheckContext(GlobalObject::cast(object)->native_context());
257             break;
258           case JS_ARRAY_TYPE:
259           case JS_DATE_TYPE:
260           case JS_OBJECT_TYPE:
261           case JS_REGEXP_TYPE:
262             VisitPointer(HeapObject::RawField(object, JSObject::kMapOffset));
263             break;
264           case MAP_TYPE:
265             VisitPointer(HeapObject::RawField(object, Map::kPrototypeOffset));
266             VisitPointer(HeapObject::RawField(object, Map::kConstructorOffset));
267             break;
268           case FIXED_ARRAY_TYPE:
269             if (object->IsContext()) {
270               CheckContext(object);
271             } else {
272               FixedArray* array = FixedArray::cast(object);
273               int length = array->length();
274               // Set array length to zero to prevent cycles while iterating
275               // over array bodies, this is easier than intrusive marking.
276               array->set_length(0);
277               array->IterateBody(
278                   FIXED_ARRAY_TYPE, FixedArray::SizeFor(length), this);
279               array->set_length(length);
280             }
281             break;
282           case CELL_TYPE:
283           case JS_PROXY_TYPE:
284           case JS_VALUE_TYPE:
285           case TYPE_FEEDBACK_INFO_TYPE:
286             object->Iterate(this);
287             break;
288           case DECLARED_ACCESSOR_INFO_TYPE:
289           case EXECUTABLE_ACCESSOR_INFO_TYPE:
290           case BYTE_ARRAY_TYPE:
291           case CALL_HANDLER_INFO_TYPE:
292           case CODE_TYPE:
293           case FIXED_DOUBLE_ARRAY_TYPE:
294           case HEAP_NUMBER_TYPE:
295           case INTERCEPTOR_INFO_TYPE:
296           case ODDBALL_TYPE:
297           case SCRIPT_TYPE:
298           case SHARED_FUNCTION_INFO_TYPE:
299             break;
300           default:
301             UNREACHABLE();
302         }
303       }
304     }
305   }
306 
307  private:
CheckContext(Object * context)308   void CheckContext(Object* context) {
309     if (!context->IsContext()) return;
310     Context* native_context = Context::cast(context)->native_context();
311     if (current_native_context_ == NULL) {
312       current_native_context_ = native_context;
313     } else {
314       CHECK_EQ(current_native_context_, native_context);
315     }
316   }
317 
318   Context* current_native_context_;
319 };
320 
321 
VerifyNativeContextSeparation(Heap * heap)322 static void VerifyNativeContextSeparation(Heap* heap) {
323   HeapObjectIterator it(heap->code_space());
324 
325   for (Object* object = it.Next(); object != NULL; object = it.Next()) {
326     VerifyNativeContextSeparationVisitor visitor;
327     Code::cast(object)->CodeIterateBody(&visitor);
328   }
329 }
330 #endif
331 
332 
SetUp()333 void MarkCompactCollector::SetUp() {
334   free_list_old_data_space_.Reset(new FreeList(heap_->old_data_space()));
335   free_list_old_pointer_space_.Reset(new FreeList(heap_->old_pointer_space()));
336 }
337 
338 
TearDown()339 void MarkCompactCollector::TearDown() {
340   AbortCompaction();
341 }
342 
343 
AddEvacuationCandidate(Page * p)344 void MarkCompactCollector::AddEvacuationCandidate(Page* p) {
345   p->MarkEvacuationCandidate();
346   evacuation_candidates_.Add(p);
347 }
348 
349 
TraceFragmentation(PagedSpace * space)350 static void TraceFragmentation(PagedSpace* space) {
351   int number_of_pages = space->CountTotalPages();
352   intptr_t reserved = (number_of_pages * space->AreaSize());
353   intptr_t free = reserved - space->SizeOfObjects();
354   PrintF("[%s]: %d pages, %d (%.1f%%) free\n",
355          AllocationSpaceName(space->identity()),
356          number_of_pages,
357          static_cast<int>(free),
358          static_cast<double>(free) * 100 / reserved);
359 }
360 
361 
StartCompaction(CompactionMode mode)362 bool MarkCompactCollector::StartCompaction(CompactionMode mode) {
363   if (!compacting_) {
364     ASSERT(evacuation_candidates_.length() == 0);
365 
366 #ifdef ENABLE_GDB_JIT_INTERFACE
367     // If GDBJIT interface is active disable compaction.
368     if (FLAG_gdbjit) return false;
369 #endif
370 
371     CollectEvacuationCandidates(heap()->old_pointer_space());
372     CollectEvacuationCandidates(heap()->old_data_space());
373 
374     if (FLAG_compact_code_space &&
375         (mode == NON_INCREMENTAL_COMPACTION ||
376          FLAG_incremental_code_compaction)) {
377       CollectEvacuationCandidates(heap()->code_space());
378     } else if (FLAG_trace_fragmentation) {
379       TraceFragmentation(heap()->code_space());
380     }
381 
382     if (FLAG_trace_fragmentation) {
383       TraceFragmentation(heap()->map_space());
384       TraceFragmentation(heap()->cell_space());
385       TraceFragmentation(heap()->property_cell_space());
386     }
387 
388     heap()->old_pointer_space()->EvictEvacuationCandidatesFromFreeLists();
389     heap()->old_data_space()->EvictEvacuationCandidatesFromFreeLists();
390     heap()->code_space()->EvictEvacuationCandidatesFromFreeLists();
391 
392     compacting_ = evacuation_candidates_.length() > 0;
393   }
394 
395   return compacting_;
396 }
397 
398 
CollectGarbage()399 void MarkCompactCollector::CollectGarbage() {
400   // Make sure that Prepare() has been called. The individual steps below will
401   // update the state as they proceed.
402   ASSERT(state_ == PREPARE_GC);
403 
404   MarkLiveObjects();
405   ASSERT(heap_->incremental_marking()->IsStopped());
406 
407   if (FLAG_collect_maps) ClearNonLiveReferences();
408 
409   ClearWeakCollections();
410 
411 #ifdef VERIFY_HEAP
412   if (FLAG_verify_heap) {
413     VerifyMarking(heap_);
414   }
415 #endif
416 
417   SweepSpaces();
418 
419 #ifdef DEBUG
420   if (FLAG_verify_native_context_separation) {
421     VerifyNativeContextSeparation(heap_);
422   }
423 #endif
424 
425 #ifdef VERIFY_HEAP
426   if (heap()->weak_embedded_objects_verification_enabled()) {
427     VerifyWeakEmbeddedObjectsInCode();
428   }
429   if (FLAG_collect_maps && FLAG_omit_map_checks_for_leaf_maps) {
430     VerifyOmittedMapChecks();
431   }
432 #endif
433 
434   Finish();
435 
436   if (marking_parity_ == EVEN_MARKING_PARITY) {
437     marking_parity_ = ODD_MARKING_PARITY;
438   } else {
439     ASSERT(marking_parity_ == ODD_MARKING_PARITY);
440     marking_parity_ = EVEN_MARKING_PARITY;
441   }
442 
443   tracer_ = NULL;
444 }
445 
446 
447 #ifdef VERIFY_HEAP
VerifyMarkbitsAreClean(PagedSpace * space)448 void MarkCompactCollector::VerifyMarkbitsAreClean(PagedSpace* space) {
449   PageIterator it(space);
450 
451   while (it.has_next()) {
452     Page* p = it.next();
453     CHECK(p->markbits()->IsClean());
454     CHECK_EQ(0, p->LiveBytes());
455   }
456 }
457 
458 
VerifyMarkbitsAreClean(NewSpace * space)459 void MarkCompactCollector::VerifyMarkbitsAreClean(NewSpace* space) {
460   NewSpacePageIterator it(space->bottom(), space->top());
461 
462   while (it.has_next()) {
463     NewSpacePage* p = it.next();
464     CHECK(p->markbits()->IsClean());
465     CHECK_EQ(0, p->LiveBytes());
466   }
467 }
468 
469 
VerifyMarkbitsAreClean()470 void MarkCompactCollector::VerifyMarkbitsAreClean() {
471   VerifyMarkbitsAreClean(heap_->old_pointer_space());
472   VerifyMarkbitsAreClean(heap_->old_data_space());
473   VerifyMarkbitsAreClean(heap_->code_space());
474   VerifyMarkbitsAreClean(heap_->cell_space());
475   VerifyMarkbitsAreClean(heap_->property_cell_space());
476   VerifyMarkbitsAreClean(heap_->map_space());
477   VerifyMarkbitsAreClean(heap_->new_space());
478 
479   LargeObjectIterator it(heap_->lo_space());
480   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
481     MarkBit mark_bit = Marking::MarkBitFrom(obj);
482     CHECK(Marking::IsWhite(mark_bit));
483     CHECK_EQ(0, Page::FromAddress(obj->address())->LiveBytes());
484   }
485 }
486 
487 
VerifyWeakEmbeddedObjectsInCode()488 void MarkCompactCollector::VerifyWeakEmbeddedObjectsInCode() {
489   HeapObjectIterator code_iterator(heap()->code_space());
490   for (HeapObject* obj = code_iterator.Next();
491        obj != NULL;
492        obj = code_iterator.Next()) {
493     Code* code = Code::cast(obj);
494     if (!code->is_optimized_code() && !code->is_weak_stub()) continue;
495     if (WillBeDeoptimized(code)) continue;
496     code->VerifyEmbeddedObjectsDependency();
497   }
498 }
499 
500 
VerifyOmittedMapChecks()501 void MarkCompactCollector::VerifyOmittedMapChecks() {
502   HeapObjectIterator iterator(heap()->map_space());
503   for (HeapObject* obj = iterator.Next();
504        obj != NULL;
505        obj = iterator.Next()) {
506     Map* map = Map::cast(obj);
507     map->VerifyOmittedMapChecks();
508   }
509 }
510 #endif  // VERIFY_HEAP
511 
512 
ClearMarkbitsInPagedSpace(PagedSpace * space)513 static void ClearMarkbitsInPagedSpace(PagedSpace* space) {
514   PageIterator it(space);
515 
516   while (it.has_next()) {
517     Bitmap::Clear(it.next());
518   }
519 }
520 
521 
ClearMarkbitsInNewSpace(NewSpace * space)522 static void ClearMarkbitsInNewSpace(NewSpace* space) {
523   NewSpacePageIterator it(space->ToSpaceStart(), space->ToSpaceEnd());
524 
525   while (it.has_next()) {
526     Bitmap::Clear(it.next());
527   }
528 }
529 
530 
ClearMarkbits()531 void MarkCompactCollector::ClearMarkbits() {
532   ClearMarkbitsInPagedSpace(heap_->code_space());
533   ClearMarkbitsInPagedSpace(heap_->map_space());
534   ClearMarkbitsInPagedSpace(heap_->old_pointer_space());
535   ClearMarkbitsInPagedSpace(heap_->old_data_space());
536   ClearMarkbitsInPagedSpace(heap_->cell_space());
537   ClearMarkbitsInPagedSpace(heap_->property_cell_space());
538   ClearMarkbitsInNewSpace(heap_->new_space());
539 
540   LargeObjectIterator it(heap_->lo_space());
541   for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
542     MarkBit mark_bit = Marking::MarkBitFrom(obj);
543     mark_bit.Clear();
544     mark_bit.Next().Clear();
545     Page::FromAddress(obj->address())->ResetProgressBar();
546     Page::FromAddress(obj->address())->ResetLiveBytes();
547   }
548 }
549 
550 
551 class MarkCompactCollector::SweeperTask : public v8::Task {
552  public:
SweeperTask(Heap * heap,PagedSpace * space)553   SweeperTask(Heap* heap, PagedSpace* space)
554     : heap_(heap), space_(space) {}
555 
~SweeperTask()556   virtual ~SweeperTask() {}
557 
558  private:
559   // v8::Task overrides.
Run()560   virtual void Run() V8_OVERRIDE {
561     heap_->mark_compact_collector()->SweepInParallel(space_);
562     heap_->mark_compact_collector()->pending_sweeper_jobs_semaphore_.Signal();
563   }
564 
565   Heap* heap_;
566   PagedSpace* space_;
567 
568   DISALLOW_COPY_AND_ASSIGN(SweeperTask);
569 };
570 
571 
StartSweeperThreads()572 void MarkCompactCollector::StartSweeperThreads() {
573   ASSERT(free_list_old_pointer_space_.get()->IsEmpty());
574   ASSERT(free_list_old_data_space_.get()->IsEmpty());
575   sweeping_pending_ = true;
576   for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
577     isolate()->sweeper_threads()[i]->StartSweeping();
578   }
579   if (FLAG_job_based_sweeping) {
580     V8::GetCurrentPlatform()->CallOnBackgroundThread(
581         new SweeperTask(heap(), heap()->old_data_space()),
582         v8::Platform::kShortRunningTask);
583     V8::GetCurrentPlatform()->CallOnBackgroundThread(
584         new SweeperTask(heap(), heap()->old_pointer_space()),
585         v8::Platform::kShortRunningTask);
586   }
587 }
588 
589 
WaitUntilSweepingCompleted()590 void MarkCompactCollector::WaitUntilSweepingCompleted() {
591   ASSERT(sweeping_pending_ == true);
592   for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
593     isolate()->sweeper_threads()[i]->WaitForSweeperThread();
594   }
595   if (FLAG_job_based_sweeping) {
596     // Wait twice for both jobs.
597     pending_sweeper_jobs_semaphore_.Wait();
598     pending_sweeper_jobs_semaphore_.Wait();
599   }
600   ParallelSweepSpacesComplete();
601   sweeping_pending_ = false;
602   RefillFreeList(heap()->paged_space(OLD_DATA_SPACE));
603   RefillFreeList(heap()->paged_space(OLD_POINTER_SPACE));
604   heap()->paged_space(OLD_DATA_SPACE)->ResetUnsweptFreeBytes();
605   heap()->paged_space(OLD_POINTER_SPACE)->ResetUnsweptFreeBytes();
606 }
607 
608 
IsSweepingCompleted()609 bool MarkCompactCollector::IsSweepingCompleted() {
610   for (int i = 0; i < isolate()->num_sweeper_threads(); i++) {
611     if (!isolate()->sweeper_threads()[i]->SweepingCompleted()) {
612       return false;
613     }
614   }
615   if (FLAG_job_based_sweeping) {
616     if (!pending_sweeper_jobs_semaphore_.WaitFor(TimeDelta::FromSeconds(0))) {
617       return false;
618     }
619     pending_sweeper_jobs_semaphore_.Signal();
620   }
621   return true;
622 }
623 
624 
RefillFreeList(PagedSpace * space)625 void MarkCompactCollector::RefillFreeList(PagedSpace* space) {
626   FreeList* free_list;
627 
628   if (space == heap()->old_pointer_space()) {
629     free_list = free_list_old_pointer_space_.get();
630   } else if (space == heap()->old_data_space()) {
631     free_list = free_list_old_data_space_.get();
632   } else {
633     // Any PagedSpace might invoke RefillFreeLists, so we need to make sure
634     // to only refill them for old data and pointer spaces.
635     return;
636   }
637 
638   intptr_t freed_bytes = space->free_list()->Concatenate(free_list);
639   space->AddToAccountingStats(freed_bytes);
640   space->DecrementUnsweptFreeBytes(freed_bytes);
641 }
642 
643 
AreSweeperThreadsActivated()644 bool MarkCompactCollector::AreSweeperThreadsActivated() {
645   return isolate()->sweeper_threads() != NULL || FLAG_job_based_sweeping;
646 }
647 
648 
IsConcurrentSweepingInProgress()649 bool MarkCompactCollector::IsConcurrentSweepingInProgress() {
650   return sweeping_pending_;
651 }
652 
653 
TransferMark(Address old_start,Address new_start)654 void Marking::TransferMark(Address old_start, Address new_start) {
655   // This is only used when resizing an object.
656   ASSERT(MemoryChunk::FromAddress(old_start) ==
657          MemoryChunk::FromAddress(new_start));
658 
659   if (!heap_->incremental_marking()->IsMarking()) return;
660 
661   // If the mark doesn't move, we don't check the color of the object.
662   // It doesn't matter whether the object is black, since it hasn't changed
663   // size, so the adjustment to the live data count will be zero anyway.
664   if (old_start == new_start) return;
665 
666   MarkBit new_mark_bit = MarkBitFrom(new_start);
667   MarkBit old_mark_bit = MarkBitFrom(old_start);
668 
669 #ifdef DEBUG
670   ObjectColor old_color = Color(old_mark_bit);
671 #endif
672 
673   if (Marking::IsBlack(old_mark_bit)) {
674     old_mark_bit.Clear();
675     ASSERT(IsWhite(old_mark_bit));
676     Marking::MarkBlack(new_mark_bit);
677     return;
678   } else if (Marking::IsGrey(old_mark_bit)) {
679     old_mark_bit.Clear();
680     old_mark_bit.Next().Clear();
681     ASSERT(IsWhite(old_mark_bit));
682     heap_->incremental_marking()->WhiteToGreyAndPush(
683         HeapObject::FromAddress(new_start), new_mark_bit);
684     heap_->incremental_marking()->RestartIfNotMarking();
685   }
686 
687 #ifdef DEBUG
688   ObjectColor new_color = Color(new_mark_bit);
689   ASSERT(new_color == old_color);
690 #endif
691 }
692 
693 
AllocationSpaceName(AllocationSpace space)694 const char* AllocationSpaceName(AllocationSpace space) {
695   switch (space) {
696     case NEW_SPACE: return "NEW_SPACE";
697     case OLD_POINTER_SPACE: return "OLD_POINTER_SPACE";
698     case OLD_DATA_SPACE: return "OLD_DATA_SPACE";
699     case CODE_SPACE: return "CODE_SPACE";
700     case MAP_SPACE: return "MAP_SPACE";
701     case CELL_SPACE: return "CELL_SPACE";
702     case PROPERTY_CELL_SPACE:
703       return "PROPERTY_CELL_SPACE";
704     case LO_SPACE: return "LO_SPACE";
705     default:
706       UNREACHABLE();
707   }
708 
709   return NULL;
710 }
711 
712 
713 // Returns zero for pages that have so little fragmentation that it is not
714 // worth defragmenting them.  Otherwise a positive integer that gives an
715 // estimate of fragmentation on an arbitrary scale.
FreeListFragmentation(PagedSpace * space,Page * p)716 static int FreeListFragmentation(PagedSpace* space, Page* p) {
717   // If page was not swept then there are no free list items on it.
718   if (!p->WasSwept()) {
719     if (FLAG_trace_fragmentation) {
720       PrintF("%p [%s]: %d bytes live (unswept)\n",
721              reinterpret_cast<void*>(p),
722              AllocationSpaceName(space->identity()),
723              p->LiveBytes());
724     }
725     return 0;
726   }
727 
728   PagedSpace::SizeStats sizes;
729   space->ObtainFreeListStatistics(p, &sizes);
730 
731   intptr_t ratio;
732   intptr_t ratio_threshold;
733   intptr_t area_size = space->AreaSize();
734   if (space->identity() == CODE_SPACE) {
735     ratio = (sizes.medium_size_ * 10 + sizes.large_size_ * 2) * 100 /
736         area_size;
737     ratio_threshold = 10;
738   } else {
739     ratio = (sizes.small_size_ * 5 + sizes.medium_size_) * 100 /
740         area_size;
741     ratio_threshold = 15;
742   }
743 
744   if (FLAG_trace_fragmentation) {
745     PrintF("%p [%s]: %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %d (%.2f%%) %s\n",
746            reinterpret_cast<void*>(p),
747            AllocationSpaceName(space->identity()),
748            static_cast<int>(sizes.small_size_),
749            static_cast<double>(sizes.small_size_ * 100) /
750            area_size,
751            static_cast<int>(sizes.medium_size_),
752            static_cast<double>(sizes.medium_size_ * 100) /
753            area_size,
754            static_cast<int>(sizes.large_size_),
755            static_cast<double>(sizes.large_size_ * 100) /
756            area_size,
757            static_cast<int>(sizes.huge_size_),
758            static_cast<double>(sizes.huge_size_ * 100) /
759            area_size,
760            (ratio > ratio_threshold) ? "[fragmented]" : "");
761   }
762 
763   if (FLAG_always_compact && sizes.Total() != area_size) {
764     return 1;
765   }
766 
767   if (ratio <= ratio_threshold) return 0;  // Not fragmented.
768 
769   return static_cast<int>(ratio - ratio_threshold);
770 }
771 
772 
CollectEvacuationCandidates(PagedSpace * space)773 void MarkCompactCollector::CollectEvacuationCandidates(PagedSpace* space) {
774   ASSERT(space->identity() == OLD_POINTER_SPACE ||
775          space->identity() == OLD_DATA_SPACE ||
776          space->identity() == CODE_SPACE);
777 
778   static const int kMaxMaxEvacuationCandidates = 1000;
779   int number_of_pages = space->CountTotalPages();
780   int max_evacuation_candidates =
781       static_cast<int>(std::sqrt(number_of_pages / 2.0) + 1);
782 
783   if (FLAG_stress_compaction || FLAG_always_compact) {
784     max_evacuation_candidates = kMaxMaxEvacuationCandidates;
785   }
786 
787   class Candidate {
788    public:
789     Candidate() : fragmentation_(0), page_(NULL) { }
790     Candidate(int f, Page* p) : fragmentation_(f), page_(p) { }
791 
792     int fragmentation() { return fragmentation_; }
793     Page* page() { return page_; }
794 
795    private:
796     int fragmentation_;
797     Page* page_;
798   };
799 
800   enum CompactionMode {
801     COMPACT_FREE_LISTS,
802     REDUCE_MEMORY_FOOTPRINT
803   };
804 
805   CompactionMode mode = COMPACT_FREE_LISTS;
806 
807   intptr_t reserved = number_of_pages * space->AreaSize();
808   intptr_t over_reserved = reserved - space->SizeOfObjects();
809   static const intptr_t kFreenessThreshold = 50;
810 
811   if (reduce_memory_footprint_ && over_reserved >= space->AreaSize()) {
812     // If reduction of memory footprint was requested, we are aggressive
813     // about choosing pages to free.  We expect that half-empty pages
814     // are easier to compact so slightly bump the limit.
815     mode = REDUCE_MEMORY_FOOTPRINT;
816     max_evacuation_candidates += 2;
817   }
818 
819 
820   if (over_reserved > reserved / 3 && over_reserved >= 2 * space->AreaSize()) {
821     // If over-usage is very high (more than a third of the space), we
822     // try to free all mostly empty pages.  We expect that almost empty
823     // pages are even easier to compact so bump the limit even more.
824     mode = REDUCE_MEMORY_FOOTPRINT;
825     max_evacuation_candidates *= 2;
826   }
827 
828   if (FLAG_trace_fragmentation && mode == REDUCE_MEMORY_FOOTPRINT) {
829     PrintF("Estimated over reserved memory: %.1f / %.1f MB (threshold %d), "
830            "evacuation candidate limit: %d\n",
831            static_cast<double>(over_reserved) / MB,
832            static_cast<double>(reserved) / MB,
833            static_cast<int>(kFreenessThreshold),
834            max_evacuation_candidates);
835   }
836 
837   intptr_t estimated_release = 0;
838 
839   Candidate candidates[kMaxMaxEvacuationCandidates];
840 
841   max_evacuation_candidates =
842       Min(kMaxMaxEvacuationCandidates, max_evacuation_candidates);
843 
844   int count = 0;
845   int fragmentation = 0;
846   Candidate* least = NULL;
847 
848   PageIterator it(space);
849   if (it.has_next()) it.next();  // Never compact the first page.
850 
851   while (it.has_next()) {
852     Page* p = it.next();
853     p->ClearEvacuationCandidate();
854 
855     if (FLAG_stress_compaction) {
856       unsigned int counter = space->heap()->ms_count();
857       uintptr_t page_number = reinterpret_cast<uintptr_t>(p) >> kPageSizeBits;
858       if ((counter & 1) == (page_number & 1)) fragmentation = 1;
859     } else if (mode == REDUCE_MEMORY_FOOTPRINT) {
860       // Don't try to release too many pages.
861       if (estimated_release >= over_reserved) {
862         continue;
863       }
864 
865       intptr_t free_bytes = 0;
866 
867       if (!p->WasSwept()) {
868         free_bytes = (p->area_size() - p->LiveBytes());
869       } else {
870         PagedSpace::SizeStats sizes;
871         space->ObtainFreeListStatistics(p, &sizes);
872         free_bytes = sizes.Total();
873       }
874 
875       int free_pct = static_cast<int>(free_bytes * 100) / p->area_size();
876 
877       if (free_pct >= kFreenessThreshold) {
878         estimated_release += free_bytes;
879         fragmentation = free_pct;
880       } else {
881         fragmentation = 0;
882       }
883 
884       if (FLAG_trace_fragmentation) {
885         PrintF("%p [%s]: %d (%.2f%%) free %s\n",
886                reinterpret_cast<void*>(p),
887                AllocationSpaceName(space->identity()),
888                static_cast<int>(free_bytes),
889                static_cast<double>(free_bytes * 100) / p->area_size(),
890                (fragmentation > 0) ? "[fragmented]" : "");
891       }
892     } else {
893       fragmentation = FreeListFragmentation(space, p);
894     }
895 
896     if (fragmentation != 0) {
897       if (count < max_evacuation_candidates) {
898         candidates[count++] = Candidate(fragmentation, p);
899       } else {
900         if (least == NULL) {
901           for (int i = 0; i < max_evacuation_candidates; i++) {
902             if (least == NULL ||
903                 candidates[i].fragmentation() < least->fragmentation()) {
904               least = candidates + i;
905             }
906           }
907         }
908         if (least->fragmentation() < fragmentation) {
909           *least = Candidate(fragmentation, p);
910           least = NULL;
911         }
912       }
913     }
914   }
915 
916   for (int i = 0; i < count; i++) {
917     AddEvacuationCandidate(candidates[i].page());
918   }
919 
920   if (count > 0 && FLAG_trace_fragmentation) {
921     PrintF("Collected %d evacuation candidates for space %s\n",
922            count,
923            AllocationSpaceName(space->identity()));
924   }
925 }
926 
927 
AbortCompaction()928 void MarkCompactCollector::AbortCompaction() {
929   if (compacting_) {
930     int npages = evacuation_candidates_.length();
931     for (int i = 0; i < npages; i++) {
932       Page* p = evacuation_candidates_[i];
933       slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
934       p->ClearEvacuationCandidate();
935       p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
936     }
937     compacting_ = false;
938     evacuation_candidates_.Rewind(0);
939     invalidated_code_.Rewind(0);
940   }
941   ASSERT_EQ(0, evacuation_candidates_.length());
942 }
943 
944 
Prepare(GCTracer * tracer)945 void MarkCompactCollector::Prepare(GCTracer* tracer) {
946   was_marked_incrementally_ = heap()->incremental_marking()->IsMarking();
947 
948   // Rather than passing the tracer around we stash it in a static member
949   // variable.
950   tracer_ = tracer;
951 
952 #ifdef DEBUG
953   ASSERT(state_ == IDLE);
954   state_ = PREPARE_GC;
955 #endif
956 
957   ASSERT(!FLAG_never_compact || !FLAG_always_compact);
958 
959   if (IsConcurrentSweepingInProgress()) {
960     // Instead of waiting we could also abort the sweeper threads here.
961     WaitUntilSweepingCompleted();
962   }
963 
964   // Clear marking bits if incremental marking is aborted.
965   if (was_marked_incrementally_ && abort_incremental_marking_) {
966     heap()->incremental_marking()->Abort();
967     ClearMarkbits();
968     AbortCompaction();
969     was_marked_incrementally_ = false;
970   }
971 
972   // Don't start compaction if we are in the middle of incremental
973   // marking cycle. We did not collect any slots.
974   if (!FLAG_never_compact && !was_marked_incrementally_) {
975     StartCompaction(NON_INCREMENTAL_COMPACTION);
976   }
977 
978   PagedSpaces spaces(heap());
979   for (PagedSpace* space = spaces.next();
980        space != NULL;
981        space = spaces.next()) {
982     space->PrepareForMarkCompact();
983   }
984 
985 #ifdef VERIFY_HEAP
986   if (!was_marked_incrementally_ && FLAG_verify_heap) {
987     VerifyMarkbitsAreClean();
988   }
989 #endif
990 }
991 
992 
Finish()993 void MarkCompactCollector::Finish() {
994 #ifdef DEBUG
995   ASSERT(state_ == SWEEP_SPACES || state_ == RELOCATE_OBJECTS);
996   state_ = IDLE;
997 #endif
998   // The stub cache is not traversed during GC; clear the cache to
999   // force lazy re-initialization of it. This must be done after the
1000   // GC, because it relies on the new address of certain old space
1001   // objects (empty string, illegal builtin).
1002   isolate()->stub_cache()->Clear();
1003 
1004   if (have_code_to_deoptimize_) {
1005     // Some code objects were marked for deoptimization during the GC.
1006     Deoptimizer::DeoptimizeMarkedCode(isolate());
1007     have_code_to_deoptimize_ = false;
1008   }
1009 }
1010 
1011 
1012 // -------------------------------------------------------------------------
1013 // Phase 1: tracing and marking live objects.
1014 //   before: all objects are in normal state.
1015 //   after: a live object's map pointer is marked as '00'.
1016 
1017 // Marking all live objects in the heap as part of mark-sweep or mark-compact
1018 // collection.  Before marking, all objects are in their normal state.  After
1019 // marking, live objects' map pointers are marked indicating that the object
1020 // has been found reachable.
1021 //
1022 // The marking algorithm is a (mostly) depth-first (because of possible stack
1023 // overflow) traversal of the graph of objects reachable from the roots.  It
1024 // uses an explicit stack of pointers rather than recursion.  The young
1025 // generation's inactive ('from') space is used as a marking stack.  The
1026 // objects in the marking stack are the ones that have been reached and marked
1027 // but their children have not yet been visited.
1028 //
1029 // The marking stack can overflow during traversal.  In that case, we set an
1030 // overflow flag.  When the overflow flag is set, we continue marking objects
1031 // reachable from the objects on the marking stack, but no longer push them on
1032 // the marking stack.  Instead, we mark them as both marked and overflowed.
1033 // When the stack is in the overflowed state, objects marked as overflowed
1034 // have been reached and marked but their children have not been visited yet.
1035 // After emptying the marking stack, we clear the overflow flag and traverse
1036 // the heap looking for objects marked as overflowed, push them on the stack,
1037 // and continue with marking.  This process repeats until all reachable
1038 // objects have been marked.
1039 
ProcessJSFunctionCandidates()1040 void CodeFlusher::ProcessJSFunctionCandidates() {
1041   Code* lazy_compile =
1042       isolate_->builtins()->builtin(Builtins::kCompileUnoptimized);
1043   Object* undefined = isolate_->heap()->undefined_value();
1044 
1045   JSFunction* candidate = jsfunction_candidates_head_;
1046   JSFunction* next_candidate;
1047   while (candidate != NULL) {
1048     next_candidate = GetNextCandidate(candidate);
1049     ClearNextCandidate(candidate, undefined);
1050 
1051     SharedFunctionInfo* shared = candidate->shared();
1052 
1053     Code* code = shared->code();
1054     MarkBit code_mark = Marking::MarkBitFrom(code);
1055     if (!code_mark.Get()) {
1056       if (FLAG_trace_code_flushing && shared->is_compiled()) {
1057         PrintF("[code-flushing clears: ");
1058         shared->ShortPrint();
1059         PrintF(" - age: %d]\n", code->GetAge());
1060       }
1061       shared->set_code(lazy_compile);
1062       candidate->set_code(lazy_compile);
1063     } else {
1064       candidate->set_code(code);
1065     }
1066 
1067     // We are in the middle of a GC cycle so the write barrier in the code
1068     // setter did not record the slot update and we have to do that manually.
1069     Address slot = candidate->address() + JSFunction::kCodeEntryOffset;
1070     Code* target = Code::cast(Code::GetObjectFromEntryAddress(slot));
1071     isolate_->heap()->mark_compact_collector()->
1072         RecordCodeEntrySlot(slot, target);
1073 
1074     Object** shared_code_slot =
1075         HeapObject::RawField(shared, SharedFunctionInfo::kCodeOffset);
1076     isolate_->heap()->mark_compact_collector()->
1077         RecordSlot(shared_code_slot, shared_code_slot, *shared_code_slot);
1078 
1079     candidate = next_candidate;
1080   }
1081 
1082   jsfunction_candidates_head_ = NULL;
1083 }
1084 
1085 
ProcessSharedFunctionInfoCandidates()1086 void CodeFlusher::ProcessSharedFunctionInfoCandidates() {
1087   Code* lazy_compile =
1088       isolate_->builtins()->builtin(Builtins::kCompileUnoptimized);
1089 
1090   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1091   SharedFunctionInfo* next_candidate;
1092   while (candidate != NULL) {
1093     next_candidate = GetNextCandidate(candidate);
1094     ClearNextCandidate(candidate);
1095 
1096     Code* code = candidate->code();
1097     MarkBit code_mark = Marking::MarkBitFrom(code);
1098     if (!code_mark.Get()) {
1099       if (FLAG_trace_code_flushing && candidate->is_compiled()) {
1100         PrintF("[code-flushing clears: ");
1101         candidate->ShortPrint();
1102         PrintF(" - age: %d]\n", code->GetAge());
1103       }
1104       candidate->set_code(lazy_compile);
1105     }
1106 
1107     Object** code_slot =
1108         HeapObject::RawField(candidate, SharedFunctionInfo::kCodeOffset);
1109     isolate_->heap()->mark_compact_collector()->
1110         RecordSlot(code_slot, code_slot, *code_slot);
1111 
1112     candidate = next_candidate;
1113   }
1114 
1115   shared_function_info_candidates_head_ = NULL;
1116 }
1117 
1118 
ProcessOptimizedCodeMaps()1119 void CodeFlusher::ProcessOptimizedCodeMaps() {
1120   STATIC_ASSERT(SharedFunctionInfo::kEntryLength == 4);
1121 
1122   SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1123   SharedFunctionInfo* next_holder;
1124 
1125   while (holder != NULL) {
1126     next_holder = GetNextCodeMap(holder);
1127     ClearNextCodeMap(holder);
1128 
1129     FixedArray* code_map = FixedArray::cast(holder->optimized_code_map());
1130     int new_length = SharedFunctionInfo::kEntriesStart;
1131     int old_length = code_map->length();
1132     for (int i = SharedFunctionInfo::kEntriesStart;
1133          i < old_length;
1134          i += SharedFunctionInfo::kEntryLength) {
1135       Code* code =
1136           Code::cast(code_map->get(i + SharedFunctionInfo::kCachedCodeOffset));
1137       if (!Marking::MarkBitFrom(code).Get()) continue;
1138 
1139       // Move every slot in the entry.
1140       for (int j = 0; j < SharedFunctionInfo::kEntryLength; j++) {
1141         int dst_index = new_length++;
1142         Object** slot = code_map->RawFieldOfElementAt(dst_index);
1143         Object* object = code_map->get(i + j);
1144         code_map->set(dst_index, object);
1145         if (j == SharedFunctionInfo::kOsrAstIdOffset) {
1146           ASSERT(object->IsSmi());
1147         } else {
1148           ASSERT(Marking::IsBlack(
1149               Marking::MarkBitFrom(HeapObject::cast(*slot))));
1150           isolate_->heap()->mark_compact_collector()->
1151               RecordSlot(slot, slot, *slot);
1152         }
1153       }
1154     }
1155 
1156     // Trim the optimized code map if entries have been removed.
1157     if (new_length < old_length) {
1158       holder->TrimOptimizedCodeMap(old_length - new_length);
1159     }
1160 
1161     holder = next_holder;
1162   }
1163 
1164   optimized_code_map_holder_head_ = NULL;
1165 }
1166 
1167 
EvictCandidate(SharedFunctionInfo * shared_info)1168 void CodeFlusher::EvictCandidate(SharedFunctionInfo* shared_info) {
1169   // Make sure previous flushing decisions are revisited.
1170   isolate_->heap()->incremental_marking()->RecordWrites(shared_info);
1171 
1172   if (FLAG_trace_code_flushing) {
1173     PrintF("[code-flushing abandons function-info: ");
1174     shared_info->ShortPrint();
1175     PrintF("]\n");
1176   }
1177 
1178   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1179   SharedFunctionInfo* next_candidate;
1180   if (candidate == shared_info) {
1181     next_candidate = GetNextCandidate(shared_info);
1182     shared_function_info_candidates_head_ = next_candidate;
1183     ClearNextCandidate(shared_info);
1184   } else {
1185     while (candidate != NULL) {
1186       next_candidate = GetNextCandidate(candidate);
1187 
1188       if (next_candidate == shared_info) {
1189         next_candidate = GetNextCandidate(shared_info);
1190         SetNextCandidate(candidate, next_candidate);
1191         ClearNextCandidate(shared_info);
1192         break;
1193       }
1194 
1195       candidate = next_candidate;
1196     }
1197   }
1198 }
1199 
1200 
EvictCandidate(JSFunction * function)1201 void CodeFlusher::EvictCandidate(JSFunction* function) {
1202   ASSERT(!function->next_function_link()->IsUndefined());
1203   Object* undefined = isolate_->heap()->undefined_value();
1204 
1205   // Make sure previous flushing decisions are revisited.
1206   isolate_->heap()->incremental_marking()->RecordWrites(function);
1207   isolate_->heap()->incremental_marking()->RecordWrites(function->shared());
1208 
1209   if (FLAG_trace_code_flushing) {
1210     PrintF("[code-flushing abandons closure: ");
1211     function->shared()->ShortPrint();
1212     PrintF("]\n");
1213   }
1214 
1215   JSFunction* candidate = jsfunction_candidates_head_;
1216   JSFunction* next_candidate;
1217   if (candidate == function) {
1218     next_candidate = GetNextCandidate(function);
1219     jsfunction_candidates_head_ = next_candidate;
1220     ClearNextCandidate(function, undefined);
1221   } else {
1222     while (candidate != NULL) {
1223       next_candidate = GetNextCandidate(candidate);
1224 
1225       if (next_candidate == function) {
1226         next_candidate = GetNextCandidate(function);
1227         SetNextCandidate(candidate, next_candidate);
1228         ClearNextCandidate(function, undefined);
1229         break;
1230       }
1231 
1232       candidate = next_candidate;
1233     }
1234   }
1235 }
1236 
1237 
EvictOptimizedCodeMap(SharedFunctionInfo * code_map_holder)1238 void CodeFlusher::EvictOptimizedCodeMap(SharedFunctionInfo* code_map_holder) {
1239   ASSERT(!FixedArray::cast(code_map_holder->optimized_code_map())->
1240          get(SharedFunctionInfo::kNextMapIndex)->IsUndefined());
1241 
1242   // Make sure previous flushing decisions are revisited.
1243   isolate_->heap()->incremental_marking()->RecordWrites(code_map_holder);
1244 
1245   if (FLAG_trace_code_flushing) {
1246     PrintF("[code-flushing abandons code-map: ");
1247     code_map_holder->ShortPrint();
1248     PrintF("]\n");
1249   }
1250 
1251   SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1252   SharedFunctionInfo* next_holder;
1253   if (holder == code_map_holder) {
1254     next_holder = GetNextCodeMap(code_map_holder);
1255     optimized_code_map_holder_head_ = next_holder;
1256     ClearNextCodeMap(code_map_holder);
1257   } else {
1258     while (holder != NULL) {
1259       next_holder = GetNextCodeMap(holder);
1260 
1261       if (next_holder == code_map_holder) {
1262         next_holder = GetNextCodeMap(code_map_holder);
1263         SetNextCodeMap(holder, next_holder);
1264         ClearNextCodeMap(code_map_holder);
1265         break;
1266       }
1267 
1268       holder = next_holder;
1269     }
1270   }
1271 }
1272 
1273 
EvictJSFunctionCandidates()1274 void CodeFlusher::EvictJSFunctionCandidates() {
1275   JSFunction* candidate = jsfunction_candidates_head_;
1276   JSFunction* next_candidate;
1277   while (candidate != NULL) {
1278     next_candidate = GetNextCandidate(candidate);
1279     EvictCandidate(candidate);
1280     candidate = next_candidate;
1281   }
1282   ASSERT(jsfunction_candidates_head_ == NULL);
1283 }
1284 
1285 
EvictSharedFunctionInfoCandidates()1286 void CodeFlusher::EvictSharedFunctionInfoCandidates() {
1287   SharedFunctionInfo* candidate = shared_function_info_candidates_head_;
1288   SharedFunctionInfo* next_candidate;
1289   while (candidate != NULL) {
1290     next_candidate = GetNextCandidate(candidate);
1291     EvictCandidate(candidate);
1292     candidate = next_candidate;
1293   }
1294   ASSERT(shared_function_info_candidates_head_ == NULL);
1295 }
1296 
1297 
EvictOptimizedCodeMaps()1298 void CodeFlusher::EvictOptimizedCodeMaps() {
1299   SharedFunctionInfo* holder = optimized_code_map_holder_head_;
1300   SharedFunctionInfo* next_holder;
1301   while (holder != NULL) {
1302     next_holder = GetNextCodeMap(holder);
1303     EvictOptimizedCodeMap(holder);
1304     holder = next_holder;
1305   }
1306   ASSERT(optimized_code_map_holder_head_ == NULL);
1307 }
1308 
1309 
IteratePointersToFromSpace(ObjectVisitor * v)1310 void CodeFlusher::IteratePointersToFromSpace(ObjectVisitor* v) {
1311   Heap* heap = isolate_->heap();
1312 
1313   JSFunction** slot = &jsfunction_candidates_head_;
1314   JSFunction* candidate = jsfunction_candidates_head_;
1315   while (candidate != NULL) {
1316     if (heap->InFromSpace(candidate)) {
1317       v->VisitPointer(reinterpret_cast<Object**>(slot));
1318     }
1319     candidate = GetNextCandidate(*slot);
1320     slot = GetNextCandidateSlot(*slot);
1321   }
1322 }
1323 
1324 
~MarkCompactCollector()1325 MarkCompactCollector::~MarkCompactCollector() {
1326   if (code_flusher_ != NULL) {
1327     delete code_flusher_;
1328     code_flusher_ = NULL;
1329   }
1330 }
1331 
1332 
ShortCircuitConsString(Object ** p)1333 static inline HeapObject* ShortCircuitConsString(Object** p) {
1334   // Optimization: If the heap object pointed to by p is a non-internalized
1335   // cons string whose right substring is HEAP->empty_string, update
1336   // it in place to its left substring.  Return the updated value.
1337   //
1338   // Here we assume that if we change *p, we replace it with a heap object
1339   // (i.e., the left substring of a cons string is always a heap object).
1340   //
1341   // The check performed is:
1342   //   object->IsConsString() && !object->IsInternalizedString() &&
1343   //   (ConsString::cast(object)->second() == HEAP->empty_string())
1344   // except the maps for the object and its possible substrings might be
1345   // marked.
1346   HeapObject* object = HeapObject::cast(*p);
1347   if (!FLAG_clever_optimizations) return object;
1348   Map* map = object->map();
1349   InstanceType type = map->instance_type();
1350   if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object;
1351 
1352   Object* second = reinterpret_cast<ConsString*>(object)->second();
1353   Heap* heap = map->GetHeap();
1354   if (second != heap->empty_string()) {
1355     return object;
1356   }
1357 
1358   // Since we don't have the object's start, it is impossible to update the
1359   // page dirty marks. Therefore, we only replace the string with its left
1360   // substring when page dirty marks do not change.
1361   Object* first = reinterpret_cast<ConsString*>(object)->first();
1362   if (!heap->InNewSpace(object) && heap->InNewSpace(first)) return object;
1363 
1364   *p = first;
1365   return HeapObject::cast(first);
1366 }
1367 
1368 
1369 class MarkCompactMarkingVisitor
1370     : public StaticMarkingVisitor<MarkCompactMarkingVisitor> {
1371  public:
1372   static void ObjectStatsVisitBase(StaticVisitorBase::VisitorId id,
1373                                    Map* map, HeapObject* obj);
1374 
1375   static void ObjectStatsCountFixedArray(
1376       FixedArrayBase* fixed_array,
1377       FixedArraySubInstanceType fast_type,
1378       FixedArraySubInstanceType dictionary_type);
1379 
1380   template<MarkCompactMarkingVisitor::VisitorId id>
1381   class ObjectStatsTracker {
1382    public:
1383     static inline void Visit(Map* map, HeapObject* obj);
1384   };
1385 
1386   static void Initialize();
1387 
INLINE(static void VisitPointer (Heap * heap,Object ** p))1388   INLINE(static void VisitPointer(Heap* heap, Object** p)) {
1389     MarkObjectByPointer(heap->mark_compact_collector(), p, p);
1390   }
1391 
INLINE(static void VisitPointers (Heap * heap,Object ** start,Object ** end))1392   INLINE(static void VisitPointers(Heap* heap, Object** start, Object** end)) {
1393     // Mark all objects pointed to in [start, end).
1394     const int kMinRangeForMarkingRecursion = 64;
1395     if (end - start >= kMinRangeForMarkingRecursion) {
1396       if (VisitUnmarkedObjects(heap, start, end)) return;
1397       // We are close to a stack overflow, so just mark the objects.
1398     }
1399     MarkCompactCollector* collector = heap->mark_compact_collector();
1400     for (Object** p = start; p < end; p++) {
1401       MarkObjectByPointer(collector, start, p);
1402     }
1403   }
1404 
1405   // Marks the object black and pushes it on the marking stack.
INLINE(static void MarkObject (Heap * heap,HeapObject * object))1406   INLINE(static void MarkObject(Heap* heap, HeapObject* object)) {
1407     MarkBit mark = Marking::MarkBitFrom(object);
1408     heap->mark_compact_collector()->MarkObject(object, mark);
1409   }
1410 
1411   // Marks the object black without pushing it on the marking stack.
1412   // Returns true if object needed marking and false otherwise.
INLINE(static bool MarkObjectWithoutPush (Heap * heap,HeapObject * object))1413   INLINE(static bool MarkObjectWithoutPush(Heap* heap, HeapObject* object)) {
1414     MarkBit mark_bit = Marking::MarkBitFrom(object);
1415     if (!mark_bit.Get()) {
1416       heap->mark_compact_collector()->SetMark(object, mark_bit);
1417       return true;
1418     }
1419     return false;
1420   }
1421 
1422   // Mark object pointed to by p.
INLINE(static void MarkObjectByPointer (MarkCompactCollector * collector,Object ** anchor_slot,Object ** p))1423   INLINE(static void MarkObjectByPointer(MarkCompactCollector* collector,
1424                                          Object** anchor_slot,
1425                                          Object** p)) {
1426     if (!(*p)->IsHeapObject()) return;
1427     HeapObject* object = ShortCircuitConsString(p);
1428     collector->RecordSlot(anchor_slot, p, object);
1429     MarkBit mark = Marking::MarkBitFrom(object);
1430     collector->MarkObject(object, mark);
1431   }
1432 
1433 
1434   // Visit an unmarked object.
INLINE(static void VisitUnmarkedObject (MarkCompactCollector * collector,HeapObject * obj))1435   INLINE(static void VisitUnmarkedObject(MarkCompactCollector* collector,
1436                                          HeapObject* obj)) {
1437 #ifdef DEBUG
1438     ASSERT(collector->heap()->Contains(obj));
1439     ASSERT(!collector->heap()->mark_compact_collector()->IsMarked(obj));
1440 #endif
1441     Map* map = obj->map();
1442     Heap* heap = obj->GetHeap();
1443     MarkBit mark = Marking::MarkBitFrom(obj);
1444     heap->mark_compact_collector()->SetMark(obj, mark);
1445     // Mark the map pointer and the body.
1446     MarkBit map_mark = Marking::MarkBitFrom(map);
1447     heap->mark_compact_collector()->MarkObject(map, map_mark);
1448     IterateBody(map, obj);
1449   }
1450 
1451   // Visit all unmarked objects pointed to by [start, end).
1452   // Returns false if the operation fails (lack of stack space).
INLINE(static bool VisitUnmarkedObjects (Heap * heap,Object ** start,Object ** end))1453   INLINE(static bool VisitUnmarkedObjects(Heap* heap,
1454                                           Object** start,
1455                                           Object** end)) {
1456     // Return false is we are close to the stack limit.
1457     StackLimitCheck check(heap->isolate());
1458     if (check.HasOverflowed()) return false;
1459 
1460     MarkCompactCollector* collector = heap->mark_compact_collector();
1461     // Visit the unmarked objects.
1462     for (Object** p = start; p < end; p++) {
1463       Object* o = *p;
1464       if (!o->IsHeapObject()) continue;
1465       collector->RecordSlot(start, p, o);
1466       HeapObject* obj = HeapObject::cast(o);
1467       MarkBit mark = Marking::MarkBitFrom(obj);
1468       if (mark.Get()) continue;
1469       VisitUnmarkedObject(collector, obj);
1470     }
1471     return true;
1472   }
1473 
1474  private:
1475   template<int id>
1476   static inline void TrackObjectStatsAndVisit(Map* map, HeapObject* obj);
1477 
1478   // Code flushing support.
1479 
1480   static const int kRegExpCodeThreshold = 5;
1481 
UpdateRegExpCodeAgeAndFlush(Heap * heap,JSRegExp * re,bool is_ascii)1482   static void UpdateRegExpCodeAgeAndFlush(Heap* heap,
1483                                           JSRegExp* re,
1484                                           bool is_ascii) {
1485     // Make sure that the fixed array is in fact initialized on the RegExp.
1486     // We could potentially trigger a GC when initializing the RegExp.
1487     if (HeapObject::cast(re->data())->map()->instance_type() !=
1488             FIXED_ARRAY_TYPE) return;
1489 
1490     // Make sure this is a RegExp that actually contains code.
1491     if (re->TypeTag() != JSRegExp::IRREGEXP) return;
1492 
1493     Object* code = re->DataAt(JSRegExp::code_index(is_ascii));
1494     if (!code->IsSmi() &&
1495         HeapObject::cast(code)->map()->instance_type() == CODE_TYPE) {
1496       // Save a copy that can be reinstated if we need the code again.
1497       re->SetDataAt(JSRegExp::saved_code_index(is_ascii), code);
1498 
1499       // Saving a copy might create a pointer into compaction candidate
1500       // that was not observed by marker.  This might happen if JSRegExp data
1501       // was marked through the compilation cache before marker reached JSRegExp
1502       // object.
1503       FixedArray* data = FixedArray::cast(re->data());
1504       Object** slot = data->data_start() + JSRegExp::saved_code_index(is_ascii);
1505       heap->mark_compact_collector()->
1506           RecordSlot(slot, slot, code);
1507 
1508       // Set a number in the 0-255 range to guarantee no smi overflow.
1509       re->SetDataAt(JSRegExp::code_index(is_ascii),
1510                     Smi::FromInt(heap->sweep_generation() & 0xff));
1511     } else if (code->IsSmi()) {
1512       int value = Smi::cast(code)->value();
1513       // The regexp has not been compiled yet or there was a compilation error.
1514       if (value == JSRegExp::kUninitializedValue ||
1515           value == JSRegExp::kCompilationErrorValue) {
1516         return;
1517       }
1518 
1519       // Check if we should flush now.
1520       if (value == ((heap->sweep_generation() - kRegExpCodeThreshold) & 0xff)) {
1521         re->SetDataAt(JSRegExp::code_index(is_ascii),
1522                       Smi::FromInt(JSRegExp::kUninitializedValue));
1523         re->SetDataAt(JSRegExp::saved_code_index(is_ascii),
1524                       Smi::FromInt(JSRegExp::kUninitializedValue));
1525       }
1526     }
1527   }
1528 
1529 
1530   // Works by setting the current sweep_generation (as a smi) in the
1531   // code object place in the data array of the RegExp and keeps a copy
1532   // around that can be reinstated if we reuse the RegExp before flushing.
1533   // If we did not use the code for kRegExpCodeThreshold mark sweep GCs
1534   // we flush the code.
VisitRegExpAndFlushCode(Map * map,HeapObject * object)1535   static void VisitRegExpAndFlushCode(Map* map, HeapObject* object) {
1536     Heap* heap = map->GetHeap();
1537     MarkCompactCollector* collector = heap->mark_compact_collector();
1538     if (!collector->is_code_flushing_enabled()) {
1539       VisitJSRegExp(map, object);
1540       return;
1541     }
1542     JSRegExp* re = reinterpret_cast<JSRegExp*>(object);
1543     // Flush code or set age on both ASCII and two byte code.
1544     UpdateRegExpCodeAgeAndFlush(heap, re, true);
1545     UpdateRegExpCodeAgeAndFlush(heap, re, false);
1546     // Visit the fields of the RegExp, including the updated FixedArray.
1547     VisitJSRegExp(map, object);
1548   }
1549 
1550   static VisitorDispatchTable<Callback> non_count_table_;
1551 };
1552 
1553 
ObjectStatsCountFixedArray(FixedArrayBase * fixed_array,FixedArraySubInstanceType fast_type,FixedArraySubInstanceType dictionary_type)1554 void MarkCompactMarkingVisitor::ObjectStatsCountFixedArray(
1555     FixedArrayBase* fixed_array,
1556     FixedArraySubInstanceType fast_type,
1557     FixedArraySubInstanceType dictionary_type) {
1558   Heap* heap = fixed_array->map()->GetHeap();
1559   if (fixed_array->map() != heap->fixed_cow_array_map() &&
1560       fixed_array->map() != heap->fixed_double_array_map() &&
1561       fixed_array != heap->empty_fixed_array()) {
1562     if (fixed_array->IsDictionary()) {
1563       heap->RecordFixedArraySubTypeStats(dictionary_type,
1564                                          fixed_array->Size());
1565     } else {
1566       heap->RecordFixedArraySubTypeStats(fast_type,
1567                                          fixed_array->Size());
1568     }
1569   }
1570 }
1571 
1572 
ObjectStatsVisitBase(MarkCompactMarkingVisitor::VisitorId id,Map * map,HeapObject * obj)1573 void MarkCompactMarkingVisitor::ObjectStatsVisitBase(
1574     MarkCompactMarkingVisitor::VisitorId id, Map* map, HeapObject* obj) {
1575   Heap* heap = map->GetHeap();
1576   int object_size = obj->Size();
1577   heap->RecordObjectStats(map->instance_type(), object_size);
1578   non_count_table_.GetVisitorById(id)(map, obj);
1579   if (obj->IsJSObject()) {
1580     JSObject* object = JSObject::cast(obj);
1581     ObjectStatsCountFixedArray(object->elements(),
1582                                DICTIONARY_ELEMENTS_SUB_TYPE,
1583                                FAST_ELEMENTS_SUB_TYPE);
1584     ObjectStatsCountFixedArray(object->properties(),
1585                                DICTIONARY_PROPERTIES_SUB_TYPE,
1586                                FAST_PROPERTIES_SUB_TYPE);
1587   }
1588 }
1589 
1590 
1591 template<MarkCompactMarkingVisitor::VisitorId id>
Visit(Map * map,HeapObject * obj)1592 void MarkCompactMarkingVisitor::ObjectStatsTracker<id>::Visit(
1593     Map* map, HeapObject* obj) {
1594   ObjectStatsVisitBase(id, map, obj);
1595 }
1596 
1597 
1598 template<>
1599 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1600     MarkCompactMarkingVisitor::kVisitMap> {
1601  public:
Visit(Map * map,HeapObject * obj)1602   static inline void Visit(Map* map, HeapObject* obj) {
1603     Heap* heap = map->GetHeap();
1604     Map* map_obj = Map::cast(obj);
1605     ASSERT(map->instance_type() == MAP_TYPE);
1606     DescriptorArray* array = map_obj->instance_descriptors();
1607     if (map_obj->owns_descriptors() &&
1608         array != heap->empty_descriptor_array()) {
1609       int fixed_array_size = array->Size();
1610       heap->RecordFixedArraySubTypeStats(DESCRIPTOR_ARRAY_SUB_TYPE,
1611                                          fixed_array_size);
1612     }
1613     if (map_obj->HasTransitionArray()) {
1614       int fixed_array_size = map_obj->transitions()->Size();
1615       heap->RecordFixedArraySubTypeStats(TRANSITION_ARRAY_SUB_TYPE,
1616                                          fixed_array_size);
1617     }
1618     if (map_obj->has_code_cache()) {
1619       CodeCache* cache = CodeCache::cast(map_obj->code_cache());
1620       heap->RecordFixedArraySubTypeStats(MAP_CODE_CACHE_SUB_TYPE,
1621                                          cache->default_cache()->Size());
1622       if (!cache->normal_type_cache()->IsUndefined()) {
1623         heap->RecordFixedArraySubTypeStats(
1624             MAP_CODE_CACHE_SUB_TYPE,
1625             FixedArray::cast(cache->normal_type_cache())->Size());
1626       }
1627     }
1628     ObjectStatsVisitBase(kVisitMap, map, obj);
1629   }
1630 };
1631 
1632 
1633 template<>
1634 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1635     MarkCompactMarkingVisitor::kVisitCode> {
1636  public:
Visit(Map * map,HeapObject * obj)1637   static inline void Visit(Map* map, HeapObject* obj) {
1638     Heap* heap = map->GetHeap();
1639     int object_size = obj->Size();
1640     ASSERT(map->instance_type() == CODE_TYPE);
1641     Code* code_obj = Code::cast(obj);
1642     heap->RecordCodeSubTypeStats(code_obj->kind(), code_obj->GetRawAge(),
1643                                  object_size);
1644     ObjectStatsVisitBase(kVisitCode, map, obj);
1645   }
1646 };
1647 
1648 
1649 template<>
1650 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1651     MarkCompactMarkingVisitor::kVisitSharedFunctionInfo> {
1652  public:
Visit(Map * map,HeapObject * obj)1653   static inline void Visit(Map* map, HeapObject* obj) {
1654     Heap* heap = map->GetHeap();
1655     SharedFunctionInfo* sfi = SharedFunctionInfo::cast(obj);
1656     if (sfi->scope_info() != heap->empty_fixed_array()) {
1657       heap->RecordFixedArraySubTypeStats(
1658           SCOPE_INFO_SUB_TYPE,
1659           FixedArray::cast(sfi->scope_info())->Size());
1660     }
1661     ObjectStatsVisitBase(kVisitSharedFunctionInfo, map, obj);
1662   }
1663 };
1664 
1665 
1666 template<>
1667 class MarkCompactMarkingVisitor::ObjectStatsTracker<
1668     MarkCompactMarkingVisitor::kVisitFixedArray> {
1669  public:
Visit(Map * map,HeapObject * obj)1670   static inline void Visit(Map* map, HeapObject* obj) {
1671     Heap* heap = map->GetHeap();
1672     FixedArray* fixed_array = FixedArray::cast(obj);
1673     if (fixed_array == heap->string_table()) {
1674       heap->RecordFixedArraySubTypeStats(
1675           STRING_TABLE_SUB_TYPE,
1676           fixed_array->Size());
1677     }
1678     ObjectStatsVisitBase(kVisitFixedArray, map, obj);
1679   }
1680 };
1681 
1682 
Initialize()1683 void MarkCompactMarkingVisitor::Initialize() {
1684   StaticMarkingVisitor<MarkCompactMarkingVisitor>::Initialize();
1685 
1686   table_.Register(kVisitJSRegExp,
1687                   &VisitRegExpAndFlushCode);
1688 
1689   if (FLAG_track_gc_object_stats) {
1690     // Copy the visitor table to make call-through possible.
1691     non_count_table_.CopyFrom(&table_);
1692 #define VISITOR_ID_COUNT_FUNCTION(id)                                   \
1693     table_.Register(kVisit##id, ObjectStatsTracker<kVisit##id>::Visit);
1694     VISITOR_ID_LIST(VISITOR_ID_COUNT_FUNCTION)
1695 #undef VISITOR_ID_COUNT_FUNCTION
1696   }
1697 }
1698 
1699 
1700 VisitorDispatchTable<MarkCompactMarkingVisitor::Callback>
1701     MarkCompactMarkingVisitor::non_count_table_;
1702 
1703 
1704 class CodeMarkingVisitor : public ThreadVisitor {
1705  public:
CodeMarkingVisitor(MarkCompactCollector * collector)1706   explicit CodeMarkingVisitor(MarkCompactCollector* collector)
1707       : collector_(collector) {}
1708 
VisitThread(Isolate * isolate,ThreadLocalTop * top)1709   void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
1710     collector_->PrepareThreadForCodeFlushing(isolate, top);
1711   }
1712 
1713  private:
1714   MarkCompactCollector* collector_;
1715 };
1716 
1717 
1718 class SharedFunctionInfoMarkingVisitor : public ObjectVisitor {
1719  public:
SharedFunctionInfoMarkingVisitor(MarkCompactCollector * collector)1720   explicit SharedFunctionInfoMarkingVisitor(MarkCompactCollector* collector)
1721       : collector_(collector) {}
1722 
VisitPointers(Object ** start,Object ** end)1723   void VisitPointers(Object** start, Object** end) {
1724     for (Object** p = start; p < end; p++) VisitPointer(p);
1725   }
1726 
VisitPointer(Object ** slot)1727   void VisitPointer(Object** slot) {
1728     Object* obj = *slot;
1729     if (obj->IsSharedFunctionInfo()) {
1730       SharedFunctionInfo* shared = reinterpret_cast<SharedFunctionInfo*>(obj);
1731       MarkBit shared_mark = Marking::MarkBitFrom(shared);
1732       MarkBit code_mark = Marking::MarkBitFrom(shared->code());
1733       collector_->MarkObject(shared->code(), code_mark);
1734       collector_->MarkObject(shared, shared_mark);
1735     }
1736   }
1737 
1738  private:
1739   MarkCompactCollector* collector_;
1740 };
1741 
1742 
PrepareThreadForCodeFlushing(Isolate * isolate,ThreadLocalTop * top)1743 void MarkCompactCollector::PrepareThreadForCodeFlushing(Isolate* isolate,
1744                                                         ThreadLocalTop* top) {
1745   for (StackFrameIterator it(isolate, top); !it.done(); it.Advance()) {
1746     // Note: for the frame that has a pending lazy deoptimization
1747     // StackFrame::unchecked_code will return a non-optimized code object for
1748     // the outermost function and StackFrame::LookupCode will return
1749     // actual optimized code object.
1750     StackFrame* frame = it.frame();
1751     Code* code = frame->unchecked_code();
1752     MarkBit code_mark = Marking::MarkBitFrom(code);
1753     MarkObject(code, code_mark);
1754     if (frame->is_optimized()) {
1755       MarkCompactMarkingVisitor::MarkInlinedFunctionsCode(heap(),
1756                                                           frame->LookupCode());
1757     }
1758   }
1759 }
1760 
1761 
PrepareForCodeFlushing()1762 void MarkCompactCollector::PrepareForCodeFlushing() {
1763   // Enable code flushing for non-incremental cycles.
1764   if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
1765     EnableCodeFlushing(!was_marked_incrementally_);
1766   }
1767 
1768   // If code flushing is disabled, there is no need to prepare for it.
1769   if (!is_code_flushing_enabled()) return;
1770 
1771   // Ensure that empty descriptor array is marked. Method MarkDescriptorArray
1772   // relies on it being marked before any other descriptor array.
1773   HeapObject* descriptor_array = heap()->empty_descriptor_array();
1774   MarkBit descriptor_array_mark = Marking::MarkBitFrom(descriptor_array);
1775   MarkObject(descriptor_array, descriptor_array_mark);
1776 
1777   // Make sure we are not referencing the code from the stack.
1778   ASSERT(this == heap()->mark_compact_collector());
1779   PrepareThreadForCodeFlushing(heap()->isolate(),
1780                                heap()->isolate()->thread_local_top());
1781 
1782   // Iterate the archived stacks in all threads to check if
1783   // the code is referenced.
1784   CodeMarkingVisitor code_marking_visitor(this);
1785   heap()->isolate()->thread_manager()->IterateArchivedThreads(
1786       &code_marking_visitor);
1787 
1788   SharedFunctionInfoMarkingVisitor visitor(this);
1789   heap()->isolate()->compilation_cache()->IterateFunctions(&visitor);
1790   heap()->isolate()->handle_scope_implementer()->Iterate(&visitor);
1791 
1792   ProcessMarkingDeque();
1793 }
1794 
1795 
1796 // Visitor class for marking heap roots.
1797 class RootMarkingVisitor : public ObjectVisitor {
1798  public:
RootMarkingVisitor(Heap * heap)1799   explicit RootMarkingVisitor(Heap* heap)
1800     : collector_(heap->mark_compact_collector()) { }
1801 
VisitPointer(Object ** p)1802   void VisitPointer(Object** p) {
1803     MarkObjectByPointer(p);
1804   }
1805 
VisitPointers(Object ** start,Object ** end)1806   void VisitPointers(Object** start, Object** end) {
1807     for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
1808   }
1809 
1810   // Skip the weak next code link in a code object, which is visited in
1811   // ProcessTopOptimizedFrame.
VisitNextCodeLink(Object ** p)1812   void VisitNextCodeLink(Object** p) { }
1813 
1814  private:
MarkObjectByPointer(Object ** p)1815   void MarkObjectByPointer(Object** p) {
1816     if (!(*p)->IsHeapObject()) return;
1817 
1818     // Replace flat cons strings in place.
1819     HeapObject* object = ShortCircuitConsString(p);
1820     MarkBit mark_bit = Marking::MarkBitFrom(object);
1821     if (mark_bit.Get()) return;
1822 
1823     Map* map = object->map();
1824     // Mark the object.
1825     collector_->SetMark(object, mark_bit);
1826 
1827     // Mark the map pointer and body, and push them on the marking stack.
1828     MarkBit map_mark = Marking::MarkBitFrom(map);
1829     collector_->MarkObject(map, map_mark);
1830     MarkCompactMarkingVisitor::IterateBody(map, object);
1831 
1832     // Mark all the objects reachable from the map and body.  May leave
1833     // overflowed objects in the heap.
1834     collector_->EmptyMarkingDeque();
1835   }
1836 
1837   MarkCompactCollector* collector_;
1838 };
1839 
1840 
1841 // Helper class for pruning the string table.
1842 template<bool finalize_external_strings>
1843 class StringTableCleaner : public ObjectVisitor {
1844  public:
StringTableCleaner(Heap * heap)1845   explicit StringTableCleaner(Heap* heap)
1846     : heap_(heap), pointers_removed_(0) { }
1847 
VisitPointers(Object ** start,Object ** end)1848   virtual void VisitPointers(Object** start, Object** end) {
1849     // Visit all HeapObject pointers in [start, end).
1850     for (Object** p = start; p < end; p++) {
1851       Object* o = *p;
1852       if (o->IsHeapObject() &&
1853           !Marking::MarkBitFrom(HeapObject::cast(o)).Get()) {
1854         if (finalize_external_strings) {
1855           ASSERT(o->IsExternalString());
1856           heap_->FinalizeExternalString(String::cast(*p));
1857         } else {
1858           pointers_removed_++;
1859         }
1860         // Set the entry to the_hole_value (as deleted).
1861         *p = heap_->the_hole_value();
1862       }
1863     }
1864   }
1865 
PointersRemoved()1866   int PointersRemoved() {
1867     ASSERT(!finalize_external_strings);
1868     return pointers_removed_;
1869   }
1870 
1871  private:
1872   Heap* heap_;
1873   int pointers_removed_;
1874 };
1875 
1876 
1877 typedef StringTableCleaner<false> InternalizedStringTableCleaner;
1878 typedef StringTableCleaner<true> ExternalStringTableCleaner;
1879 
1880 
1881 // Implementation of WeakObjectRetainer for mark compact GCs. All marked objects
1882 // are retained.
1883 class MarkCompactWeakObjectRetainer : public WeakObjectRetainer {
1884  public:
RetainAs(Object * object)1885   virtual Object* RetainAs(Object* object) {
1886     if (Marking::MarkBitFrom(HeapObject::cast(object)).Get()) {
1887       return object;
1888     } else if (object->IsAllocationSite() &&
1889                !(AllocationSite::cast(object)->IsZombie())) {
1890       // "dead" AllocationSites need to live long enough for a traversal of new
1891       // space. These sites get a one-time reprieve.
1892       AllocationSite* site = AllocationSite::cast(object);
1893       site->MarkZombie();
1894       site->GetHeap()->mark_compact_collector()->MarkAllocationSite(site);
1895       return object;
1896     } else {
1897       return NULL;
1898     }
1899   }
1900 };
1901 
1902 
1903 // Fill the marking stack with overflowed objects returned by the given
1904 // iterator.  Stop when the marking stack is filled or the end of the space
1905 // is reached, whichever comes first.
1906 template<class T>
DiscoverGreyObjectsWithIterator(Heap * heap,MarkingDeque * marking_deque,T * it)1907 static void DiscoverGreyObjectsWithIterator(Heap* heap,
1908                                             MarkingDeque* marking_deque,
1909                                             T* it) {
1910   // The caller should ensure that the marking stack is initially not full,
1911   // so that we don't waste effort pointlessly scanning for objects.
1912   ASSERT(!marking_deque->IsFull());
1913 
1914   Map* filler_map = heap->one_pointer_filler_map();
1915   for (HeapObject* object = it->Next();
1916        object != NULL;
1917        object = it->Next()) {
1918     MarkBit markbit = Marking::MarkBitFrom(object);
1919     if ((object->map() != filler_map) && Marking::IsGrey(markbit)) {
1920       Marking::GreyToBlack(markbit);
1921       MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1922       marking_deque->PushBlack(object);
1923       if (marking_deque->IsFull()) return;
1924     }
1925   }
1926 }
1927 
1928 
1929 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts);
1930 
1931 
DiscoverGreyObjectsOnPage(MarkingDeque * marking_deque,MemoryChunk * p)1932 static void DiscoverGreyObjectsOnPage(MarkingDeque* marking_deque,
1933                                       MemoryChunk* p) {
1934   ASSERT(!marking_deque->IsFull());
1935   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1936   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
1937   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
1938   ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1939 
1940   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1941     Address cell_base = it.CurrentCellBase();
1942     MarkBit::CellType* cell = it.CurrentCell();
1943 
1944     const MarkBit::CellType current_cell = *cell;
1945     if (current_cell == 0) continue;
1946 
1947     MarkBit::CellType grey_objects;
1948     if (it.HasNext()) {
1949       const MarkBit::CellType next_cell = *(cell+1);
1950       grey_objects = current_cell &
1951           ((current_cell >> 1) | (next_cell << (Bitmap::kBitsPerCell - 1)));
1952     } else {
1953       grey_objects = current_cell & (current_cell >> 1);
1954     }
1955 
1956     int offset = 0;
1957     while (grey_objects != 0) {
1958       int trailing_zeros = CompilerIntrinsics::CountTrailingZeros(grey_objects);
1959       grey_objects >>= trailing_zeros;
1960       offset += trailing_zeros;
1961       MarkBit markbit(cell, 1 << offset, false);
1962       ASSERT(Marking::IsGrey(markbit));
1963       Marking::GreyToBlack(markbit);
1964       Address addr = cell_base + offset * kPointerSize;
1965       HeapObject* object = HeapObject::FromAddress(addr);
1966       MemoryChunk::IncrementLiveBytesFromGC(object->address(), object->Size());
1967       marking_deque->PushBlack(object);
1968       if (marking_deque->IsFull()) return;
1969       offset += 2;
1970       grey_objects >>= 2;
1971     }
1972 
1973     grey_objects >>= (Bitmap::kBitsPerCell - 1);
1974   }
1975 }
1976 
1977 
DiscoverAndPromoteBlackObjectsOnPage(NewSpace * new_space,NewSpacePage * p)1978 int MarkCompactCollector::DiscoverAndPromoteBlackObjectsOnPage(
1979     NewSpace* new_space,
1980     NewSpacePage* p) {
1981   ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
1982   ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
1983   ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
1984   ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
1985 
1986   MarkBit::CellType* cells = p->markbits()->cells();
1987   int survivors_size = 0;
1988 
1989   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
1990     Address cell_base = it.CurrentCellBase();
1991     MarkBit::CellType* cell = it.CurrentCell();
1992 
1993     MarkBit::CellType current_cell = *cell;
1994     if (current_cell == 0) continue;
1995 
1996     int offset = 0;
1997     while (current_cell != 0) {
1998       int trailing_zeros = CompilerIntrinsics::CountTrailingZeros(current_cell);
1999       current_cell >>= trailing_zeros;
2000       offset += trailing_zeros;
2001       Address address = cell_base + offset * kPointerSize;
2002       HeapObject* object = HeapObject::FromAddress(address);
2003 
2004       int size = object->Size();
2005       survivors_size += size;
2006 
2007       Heap::UpdateAllocationSiteFeedback(object, Heap::RECORD_SCRATCHPAD_SLOT);
2008 
2009       offset++;
2010       current_cell >>= 1;
2011       // Aggressively promote young survivors to the old space.
2012       if (TryPromoteObject(object, size)) {
2013         continue;
2014       }
2015 
2016       // Promotion failed. Just migrate object to another semispace.
2017       AllocationResult allocation = new_space->AllocateRaw(size);
2018       if (allocation.IsRetry()) {
2019         if (!new_space->AddFreshPage()) {
2020           // Shouldn't happen. We are sweeping linearly, and to-space
2021           // has the same number of pages as from-space, so there is
2022           // always room.
2023           UNREACHABLE();
2024         }
2025         allocation = new_space->AllocateRaw(size);
2026         ASSERT(!allocation.IsRetry());
2027       }
2028       Object* target = allocation.ToObjectChecked();
2029 
2030       MigrateObject(HeapObject::cast(target),
2031                     object,
2032                     size,
2033                     NEW_SPACE);
2034       heap()->IncrementSemiSpaceCopiedObjectSize(size);
2035     }
2036     *cells = 0;
2037   }
2038   return survivors_size;
2039 }
2040 
2041 
DiscoverGreyObjectsInSpace(Heap * heap,MarkingDeque * marking_deque,PagedSpace * space)2042 static void DiscoverGreyObjectsInSpace(Heap* heap,
2043                                        MarkingDeque* marking_deque,
2044                                        PagedSpace* space) {
2045   PageIterator it(space);
2046   while (it.has_next()) {
2047     Page* p = it.next();
2048     DiscoverGreyObjectsOnPage(marking_deque, p);
2049     if (marking_deque->IsFull()) return;
2050   }
2051 }
2052 
2053 
DiscoverGreyObjectsInNewSpace(Heap * heap,MarkingDeque * marking_deque)2054 static void DiscoverGreyObjectsInNewSpace(Heap* heap,
2055                                           MarkingDeque* marking_deque) {
2056   NewSpace* space = heap->new_space();
2057   NewSpacePageIterator it(space->bottom(), space->top());
2058   while (it.has_next()) {
2059     NewSpacePage* page = it.next();
2060     DiscoverGreyObjectsOnPage(marking_deque, page);
2061     if (marking_deque->IsFull()) return;
2062   }
2063 }
2064 
2065 
IsUnmarkedHeapObject(Object ** p)2066 bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
2067   Object* o = *p;
2068   if (!o->IsHeapObject()) return false;
2069   HeapObject* heap_object = HeapObject::cast(o);
2070   MarkBit mark = Marking::MarkBitFrom(heap_object);
2071   return !mark.Get();
2072 }
2073 
2074 
IsUnmarkedHeapObjectWithHeap(Heap * heap,Object ** p)2075 bool MarkCompactCollector::IsUnmarkedHeapObjectWithHeap(Heap* heap,
2076                                                         Object** p) {
2077   Object* o = *p;
2078   ASSERT(o->IsHeapObject());
2079   HeapObject* heap_object = HeapObject::cast(o);
2080   MarkBit mark = Marking::MarkBitFrom(heap_object);
2081   return !mark.Get();
2082 }
2083 
2084 
MarkStringTable(RootMarkingVisitor * visitor)2085 void MarkCompactCollector::MarkStringTable(RootMarkingVisitor* visitor) {
2086   StringTable* string_table = heap()->string_table();
2087   // Mark the string table itself.
2088   MarkBit string_table_mark = Marking::MarkBitFrom(string_table);
2089   if (!string_table_mark.Get()) {
2090     // String table could have already been marked by visiting the handles list.
2091     SetMark(string_table, string_table_mark);
2092   }
2093   // Explicitly mark the prefix.
2094   string_table->IteratePrefix(visitor);
2095   ProcessMarkingDeque();
2096 }
2097 
2098 
MarkAllocationSite(AllocationSite * site)2099 void MarkCompactCollector::MarkAllocationSite(AllocationSite* site) {
2100   MarkBit mark_bit = Marking::MarkBitFrom(site);
2101   SetMark(site, mark_bit);
2102 }
2103 
2104 
MarkRoots(RootMarkingVisitor * visitor)2105 void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
2106   // Mark the heap roots including global variables, stack variables,
2107   // etc., and all objects reachable from them.
2108   heap()->IterateStrongRoots(visitor, VISIT_ONLY_STRONG);
2109 
2110   // Handle the string table specially.
2111   MarkStringTable(visitor);
2112 
2113   MarkWeakObjectToCodeTable();
2114 
2115   // There may be overflowed objects in the heap.  Visit them now.
2116   while (marking_deque_.overflowed()) {
2117     RefillMarkingDeque();
2118     EmptyMarkingDeque();
2119   }
2120 }
2121 
2122 
MarkImplicitRefGroups()2123 void MarkCompactCollector::MarkImplicitRefGroups() {
2124   List<ImplicitRefGroup*>* ref_groups =
2125       isolate()->global_handles()->implicit_ref_groups();
2126 
2127   int last = 0;
2128   for (int i = 0; i < ref_groups->length(); i++) {
2129     ImplicitRefGroup* entry = ref_groups->at(i);
2130     ASSERT(entry != NULL);
2131 
2132     if (!IsMarked(*entry->parent)) {
2133       (*ref_groups)[last++] = entry;
2134       continue;
2135     }
2136 
2137     Object*** children = entry->children;
2138     // A parent object is marked, so mark all child heap objects.
2139     for (size_t j = 0; j < entry->length; ++j) {
2140       if ((*children[j])->IsHeapObject()) {
2141         HeapObject* child = HeapObject::cast(*children[j]);
2142         MarkBit mark = Marking::MarkBitFrom(child);
2143         MarkObject(child, mark);
2144       }
2145     }
2146 
2147     // Once the entire group has been marked, dispose it because it's
2148     // not needed anymore.
2149     delete entry;
2150   }
2151   ref_groups->Rewind(last);
2152 }
2153 
2154 
MarkWeakObjectToCodeTable()2155 void MarkCompactCollector::MarkWeakObjectToCodeTable() {
2156   HeapObject* weak_object_to_code_table =
2157       HeapObject::cast(heap()->weak_object_to_code_table());
2158   if (!IsMarked(weak_object_to_code_table)) {
2159     MarkBit mark = Marking::MarkBitFrom(weak_object_to_code_table);
2160     SetMark(weak_object_to_code_table, mark);
2161   }
2162 }
2163 
2164 
2165 // Mark all objects reachable from the objects on the marking stack.
2166 // Before: the marking stack contains zero or more heap object pointers.
2167 // After: the marking stack is empty, and all objects reachable from the
2168 // marking stack have been marked, or are overflowed in the heap.
EmptyMarkingDeque()2169 void MarkCompactCollector::EmptyMarkingDeque() {
2170   while (!marking_deque_.IsEmpty()) {
2171     HeapObject* object = marking_deque_.Pop();
2172     ASSERT(object->IsHeapObject());
2173     ASSERT(heap()->Contains(object));
2174     ASSERT(Marking::IsBlack(Marking::MarkBitFrom(object)));
2175 
2176     Map* map = object->map();
2177     MarkBit map_mark = Marking::MarkBitFrom(map);
2178     MarkObject(map, map_mark);
2179 
2180     MarkCompactMarkingVisitor::IterateBody(map, object);
2181   }
2182 }
2183 
2184 
2185 // Sweep the heap for overflowed objects, clear their overflow bits, and
2186 // push them on the marking stack.  Stop early if the marking stack fills
2187 // before sweeping completes.  If sweeping completes, there are no remaining
2188 // overflowed objects in the heap so the overflow flag on the markings stack
2189 // is cleared.
RefillMarkingDeque()2190 void MarkCompactCollector::RefillMarkingDeque() {
2191   ASSERT(marking_deque_.overflowed());
2192 
2193   DiscoverGreyObjectsInNewSpace(heap(), &marking_deque_);
2194   if (marking_deque_.IsFull()) return;
2195 
2196   DiscoverGreyObjectsInSpace(heap(),
2197                              &marking_deque_,
2198                              heap()->old_pointer_space());
2199   if (marking_deque_.IsFull()) return;
2200 
2201   DiscoverGreyObjectsInSpace(heap(),
2202                              &marking_deque_,
2203                              heap()->old_data_space());
2204   if (marking_deque_.IsFull()) return;
2205 
2206   DiscoverGreyObjectsInSpace(heap(),
2207                              &marking_deque_,
2208                              heap()->code_space());
2209   if (marking_deque_.IsFull()) return;
2210 
2211   DiscoverGreyObjectsInSpace(heap(),
2212                              &marking_deque_,
2213                              heap()->map_space());
2214   if (marking_deque_.IsFull()) return;
2215 
2216   DiscoverGreyObjectsInSpace(heap(),
2217                              &marking_deque_,
2218                              heap()->cell_space());
2219   if (marking_deque_.IsFull()) return;
2220 
2221   DiscoverGreyObjectsInSpace(heap(),
2222                              &marking_deque_,
2223                              heap()->property_cell_space());
2224   if (marking_deque_.IsFull()) return;
2225 
2226   LargeObjectIterator lo_it(heap()->lo_space());
2227   DiscoverGreyObjectsWithIterator(heap(),
2228                                   &marking_deque_,
2229                                   &lo_it);
2230   if (marking_deque_.IsFull()) return;
2231 
2232   marking_deque_.ClearOverflowed();
2233 }
2234 
2235 
2236 // Mark all objects reachable (transitively) from objects on the marking
2237 // stack.  Before: the marking stack contains zero or more heap object
2238 // pointers.  After: the marking stack is empty and there are no overflowed
2239 // objects in the heap.
ProcessMarkingDeque()2240 void MarkCompactCollector::ProcessMarkingDeque() {
2241   EmptyMarkingDeque();
2242   while (marking_deque_.overflowed()) {
2243     RefillMarkingDeque();
2244     EmptyMarkingDeque();
2245   }
2246 }
2247 
2248 
2249 // Mark all objects reachable (transitively) from objects on the marking
2250 // stack including references only considered in the atomic marking pause.
ProcessEphemeralMarking(ObjectVisitor * visitor)2251 void MarkCompactCollector::ProcessEphemeralMarking(ObjectVisitor* visitor) {
2252   bool work_to_do = true;
2253   ASSERT(marking_deque_.IsEmpty());
2254   while (work_to_do) {
2255     isolate()->global_handles()->IterateObjectGroups(
2256         visitor, &IsUnmarkedHeapObjectWithHeap);
2257     MarkImplicitRefGroups();
2258     ProcessWeakCollections();
2259     work_to_do = !marking_deque_.IsEmpty();
2260     ProcessMarkingDeque();
2261   }
2262 }
2263 
2264 
ProcessTopOptimizedFrame(ObjectVisitor * visitor)2265 void MarkCompactCollector::ProcessTopOptimizedFrame(ObjectVisitor* visitor) {
2266   for (StackFrameIterator it(isolate(), isolate()->thread_local_top());
2267        !it.done(); it.Advance()) {
2268     if (it.frame()->type() == StackFrame::JAVA_SCRIPT) {
2269       return;
2270     }
2271     if (it.frame()->type() == StackFrame::OPTIMIZED) {
2272       Code* code = it.frame()->LookupCode();
2273       if (!code->CanDeoptAt(it.frame()->pc())) {
2274         code->CodeIterateBody(visitor);
2275       }
2276       ProcessMarkingDeque();
2277       return;
2278     }
2279   }
2280 }
2281 
2282 
MarkLiveObjects()2283 void MarkCompactCollector::MarkLiveObjects() {
2284   GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_MARK);
2285   // The recursive GC marker detects when it is nearing stack overflow,
2286   // and switches to a different marking system.  JS interrupts interfere
2287   // with the C stack limit check.
2288   PostponeInterruptsScope postpone(isolate());
2289 
2290   bool incremental_marking_overflowed = false;
2291   IncrementalMarking* incremental_marking = heap_->incremental_marking();
2292   if (was_marked_incrementally_) {
2293     // Finalize the incremental marking and check whether we had an overflow.
2294     // Both markers use grey color to mark overflowed objects so
2295     // non-incremental marker can deal with them as if overflow
2296     // occured during normal marking.
2297     // But incremental marker uses a separate marking deque
2298     // so we have to explicitly copy its overflow state.
2299     incremental_marking->Finalize();
2300     incremental_marking_overflowed =
2301         incremental_marking->marking_deque()->overflowed();
2302     incremental_marking->marking_deque()->ClearOverflowed();
2303   } else {
2304     // Abort any pending incremental activities e.g. incremental sweeping.
2305     incremental_marking->Abort();
2306   }
2307 
2308 #ifdef DEBUG
2309   ASSERT(state_ == PREPARE_GC);
2310   state_ = MARK_LIVE_OBJECTS;
2311 #endif
2312   // The to space contains live objects, a page in from space is used as a
2313   // marking stack.
2314   Address marking_deque_start = heap()->new_space()->FromSpacePageLow();
2315   Address marking_deque_end = heap()->new_space()->FromSpacePageHigh();
2316   if (FLAG_force_marking_deque_overflows) {
2317     marking_deque_end = marking_deque_start + 64 * kPointerSize;
2318   }
2319   marking_deque_.Initialize(marking_deque_start,
2320                             marking_deque_end);
2321   ASSERT(!marking_deque_.overflowed());
2322 
2323   if (incremental_marking_overflowed) {
2324     // There are overflowed objects left in the heap after incremental marking.
2325     marking_deque_.SetOverflowed();
2326   }
2327 
2328   PrepareForCodeFlushing();
2329 
2330   if (was_marked_incrementally_) {
2331     // There is no write barrier on cells so we have to scan them now at the end
2332     // of the incremental marking.
2333     {
2334       HeapObjectIterator cell_iterator(heap()->cell_space());
2335       HeapObject* cell;
2336       while ((cell = cell_iterator.Next()) != NULL) {
2337         ASSERT(cell->IsCell());
2338         if (IsMarked(cell)) {
2339           int offset = Cell::kValueOffset;
2340           MarkCompactMarkingVisitor::VisitPointer(
2341               heap(),
2342               reinterpret_cast<Object**>(cell->address() + offset));
2343         }
2344       }
2345     }
2346     {
2347       HeapObjectIterator js_global_property_cell_iterator(
2348           heap()->property_cell_space());
2349       HeapObject* cell;
2350       while ((cell = js_global_property_cell_iterator.Next()) != NULL) {
2351         ASSERT(cell->IsPropertyCell());
2352         if (IsMarked(cell)) {
2353           MarkCompactMarkingVisitor::VisitPropertyCell(cell->map(), cell);
2354         }
2355       }
2356     }
2357   }
2358 
2359   RootMarkingVisitor root_visitor(heap());
2360   MarkRoots(&root_visitor);
2361 
2362   ProcessTopOptimizedFrame(&root_visitor);
2363 
2364   // The objects reachable from the roots are marked, yet unreachable
2365   // objects are unmarked.  Mark objects reachable due to host
2366   // application specific logic or through Harmony weak maps.
2367   ProcessEphemeralMarking(&root_visitor);
2368 
2369   // The objects reachable from the roots, weak maps or object groups
2370   // are marked, yet unreachable objects are unmarked.  Mark objects
2371   // reachable only from weak global handles.
2372   //
2373   // First we identify nonlive weak handles and mark them as pending
2374   // destruction.
2375   heap()->isolate()->global_handles()->IdentifyWeakHandles(
2376       &IsUnmarkedHeapObject);
2377   // Then we mark the objects and process the transitive closure.
2378   heap()->isolate()->global_handles()->IterateWeakRoots(&root_visitor);
2379   while (marking_deque_.overflowed()) {
2380     RefillMarkingDeque();
2381     EmptyMarkingDeque();
2382   }
2383 
2384   // Repeat host application specific and Harmony weak maps marking to
2385   // mark unmarked objects reachable from the weak roots.
2386   ProcessEphemeralMarking(&root_visitor);
2387 
2388   AfterMarking();
2389 }
2390 
2391 
AfterMarking()2392 void MarkCompactCollector::AfterMarking() {
2393   // Object literal map caches reference strings (cache keys) and maps
2394   // (cache values). At this point still useful maps have already been
2395   // marked. Mark the keys for the alive values before we process the
2396   // string table.
2397   ProcessMapCaches();
2398 
2399   // Prune the string table removing all strings only pointed to by the
2400   // string table.  Cannot use string_table() here because the string
2401   // table is marked.
2402   StringTable* string_table = heap()->string_table();
2403   InternalizedStringTableCleaner internalized_visitor(heap());
2404   string_table->IterateElements(&internalized_visitor);
2405   string_table->ElementsRemoved(internalized_visitor.PointersRemoved());
2406 
2407   ExternalStringTableCleaner external_visitor(heap());
2408   heap()->external_string_table_.Iterate(&external_visitor);
2409   heap()->external_string_table_.CleanUp();
2410 
2411   // Process the weak references.
2412   MarkCompactWeakObjectRetainer mark_compact_object_retainer;
2413   heap()->ProcessWeakReferences(&mark_compact_object_retainer);
2414 
2415   // Remove object groups after marking phase.
2416   heap()->isolate()->global_handles()->RemoveObjectGroups();
2417   heap()->isolate()->global_handles()->RemoveImplicitRefGroups();
2418 
2419   // Flush code from collected candidates.
2420   if (is_code_flushing_enabled()) {
2421     code_flusher_->ProcessCandidates();
2422     // If incremental marker does not support code flushing, we need to
2423     // disable it before incremental marking steps for next cycle.
2424     if (FLAG_flush_code && !FLAG_flush_code_incrementally) {
2425       EnableCodeFlushing(false);
2426     }
2427   }
2428 
2429   if (FLAG_track_gc_object_stats) {
2430     heap()->CheckpointObjectStats();
2431   }
2432 }
2433 
2434 
ProcessMapCaches()2435 void MarkCompactCollector::ProcessMapCaches() {
2436   Object* raw_context = heap()->native_contexts_list();
2437   while (raw_context != heap()->undefined_value()) {
2438     Context* context = reinterpret_cast<Context*>(raw_context);
2439     if (IsMarked(context)) {
2440       HeapObject* raw_map_cache =
2441           HeapObject::cast(context->get(Context::MAP_CACHE_INDEX));
2442       // A map cache may be reachable from the stack. In this case
2443       // it's already transitively marked and it's too late to clean
2444       // up its parts.
2445       if (!IsMarked(raw_map_cache) &&
2446           raw_map_cache != heap()->undefined_value()) {
2447         MapCache* map_cache = reinterpret_cast<MapCache*>(raw_map_cache);
2448         int existing_elements = map_cache->NumberOfElements();
2449         int used_elements = 0;
2450         for (int i = MapCache::kElementsStartIndex;
2451              i < map_cache->length();
2452              i += MapCache::kEntrySize) {
2453           Object* raw_key = map_cache->get(i);
2454           if (raw_key == heap()->undefined_value() ||
2455               raw_key == heap()->the_hole_value()) continue;
2456           STATIC_ASSERT(MapCache::kEntrySize == 2);
2457           Object* raw_map = map_cache->get(i + 1);
2458           if (raw_map->IsHeapObject() && IsMarked(raw_map)) {
2459             ++used_elements;
2460           } else {
2461             // Delete useless entries with unmarked maps.
2462             ASSERT(raw_map->IsMap());
2463             map_cache->set_the_hole(i);
2464             map_cache->set_the_hole(i + 1);
2465           }
2466         }
2467         if (used_elements == 0) {
2468           context->set(Context::MAP_CACHE_INDEX, heap()->undefined_value());
2469         } else {
2470           // Note: we don't actually shrink the cache here to avoid
2471           // extra complexity during GC. We rely on subsequent cache
2472           // usages (EnsureCapacity) to do this.
2473           map_cache->ElementsRemoved(existing_elements - used_elements);
2474           MarkBit map_cache_markbit = Marking::MarkBitFrom(map_cache);
2475           MarkObject(map_cache, map_cache_markbit);
2476         }
2477       }
2478     }
2479     // Move to next element in the list.
2480     raw_context = context->get(Context::NEXT_CONTEXT_LINK);
2481   }
2482   ProcessMarkingDeque();
2483 }
2484 
2485 
ClearNonLiveReferences()2486 void MarkCompactCollector::ClearNonLiveReferences() {
2487   // Iterate over the map space, setting map transitions that go from
2488   // a marked map to an unmarked map to null transitions.  This action
2489   // is carried out only on maps of JSObjects and related subtypes.
2490   HeapObjectIterator map_iterator(heap()->map_space());
2491   for (HeapObject* obj = map_iterator.Next();
2492        obj != NULL;
2493        obj = map_iterator.Next()) {
2494     Map* map = Map::cast(obj);
2495 
2496     if (!map->CanTransition()) continue;
2497 
2498     MarkBit map_mark = Marking::MarkBitFrom(map);
2499     ClearNonLivePrototypeTransitions(map);
2500     ClearNonLiveMapTransitions(map, map_mark);
2501 
2502     if (map_mark.Get()) {
2503       ClearNonLiveDependentCode(map->dependent_code());
2504     } else {
2505       ClearDependentCode(map->dependent_code());
2506       map->set_dependent_code(DependentCode::cast(heap()->empty_fixed_array()));
2507     }
2508   }
2509 
2510   // Iterate over property cell space, removing dependent code that is not
2511   // otherwise kept alive by strong references.
2512   HeapObjectIterator cell_iterator(heap_->property_cell_space());
2513   for (HeapObject* cell = cell_iterator.Next();
2514        cell != NULL;
2515        cell = cell_iterator.Next()) {
2516     if (IsMarked(cell)) {
2517       ClearNonLiveDependentCode(PropertyCell::cast(cell)->dependent_code());
2518     }
2519   }
2520 
2521   // Iterate over allocation sites, removing dependent code that is not
2522   // otherwise kept alive by strong references.
2523   Object* undefined = heap()->undefined_value();
2524   for (Object* site = heap()->allocation_sites_list();
2525        site != undefined;
2526        site = AllocationSite::cast(site)->weak_next()) {
2527     if (IsMarked(site)) {
2528       ClearNonLiveDependentCode(AllocationSite::cast(site)->dependent_code());
2529     }
2530   }
2531 
2532   if (heap_->weak_object_to_code_table()->IsHashTable()) {
2533     WeakHashTable* table =
2534         WeakHashTable::cast(heap_->weak_object_to_code_table());
2535     uint32_t capacity = table->Capacity();
2536     for (uint32_t i = 0; i < capacity; i++) {
2537       uint32_t key_index = table->EntryToIndex(i);
2538       Object* key = table->get(key_index);
2539       if (!table->IsKey(key)) continue;
2540       uint32_t value_index = table->EntryToValueIndex(i);
2541       Object* value = table->get(value_index);
2542       if (key->IsCell() && !IsMarked(key)) {
2543         Cell* cell = Cell::cast(key);
2544         Object* object = cell->value();
2545         if (IsMarked(object)) {
2546           MarkBit mark = Marking::MarkBitFrom(cell);
2547           SetMark(cell, mark);
2548           Object** value_slot = HeapObject::RawField(cell, Cell::kValueOffset);
2549           RecordSlot(value_slot, value_slot, *value_slot);
2550         }
2551       }
2552       if (IsMarked(key)) {
2553         if (!IsMarked(value)) {
2554           HeapObject* obj = HeapObject::cast(value);
2555           MarkBit mark = Marking::MarkBitFrom(obj);
2556           SetMark(obj, mark);
2557         }
2558         ClearNonLiveDependentCode(DependentCode::cast(value));
2559       } else {
2560         ClearDependentCode(DependentCode::cast(value));
2561         table->set(key_index, heap_->the_hole_value());
2562         table->set(value_index, heap_->the_hole_value());
2563         table->ElementRemoved();
2564       }
2565     }
2566   }
2567 }
2568 
2569 
ClearNonLivePrototypeTransitions(Map * map)2570 void MarkCompactCollector::ClearNonLivePrototypeTransitions(Map* map) {
2571   int number_of_transitions = map->NumberOfProtoTransitions();
2572   FixedArray* prototype_transitions = map->GetPrototypeTransitions();
2573 
2574   int new_number_of_transitions = 0;
2575   const int header = Map::kProtoTransitionHeaderSize;
2576   const int proto_offset = header + Map::kProtoTransitionPrototypeOffset;
2577   const int map_offset = header + Map::kProtoTransitionMapOffset;
2578   const int step = Map::kProtoTransitionElementsPerEntry;
2579   for (int i = 0; i < number_of_transitions; i++) {
2580     Object* prototype = prototype_transitions->get(proto_offset + i * step);
2581     Object* cached_map = prototype_transitions->get(map_offset + i * step);
2582     if (IsMarked(prototype) && IsMarked(cached_map)) {
2583       ASSERT(!prototype->IsUndefined());
2584       int proto_index = proto_offset + new_number_of_transitions * step;
2585       int map_index = map_offset + new_number_of_transitions * step;
2586       if (new_number_of_transitions != i) {
2587         prototype_transitions->set(
2588             proto_index,
2589             prototype,
2590             UPDATE_WRITE_BARRIER);
2591         prototype_transitions->set(
2592             map_index,
2593             cached_map,
2594             SKIP_WRITE_BARRIER);
2595       }
2596       Object** slot = prototype_transitions->RawFieldOfElementAt(proto_index);
2597       RecordSlot(slot, slot, prototype);
2598       new_number_of_transitions++;
2599     }
2600   }
2601 
2602   if (new_number_of_transitions != number_of_transitions) {
2603     map->SetNumberOfProtoTransitions(new_number_of_transitions);
2604   }
2605 
2606   // Fill slots that became free with undefined value.
2607   for (int i = new_number_of_transitions * step;
2608        i < number_of_transitions * step;
2609        i++) {
2610     prototype_transitions->set_undefined(header + i);
2611   }
2612 }
2613 
2614 
ClearNonLiveMapTransitions(Map * map,MarkBit map_mark)2615 void MarkCompactCollector::ClearNonLiveMapTransitions(Map* map,
2616                                                       MarkBit map_mark) {
2617   Object* potential_parent = map->GetBackPointer();
2618   if (!potential_parent->IsMap()) return;
2619   Map* parent = Map::cast(potential_parent);
2620 
2621   // Follow back pointer, check whether we are dealing with a map transition
2622   // from a live map to a dead path and in case clear transitions of parent.
2623   bool current_is_alive = map_mark.Get();
2624   bool parent_is_alive = Marking::MarkBitFrom(parent).Get();
2625   if (!current_is_alive && parent_is_alive) {
2626     parent->ClearNonLiveTransitions(heap());
2627   }
2628 }
2629 
2630 
ClearDependentICList(Object * head)2631 void MarkCompactCollector::ClearDependentICList(Object* head) {
2632   Object* current = head;
2633   Object* undefined = heap()->undefined_value();
2634   while (current != undefined) {
2635     Code* code = Code::cast(current);
2636     if (IsMarked(code)) {
2637       ASSERT(code->is_weak_stub());
2638       IC::InvalidateMaps(code);
2639     }
2640     current = code->next_code_link();
2641     code->set_next_code_link(undefined);
2642   }
2643 }
2644 
2645 
ClearDependentCode(DependentCode * entries)2646 void MarkCompactCollector::ClearDependentCode(
2647     DependentCode* entries) {
2648   DisallowHeapAllocation no_allocation;
2649   DependentCode::GroupStartIndexes starts(entries);
2650   int number_of_entries = starts.number_of_entries();
2651   if (number_of_entries == 0) return;
2652   int g = DependentCode::kWeakICGroup;
2653   if (starts.at(g) != starts.at(g + 1)) {
2654     int i = starts.at(g);
2655     ASSERT(i + 1 == starts.at(g + 1));
2656     Object* head = entries->object_at(i);
2657     ClearDependentICList(head);
2658   }
2659   g = DependentCode::kWeakCodeGroup;
2660   for (int i = starts.at(g); i < starts.at(g + 1); i++) {
2661     // If the entry is compilation info then the map must be alive,
2662     // and ClearDependentCode shouldn't be called.
2663     ASSERT(entries->is_code_at(i));
2664     Code* code = entries->code_at(i);
2665     if (IsMarked(code) && !code->marked_for_deoptimization()) {
2666       code->set_marked_for_deoptimization(true);
2667       code->InvalidateEmbeddedObjects();
2668       have_code_to_deoptimize_ = true;
2669     }
2670   }
2671   for (int i = 0; i < number_of_entries; i++) {
2672     entries->clear_at(i);
2673   }
2674 }
2675 
2676 
ClearNonLiveDependentCodeInGroup(DependentCode * entries,int group,int start,int end,int new_start)2677 int MarkCompactCollector::ClearNonLiveDependentCodeInGroup(
2678     DependentCode* entries, int group, int start, int end, int new_start) {
2679   int survived = 0;
2680   if (group == DependentCode::kWeakICGroup) {
2681     // Dependent weak IC stubs form a linked list and only the head is stored
2682     // in the dependent code array.
2683     if (start != end) {
2684       ASSERT(start + 1 == end);
2685       Object* old_head = entries->object_at(start);
2686       MarkCompactWeakObjectRetainer retainer;
2687       Object* head = VisitWeakList<Code>(heap(), old_head, &retainer);
2688       entries->set_object_at(new_start, head);
2689       Object** slot = entries->slot_at(new_start);
2690       RecordSlot(slot, slot, head);
2691       // We do not compact this group even if the head is undefined,
2692       // more dependent ICs are likely to be added later.
2693       survived = 1;
2694     }
2695   } else {
2696     for (int i = start; i < end; i++) {
2697       Object* obj = entries->object_at(i);
2698       ASSERT(obj->IsCode() || IsMarked(obj));
2699       if (IsMarked(obj) &&
2700           (!obj->IsCode() || !WillBeDeoptimized(Code::cast(obj)))) {
2701         if (new_start + survived != i) {
2702           entries->set_object_at(new_start + survived, obj);
2703         }
2704         Object** slot = entries->slot_at(new_start + survived);
2705         RecordSlot(slot, slot, obj);
2706         survived++;
2707       }
2708     }
2709   }
2710   entries->set_number_of_entries(
2711       static_cast<DependentCode::DependencyGroup>(group), survived);
2712   return survived;
2713 }
2714 
2715 
ClearNonLiveDependentCode(DependentCode * entries)2716 void MarkCompactCollector::ClearNonLiveDependentCode(DependentCode* entries) {
2717   DisallowHeapAllocation no_allocation;
2718   DependentCode::GroupStartIndexes starts(entries);
2719   int number_of_entries = starts.number_of_entries();
2720   if (number_of_entries == 0) return;
2721   int new_number_of_entries = 0;
2722   // Go through all groups, remove dead codes and compact.
2723   for (int g = 0; g < DependentCode::kGroupCount; g++) {
2724     int survived = ClearNonLiveDependentCodeInGroup(
2725         entries, g, starts.at(g), starts.at(g + 1), new_number_of_entries);
2726     new_number_of_entries += survived;
2727   }
2728   for (int i = new_number_of_entries; i < number_of_entries; i++) {
2729     entries->clear_at(i);
2730   }
2731 }
2732 
2733 
ProcessWeakCollections()2734 void MarkCompactCollector::ProcessWeakCollections() {
2735   GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_WEAKCOLLECTION_PROCESS);
2736   Object* weak_collection_obj = heap()->encountered_weak_collections();
2737   while (weak_collection_obj != Smi::FromInt(0)) {
2738     JSWeakCollection* weak_collection =
2739         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2740     ASSERT(MarkCompactCollector::IsMarked(weak_collection));
2741     if (weak_collection->table()->IsHashTable()) {
2742       ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2743       Object** anchor = reinterpret_cast<Object**>(table->address());
2744       for (int i = 0; i < table->Capacity(); i++) {
2745         if (MarkCompactCollector::IsMarked(HeapObject::cast(table->KeyAt(i)))) {
2746           Object** key_slot =
2747               table->RawFieldOfElementAt(ObjectHashTable::EntryToIndex(i));
2748           RecordSlot(anchor, key_slot, *key_slot);
2749           Object** value_slot =
2750               table->RawFieldOfElementAt(ObjectHashTable::EntryToValueIndex(i));
2751           MarkCompactMarkingVisitor::MarkObjectByPointer(
2752               this, anchor, value_slot);
2753         }
2754       }
2755     }
2756     weak_collection_obj = weak_collection->next();
2757   }
2758 }
2759 
2760 
ClearWeakCollections()2761 void MarkCompactCollector::ClearWeakCollections() {
2762   GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_WEAKCOLLECTION_CLEAR);
2763   Object* weak_collection_obj = heap()->encountered_weak_collections();
2764   while (weak_collection_obj != Smi::FromInt(0)) {
2765     JSWeakCollection* weak_collection =
2766         reinterpret_cast<JSWeakCollection*>(weak_collection_obj);
2767     ASSERT(MarkCompactCollector::IsMarked(weak_collection));
2768     if (weak_collection->table()->IsHashTable()) {
2769       ObjectHashTable* table = ObjectHashTable::cast(weak_collection->table());
2770       for (int i = 0; i < table->Capacity(); i++) {
2771         HeapObject* key = HeapObject::cast(table->KeyAt(i));
2772         if (!MarkCompactCollector::IsMarked(key)) {
2773           table->RemoveEntry(i);
2774         }
2775       }
2776     }
2777     weak_collection_obj = weak_collection->next();
2778     weak_collection->set_next(heap()->undefined_value());
2779   }
2780   heap()->set_encountered_weak_collections(Smi::FromInt(0));
2781 }
2782 
2783 
2784 // We scavange new space simultaneously with sweeping. This is done in two
2785 // passes.
2786 //
2787 // The first pass migrates all alive objects from one semispace to another or
2788 // promotes them to old space.  Forwarding address is written directly into
2789 // first word of object without any encoding.  If object is dead we write
2790 // NULL as a forwarding address.
2791 //
2792 // The second pass updates pointers to new space in all spaces.  It is possible
2793 // to encounter pointers to dead new space objects during traversal of pointers
2794 // to new space.  We should clear them to avoid encountering them during next
2795 // pointer iteration.  This is an issue if the store buffer overflows and we
2796 // have to scan the entire old space, including dead objects, looking for
2797 // pointers to new space.
MigrateObject(HeapObject * dst,HeapObject * src,int size,AllocationSpace dest)2798 void MarkCompactCollector::MigrateObject(HeapObject* dst,
2799                                          HeapObject* src,
2800                                          int size,
2801                                          AllocationSpace dest) {
2802   Address dst_addr = dst->address();
2803   Address src_addr = src->address();
2804   HeapProfiler* heap_profiler = heap()->isolate()->heap_profiler();
2805   if (heap_profiler->is_tracking_object_moves()) {
2806     heap_profiler->ObjectMoveEvent(src_addr, dst_addr, size);
2807   }
2808   ASSERT(heap()->AllowedToBeMigrated(src, dest));
2809   ASSERT(dest != LO_SPACE && size <= Page::kMaxRegularHeapObjectSize);
2810   if (dest == OLD_POINTER_SPACE) {
2811     Address src_slot = src_addr;
2812     Address dst_slot = dst_addr;
2813     ASSERT(IsAligned(size, kPointerSize));
2814 
2815     for (int remaining = size / kPointerSize; remaining > 0; remaining--) {
2816       Object* value = Memory::Object_at(src_slot);
2817 
2818       Memory::Object_at(dst_slot) = value;
2819 
2820       if (heap_->InNewSpace(value)) {
2821         heap_->store_buffer()->Mark(dst_slot);
2822       } else if (value->IsHeapObject() && IsOnEvacuationCandidate(value)) {
2823         SlotsBuffer::AddTo(&slots_buffer_allocator_,
2824                            &migration_slots_buffer_,
2825                            reinterpret_cast<Object**>(dst_slot),
2826                            SlotsBuffer::IGNORE_OVERFLOW);
2827       }
2828 
2829       src_slot += kPointerSize;
2830       dst_slot += kPointerSize;
2831     }
2832 
2833     if (compacting_ && dst->IsJSFunction()) {
2834       Address code_entry_slot = dst_addr + JSFunction::kCodeEntryOffset;
2835       Address code_entry = Memory::Address_at(code_entry_slot);
2836 
2837       if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2838         SlotsBuffer::AddTo(&slots_buffer_allocator_,
2839                            &migration_slots_buffer_,
2840                            SlotsBuffer::CODE_ENTRY_SLOT,
2841                            code_entry_slot,
2842                            SlotsBuffer::IGNORE_OVERFLOW);
2843       }
2844     } else if (compacting_ && dst->IsConstantPoolArray()) {
2845       ConstantPoolArray* array = ConstantPoolArray::cast(dst);
2846       ConstantPoolArray::Iterator code_iter(array, ConstantPoolArray::CODE_PTR);
2847       while (!code_iter.is_finished()) {
2848         Address code_entry_slot =
2849             dst_addr + array->OffsetOfElementAt(code_iter.next_index());
2850         Address code_entry = Memory::Address_at(code_entry_slot);
2851 
2852         if (Page::FromAddress(code_entry)->IsEvacuationCandidate()) {
2853           SlotsBuffer::AddTo(&slots_buffer_allocator_,
2854                              &migration_slots_buffer_,
2855                              SlotsBuffer::CODE_ENTRY_SLOT,
2856                              code_entry_slot,
2857                              SlotsBuffer::IGNORE_OVERFLOW);
2858         }
2859       }
2860     }
2861   } else if (dest == CODE_SPACE) {
2862     PROFILE(isolate(), CodeMoveEvent(src_addr, dst_addr));
2863     heap()->MoveBlock(dst_addr, src_addr, size);
2864     SlotsBuffer::AddTo(&slots_buffer_allocator_,
2865                        &migration_slots_buffer_,
2866                        SlotsBuffer::RELOCATED_CODE_OBJECT,
2867                        dst_addr,
2868                        SlotsBuffer::IGNORE_OVERFLOW);
2869     Code::cast(dst)->Relocate(dst_addr - src_addr);
2870   } else {
2871     ASSERT(dest == OLD_DATA_SPACE || dest == NEW_SPACE);
2872     heap()->MoveBlock(dst_addr, src_addr, size);
2873   }
2874   Memory::Address_at(src_addr) = dst_addr;
2875 }
2876 
2877 
2878 // Visitor for updating pointers from live objects in old spaces to new space.
2879 // It does not expect to encounter pointers to dead objects.
2880 class PointersUpdatingVisitor: public ObjectVisitor {
2881  public:
PointersUpdatingVisitor(Heap * heap)2882   explicit PointersUpdatingVisitor(Heap* heap) : heap_(heap) { }
2883 
VisitPointer(Object ** p)2884   void VisitPointer(Object** p) {
2885     UpdatePointer(p);
2886   }
2887 
VisitPointers(Object ** start,Object ** end)2888   void VisitPointers(Object** start, Object** end) {
2889     for (Object** p = start; p < end; p++) UpdatePointer(p);
2890   }
2891 
VisitEmbeddedPointer(RelocInfo * rinfo)2892   void VisitEmbeddedPointer(RelocInfo* rinfo) {
2893     ASSERT(rinfo->rmode() == RelocInfo::EMBEDDED_OBJECT);
2894     Object* target = rinfo->target_object();
2895     Object* old_target = target;
2896     VisitPointer(&target);
2897     // Avoid unnecessary changes that might unnecessary flush the instruction
2898     // cache.
2899     if (target != old_target) {
2900       rinfo->set_target_object(target);
2901     }
2902   }
2903 
VisitCodeTarget(RelocInfo * rinfo)2904   void VisitCodeTarget(RelocInfo* rinfo) {
2905     ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
2906     Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
2907     Object* old_target = target;
2908     VisitPointer(&target);
2909     if (target != old_target) {
2910       rinfo->set_target_address(Code::cast(target)->instruction_start());
2911     }
2912   }
2913 
VisitCodeAgeSequence(RelocInfo * rinfo)2914   void VisitCodeAgeSequence(RelocInfo* rinfo) {
2915     ASSERT(RelocInfo::IsCodeAgeSequence(rinfo->rmode()));
2916     Object* stub = rinfo->code_age_stub();
2917     ASSERT(stub != NULL);
2918     VisitPointer(&stub);
2919     if (stub != rinfo->code_age_stub()) {
2920       rinfo->set_code_age_stub(Code::cast(stub));
2921     }
2922   }
2923 
VisitDebugTarget(RelocInfo * rinfo)2924   void VisitDebugTarget(RelocInfo* rinfo) {
2925     ASSERT((RelocInfo::IsJSReturn(rinfo->rmode()) &&
2926             rinfo->IsPatchedReturnSequence()) ||
2927            (RelocInfo::IsDebugBreakSlot(rinfo->rmode()) &&
2928             rinfo->IsPatchedDebugBreakSlotSequence()));
2929     Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
2930     VisitPointer(&target);
2931     rinfo->set_call_address(Code::cast(target)->instruction_start());
2932   }
2933 
UpdateSlot(Heap * heap,Object ** slot)2934   static inline void UpdateSlot(Heap* heap, Object** slot) {
2935     Object* obj = *slot;
2936 
2937     if (!obj->IsHeapObject()) return;
2938 
2939     HeapObject* heap_obj = HeapObject::cast(obj);
2940 
2941     MapWord map_word = heap_obj->map_word();
2942     if (map_word.IsForwardingAddress()) {
2943       ASSERT(heap->InFromSpace(heap_obj) ||
2944              MarkCompactCollector::IsOnEvacuationCandidate(heap_obj));
2945       HeapObject* target = map_word.ToForwardingAddress();
2946       *slot = target;
2947       ASSERT(!heap->InFromSpace(target) &&
2948              !MarkCompactCollector::IsOnEvacuationCandidate(target));
2949     }
2950   }
2951 
2952  private:
UpdatePointer(Object ** p)2953   inline void UpdatePointer(Object** p) {
2954     UpdateSlot(heap_, p);
2955   }
2956 
2957   Heap* heap_;
2958 };
2959 
2960 
UpdatePointer(HeapObject ** address,HeapObject * object)2961 static void UpdatePointer(HeapObject** address, HeapObject* object) {
2962   Address new_addr = Memory::Address_at(object->address());
2963 
2964   // The new space sweep will overwrite the map word of dead objects
2965   // with NULL. In this case we do not need to transfer this entry to
2966   // the store buffer which we are rebuilding.
2967   // We perform the pointer update with a no barrier compare-and-swap. The
2968   // compare and swap may fail in the case where the pointer update tries to
2969   // update garbage memory which was concurrently accessed by the sweeper.
2970   if (new_addr != NULL) {
2971     base::NoBarrier_CompareAndSwap(
2972         reinterpret_cast<base::AtomicWord*>(address),
2973         reinterpret_cast<base::AtomicWord>(object),
2974         reinterpret_cast<base::AtomicWord>(HeapObject::FromAddress(new_addr)));
2975   } else {
2976     // We have to zap this pointer, because the store buffer may overflow later,
2977     // and then we have to scan the entire heap and we don't want to find
2978     // spurious newspace pointers in the old space.
2979     // TODO(mstarzinger): This was changed to a sentinel value to track down
2980     // rare crashes, change it back to Smi::FromInt(0) later.
2981     base::NoBarrier_CompareAndSwap(
2982         reinterpret_cast<base::AtomicWord*>(address),
2983         reinterpret_cast<base::AtomicWord>(object),
2984         reinterpret_cast<base::AtomicWord>(Smi::FromInt(0x0f100d00 >> 1)));
2985   }
2986 }
2987 
2988 
UpdateReferenceInExternalStringTableEntry(Heap * heap,Object ** p)2989 static String* UpdateReferenceInExternalStringTableEntry(Heap* heap,
2990                                                          Object** p) {
2991   MapWord map_word = HeapObject::cast(*p)->map_word();
2992 
2993   if (map_word.IsForwardingAddress()) {
2994     return String::cast(map_word.ToForwardingAddress());
2995   }
2996 
2997   return String::cast(*p);
2998 }
2999 
3000 
TryPromoteObject(HeapObject * object,int object_size)3001 bool MarkCompactCollector::TryPromoteObject(HeapObject* object,
3002                                             int object_size) {
3003   ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
3004 
3005   OldSpace* target_space = heap()->TargetSpace(object);
3006 
3007   ASSERT(target_space == heap()->old_pointer_space() ||
3008          target_space == heap()->old_data_space());
3009   HeapObject* target;
3010   AllocationResult allocation = target_space->AllocateRaw(object_size);
3011   if (allocation.To(&target)) {
3012     MigrateObject(target,
3013                   object,
3014                   object_size,
3015                   target_space->identity());
3016     heap()->IncrementPromotedObjectsSize(object_size);
3017     return true;
3018   }
3019 
3020   return false;
3021 }
3022 
3023 
EvacuateNewSpace()3024 void MarkCompactCollector::EvacuateNewSpace() {
3025   // There are soft limits in the allocation code, designed trigger a mark
3026   // sweep collection by failing allocations.  But since we are already in
3027   // a mark-sweep allocation, there is no sense in trying to trigger one.
3028   AlwaysAllocateScope scope(isolate());
3029 
3030   NewSpace* new_space = heap()->new_space();
3031 
3032   // Store allocation range before flipping semispaces.
3033   Address from_bottom = new_space->bottom();
3034   Address from_top = new_space->top();
3035 
3036   // Flip the semispaces.  After flipping, to space is empty, from space has
3037   // live objects.
3038   new_space->Flip();
3039   new_space->ResetAllocationInfo();
3040 
3041   int survivors_size = 0;
3042 
3043   // First pass: traverse all objects in inactive semispace, remove marks,
3044   // migrate live objects and write forwarding addresses.  This stage puts
3045   // new entries in the store buffer and may cause some pages to be marked
3046   // scan-on-scavenge.
3047   NewSpacePageIterator it(from_bottom, from_top);
3048   while (it.has_next()) {
3049     NewSpacePage* p = it.next();
3050     survivors_size += DiscoverAndPromoteBlackObjectsOnPage(new_space, p);
3051   }
3052 
3053   heap_->IncrementYoungSurvivorsCounter(survivors_size);
3054   new_space->set_age_mark(new_space->top());
3055 }
3056 
3057 
EvacuateLiveObjectsFromPage(Page * p)3058 void MarkCompactCollector::EvacuateLiveObjectsFromPage(Page* p) {
3059   AlwaysAllocateScope always_allocate(isolate());
3060   PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3061   ASSERT(p->IsEvacuationCandidate() && !p->WasSwept());
3062   p->MarkSweptPrecisely();
3063 
3064   int offsets[16];
3065 
3066   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
3067     Address cell_base = it.CurrentCellBase();
3068     MarkBit::CellType* cell = it.CurrentCell();
3069 
3070     if (*cell == 0) continue;
3071 
3072     int live_objects = MarkWordToObjectStarts(*cell, offsets);
3073     for (int i = 0; i < live_objects; i++) {
3074       Address object_addr = cell_base + offsets[i] * kPointerSize;
3075       HeapObject* object = HeapObject::FromAddress(object_addr);
3076       ASSERT(Marking::IsBlack(Marking::MarkBitFrom(object)));
3077 
3078       int size = object->Size();
3079 
3080       HeapObject* target_object;
3081       AllocationResult allocation = space->AllocateRaw(size);
3082       if (!allocation.To(&target_object)) {
3083         // OS refused to give us memory.
3084         V8::FatalProcessOutOfMemory("Evacuation");
3085         return;
3086       }
3087 
3088       MigrateObject(target_object, object, size, space->identity());
3089       ASSERT(object->map_word().IsForwardingAddress());
3090     }
3091 
3092     // Clear marking bits for current cell.
3093     *cell = 0;
3094   }
3095   p->ResetLiveBytes();
3096 }
3097 
3098 
EvacuatePages()3099 void MarkCompactCollector::EvacuatePages() {
3100   int npages = evacuation_candidates_.length();
3101   for (int i = 0; i < npages; i++) {
3102     Page* p = evacuation_candidates_[i];
3103     ASSERT(p->IsEvacuationCandidate() ||
3104            p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3105     ASSERT(static_cast<int>(p->parallel_sweeping()) ==
3106            MemoryChunk::PARALLEL_SWEEPING_DONE);
3107     if (p->IsEvacuationCandidate()) {
3108       // During compaction we might have to request a new page.
3109       // Check that space still have room for that.
3110       if (static_cast<PagedSpace*>(p->owner())->CanExpand()) {
3111         EvacuateLiveObjectsFromPage(p);
3112       } else {
3113         // Without room for expansion evacuation is not guaranteed to succeed.
3114         // Pessimistically abandon unevacuated pages.
3115         for (int j = i; j < npages; j++) {
3116           Page* page = evacuation_candidates_[j];
3117           slots_buffer_allocator_.DeallocateChain(page->slots_buffer_address());
3118           page->ClearEvacuationCandidate();
3119           page->SetFlag(Page::RESCAN_ON_EVACUATION);
3120         }
3121         return;
3122       }
3123     }
3124   }
3125 }
3126 
3127 
3128 class EvacuationWeakObjectRetainer : public WeakObjectRetainer {
3129  public:
RetainAs(Object * object)3130   virtual Object* RetainAs(Object* object) {
3131     if (object->IsHeapObject()) {
3132       HeapObject* heap_object = HeapObject::cast(object);
3133       MapWord map_word = heap_object->map_word();
3134       if (map_word.IsForwardingAddress()) {
3135         return map_word.ToForwardingAddress();
3136       }
3137     }
3138     return object;
3139   }
3140 };
3141 
3142 
UpdateSlot(Isolate * isolate,ObjectVisitor * v,SlotsBuffer::SlotType slot_type,Address addr)3143 static inline void UpdateSlot(Isolate* isolate,
3144                               ObjectVisitor* v,
3145                               SlotsBuffer::SlotType slot_type,
3146                               Address addr) {
3147   switch (slot_type) {
3148     case SlotsBuffer::CODE_TARGET_SLOT: {
3149       RelocInfo rinfo(addr, RelocInfo::CODE_TARGET, 0, NULL);
3150       rinfo.Visit(isolate, v);
3151       break;
3152     }
3153     case SlotsBuffer::CODE_ENTRY_SLOT: {
3154       v->VisitCodeEntry(addr);
3155       break;
3156     }
3157     case SlotsBuffer::RELOCATED_CODE_OBJECT: {
3158       HeapObject* obj = HeapObject::FromAddress(addr);
3159       Code::cast(obj)->CodeIterateBody(v);
3160       break;
3161     }
3162     case SlotsBuffer::DEBUG_TARGET_SLOT: {
3163       RelocInfo rinfo(addr, RelocInfo::DEBUG_BREAK_SLOT, 0, NULL);
3164       if (rinfo.IsPatchedDebugBreakSlotSequence()) rinfo.Visit(isolate, v);
3165       break;
3166     }
3167     case SlotsBuffer::JS_RETURN_SLOT: {
3168       RelocInfo rinfo(addr, RelocInfo::JS_RETURN, 0, NULL);
3169       if (rinfo.IsPatchedReturnSequence()) rinfo.Visit(isolate, v);
3170       break;
3171     }
3172     case SlotsBuffer::EMBEDDED_OBJECT_SLOT: {
3173       RelocInfo rinfo(addr, RelocInfo::EMBEDDED_OBJECT, 0, NULL);
3174       rinfo.Visit(isolate, v);
3175       break;
3176     }
3177     default:
3178       UNREACHABLE();
3179       break;
3180   }
3181 }
3182 
3183 
3184 enum SweepingMode {
3185   SWEEP_ONLY,
3186   SWEEP_AND_VISIT_LIVE_OBJECTS
3187 };
3188 
3189 
3190 enum SkipListRebuildingMode {
3191   REBUILD_SKIP_LIST,
3192   IGNORE_SKIP_LIST
3193 };
3194 
3195 
3196 enum FreeSpaceTreatmentMode {
3197   IGNORE_FREE_SPACE,
3198   ZAP_FREE_SPACE
3199 };
3200 
3201 
3202 // Sweep a space precisely.  After this has been done the space can
3203 // be iterated precisely, hitting only the live objects.  Code space
3204 // is always swept precisely because we want to be able to iterate
3205 // over it.  Map space is swept precisely, because it is not compacted.
3206 // Slots in live objects pointing into evacuation candidates are updated
3207 // if requested.
3208 template<SweepingMode sweeping_mode,
3209          SkipListRebuildingMode skip_list_mode,
3210          FreeSpaceTreatmentMode free_space_mode>
SweepPrecisely(PagedSpace * space,Page * p,ObjectVisitor * v)3211 static void SweepPrecisely(PagedSpace* space,
3212                            Page* p,
3213                            ObjectVisitor* v) {
3214   ASSERT(!p->IsEvacuationCandidate() && !p->WasSwept());
3215   ASSERT_EQ(skip_list_mode == REBUILD_SKIP_LIST,
3216             space->identity() == CODE_SPACE);
3217   ASSERT((p->skip_list() == NULL) || (skip_list_mode == REBUILD_SKIP_LIST));
3218 
3219   double start_time = 0.0;
3220   if (FLAG_print_cumulative_gc_stat) {
3221     start_time = OS::TimeCurrentMillis();
3222   }
3223 
3224   p->MarkSweptPrecisely();
3225 
3226   Address free_start = p->area_start();
3227   ASSERT(reinterpret_cast<intptr_t>(free_start) % (32 * kPointerSize) == 0);
3228   int offsets[16];
3229 
3230   SkipList* skip_list = p->skip_list();
3231   int curr_region = -1;
3232   if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list) {
3233     skip_list->Clear();
3234   }
3235 
3236   for (MarkBitCellIterator it(p); !it.Done(); it.Advance()) {
3237     Address cell_base = it.CurrentCellBase();
3238     MarkBit::CellType* cell = it.CurrentCell();
3239     int live_objects = MarkWordToObjectStarts(*cell, offsets);
3240     int live_index = 0;
3241     for ( ; live_objects != 0; live_objects--) {
3242       Address free_end = cell_base + offsets[live_index++] * kPointerSize;
3243       if (free_end != free_start) {
3244         if (free_space_mode == ZAP_FREE_SPACE) {
3245           memset(free_start, 0xcc, static_cast<int>(free_end - free_start));
3246         }
3247         space->Free(free_start, static_cast<int>(free_end - free_start));
3248 #ifdef ENABLE_GDB_JIT_INTERFACE
3249         if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3250           GDBJITInterface::RemoveCodeRange(free_start, free_end);
3251         }
3252 #endif
3253       }
3254       HeapObject* live_object = HeapObject::FromAddress(free_end);
3255       ASSERT(Marking::IsBlack(Marking::MarkBitFrom(live_object)));
3256       Map* map = live_object->map();
3257       int size = live_object->SizeFromMap(map);
3258       if (sweeping_mode == SWEEP_AND_VISIT_LIVE_OBJECTS) {
3259         live_object->IterateBody(map->instance_type(), size, v);
3260       }
3261       if ((skip_list_mode == REBUILD_SKIP_LIST) && skip_list != NULL) {
3262         int new_region_start =
3263             SkipList::RegionNumber(free_end);
3264         int new_region_end =
3265             SkipList::RegionNumber(free_end + size - kPointerSize);
3266         if (new_region_start != curr_region ||
3267             new_region_end != curr_region) {
3268           skip_list->AddObject(free_end, size);
3269           curr_region = new_region_end;
3270         }
3271       }
3272       free_start = free_end + size;
3273     }
3274     // Clear marking bits for current cell.
3275     *cell = 0;
3276   }
3277   if (free_start != p->area_end()) {
3278     if (free_space_mode == ZAP_FREE_SPACE) {
3279       memset(free_start, 0xcc, static_cast<int>(p->area_end() - free_start));
3280     }
3281     space->Free(free_start, static_cast<int>(p->area_end() - free_start));
3282 #ifdef ENABLE_GDB_JIT_INTERFACE
3283     if (FLAG_gdbjit && space->identity() == CODE_SPACE) {
3284       GDBJITInterface::RemoveCodeRange(free_start, p->area_end());
3285     }
3286 #endif
3287   }
3288   p->ResetLiveBytes();
3289   if (FLAG_print_cumulative_gc_stat) {
3290     space->heap()->AddSweepingTime(OS::TimeCurrentMillis() - start_time);
3291   }
3292 }
3293 
3294 
SetMarkBitsUnderInvalidatedCode(Code * code,bool value)3295 static bool SetMarkBitsUnderInvalidatedCode(Code* code, bool value) {
3296   Page* p = Page::FromAddress(code->address());
3297 
3298   if (p->IsEvacuationCandidate() ||
3299       p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3300     return false;
3301   }
3302 
3303   Address code_start = code->address();
3304   Address code_end = code_start + code->Size();
3305 
3306   uint32_t start_index = MemoryChunk::FastAddressToMarkbitIndex(code_start);
3307   uint32_t end_index =
3308       MemoryChunk::FastAddressToMarkbitIndex(code_end - kPointerSize);
3309 
3310   Bitmap* b = p->markbits();
3311 
3312   MarkBit start_mark_bit = b->MarkBitFromIndex(start_index);
3313   MarkBit end_mark_bit = b->MarkBitFromIndex(end_index);
3314 
3315   MarkBit::CellType* start_cell = start_mark_bit.cell();
3316   MarkBit::CellType* end_cell = end_mark_bit.cell();
3317 
3318   if (value) {
3319     MarkBit::CellType start_mask = ~(start_mark_bit.mask() - 1);
3320     MarkBit::CellType end_mask = (end_mark_bit.mask() << 1) - 1;
3321 
3322     if (start_cell == end_cell) {
3323       *start_cell |= start_mask & end_mask;
3324     } else {
3325       *start_cell |= start_mask;
3326       for (MarkBit::CellType* cell = start_cell + 1; cell < end_cell; cell++) {
3327         *cell = ~0;
3328       }
3329       *end_cell |= end_mask;
3330     }
3331   } else {
3332     for (MarkBit::CellType* cell = start_cell ; cell <= end_cell; cell++) {
3333       *cell = 0;
3334     }
3335   }
3336 
3337   return true;
3338 }
3339 
3340 
IsOnInvalidatedCodeObject(Address addr)3341 static bool IsOnInvalidatedCodeObject(Address addr) {
3342   // We did not record any slots in large objects thus
3343   // we can safely go to the page from the slot address.
3344   Page* p = Page::FromAddress(addr);
3345 
3346   // First check owner's identity because old pointer and old data spaces
3347   // are swept lazily and might still have non-zero mark-bits on some
3348   // pages.
3349   if (p->owner()->identity() != CODE_SPACE) return false;
3350 
3351   // In code space only bits on evacuation candidates (but we don't record
3352   // any slots on them) and under invalidated code objects are non-zero.
3353   MarkBit mark_bit =
3354       p->markbits()->MarkBitFromIndex(Page::FastAddressToMarkbitIndex(addr));
3355 
3356   return mark_bit.Get();
3357 }
3358 
3359 
InvalidateCode(Code * code)3360 void MarkCompactCollector::InvalidateCode(Code* code) {
3361   if (heap_->incremental_marking()->IsCompacting() &&
3362       !ShouldSkipEvacuationSlotRecording(code)) {
3363     ASSERT(compacting_);
3364 
3365     // If the object is white than no slots were recorded on it yet.
3366     MarkBit mark_bit = Marking::MarkBitFrom(code);
3367     if (Marking::IsWhite(mark_bit)) return;
3368 
3369     invalidated_code_.Add(code);
3370   }
3371 }
3372 
3373 
3374 // Return true if the given code is deoptimized or will be deoptimized.
WillBeDeoptimized(Code * code)3375 bool MarkCompactCollector::WillBeDeoptimized(Code* code) {
3376   return code->is_optimized_code() && code->marked_for_deoptimization();
3377 }
3378 
3379 
MarkInvalidatedCode()3380 bool MarkCompactCollector::MarkInvalidatedCode() {
3381   bool code_marked = false;
3382 
3383   int length = invalidated_code_.length();
3384   for (int i = 0; i < length; i++) {
3385     Code* code = invalidated_code_[i];
3386 
3387     if (SetMarkBitsUnderInvalidatedCode(code, true)) {
3388       code_marked = true;
3389     }
3390   }
3391 
3392   return code_marked;
3393 }
3394 
3395 
RemoveDeadInvalidatedCode()3396 void MarkCompactCollector::RemoveDeadInvalidatedCode() {
3397   int length = invalidated_code_.length();
3398   for (int i = 0; i < length; i++) {
3399     if (!IsMarked(invalidated_code_[i])) invalidated_code_[i] = NULL;
3400   }
3401 }
3402 
3403 
ProcessInvalidatedCode(ObjectVisitor * visitor)3404 void MarkCompactCollector::ProcessInvalidatedCode(ObjectVisitor* visitor) {
3405   int length = invalidated_code_.length();
3406   for (int i = 0; i < length; i++) {
3407     Code* code = invalidated_code_[i];
3408     if (code != NULL) {
3409       code->Iterate(visitor);
3410       SetMarkBitsUnderInvalidatedCode(code, false);
3411     }
3412   }
3413   invalidated_code_.Rewind(0);
3414 }
3415 
3416 
EvacuateNewSpaceAndCandidates()3417 void MarkCompactCollector::EvacuateNewSpaceAndCandidates() {
3418   Heap::RelocationLock relocation_lock(heap());
3419 
3420   bool code_slots_filtering_required;
3421   { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP_NEWSPACE);
3422     code_slots_filtering_required = MarkInvalidatedCode();
3423     EvacuateNewSpace();
3424   }
3425 
3426   { GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_EVACUATE_PAGES);
3427     EvacuatePages();
3428   }
3429 
3430   // Second pass: find pointers to new space and update them.
3431   PointersUpdatingVisitor updating_visitor(heap());
3432 
3433   { GCTracer::Scope gc_scope(tracer_,
3434                              GCTracer::Scope::MC_UPDATE_NEW_TO_NEW_POINTERS);
3435     // Update pointers in to space.
3436     SemiSpaceIterator to_it(heap()->new_space()->bottom(),
3437                             heap()->new_space()->top());
3438     for (HeapObject* object = to_it.Next();
3439          object != NULL;
3440          object = to_it.Next()) {
3441       Map* map = object->map();
3442       object->IterateBody(map->instance_type(),
3443                           object->SizeFromMap(map),
3444                           &updating_visitor);
3445     }
3446   }
3447 
3448   { GCTracer::Scope gc_scope(tracer_,
3449                              GCTracer::Scope::MC_UPDATE_ROOT_TO_NEW_POINTERS);
3450     // Update roots.
3451     heap_->IterateRoots(&updating_visitor, VISIT_ALL_IN_SWEEP_NEWSPACE);
3452   }
3453 
3454   { GCTracer::Scope gc_scope(tracer_,
3455                              GCTracer::Scope::MC_UPDATE_OLD_TO_NEW_POINTERS);
3456     StoreBufferRebuildScope scope(heap_,
3457                                   heap_->store_buffer(),
3458                                   &Heap::ScavengeStoreBufferCallback);
3459     heap_->store_buffer()->IteratePointersToNewSpaceAndClearMaps(
3460         &UpdatePointer);
3461   }
3462 
3463   { GCTracer::Scope gc_scope(tracer_,
3464                              GCTracer::Scope::MC_UPDATE_POINTERS_TO_EVACUATED);
3465     SlotsBuffer::UpdateSlotsRecordedIn(heap_,
3466                                        migration_slots_buffer_,
3467                                        code_slots_filtering_required);
3468     if (FLAG_trace_fragmentation) {
3469       PrintF("  migration slots buffer: %d\n",
3470              SlotsBuffer::SizeOfChain(migration_slots_buffer_));
3471     }
3472 
3473     if (compacting_ && was_marked_incrementally_) {
3474       // It's difficult to filter out slots recorded for large objects.
3475       LargeObjectIterator it(heap_->lo_space());
3476       for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) {
3477         // LargeObjectSpace is not swept yet thus we have to skip
3478         // dead objects explicitly.
3479         if (!IsMarked(obj)) continue;
3480 
3481         Page* p = Page::FromAddress(obj->address());
3482         if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION)) {
3483           obj->Iterate(&updating_visitor);
3484           p->ClearFlag(Page::RESCAN_ON_EVACUATION);
3485         }
3486       }
3487     }
3488   }
3489 
3490   int npages = evacuation_candidates_.length();
3491   { GCTracer::Scope gc_scope(
3492       tracer_, GCTracer::Scope::MC_UPDATE_POINTERS_BETWEEN_EVACUATED);
3493     for (int i = 0; i < npages; i++) {
3494       Page* p = evacuation_candidates_[i];
3495       ASSERT(p->IsEvacuationCandidate() ||
3496              p->IsFlagSet(Page::RESCAN_ON_EVACUATION));
3497 
3498       if (p->IsEvacuationCandidate()) {
3499         SlotsBuffer::UpdateSlotsRecordedIn(heap_,
3500                                            p->slots_buffer(),
3501                                            code_slots_filtering_required);
3502         if (FLAG_trace_fragmentation) {
3503           PrintF("  page %p slots buffer: %d\n",
3504                  reinterpret_cast<void*>(p),
3505                  SlotsBuffer::SizeOfChain(p->slots_buffer()));
3506         }
3507 
3508         // Important: skip list should be cleared only after roots were updated
3509         // because root iteration traverses the stack and might have to find
3510         // code objects from non-updated pc pointing into evacuation candidate.
3511         SkipList* list = p->skip_list();
3512         if (list != NULL) list->Clear();
3513       } else {
3514         if (FLAG_gc_verbose) {
3515           PrintF("Sweeping 0x%" V8PRIxPTR " during evacuation.\n",
3516                  reinterpret_cast<intptr_t>(p));
3517         }
3518         PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3519         p->ClearFlag(MemoryChunk::RESCAN_ON_EVACUATION);
3520 
3521         switch (space->identity()) {
3522           case OLD_DATA_SPACE:
3523             SweepConservatively<SWEEP_SEQUENTIALLY>(space, NULL, p);
3524             break;
3525           case OLD_POINTER_SPACE:
3526             SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS,
3527                            IGNORE_SKIP_LIST,
3528                            IGNORE_FREE_SPACE>(
3529                 space, p, &updating_visitor);
3530             break;
3531           case CODE_SPACE:
3532             if (FLAG_zap_code_space) {
3533               SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS,
3534                              REBUILD_SKIP_LIST,
3535                              ZAP_FREE_SPACE>(
3536                   space, p, &updating_visitor);
3537             } else {
3538               SweepPrecisely<SWEEP_AND_VISIT_LIVE_OBJECTS,
3539                              REBUILD_SKIP_LIST,
3540                              IGNORE_FREE_SPACE>(
3541                   space, p, &updating_visitor);
3542             }
3543             break;
3544           default:
3545             UNREACHABLE();
3546             break;
3547         }
3548       }
3549     }
3550   }
3551 
3552   GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_UPDATE_MISC_POINTERS);
3553 
3554   // Update pointers from cells.
3555   HeapObjectIterator cell_iterator(heap_->cell_space());
3556   for (HeapObject* cell = cell_iterator.Next();
3557        cell != NULL;
3558        cell = cell_iterator.Next()) {
3559     if (cell->IsCell()) {
3560       Cell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3561     }
3562   }
3563 
3564   HeapObjectIterator js_global_property_cell_iterator(
3565       heap_->property_cell_space());
3566   for (HeapObject* cell = js_global_property_cell_iterator.Next();
3567        cell != NULL;
3568        cell = js_global_property_cell_iterator.Next()) {
3569     if (cell->IsPropertyCell()) {
3570       PropertyCell::BodyDescriptor::IterateBody(cell, &updating_visitor);
3571     }
3572   }
3573 
3574   heap_->string_table()->Iterate(&updating_visitor);
3575   updating_visitor.VisitPointer(heap_->weak_object_to_code_table_address());
3576   if (heap_->weak_object_to_code_table()->IsHashTable()) {
3577     WeakHashTable* table =
3578         WeakHashTable::cast(heap_->weak_object_to_code_table());
3579     table->Iterate(&updating_visitor);
3580     table->Rehash(heap_->isolate()->factory()->undefined_value());
3581   }
3582 
3583   // Update pointers from external string table.
3584   heap_->UpdateReferencesInExternalStringTable(
3585       &UpdateReferenceInExternalStringTableEntry);
3586 
3587   EvacuationWeakObjectRetainer evacuation_object_retainer;
3588   heap()->ProcessWeakReferences(&evacuation_object_retainer);
3589 
3590   // Visit invalidated code (we ignored all slots on it) and clear mark-bits
3591   // under it.
3592   ProcessInvalidatedCode(&updating_visitor);
3593 
3594   heap_->isolate()->inner_pointer_to_code_cache()->Flush();
3595 
3596 #ifdef VERIFY_HEAP
3597   if (FLAG_verify_heap) {
3598     VerifyEvacuation(heap_);
3599   }
3600 #endif
3601 
3602   slots_buffer_allocator_.DeallocateChain(&migration_slots_buffer_);
3603   ASSERT(migration_slots_buffer_ == NULL);
3604 }
3605 
3606 
MoveEvacuationCandidatesToEndOfPagesList()3607 void MarkCompactCollector::MoveEvacuationCandidatesToEndOfPagesList() {
3608   int npages = evacuation_candidates_.length();
3609   for (int i = 0; i < npages; i++) {
3610     Page* p = evacuation_candidates_[i];
3611     if (!p->IsEvacuationCandidate()) continue;
3612     p->Unlink();
3613     PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3614     p->InsertAfter(space->LastPage());
3615   }
3616 }
3617 
3618 
ReleaseEvacuationCandidates()3619 void MarkCompactCollector::ReleaseEvacuationCandidates() {
3620   int npages = evacuation_candidates_.length();
3621   for (int i = 0; i < npages; i++) {
3622     Page* p = evacuation_candidates_[i];
3623     if (!p->IsEvacuationCandidate()) continue;
3624     PagedSpace* space = static_cast<PagedSpace*>(p->owner());
3625     space->Free(p->area_start(), p->area_size());
3626     p->set_scan_on_scavenge(false);
3627     slots_buffer_allocator_.DeallocateChain(p->slots_buffer_address());
3628     p->ResetLiveBytes();
3629     space->ReleasePage(p);
3630   }
3631   evacuation_candidates_.Rewind(0);
3632   compacting_ = false;
3633   heap()->FreeQueuedChunks();
3634 }
3635 
3636 
3637 static const int kStartTableEntriesPerLine = 5;
3638 static const int kStartTableLines = 171;
3639 static const int kStartTableInvalidLine = 127;
3640 static const int kStartTableUnusedEntry = 126;
3641 
3642 #define _ kStartTableUnusedEntry
3643 #define X kStartTableInvalidLine
3644 // Mark-bit to object start offset table.
3645 //
3646 // The line is indexed by the mark bits in a byte.  The first number on
3647 // the line describes the number of live object starts for the line and the
3648 // other numbers on the line describe the offsets (in words) of the object
3649 // starts.
3650 //
3651 // Since objects are at least 2 words large we don't have entries for two
3652 // consecutive 1 bits.  All entries after 170 have at least 2 consecutive bits.
3653 char kStartTable[kStartTableLines * kStartTableEntriesPerLine] = {
3654   0, _, _, _, _,  // 0
3655   1, 0, _, _, _,  // 1
3656   1, 1, _, _, _,  // 2
3657   X, _, _, _, _,  // 3
3658   1, 2, _, _, _,  // 4
3659   2, 0, 2, _, _,  // 5
3660   X, _, _, _, _,  // 6
3661   X, _, _, _, _,  // 7
3662   1, 3, _, _, _,  // 8
3663   2, 0, 3, _, _,  // 9
3664   2, 1, 3, _, _,  // 10
3665   X, _, _, _, _,  // 11
3666   X, _, _, _, _,  // 12
3667   X, _, _, _, _,  // 13
3668   X, _, _, _, _,  // 14
3669   X, _, _, _, _,  // 15
3670   1, 4, _, _, _,  // 16
3671   2, 0, 4, _, _,  // 17
3672   2, 1, 4, _, _,  // 18
3673   X, _, _, _, _,  // 19
3674   2, 2, 4, _, _,  // 20
3675   3, 0, 2, 4, _,  // 21
3676   X, _, _, _, _,  // 22
3677   X, _, _, _, _,  // 23
3678   X, _, _, _, _,  // 24
3679   X, _, _, _, _,  // 25
3680   X, _, _, _, _,  // 26
3681   X, _, _, _, _,  // 27
3682   X, _, _, _, _,  // 28
3683   X, _, _, _, _,  // 29
3684   X, _, _, _, _,  // 30
3685   X, _, _, _, _,  // 31
3686   1, 5, _, _, _,  // 32
3687   2, 0, 5, _, _,  // 33
3688   2, 1, 5, _, _,  // 34
3689   X, _, _, _, _,  // 35
3690   2, 2, 5, _, _,  // 36
3691   3, 0, 2, 5, _,  // 37
3692   X, _, _, _, _,  // 38
3693   X, _, _, _, _,  // 39
3694   2, 3, 5, _, _,  // 40
3695   3, 0, 3, 5, _,  // 41
3696   3, 1, 3, 5, _,  // 42
3697   X, _, _, _, _,  // 43
3698   X, _, _, _, _,  // 44
3699   X, _, _, _, _,  // 45
3700   X, _, _, _, _,  // 46
3701   X, _, _, _, _,  // 47
3702   X, _, _, _, _,  // 48
3703   X, _, _, _, _,  // 49
3704   X, _, _, _, _,  // 50
3705   X, _, _, _, _,  // 51
3706   X, _, _, _, _,  // 52
3707   X, _, _, _, _,  // 53
3708   X, _, _, _, _,  // 54
3709   X, _, _, _, _,  // 55
3710   X, _, _, _, _,  // 56
3711   X, _, _, _, _,  // 57
3712   X, _, _, _, _,  // 58
3713   X, _, _, _, _,  // 59
3714   X, _, _, _, _,  // 60
3715   X, _, _, _, _,  // 61
3716   X, _, _, _, _,  // 62
3717   X, _, _, _, _,  // 63
3718   1, 6, _, _, _,  // 64
3719   2, 0, 6, _, _,  // 65
3720   2, 1, 6, _, _,  // 66
3721   X, _, _, _, _,  // 67
3722   2, 2, 6, _, _,  // 68
3723   3, 0, 2, 6, _,  // 69
3724   X, _, _, _, _,  // 70
3725   X, _, _, _, _,  // 71
3726   2, 3, 6, _, _,  // 72
3727   3, 0, 3, 6, _,  // 73
3728   3, 1, 3, 6, _,  // 74
3729   X, _, _, _, _,  // 75
3730   X, _, _, _, _,  // 76
3731   X, _, _, _, _,  // 77
3732   X, _, _, _, _,  // 78
3733   X, _, _, _, _,  // 79
3734   2, 4, 6, _, _,  // 80
3735   3, 0, 4, 6, _,  // 81
3736   3, 1, 4, 6, _,  // 82
3737   X, _, _, _, _,  // 83
3738   3, 2, 4, 6, _,  // 84
3739   4, 0, 2, 4, 6,  // 85
3740   X, _, _, _, _,  // 86
3741   X, _, _, _, _,  // 87
3742   X, _, _, _, _,  // 88
3743   X, _, _, _, _,  // 89
3744   X, _, _, _, _,  // 90
3745   X, _, _, _, _,  // 91
3746   X, _, _, _, _,  // 92
3747   X, _, _, _, _,  // 93
3748   X, _, _, _, _,  // 94
3749   X, _, _, _, _,  // 95
3750   X, _, _, _, _,  // 96
3751   X, _, _, _, _,  // 97
3752   X, _, _, _, _,  // 98
3753   X, _, _, _, _,  // 99
3754   X, _, _, _, _,  // 100
3755   X, _, _, _, _,  // 101
3756   X, _, _, _, _,  // 102
3757   X, _, _, _, _,  // 103
3758   X, _, _, _, _,  // 104
3759   X, _, _, _, _,  // 105
3760   X, _, _, _, _,  // 106
3761   X, _, _, _, _,  // 107
3762   X, _, _, _, _,  // 108
3763   X, _, _, _, _,  // 109
3764   X, _, _, _, _,  // 110
3765   X, _, _, _, _,  // 111
3766   X, _, _, _, _,  // 112
3767   X, _, _, _, _,  // 113
3768   X, _, _, _, _,  // 114
3769   X, _, _, _, _,  // 115
3770   X, _, _, _, _,  // 116
3771   X, _, _, _, _,  // 117
3772   X, _, _, _, _,  // 118
3773   X, _, _, _, _,  // 119
3774   X, _, _, _, _,  // 120
3775   X, _, _, _, _,  // 121
3776   X, _, _, _, _,  // 122
3777   X, _, _, _, _,  // 123
3778   X, _, _, _, _,  // 124
3779   X, _, _, _, _,  // 125
3780   X, _, _, _, _,  // 126
3781   X, _, _, _, _,  // 127
3782   1, 7, _, _, _,  // 128
3783   2, 0, 7, _, _,  // 129
3784   2, 1, 7, _, _,  // 130
3785   X, _, _, _, _,  // 131
3786   2, 2, 7, _, _,  // 132
3787   3, 0, 2, 7, _,  // 133
3788   X, _, _, _, _,  // 134
3789   X, _, _, _, _,  // 135
3790   2, 3, 7, _, _,  // 136
3791   3, 0, 3, 7, _,  // 137
3792   3, 1, 3, 7, _,  // 138
3793   X, _, _, _, _,  // 139
3794   X, _, _, _, _,  // 140
3795   X, _, _, _, _,  // 141
3796   X, _, _, _, _,  // 142
3797   X, _, _, _, _,  // 143
3798   2, 4, 7, _, _,  // 144
3799   3, 0, 4, 7, _,  // 145
3800   3, 1, 4, 7, _,  // 146
3801   X, _, _, _, _,  // 147
3802   3, 2, 4, 7, _,  // 148
3803   4, 0, 2, 4, 7,  // 149
3804   X, _, _, _, _,  // 150
3805   X, _, _, _, _,  // 151
3806   X, _, _, _, _,  // 152
3807   X, _, _, _, _,  // 153
3808   X, _, _, _, _,  // 154
3809   X, _, _, _, _,  // 155
3810   X, _, _, _, _,  // 156
3811   X, _, _, _, _,  // 157
3812   X, _, _, _, _,  // 158
3813   X, _, _, _, _,  // 159
3814   2, 5, 7, _, _,  // 160
3815   3, 0, 5, 7, _,  // 161
3816   3, 1, 5, 7, _,  // 162
3817   X, _, _, _, _,  // 163
3818   3, 2, 5, 7, _,  // 164
3819   4, 0, 2, 5, 7,  // 165
3820   X, _, _, _, _,  // 166
3821   X, _, _, _, _,  // 167
3822   3, 3, 5, 7, _,  // 168
3823   4, 0, 3, 5, 7,  // 169
3824   4, 1, 3, 5, 7   // 170
3825 };
3826 #undef _
3827 #undef X
3828 
3829 
3830 // Takes a word of mark bits.  Returns the number of objects that start in the
3831 // range.  Puts the offsets of the words in the supplied array.
MarkWordToObjectStarts(uint32_t mark_bits,int * starts)3832 static inline int MarkWordToObjectStarts(uint32_t mark_bits, int* starts) {
3833   int objects = 0;
3834   int offset = 0;
3835 
3836   // No consecutive 1 bits.
3837   ASSERT((mark_bits & 0x180) != 0x180);
3838   ASSERT((mark_bits & 0x18000) != 0x18000);
3839   ASSERT((mark_bits & 0x1800000) != 0x1800000);
3840 
3841   while (mark_bits != 0) {
3842     int byte = (mark_bits & 0xff);
3843     mark_bits >>= 8;
3844     if (byte != 0) {
3845       ASSERT(byte < kStartTableLines);  // No consecutive 1 bits.
3846       char* table = kStartTable + byte * kStartTableEntriesPerLine;
3847       int objects_in_these_8_words = table[0];
3848       ASSERT(objects_in_these_8_words != kStartTableInvalidLine);
3849       ASSERT(objects_in_these_8_words < kStartTableEntriesPerLine);
3850       for (int i = 0; i < objects_in_these_8_words; i++) {
3851         starts[objects++] = offset + table[1 + i];
3852       }
3853     }
3854     offset += 8;
3855   }
3856   return objects;
3857 }
3858 
3859 
DigestFreeStart(Address approximate_free_start,uint32_t free_start_cell)3860 static inline Address DigestFreeStart(Address approximate_free_start,
3861                                       uint32_t free_start_cell) {
3862   ASSERT(free_start_cell != 0);
3863 
3864   // No consecutive 1 bits.
3865   ASSERT((free_start_cell & (free_start_cell << 1)) == 0);
3866 
3867   int offsets[16];
3868   uint32_t cell = free_start_cell;
3869   int offset_of_last_live;
3870   if ((cell & 0x80000000u) != 0) {
3871     // This case would overflow below.
3872     offset_of_last_live = 31;
3873   } else {
3874     // Remove all but one bit, the most significant.  This is an optimization
3875     // that may or may not be worthwhile.
3876     cell |= cell >> 16;
3877     cell |= cell >> 8;
3878     cell |= cell >> 4;
3879     cell |= cell >> 2;
3880     cell |= cell >> 1;
3881     cell = (cell + 1) >> 1;
3882     int live_objects = MarkWordToObjectStarts(cell, offsets);
3883     ASSERT(live_objects == 1);
3884     offset_of_last_live = offsets[live_objects - 1];
3885   }
3886   Address last_live_start =
3887       approximate_free_start + offset_of_last_live * kPointerSize;
3888   HeapObject* last_live = HeapObject::FromAddress(last_live_start);
3889   Address free_start = last_live_start + last_live->Size();
3890   return free_start;
3891 }
3892 
3893 
StartOfLiveObject(Address block_address,uint32_t cell)3894 static inline Address StartOfLiveObject(Address block_address, uint32_t cell) {
3895   ASSERT(cell != 0);
3896 
3897   // No consecutive 1 bits.
3898   ASSERT((cell & (cell << 1)) == 0);
3899 
3900   int offsets[16];
3901   if (cell == 0x80000000u) {  // Avoid overflow below.
3902     return block_address + 31 * kPointerSize;
3903   }
3904   uint32_t first_set_bit = ((cell ^ (cell - 1)) + 1) >> 1;
3905   ASSERT((first_set_bit & cell) == first_set_bit);
3906   int live_objects = MarkWordToObjectStarts(first_set_bit, offsets);
3907   ASSERT(live_objects == 1);
3908   USE(live_objects);
3909   return block_address + offsets[0] * kPointerSize;
3910 }
3911 
3912 
3913 template<MarkCompactCollector::SweepingParallelism mode>
Free(PagedSpace * space,FreeList * free_list,Address start,int size)3914 static intptr_t Free(PagedSpace* space,
3915                      FreeList* free_list,
3916                      Address start,
3917                      int size) {
3918   if (mode == MarkCompactCollector::SWEEP_SEQUENTIALLY) {
3919     return space->Free(start, size);
3920   } else {
3921     return size - free_list->Free(start, size);
3922   }
3923 }
3924 
3925 
3926 // Force instantiation of templatized SweepConservatively method for
3927 // SWEEP_SEQUENTIALLY mode.
3928 template intptr_t MarkCompactCollector::
3929     SweepConservatively<MarkCompactCollector::SWEEP_SEQUENTIALLY>(
3930         PagedSpace*, FreeList*, Page*);
3931 
3932 
3933 // Force instantiation of templatized SweepConservatively method for
3934 // SWEEP_IN_PARALLEL mode.
3935 template intptr_t MarkCompactCollector::
3936     SweepConservatively<MarkCompactCollector::SWEEP_IN_PARALLEL>(
3937         PagedSpace*, FreeList*, Page*);
3938 
3939 
3940 // Sweeps a space conservatively.  After this has been done the larger free
3941 // spaces have been put on the free list and the smaller ones have been
3942 // ignored and left untouched.  A free space is always either ignored or put
3943 // on the free list, never split up into two parts.  This is important
3944 // because it means that any FreeSpace maps left actually describe a region of
3945 // memory that can be ignored when scanning.  Dead objects other than free
3946 // spaces will not contain the free space map.
3947 template<MarkCompactCollector::SweepingParallelism mode>
SweepConservatively(PagedSpace * space,FreeList * free_list,Page * p)3948 intptr_t MarkCompactCollector::SweepConservatively(PagedSpace* space,
3949                                                    FreeList* free_list,
3950                                                    Page* p) {
3951   ASSERT(!p->IsEvacuationCandidate() && !p->WasSwept());
3952   ASSERT((mode == MarkCompactCollector::SWEEP_IN_PARALLEL &&
3953          free_list != NULL) ||
3954          (mode == MarkCompactCollector::SWEEP_SEQUENTIALLY &&
3955          free_list == NULL));
3956 
3957   // When parallel sweeping is active, the page will be marked after
3958   // sweeping by the main thread.
3959   if (mode != MarkCompactCollector::SWEEP_IN_PARALLEL) {
3960     p->MarkSweptConservatively();
3961   }
3962 
3963   intptr_t freed_bytes = 0;
3964   size_t size = 0;
3965 
3966   // Skip over all the dead objects at the start of the page and mark them free.
3967   Address cell_base = 0;
3968   MarkBit::CellType* cell = NULL;
3969   MarkBitCellIterator it(p);
3970   for (; !it.Done(); it.Advance()) {
3971     cell_base = it.CurrentCellBase();
3972     cell = it.CurrentCell();
3973     if (*cell != 0) break;
3974   }
3975 
3976   if (it.Done()) {
3977     size = p->area_end() - p->area_start();
3978     freed_bytes += Free<mode>(space, free_list, p->area_start(),
3979                               static_cast<int>(size));
3980     ASSERT_EQ(0, p->LiveBytes());
3981     return freed_bytes;
3982   }
3983 
3984   // Grow the size of the start-of-page free space a little to get up to the
3985   // first live object.
3986   Address free_end = StartOfLiveObject(cell_base, *cell);
3987   // Free the first free space.
3988   size = free_end - p->area_start();
3989   freed_bytes += Free<mode>(space, free_list, p->area_start(),
3990                             static_cast<int>(size));
3991 
3992   // The start of the current free area is represented in undigested form by
3993   // the address of the last 32-word section that contained a live object and
3994   // the marking bitmap for that cell, which describes where the live object
3995   // started.  Unless we find a large free space in the bitmap we will not
3996   // digest this pair into a real address.  We start the iteration here at the
3997   // first word in the marking bit map that indicates a live object.
3998   Address free_start = cell_base;
3999   MarkBit::CellType free_start_cell = *cell;
4000 
4001   for (; !it.Done(); it.Advance()) {
4002     cell_base = it.CurrentCellBase();
4003     cell = it.CurrentCell();
4004     if (*cell != 0) {
4005       // We have a live object.  Check approximately whether it is more than 32
4006       // words since the last live object.
4007       if (cell_base - free_start > 32 * kPointerSize) {
4008         free_start = DigestFreeStart(free_start, free_start_cell);
4009         if (cell_base - free_start > 32 * kPointerSize) {
4010           // Now that we know the exact start of the free space it still looks
4011           // like we have a large enough free space to be worth bothering with.
4012           // so now we need to find the start of the first live object at the
4013           // end of the free space.
4014           free_end = StartOfLiveObject(cell_base, *cell);
4015           freed_bytes += Free<mode>(space, free_list, free_start,
4016                                     static_cast<int>(free_end - free_start));
4017         }
4018       }
4019       // Update our undigested record of where the current free area started.
4020       free_start = cell_base;
4021       free_start_cell = *cell;
4022       // Clear marking bits for current cell.
4023       *cell = 0;
4024     }
4025   }
4026 
4027   // Handle the free space at the end of the page.
4028   if (cell_base - free_start > 32 * kPointerSize) {
4029     free_start = DigestFreeStart(free_start, free_start_cell);
4030     freed_bytes += Free<mode>(space, free_list, free_start,
4031                               static_cast<int>(p->area_end() - free_start));
4032   }
4033 
4034   p->ResetLiveBytes();
4035   return freed_bytes;
4036 }
4037 
4038 
SweepInParallel(PagedSpace * space)4039 void MarkCompactCollector::SweepInParallel(PagedSpace* space) {
4040   PageIterator it(space);
4041   FreeList* free_list = space == heap()->old_pointer_space()
4042                             ? free_list_old_pointer_space_.get()
4043                             : free_list_old_data_space_.get();
4044   FreeList private_free_list(space);
4045   while (it.has_next()) {
4046     Page* p = it.next();
4047 
4048     if (p->TryParallelSweeping()) {
4049       SweepConservatively<SWEEP_IN_PARALLEL>(space, &private_free_list, p);
4050       free_list->Concatenate(&private_free_list);
4051       p->set_parallel_sweeping(MemoryChunk::PARALLEL_SWEEPING_FINALIZE);
4052     }
4053     if (p == space->end_of_unswept_pages()) break;
4054   }
4055 }
4056 
4057 
SweepSpace(PagedSpace * space,SweeperType sweeper)4058 void MarkCompactCollector::SweepSpace(PagedSpace* space, SweeperType sweeper) {
4059   space->set_was_swept_conservatively(sweeper == CONSERVATIVE ||
4060                                       sweeper == PARALLEL_CONSERVATIVE ||
4061                                       sweeper == CONCURRENT_CONSERVATIVE);
4062   space->ClearStats();
4063 
4064   // We defensively initialize end_of_unswept_pages_ here with the first page
4065   // of the pages list.
4066   space->set_end_of_unswept_pages(space->FirstPage());
4067 
4068   PageIterator it(space);
4069 
4070   int pages_swept = 0;
4071   bool unused_page_present = false;
4072   bool parallel_sweeping_active = false;
4073 
4074   while (it.has_next()) {
4075     Page* p = it.next();
4076     ASSERT(p->parallel_sweeping() == MemoryChunk::PARALLEL_SWEEPING_DONE);
4077 
4078     // Clear sweeping flags indicating that marking bits are still intact.
4079     p->ClearSweptPrecisely();
4080     p->ClearSweptConservatively();
4081 
4082     if (p->IsFlagSet(Page::RESCAN_ON_EVACUATION) ||
4083         p->IsEvacuationCandidate()) {
4084       // Will be processed in EvacuateNewSpaceAndCandidates.
4085       ASSERT(evacuation_candidates_.length() > 0);
4086       continue;
4087     }
4088 
4089     // One unused page is kept, all further are released before sweeping them.
4090     if (p->LiveBytes() == 0) {
4091       if (unused_page_present) {
4092         if (FLAG_gc_verbose) {
4093           PrintF("Sweeping 0x%" V8PRIxPTR " released page.\n",
4094                  reinterpret_cast<intptr_t>(p));
4095         }
4096         // Adjust unswept free bytes because releasing a page expects said
4097         // counter to be accurate for unswept pages.
4098         space->IncreaseUnsweptFreeBytes(p);
4099         space->ReleasePage(p);
4100         continue;
4101       }
4102       unused_page_present = true;
4103     }
4104 
4105     switch (sweeper) {
4106       case CONSERVATIVE: {
4107         if (FLAG_gc_verbose) {
4108           PrintF("Sweeping 0x%" V8PRIxPTR " conservatively.\n",
4109                  reinterpret_cast<intptr_t>(p));
4110         }
4111         SweepConservatively<SWEEP_SEQUENTIALLY>(space, NULL, p);
4112         pages_swept++;
4113         break;
4114       }
4115       case CONCURRENT_CONSERVATIVE:
4116       case PARALLEL_CONSERVATIVE: {
4117         if (!parallel_sweeping_active) {
4118           if (FLAG_gc_verbose) {
4119             PrintF("Sweeping 0x%" V8PRIxPTR " conservatively.\n",
4120                    reinterpret_cast<intptr_t>(p));
4121           }
4122           SweepConservatively<SWEEP_SEQUENTIALLY>(space, NULL, p);
4123           pages_swept++;
4124           parallel_sweeping_active = true;
4125         } else {
4126           if (FLAG_gc_verbose) {
4127             PrintF("Sweeping 0x%" V8PRIxPTR " conservatively in parallel.\n",
4128                    reinterpret_cast<intptr_t>(p));
4129           }
4130           p->set_parallel_sweeping(MemoryChunk::PARALLEL_SWEEPING_PENDING);
4131           space->IncreaseUnsweptFreeBytes(p);
4132         }
4133         space->set_end_of_unswept_pages(p);
4134         break;
4135       }
4136       case PRECISE: {
4137         if (FLAG_gc_verbose) {
4138           PrintF("Sweeping 0x%" V8PRIxPTR " precisely.\n",
4139                  reinterpret_cast<intptr_t>(p));
4140         }
4141         if (space->identity() == CODE_SPACE && FLAG_zap_code_space) {
4142           SweepPrecisely<SWEEP_ONLY, REBUILD_SKIP_LIST, ZAP_FREE_SPACE>(
4143               space, p, NULL);
4144         } else if (space->identity() == CODE_SPACE) {
4145           SweepPrecisely<SWEEP_ONLY, REBUILD_SKIP_LIST, IGNORE_FREE_SPACE>(
4146               space, p, NULL);
4147         } else {
4148           SweepPrecisely<SWEEP_ONLY, IGNORE_SKIP_LIST, IGNORE_FREE_SPACE>(
4149               space, p, NULL);
4150         }
4151         pages_swept++;
4152         break;
4153       }
4154       default: {
4155         UNREACHABLE();
4156       }
4157     }
4158   }
4159 
4160   if (FLAG_gc_verbose) {
4161     PrintF("SweepSpace: %s (%d pages swept)\n",
4162            AllocationSpaceName(space->identity()),
4163            pages_swept);
4164   }
4165 
4166   // Give pages that are queued to be freed back to the OS.
4167   heap()->FreeQueuedChunks();
4168 }
4169 
4170 
SweepSpaces()4171 void MarkCompactCollector::SweepSpaces() {
4172   GCTracer::Scope gc_scope(tracer_, GCTracer::Scope::MC_SWEEP);
4173 #ifdef DEBUG
4174   state_ = SWEEP_SPACES;
4175 #endif
4176   SweeperType how_to_sweep = CONSERVATIVE;
4177   if (AreSweeperThreadsActivated()) {
4178     if (FLAG_parallel_sweeping) how_to_sweep = PARALLEL_CONSERVATIVE;
4179     if (FLAG_concurrent_sweeping) how_to_sweep = CONCURRENT_CONSERVATIVE;
4180   }
4181   if (sweep_precisely_) how_to_sweep = PRECISE;
4182 
4183   MoveEvacuationCandidatesToEndOfPagesList();
4184 
4185   // Noncompacting collections simply sweep the spaces to clear the mark
4186   // bits and free the nonlive blocks (for old and map spaces).  We sweep
4187   // the map space last because freeing non-live maps overwrites them and
4188   // the other spaces rely on possibly non-live maps to get the sizes for
4189   // non-live objects.
4190   { GCTracer::Scope sweep_scope(tracer_, GCTracer::Scope::MC_SWEEP_OLDSPACE);
4191     { SequentialSweepingScope scope(this);
4192       SweepSpace(heap()->old_pointer_space(), how_to_sweep);
4193       SweepSpace(heap()->old_data_space(), how_to_sweep);
4194     }
4195 
4196     if (how_to_sweep == PARALLEL_CONSERVATIVE ||
4197         how_to_sweep == CONCURRENT_CONSERVATIVE) {
4198       StartSweeperThreads();
4199     }
4200 
4201     if (how_to_sweep == PARALLEL_CONSERVATIVE) {
4202       WaitUntilSweepingCompleted();
4203     }
4204   }
4205   RemoveDeadInvalidatedCode();
4206   SweepSpace(heap()->code_space(), PRECISE);
4207 
4208   SweepSpace(heap()->cell_space(), PRECISE);
4209   SweepSpace(heap()->property_cell_space(), PRECISE);
4210 
4211   EvacuateNewSpaceAndCandidates();
4212 
4213   // ClearNonLiveTransitions depends on precise sweeping of map space to
4214   // detect whether unmarked map became dead in this collection or in one
4215   // of the previous ones.
4216   SweepSpace(heap()->map_space(), PRECISE);
4217 
4218   // Deallocate unmarked objects and clear marked bits for marked objects.
4219   heap_->lo_space()->FreeUnmarkedObjects();
4220 
4221   // Deallocate evacuated candidate pages.
4222   ReleaseEvacuationCandidates();
4223 }
4224 
4225 
ParallelSweepSpaceComplete(PagedSpace * space)4226 void MarkCompactCollector::ParallelSweepSpaceComplete(PagedSpace* space) {
4227   PageIterator it(space);
4228   while (it.has_next()) {
4229     Page* p = it.next();
4230     if (p->parallel_sweeping() == MemoryChunk::PARALLEL_SWEEPING_FINALIZE) {
4231       p->set_parallel_sweeping(MemoryChunk::PARALLEL_SWEEPING_DONE);
4232       p->MarkSweptConservatively();
4233     }
4234     ASSERT(p->parallel_sweeping() == MemoryChunk::PARALLEL_SWEEPING_DONE);
4235   }
4236 }
4237 
4238 
ParallelSweepSpacesComplete()4239 void MarkCompactCollector::ParallelSweepSpacesComplete() {
4240   ParallelSweepSpaceComplete(heap()->old_pointer_space());
4241   ParallelSweepSpaceComplete(heap()->old_data_space());
4242 }
4243 
4244 
EnableCodeFlushing(bool enable)4245 void MarkCompactCollector::EnableCodeFlushing(bool enable) {
4246   if (isolate()->debug()->is_loaded() ||
4247       isolate()->debug()->has_break_points()) {
4248     enable = false;
4249   }
4250 
4251   if (enable) {
4252     if (code_flusher_ != NULL) return;
4253     code_flusher_ = new CodeFlusher(isolate());
4254   } else {
4255     if (code_flusher_ == NULL) return;
4256     code_flusher_->EvictAllCandidates();
4257     delete code_flusher_;
4258     code_flusher_ = NULL;
4259   }
4260 
4261   if (FLAG_trace_code_flushing) {
4262     PrintF("[code-flushing is now %s]\n", enable ? "on" : "off");
4263   }
4264 }
4265 
4266 
4267 // TODO(1466) ReportDeleteIfNeeded is not called currently.
4268 // Our profiling tools do not expect intersections between
4269 // code objects. We should either reenable it or change our tools.
ReportDeleteIfNeeded(HeapObject * obj,Isolate * isolate)4270 void MarkCompactCollector::ReportDeleteIfNeeded(HeapObject* obj,
4271                                                 Isolate* isolate) {
4272 #ifdef ENABLE_GDB_JIT_INTERFACE
4273   if (obj->IsCode()) {
4274     GDBJITInterface::RemoveCode(reinterpret_cast<Code*>(obj));
4275   }
4276 #endif
4277   if (obj->IsCode()) {
4278     PROFILE(isolate, CodeDeleteEvent(obj->address()));
4279   }
4280 }
4281 
4282 
isolate() const4283 Isolate* MarkCompactCollector::isolate() const {
4284   return heap_->isolate();
4285 }
4286 
4287 
Initialize()4288 void MarkCompactCollector::Initialize() {
4289   MarkCompactMarkingVisitor::Initialize();
4290   IncrementalMarking::Initialize();
4291 }
4292 
4293 
IsTypedSlot(ObjectSlot slot)4294 bool SlotsBuffer::IsTypedSlot(ObjectSlot slot) {
4295   return reinterpret_cast<uintptr_t>(slot) < NUMBER_OF_SLOT_TYPES;
4296 }
4297 
4298 
AddTo(SlotsBufferAllocator * allocator,SlotsBuffer ** buffer_address,SlotType type,Address addr,AdditionMode mode)4299 bool SlotsBuffer::AddTo(SlotsBufferAllocator* allocator,
4300                         SlotsBuffer** buffer_address,
4301                         SlotType type,
4302                         Address addr,
4303                         AdditionMode mode) {
4304   SlotsBuffer* buffer = *buffer_address;
4305   if (buffer == NULL || !buffer->HasSpaceForTypedSlot()) {
4306     if (mode == FAIL_ON_OVERFLOW && ChainLengthThresholdReached(buffer)) {
4307       allocator->DeallocateChain(buffer_address);
4308       return false;
4309     }
4310     buffer = allocator->AllocateBuffer(buffer);
4311     *buffer_address = buffer;
4312   }
4313   ASSERT(buffer->HasSpaceForTypedSlot());
4314   buffer->Add(reinterpret_cast<ObjectSlot>(type));
4315   buffer->Add(reinterpret_cast<ObjectSlot>(addr));
4316   return true;
4317 }
4318 
4319 
SlotTypeForRMode(RelocInfo::Mode rmode)4320 static inline SlotsBuffer::SlotType SlotTypeForRMode(RelocInfo::Mode rmode) {
4321   if (RelocInfo::IsCodeTarget(rmode)) {
4322     return SlotsBuffer::CODE_TARGET_SLOT;
4323   } else if (RelocInfo::IsEmbeddedObject(rmode)) {
4324     return SlotsBuffer::EMBEDDED_OBJECT_SLOT;
4325   } else if (RelocInfo::IsDebugBreakSlot(rmode)) {
4326     return SlotsBuffer::DEBUG_TARGET_SLOT;
4327   } else if (RelocInfo::IsJSReturn(rmode)) {
4328     return SlotsBuffer::JS_RETURN_SLOT;
4329   }
4330   UNREACHABLE();
4331   return SlotsBuffer::NUMBER_OF_SLOT_TYPES;
4332 }
4333 
4334 
RecordRelocSlot(RelocInfo * rinfo,Object * target)4335 void MarkCompactCollector::RecordRelocSlot(RelocInfo* rinfo, Object* target) {
4336   Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4337   RelocInfo::Mode rmode = rinfo->rmode();
4338   if (target_page->IsEvacuationCandidate() &&
4339       (rinfo->host() == NULL ||
4340        !ShouldSkipEvacuationSlotRecording(rinfo->host()))) {
4341     bool success;
4342     if (RelocInfo::IsEmbeddedObject(rmode) && rinfo->IsInConstantPool()) {
4343       // This doesn't need to be typed since it is just a normal heap pointer.
4344       Object** target_pointer =
4345           reinterpret_cast<Object**>(rinfo->constant_pool_entry_address());
4346       success = SlotsBuffer::AddTo(&slots_buffer_allocator_,
4347                                    target_page->slots_buffer_address(),
4348                                    target_pointer,
4349                                    SlotsBuffer::FAIL_ON_OVERFLOW);
4350     } else if (RelocInfo::IsCodeTarget(rmode) && rinfo->IsInConstantPool()) {
4351       success = SlotsBuffer::AddTo(&slots_buffer_allocator_,
4352                                    target_page->slots_buffer_address(),
4353                                    SlotsBuffer::CODE_ENTRY_SLOT,
4354                                    rinfo->constant_pool_entry_address(),
4355                                    SlotsBuffer::FAIL_ON_OVERFLOW);
4356     } else {
4357       success = SlotsBuffer::AddTo(&slots_buffer_allocator_,
4358                                   target_page->slots_buffer_address(),
4359                                   SlotTypeForRMode(rmode),
4360                                   rinfo->pc(),
4361                                   SlotsBuffer::FAIL_ON_OVERFLOW);
4362     }
4363     if (!success) {
4364       EvictEvacuationCandidate(target_page);
4365     }
4366   }
4367 }
4368 
4369 
RecordCodeEntrySlot(Address slot,Code * target)4370 void MarkCompactCollector::RecordCodeEntrySlot(Address slot, Code* target) {
4371   Page* target_page = Page::FromAddress(reinterpret_cast<Address>(target));
4372   if (target_page->IsEvacuationCandidate() &&
4373       !ShouldSkipEvacuationSlotRecording(reinterpret_cast<Object**>(slot))) {
4374     if (!SlotsBuffer::AddTo(&slots_buffer_allocator_,
4375                             target_page->slots_buffer_address(),
4376                             SlotsBuffer::CODE_ENTRY_SLOT,
4377                             slot,
4378                             SlotsBuffer::FAIL_ON_OVERFLOW)) {
4379       EvictEvacuationCandidate(target_page);
4380     }
4381   }
4382 }
4383 
4384 
RecordCodeTargetPatch(Address pc,Code * target)4385 void MarkCompactCollector::RecordCodeTargetPatch(Address pc, Code* target) {
4386   ASSERT(heap()->gc_state() == Heap::MARK_COMPACT);
4387   if (is_compacting()) {
4388     Code* host = isolate()->inner_pointer_to_code_cache()->
4389         GcSafeFindCodeForInnerPointer(pc);
4390     MarkBit mark_bit = Marking::MarkBitFrom(host);
4391     if (Marking::IsBlack(mark_bit)) {
4392       RelocInfo rinfo(pc, RelocInfo::CODE_TARGET, 0, host);
4393       RecordRelocSlot(&rinfo, target);
4394     }
4395   }
4396 }
4397 
4398 
DecodeSlotType(SlotsBuffer::ObjectSlot slot)4399 static inline SlotsBuffer::SlotType DecodeSlotType(
4400     SlotsBuffer::ObjectSlot slot) {
4401   return static_cast<SlotsBuffer::SlotType>(reinterpret_cast<intptr_t>(slot));
4402 }
4403 
4404 
UpdateSlots(Heap * heap)4405 void SlotsBuffer::UpdateSlots(Heap* heap) {
4406   PointersUpdatingVisitor v(heap);
4407 
4408   for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4409     ObjectSlot slot = slots_[slot_idx];
4410     if (!IsTypedSlot(slot)) {
4411       PointersUpdatingVisitor::UpdateSlot(heap, slot);
4412     } else {
4413       ++slot_idx;
4414       ASSERT(slot_idx < idx_);
4415       UpdateSlot(heap->isolate(),
4416                  &v,
4417                  DecodeSlotType(slot),
4418                  reinterpret_cast<Address>(slots_[slot_idx]));
4419     }
4420   }
4421 }
4422 
4423 
UpdateSlotsWithFilter(Heap * heap)4424 void SlotsBuffer::UpdateSlotsWithFilter(Heap* heap) {
4425   PointersUpdatingVisitor v(heap);
4426 
4427   for (int slot_idx = 0; slot_idx < idx_; ++slot_idx) {
4428     ObjectSlot slot = slots_[slot_idx];
4429     if (!IsTypedSlot(slot)) {
4430       if (!IsOnInvalidatedCodeObject(reinterpret_cast<Address>(slot))) {
4431         PointersUpdatingVisitor::UpdateSlot(heap, slot);
4432       }
4433     } else {
4434       ++slot_idx;
4435       ASSERT(slot_idx < idx_);
4436       Address pc = reinterpret_cast<Address>(slots_[slot_idx]);
4437       if (!IsOnInvalidatedCodeObject(pc)) {
4438         UpdateSlot(heap->isolate(),
4439                    &v,
4440                    DecodeSlotType(slot),
4441                    reinterpret_cast<Address>(slots_[slot_idx]));
4442       }
4443     }
4444   }
4445 }
4446 
4447 
AllocateBuffer(SlotsBuffer * next_buffer)4448 SlotsBuffer* SlotsBufferAllocator::AllocateBuffer(SlotsBuffer* next_buffer) {
4449   return new SlotsBuffer(next_buffer);
4450 }
4451 
4452 
DeallocateBuffer(SlotsBuffer * buffer)4453 void SlotsBufferAllocator::DeallocateBuffer(SlotsBuffer* buffer) {
4454   delete buffer;
4455 }
4456 
4457 
DeallocateChain(SlotsBuffer ** buffer_address)4458 void SlotsBufferAllocator::DeallocateChain(SlotsBuffer** buffer_address) {
4459   SlotsBuffer* buffer = *buffer_address;
4460   while (buffer != NULL) {
4461     SlotsBuffer* next_buffer = buffer->next();
4462     DeallocateBuffer(buffer);
4463     buffer = next_buffer;
4464   }
4465   *buffer_address = NULL;
4466 }
4467 
4468 
4469 } }  // namespace v8::internal
4470