1 //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for C++ declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTConsumer.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/ASTLambda.h"
18 #include "clang/AST/ASTMutationListener.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/EvaluatedExprVisitor.h"
22 #include "clang/AST/ExprCXX.h"
23 #include "clang/AST/RecordLayout.h"
24 #include "clang/AST/RecursiveASTVisitor.h"
25 #include "clang/AST/StmtVisitor.h"
26 #include "clang/AST/TypeLoc.h"
27 #include "clang/AST/TypeOrdering.h"
28 #include "clang/Basic/PartialDiagnostic.h"
29 #include "clang/Basic/TargetInfo.h"
30 #include "clang/Lex/LiteralSupport.h"
31 #include "clang/Lex/Preprocessor.h"
32 #include "clang/Sema/CXXFieldCollector.h"
33 #include "clang/Sema/DeclSpec.h"
34 #include "clang/Sema/Initialization.h"
35 #include "clang/Sema/Lookup.h"
36 #include "clang/Sema/ParsedTemplate.h"
37 #include "clang/Sema/Scope.h"
38 #include "clang/Sema/ScopeInfo.h"
39 #include "llvm/ADT/STLExtras.h"
40 #include "llvm/ADT/SmallString.h"
41 #include <map>
42 #include <set>
43
44 using namespace clang;
45
46 //===----------------------------------------------------------------------===//
47 // CheckDefaultArgumentVisitor
48 //===----------------------------------------------------------------------===//
49
50 namespace {
51 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
52 /// the default argument of a parameter to determine whether it
53 /// contains any ill-formed subexpressions. For example, this will
54 /// diagnose the use of local variables or parameters within the
55 /// default argument expression.
56 class CheckDefaultArgumentVisitor
57 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
58 Expr *DefaultArg;
59 Sema *S;
60
61 public:
CheckDefaultArgumentVisitor(Expr * defarg,Sema * s)62 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
63 : DefaultArg(defarg), S(s) {}
64
65 bool VisitExpr(Expr *Node);
66 bool VisitDeclRefExpr(DeclRefExpr *DRE);
67 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
68 bool VisitLambdaExpr(LambdaExpr *Lambda);
69 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
70 };
71
72 /// VisitExpr - Visit all of the children of this expression.
VisitExpr(Expr * Node)73 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
74 bool IsInvalid = false;
75 for (Stmt::child_range I = Node->children(); I; ++I)
76 IsInvalid |= Visit(*I);
77 return IsInvalid;
78 }
79
80 /// VisitDeclRefExpr - Visit a reference to a declaration, to
81 /// determine whether this declaration can be used in the default
82 /// argument expression.
VisitDeclRefExpr(DeclRefExpr * DRE)83 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
84 NamedDecl *Decl = DRE->getDecl();
85 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
86 // C++ [dcl.fct.default]p9
87 // Default arguments are evaluated each time the function is
88 // called. The order of evaluation of function arguments is
89 // unspecified. Consequently, parameters of a function shall not
90 // be used in default argument expressions, even if they are not
91 // evaluated. Parameters of a function declared before a default
92 // argument expression are in scope and can hide namespace and
93 // class member names.
94 return S->Diag(DRE->getLocStart(),
95 diag::err_param_default_argument_references_param)
96 << Param->getDeclName() << DefaultArg->getSourceRange();
97 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
98 // C++ [dcl.fct.default]p7
99 // Local variables shall not be used in default argument
100 // expressions.
101 if (VDecl->isLocalVarDecl())
102 return S->Diag(DRE->getLocStart(),
103 diag::err_param_default_argument_references_local)
104 << VDecl->getDeclName() << DefaultArg->getSourceRange();
105 }
106
107 return false;
108 }
109
110 /// VisitCXXThisExpr - Visit a C++ "this" expression.
VisitCXXThisExpr(CXXThisExpr * ThisE)111 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
112 // C++ [dcl.fct.default]p8:
113 // The keyword this shall not be used in a default argument of a
114 // member function.
115 return S->Diag(ThisE->getLocStart(),
116 diag::err_param_default_argument_references_this)
117 << ThisE->getSourceRange();
118 }
119
VisitPseudoObjectExpr(PseudoObjectExpr * POE)120 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
121 bool Invalid = false;
122 for (PseudoObjectExpr::semantics_iterator
123 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
124 Expr *E = *i;
125
126 // Look through bindings.
127 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
128 E = OVE->getSourceExpr();
129 assert(E && "pseudo-object binding without source expression?");
130 }
131
132 Invalid |= Visit(E);
133 }
134 return Invalid;
135 }
136
VisitLambdaExpr(LambdaExpr * Lambda)137 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
138 // C++11 [expr.lambda.prim]p13:
139 // A lambda-expression appearing in a default argument shall not
140 // implicitly or explicitly capture any entity.
141 if (Lambda->capture_begin() == Lambda->capture_end())
142 return false;
143
144 return S->Diag(Lambda->getLocStart(),
145 diag::err_lambda_capture_default_arg);
146 }
147 }
148
149 void
CalledDecl(SourceLocation CallLoc,const CXXMethodDecl * Method)150 Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
151 const CXXMethodDecl *Method) {
152 // If we have an MSAny spec already, don't bother.
153 if (!Method || ComputedEST == EST_MSAny)
154 return;
155
156 const FunctionProtoType *Proto
157 = Method->getType()->getAs<FunctionProtoType>();
158 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
159 if (!Proto)
160 return;
161
162 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
163
164 // If this function can throw any exceptions, make a note of that.
165 if (EST == EST_MSAny || EST == EST_None) {
166 ClearExceptions();
167 ComputedEST = EST;
168 return;
169 }
170
171 // FIXME: If the call to this decl is using any of its default arguments, we
172 // need to search them for potentially-throwing calls.
173
174 // If this function has a basic noexcept, it doesn't affect the outcome.
175 if (EST == EST_BasicNoexcept)
176 return;
177
178 // If we have a throw-all spec at this point, ignore the function.
179 if (ComputedEST == EST_None)
180 return;
181
182 // If we're still at noexcept(true) and there's a nothrow() callee,
183 // change to that specification.
184 if (EST == EST_DynamicNone) {
185 if (ComputedEST == EST_BasicNoexcept)
186 ComputedEST = EST_DynamicNone;
187 return;
188 }
189
190 // Check out noexcept specs.
191 if (EST == EST_ComputedNoexcept) {
192 FunctionProtoType::NoexceptResult NR =
193 Proto->getNoexceptSpec(Self->Context);
194 assert(NR != FunctionProtoType::NR_NoNoexcept &&
195 "Must have noexcept result for EST_ComputedNoexcept.");
196 assert(NR != FunctionProtoType::NR_Dependent &&
197 "Should not generate implicit declarations for dependent cases, "
198 "and don't know how to handle them anyway.");
199
200 // noexcept(false) -> no spec on the new function
201 if (NR == FunctionProtoType::NR_Throw) {
202 ClearExceptions();
203 ComputedEST = EST_None;
204 }
205 // noexcept(true) won't change anything either.
206 return;
207 }
208
209 assert(EST == EST_Dynamic && "EST case not considered earlier.");
210 assert(ComputedEST != EST_None &&
211 "Shouldn't collect exceptions when throw-all is guaranteed.");
212 ComputedEST = EST_Dynamic;
213 // Record the exceptions in this function's exception specification.
214 for (const auto &E : Proto->exceptions())
215 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)))
216 Exceptions.push_back(E);
217 }
218
CalledExpr(Expr * E)219 void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
220 if (!E || ComputedEST == EST_MSAny)
221 return;
222
223 // FIXME:
224 //
225 // C++0x [except.spec]p14:
226 // [An] implicit exception-specification specifies the type-id T if and
227 // only if T is allowed by the exception-specification of a function directly
228 // invoked by f's implicit definition; f shall allow all exceptions if any
229 // function it directly invokes allows all exceptions, and f shall allow no
230 // exceptions if every function it directly invokes allows no exceptions.
231 //
232 // Note in particular that if an implicit exception-specification is generated
233 // for a function containing a throw-expression, that specification can still
234 // be noexcept(true).
235 //
236 // Note also that 'directly invoked' is not defined in the standard, and there
237 // is no indication that we should only consider potentially-evaluated calls.
238 //
239 // Ultimately we should implement the intent of the standard: the exception
240 // specification should be the set of exceptions which can be thrown by the
241 // implicit definition. For now, we assume that any non-nothrow expression can
242 // throw any exception.
243
244 if (Self->canThrow(E))
245 ComputedEST = EST_None;
246 }
247
248 bool
SetParamDefaultArgument(ParmVarDecl * Param,Expr * Arg,SourceLocation EqualLoc)249 Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
250 SourceLocation EqualLoc) {
251 if (RequireCompleteType(Param->getLocation(), Param->getType(),
252 diag::err_typecheck_decl_incomplete_type)) {
253 Param->setInvalidDecl();
254 return true;
255 }
256
257 // C++ [dcl.fct.default]p5
258 // A default argument expression is implicitly converted (clause
259 // 4) to the parameter type. The default argument expression has
260 // the same semantic constraints as the initializer expression in
261 // a declaration of a variable of the parameter type, using the
262 // copy-initialization semantics (8.5).
263 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
264 Param);
265 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
266 EqualLoc);
267 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
268 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
269 if (Result.isInvalid())
270 return true;
271 Arg = Result.getAs<Expr>();
272
273 CheckCompletedExpr(Arg, EqualLoc);
274 Arg = MaybeCreateExprWithCleanups(Arg);
275
276 // Okay: add the default argument to the parameter
277 Param->setDefaultArg(Arg);
278
279 // We have already instantiated this parameter; provide each of the
280 // instantiations with the uninstantiated default argument.
281 UnparsedDefaultArgInstantiationsMap::iterator InstPos
282 = UnparsedDefaultArgInstantiations.find(Param);
283 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
284 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
285 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
286
287 // We're done tracking this parameter's instantiations.
288 UnparsedDefaultArgInstantiations.erase(InstPos);
289 }
290
291 return false;
292 }
293
294 /// ActOnParamDefaultArgument - Check whether the default argument
295 /// provided for a function parameter is well-formed. If so, attach it
296 /// to the parameter declaration.
297 void
ActOnParamDefaultArgument(Decl * param,SourceLocation EqualLoc,Expr * DefaultArg)298 Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
299 Expr *DefaultArg) {
300 if (!param || !DefaultArg)
301 return;
302
303 ParmVarDecl *Param = cast<ParmVarDecl>(param);
304 UnparsedDefaultArgLocs.erase(Param);
305
306 // Default arguments are only permitted in C++
307 if (!getLangOpts().CPlusPlus) {
308 Diag(EqualLoc, diag::err_param_default_argument)
309 << DefaultArg->getSourceRange();
310 Param->setInvalidDecl();
311 return;
312 }
313
314 // Check for unexpanded parameter packs.
315 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
316 Param->setInvalidDecl();
317 return;
318 }
319
320 // Check that the default argument is well-formed
321 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
322 if (DefaultArgChecker.Visit(DefaultArg)) {
323 Param->setInvalidDecl();
324 return;
325 }
326
327 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
328 }
329
330 /// ActOnParamUnparsedDefaultArgument - We've seen a default
331 /// argument for a function parameter, but we can't parse it yet
332 /// because we're inside a class definition. Note that this default
333 /// argument will be parsed later.
ActOnParamUnparsedDefaultArgument(Decl * param,SourceLocation EqualLoc,SourceLocation ArgLoc)334 void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
335 SourceLocation EqualLoc,
336 SourceLocation ArgLoc) {
337 if (!param)
338 return;
339
340 ParmVarDecl *Param = cast<ParmVarDecl>(param);
341 Param->setUnparsedDefaultArg();
342 UnparsedDefaultArgLocs[Param] = ArgLoc;
343 }
344
345 /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
346 /// the default argument for the parameter param failed.
ActOnParamDefaultArgumentError(Decl * param)347 void Sema::ActOnParamDefaultArgumentError(Decl *param) {
348 if (!param)
349 return;
350
351 ParmVarDecl *Param = cast<ParmVarDecl>(param);
352 Param->setInvalidDecl();
353 UnparsedDefaultArgLocs.erase(Param);
354 }
355
356 /// CheckExtraCXXDefaultArguments - Check for any extra default
357 /// arguments in the declarator, which is not a function declaration
358 /// or definition and therefore is not permitted to have default
359 /// arguments. This routine should be invoked for every declarator
360 /// that is not a function declaration or definition.
CheckExtraCXXDefaultArguments(Declarator & D)361 void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
362 // C++ [dcl.fct.default]p3
363 // A default argument expression shall be specified only in the
364 // parameter-declaration-clause of a function declaration or in a
365 // template-parameter (14.1). It shall not be specified for a
366 // parameter pack. If it is specified in a
367 // parameter-declaration-clause, it shall not occur within a
368 // declarator or abstract-declarator of a parameter-declaration.
369 bool MightBeFunction = D.isFunctionDeclarationContext();
370 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
371 DeclaratorChunk &chunk = D.getTypeObject(i);
372 if (chunk.Kind == DeclaratorChunk::Function) {
373 if (MightBeFunction) {
374 // This is a function declaration. It can have default arguments, but
375 // keep looking in case its return type is a function type with default
376 // arguments.
377 MightBeFunction = false;
378 continue;
379 }
380 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
381 ++argIdx) {
382 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
383 if (Param->hasUnparsedDefaultArg()) {
384 CachedTokens *Toks = chunk.Fun.Params[argIdx].DefaultArgTokens;
385 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
386 << SourceRange((*Toks)[1].getLocation(),
387 Toks->back().getLocation());
388 delete Toks;
389 chunk.Fun.Params[argIdx].DefaultArgTokens = nullptr;
390 } else if (Param->getDefaultArg()) {
391 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
392 << Param->getDefaultArg()->getSourceRange();
393 Param->setDefaultArg(nullptr);
394 }
395 }
396 } else if (chunk.Kind != DeclaratorChunk::Paren) {
397 MightBeFunction = false;
398 }
399 }
400 }
401
functionDeclHasDefaultArgument(const FunctionDecl * FD)402 static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
403 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
404 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
405 if (!PVD->hasDefaultArg())
406 return false;
407 if (!PVD->hasInheritedDefaultArg())
408 return true;
409 }
410 return false;
411 }
412
413 /// MergeCXXFunctionDecl - Merge two declarations of the same C++
414 /// function, once we already know that they have the same
415 /// type. Subroutine of MergeFunctionDecl. Returns true if there was an
416 /// error, false otherwise.
MergeCXXFunctionDecl(FunctionDecl * New,FunctionDecl * Old,Scope * S)417 bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
418 Scope *S) {
419 bool Invalid = false;
420
421 // C++ [dcl.fct.default]p4:
422 // For non-template functions, default arguments can be added in
423 // later declarations of a function in the same
424 // scope. Declarations in different scopes have completely
425 // distinct sets of default arguments. That is, declarations in
426 // inner scopes do not acquire default arguments from
427 // declarations in outer scopes, and vice versa. In a given
428 // function declaration, all parameters subsequent to a
429 // parameter with a default argument shall have default
430 // arguments supplied in this or previous declarations. A
431 // default argument shall not be redefined by a later
432 // declaration (not even to the same value).
433 //
434 // C++ [dcl.fct.default]p6:
435 // Except for member functions of class templates, the default arguments
436 // in a member function definition that appears outside of the class
437 // definition are added to the set of default arguments provided by the
438 // member function declaration in the class definition.
439 for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) {
440 ParmVarDecl *OldParam = Old->getParamDecl(p);
441 ParmVarDecl *NewParam = New->getParamDecl(p);
442
443 bool OldParamHasDfl = OldParam->hasDefaultArg();
444 bool NewParamHasDfl = NewParam->hasDefaultArg();
445
446 NamedDecl *ND = Old;
447
448 // The declaration context corresponding to the scope is the semantic
449 // parent, unless this is a local function declaration, in which case
450 // it is that surrounding function.
451 DeclContext *ScopeDC = New->getLexicalDeclContext();
452 if (!ScopeDC->isFunctionOrMethod())
453 ScopeDC = New->getDeclContext();
454 if (S && !isDeclInScope(ND, ScopeDC, S) &&
455 !New->getDeclContext()->isRecord())
456 // Ignore default parameters of old decl if they are not in
457 // the same scope and this is not an out-of-line definition of
458 // a member function.
459 OldParamHasDfl = false;
460
461 if (OldParamHasDfl && NewParamHasDfl) {
462
463 unsigned DiagDefaultParamID =
464 diag::err_param_default_argument_redefinition;
465
466 // MSVC accepts that default parameters be redefined for member functions
467 // of template class. The new default parameter's value is ignored.
468 Invalid = true;
469 if (getLangOpts().MicrosoftExt) {
470 CXXMethodDecl* MD = dyn_cast<CXXMethodDecl>(New);
471 if (MD && MD->getParent()->getDescribedClassTemplate()) {
472 // Merge the old default argument into the new parameter.
473 NewParam->setHasInheritedDefaultArg();
474 if (OldParam->hasUninstantiatedDefaultArg())
475 NewParam->setUninstantiatedDefaultArg(
476 OldParam->getUninstantiatedDefaultArg());
477 else
478 NewParam->setDefaultArg(OldParam->getInit());
479 DiagDefaultParamID = diag::warn_param_default_argument_redefinition;
480 Invalid = false;
481 }
482 }
483
484 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
485 // hint here. Alternatively, we could walk the type-source information
486 // for NewParam to find the last source location in the type... but it
487 // isn't worth the effort right now. This is the kind of test case that
488 // is hard to get right:
489 // int f(int);
490 // void g(int (*fp)(int) = f);
491 // void g(int (*fp)(int) = &f);
492 Diag(NewParam->getLocation(), DiagDefaultParamID)
493 << NewParam->getDefaultArgRange();
494
495 // Look for the function declaration where the default argument was
496 // actually written, which may be a declaration prior to Old.
497 for (FunctionDecl *Older = Old->getPreviousDecl();
498 Older; Older = Older->getPreviousDecl()) {
499 if (!Older->getParamDecl(p)->hasDefaultArg())
500 break;
501
502 OldParam = Older->getParamDecl(p);
503 }
504
505 Diag(OldParam->getLocation(), diag::note_previous_definition)
506 << OldParam->getDefaultArgRange();
507 } else if (OldParamHasDfl) {
508 // Merge the old default argument into the new parameter.
509 // It's important to use getInit() here; getDefaultArg()
510 // strips off any top-level ExprWithCleanups.
511 NewParam->setHasInheritedDefaultArg();
512 if (OldParam->hasUninstantiatedDefaultArg())
513 NewParam->setUninstantiatedDefaultArg(
514 OldParam->getUninstantiatedDefaultArg());
515 else
516 NewParam->setDefaultArg(OldParam->getInit());
517 } else if (NewParamHasDfl) {
518 if (New->getDescribedFunctionTemplate()) {
519 // Paragraph 4, quoted above, only applies to non-template functions.
520 Diag(NewParam->getLocation(),
521 diag::err_param_default_argument_template_redecl)
522 << NewParam->getDefaultArgRange();
523 Diag(Old->getLocation(), diag::note_template_prev_declaration)
524 << false;
525 } else if (New->getTemplateSpecializationKind()
526 != TSK_ImplicitInstantiation &&
527 New->getTemplateSpecializationKind() != TSK_Undeclared) {
528 // C++ [temp.expr.spec]p21:
529 // Default function arguments shall not be specified in a declaration
530 // or a definition for one of the following explicit specializations:
531 // - the explicit specialization of a function template;
532 // - the explicit specialization of a member function template;
533 // - the explicit specialization of a member function of a class
534 // template where the class template specialization to which the
535 // member function specialization belongs is implicitly
536 // instantiated.
537 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
538 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
539 << New->getDeclName()
540 << NewParam->getDefaultArgRange();
541 } else if (New->getDeclContext()->isDependentContext()) {
542 // C++ [dcl.fct.default]p6 (DR217):
543 // Default arguments for a member function of a class template shall
544 // be specified on the initial declaration of the member function
545 // within the class template.
546 //
547 // Reading the tea leaves a bit in DR217 and its reference to DR205
548 // leads me to the conclusion that one cannot add default function
549 // arguments for an out-of-line definition of a member function of a
550 // dependent type.
551 int WhichKind = 2;
552 if (CXXRecordDecl *Record
553 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
554 if (Record->getDescribedClassTemplate())
555 WhichKind = 0;
556 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
557 WhichKind = 1;
558 else
559 WhichKind = 2;
560 }
561
562 Diag(NewParam->getLocation(),
563 diag::err_param_default_argument_member_template_redecl)
564 << WhichKind
565 << NewParam->getDefaultArgRange();
566 }
567 }
568 }
569
570 // DR1344: If a default argument is added outside a class definition and that
571 // default argument makes the function a special member function, the program
572 // is ill-formed. This can only happen for constructors.
573 if (isa<CXXConstructorDecl>(New) &&
574 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
575 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
576 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
577 if (NewSM != OldSM) {
578 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
579 assert(NewParam->hasDefaultArg());
580 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
581 << NewParam->getDefaultArgRange() << NewSM;
582 Diag(Old->getLocation(), diag::note_previous_declaration);
583 }
584 }
585
586 const FunctionDecl *Def;
587 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
588 // template has a constexpr specifier then all its declarations shall
589 // contain the constexpr specifier.
590 if (New->isConstexpr() != Old->isConstexpr()) {
591 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
592 << New << New->isConstexpr();
593 Diag(Old->getLocation(), diag::note_previous_declaration);
594 Invalid = true;
595 } else if (!Old->isInlined() && New->isInlined() && Old->isDefined(Def)) {
596 // C++11 [dcl.fcn.spec]p4:
597 // If the definition of a function appears in a translation unit before its
598 // first declaration as inline, the program is ill-formed.
599 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
600 Diag(Def->getLocation(), diag::note_previous_definition);
601 Invalid = true;
602 }
603
604 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
605 // argument expression, that declaration shall be a definition and shall be
606 // the only declaration of the function or function template in the
607 // translation unit.
608 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
609 functionDeclHasDefaultArgument(Old)) {
610 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
611 Diag(Old->getLocation(), diag::note_previous_declaration);
612 Invalid = true;
613 }
614
615 if (CheckEquivalentExceptionSpec(Old, New))
616 Invalid = true;
617
618 return Invalid;
619 }
620
621 /// \brief Merge the exception specifications of two variable declarations.
622 ///
623 /// This is called when there's a redeclaration of a VarDecl. The function
624 /// checks if the redeclaration might have an exception specification and
625 /// validates compatibility and merges the specs if necessary.
MergeVarDeclExceptionSpecs(VarDecl * New,VarDecl * Old)626 void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
627 // Shortcut if exceptions are disabled.
628 if (!getLangOpts().CXXExceptions)
629 return;
630
631 assert(Context.hasSameType(New->getType(), Old->getType()) &&
632 "Should only be called if types are otherwise the same.");
633
634 QualType NewType = New->getType();
635 QualType OldType = Old->getType();
636
637 // We're only interested in pointers and references to functions, as well
638 // as pointers to member functions.
639 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
640 NewType = R->getPointeeType();
641 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
642 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
643 NewType = P->getPointeeType();
644 OldType = OldType->getAs<PointerType>()->getPointeeType();
645 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
646 NewType = M->getPointeeType();
647 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
648 }
649
650 if (!NewType->isFunctionProtoType())
651 return;
652
653 // There's lots of special cases for functions. For function pointers, system
654 // libraries are hopefully not as broken so that we don't need these
655 // workarounds.
656 if (CheckEquivalentExceptionSpec(
657 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
658 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
659 New->setInvalidDecl();
660 }
661 }
662
663 /// CheckCXXDefaultArguments - Verify that the default arguments for a
664 /// function declaration are well-formed according to C++
665 /// [dcl.fct.default].
CheckCXXDefaultArguments(FunctionDecl * FD)666 void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
667 unsigned NumParams = FD->getNumParams();
668 unsigned p;
669
670 // Find first parameter with a default argument
671 for (p = 0; p < NumParams; ++p) {
672 ParmVarDecl *Param = FD->getParamDecl(p);
673 if (Param->hasDefaultArg())
674 break;
675 }
676
677 // C++ [dcl.fct.default]p4:
678 // In a given function declaration, all parameters
679 // subsequent to a parameter with a default argument shall
680 // have default arguments supplied in this or previous
681 // declarations. A default argument shall not be redefined
682 // by a later declaration (not even to the same value).
683 unsigned LastMissingDefaultArg = 0;
684 for (; p < NumParams; ++p) {
685 ParmVarDecl *Param = FD->getParamDecl(p);
686 if (!Param->hasDefaultArg()) {
687 if (Param->isInvalidDecl())
688 /* We already complained about this parameter. */;
689 else if (Param->getIdentifier())
690 Diag(Param->getLocation(),
691 diag::err_param_default_argument_missing_name)
692 << Param->getIdentifier();
693 else
694 Diag(Param->getLocation(),
695 diag::err_param_default_argument_missing);
696
697 LastMissingDefaultArg = p;
698 }
699 }
700
701 if (LastMissingDefaultArg > 0) {
702 // Some default arguments were missing. Clear out all of the
703 // default arguments up to (and including) the last missing
704 // default argument, so that we leave the function parameters
705 // in a semantically valid state.
706 for (p = 0; p <= LastMissingDefaultArg; ++p) {
707 ParmVarDecl *Param = FD->getParamDecl(p);
708 if (Param->hasDefaultArg()) {
709 Param->setDefaultArg(nullptr);
710 }
711 }
712 }
713 }
714
715 // CheckConstexprParameterTypes - Check whether a function's parameter types
716 // are all literal types. If so, return true. If not, produce a suitable
717 // diagnostic and return false.
CheckConstexprParameterTypes(Sema & SemaRef,const FunctionDecl * FD)718 static bool CheckConstexprParameterTypes(Sema &SemaRef,
719 const FunctionDecl *FD) {
720 unsigned ArgIndex = 0;
721 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
722 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
723 e = FT->param_type_end();
724 i != e; ++i, ++ArgIndex) {
725 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
726 SourceLocation ParamLoc = PD->getLocation();
727 if (!(*i)->isDependentType() &&
728 SemaRef.RequireLiteralType(ParamLoc, *i,
729 diag::err_constexpr_non_literal_param,
730 ArgIndex+1, PD->getSourceRange(),
731 isa<CXXConstructorDecl>(FD)))
732 return false;
733 }
734 return true;
735 }
736
737 /// \brief Get diagnostic %select index for tag kind for
738 /// record diagnostic message.
739 /// WARNING: Indexes apply to particular diagnostics only!
740 ///
741 /// \returns diagnostic %select index.
getRecordDiagFromTagKind(TagTypeKind Tag)742 static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
743 switch (Tag) {
744 case TTK_Struct: return 0;
745 case TTK_Interface: return 1;
746 case TTK_Class: return 2;
747 default: llvm_unreachable("Invalid tag kind for record diagnostic!");
748 }
749 }
750
751 // CheckConstexprFunctionDecl - Check whether a function declaration satisfies
752 // the requirements of a constexpr function definition or a constexpr
753 // constructor definition. If so, return true. If not, produce appropriate
754 // diagnostics and return false.
755 //
756 // This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
CheckConstexprFunctionDecl(const FunctionDecl * NewFD)757 bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
758 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
759 if (MD && MD->isInstance()) {
760 // C++11 [dcl.constexpr]p4:
761 // The definition of a constexpr constructor shall satisfy the following
762 // constraints:
763 // - the class shall not have any virtual base classes;
764 const CXXRecordDecl *RD = MD->getParent();
765 if (RD->getNumVBases()) {
766 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
767 << isa<CXXConstructorDecl>(NewFD)
768 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
769 for (const auto &I : RD->vbases())
770 Diag(I.getLocStart(),
771 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
772 return false;
773 }
774 }
775
776 if (!isa<CXXConstructorDecl>(NewFD)) {
777 // C++11 [dcl.constexpr]p3:
778 // The definition of a constexpr function shall satisfy the following
779 // constraints:
780 // - it shall not be virtual;
781 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
782 if (Method && Method->isVirtual()) {
783 Diag(NewFD->getLocation(), diag::err_constexpr_virtual);
784
785 // If it's not obvious why this function is virtual, find an overridden
786 // function which uses the 'virtual' keyword.
787 const CXXMethodDecl *WrittenVirtual = Method;
788 while (!WrittenVirtual->isVirtualAsWritten())
789 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
790 if (WrittenVirtual != Method)
791 Diag(WrittenVirtual->getLocation(),
792 diag::note_overridden_virtual_function);
793 return false;
794 }
795
796 // - its return type shall be a literal type;
797 QualType RT = NewFD->getReturnType();
798 if (!RT->isDependentType() &&
799 RequireLiteralType(NewFD->getLocation(), RT,
800 diag::err_constexpr_non_literal_return))
801 return false;
802 }
803
804 // - each of its parameter types shall be a literal type;
805 if (!CheckConstexprParameterTypes(*this, NewFD))
806 return false;
807
808 return true;
809 }
810
811 /// Check the given declaration statement is legal within a constexpr function
812 /// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
813 ///
814 /// \return true if the body is OK (maybe only as an extension), false if we
815 /// have diagnosed a problem.
CheckConstexprDeclStmt(Sema & SemaRef,const FunctionDecl * Dcl,DeclStmt * DS,SourceLocation & Cxx1yLoc)816 static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
817 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
818 // C++11 [dcl.constexpr]p3 and p4:
819 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
820 // contain only
821 for (const auto *DclIt : DS->decls()) {
822 switch (DclIt->getKind()) {
823 case Decl::StaticAssert:
824 case Decl::Using:
825 case Decl::UsingShadow:
826 case Decl::UsingDirective:
827 case Decl::UnresolvedUsingTypename:
828 case Decl::UnresolvedUsingValue:
829 // - static_assert-declarations
830 // - using-declarations,
831 // - using-directives,
832 continue;
833
834 case Decl::Typedef:
835 case Decl::TypeAlias: {
836 // - typedef declarations and alias-declarations that do not define
837 // classes or enumerations,
838 const auto *TN = cast<TypedefNameDecl>(DclIt);
839 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
840 // Don't allow variably-modified types in constexpr functions.
841 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
842 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
843 << TL.getSourceRange() << TL.getType()
844 << isa<CXXConstructorDecl>(Dcl);
845 return false;
846 }
847 continue;
848 }
849
850 case Decl::Enum:
851 case Decl::CXXRecord:
852 // C++1y allows types to be defined, not just declared.
853 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
854 SemaRef.Diag(DS->getLocStart(),
855 SemaRef.getLangOpts().CPlusPlus1y
856 ? diag::warn_cxx11_compat_constexpr_type_definition
857 : diag::ext_constexpr_type_definition)
858 << isa<CXXConstructorDecl>(Dcl);
859 continue;
860
861 case Decl::EnumConstant:
862 case Decl::IndirectField:
863 case Decl::ParmVar:
864 // These can only appear with other declarations which are banned in
865 // C++11 and permitted in C++1y, so ignore them.
866 continue;
867
868 case Decl::Var: {
869 // C++1y [dcl.constexpr]p3 allows anything except:
870 // a definition of a variable of non-literal type or of static or
871 // thread storage duration or for which no initialization is performed.
872 const auto *VD = cast<VarDecl>(DclIt);
873 if (VD->isThisDeclarationADefinition()) {
874 if (VD->isStaticLocal()) {
875 SemaRef.Diag(VD->getLocation(),
876 diag::err_constexpr_local_var_static)
877 << isa<CXXConstructorDecl>(Dcl)
878 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
879 return false;
880 }
881 if (!VD->getType()->isDependentType() &&
882 SemaRef.RequireLiteralType(
883 VD->getLocation(), VD->getType(),
884 diag::err_constexpr_local_var_non_literal_type,
885 isa<CXXConstructorDecl>(Dcl)))
886 return false;
887 if (!VD->getType()->isDependentType() &&
888 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
889 SemaRef.Diag(VD->getLocation(),
890 diag::err_constexpr_local_var_no_init)
891 << isa<CXXConstructorDecl>(Dcl);
892 return false;
893 }
894 }
895 SemaRef.Diag(VD->getLocation(),
896 SemaRef.getLangOpts().CPlusPlus1y
897 ? diag::warn_cxx11_compat_constexpr_local_var
898 : diag::ext_constexpr_local_var)
899 << isa<CXXConstructorDecl>(Dcl);
900 continue;
901 }
902
903 case Decl::NamespaceAlias:
904 case Decl::Function:
905 // These are disallowed in C++11 and permitted in C++1y. Allow them
906 // everywhere as an extension.
907 if (!Cxx1yLoc.isValid())
908 Cxx1yLoc = DS->getLocStart();
909 continue;
910
911 default:
912 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
913 << isa<CXXConstructorDecl>(Dcl);
914 return false;
915 }
916 }
917
918 return true;
919 }
920
921 /// Check that the given field is initialized within a constexpr constructor.
922 ///
923 /// \param Dcl The constexpr constructor being checked.
924 /// \param Field The field being checked. This may be a member of an anonymous
925 /// struct or union nested within the class being checked.
926 /// \param Inits All declarations, including anonymous struct/union members and
927 /// indirect members, for which any initialization was provided.
928 /// \param Diagnosed Set to true if an error is produced.
CheckConstexprCtorInitializer(Sema & SemaRef,const FunctionDecl * Dcl,FieldDecl * Field,llvm::SmallSet<Decl *,16> & Inits,bool & Diagnosed)929 static void CheckConstexprCtorInitializer(Sema &SemaRef,
930 const FunctionDecl *Dcl,
931 FieldDecl *Field,
932 llvm::SmallSet<Decl*, 16> &Inits,
933 bool &Diagnosed) {
934 if (Field->isInvalidDecl())
935 return;
936
937 if (Field->isUnnamedBitfield())
938 return;
939
940 // Anonymous unions with no variant members and empty anonymous structs do not
941 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
942 // indirect fields don't need initializing.
943 if (Field->isAnonymousStructOrUnion() &&
944 (Field->getType()->isUnionType()
945 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
946 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
947 return;
948
949 if (!Inits.count(Field)) {
950 if (!Diagnosed) {
951 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
952 Diagnosed = true;
953 }
954 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
955 } else if (Field->isAnonymousStructOrUnion()) {
956 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
957 for (auto *I : RD->fields())
958 // If an anonymous union contains an anonymous struct of which any member
959 // is initialized, all members must be initialized.
960 if (!RD->isUnion() || Inits.count(I))
961 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
962 }
963 }
964
965 /// Check the provided statement is allowed in a constexpr function
966 /// definition.
967 static bool
CheckConstexprFunctionStmt(Sema & SemaRef,const FunctionDecl * Dcl,Stmt * S,SmallVectorImpl<SourceLocation> & ReturnStmts,SourceLocation & Cxx1yLoc)968 CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
969 SmallVectorImpl<SourceLocation> &ReturnStmts,
970 SourceLocation &Cxx1yLoc) {
971 // - its function-body shall be [...] a compound-statement that contains only
972 switch (S->getStmtClass()) {
973 case Stmt::NullStmtClass:
974 // - null statements,
975 return true;
976
977 case Stmt::DeclStmtClass:
978 // - static_assert-declarations
979 // - using-declarations,
980 // - using-directives,
981 // - typedef declarations and alias-declarations that do not define
982 // classes or enumerations,
983 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
984 return false;
985 return true;
986
987 case Stmt::ReturnStmtClass:
988 // - and exactly one return statement;
989 if (isa<CXXConstructorDecl>(Dcl)) {
990 // C++1y allows return statements in constexpr constructors.
991 if (!Cxx1yLoc.isValid())
992 Cxx1yLoc = S->getLocStart();
993 return true;
994 }
995
996 ReturnStmts.push_back(S->getLocStart());
997 return true;
998
999 case Stmt::CompoundStmtClass: {
1000 // C++1y allows compound-statements.
1001 if (!Cxx1yLoc.isValid())
1002 Cxx1yLoc = S->getLocStart();
1003
1004 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1005 for (auto *BodyIt : CompStmt->body()) {
1006 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1007 Cxx1yLoc))
1008 return false;
1009 }
1010 return true;
1011 }
1012
1013 case Stmt::AttributedStmtClass:
1014 if (!Cxx1yLoc.isValid())
1015 Cxx1yLoc = S->getLocStart();
1016 return true;
1017
1018 case Stmt::IfStmtClass: {
1019 // C++1y allows if-statements.
1020 if (!Cxx1yLoc.isValid())
1021 Cxx1yLoc = S->getLocStart();
1022
1023 IfStmt *If = cast<IfStmt>(S);
1024 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1025 Cxx1yLoc))
1026 return false;
1027 if (If->getElse() &&
1028 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1029 Cxx1yLoc))
1030 return false;
1031 return true;
1032 }
1033
1034 case Stmt::WhileStmtClass:
1035 case Stmt::DoStmtClass:
1036 case Stmt::ForStmtClass:
1037 case Stmt::CXXForRangeStmtClass:
1038 case Stmt::ContinueStmtClass:
1039 // C++1y allows all of these. We don't allow them as extensions in C++11,
1040 // because they don't make sense without variable mutation.
1041 if (!SemaRef.getLangOpts().CPlusPlus1y)
1042 break;
1043 if (!Cxx1yLoc.isValid())
1044 Cxx1yLoc = S->getLocStart();
1045 for (Stmt::child_range Children = S->children(); Children; ++Children)
1046 if (*Children &&
1047 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1048 Cxx1yLoc))
1049 return false;
1050 return true;
1051
1052 case Stmt::SwitchStmtClass:
1053 case Stmt::CaseStmtClass:
1054 case Stmt::DefaultStmtClass:
1055 case Stmt::BreakStmtClass:
1056 // C++1y allows switch-statements, and since they don't need variable
1057 // mutation, we can reasonably allow them in C++11 as an extension.
1058 if (!Cxx1yLoc.isValid())
1059 Cxx1yLoc = S->getLocStart();
1060 for (Stmt::child_range Children = S->children(); Children; ++Children)
1061 if (*Children &&
1062 !CheckConstexprFunctionStmt(SemaRef, Dcl, *Children, ReturnStmts,
1063 Cxx1yLoc))
1064 return false;
1065 return true;
1066
1067 default:
1068 if (!isa<Expr>(S))
1069 break;
1070
1071 // C++1y allows expression-statements.
1072 if (!Cxx1yLoc.isValid())
1073 Cxx1yLoc = S->getLocStart();
1074 return true;
1075 }
1076
1077 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1078 << isa<CXXConstructorDecl>(Dcl);
1079 return false;
1080 }
1081
1082 /// Check the body for the given constexpr function declaration only contains
1083 /// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1084 ///
1085 /// \return true if the body is OK, false if we have diagnosed a problem.
CheckConstexprFunctionBody(const FunctionDecl * Dcl,Stmt * Body)1086 bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1087 if (isa<CXXTryStmt>(Body)) {
1088 // C++11 [dcl.constexpr]p3:
1089 // The definition of a constexpr function shall satisfy the following
1090 // constraints: [...]
1091 // - its function-body shall be = delete, = default, or a
1092 // compound-statement
1093 //
1094 // C++11 [dcl.constexpr]p4:
1095 // In the definition of a constexpr constructor, [...]
1096 // - its function-body shall not be a function-try-block;
1097 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1098 << isa<CXXConstructorDecl>(Dcl);
1099 return false;
1100 }
1101
1102 SmallVector<SourceLocation, 4> ReturnStmts;
1103
1104 // - its function-body shall be [...] a compound-statement that contains only
1105 // [... list of cases ...]
1106 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1107 SourceLocation Cxx1yLoc;
1108 for (auto *BodyIt : CompBody->body()) {
1109 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1110 return false;
1111 }
1112
1113 if (Cxx1yLoc.isValid())
1114 Diag(Cxx1yLoc,
1115 getLangOpts().CPlusPlus1y
1116 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1117 : diag::ext_constexpr_body_invalid_stmt)
1118 << isa<CXXConstructorDecl>(Dcl);
1119
1120 if (const CXXConstructorDecl *Constructor
1121 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1122 const CXXRecordDecl *RD = Constructor->getParent();
1123 // DR1359:
1124 // - every non-variant non-static data member and base class sub-object
1125 // shall be initialized;
1126 // DR1460:
1127 // - if the class is a union having variant members, exactly one of them
1128 // shall be initialized;
1129 if (RD->isUnion()) {
1130 if (Constructor->getNumCtorInitializers() == 0 &&
1131 RD->hasVariantMembers()) {
1132 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1133 return false;
1134 }
1135 } else if (!Constructor->isDependentContext() &&
1136 !Constructor->isDelegatingConstructor()) {
1137 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases");
1138
1139 // Skip detailed checking if we have enough initializers, and we would
1140 // allow at most one initializer per member.
1141 bool AnyAnonStructUnionMembers = false;
1142 unsigned Fields = 0;
1143 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1144 E = RD->field_end(); I != E; ++I, ++Fields) {
1145 if (I->isAnonymousStructOrUnion()) {
1146 AnyAnonStructUnionMembers = true;
1147 break;
1148 }
1149 }
1150 // DR1460:
1151 // - if the class is a union-like class, but is not a union, for each of
1152 // its anonymous union members having variant members, exactly one of
1153 // them shall be initialized;
1154 if (AnyAnonStructUnionMembers ||
1155 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1156 // Check initialization of non-static data members. Base classes are
1157 // always initialized so do not need to be checked. Dependent bases
1158 // might not have initializers in the member initializer list.
1159 llvm::SmallSet<Decl*, 16> Inits;
1160 for (const auto *I: Constructor->inits()) {
1161 if (FieldDecl *FD = I->getMember())
1162 Inits.insert(FD);
1163 else if (IndirectFieldDecl *ID = I->getIndirectMember())
1164 Inits.insert(ID->chain_begin(), ID->chain_end());
1165 }
1166
1167 bool Diagnosed = false;
1168 for (auto *I : RD->fields())
1169 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1170 if (Diagnosed)
1171 return false;
1172 }
1173 }
1174 } else {
1175 if (ReturnStmts.empty()) {
1176 // C++1y doesn't require constexpr functions to contain a 'return'
1177 // statement. We still do, unless the return type might be void, because
1178 // otherwise if there's no return statement, the function cannot
1179 // be used in a core constant expression.
1180 bool OK = getLangOpts().CPlusPlus1y &&
1181 (Dcl->getReturnType()->isVoidType() ||
1182 Dcl->getReturnType()->isDependentType());
1183 Diag(Dcl->getLocation(),
1184 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
1185 : diag::err_constexpr_body_no_return);
1186 return OK;
1187 }
1188 if (ReturnStmts.size() > 1) {
1189 Diag(ReturnStmts.back(),
1190 getLangOpts().CPlusPlus1y
1191 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
1192 : diag::ext_constexpr_body_multiple_return);
1193 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
1194 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
1195 }
1196 }
1197
1198 // C++11 [dcl.constexpr]p5:
1199 // if no function argument values exist such that the function invocation
1200 // substitution would produce a constant expression, the program is
1201 // ill-formed; no diagnostic required.
1202 // C++11 [dcl.constexpr]p3:
1203 // - every constructor call and implicit conversion used in initializing the
1204 // return value shall be one of those allowed in a constant expression.
1205 // C++11 [dcl.constexpr]p4:
1206 // - every constructor involved in initializing non-static data members and
1207 // base class sub-objects shall be a constexpr constructor.
1208 SmallVector<PartialDiagnosticAt, 8> Diags;
1209 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
1210 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
1211 << isa<CXXConstructorDecl>(Dcl);
1212 for (size_t I = 0, N = Diags.size(); I != N; ++I)
1213 Diag(Diags[I].first, Diags[I].second);
1214 // Don't return false here: we allow this for compatibility in
1215 // system headers.
1216 }
1217
1218 return true;
1219 }
1220
1221 /// isCurrentClassName - Determine whether the identifier II is the
1222 /// name of the class type currently being defined. In the case of
1223 /// nested classes, this will only return true if II is the name of
1224 /// the innermost class.
isCurrentClassName(const IdentifierInfo & II,Scope *,const CXXScopeSpec * SS)1225 bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
1226 const CXXScopeSpec *SS) {
1227 assert(getLangOpts().CPlusPlus && "No class names in C!");
1228
1229 CXXRecordDecl *CurDecl;
1230 if (SS && SS->isSet() && !SS->isInvalid()) {
1231 DeclContext *DC = computeDeclContext(*SS, true);
1232 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1233 } else
1234 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1235
1236 if (CurDecl && CurDecl->getIdentifier())
1237 return &II == CurDecl->getIdentifier();
1238 return false;
1239 }
1240
1241 /// \brief Determine whether the identifier II is a typo for the name of
1242 /// the class type currently being defined. If so, update it to the identifier
1243 /// that should have been used.
isCurrentClassNameTypo(IdentifierInfo * & II,const CXXScopeSpec * SS)1244 bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
1245 assert(getLangOpts().CPlusPlus && "No class names in C!");
1246
1247 if (!getLangOpts().SpellChecking)
1248 return false;
1249
1250 CXXRecordDecl *CurDecl;
1251 if (SS && SS->isSet() && !SS->isInvalid()) {
1252 DeclContext *DC = computeDeclContext(*SS, true);
1253 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
1254 } else
1255 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
1256
1257 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
1258 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
1259 < II->getLength()) {
1260 II = CurDecl->getIdentifier();
1261 return true;
1262 }
1263
1264 return false;
1265 }
1266
1267 /// \brief Determine whether the given class is a base class of the given
1268 /// class, including looking at dependent bases.
findCircularInheritance(const CXXRecordDecl * Class,const CXXRecordDecl * Current)1269 static bool findCircularInheritance(const CXXRecordDecl *Class,
1270 const CXXRecordDecl *Current) {
1271 SmallVector<const CXXRecordDecl*, 8> Queue;
1272
1273 Class = Class->getCanonicalDecl();
1274 while (true) {
1275 for (const auto &I : Current->bases()) {
1276 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
1277 if (!Base)
1278 continue;
1279
1280 Base = Base->getDefinition();
1281 if (!Base)
1282 continue;
1283
1284 if (Base->getCanonicalDecl() == Class)
1285 return true;
1286
1287 Queue.push_back(Base);
1288 }
1289
1290 if (Queue.empty())
1291 return false;
1292
1293 Current = Queue.pop_back_val();
1294 }
1295
1296 return false;
1297 }
1298
1299 /// \brief Perform propagation of DLL attributes from a derived class to a
1300 /// templated base class for MS compatibility.
propagateDLLAttrToBaseClassTemplate(Sema & S,CXXRecordDecl * Class,Attr * ClassAttr,ClassTemplateSpecializationDecl * BaseTemplateSpec,SourceLocation BaseLoc)1301 static void propagateDLLAttrToBaseClassTemplate(
1302 Sema &S, CXXRecordDecl *Class, Attr *ClassAttr,
1303 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
1304 if (getDLLAttr(
1305 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
1306 // If the base class template has a DLL attribute, don't try to change it.
1307 return;
1308 }
1309
1310 if (BaseTemplateSpec->getSpecializationKind() == TSK_Undeclared) {
1311 // If the base class is not already specialized, we can do the propagation.
1312 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
1313 NewAttr->setInherited(true);
1314 BaseTemplateSpec->addAttr(NewAttr);
1315 return;
1316 }
1317
1318 bool DifferentAttribute = false;
1319 if (Attr *SpecializationAttr = getDLLAttr(BaseTemplateSpec)) {
1320 if (!SpecializationAttr->isInherited()) {
1321 // The template has previously been specialized or instantiated with an
1322 // explicit attribute. We should not try to change it.
1323 return;
1324 }
1325 if (SpecializationAttr->getKind() == ClassAttr->getKind()) {
1326 // The specialization already has the right attribute.
1327 return;
1328 }
1329 DifferentAttribute = true;
1330 }
1331
1332 // The template was previously instantiated or explicitly specialized without
1333 // a dll attribute, or the template was previously instantiated with a
1334 // different inherited attribute. It's too late for us to change the
1335 // attribute, so warn that this is unsupported.
1336 S.Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
1337 << BaseTemplateSpec->isExplicitSpecialization() << DifferentAttribute;
1338 S.Diag(ClassAttr->getLocation(), diag::note_attribute);
1339 if (BaseTemplateSpec->isExplicitSpecialization()) {
1340 S.Diag(BaseTemplateSpec->getLocation(),
1341 diag::note_template_class_explicit_specialization_was_here)
1342 << BaseTemplateSpec;
1343 } else {
1344 S.Diag(BaseTemplateSpec->getPointOfInstantiation(),
1345 diag::note_template_class_instantiation_was_here)
1346 << BaseTemplateSpec;
1347 }
1348 }
1349
1350 /// \brief Check the validity of a C++ base class specifier.
1351 ///
1352 /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
1353 /// and returns NULL otherwise.
1354 CXXBaseSpecifier *
CheckBaseSpecifier(CXXRecordDecl * Class,SourceRange SpecifierRange,bool Virtual,AccessSpecifier Access,TypeSourceInfo * TInfo,SourceLocation EllipsisLoc)1355 Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
1356 SourceRange SpecifierRange,
1357 bool Virtual, AccessSpecifier Access,
1358 TypeSourceInfo *TInfo,
1359 SourceLocation EllipsisLoc) {
1360 QualType BaseType = TInfo->getType();
1361
1362 // C++ [class.union]p1:
1363 // A union shall not have base classes.
1364 if (Class->isUnion()) {
1365 Diag(Class->getLocation(), diag::err_base_clause_on_union)
1366 << SpecifierRange;
1367 return nullptr;
1368 }
1369
1370 if (EllipsisLoc.isValid() &&
1371 !TInfo->getType()->containsUnexpandedParameterPack()) {
1372 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
1373 << TInfo->getTypeLoc().getSourceRange();
1374 EllipsisLoc = SourceLocation();
1375 }
1376
1377 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
1378
1379 if (BaseType->isDependentType()) {
1380 // Make sure that we don't have circular inheritance among our dependent
1381 // bases. For non-dependent bases, the check for completeness below handles
1382 // this.
1383 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
1384 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
1385 ((BaseDecl = BaseDecl->getDefinition()) &&
1386 findCircularInheritance(Class, BaseDecl))) {
1387 Diag(BaseLoc, diag::err_circular_inheritance)
1388 << BaseType << Context.getTypeDeclType(Class);
1389
1390 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
1391 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
1392 << BaseType;
1393
1394 return nullptr;
1395 }
1396 }
1397
1398 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1399 Class->getTagKind() == TTK_Class,
1400 Access, TInfo, EllipsisLoc);
1401 }
1402
1403 // Base specifiers must be record types.
1404 if (!BaseType->isRecordType()) {
1405 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
1406 return nullptr;
1407 }
1408
1409 // C++ [class.union]p1:
1410 // A union shall not be used as a base class.
1411 if (BaseType->isUnionType()) {
1412 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
1413 return nullptr;
1414 }
1415
1416 // For the MS ABI, propagate DLL attributes to base class templates.
1417 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
1418 if (Attr *ClassAttr = getDLLAttr(Class)) {
1419 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
1420 BaseType->getAsCXXRecordDecl())) {
1421 propagateDLLAttrToBaseClassTemplate(*this, Class, ClassAttr,
1422 BaseTemplate, BaseLoc);
1423 }
1424 }
1425 }
1426
1427 // C++ [class.derived]p2:
1428 // The class-name in a base-specifier shall not be an incompletely
1429 // defined class.
1430 if (RequireCompleteType(BaseLoc, BaseType,
1431 diag::err_incomplete_base_class, SpecifierRange)) {
1432 Class->setInvalidDecl();
1433 return nullptr;
1434 }
1435
1436 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
1437 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
1438 assert(BaseDecl && "Record type has no declaration");
1439 BaseDecl = BaseDecl->getDefinition();
1440 assert(BaseDecl && "Base type is not incomplete, but has no definition");
1441 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
1442 assert(CXXBaseDecl && "Base type is not a C++ type");
1443
1444 // A class which contains a flexible array member is not suitable for use as a
1445 // base class:
1446 // - If the layout determines that a base comes before another base,
1447 // the flexible array member would index into the subsequent base.
1448 // - If the layout determines that base comes before the derived class,
1449 // the flexible array member would index into the derived class.
1450 if (CXXBaseDecl->hasFlexibleArrayMember()) {
1451 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
1452 << CXXBaseDecl->getDeclName();
1453 return nullptr;
1454 }
1455
1456 // C++ [class]p3:
1457 // If a class is marked final and it appears as a base-type-specifier in
1458 // base-clause, the program is ill-formed.
1459 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
1460 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
1461 << CXXBaseDecl->getDeclName()
1462 << FA->isSpelledAsSealed();
1463 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
1464 << CXXBaseDecl->getDeclName() << FA->getRange();
1465 return nullptr;
1466 }
1467
1468 if (BaseDecl->isInvalidDecl())
1469 Class->setInvalidDecl();
1470
1471 // Create the base specifier.
1472 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
1473 Class->getTagKind() == TTK_Class,
1474 Access, TInfo, EllipsisLoc);
1475 }
1476
1477 /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
1478 /// one entry in the base class list of a class specifier, for
1479 /// example:
1480 /// class foo : public bar, virtual private baz {
1481 /// 'public bar' and 'virtual private baz' are each base-specifiers.
1482 BaseResult
ActOnBaseSpecifier(Decl * classdecl,SourceRange SpecifierRange,ParsedAttributes & Attributes,bool Virtual,AccessSpecifier Access,ParsedType basetype,SourceLocation BaseLoc,SourceLocation EllipsisLoc)1483 Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
1484 ParsedAttributes &Attributes,
1485 bool Virtual, AccessSpecifier Access,
1486 ParsedType basetype, SourceLocation BaseLoc,
1487 SourceLocation EllipsisLoc) {
1488 if (!classdecl)
1489 return true;
1490
1491 AdjustDeclIfTemplate(classdecl);
1492 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
1493 if (!Class)
1494 return true;
1495
1496 // We haven't yet attached the base specifiers.
1497 Class->setIsParsingBaseSpecifiers();
1498
1499 // We do not support any C++11 attributes on base-specifiers yet.
1500 // Diagnose any attributes we see.
1501 if (!Attributes.empty()) {
1502 for (AttributeList *Attr = Attributes.getList(); Attr;
1503 Attr = Attr->getNext()) {
1504 if (Attr->isInvalid() ||
1505 Attr->getKind() == AttributeList::IgnoredAttribute)
1506 continue;
1507 Diag(Attr->getLoc(),
1508 Attr->getKind() == AttributeList::UnknownAttribute
1509 ? diag::warn_unknown_attribute_ignored
1510 : diag::err_base_specifier_attribute)
1511 << Attr->getName();
1512 }
1513 }
1514
1515 TypeSourceInfo *TInfo = nullptr;
1516 GetTypeFromParser(basetype, &TInfo);
1517
1518 if (EllipsisLoc.isInvalid() &&
1519 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
1520 UPPC_BaseType))
1521 return true;
1522
1523 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
1524 Virtual, Access, TInfo,
1525 EllipsisLoc))
1526 return BaseSpec;
1527 else
1528 Class->setInvalidDecl();
1529
1530 return true;
1531 }
1532
1533 /// \brief Performs the actual work of attaching the given base class
1534 /// specifiers to a C++ class.
AttachBaseSpecifiers(CXXRecordDecl * Class,CXXBaseSpecifier ** Bases,unsigned NumBases)1535 bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases,
1536 unsigned NumBases) {
1537 if (NumBases == 0)
1538 return false;
1539
1540 // Used to keep track of which base types we have already seen, so
1541 // that we can properly diagnose redundant direct base types. Note
1542 // that the key is always the unqualified canonical type of the base
1543 // class.
1544 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
1545
1546 // Copy non-redundant base specifiers into permanent storage.
1547 unsigned NumGoodBases = 0;
1548 bool Invalid = false;
1549 for (unsigned idx = 0; idx < NumBases; ++idx) {
1550 QualType NewBaseType
1551 = Context.getCanonicalType(Bases[idx]->getType());
1552 NewBaseType = NewBaseType.getLocalUnqualifiedType();
1553
1554 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
1555 if (KnownBase) {
1556 // C++ [class.mi]p3:
1557 // A class shall not be specified as a direct base class of a
1558 // derived class more than once.
1559 Diag(Bases[idx]->getLocStart(),
1560 diag::err_duplicate_base_class)
1561 << KnownBase->getType()
1562 << Bases[idx]->getSourceRange();
1563
1564 // Delete the duplicate base class specifier; we're going to
1565 // overwrite its pointer later.
1566 Context.Deallocate(Bases[idx]);
1567
1568 Invalid = true;
1569 } else {
1570 // Okay, add this new base class.
1571 KnownBase = Bases[idx];
1572 Bases[NumGoodBases++] = Bases[idx];
1573 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
1574 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
1575 if (Class->isInterface() &&
1576 (!RD->isInterface() ||
1577 KnownBase->getAccessSpecifier() != AS_public)) {
1578 // The Microsoft extension __interface does not permit bases that
1579 // are not themselves public interfaces.
1580 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
1581 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
1582 << RD->getSourceRange();
1583 Invalid = true;
1584 }
1585 if (RD->hasAttr<WeakAttr>())
1586 Class->addAttr(WeakAttr::CreateImplicit(Context));
1587 }
1588 }
1589 }
1590
1591 // Attach the remaining base class specifiers to the derived class.
1592 Class->setBases(Bases, NumGoodBases);
1593
1594 // Delete the remaining (good) base class specifiers, since their
1595 // data has been copied into the CXXRecordDecl.
1596 for (unsigned idx = 0; idx < NumGoodBases; ++idx)
1597 Context.Deallocate(Bases[idx]);
1598
1599 return Invalid;
1600 }
1601
1602 /// ActOnBaseSpecifiers - Attach the given base specifiers to the
1603 /// class, after checking whether there are any duplicate base
1604 /// classes.
ActOnBaseSpecifiers(Decl * ClassDecl,CXXBaseSpecifier ** Bases,unsigned NumBases)1605 void Sema::ActOnBaseSpecifiers(Decl *ClassDecl, CXXBaseSpecifier **Bases,
1606 unsigned NumBases) {
1607 if (!ClassDecl || !Bases || !NumBases)
1608 return;
1609
1610 AdjustDeclIfTemplate(ClassDecl);
1611 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases, NumBases);
1612 }
1613
1614 /// \brief Determine whether the type \p Derived is a C++ class that is
1615 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base)1616 bool Sema::IsDerivedFrom(QualType Derived, QualType Base) {
1617 if (!getLangOpts().CPlusPlus)
1618 return false;
1619
1620 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1621 if (!DerivedRD)
1622 return false;
1623
1624 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1625 if (!BaseRD)
1626 return false;
1627
1628 // If either the base or the derived type is invalid, don't try to
1629 // check whether one is derived from the other.
1630 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
1631 return false;
1632
1633 // FIXME: instantiate DerivedRD if necessary. We need a PoI for this.
1634 return DerivedRD->hasDefinition() && DerivedRD->isDerivedFrom(BaseRD);
1635 }
1636
1637 /// \brief Determine whether the type \p Derived is a C++ class that is
1638 /// derived from the type \p Base.
IsDerivedFrom(QualType Derived,QualType Base,CXXBasePaths & Paths)1639 bool Sema::IsDerivedFrom(QualType Derived, QualType Base, CXXBasePaths &Paths) {
1640 if (!getLangOpts().CPlusPlus)
1641 return false;
1642
1643 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
1644 if (!DerivedRD)
1645 return false;
1646
1647 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
1648 if (!BaseRD)
1649 return false;
1650
1651 return DerivedRD->isDerivedFrom(BaseRD, Paths);
1652 }
1653
BuildBasePathArray(const CXXBasePaths & Paths,CXXCastPath & BasePathArray)1654 void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
1655 CXXCastPath &BasePathArray) {
1656 assert(BasePathArray.empty() && "Base path array must be empty!");
1657 assert(Paths.isRecordingPaths() && "Must record paths!");
1658
1659 const CXXBasePath &Path = Paths.front();
1660
1661 // We first go backward and check if we have a virtual base.
1662 // FIXME: It would be better if CXXBasePath had the base specifier for
1663 // the nearest virtual base.
1664 unsigned Start = 0;
1665 for (unsigned I = Path.size(); I != 0; --I) {
1666 if (Path[I - 1].Base->isVirtual()) {
1667 Start = I - 1;
1668 break;
1669 }
1670 }
1671
1672 // Now add all bases.
1673 for (unsigned I = Start, E = Path.size(); I != E; ++I)
1674 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
1675 }
1676
1677 /// \brief Determine whether the given base path includes a virtual
1678 /// base class.
BasePathInvolvesVirtualBase(const CXXCastPath & BasePath)1679 bool Sema::BasePathInvolvesVirtualBase(const CXXCastPath &BasePath) {
1680 for (CXXCastPath::const_iterator B = BasePath.begin(),
1681 BEnd = BasePath.end();
1682 B != BEnd; ++B)
1683 if ((*B)->isVirtual())
1684 return true;
1685
1686 return false;
1687 }
1688
1689 /// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
1690 /// conversion (where Derived and Base are class types) is
1691 /// well-formed, meaning that the conversion is unambiguous (and
1692 /// that all of the base classes are accessible). Returns true
1693 /// and emits a diagnostic if the code is ill-formed, returns false
1694 /// otherwise. Loc is the location where this routine should point to
1695 /// if there is an error, and Range is the source range to highlight
1696 /// if there is an error.
1697 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,unsigned InaccessibleBaseID,unsigned AmbigiousBaseConvID,SourceLocation Loc,SourceRange Range,DeclarationName Name,CXXCastPath * BasePath)1698 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1699 unsigned InaccessibleBaseID,
1700 unsigned AmbigiousBaseConvID,
1701 SourceLocation Loc, SourceRange Range,
1702 DeclarationName Name,
1703 CXXCastPath *BasePath) {
1704 // First, determine whether the path from Derived to Base is
1705 // ambiguous. This is slightly more expensive than checking whether
1706 // the Derived to Base conversion exists, because here we need to
1707 // explore multiple paths to determine if there is an ambiguity.
1708 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
1709 /*DetectVirtual=*/false);
1710 bool DerivationOkay = IsDerivedFrom(Derived, Base, Paths);
1711 assert(DerivationOkay &&
1712 "Can only be used with a derived-to-base conversion");
1713 (void)DerivationOkay;
1714
1715 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
1716 if (InaccessibleBaseID) {
1717 // Check that the base class can be accessed.
1718 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
1719 InaccessibleBaseID)) {
1720 case AR_inaccessible:
1721 return true;
1722 case AR_accessible:
1723 case AR_dependent:
1724 case AR_delayed:
1725 break;
1726 }
1727 }
1728
1729 // Build a base path if necessary.
1730 if (BasePath)
1731 BuildBasePathArray(Paths, *BasePath);
1732 return false;
1733 }
1734
1735 if (AmbigiousBaseConvID) {
1736 // We know that the derived-to-base conversion is ambiguous, and
1737 // we're going to produce a diagnostic. Perform the derived-to-base
1738 // search just one more time to compute all of the possible paths so
1739 // that we can print them out. This is more expensive than any of
1740 // the previous derived-to-base checks we've done, but at this point
1741 // performance isn't as much of an issue.
1742 Paths.clear();
1743 Paths.setRecordingPaths(true);
1744 bool StillOkay = IsDerivedFrom(Derived, Base, Paths);
1745 assert(StillOkay && "Can only be used with a derived-to-base conversion");
1746 (void)StillOkay;
1747
1748 // Build up a textual representation of the ambiguous paths, e.g.,
1749 // D -> B -> A, that will be used to illustrate the ambiguous
1750 // conversions in the diagnostic. We only print one of the paths
1751 // to each base class subobject.
1752 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
1753
1754 Diag(Loc, AmbigiousBaseConvID)
1755 << Derived << Base << PathDisplayStr << Range << Name;
1756 }
1757 return true;
1758 }
1759
1760 bool
CheckDerivedToBaseConversion(QualType Derived,QualType Base,SourceLocation Loc,SourceRange Range,CXXCastPath * BasePath,bool IgnoreAccess)1761 Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
1762 SourceLocation Loc, SourceRange Range,
1763 CXXCastPath *BasePath,
1764 bool IgnoreAccess) {
1765 return CheckDerivedToBaseConversion(Derived, Base,
1766 IgnoreAccess ? 0
1767 : diag::err_upcast_to_inaccessible_base,
1768 diag::err_ambiguous_derived_to_base_conv,
1769 Loc, Range, DeclarationName(),
1770 BasePath);
1771 }
1772
1773
1774 /// @brief Builds a string representing ambiguous paths from a
1775 /// specific derived class to different subobjects of the same base
1776 /// class.
1777 ///
1778 /// This function builds a string that can be used in error messages
1779 /// to show the different paths that one can take through the
1780 /// inheritance hierarchy to go from the derived class to different
1781 /// subobjects of a base class. The result looks something like this:
1782 /// @code
1783 /// struct D -> struct B -> struct A
1784 /// struct D -> struct C -> struct A
1785 /// @endcode
getAmbiguousPathsDisplayString(CXXBasePaths & Paths)1786 std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
1787 std::string PathDisplayStr;
1788 std::set<unsigned> DisplayedPaths;
1789 for (CXXBasePaths::paths_iterator Path = Paths.begin();
1790 Path != Paths.end(); ++Path) {
1791 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
1792 // We haven't displayed a path to this particular base
1793 // class subobject yet.
1794 PathDisplayStr += "\n ";
1795 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
1796 for (CXXBasePath::const_iterator Element = Path->begin();
1797 Element != Path->end(); ++Element)
1798 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
1799 }
1800 }
1801
1802 return PathDisplayStr;
1803 }
1804
1805 //===----------------------------------------------------------------------===//
1806 // C++ class member Handling
1807 //===----------------------------------------------------------------------===//
1808
1809 /// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
ActOnAccessSpecifier(AccessSpecifier Access,SourceLocation ASLoc,SourceLocation ColonLoc,AttributeList * Attrs)1810 bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
1811 SourceLocation ASLoc,
1812 SourceLocation ColonLoc,
1813 AttributeList *Attrs) {
1814 assert(Access != AS_none && "Invalid kind for syntactic access specifier!");
1815 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
1816 ASLoc, ColonLoc);
1817 CurContext->addHiddenDecl(ASDecl);
1818 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
1819 }
1820
1821 /// CheckOverrideControl - Check C++11 override control semantics.
CheckOverrideControl(NamedDecl * D)1822 void Sema::CheckOverrideControl(NamedDecl *D) {
1823 if (D->isInvalidDecl())
1824 return;
1825
1826 // We only care about "override" and "final" declarations.
1827 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
1828 return;
1829
1830 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
1831
1832 // We can't check dependent instance methods.
1833 if (MD && MD->isInstance() &&
1834 (MD->getParent()->hasAnyDependentBases() ||
1835 MD->getType()->isDependentType()))
1836 return;
1837
1838 if (MD && !MD->isVirtual()) {
1839 // If we have a non-virtual method, check if if hides a virtual method.
1840 // (In that case, it's most likely the method has the wrong type.)
1841 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
1842 FindHiddenVirtualMethods(MD, OverloadedMethods);
1843
1844 if (!OverloadedMethods.empty()) {
1845 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1846 Diag(OA->getLocation(),
1847 diag::override_keyword_hides_virtual_member_function)
1848 << "override" << (OverloadedMethods.size() > 1);
1849 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1850 Diag(FA->getLocation(),
1851 diag::override_keyword_hides_virtual_member_function)
1852 << (FA->isSpelledAsSealed() ? "sealed" : "final")
1853 << (OverloadedMethods.size() > 1);
1854 }
1855 NoteHiddenVirtualMethods(MD, OverloadedMethods);
1856 MD->setInvalidDecl();
1857 return;
1858 }
1859 // Fall through into the general case diagnostic.
1860 // FIXME: We might want to attempt typo correction here.
1861 }
1862
1863 if (!MD || !MD->isVirtual()) {
1864 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
1865 Diag(OA->getLocation(),
1866 diag::override_keyword_only_allowed_on_virtual_member_functions)
1867 << "override" << FixItHint::CreateRemoval(OA->getLocation());
1868 D->dropAttr<OverrideAttr>();
1869 }
1870 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
1871 Diag(FA->getLocation(),
1872 diag::override_keyword_only_allowed_on_virtual_member_functions)
1873 << (FA->isSpelledAsSealed() ? "sealed" : "final")
1874 << FixItHint::CreateRemoval(FA->getLocation());
1875 D->dropAttr<FinalAttr>();
1876 }
1877 return;
1878 }
1879
1880 // C++11 [class.virtual]p5:
1881 // If a virtual function is marked with the virt-specifier override and
1882 // does not override a member function of a base class, the program is
1883 // ill-formed.
1884 bool HasOverriddenMethods =
1885 MD->begin_overridden_methods() != MD->end_overridden_methods();
1886 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
1887 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
1888 << MD->getDeclName();
1889 }
1890
1891 /// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
1892 /// function overrides a virtual member function marked 'final', according to
1893 /// C++11 [class.virtual]p4.
CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl * New,const CXXMethodDecl * Old)1894 bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
1895 const CXXMethodDecl *Old) {
1896 FinalAttr *FA = Old->getAttr<FinalAttr>();
1897 if (!FA)
1898 return false;
1899
1900 Diag(New->getLocation(), diag::err_final_function_overridden)
1901 << New->getDeclName()
1902 << FA->isSpelledAsSealed();
1903 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
1904 return true;
1905 }
1906
InitializationHasSideEffects(const FieldDecl & FD)1907 static bool InitializationHasSideEffects(const FieldDecl &FD) {
1908 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
1909 // FIXME: Destruction of ObjC lifetime types has side-effects.
1910 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
1911 return !RD->isCompleteDefinition() ||
1912 !RD->hasTrivialDefaultConstructor() ||
1913 !RD->hasTrivialDestructor();
1914 return false;
1915 }
1916
getMSPropertyAttr(AttributeList * list)1917 static AttributeList *getMSPropertyAttr(AttributeList *list) {
1918 for (AttributeList *it = list; it != nullptr; it = it->getNext())
1919 if (it->isDeclspecPropertyAttribute())
1920 return it;
1921 return nullptr;
1922 }
1923
1924 /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
1925 /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
1926 /// bitfield width if there is one, 'InitExpr' specifies the initializer if
1927 /// one has been parsed, and 'InitStyle' is set if an in-class initializer is
1928 /// present (but parsing it has been deferred).
1929 NamedDecl *
ActOnCXXMemberDeclarator(Scope * S,AccessSpecifier AS,Declarator & D,MultiTemplateParamsArg TemplateParameterLists,Expr * BW,const VirtSpecifiers & VS,InClassInitStyle InitStyle)1930 Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
1931 MultiTemplateParamsArg TemplateParameterLists,
1932 Expr *BW, const VirtSpecifiers &VS,
1933 InClassInitStyle InitStyle) {
1934 const DeclSpec &DS = D.getDeclSpec();
1935 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
1936 DeclarationName Name = NameInfo.getName();
1937 SourceLocation Loc = NameInfo.getLoc();
1938
1939 // For anonymous bitfields, the location should point to the type.
1940 if (Loc.isInvalid())
1941 Loc = D.getLocStart();
1942
1943 Expr *BitWidth = static_cast<Expr*>(BW);
1944
1945 assert(isa<CXXRecordDecl>(CurContext));
1946 assert(!DS.isFriendSpecified());
1947
1948 bool isFunc = D.isDeclarationOfFunction();
1949
1950 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
1951 // The Microsoft extension __interface only permits public member functions
1952 // and prohibits constructors, destructors, operators, non-public member
1953 // functions, static methods and data members.
1954 unsigned InvalidDecl;
1955 bool ShowDeclName = true;
1956 if (!isFunc)
1957 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
1958 else if (AS != AS_public)
1959 InvalidDecl = 2;
1960 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
1961 InvalidDecl = 3;
1962 else switch (Name.getNameKind()) {
1963 case DeclarationName::CXXConstructorName:
1964 InvalidDecl = 4;
1965 ShowDeclName = false;
1966 break;
1967
1968 case DeclarationName::CXXDestructorName:
1969 InvalidDecl = 5;
1970 ShowDeclName = false;
1971 break;
1972
1973 case DeclarationName::CXXOperatorName:
1974 case DeclarationName::CXXConversionFunctionName:
1975 InvalidDecl = 6;
1976 break;
1977
1978 default:
1979 InvalidDecl = 0;
1980 break;
1981 }
1982
1983 if (InvalidDecl) {
1984 if (ShowDeclName)
1985 Diag(Loc, diag::err_invalid_member_in_interface)
1986 << (InvalidDecl-1) << Name;
1987 else
1988 Diag(Loc, diag::err_invalid_member_in_interface)
1989 << (InvalidDecl-1) << "";
1990 return nullptr;
1991 }
1992 }
1993
1994 // C++ 9.2p6: A member shall not be declared to have automatic storage
1995 // duration (auto, register) or with the extern storage-class-specifier.
1996 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
1997 // data members and cannot be applied to names declared const or static,
1998 // and cannot be applied to reference members.
1999 switch (DS.getStorageClassSpec()) {
2000 case DeclSpec::SCS_unspecified:
2001 case DeclSpec::SCS_typedef:
2002 case DeclSpec::SCS_static:
2003 break;
2004 case DeclSpec::SCS_mutable:
2005 if (isFunc) {
2006 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2007
2008 // FIXME: It would be nicer if the keyword was ignored only for this
2009 // declarator. Otherwise we could get follow-up errors.
2010 D.getMutableDeclSpec().ClearStorageClassSpecs();
2011 }
2012 break;
2013 default:
2014 Diag(DS.getStorageClassSpecLoc(),
2015 diag::err_storageclass_invalid_for_member);
2016 D.getMutableDeclSpec().ClearStorageClassSpecs();
2017 break;
2018 }
2019
2020 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2021 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2022 !isFunc);
2023
2024 if (DS.isConstexprSpecified() && isInstField) {
2025 SemaDiagnosticBuilder B =
2026 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2027 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2028 if (InitStyle == ICIS_NoInit) {
2029 B << 0 << 0;
2030 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2031 B << FixItHint::CreateRemoval(ConstexprLoc);
2032 else {
2033 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2034 D.getMutableDeclSpec().ClearConstexprSpec();
2035 const char *PrevSpec;
2036 unsigned DiagID;
2037 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2038 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2039 (void)Failed;
2040 assert(!Failed && "Making a constexpr member const shouldn't fail");
2041 }
2042 } else {
2043 B << 1;
2044 const char *PrevSpec;
2045 unsigned DiagID;
2046 if (D.getMutableDeclSpec().SetStorageClassSpec(
2047 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2048 Context.getPrintingPolicy())) {
2049 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
2050 "This is the only DeclSpec that should fail to be applied");
2051 B << 1;
2052 } else {
2053 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2054 isInstField = false;
2055 }
2056 }
2057 }
2058
2059 NamedDecl *Member;
2060 if (isInstField) {
2061 CXXScopeSpec &SS = D.getCXXScopeSpec();
2062
2063 // Data members must have identifiers for names.
2064 if (!Name.isIdentifier()) {
2065 Diag(Loc, diag::err_bad_variable_name)
2066 << Name;
2067 return nullptr;
2068 }
2069
2070 IdentifierInfo *II = Name.getAsIdentifierInfo();
2071
2072 // Member field could not be with "template" keyword.
2073 // So TemplateParameterLists should be empty in this case.
2074 if (TemplateParameterLists.size()) {
2075 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2076 if (TemplateParams->size()) {
2077 // There is no such thing as a member field template.
2078 Diag(D.getIdentifierLoc(), diag::err_template_member)
2079 << II
2080 << SourceRange(TemplateParams->getTemplateLoc(),
2081 TemplateParams->getRAngleLoc());
2082 } else {
2083 // There is an extraneous 'template<>' for this member.
2084 Diag(TemplateParams->getTemplateLoc(),
2085 diag::err_template_member_noparams)
2086 << II
2087 << SourceRange(TemplateParams->getTemplateLoc(),
2088 TemplateParams->getRAngleLoc());
2089 }
2090 return nullptr;
2091 }
2092
2093 if (SS.isSet() && !SS.isInvalid()) {
2094 // The user provided a superfluous scope specifier inside a class
2095 // definition:
2096 //
2097 // class X {
2098 // int X::member;
2099 // };
2100 if (DeclContext *DC = computeDeclContext(SS, false))
2101 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
2102 else
2103 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2104 << Name << SS.getRange();
2105
2106 SS.clear();
2107 }
2108
2109 AttributeList *MSPropertyAttr =
2110 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
2111 if (MSPropertyAttr) {
2112 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2113 BitWidth, InitStyle, AS, MSPropertyAttr);
2114 if (!Member)
2115 return nullptr;
2116 isInstField = false;
2117 } else {
2118 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
2119 BitWidth, InitStyle, AS);
2120 assert(Member && "HandleField never returns null");
2121 }
2122 } else {
2123 assert(InitStyle == ICIS_NoInit || D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_static);
2124
2125 Member = HandleDeclarator(S, D, TemplateParameterLists);
2126 if (!Member)
2127 return nullptr;
2128
2129 // Non-instance-fields can't have a bitfield.
2130 if (BitWidth) {
2131 if (Member->isInvalidDecl()) {
2132 // don't emit another diagnostic.
2133 } else if (isa<VarDecl>(Member)) {
2134 // C++ 9.6p3: A bit-field shall not be a static member.
2135 // "static member 'A' cannot be a bit-field"
2136 Diag(Loc, diag::err_static_not_bitfield)
2137 << Name << BitWidth->getSourceRange();
2138 } else if (isa<TypedefDecl>(Member)) {
2139 // "typedef member 'x' cannot be a bit-field"
2140 Diag(Loc, diag::err_typedef_not_bitfield)
2141 << Name << BitWidth->getSourceRange();
2142 } else {
2143 // A function typedef ("typedef int f(); f a;").
2144 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
2145 Diag(Loc, diag::err_not_integral_type_bitfield)
2146 << Name << cast<ValueDecl>(Member)->getType()
2147 << BitWidth->getSourceRange();
2148 }
2149
2150 BitWidth = nullptr;
2151 Member->setInvalidDecl();
2152 }
2153
2154 Member->setAccess(AS);
2155
2156 // If we have declared a member function template or static data member
2157 // template, set the access of the templated declaration as well.
2158 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
2159 FunTmpl->getTemplatedDecl()->setAccess(AS);
2160 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
2161 VarTmpl->getTemplatedDecl()->setAccess(AS);
2162 }
2163
2164 if (VS.isOverrideSpecified())
2165 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
2166 if (VS.isFinalSpecified())
2167 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
2168 VS.isFinalSpelledSealed()));
2169
2170 if (VS.getLastLocation().isValid()) {
2171 // Update the end location of a method that has a virt-specifiers.
2172 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
2173 MD->setRangeEnd(VS.getLastLocation());
2174 }
2175
2176 CheckOverrideControl(Member);
2177
2178 assert((Name || isInstField) && "No identifier for non-field ?");
2179
2180 if (isInstField) {
2181 FieldDecl *FD = cast<FieldDecl>(Member);
2182 FieldCollector->Add(FD);
2183
2184 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
2185 // Remember all explicit private FieldDecls that have a name, no side
2186 // effects and are not part of a dependent type declaration.
2187 if (!FD->isImplicit() && FD->getDeclName() &&
2188 FD->getAccess() == AS_private &&
2189 !FD->hasAttr<UnusedAttr>() &&
2190 !FD->getParent()->isDependentContext() &&
2191 !InitializationHasSideEffects(*FD))
2192 UnusedPrivateFields.insert(FD);
2193 }
2194 }
2195
2196 return Member;
2197 }
2198
2199 namespace {
2200 class UninitializedFieldVisitor
2201 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
2202 Sema &S;
2203 // List of Decls to generate a warning on. Also remove Decls that become
2204 // initialized.
2205 llvm::SmallPtrSet<ValueDecl*, 4> &Decls;
2206 // If non-null, add a note to the warning pointing back to the constructor.
2207 const CXXConstructorDecl *Constructor;
2208 public:
2209 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
UninitializedFieldVisitor(Sema & S,llvm::SmallPtrSet<ValueDecl *,4> & Decls,const CXXConstructorDecl * Constructor)2210 UninitializedFieldVisitor(Sema &S,
2211 llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2212 const CXXConstructorDecl *Constructor)
2213 : Inherited(S.Context), S(S), Decls(Decls),
2214 Constructor(Constructor) { }
2215
HandleMemberExpr(MemberExpr * ME,bool CheckReferenceOnly)2216 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly) {
2217 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
2218 return;
2219
2220 // FieldME is the inner-most MemberExpr that is not an anonymous struct
2221 // or union.
2222 MemberExpr *FieldME = ME;
2223
2224 Expr *Base = ME;
2225 while (isa<MemberExpr>(Base)) {
2226 ME = cast<MemberExpr>(Base);
2227
2228 if (isa<VarDecl>(ME->getMemberDecl()))
2229 return;
2230
2231 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2232 if (!FD->isAnonymousStructOrUnion())
2233 FieldME = ME;
2234
2235 Base = ME->getBase();
2236 }
2237
2238 if (!isa<CXXThisExpr>(Base))
2239 return;
2240
2241 ValueDecl* FoundVD = FieldME->getMemberDecl();
2242
2243 if (!Decls.count(FoundVD))
2244 return;
2245
2246 const bool IsReference = FoundVD->getType()->isReferenceType();
2247
2248 // Prevent double warnings on use of unbounded references.
2249 if (IsReference != CheckReferenceOnly)
2250 return;
2251
2252 unsigned diag = IsReference
2253 ? diag::warn_reference_field_is_uninit
2254 : diag::warn_field_is_uninit;
2255 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
2256 if (Constructor)
2257 S.Diag(Constructor->getLocation(),
2258 diag::note_uninit_in_this_constructor)
2259 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
2260
2261 }
2262
HandleValue(Expr * E)2263 void HandleValue(Expr *E) {
2264 E = E->IgnoreParens();
2265
2266 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
2267 HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2268 return;
2269 }
2270
2271 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
2272 HandleValue(CO->getTrueExpr());
2273 HandleValue(CO->getFalseExpr());
2274 return;
2275 }
2276
2277 if (BinaryConditionalOperator *BCO =
2278 dyn_cast<BinaryConditionalOperator>(E)) {
2279 HandleValue(BCO->getCommon());
2280 HandleValue(BCO->getFalseExpr());
2281 return;
2282 }
2283
2284 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
2285 switch (BO->getOpcode()) {
2286 default:
2287 return;
2288 case(BO_PtrMemD):
2289 case(BO_PtrMemI):
2290 HandleValue(BO->getLHS());
2291 return;
2292 case(BO_Comma):
2293 HandleValue(BO->getRHS());
2294 return;
2295 }
2296 }
2297 }
2298
VisitMemberExpr(MemberExpr * ME)2299 void VisitMemberExpr(MemberExpr *ME) {
2300 // All uses of unbounded reference fields will warn.
2301 HandleMemberExpr(ME, true /*CheckReferenceOnly*/);
2302
2303 Inherited::VisitMemberExpr(ME);
2304 }
2305
VisitImplicitCastExpr(ImplicitCastExpr * E)2306 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
2307 if (E->getCastKind() == CK_LValueToRValue)
2308 HandleValue(E->getSubExpr());
2309
2310 Inherited::VisitImplicitCastExpr(E);
2311 }
2312
VisitCXXConstructExpr(CXXConstructExpr * E)2313 void VisitCXXConstructExpr(CXXConstructExpr *E) {
2314 if (E->getConstructor()->isCopyConstructor())
2315 if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(E->getArg(0)))
2316 if (ICE->getCastKind() == CK_NoOp)
2317 if (MemberExpr *ME = dyn_cast<MemberExpr>(ICE->getSubExpr()))
2318 HandleMemberExpr(ME, false /*CheckReferenceOnly*/);
2319
2320 Inherited::VisitCXXConstructExpr(E);
2321 }
2322
VisitCXXMemberCallExpr(CXXMemberCallExpr * E)2323 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
2324 Expr *Callee = E->getCallee();
2325 if (isa<MemberExpr>(Callee))
2326 HandleValue(Callee);
2327
2328 Inherited::VisitCXXMemberCallExpr(E);
2329 }
2330
VisitBinaryOperator(BinaryOperator * E)2331 void VisitBinaryOperator(BinaryOperator *E) {
2332 // If a field assignment is detected, remove the field from the
2333 // uninitiailized field set.
2334 if (E->getOpcode() == BO_Assign)
2335 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
2336 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
2337 if (!FD->getType()->isReferenceType())
2338 Decls.erase(FD);
2339
2340 Inherited::VisitBinaryOperator(E);
2341 }
2342 };
CheckInitExprContainsUninitializedFields(Sema & S,Expr * E,llvm::SmallPtrSet<ValueDecl *,4> & Decls,const CXXConstructorDecl * Constructor)2343 static void CheckInitExprContainsUninitializedFields(
2344 Sema &S, Expr *E, llvm::SmallPtrSet<ValueDecl*, 4> &Decls,
2345 const CXXConstructorDecl *Constructor) {
2346 if (Decls.size() == 0)
2347 return;
2348
2349 if (!E)
2350 return;
2351
2352 if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(E)) {
2353 E = Default->getExpr();
2354 if (!E)
2355 return;
2356 // In class initializers will point to the constructor.
2357 UninitializedFieldVisitor(S, Decls, Constructor).Visit(E);
2358 } else {
2359 UninitializedFieldVisitor(S, Decls, nullptr).Visit(E);
2360 }
2361 }
2362
2363 // Diagnose value-uses of fields to initialize themselves, e.g.
2364 // foo(foo)
2365 // where foo is not also a parameter to the constructor.
2366 // Also diagnose across field uninitialized use such as
2367 // x(y), y(x)
2368 // TODO: implement -Wuninitialized and fold this into that framework.
DiagnoseUninitializedFields(Sema & SemaRef,const CXXConstructorDecl * Constructor)2369 static void DiagnoseUninitializedFields(
2370 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
2371
2372 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
2373 Constructor->getLocation())) {
2374 return;
2375 }
2376
2377 if (Constructor->isInvalidDecl())
2378 return;
2379
2380 const CXXRecordDecl *RD = Constructor->getParent();
2381
2382 // Holds fields that are uninitialized.
2383 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
2384
2385 // At the beginning, all fields are uninitialized.
2386 for (auto *I : RD->decls()) {
2387 if (auto *FD = dyn_cast<FieldDecl>(I)) {
2388 UninitializedFields.insert(FD);
2389 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
2390 UninitializedFields.insert(IFD->getAnonField());
2391 }
2392 }
2393
2394 for (const auto *FieldInit : Constructor->inits()) {
2395 Expr *InitExpr = FieldInit->getInit();
2396
2397 CheckInitExprContainsUninitializedFields(
2398 SemaRef, InitExpr, UninitializedFields, Constructor);
2399
2400 if (FieldDecl *Field = FieldInit->getAnyMember())
2401 UninitializedFields.erase(Field);
2402 }
2403 }
2404 } // namespace
2405
2406 /// \brief Enter a new C++ default initializer scope. After calling this, the
2407 /// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
2408 /// parsing or instantiating the initializer failed.
ActOnStartCXXInClassMemberInitializer()2409 void Sema::ActOnStartCXXInClassMemberInitializer() {
2410 // Create a synthetic function scope to represent the call to the constructor
2411 // that notionally surrounds a use of this initializer.
2412 PushFunctionScope();
2413 }
2414
2415 /// \brief This is invoked after parsing an in-class initializer for a
2416 /// non-static C++ class member, and after instantiating an in-class initializer
2417 /// in a class template. Such actions are deferred until the class is complete.
ActOnFinishCXXInClassMemberInitializer(Decl * D,SourceLocation InitLoc,Expr * InitExpr)2418 void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
2419 SourceLocation InitLoc,
2420 Expr *InitExpr) {
2421 // Pop the notional constructor scope we created earlier.
2422 PopFunctionScopeInfo(nullptr, D);
2423
2424 FieldDecl *FD = cast<FieldDecl>(D);
2425 assert(FD->getInClassInitStyle() != ICIS_NoInit &&
2426 "must set init style when field is created");
2427
2428 if (!InitExpr) {
2429 FD->setInvalidDecl();
2430 FD->removeInClassInitializer();
2431 return;
2432 }
2433
2434 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
2435 FD->setInvalidDecl();
2436 FD->removeInClassInitializer();
2437 return;
2438 }
2439
2440 ExprResult Init = InitExpr;
2441 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
2442 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
2443 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
2444 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
2445 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
2446 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2447 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
2448 if (Init.isInvalid()) {
2449 FD->setInvalidDecl();
2450 return;
2451 }
2452 }
2453
2454 // C++11 [class.base.init]p7:
2455 // The initialization of each base and member constitutes a
2456 // full-expression.
2457 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
2458 if (Init.isInvalid()) {
2459 FD->setInvalidDecl();
2460 return;
2461 }
2462
2463 InitExpr = Init.get();
2464
2465 FD->setInClassInitializer(InitExpr);
2466 }
2467
2468 /// \brief Find the direct and/or virtual base specifiers that
2469 /// correspond to the given base type, for use in base initialization
2470 /// within a constructor.
FindBaseInitializer(Sema & SemaRef,CXXRecordDecl * ClassDecl,QualType BaseType,const CXXBaseSpecifier * & DirectBaseSpec,const CXXBaseSpecifier * & VirtualBaseSpec)2471 static bool FindBaseInitializer(Sema &SemaRef,
2472 CXXRecordDecl *ClassDecl,
2473 QualType BaseType,
2474 const CXXBaseSpecifier *&DirectBaseSpec,
2475 const CXXBaseSpecifier *&VirtualBaseSpec) {
2476 // First, check for a direct base class.
2477 DirectBaseSpec = nullptr;
2478 for (const auto &Base : ClassDecl->bases()) {
2479 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
2480 // We found a direct base of this type. That's what we're
2481 // initializing.
2482 DirectBaseSpec = &Base;
2483 break;
2484 }
2485 }
2486
2487 // Check for a virtual base class.
2488 // FIXME: We might be able to short-circuit this if we know in advance that
2489 // there are no virtual bases.
2490 VirtualBaseSpec = nullptr;
2491 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
2492 // We haven't found a base yet; search the class hierarchy for a
2493 // virtual base class.
2494 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2495 /*DetectVirtual=*/false);
2496 if (SemaRef.IsDerivedFrom(SemaRef.Context.getTypeDeclType(ClassDecl),
2497 BaseType, Paths)) {
2498 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2499 Path != Paths.end(); ++Path) {
2500 if (Path->back().Base->isVirtual()) {
2501 VirtualBaseSpec = Path->back().Base;
2502 break;
2503 }
2504 }
2505 }
2506 }
2507
2508 return DirectBaseSpec || VirtualBaseSpec;
2509 }
2510
2511 /// \brief Handle a C++ member initializer using braced-init-list syntax.
2512 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * InitList,SourceLocation EllipsisLoc)2513 Sema::ActOnMemInitializer(Decl *ConstructorD,
2514 Scope *S,
2515 CXXScopeSpec &SS,
2516 IdentifierInfo *MemberOrBase,
2517 ParsedType TemplateTypeTy,
2518 const DeclSpec &DS,
2519 SourceLocation IdLoc,
2520 Expr *InitList,
2521 SourceLocation EllipsisLoc) {
2522 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2523 DS, IdLoc, InitList,
2524 EllipsisLoc);
2525 }
2526
2527 /// \brief Handle a C++ member initializer using parentheses syntax.
2528 MemInitResult
ActOnMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,SourceLocation LParenLoc,ArrayRef<Expr * > Args,SourceLocation RParenLoc,SourceLocation EllipsisLoc)2529 Sema::ActOnMemInitializer(Decl *ConstructorD,
2530 Scope *S,
2531 CXXScopeSpec &SS,
2532 IdentifierInfo *MemberOrBase,
2533 ParsedType TemplateTypeTy,
2534 const DeclSpec &DS,
2535 SourceLocation IdLoc,
2536 SourceLocation LParenLoc,
2537 ArrayRef<Expr *> Args,
2538 SourceLocation RParenLoc,
2539 SourceLocation EllipsisLoc) {
2540 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
2541 Args, RParenLoc);
2542 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
2543 DS, IdLoc, List, EllipsisLoc);
2544 }
2545
2546 namespace {
2547
2548 // Callback to only accept typo corrections that can be a valid C++ member
2549 // intializer: either a non-static field member or a base class.
2550 class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
2551 public:
MemInitializerValidatorCCC(CXXRecordDecl * ClassDecl)2552 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
2553 : ClassDecl(ClassDecl) {}
2554
ValidateCandidate(const TypoCorrection & candidate)2555 bool ValidateCandidate(const TypoCorrection &candidate) override {
2556 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
2557 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
2558 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
2559 return isa<TypeDecl>(ND);
2560 }
2561 return false;
2562 }
2563
2564 private:
2565 CXXRecordDecl *ClassDecl;
2566 };
2567
2568 }
2569
2570 /// \brief Handle a C++ member initializer.
2571 MemInitResult
BuildMemInitializer(Decl * ConstructorD,Scope * S,CXXScopeSpec & SS,IdentifierInfo * MemberOrBase,ParsedType TemplateTypeTy,const DeclSpec & DS,SourceLocation IdLoc,Expr * Init,SourceLocation EllipsisLoc)2572 Sema::BuildMemInitializer(Decl *ConstructorD,
2573 Scope *S,
2574 CXXScopeSpec &SS,
2575 IdentifierInfo *MemberOrBase,
2576 ParsedType TemplateTypeTy,
2577 const DeclSpec &DS,
2578 SourceLocation IdLoc,
2579 Expr *Init,
2580 SourceLocation EllipsisLoc) {
2581 if (!ConstructorD)
2582 return true;
2583
2584 AdjustDeclIfTemplate(ConstructorD);
2585
2586 CXXConstructorDecl *Constructor
2587 = dyn_cast<CXXConstructorDecl>(ConstructorD);
2588 if (!Constructor) {
2589 // The user wrote a constructor initializer on a function that is
2590 // not a C++ constructor. Ignore the error for now, because we may
2591 // have more member initializers coming; we'll diagnose it just
2592 // once in ActOnMemInitializers.
2593 return true;
2594 }
2595
2596 CXXRecordDecl *ClassDecl = Constructor->getParent();
2597
2598 // C++ [class.base.init]p2:
2599 // Names in a mem-initializer-id are looked up in the scope of the
2600 // constructor's class and, if not found in that scope, are looked
2601 // up in the scope containing the constructor's definition.
2602 // [Note: if the constructor's class contains a member with the
2603 // same name as a direct or virtual base class of the class, a
2604 // mem-initializer-id naming the member or base class and composed
2605 // of a single identifier refers to the class member. A
2606 // mem-initializer-id for the hidden base class may be specified
2607 // using a qualified name. ]
2608 if (!SS.getScopeRep() && !TemplateTypeTy) {
2609 // Look for a member, first.
2610 DeclContext::lookup_result Result
2611 = ClassDecl->lookup(MemberOrBase);
2612 if (!Result.empty()) {
2613 ValueDecl *Member;
2614 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
2615 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
2616 if (EllipsisLoc.isValid())
2617 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
2618 << MemberOrBase
2619 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
2620
2621 return BuildMemberInitializer(Member, Init, IdLoc);
2622 }
2623 }
2624 }
2625 // It didn't name a member, so see if it names a class.
2626 QualType BaseType;
2627 TypeSourceInfo *TInfo = nullptr;
2628
2629 if (TemplateTypeTy) {
2630 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
2631 } else if (DS.getTypeSpecType() == TST_decltype) {
2632 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
2633 } else {
2634 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
2635 LookupParsedName(R, S, &SS);
2636
2637 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
2638 if (!TyD) {
2639 if (R.isAmbiguous()) return true;
2640
2641 // We don't want access-control diagnostics here.
2642 R.suppressDiagnostics();
2643
2644 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
2645 bool NotUnknownSpecialization = false;
2646 DeclContext *DC = computeDeclContext(SS, false);
2647 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
2648 NotUnknownSpecialization = !Record->hasAnyDependentBases();
2649
2650 if (!NotUnknownSpecialization) {
2651 // When the scope specifier can refer to a member of an unknown
2652 // specialization, we take it as a type name.
2653 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
2654 SS.getWithLocInContext(Context),
2655 *MemberOrBase, IdLoc);
2656 if (BaseType.isNull())
2657 return true;
2658
2659 R.clear();
2660 R.setLookupName(MemberOrBase);
2661 }
2662 }
2663
2664 // If no results were found, try to correct typos.
2665 TypoCorrection Corr;
2666 MemInitializerValidatorCCC Validator(ClassDecl);
2667 if (R.empty() && BaseType.isNull() &&
2668 (Corr = CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
2669 Validator, CTK_ErrorRecovery, ClassDecl))) {
2670 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
2671 // We have found a non-static data member with a similar
2672 // name to what was typed; complain and initialize that
2673 // member.
2674 diagnoseTypo(Corr,
2675 PDiag(diag::err_mem_init_not_member_or_class_suggest)
2676 << MemberOrBase << true);
2677 return BuildMemberInitializer(Member, Init, IdLoc);
2678 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
2679 const CXXBaseSpecifier *DirectBaseSpec;
2680 const CXXBaseSpecifier *VirtualBaseSpec;
2681 if (FindBaseInitializer(*this, ClassDecl,
2682 Context.getTypeDeclType(Type),
2683 DirectBaseSpec, VirtualBaseSpec)) {
2684 // We have found a direct or virtual base class with a
2685 // similar name to what was typed; complain and initialize
2686 // that base class.
2687 diagnoseTypo(Corr,
2688 PDiag(diag::err_mem_init_not_member_or_class_suggest)
2689 << MemberOrBase << false,
2690 PDiag() /*Suppress note, we provide our own.*/);
2691
2692 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
2693 : VirtualBaseSpec;
2694 Diag(BaseSpec->getLocStart(),
2695 diag::note_base_class_specified_here)
2696 << BaseSpec->getType()
2697 << BaseSpec->getSourceRange();
2698
2699 TyD = Type;
2700 }
2701 }
2702 }
2703
2704 if (!TyD && BaseType.isNull()) {
2705 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
2706 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
2707 return true;
2708 }
2709 }
2710
2711 if (BaseType.isNull()) {
2712 BaseType = Context.getTypeDeclType(TyD);
2713 if (SS.isSet())
2714 // FIXME: preserve source range information
2715 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
2716 BaseType);
2717 }
2718 }
2719
2720 if (!TInfo)
2721 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
2722
2723 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
2724 }
2725
2726 /// Checks a member initializer expression for cases where reference (or
2727 /// pointer) members are bound to by-value parameters (or their addresses).
CheckForDanglingReferenceOrPointer(Sema & S,ValueDecl * Member,Expr * Init,SourceLocation IdLoc)2728 static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
2729 Expr *Init,
2730 SourceLocation IdLoc) {
2731 QualType MemberTy = Member->getType();
2732
2733 // We only handle pointers and references currently.
2734 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
2735 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
2736 return;
2737
2738 const bool IsPointer = MemberTy->isPointerType();
2739 if (IsPointer) {
2740 if (const UnaryOperator *Op
2741 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
2742 // The only case we're worried about with pointers requires taking the
2743 // address.
2744 if (Op->getOpcode() != UO_AddrOf)
2745 return;
2746
2747 Init = Op->getSubExpr();
2748 } else {
2749 // We only handle address-of expression initializers for pointers.
2750 return;
2751 }
2752 }
2753
2754 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
2755 // We only warn when referring to a non-reference parameter declaration.
2756 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
2757 if (!Parameter || Parameter->getType()->isReferenceType())
2758 return;
2759
2760 S.Diag(Init->getExprLoc(),
2761 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
2762 : diag::warn_bind_ref_member_to_parameter)
2763 << Member << Parameter << Init->getSourceRange();
2764 } else {
2765 // Other initializers are fine.
2766 return;
2767 }
2768
2769 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
2770 << (unsigned)IsPointer;
2771 }
2772
2773 MemInitResult
BuildMemberInitializer(ValueDecl * Member,Expr * Init,SourceLocation IdLoc)2774 Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
2775 SourceLocation IdLoc) {
2776 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
2777 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
2778 assert((DirectMember || IndirectMember) &&
2779 "Member must be a FieldDecl or IndirectFieldDecl");
2780
2781 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2782 return true;
2783
2784 if (Member->isInvalidDecl())
2785 return true;
2786
2787 MultiExprArg Args;
2788 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2789 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2790 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
2791 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
2792 } else {
2793 // Template instantiation doesn't reconstruct ParenListExprs for us.
2794 Args = Init;
2795 }
2796
2797 SourceRange InitRange = Init->getSourceRange();
2798
2799 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
2800 // Can't check initialization for a member of dependent type or when
2801 // any of the arguments are type-dependent expressions.
2802 DiscardCleanupsInEvaluationContext();
2803 } else {
2804 bool InitList = false;
2805 if (isa<InitListExpr>(Init)) {
2806 InitList = true;
2807 Args = Init;
2808 }
2809
2810 // Initialize the member.
2811 InitializedEntity MemberEntity =
2812 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
2813 : InitializedEntity::InitializeMember(IndirectMember,
2814 nullptr);
2815 InitializationKind Kind =
2816 InitList ? InitializationKind::CreateDirectList(IdLoc)
2817 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
2818 InitRange.getEnd());
2819
2820 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
2821 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
2822 nullptr);
2823 if (MemberInit.isInvalid())
2824 return true;
2825
2826 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
2827
2828 // C++11 [class.base.init]p7:
2829 // The initialization of each base and member constitutes a
2830 // full-expression.
2831 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
2832 if (MemberInit.isInvalid())
2833 return true;
2834
2835 Init = MemberInit.get();
2836 }
2837
2838 if (DirectMember) {
2839 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
2840 InitRange.getBegin(), Init,
2841 InitRange.getEnd());
2842 } else {
2843 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
2844 InitRange.getBegin(), Init,
2845 InitRange.getEnd());
2846 }
2847 }
2848
2849 MemInitResult
BuildDelegatingInitializer(TypeSourceInfo * TInfo,Expr * Init,CXXRecordDecl * ClassDecl)2850 Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
2851 CXXRecordDecl *ClassDecl) {
2852 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
2853 if (!LangOpts.CPlusPlus11)
2854 return Diag(NameLoc, diag::err_delegating_ctor)
2855 << TInfo->getTypeLoc().getLocalSourceRange();
2856 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
2857
2858 bool InitList = true;
2859 MultiExprArg Args = Init;
2860 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2861 InitList = false;
2862 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2863 }
2864
2865 SourceRange InitRange = Init->getSourceRange();
2866 // Initialize the object.
2867 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
2868 QualType(ClassDecl->getTypeForDecl(), 0));
2869 InitializationKind Kind =
2870 InitList ? InitializationKind::CreateDirectList(NameLoc)
2871 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
2872 InitRange.getEnd());
2873 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
2874 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
2875 Args, nullptr);
2876 if (DelegationInit.isInvalid())
2877 return true;
2878
2879 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&
2880 "Delegating constructor with no target?");
2881
2882 // C++11 [class.base.init]p7:
2883 // The initialization of each base and member constitutes a
2884 // full-expression.
2885 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
2886 InitRange.getBegin());
2887 if (DelegationInit.isInvalid())
2888 return true;
2889
2890 // If we are in a dependent context, template instantiation will
2891 // perform this type-checking again. Just save the arguments that we
2892 // received in a ParenListExpr.
2893 // FIXME: This isn't quite ideal, since our ASTs don't capture all
2894 // of the information that we have about the base
2895 // initializer. However, deconstructing the ASTs is a dicey process,
2896 // and this approach is far more likely to get the corner cases right.
2897 if (CurContext->isDependentContext())
2898 DelegationInit = Init;
2899
2900 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
2901 DelegationInit.getAs<Expr>(),
2902 InitRange.getEnd());
2903 }
2904
2905 MemInitResult
BuildBaseInitializer(QualType BaseType,TypeSourceInfo * BaseTInfo,Expr * Init,CXXRecordDecl * ClassDecl,SourceLocation EllipsisLoc)2906 Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
2907 Expr *Init, CXXRecordDecl *ClassDecl,
2908 SourceLocation EllipsisLoc) {
2909 SourceLocation BaseLoc
2910 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
2911
2912 if (!BaseType->isDependentType() && !BaseType->isRecordType())
2913 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
2914 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2915
2916 // C++ [class.base.init]p2:
2917 // [...] Unless the mem-initializer-id names a nonstatic data
2918 // member of the constructor's class or a direct or virtual base
2919 // of that class, the mem-initializer is ill-formed. A
2920 // mem-initializer-list can initialize a base class using any
2921 // name that denotes that base class type.
2922 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
2923
2924 SourceRange InitRange = Init->getSourceRange();
2925 if (EllipsisLoc.isValid()) {
2926 // This is a pack expansion.
2927 if (!BaseType->containsUnexpandedParameterPack()) {
2928 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2929 << SourceRange(BaseLoc, InitRange.getEnd());
2930
2931 EllipsisLoc = SourceLocation();
2932 }
2933 } else {
2934 // Check for any unexpanded parameter packs.
2935 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
2936 return true;
2937
2938 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
2939 return true;
2940 }
2941
2942 // Check for direct and virtual base classes.
2943 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
2944 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
2945 if (!Dependent) {
2946 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
2947 BaseType))
2948 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
2949
2950 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
2951 VirtualBaseSpec);
2952
2953 // C++ [base.class.init]p2:
2954 // Unless the mem-initializer-id names a nonstatic data member of the
2955 // constructor's class or a direct or virtual base of that class, the
2956 // mem-initializer is ill-formed.
2957 if (!DirectBaseSpec && !VirtualBaseSpec) {
2958 // If the class has any dependent bases, then it's possible that
2959 // one of those types will resolve to the same type as
2960 // BaseType. Therefore, just treat this as a dependent base
2961 // class initialization. FIXME: Should we try to check the
2962 // initialization anyway? It seems odd.
2963 if (ClassDecl->hasAnyDependentBases())
2964 Dependent = true;
2965 else
2966 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
2967 << BaseType << Context.getTypeDeclType(ClassDecl)
2968 << BaseTInfo->getTypeLoc().getLocalSourceRange();
2969 }
2970 }
2971
2972 if (Dependent) {
2973 DiscardCleanupsInEvaluationContext();
2974
2975 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
2976 /*IsVirtual=*/false,
2977 InitRange.getBegin(), Init,
2978 InitRange.getEnd(), EllipsisLoc);
2979 }
2980
2981 // C++ [base.class.init]p2:
2982 // If a mem-initializer-id is ambiguous because it designates both
2983 // a direct non-virtual base class and an inherited virtual base
2984 // class, the mem-initializer is ill-formed.
2985 if (DirectBaseSpec && VirtualBaseSpec)
2986 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
2987 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
2988
2989 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
2990 if (!BaseSpec)
2991 BaseSpec = VirtualBaseSpec;
2992
2993 // Initialize the base.
2994 bool InitList = true;
2995 MultiExprArg Args = Init;
2996 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
2997 InitList = false;
2998 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
2999 }
3000
3001 InitializedEntity BaseEntity =
3002 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
3003 InitializationKind Kind =
3004 InitList ? InitializationKind::CreateDirectList(BaseLoc)
3005 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
3006 InitRange.getEnd());
3007 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
3008 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
3009 if (BaseInit.isInvalid())
3010 return true;
3011
3012 // C++11 [class.base.init]p7:
3013 // The initialization of each base and member constitutes a
3014 // full-expression.
3015 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
3016 if (BaseInit.isInvalid())
3017 return true;
3018
3019 // If we are in a dependent context, template instantiation will
3020 // perform this type-checking again. Just save the arguments that we
3021 // received in a ParenListExpr.
3022 // FIXME: This isn't quite ideal, since our ASTs don't capture all
3023 // of the information that we have about the base
3024 // initializer. However, deconstructing the ASTs is a dicey process,
3025 // and this approach is far more likely to get the corner cases right.
3026 if (CurContext->isDependentContext())
3027 BaseInit = Init;
3028
3029 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
3030 BaseSpec->isVirtual(),
3031 InitRange.getBegin(),
3032 BaseInit.getAs<Expr>(),
3033 InitRange.getEnd(), EllipsisLoc);
3034 }
3035
3036 // Create a static_cast\<T&&>(expr).
CastForMoving(Sema & SemaRef,Expr * E,QualType T=QualType ())3037 static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
3038 if (T.isNull()) T = E->getType();
3039 QualType TargetType = SemaRef.BuildReferenceType(
3040 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
3041 SourceLocation ExprLoc = E->getLocStart();
3042 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
3043 TargetType, ExprLoc);
3044
3045 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
3046 SourceRange(ExprLoc, ExprLoc),
3047 E->getSourceRange()).get();
3048 }
3049
3050 /// ImplicitInitializerKind - How an implicit base or member initializer should
3051 /// initialize its base or member.
3052 enum ImplicitInitializerKind {
3053 IIK_Default,
3054 IIK_Copy,
3055 IIK_Move,
3056 IIK_Inherit
3057 };
3058
3059 static bool
BuildImplicitBaseInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,CXXBaseSpecifier * BaseSpec,bool IsInheritedVirtualBase,CXXCtorInitializer * & CXXBaseInit)3060 BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3061 ImplicitInitializerKind ImplicitInitKind,
3062 CXXBaseSpecifier *BaseSpec,
3063 bool IsInheritedVirtualBase,
3064 CXXCtorInitializer *&CXXBaseInit) {
3065 InitializedEntity InitEntity
3066 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
3067 IsInheritedVirtualBase);
3068
3069 ExprResult BaseInit;
3070
3071 switch (ImplicitInitKind) {
3072 case IIK_Inherit: {
3073 const CXXRecordDecl *Inherited =
3074 Constructor->getInheritedConstructor()->getParent();
3075 const CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
3076 if (Base && Inherited->getCanonicalDecl() == Base->getCanonicalDecl()) {
3077 // C++11 [class.inhctor]p8:
3078 // Each expression in the expression-list is of the form
3079 // static_cast<T&&>(p), where p is the name of the corresponding
3080 // constructor parameter and T is the declared type of p.
3081 SmallVector<Expr*, 16> Args;
3082 for (unsigned I = 0, E = Constructor->getNumParams(); I != E; ++I) {
3083 ParmVarDecl *PD = Constructor->getParamDecl(I);
3084 ExprResult ArgExpr =
3085 SemaRef.BuildDeclRefExpr(PD, PD->getType().getNonReferenceType(),
3086 VK_LValue, SourceLocation());
3087 if (ArgExpr.isInvalid())
3088 return true;
3089 Args.push_back(CastForMoving(SemaRef, ArgExpr.get(), PD->getType()));
3090 }
3091
3092 InitializationKind InitKind = InitializationKind::CreateDirect(
3093 Constructor->getLocation(), SourceLocation(), SourceLocation());
3094 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, Args);
3095 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, Args);
3096 break;
3097 }
3098 }
3099 // Fall through.
3100 case IIK_Default: {
3101 InitializationKind InitKind
3102 = InitializationKind::CreateDefault(Constructor->getLocation());
3103 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3104 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3105 break;
3106 }
3107
3108 case IIK_Move:
3109 case IIK_Copy: {
3110 bool Moving = ImplicitInitKind == IIK_Move;
3111 ParmVarDecl *Param = Constructor->getParamDecl(0);
3112 QualType ParamType = Param->getType().getNonReferenceType();
3113
3114 Expr *CopyCtorArg =
3115 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3116 SourceLocation(), Param, false,
3117 Constructor->getLocation(), ParamType,
3118 VK_LValue, nullptr);
3119
3120 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
3121
3122 // Cast to the base class to avoid ambiguities.
3123 QualType ArgTy =
3124 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
3125 ParamType.getQualifiers());
3126
3127 if (Moving) {
3128 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
3129 }
3130
3131 CXXCastPath BasePath;
3132 BasePath.push_back(BaseSpec);
3133 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
3134 CK_UncheckedDerivedToBase,
3135 Moving ? VK_XValue : VK_LValue,
3136 &BasePath).get();
3137
3138 InitializationKind InitKind
3139 = InitializationKind::CreateDirect(Constructor->getLocation(),
3140 SourceLocation(), SourceLocation());
3141 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
3142 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
3143 break;
3144 }
3145 }
3146
3147 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
3148 if (BaseInit.isInvalid())
3149 return true;
3150
3151 CXXBaseInit =
3152 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3153 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
3154 SourceLocation()),
3155 BaseSpec->isVirtual(),
3156 SourceLocation(),
3157 BaseInit.getAs<Expr>(),
3158 SourceLocation(),
3159 SourceLocation());
3160
3161 return false;
3162 }
3163
RefersToRValueRef(Expr * MemRef)3164 static bool RefersToRValueRef(Expr *MemRef) {
3165 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
3166 return Referenced->getType()->isRValueReferenceType();
3167 }
3168
3169 static bool
BuildImplicitMemberInitializer(Sema & SemaRef,CXXConstructorDecl * Constructor,ImplicitInitializerKind ImplicitInitKind,FieldDecl * Field,IndirectFieldDecl * Indirect,CXXCtorInitializer * & CXXMemberInit)3170 BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
3171 ImplicitInitializerKind ImplicitInitKind,
3172 FieldDecl *Field, IndirectFieldDecl *Indirect,
3173 CXXCtorInitializer *&CXXMemberInit) {
3174 if (Field->isInvalidDecl())
3175 return true;
3176
3177 SourceLocation Loc = Constructor->getLocation();
3178
3179 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
3180 bool Moving = ImplicitInitKind == IIK_Move;
3181 ParmVarDecl *Param = Constructor->getParamDecl(0);
3182 QualType ParamType = Param->getType().getNonReferenceType();
3183
3184 // Suppress copying zero-width bitfields.
3185 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
3186 return false;
3187
3188 Expr *MemberExprBase =
3189 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
3190 SourceLocation(), Param, false,
3191 Loc, ParamType, VK_LValue, nullptr);
3192
3193 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
3194
3195 if (Moving) {
3196 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
3197 }
3198
3199 // Build a reference to this field within the parameter.
3200 CXXScopeSpec SS;
3201 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
3202 Sema::LookupMemberName);
3203 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
3204 : cast<ValueDecl>(Field), AS_public);
3205 MemberLookup.resolveKind();
3206 ExprResult CtorArg
3207 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
3208 ParamType, Loc,
3209 /*IsArrow=*/false,
3210 SS,
3211 /*TemplateKWLoc=*/SourceLocation(),
3212 /*FirstQualifierInScope=*/nullptr,
3213 MemberLookup,
3214 /*TemplateArgs=*/nullptr);
3215 if (CtorArg.isInvalid())
3216 return true;
3217
3218 // C++11 [class.copy]p15:
3219 // - if a member m has rvalue reference type T&&, it is direct-initialized
3220 // with static_cast<T&&>(x.m);
3221 if (RefersToRValueRef(CtorArg.get())) {
3222 CtorArg = CastForMoving(SemaRef, CtorArg.get());
3223 }
3224
3225 // When the field we are copying is an array, create index variables for
3226 // each dimension of the array. We use these index variables to subscript
3227 // the source array, and other clients (e.g., CodeGen) will perform the
3228 // necessary iteration with these index variables.
3229 SmallVector<VarDecl *, 4> IndexVariables;
3230 QualType BaseType = Field->getType();
3231 QualType SizeType = SemaRef.Context.getSizeType();
3232 bool InitializingArray = false;
3233 while (const ConstantArrayType *Array
3234 = SemaRef.Context.getAsConstantArrayType(BaseType)) {
3235 InitializingArray = true;
3236 // Create the iteration variable for this array index.
3237 IdentifierInfo *IterationVarName = nullptr;
3238 {
3239 SmallString<8> Str;
3240 llvm::raw_svector_ostream OS(Str);
3241 OS << "__i" << IndexVariables.size();
3242 IterationVarName = &SemaRef.Context.Idents.get(OS.str());
3243 }
3244 VarDecl *IterationVar
3245 = VarDecl::Create(SemaRef.Context, SemaRef.CurContext, Loc, Loc,
3246 IterationVarName, SizeType,
3247 SemaRef.Context.getTrivialTypeSourceInfo(SizeType, Loc),
3248 SC_None);
3249 IndexVariables.push_back(IterationVar);
3250
3251 // Create a reference to the iteration variable.
3252 ExprResult IterationVarRef
3253 = SemaRef.BuildDeclRefExpr(IterationVar, SizeType, VK_LValue, Loc);
3254 assert(!IterationVarRef.isInvalid() &&
3255 "Reference to invented variable cannot fail!");
3256 IterationVarRef = SemaRef.DefaultLvalueConversion(IterationVarRef.get());
3257 assert(!IterationVarRef.isInvalid() &&
3258 "Conversion of invented variable cannot fail!");
3259
3260 // Subscript the array with this iteration variable.
3261 CtorArg = SemaRef.CreateBuiltinArraySubscriptExpr(CtorArg.get(), Loc,
3262 IterationVarRef.get(),
3263 Loc);
3264 if (CtorArg.isInvalid())
3265 return true;
3266
3267 BaseType = Array->getElementType();
3268 }
3269
3270 // The array subscript expression is an lvalue, which is wrong for moving.
3271 if (Moving && InitializingArray)
3272 CtorArg = CastForMoving(SemaRef, CtorArg.get());
3273
3274 // Construct the entity that we will be initializing. For an array, this
3275 // will be first element in the array, which may require several levels
3276 // of array-subscript entities.
3277 SmallVector<InitializedEntity, 4> Entities;
3278 Entities.reserve(1 + IndexVariables.size());
3279 if (Indirect)
3280 Entities.push_back(InitializedEntity::InitializeMember(Indirect));
3281 else
3282 Entities.push_back(InitializedEntity::InitializeMember(Field));
3283 for (unsigned I = 0, N = IndexVariables.size(); I != N; ++I)
3284 Entities.push_back(InitializedEntity::InitializeElement(SemaRef.Context,
3285 0,
3286 Entities.back()));
3287
3288 // Direct-initialize to use the copy constructor.
3289 InitializationKind InitKind =
3290 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
3291
3292 Expr *CtorArgE = CtorArg.getAs<Expr>();
3293 InitializationSequence InitSeq(SemaRef, Entities.back(), InitKind, CtorArgE);
3294
3295 ExprResult MemberInit
3296 = InitSeq.Perform(SemaRef, Entities.back(), InitKind,
3297 MultiExprArg(&CtorArgE, 1));
3298 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3299 if (MemberInit.isInvalid())
3300 return true;
3301
3302 if (Indirect) {
3303 assert(IndexVariables.size() == 0 &&
3304 "Indirect field improperly initialized");
3305 CXXMemberInit
3306 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3307 Loc, Loc,
3308 MemberInit.getAs<Expr>(),
3309 Loc);
3310 } else
3311 CXXMemberInit = CXXCtorInitializer::Create(SemaRef.Context, Field, Loc,
3312 Loc, MemberInit.getAs<Expr>(),
3313 Loc,
3314 IndexVariables.data(),
3315 IndexVariables.size());
3316 return false;
3317 }
3318
3319 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&
3320 "Unhandled implicit init kind!");
3321
3322 QualType FieldBaseElementType =
3323 SemaRef.Context.getBaseElementType(Field->getType());
3324
3325 if (FieldBaseElementType->isRecordType()) {
3326 InitializedEntity InitEntity
3327 = Indirect? InitializedEntity::InitializeMember(Indirect)
3328 : InitializedEntity::InitializeMember(Field);
3329 InitializationKind InitKind =
3330 InitializationKind::CreateDefault(Loc);
3331
3332 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
3333 ExprResult MemberInit =
3334 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
3335
3336 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
3337 if (MemberInit.isInvalid())
3338 return true;
3339
3340 if (Indirect)
3341 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3342 Indirect, Loc,
3343 Loc,
3344 MemberInit.get(),
3345 Loc);
3346 else
3347 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
3348 Field, Loc, Loc,
3349 MemberInit.get(),
3350 Loc);
3351 return false;
3352 }
3353
3354 if (!Field->getParent()->isUnion()) {
3355 if (FieldBaseElementType->isReferenceType()) {
3356 SemaRef.Diag(Constructor->getLocation(),
3357 diag::err_uninitialized_member_in_ctor)
3358 << (int)Constructor->isImplicit()
3359 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3360 << 0 << Field->getDeclName();
3361 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3362 return true;
3363 }
3364
3365 if (FieldBaseElementType.isConstQualified()) {
3366 SemaRef.Diag(Constructor->getLocation(),
3367 diag::err_uninitialized_member_in_ctor)
3368 << (int)Constructor->isImplicit()
3369 << SemaRef.Context.getTagDeclType(Constructor->getParent())
3370 << 1 << Field->getDeclName();
3371 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
3372 return true;
3373 }
3374 }
3375
3376 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
3377 FieldBaseElementType->isObjCRetainableType() &&
3378 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
3379 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
3380 // ARC:
3381 // Default-initialize Objective-C pointers to NULL.
3382 CXXMemberInit
3383 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3384 Loc, Loc,
3385 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
3386 Loc);
3387 return false;
3388 }
3389
3390 // Nothing to initialize.
3391 CXXMemberInit = nullptr;
3392 return false;
3393 }
3394
3395 namespace {
3396 struct BaseAndFieldInfo {
3397 Sema &S;
3398 CXXConstructorDecl *Ctor;
3399 bool AnyErrorsInInits;
3400 ImplicitInitializerKind IIK;
3401 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
3402 SmallVector<CXXCtorInitializer*, 8> AllToInit;
3403 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
3404
BaseAndFieldInfo__anon597a90e60411::BaseAndFieldInfo3405 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
3406 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
3407 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
3408 if (Generated && Ctor->isCopyConstructor())
3409 IIK = IIK_Copy;
3410 else if (Generated && Ctor->isMoveConstructor())
3411 IIK = IIK_Move;
3412 else if (Ctor->getInheritedConstructor())
3413 IIK = IIK_Inherit;
3414 else
3415 IIK = IIK_Default;
3416 }
3417
isImplicitCopyOrMove__anon597a90e60411::BaseAndFieldInfo3418 bool isImplicitCopyOrMove() const {
3419 switch (IIK) {
3420 case IIK_Copy:
3421 case IIK_Move:
3422 return true;
3423
3424 case IIK_Default:
3425 case IIK_Inherit:
3426 return false;
3427 }
3428
3429 llvm_unreachable("Invalid ImplicitInitializerKind!");
3430 }
3431
addFieldInitializer__anon597a90e60411::BaseAndFieldInfo3432 bool addFieldInitializer(CXXCtorInitializer *Init) {
3433 AllToInit.push_back(Init);
3434
3435 // Check whether this initializer makes the field "used".
3436 if (Init->getInit()->HasSideEffects(S.Context))
3437 S.UnusedPrivateFields.remove(Init->getAnyMember());
3438
3439 return false;
3440 }
3441
isInactiveUnionMember__anon597a90e60411::BaseAndFieldInfo3442 bool isInactiveUnionMember(FieldDecl *Field) {
3443 RecordDecl *Record = Field->getParent();
3444 if (!Record->isUnion())
3445 return false;
3446
3447 if (FieldDecl *Active =
3448 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
3449 return Active != Field->getCanonicalDecl();
3450
3451 // In an implicit copy or move constructor, ignore any in-class initializer.
3452 if (isImplicitCopyOrMove())
3453 return true;
3454
3455 // If there's no explicit initialization, the field is active only if it
3456 // has an in-class initializer...
3457 if (Field->hasInClassInitializer())
3458 return false;
3459 // ... or it's an anonymous struct or union whose class has an in-class
3460 // initializer.
3461 if (!Field->isAnonymousStructOrUnion())
3462 return true;
3463 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
3464 return !FieldRD->hasInClassInitializer();
3465 }
3466
3467 /// \brief Determine whether the given field is, or is within, a union member
3468 /// that is inactive (because there was an initializer given for a different
3469 /// member of the union, or because the union was not initialized at all).
isWithinInactiveUnionMember__anon597a90e60411::BaseAndFieldInfo3470 bool isWithinInactiveUnionMember(FieldDecl *Field,
3471 IndirectFieldDecl *Indirect) {
3472 if (!Indirect)
3473 return isInactiveUnionMember(Field);
3474
3475 for (auto *C : Indirect->chain()) {
3476 FieldDecl *Field = dyn_cast<FieldDecl>(C);
3477 if (Field && isInactiveUnionMember(Field))
3478 return true;
3479 }
3480 return false;
3481 }
3482 };
3483 }
3484
3485 /// \brief Determine whether the given type is an incomplete or zero-lenfgth
3486 /// array type.
isIncompleteOrZeroLengthArrayType(ASTContext & Context,QualType T)3487 static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
3488 if (T->isIncompleteArrayType())
3489 return true;
3490
3491 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
3492 if (!ArrayT->getSize())
3493 return true;
3494
3495 T = ArrayT->getElementType();
3496 }
3497
3498 return false;
3499 }
3500
CollectFieldInitializer(Sema & SemaRef,BaseAndFieldInfo & Info,FieldDecl * Field,IndirectFieldDecl * Indirect=nullptr)3501 static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
3502 FieldDecl *Field,
3503 IndirectFieldDecl *Indirect = nullptr) {
3504 if (Field->isInvalidDecl())
3505 return false;
3506
3507 // Overwhelmingly common case: we have a direct initializer for this field.
3508 if (CXXCtorInitializer *Init =
3509 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
3510 return Info.addFieldInitializer(Init);
3511
3512 // C++11 [class.base.init]p8:
3513 // if the entity is a non-static data member that has a
3514 // brace-or-equal-initializer and either
3515 // -- the constructor's class is a union and no other variant member of that
3516 // union is designated by a mem-initializer-id or
3517 // -- the constructor's class is not a union, and, if the entity is a member
3518 // of an anonymous union, no other member of that union is designated by
3519 // a mem-initializer-id,
3520 // the entity is initialized as specified in [dcl.init].
3521 //
3522 // We also apply the same rules to handle anonymous structs within anonymous
3523 // unions.
3524 if (Info.isWithinInactiveUnionMember(Field, Indirect))
3525 return false;
3526
3527 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
3528 Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context,
3529 Info.Ctor->getLocation(), Field);
3530 CXXCtorInitializer *Init;
3531 if (Indirect)
3532 Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Indirect,
3533 SourceLocation(),
3534 SourceLocation(), DIE,
3535 SourceLocation());
3536 else
3537 Init = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
3538 SourceLocation(),
3539 SourceLocation(), DIE,
3540 SourceLocation());
3541 return Info.addFieldInitializer(Init);
3542 }
3543
3544 // Don't initialize incomplete or zero-length arrays.
3545 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
3546 return false;
3547
3548 // Don't try to build an implicit initializer if there were semantic
3549 // errors in any of the initializers (and therefore we might be
3550 // missing some that the user actually wrote).
3551 if (Info.AnyErrorsInInits)
3552 return false;
3553
3554 CXXCtorInitializer *Init = nullptr;
3555 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
3556 Indirect, Init))
3557 return true;
3558
3559 if (!Init)
3560 return false;
3561
3562 return Info.addFieldInitializer(Init);
3563 }
3564
3565 bool
SetDelegatingInitializer(CXXConstructorDecl * Constructor,CXXCtorInitializer * Initializer)3566 Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
3567 CXXCtorInitializer *Initializer) {
3568 assert(Initializer->isDelegatingInitializer());
3569 Constructor->setNumCtorInitializers(1);
3570 CXXCtorInitializer **initializer =
3571 new (Context) CXXCtorInitializer*[1];
3572 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
3573 Constructor->setCtorInitializers(initializer);
3574
3575 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
3576 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
3577 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
3578 }
3579
3580 DelegatingCtorDecls.push_back(Constructor);
3581
3582 return false;
3583 }
3584
SetCtorInitializers(CXXConstructorDecl * Constructor,bool AnyErrors,ArrayRef<CXXCtorInitializer * > Initializers)3585 bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
3586 ArrayRef<CXXCtorInitializer *> Initializers) {
3587 if (Constructor->isDependentContext()) {
3588 // Just store the initializers as written, they will be checked during
3589 // instantiation.
3590 if (!Initializers.empty()) {
3591 Constructor->setNumCtorInitializers(Initializers.size());
3592 CXXCtorInitializer **baseOrMemberInitializers =
3593 new (Context) CXXCtorInitializer*[Initializers.size()];
3594 memcpy(baseOrMemberInitializers, Initializers.data(),
3595 Initializers.size() * sizeof(CXXCtorInitializer*));
3596 Constructor->setCtorInitializers(baseOrMemberInitializers);
3597 }
3598
3599 // Let template instantiation know whether we had errors.
3600 if (AnyErrors)
3601 Constructor->setInvalidDecl();
3602
3603 return false;
3604 }
3605
3606 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
3607
3608 // We need to build the initializer AST according to order of construction
3609 // and not what user specified in the Initializers list.
3610 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
3611 if (!ClassDecl)
3612 return true;
3613
3614 bool HadError = false;
3615
3616 for (unsigned i = 0; i < Initializers.size(); i++) {
3617 CXXCtorInitializer *Member = Initializers[i];
3618
3619 if (Member->isBaseInitializer())
3620 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
3621 else {
3622 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
3623
3624 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
3625 for (auto *C : F->chain()) {
3626 FieldDecl *FD = dyn_cast<FieldDecl>(C);
3627 if (FD && FD->getParent()->isUnion())
3628 Info.ActiveUnionMember.insert(std::make_pair(
3629 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3630 }
3631 } else if (FieldDecl *FD = Member->getMember()) {
3632 if (FD->getParent()->isUnion())
3633 Info.ActiveUnionMember.insert(std::make_pair(
3634 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
3635 }
3636 }
3637 }
3638
3639 // Keep track of the direct virtual bases.
3640 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
3641 for (auto &I : ClassDecl->bases()) {
3642 if (I.isVirtual())
3643 DirectVBases.insert(&I);
3644 }
3645
3646 // Push virtual bases before others.
3647 for (auto &VBase : ClassDecl->vbases()) {
3648 if (CXXCtorInitializer *Value
3649 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
3650 // [class.base.init]p7, per DR257:
3651 // A mem-initializer where the mem-initializer-id names a virtual base
3652 // class is ignored during execution of a constructor of any class that
3653 // is not the most derived class.
3654 if (ClassDecl->isAbstract()) {
3655 // FIXME: Provide a fixit to remove the base specifier. This requires
3656 // tracking the location of the associated comma for a base specifier.
3657 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
3658 << VBase.getType() << ClassDecl;
3659 DiagnoseAbstractType(ClassDecl);
3660 }
3661
3662 Info.AllToInit.push_back(Value);
3663 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
3664 // [class.base.init]p8, per DR257:
3665 // If a given [...] base class is not named by a mem-initializer-id
3666 // [...] and the entity is not a virtual base class of an abstract
3667 // class, then [...] the entity is default-initialized.
3668 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
3669 CXXCtorInitializer *CXXBaseInit;
3670 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3671 &VBase, IsInheritedVirtualBase,
3672 CXXBaseInit)) {
3673 HadError = true;
3674 continue;
3675 }
3676
3677 Info.AllToInit.push_back(CXXBaseInit);
3678 }
3679 }
3680
3681 // Non-virtual bases.
3682 for (auto &Base : ClassDecl->bases()) {
3683 // Virtuals are in the virtual base list and already constructed.
3684 if (Base.isVirtual())
3685 continue;
3686
3687 if (CXXCtorInitializer *Value
3688 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
3689 Info.AllToInit.push_back(Value);
3690 } else if (!AnyErrors) {
3691 CXXCtorInitializer *CXXBaseInit;
3692 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
3693 &Base, /*IsInheritedVirtualBase=*/false,
3694 CXXBaseInit)) {
3695 HadError = true;
3696 continue;
3697 }
3698
3699 Info.AllToInit.push_back(CXXBaseInit);
3700 }
3701 }
3702
3703 // Fields.
3704 for (auto *Mem : ClassDecl->decls()) {
3705 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
3706 // C++ [class.bit]p2:
3707 // A declaration for a bit-field that omits the identifier declares an
3708 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
3709 // initialized.
3710 if (F->isUnnamedBitfield())
3711 continue;
3712
3713 // If we're not generating the implicit copy/move constructor, then we'll
3714 // handle anonymous struct/union fields based on their individual
3715 // indirect fields.
3716 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
3717 continue;
3718
3719 if (CollectFieldInitializer(*this, Info, F))
3720 HadError = true;
3721 continue;
3722 }
3723
3724 // Beyond this point, we only consider default initialization.
3725 if (Info.isImplicitCopyOrMove())
3726 continue;
3727
3728 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
3729 if (F->getType()->isIncompleteArrayType()) {
3730 assert(ClassDecl->hasFlexibleArrayMember() &&
3731 "Incomplete array type is not valid");
3732 continue;
3733 }
3734
3735 // Initialize each field of an anonymous struct individually.
3736 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
3737 HadError = true;
3738
3739 continue;
3740 }
3741 }
3742
3743 unsigned NumInitializers = Info.AllToInit.size();
3744 if (NumInitializers > 0) {
3745 Constructor->setNumCtorInitializers(NumInitializers);
3746 CXXCtorInitializer **baseOrMemberInitializers =
3747 new (Context) CXXCtorInitializer*[NumInitializers];
3748 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
3749 NumInitializers * sizeof(CXXCtorInitializer*));
3750 Constructor->setCtorInitializers(baseOrMemberInitializers);
3751
3752 // Constructors implicitly reference the base and member
3753 // destructors.
3754 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
3755 Constructor->getParent());
3756 }
3757
3758 return HadError;
3759 }
3760
PopulateKeysForFields(FieldDecl * Field,SmallVectorImpl<const void * > & IdealInits)3761 static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
3762 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
3763 const RecordDecl *RD = RT->getDecl();
3764 if (RD->isAnonymousStructOrUnion()) {
3765 for (auto *Field : RD->fields())
3766 PopulateKeysForFields(Field, IdealInits);
3767 return;
3768 }
3769 }
3770 IdealInits.push_back(Field->getCanonicalDecl());
3771 }
3772
GetKeyForBase(ASTContext & Context,QualType BaseType)3773 static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
3774 return Context.getCanonicalType(BaseType).getTypePtr();
3775 }
3776
GetKeyForMember(ASTContext & Context,CXXCtorInitializer * Member)3777 static const void *GetKeyForMember(ASTContext &Context,
3778 CXXCtorInitializer *Member) {
3779 if (!Member->isAnyMemberInitializer())
3780 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
3781
3782 return Member->getAnyMember()->getCanonicalDecl();
3783 }
3784
DiagnoseBaseOrMemInitializerOrder(Sema & SemaRef,const CXXConstructorDecl * Constructor,ArrayRef<CXXCtorInitializer * > Inits)3785 static void DiagnoseBaseOrMemInitializerOrder(
3786 Sema &SemaRef, const CXXConstructorDecl *Constructor,
3787 ArrayRef<CXXCtorInitializer *> Inits) {
3788 if (Constructor->getDeclContext()->isDependentContext())
3789 return;
3790
3791 // Don't check initializers order unless the warning is enabled at the
3792 // location of at least one initializer.
3793 bool ShouldCheckOrder = false;
3794 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3795 CXXCtorInitializer *Init = Inits[InitIndex];
3796 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
3797 Init->getSourceLocation())) {
3798 ShouldCheckOrder = true;
3799 break;
3800 }
3801 }
3802 if (!ShouldCheckOrder)
3803 return;
3804
3805 // Build the list of bases and members in the order that they'll
3806 // actually be initialized. The explicit initializers should be in
3807 // this same order but may be missing things.
3808 SmallVector<const void*, 32> IdealInitKeys;
3809
3810 const CXXRecordDecl *ClassDecl = Constructor->getParent();
3811
3812 // 1. Virtual bases.
3813 for (const auto &VBase : ClassDecl->vbases())
3814 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
3815
3816 // 2. Non-virtual bases.
3817 for (const auto &Base : ClassDecl->bases()) {
3818 if (Base.isVirtual())
3819 continue;
3820 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
3821 }
3822
3823 // 3. Direct fields.
3824 for (auto *Field : ClassDecl->fields()) {
3825 if (Field->isUnnamedBitfield())
3826 continue;
3827
3828 PopulateKeysForFields(Field, IdealInitKeys);
3829 }
3830
3831 unsigned NumIdealInits = IdealInitKeys.size();
3832 unsigned IdealIndex = 0;
3833
3834 CXXCtorInitializer *PrevInit = nullptr;
3835 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
3836 CXXCtorInitializer *Init = Inits[InitIndex];
3837 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
3838
3839 // Scan forward to try to find this initializer in the idealized
3840 // initializers list.
3841 for (; IdealIndex != NumIdealInits; ++IdealIndex)
3842 if (InitKey == IdealInitKeys[IdealIndex])
3843 break;
3844
3845 // If we didn't find this initializer, it must be because we
3846 // scanned past it on a previous iteration. That can only
3847 // happen if we're out of order; emit a warning.
3848 if (IdealIndex == NumIdealInits && PrevInit) {
3849 Sema::SemaDiagnosticBuilder D =
3850 SemaRef.Diag(PrevInit->getSourceLocation(),
3851 diag::warn_initializer_out_of_order);
3852
3853 if (PrevInit->isAnyMemberInitializer())
3854 D << 0 << PrevInit->getAnyMember()->getDeclName();
3855 else
3856 D << 1 << PrevInit->getTypeSourceInfo()->getType();
3857
3858 if (Init->isAnyMemberInitializer())
3859 D << 0 << Init->getAnyMember()->getDeclName();
3860 else
3861 D << 1 << Init->getTypeSourceInfo()->getType();
3862
3863 // Move back to the initializer's location in the ideal list.
3864 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
3865 if (InitKey == IdealInitKeys[IdealIndex])
3866 break;
3867
3868 assert(IdealIndex != NumIdealInits &&
3869 "initializer not found in initializer list");
3870 }
3871
3872 PrevInit = Init;
3873 }
3874 }
3875
3876 namespace {
CheckRedundantInit(Sema & S,CXXCtorInitializer * Init,CXXCtorInitializer * & PrevInit)3877 bool CheckRedundantInit(Sema &S,
3878 CXXCtorInitializer *Init,
3879 CXXCtorInitializer *&PrevInit) {
3880 if (!PrevInit) {
3881 PrevInit = Init;
3882 return false;
3883 }
3884
3885 if (FieldDecl *Field = Init->getAnyMember())
3886 S.Diag(Init->getSourceLocation(),
3887 diag::err_multiple_mem_initialization)
3888 << Field->getDeclName()
3889 << Init->getSourceRange();
3890 else {
3891 const Type *BaseClass = Init->getBaseClass();
3892 assert(BaseClass && "neither field nor base");
3893 S.Diag(Init->getSourceLocation(),
3894 diag::err_multiple_base_initialization)
3895 << QualType(BaseClass, 0)
3896 << Init->getSourceRange();
3897 }
3898 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
3899 << 0 << PrevInit->getSourceRange();
3900
3901 return true;
3902 }
3903
3904 typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
3905 typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
3906
CheckRedundantUnionInit(Sema & S,CXXCtorInitializer * Init,RedundantUnionMap & Unions)3907 bool CheckRedundantUnionInit(Sema &S,
3908 CXXCtorInitializer *Init,
3909 RedundantUnionMap &Unions) {
3910 FieldDecl *Field = Init->getAnyMember();
3911 RecordDecl *Parent = Field->getParent();
3912 NamedDecl *Child = Field;
3913
3914 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
3915 if (Parent->isUnion()) {
3916 UnionEntry &En = Unions[Parent];
3917 if (En.first && En.first != Child) {
3918 S.Diag(Init->getSourceLocation(),
3919 diag::err_multiple_mem_union_initialization)
3920 << Field->getDeclName()
3921 << Init->getSourceRange();
3922 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
3923 << 0 << En.second->getSourceRange();
3924 return true;
3925 }
3926 if (!En.first) {
3927 En.first = Child;
3928 En.second = Init;
3929 }
3930 if (!Parent->isAnonymousStructOrUnion())
3931 return false;
3932 }
3933
3934 Child = Parent;
3935 Parent = cast<RecordDecl>(Parent->getDeclContext());
3936 }
3937
3938 return false;
3939 }
3940 }
3941
3942 /// ActOnMemInitializers - Handle the member initializers for a constructor.
ActOnMemInitializers(Decl * ConstructorDecl,SourceLocation ColonLoc,ArrayRef<CXXCtorInitializer * > MemInits,bool AnyErrors)3943 void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
3944 SourceLocation ColonLoc,
3945 ArrayRef<CXXCtorInitializer*> MemInits,
3946 bool AnyErrors) {
3947 if (!ConstructorDecl)
3948 return;
3949
3950 AdjustDeclIfTemplate(ConstructorDecl);
3951
3952 CXXConstructorDecl *Constructor
3953 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
3954
3955 if (!Constructor) {
3956 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
3957 return;
3958 }
3959
3960 // Mapping for the duplicate initializers check.
3961 // For member initializers, this is keyed with a FieldDecl*.
3962 // For base initializers, this is keyed with a Type*.
3963 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
3964
3965 // Mapping for the inconsistent anonymous-union initializers check.
3966 RedundantUnionMap MemberUnions;
3967
3968 bool HadError = false;
3969 for (unsigned i = 0; i < MemInits.size(); i++) {
3970 CXXCtorInitializer *Init = MemInits[i];
3971
3972 // Set the source order index.
3973 Init->setSourceOrder(i);
3974
3975 if (Init->isAnyMemberInitializer()) {
3976 const void *Key = GetKeyForMember(Context, Init);
3977 if (CheckRedundantInit(*this, Init, Members[Key]) ||
3978 CheckRedundantUnionInit(*this, Init, MemberUnions))
3979 HadError = true;
3980 } else if (Init->isBaseInitializer()) {
3981 const void *Key = GetKeyForMember(Context, Init);
3982 if (CheckRedundantInit(*this, Init, Members[Key]))
3983 HadError = true;
3984 } else {
3985 assert(Init->isDelegatingInitializer());
3986 // This must be the only initializer
3987 if (MemInits.size() != 1) {
3988 Diag(Init->getSourceLocation(),
3989 diag::err_delegating_initializer_alone)
3990 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
3991 // We will treat this as being the only initializer.
3992 }
3993 SetDelegatingInitializer(Constructor, MemInits[i]);
3994 // Return immediately as the initializer is set.
3995 return;
3996 }
3997 }
3998
3999 if (HadError)
4000 return;
4001
4002 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
4003
4004 SetCtorInitializers(Constructor, AnyErrors, MemInits);
4005
4006 DiagnoseUninitializedFields(*this, Constructor);
4007 }
4008
4009 void
MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,CXXRecordDecl * ClassDecl)4010 Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
4011 CXXRecordDecl *ClassDecl) {
4012 // Ignore dependent contexts. Also ignore unions, since their members never
4013 // have destructors implicitly called.
4014 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
4015 return;
4016
4017 // FIXME: all the access-control diagnostics are positioned on the
4018 // field/base declaration. That's probably good; that said, the
4019 // user might reasonably want to know why the destructor is being
4020 // emitted, and we currently don't say.
4021
4022 // Non-static data members.
4023 for (auto *Field : ClassDecl->fields()) {
4024 if (Field->isInvalidDecl())
4025 continue;
4026
4027 // Don't destroy incomplete or zero-length arrays.
4028 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
4029 continue;
4030
4031 QualType FieldType = Context.getBaseElementType(Field->getType());
4032
4033 const RecordType* RT = FieldType->getAs<RecordType>();
4034 if (!RT)
4035 continue;
4036
4037 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4038 if (FieldClassDecl->isInvalidDecl())
4039 continue;
4040 if (FieldClassDecl->hasIrrelevantDestructor())
4041 continue;
4042 // The destructor for an implicit anonymous union member is never invoked.
4043 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
4044 continue;
4045
4046 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
4047 assert(Dtor && "No dtor found for FieldClassDecl!");
4048 CheckDestructorAccess(Field->getLocation(), Dtor,
4049 PDiag(diag::err_access_dtor_field)
4050 << Field->getDeclName()
4051 << FieldType);
4052
4053 MarkFunctionReferenced(Location, Dtor);
4054 DiagnoseUseOfDecl(Dtor, Location);
4055 }
4056
4057 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
4058
4059 // Bases.
4060 for (const auto &Base : ClassDecl->bases()) {
4061 // Bases are always records in a well-formed non-dependent class.
4062 const RecordType *RT = Base.getType()->getAs<RecordType>();
4063
4064 // Remember direct virtual bases.
4065 if (Base.isVirtual())
4066 DirectVirtualBases.insert(RT);
4067
4068 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4069 // If our base class is invalid, we probably can't get its dtor anyway.
4070 if (BaseClassDecl->isInvalidDecl())
4071 continue;
4072 if (BaseClassDecl->hasIrrelevantDestructor())
4073 continue;
4074
4075 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4076 assert(Dtor && "No dtor found for BaseClassDecl!");
4077
4078 // FIXME: caret should be on the start of the class name
4079 CheckDestructorAccess(Base.getLocStart(), Dtor,
4080 PDiag(diag::err_access_dtor_base)
4081 << Base.getType()
4082 << Base.getSourceRange(),
4083 Context.getTypeDeclType(ClassDecl));
4084
4085 MarkFunctionReferenced(Location, Dtor);
4086 DiagnoseUseOfDecl(Dtor, Location);
4087 }
4088
4089 // Virtual bases.
4090 for (const auto &VBase : ClassDecl->vbases()) {
4091 // Bases are always records in a well-formed non-dependent class.
4092 const RecordType *RT = VBase.getType()->castAs<RecordType>();
4093
4094 // Ignore direct virtual bases.
4095 if (DirectVirtualBases.count(RT))
4096 continue;
4097
4098 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
4099 // If our base class is invalid, we probably can't get its dtor anyway.
4100 if (BaseClassDecl->isInvalidDecl())
4101 continue;
4102 if (BaseClassDecl->hasIrrelevantDestructor())
4103 continue;
4104
4105 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
4106 assert(Dtor && "No dtor found for BaseClassDecl!");
4107 if (CheckDestructorAccess(
4108 ClassDecl->getLocation(), Dtor,
4109 PDiag(diag::err_access_dtor_vbase)
4110 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
4111 Context.getTypeDeclType(ClassDecl)) ==
4112 AR_accessible) {
4113 CheckDerivedToBaseConversion(
4114 Context.getTypeDeclType(ClassDecl), VBase.getType(),
4115 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
4116 SourceRange(), DeclarationName(), nullptr);
4117 }
4118
4119 MarkFunctionReferenced(Location, Dtor);
4120 DiagnoseUseOfDecl(Dtor, Location);
4121 }
4122 }
4123
ActOnDefaultCtorInitializers(Decl * CDtorDecl)4124 void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
4125 if (!CDtorDecl)
4126 return;
4127
4128 if (CXXConstructorDecl *Constructor
4129 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
4130 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
4131 DiagnoseUninitializedFields(*this, Constructor);
4132 }
4133 }
4134
RequireNonAbstractType(SourceLocation Loc,QualType T,unsigned DiagID,AbstractDiagSelID SelID)4135 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4136 unsigned DiagID, AbstractDiagSelID SelID) {
4137 class NonAbstractTypeDiagnoser : public TypeDiagnoser {
4138 unsigned DiagID;
4139 AbstractDiagSelID SelID;
4140
4141 public:
4142 NonAbstractTypeDiagnoser(unsigned DiagID, AbstractDiagSelID SelID)
4143 : TypeDiagnoser(DiagID == 0), DiagID(DiagID), SelID(SelID) { }
4144
4145 void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
4146 if (Suppressed) return;
4147 if (SelID == -1)
4148 S.Diag(Loc, DiagID) << T;
4149 else
4150 S.Diag(Loc, DiagID) << SelID << T;
4151 }
4152 } Diagnoser(DiagID, SelID);
4153
4154 return RequireNonAbstractType(Loc, T, Diagnoser);
4155 }
4156
RequireNonAbstractType(SourceLocation Loc,QualType T,TypeDiagnoser & Diagnoser)4157 bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
4158 TypeDiagnoser &Diagnoser) {
4159 if (!getLangOpts().CPlusPlus)
4160 return false;
4161
4162 if (const ArrayType *AT = Context.getAsArrayType(T))
4163 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4164
4165 if (const PointerType *PT = T->getAs<PointerType>()) {
4166 // Find the innermost pointer type.
4167 while (const PointerType *T = PT->getPointeeType()->getAs<PointerType>())
4168 PT = T;
4169
4170 if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType()))
4171 return RequireNonAbstractType(Loc, AT->getElementType(), Diagnoser);
4172 }
4173
4174 const RecordType *RT = T->getAs<RecordType>();
4175 if (!RT)
4176 return false;
4177
4178 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
4179
4180 // We can't answer whether something is abstract until it has a
4181 // definition. If it's currently being defined, we'll walk back
4182 // over all the declarations when we have a full definition.
4183 const CXXRecordDecl *Def = RD->getDefinition();
4184 if (!Def || Def->isBeingDefined())
4185 return false;
4186
4187 if (!RD->isAbstract())
4188 return false;
4189
4190 Diagnoser.diagnose(*this, Loc, T);
4191 DiagnoseAbstractType(RD);
4192
4193 return true;
4194 }
4195
DiagnoseAbstractType(const CXXRecordDecl * RD)4196 void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
4197 // Check if we've already emitted the list of pure virtual functions
4198 // for this class.
4199 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
4200 return;
4201
4202 // If the diagnostic is suppressed, don't emit the notes. We're only
4203 // going to emit them once, so try to attach them to a diagnostic we're
4204 // actually going to show.
4205 if (Diags.isLastDiagnosticIgnored())
4206 return;
4207
4208 CXXFinalOverriderMap FinalOverriders;
4209 RD->getFinalOverriders(FinalOverriders);
4210
4211 // Keep a set of seen pure methods so we won't diagnose the same method
4212 // more than once.
4213 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
4214
4215 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
4216 MEnd = FinalOverriders.end();
4217 M != MEnd;
4218 ++M) {
4219 for (OverridingMethods::iterator SO = M->second.begin(),
4220 SOEnd = M->second.end();
4221 SO != SOEnd; ++SO) {
4222 // C++ [class.abstract]p4:
4223 // A class is abstract if it contains or inherits at least one
4224 // pure virtual function for which the final overrider is pure
4225 // virtual.
4226
4227 //
4228 if (SO->second.size() != 1)
4229 continue;
4230
4231 if (!SO->second.front().Method->isPure())
4232 continue;
4233
4234 if (!SeenPureMethods.insert(SO->second.front().Method))
4235 continue;
4236
4237 Diag(SO->second.front().Method->getLocation(),
4238 diag::note_pure_virtual_function)
4239 << SO->second.front().Method->getDeclName() << RD->getDeclName();
4240 }
4241 }
4242
4243 if (!PureVirtualClassDiagSet)
4244 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
4245 PureVirtualClassDiagSet->insert(RD);
4246 }
4247
4248 namespace {
4249 struct AbstractUsageInfo {
4250 Sema &S;
4251 CXXRecordDecl *Record;
4252 CanQualType AbstractType;
4253 bool Invalid;
4254
AbstractUsageInfo__anon597a90e60611::AbstractUsageInfo4255 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
4256 : S(S), Record(Record),
4257 AbstractType(S.Context.getCanonicalType(
4258 S.Context.getTypeDeclType(Record))),
4259 Invalid(false) {}
4260
DiagnoseAbstractType__anon597a90e60611::AbstractUsageInfo4261 void DiagnoseAbstractType() {
4262 if (Invalid) return;
4263 S.DiagnoseAbstractType(Record);
4264 Invalid = true;
4265 }
4266
4267 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
4268 };
4269
4270 struct CheckAbstractUsage {
4271 AbstractUsageInfo &Info;
4272 const NamedDecl *Ctx;
4273
CheckAbstractUsage__anon597a90e60611::CheckAbstractUsage4274 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
4275 : Info(Info), Ctx(Ctx) {}
4276
Visit__anon597a90e60611::CheckAbstractUsage4277 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4278 switch (TL.getTypeLocClass()) {
4279 #define ABSTRACT_TYPELOC(CLASS, PARENT)
4280 #define TYPELOC(CLASS, PARENT) \
4281 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
4282 #include "clang/AST/TypeLocNodes.def"
4283 }
4284 }
4285
Check__anon597a90e60611::CheckAbstractUsage4286 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4287 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
4288 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
4289 if (!TL.getParam(I))
4290 continue;
4291
4292 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
4293 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
4294 }
4295 }
4296
Check__anon597a90e60611::CheckAbstractUsage4297 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4298 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
4299 }
4300
Check__anon597a90e60611::CheckAbstractUsage4301 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
4302 // Visit the type parameters from a permissive context.
4303 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
4304 TemplateArgumentLoc TAL = TL.getArgLoc(I);
4305 if (TAL.getArgument().getKind() == TemplateArgument::Type)
4306 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
4307 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
4308 // TODO: other template argument types?
4309 }
4310 }
4311
4312 // Visit pointee types from a permissive context.
4313 #define CheckPolymorphic(Type) \
4314 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
4315 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
4316 }
4317 CheckPolymorphic(PointerTypeLoc)
CheckPolymorphic__anon597a90e60611::CheckAbstractUsage4318 CheckPolymorphic(ReferenceTypeLoc)
4319 CheckPolymorphic(MemberPointerTypeLoc)
4320 CheckPolymorphic(BlockPointerTypeLoc)
4321 CheckPolymorphic(AtomicTypeLoc)
4322
4323 /// Handle all the types we haven't given a more specific
4324 /// implementation for above.
4325 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
4326 // Every other kind of type that we haven't called out already
4327 // that has an inner type is either (1) sugar or (2) contains that
4328 // inner type in some way as a subobject.
4329 if (TypeLoc Next = TL.getNextTypeLoc())
4330 return Visit(Next, Sel);
4331
4332 // If there's no inner type and we're in a permissive context,
4333 // don't diagnose.
4334 if (Sel == Sema::AbstractNone) return;
4335
4336 // Check whether the type matches the abstract type.
4337 QualType T = TL.getType();
4338 if (T->isArrayType()) {
4339 Sel = Sema::AbstractArrayType;
4340 T = Info.S.Context.getBaseElementType(T);
4341 }
4342 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
4343 if (CT != Info.AbstractType) return;
4344
4345 // It matched; do some magic.
4346 if (Sel == Sema::AbstractArrayType) {
4347 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
4348 << T << TL.getSourceRange();
4349 } else {
4350 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
4351 << Sel << T << TL.getSourceRange();
4352 }
4353 Info.DiagnoseAbstractType();
4354 }
4355 };
4356
CheckType(const NamedDecl * D,TypeLoc TL,Sema::AbstractDiagSelID Sel)4357 void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
4358 Sema::AbstractDiagSelID Sel) {
4359 CheckAbstractUsage(*this, D).Visit(TL, Sel);
4360 }
4361
4362 }
4363
4364 /// Check for invalid uses of an abstract type in a method declaration.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXMethodDecl * MD)4365 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4366 CXXMethodDecl *MD) {
4367 // No need to do the check on definitions, which require that
4368 // the return/param types be complete.
4369 if (MD->doesThisDeclarationHaveABody())
4370 return;
4371
4372 // For safety's sake, just ignore it if we don't have type source
4373 // information. This should never happen for non-implicit methods,
4374 // but...
4375 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
4376 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
4377 }
4378
4379 /// Check for invalid uses of an abstract type within a class definition.
CheckAbstractClassUsage(AbstractUsageInfo & Info,CXXRecordDecl * RD)4380 static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
4381 CXXRecordDecl *RD) {
4382 for (auto *D : RD->decls()) {
4383 if (D->isImplicit()) continue;
4384
4385 // Methods and method templates.
4386 if (isa<CXXMethodDecl>(D)) {
4387 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
4388 } else if (isa<FunctionTemplateDecl>(D)) {
4389 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
4390 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
4391
4392 // Fields and static variables.
4393 } else if (isa<FieldDecl>(D)) {
4394 FieldDecl *FD = cast<FieldDecl>(D);
4395 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
4396 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
4397 } else if (isa<VarDecl>(D)) {
4398 VarDecl *VD = cast<VarDecl>(D);
4399 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
4400 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
4401
4402 // Nested classes and class templates.
4403 } else if (isa<CXXRecordDecl>(D)) {
4404 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
4405 } else if (isa<ClassTemplateDecl>(D)) {
4406 CheckAbstractClassUsage(Info,
4407 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
4408 }
4409 }
4410 }
4411
4412 /// \brief Check class-level dllimport/dllexport attribute.
checkDLLAttribute(Sema & S,CXXRecordDecl * Class)4413 static void checkDLLAttribute(Sema &S, CXXRecordDecl *Class) {
4414 Attr *ClassAttr = getDLLAttr(Class);
4415 if (!ClassAttr)
4416 return;
4417
4418 bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
4419
4420 // Force declaration of implicit members so they can inherit the attribute.
4421 S.ForceDeclarationOfImplicitMembers(Class);
4422
4423 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
4424 // seem to be true in practice?
4425
4426 for (Decl *Member : Class->decls()) {
4427 VarDecl *VD = dyn_cast<VarDecl>(Member);
4428 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
4429
4430 // Only methods and static fields inherit the attributes.
4431 if (!VD && !MD)
4432 continue;
4433
4434 // Don't process deleted methods.
4435 if (MD && MD->isDeleted())
4436 continue;
4437
4438 if (MD && MD->isMoveAssignmentOperator() && !ClassExported &&
4439 MD->isInlined()) {
4440 // Current MSVC versions don't export the move assignment operators, so
4441 // don't attempt to import them if we have a definition.
4442 continue;
4443 }
4444
4445 if (InheritableAttr *MemberAttr = getDLLAttr(Member)) {
4446 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
4447 !MemberAttr->isInherited() && !ClassAttr->isInherited()) {
4448 S.Diag(MemberAttr->getLocation(),
4449 diag::err_attribute_dll_member_of_dll_class)
4450 << MemberAttr << ClassAttr;
4451 S.Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
4452 Member->setInvalidDecl();
4453 continue;
4454 }
4455 } else {
4456 auto *NewAttr =
4457 cast<InheritableAttr>(ClassAttr->clone(S.getASTContext()));
4458 NewAttr->setInherited(true);
4459 Member->addAttr(NewAttr);
4460 }
4461
4462 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) {
4463 if (ClassExported) {
4464 if (MD->isUserProvided()) {
4465 // Instantiate non-default methods.
4466 S.MarkFunctionReferenced(Class->getLocation(), MD);
4467 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
4468 MD->isCopyAssignmentOperator() ||
4469 MD->isMoveAssignmentOperator()) {
4470 // Instantiate non-trivial or explicitly defaulted methods, and the
4471 // copy assignment / move assignment operators.
4472 S.MarkFunctionReferenced(Class->getLocation(), MD);
4473 // Resolve its exception specification; CodeGen needs it.
4474 auto *FPT = MD->getType()->getAs<FunctionProtoType>();
4475 S.ResolveExceptionSpec(Class->getLocation(), FPT);
4476 S.ActOnFinishInlineMethodDef(MD);
4477 }
4478 }
4479 }
4480 }
4481 }
4482
4483 /// \brief Perform semantic checks on a class definition that has been
4484 /// completing, introducing implicitly-declared members, checking for
4485 /// abstract types, etc.
CheckCompletedCXXClass(CXXRecordDecl * Record)4486 void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
4487 if (!Record)
4488 return;
4489
4490 if (Record->isAbstract() && !Record->isInvalidDecl()) {
4491 AbstractUsageInfo Info(*this, Record);
4492 CheckAbstractClassUsage(Info, Record);
4493 }
4494
4495 // If this is not an aggregate type and has no user-declared constructor,
4496 // complain about any non-static data members of reference or const scalar
4497 // type, since they will never get initializers.
4498 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
4499 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
4500 !Record->isLambda()) {
4501 bool Complained = false;
4502 for (const auto *F : Record->fields()) {
4503 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
4504 continue;
4505
4506 if (F->getType()->isReferenceType() ||
4507 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
4508 if (!Complained) {
4509 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
4510 << Record->getTagKind() << Record;
4511 Complained = true;
4512 }
4513
4514 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
4515 << F->getType()->isReferenceType()
4516 << F->getDeclName();
4517 }
4518 }
4519 }
4520
4521 if (Record->isDynamicClass() && !Record->isDependentType())
4522 DynamicClasses.push_back(Record);
4523
4524 if (Record->getIdentifier()) {
4525 // C++ [class.mem]p13:
4526 // If T is the name of a class, then each of the following shall have a
4527 // name different from T:
4528 // - every member of every anonymous union that is a member of class T.
4529 //
4530 // C++ [class.mem]p14:
4531 // In addition, if class T has a user-declared constructor (12.1), every
4532 // non-static data member of class T shall have a name different from T.
4533 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
4534 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
4535 ++I) {
4536 NamedDecl *D = *I;
4537 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
4538 isa<IndirectFieldDecl>(D)) {
4539 Diag(D->getLocation(), diag::err_member_name_of_class)
4540 << D->getDeclName();
4541 break;
4542 }
4543 }
4544 }
4545
4546 // Warn if the class has virtual methods but non-virtual public destructor.
4547 if (Record->isPolymorphic() && !Record->isDependentType()) {
4548 CXXDestructorDecl *dtor = Record->getDestructor();
4549 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
4550 !Record->hasAttr<FinalAttr>())
4551 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
4552 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
4553 }
4554
4555 if (Record->isAbstract()) {
4556 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
4557 Diag(Record->getLocation(), diag::warn_abstract_final_class)
4558 << FA->isSpelledAsSealed();
4559 DiagnoseAbstractType(Record);
4560 }
4561 }
4562
4563 if (!Record->isDependentType()) {
4564 for (auto *M : Record->methods()) {
4565 // See if a method overloads virtual methods in a base
4566 // class without overriding any.
4567 if (!M->isStatic())
4568 DiagnoseHiddenVirtualMethods(M);
4569
4570 // Check whether the explicitly-defaulted special members are valid.
4571 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
4572 CheckExplicitlyDefaultedSpecialMember(M);
4573
4574 // For an explicitly defaulted or deleted special member, we defer
4575 // determining triviality until the class is complete. That time is now!
4576 if (!M->isImplicit() && !M->isUserProvided()) {
4577 CXXSpecialMember CSM = getSpecialMember(M);
4578 if (CSM != CXXInvalid) {
4579 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
4580
4581 // Inform the class that we've finished declaring this member.
4582 Record->finishedDefaultedOrDeletedMember(M);
4583 }
4584 }
4585 }
4586 }
4587
4588 // C++11 [dcl.constexpr]p8: A constexpr specifier for a non-static member
4589 // function that is not a constructor declares that member function to be
4590 // const. [...] The class of which that function is a member shall be
4591 // a literal type.
4592 //
4593 // If the class has virtual bases, any constexpr members will already have
4594 // been diagnosed by the checks performed on the member declaration, so
4595 // suppress this (less useful) diagnostic.
4596 //
4597 // We delay this until we know whether an explicitly-defaulted (or deleted)
4598 // destructor for the class is trivial.
4599 if (LangOpts.CPlusPlus11 && !Record->isDependentType() &&
4600 !Record->isLiteral() && !Record->getNumVBases()) {
4601 for (const auto *M : Record->methods()) {
4602 if (M->isConstexpr() && M->isInstance() && !isa<CXXConstructorDecl>(M)) {
4603 switch (Record->getTemplateSpecializationKind()) {
4604 case TSK_ImplicitInstantiation:
4605 case TSK_ExplicitInstantiationDeclaration:
4606 case TSK_ExplicitInstantiationDefinition:
4607 // If a template instantiates to a non-literal type, but its members
4608 // instantiate to constexpr functions, the template is technically
4609 // ill-formed, but we allow it for sanity.
4610 continue;
4611
4612 case TSK_Undeclared:
4613 case TSK_ExplicitSpecialization:
4614 RequireLiteralType(M->getLocation(), Context.getRecordType(Record),
4615 diag::err_constexpr_method_non_literal);
4616 break;
4617 }
4618
4619 // Only produce one error per class.
4620 break;
4621 }
4622 }
4623 }
4624
4625 // ms_struct is a request to use the same ABI rules as MSVC. Check
4626 // whether this class uses any C++ features that are implemented
4627 // completely differently in MSVC, and if so, emit a diagnostic.
4628 // That diagnostic defaults to an error, but we allow projects to
4629 // map it down to a warning (or ignore it). It's a fairly common
4630 // practice among users of the ms_struct pragma to mass-annotate
4631 // headers, sweeping up a bunch of types that the project doesn't
4632 // really rely on MSVC-compatible layout for. We must therefore
4633 // support "ms_struct except for C++ stuff" as a secondary ABI.
4634 if (Record->isMsStruct(Context) &&
4635 (Record->isPolymorphic() || Record->getNumBases())) {
4636 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
4637 }
4638
4639 // Declare inheriting constructors. We do this eagerly here because:
4640 // - The standard requires an eager diagnostic for conflicting inheriting
4641 // constructors from different classes.
4642 // - The lazy declaration of the other implicit constructors is so as to not
4643 // waste space and performance on classes that are not meant to be
4644 // instantiated (e.g. meta-functions). This doesn't apply to classes that
4645 // have inheriting constructors.
4646 DeclareInheritingConstructors(Record);
4647
4648 checkDLLAttribute(*this, Record);
4649 }
4650
4651 /// Look up the special member function that would be called by a special
4652 /// member function for a subobject of class type.
4653 ///
4654 /// \param Class The class type of the subobject.
4655 /// \param CSM The kind of special member function.
4656 /// \param FieldQuals If the subobject is a field, its cv-qualifiers.
4657 /// \param ConstRHS True if this is a copy operation with a const object
4658 /// on its RHS, that is, if the argument to the outer special member
4659 /// function is 'const' and this is not a field marked 'mutable'.
lookupCallFromSpecialMember(Sema & S,CXXRecordDecl * Class,Sema::CXXSpecialMember CSM,unsigned FieldQuals,bool ConstRHS)4660 static Sema::SpecialMemberOverloadResult *lookupCallFromSpecialMember(
4661 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
4662 unsigned FieldQuals, bool ConstRHS) {
4663 unsigned LHSQuals = 0;
4664 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
4665 LHSQuals = FieldQuals;
4666
4667 unsigned RHSQuals = FieldQuals;
4668 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
4669 RHSQuals = 0;
4670 else if (ConstRHS)
4671 RHSQuals |= Qualifiers::Const;
4672
4673 return S.LookupSpecialMember(Class, CSM,
4674 RHSQuals & Qualifiers::Const,
4675 RHSQuals & Qualifiers::Volatile,
4676 false,
4677 LHSQuals & Qualifiers::Const,
4678 LHSQuals & Qualifiers::Volatile);
4679 }
4680
4681 /// Is the special member function which would be selected to perform the
4682 /// specified operation on the specified class type a constexpr constructor?
specialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS)4683 static bool specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4684 Sema::CXXSpecialMember CSM,
4685 unsigned Quals, bool ConstRHS) {
4686 Sema::SpecialMemberOverloadResult *SMOR =
4687 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
4688 if (!SMOR || !SMOR->getMethod())
4689 // A constructor we wouldn't select can't be "involved in initializing"
4690 // anything.
4691 return true;
4692 return SMOR->getMethod()->isConstexpr();
4693 }
4694
4695 /// Determine whether the specified special member function would be constexpr
4696 /// if it were implicitly defined.
defaultedSpecialMemberIsConstexpr(Sema & S,CXXRecordDecl * ClassDecl,Sema::CXXSpecialMember CSM,bool ConstArg)4697 static bool defaultedSpecialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
4698 Sema::CXXSpecialMember CSM,
4699 bool ConstArg) {
4700 if (!S.getLangOpts().CPlusPlus11)
4701 return false;
4702
4703 // C++11 [dcl.constexpr]p4:
4704 // In the definition of a constexpr constructor [...]
4705 bool Ctor = true;
4706 switch (CSM) {
4707 case Sema::CXXDefaultConstructor:
4708 // Since default constructor lookup is essentially trivial (and cannot
4709 // involve, for instance, template instantiation), we compute whether a
4710 // defaulted default constructor is constexpr directly within CXXRecordDecl.
4711 //
4712 // This is important for performance; we need to know whether the default
4713 // constructor is constexpr to determine whether the type is a literal type.
4714 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
4715
4716 case Sema::CXXCopyConstructor:
4717 case Sema::CXXMoveConstructor:
4718 // For copy or move constructors, we need to perform overload resolution.
4719 break;
4720
4721 case Sema::CXXCopyAssignment:
4722 case Sema::CXXMoveAssignment:
4723 if (!S.getLangOpts().CPlusPlus1y)
4724 return false;
4725 // In C++1y, we need to perform overload resolution.
4726 Ctor = false;
4727 break;
4728
4729 case Sema::CXXDestructor:
4730 case Sema::CXXInvalid:
4731 return false;
4732 }
4733
4734 // -- if the class is a non-empty union, or for each non-empty anonymous
4735 // union member of a non-union class, exactly one non-static data member
4736 // shall be initialized; [DR1359]
4737 //
4738 // If we squint, this is guaranteed, since exactly one non-static data member
4739 // will be initialized (if the constructor isn't deleted), we just don't know
4740 // which one.
4741 if (Ctor && ClassDecl->isUnion())
4742 return true;
4743
4744 // -- the class shall not have any virtual base classes;
4745 if (Ctor && ClassDecl->getNumVBases())
4746 return false;
4747
4748 // C++1y [class.copy]p26:
4749 // -- [the class] is a literal type, and
4750 if (!Ctor && !ClassDecl->isLiteral())
4751 return false;
4752
4753 // -- every constructor involved in initializing [...] base class
4754 // sub-objects shall be a constexpr constructor;
4755 // -- the assignment operator selected to copy/move each direct base
4756 // class is a constexpr function, and
4757 for (const auto &B : ClassDecl->bases()) {
4758 const RecordType *BaseType = B.getType()->getAs<RecordType>();
4759 if (!BaseType) continue;
4760
4761 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
4762 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg))
4763 return false;
4764 }
4765
4766 // -- every constructor involved in initializing non-static data members
4767 // [...] shall be a constexpr constructor;
4768 // -- every non-static data member and base class sub-object shall be
4769 // initialized
4770 // -- for each non-static data member of X that is of class type (or array
4771 // thereof), the assignment operator selected to copy/move that member is
4772 // a constexpr function
4773 for (const auto *F : ClassDecl->fields()) {
4774 if (F->isInvalidDecl())
4775 continue;
4776 QualType BaseType = S.Context.getBaseElementType(F->getType());
4777 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
4778 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
4779 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
4780 BaseType.getCVRQualifiers(),
4781 ConstArg && !F->isMutable()))
4782 return false;
4783 }
4784 }
4785
4786 // All OK, it's constexpr!
4787 return true;
4788 }
4789
4790 static Sema::ImplicitExceptionSpecification
computeImplicitExceptionSpec(Sema & S,SourceLocation Loc,CXXMethodDecl * MD)4791 computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
4792 switch (S.getSpecialMember(MD)) {
4793 case Sema::CXXDefaultConstructor:
4794 return S.ComputeDefaultedDefaultCtorExceptionSpec(Loc, MD);
4795 case Sema::CXXCopyConstructor:
4796 return S.ComputeDefaultedCopyCtorExceptionSpec(MD);
4797 case Sema::CXXCopyAssignment:
4798 return S.ComputeDefaultedCopyAssignmentExceptionSpec(MD);
4799 case Sema::CXXMoveConstructor:
4800 return S.ComputeDefaultedMoveCtorExceptionSpec(MD);
4801 case Sema::CXXMoveAssignment:
4802 return S.ComputeDefaultedMoveAssignmentExceptionSpec(MD);
4803 case Sema::CXXDestructor:
4804 return S.ComputeDefaultedDtorExceptionSpec(MD);
4805 case Sema::CXXInvalid:
4806 break;
4807 }
4808 assert(cast<CXXConstructorDecl>(MD)->getInheritedConstructor() &&
4809 "only special members have implicit exception specs");
4810 return S.ComputeInheritingCtorExceptionSpec(cast<CXXConstructorDecl>(MD));
4811 }
4812
getImplicitMethodEPI(Sema & S,CXXMethodDecl * MD)4813 static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
4814 CXXMethodDecl *MD) {
4815 FunctionProtoType::ExtProtoInfo EPI;
4816
4817 // Build an exception specification pointing back at this member.
4818 EPI.ExceptionSpecType = EST_Unevaluated;
4819 EPI.ExceptionSpecDecl = MD;
4820
4821 // Set the calling convention to the default for C++ instance methods.
4822 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
4823 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
4824 /*IsCXXMethod=*/true));
4825 return EPI;
4826 }
4827
EvaluateImplicitExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)4828 void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
4829 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
4830 if (FPT->getExceptionSpecType() != EST_Unevaluated)
4831 return;
4832
4833 // Evaluate the exception specification.
4834 ImplicitExceptionSpecification ExceptSpec =
4835 computeImplicitExceptionSpec(*this, Loc, MD);
4836
4837 FunctionProtoType::ExtProtoInfo EPI;
4838 ExceptSpec.getEPI(EPI);
4839
4840 // Update the type of the special member to use it.
4841 UpdateExceptionSpec(MD, EPI);
4842
4843 // A user-provided destructor can be defined outside the class. When that
4844 // happens, be sure to update the exception specification on both
4845 // declarations.
4846 const FunctionProtoType *CanonicalFPT =
4847 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
4848 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
4849 UpdateExceptionSpec(MD->getCanonicalDecl(), EPI);
4850 }
4851
CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl * MD)4852 void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
4853 CXXRecordDecl *RD = MD->getParent();
4854 CXXSpecialMember CSM = getSpecialMember(MD);
4855
4856 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&
4857 "not an explicitly-defaulted special member");
4858
4859 // Whether this was the first-declared instance of the constructor.
4860 // This affects whether we implicitly add an exception spec and constexpr.
4861 bool First = MD == MD->getCanonicalDecl();
4862
4863 bool HadError = false;
4864
4865 // C++11 [dcl.fct.def.default]p1:
4866 // A function that is explicitly defaulted shall
4867 // -- be a special member function (checked elsewhere),
4868 // -- have the same type (except for ref-qualifiers, and except that a
4869 // copy operation can take a non-const reference) as an implicit
4870 // declaration, and
4871 // -- not have default arguments.
4872 unsigned ExpectedParams = 1;
4873 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
4874 ExpectedParams = 0;
4875 if (MD->getNumParams() != ExpectedParams) {
4876 // This also checks for default arguments: a copy or move constructor with a
4877 // default argument is classified as a default constructor, and assignment
4878 // operations and destructors can't have default arguments.
4879 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
4880 << CSM << MD->getSourceRange();
4881 HadError = true;
4882 } else if (MD->isVariadic()) {
4883 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
4884 << CSM << MD->getSourceRange();
4885 HadError = true;
4886 }
4887
4888 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
4889
4890 bool CanHaveConstParam = false;
4891 if (CSM == CXXCopyConstructor)
4892 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
4893 else if (CSM == CXXCopyAssignment)
4894 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
4895
4896 QualType ReturnType = Context.VoidTy;
4897 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
4898 // Check for return type matching.
4899 ReturnType = Type->getReturnType();
4900 QualType ExpectedReturnType =
4901 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
4902 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
4903 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
4904 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
4905 HadError = true;
4906 }
4907
4908 // A defaulted special member cannot have cv-qualifiers.
4909 if (Type->getTypeQuals()) {
4910 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
4911 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus1y;
4912 HadError = true;
4913 }
4914 }
4915
4916 // Check for parameter type matching.
4917 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
4918 bool HasConstParam = false;
4919 if (ExpectedParams && ArgType->isReferenceType()) {
4920 // Argument must be reference to possibly-const T.
4921 QualType ReferentType = ArgType->getPointeeType();
4922 HasConstParam = ReferentType.isConstQualified();
4923
4924 if (ReferentType.isVolatileQualified()) {
4925 Diag(MD->getLocation(),
4926 diag::err_defaulted_special_member_volatile_param) << CSM;
4927 HadError = true;
4928 }
4929
4930 if (HasConstParam && !CanHaveConstParam) {
4931 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
4932 Diag(MD->getLocation(),
4933 diag::err_defaulted_special_member_copy_const_param)
4934 << (CSM == CXXCopyAssignment);
4935 // FIXME: Explain why this special member can't be const.
4936 } else {
4937 Diag(MD->getLocation(),
4938 diag::err_defaulted_special_member_move_const_param)
4939 << (CSM == CXXMoveAssignment);
4940 }
4941 HadError = true;
4942 }
4943 } else if (ExpectedParams) {
4944 // A copy assignment operator can take its argument by value, but a
4945 // defaulted one cannot.
4946 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument");
4947 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
4948 HadError = true;
4949 }
4950
4951 // C++11 [dcl.fct.def.default]p2:
4952 // An explicitly-defaulted function may be declared constexpr only if it
4953 // would have been implicitly declared as constexpr,
4954 // Do not apply this rule to members of class templates, since core issue 1358
4955 // makes such functions always instantiate to constexpr functions. For
4956 // functions which cannot be constexpr (for non-constructors in C++11 and for
4957 // destructors in C++1y), this is checked elsewhere.
4958 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
4959 HasConstParam);
4960 if ((getLangOpts().CPlusPlus1y ? !isa<CXXDestructorDecl>(MD)
4961 : isa<CXXConstructorDecl>(MD)) &&
4962 MD->isConstexpr() && !Constexpr &&
4963 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
4964 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
4965 // FIXME: Explain why the special member can't be constexpr.
4966 HadError = true;
4967 }
4968
4969 // and may have an explicit exception-specification only if it is compatible
4970 // with the exception-specification on the implicit declaration.
4971 if (Type->hasExceptionSpec()) {
4972 // Delay the check if this is the first declaration of the special member,
4973 // since we may not have parsed some necessary in-class initializers yet.
4974 if (First) {
4975 // If the exception specification needs to be instantiated, do so now,
4976 // before we clobber it with an EST_Unevaluated specification below.
4977 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
4978 InstantiateExceptionSpec(MD->getLocStart(), MD);
4979 Type = MD->getType()->getAs<FunctionProtoType>();
4980 }
4981 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
4982 } else
4983 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
4984 }
4985
4986 // If a function is explicitly defaulted on its first declaration,
4987 if (First) {
4988 // -- it is implicitly considered to be constexpr if the implicit
4989 // definition would be,
4990 MD->setConstexpr(Constexpr);
4991
4992 // -- it is implicitly considered to have the same exception-specification
4993 // as if it had been implicitly declared,
4994 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
4995 EPI.ExceptionSpecType = EST_Unevaluated;
4996 EPI.ExceptionSpecDecl = MD;
4997 MD->setType(Context.getFunctionType(ReturnType,
4998 ArrayRef<QualType>(&ArgType,
4999 ExpectedParams),
5000 EPI));
5001 }
5002
5003 if (ShouldDeleteSpecialMember(MD, CSM)) {
5004 if (First) {
5005 SetDeclDeleted(MD, MD->getLocation());
5006 } else {
5007 // C++11 [dcl.fct.def.default]p4:
5008 // [For a] user-provided explicitly-defaulted function [...] if such a
5009 // function is implicitly defined as deleted, the program is ill-formed.
5010 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
5011 ShouldDeleteSpecialMember(MD, CSM, /*Diagnose*/true);
5012 HadError = true;
5013 }
5014 }
5015
5016 if (HadError)
5017 MD->setInvalidDecl();
5018 }
5019
5020 /// Check whether the exception specification provided for an
5021 /// explicitly-defaulted special member matches the exception specification
5022 /// that would have been generated for an implicit special member, per
5023 /// C++11 [dcl.fct.def.default]p2.
CheckExplicitlyDefaultedMemberExceptionSpec(CXXMethodDecl * MD,const FunctionProtoType * SpecifiedType)5024 void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
5025 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
5026 // Compute the implicit exception specification.
5027 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
5028 /*IsCXXMethod=*/true);
5029 FunctionProtoType::ExtProtoInfo EPI(CC);
5030 computeImplicitExceptionSpec(*this, MD->getLocation(), MD).getEPI(EPI);
5031 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
5032 Context.getFunctionType(Context.VoidTy, None, EPI));
5033
5034 // Ensure that it matches.
5035 CheckEquivalentExceptionSpec(
5036 PDiag(diag::err_incorrect_defaulted_exception_spec)
5037 << getSpecialMember(MD), PDiag(),
5038 ImplicitType, SourceLocation(),
5039 SpecifiedType, MD->getLocation());
5040 }
5041
CheckDelayedMemberExceptionSpecs()5042 void Sema::CheckDelayedMemberExceptionSpecs() {
5043 SmallVector<std::pair<const CXXDestructorDecl *, const CXXDestructorDecl *>,
5044 2> Checks;
5045 SmallVector<std::pair<CXXMethodDecl *, const FunctionProtoType *>, 2> Specs;
5046
5047 std::swap(Checks, DelayedDestructorExceptionSpecChecks);
5048 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
5049
5050 // Perform any deferred checking of exception specifications for virtual
5051 // destructors.
5052 for (unsigned i = 0, e = Checks.size(); i != e; ++i) {
5053 const CXXDestructorDecl *Dtor = Checks[i].first;
5054 assert(!Dtor->getParent()->isDependentType() &&
5055 "Should not ever add destructors of templates into the list.");
5056 CheckOverridingFunctionExceptionSpec(Dtor, Checks[i].second);
5057 }
5058
5059 // Check that any explicitly-defaulted methods have exception specifications
5060 // compatible with their implicit exception specifications.
5061 for (unsigned I = 0, N = Specs.size(); I != N; ++I)
5062 CheckExplicitlyDefaultedMemberExceptionSpec(Specs[I].first,
5063 Specs[I].second);
5064 }
5065
5066 namespace {
5067 struct SpecialMemberDeletionInfo {
5068 Sema &S;
5069 CXXMethodDecl *MD;
5070 Sema::CXXSpecialMember CSM;
5071 bool Diagnose;
5072
5073 // Properties of the special member, computed for convenience.
5074 bool IsConstructor, IsAssignment, IsMove, ConstArg;
5075 SourceLocation Loc;
5076
5077 bool AllFieldsAreConst;
5078
SpecialMemberDeletionInfo__anon597a90e60711::SpecialMemberDeletionInfo5079 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
5080 Sema::CXXSpecialMember CSM, bool Diagnose)
5081 : S(S), MD(MD), CSM(CSM), Diagnose(Diagnose),
5082 IsConstructor(false), IsAssignment(false), IsMove(false),
5083 ConstArg(false), Loc(MD->getLocation()),
5084 AllFieldsAreConst(true) {
5085 switch (CSM) {
5086 case Sema::CXXDefaultConstructor:
5087 case Sema::CXXCopyConstructor:
5088 IsConstructor = true;
5089 break;
5090 case Sema::CXXMoveConstructor:
5091 IsConstructor = true;
5092 IsMove = true;
5093 break;
5094 case Sema::CXXCopyAssignment:
5095 IsAssignment = true;
5096 break;
5097 case Sema::CXXMoveAssignment:
5098 IsAssignment = true;
5099 IsMove = true;
5100 break;
5101 case Sema::CXXDestructor:
5102 break;
5103 case Sema::CXXInvalid:
5104 llvm_unreachable("invalid special member kind");
5105 }
5106
5107 if (MD->getNumParams()) {
5108 if (const ReferenceType *RT =
5109 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
5110 ConstArg = RT->getPointeeType().isConstQualified();
5111 }
5112 }
5113
inUnion__anon597a90e60711::SpecialMemberDeletionInfo5114 bool inUnion() const { return MD->getParent()->isUnion(); }
5115
5116 /// Look up the corresponding special member in the given class.
lookupIn__anon597a90e60711::SpecialMemberDeletionInfo5117 Sema::SpecialMemberOverloadResult *lookupIn(CXXRecordDecl *Class,
5118 unsigned Quals, bool IsMutable) {
5119 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
5120 ConstArg && !IsMutable);
5121 }
5122
5123 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
5124
5125 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
5126 bool shouldDeleteForField(FieldDecl *FD);
5127 bool shouldDeleteForAllConstMembers();
5128
5129 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
5130 unsigned Quals);
5131 bool shouldDeleteForSubobjectCall(Subobject Subobj,
5132 Sema::SpecialMemberOverloadResult *SMOR,
5133 bool IsDtorCallInCtor);
5134
5135 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
5136 };
5137 }
5138
5139 /// Is the given special member inaccessible when used on the given
5140 /// sub-object.
isAccessible(Subobject Subobj,CXXMethodDecl * target)5141 bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
5142 CXXMethodDecl *target) {
5143 /// If we're operating on a base class, the object type is the
5144 /// type of this special member.
5145 QualType objectTy;
5146 AccessSpecifier access = target->getAccess();
5147 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
5148 objectTy = S.Context.getTypeDeclType(MD->getParent());
5149 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
5150
5151 // If we're operating on a field, the object type is the type of the field.
5152 } else {
5153 objectTy = S.Context.getTypeDeclType(target->getParent());
5154 }
5155
5156 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
5157 }
5158
5159 /// Check whether we should delete a special member due to the implicit
5160 /// definition containing a call to a special member of a subobject.
shouldDeleteForSubobjectCall(Subobject Subobj,Sema::SpecialMemberOverloadResult * SMOR,bool IsDtorCallInCtor)5161 bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
5162 Subobject Subobj, Sema::SpecialMemberOverloadResult *SMOR,
5163 bool IsDtorCallInCtor) {
5164 CXXMethodDecl *Decl = SMOR->getMethod();
5165 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5166
5167 int DiagKind = -1;
5168
5169 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
5170 DiagKind = !Decl ? 0 : 1;
5171 else if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5172 DiagKind = 2;
5173 else if (!isAccessible(Subobj, Decl))
5174 DiagKind = 3;
5175 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
5176 !Decl->isTrivial()) {
5177 // A member of a union must have a trivial corresponding special member.
5178 // As a weird special case, a destructor call from a union's constructor
5179 // must be accessible and non-deleted, but need not be trivial. Such a
5180 // destructor is never actually called, but is semantically checked as
5181 // if it were.
5182 DiagKind = 4;
5183 }
5184
5185 if (DiagKind == -1)
5186 return false;
5187
5188 if (Diagnose) {
5189 if (Field) {
5190 S.Diag(Field->getLocation(),
5191 diag::note_deleted_special_member_class_subobject)
5192 << CSM << MD->getParent() << /*IsField*/true
5193 << Field << DiagKind << IsDtorCallInCtor;
5194 } else {
5195 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
5196 S.Diag(Base->getLocStart(),
5197 diag::note_deleted_special_member_class_subobject)
5198 << CSM << MD->getParent() << /*IsField*/false
5199 << Base->getType() << DiagKind << IsDtorCallInCtor;
5200 }
5201
5202 if (DiagKind == 1)
5203 S.NoteDeletedFunction(Decl);
5204 // FIXME: Explain inaccessibility if DiagKind == 3.
5205 }
5206
5207 return true;
5208 }
5209
5210 /// Check whether we should delete a special member function due to having a
5211 /// direct or virtual base class or non-static data member of class type M.
shouldDeleteForClassSubobject(CXXRecordDecl * Class,Subobject Subobj,unsigned Quals)5212 bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
5213 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
5214 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
5215 bool IsMutable = Field && Field->isMutable();
5216
5217 // C++11 [class.ctor]p5:
5218 // -- any direct or virtual base class, or non-static data member with no
5219 // brace-or-equal-initializer, has class type M (or array thereof) and
5220 // either M has no default constructor or overload resolution as applied
5221 // to M's default constructor results in an ambiguity or in a function
5222 // that is deleted or inaccessible
5223 // C++11 [class.copy]p11, C++11 [class.copy]p23:
5224 // -- a direct or virtual base class B that cannot be copied/moved because
5225 // overload resolution, as applied to B's corresponding special member,
5226 // results in an ambiguity or a function that is deleted or inaccessible
5227 // from the defaulted special member
5228 // C++11 [class.dtor]p5:
5229 // -- any direct or virtual base class [...] has a type with a destructor
5230 // that is deleted or inaccessible
5231 if (!(CSM == Sema::CXXDefaultConstructor &&
5232 Field && Field->hasInClassInitializer()) &&
5233 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
5234 false))
5235 return true;
5236
5237 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
5238 // -- any direct or virtual base class or non-static data member has a
5239 // type with a destructor that is deleted or inaccessible
5240 if (IsConstructor) {
5241 Sema::SpecialMemberOverloadResult *SMOR =
5242 S.LookupSpecialMember(Class, Sema::CXXDestructor,
5243 false, false, false, false, false);
5244 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
5245 return true;
5246 }
5247
5248 return false;
5249 }
5250
5251 /// Check whether we should delete a special member function due to the class
5252 /// having a particular direct or virtual base class.
shouldDeleteForBase(CXXBaseSpecifier * Base)5253 bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
5254 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
5255 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
5256 }
5257
5258 /// Check whether we should delete a special member function due to the class
5259 /// having a particular non-static data member.
shouldDeleteForField(FieldDecl * FD)5260 bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
5261 QualType FieldType = S.Context.getBaseElementType(FD->getType());
5262 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
5263
5264 if (CSM == Sema::CXXDefaultConstructor) {
5265 // For a default constructor, all references must be initialized in-class
5266 // and, if a union, it must have a non-const member.
5267 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
5268 if (Diagnose)
5269 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5270 << MD->getParent() << FD << FieldType << /*Reference*/0;
5271 return true;
5272 }
5273 // C++11 [class.ctor]p5: any non-variant non-static data member of
5274 // const-qualified type (or array thereof) with no
5275 // brace-or-equal-initializer does not have a user-provided default
5276 // constructor.
5277 if (!inUnion() && FieldType.isConstQualified() &&
5278 !FD->hasInClassInitializer() &&
5279 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
5280 if (Diagnose)
5281 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
5282 << MD->getParent() << FD << FD->getType() << /*Const*/1;
5283 return true;
5284 }
5285
5286 if (inUnion() && !FieldType.isConstQualified())
5287 AllFieldsAreConst = false;
5288 } else if (CSM == Sema::CXXCopyConstructor) {
5289 // For a copy constructor, data members must not be of rvalue reference
5290 // type.
5291 if (FieldType->isRValueReferenceType()) {
5292 if (Diagnose)
5293 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
5294 << MD->getParent() << FD << FieldType;
5295 return true;
5296 }
5297 } else if (IsAssignment) {
5298 // For an assignment operator, data members must not be of reference type.
5299 if (FieldType->isReferenceType()) {
5300 if (Diagnose)
5301 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5302 << IsMove << MD->getParent() << FD << FieldType << /*Reference*/0;
5303 return true;
5304 }
5305 if (!FieldRecord && FieldType.isConstQualified()) {
5306 // C++11 [class.copy]p23:
5307 // -- a non-static data member of const non-class type (or array thereof)
5308 if (Diagnose)
5309 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
5310 << IsMove << MD->getParent() << FD << FD->getType() << /*Const*/1;
5311 return true;
5312 }
5313 }
5314
5315 if (FieldRecord) {
5316 // Some additional restrictions exist on the variant members.
5317 if (!inUnion() && FieldRecord->isUnion() &&
5318 FieldRecord->isAnonymousStructOrUnion()) {
5319 bool AllVariantFieldsAreConst = true;
5320
5321 // FIXME: Handle anonymous unions declared within anonymous unions.
5322 for (auto *UI : FieldRecord->fields()) {
5323 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
5324
5325 if (!UnionFieldType.isConstQualified())
5326 AllVariantFieldsAreConst = false;
5327
5328 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
5329 if (UnionFieldRecord &&
5330 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
5331 UnionFieldType.getCVRQualifiers()))
5332 return true;
5333 }
5334
5335 // At least one member in each anonymous union must be non-const
5336 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
5337 !FieldRecord->field_empty()) {
5338 if (Diagnose)
5339 S.Diag(FieldRecord->getLocation(),
5340 diag::note_deleted_default_ctor_all_const)
5341 << MD->getParent() << /*anonymous union*/1;
5342 return true;
5343 }
5344
5345 // Don't check the implicit member of the anonymous union type.
5346 // This is technically non-conformant, but sanity demands it.
5347 return false;
5348 }
5349
5350 if (shouldDeleteForClassSubobject(FieldRecord, FD,
5351 FieldType.getCVRQualifiers()))
5352 return true;
5353 }
5354
5355 return false;
5356 }
5357
5358 /// C++11 [class.ctor] p5:
5359 /// A defaulted default constructor for a class X is defined as deleted if
5360 /// X is a union and all of its variant members are of const-qualified type.
shouldDeleteForAllConstMembers()5361 bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
5362 // This is a silly definition, because it gives an empty union a deleted
5363 // default constructor. Don't do that.
5364 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst &&
5365 !MD->getParent()->field_empty()) {
5366 if (Diagnose)
5367 S.Diag(MD->getParent()->getLocation(),
5368 diag::note_deleted_default_ctor_all_const)
5369 << MD->getParent() << /*not anonymous union*/0;
5370 return true;
5371 }
5372 return false;
5373 }
5374
5375 /// Determine whether a defaulted special member function should be defined as
5376 /// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
5377 /// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
ShouldDeleteSpecialMember(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5378 bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
5379 bool Diagnose) {
5380 if (MD->isInvalidDecl())
5381 return false;
5382 CXXRecordDecl *RD = MD->getParent();
5383 assert(!RD->isDependentType() && "do deletion after instantiation");
5384 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
5385 return false;
5386
5387 // C++11 [expr.lambda.prim]p19:
5388 // The closure type associated with a lambda-expression has a
5389 // deleted (8.4.3) default constructor and a deleted copy
5390 // assignment operator.
5391 if (RD->isLambda() &&
5392 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
5393 if (Diagnose)
5394 Diag(RD->getLocation(), diag::note_lambda_decl);
5395 return true;
5396 }
5397
5398 // For an anonymous struct or union, the copy and assignment special members
5399 // will never be used, so skip the check. For an anonymous union declared at
5400 // namespace scope, the constructor and destructor are used.
5401 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
5402 RD->isAnonymousStructOrUnion())
5403 return false;
5404
5405 // C++11 [class.copy]p7, p18:
5406 // If the class definition declares a move constructor or move assignment
5407 // operator, an implicitly declared copy constructor or copy assignment
5408 // operator is defined as deleted.
5409 if (MD->isImplicit() &&
5410 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
5411 CXXMethodDecl *UserDeclaredMove = nullptr;
5412
5413 // In Microsoft mode, a user-declared move only causes the deletion of the
5414 // corresponding copy operation, not both copy operations.
5415 if (RD->hasUserDeclaredMoveConstructor() &&
5416 (!getLangOpts().MSVCCompat || CSM == CXXCopyConstructor)) {
5417 if (!Diagnose) return true;
5418
5419 // Find any user-declared move constructor.
5420 for (auto *I : RD->ctors()) {
5421 if (I->isMoveConstructor()) {
5422 UserDeclaredMove = I;
5423 break;
5424 }
5425 }
5426 assert(UserDeclaredMove);
5427 } else if (RD->hasUserDeclaredMoveAssignment() &&
5428 (!getLangOpts().MSVCCompat || CSM == CXXCopyAssignment)) {
5429 if (!Diagnose) return true;
5430
5431 // Find any user-declared move assignment operator.
5432 for (auto *I : RD->methods()) {
5433 if (I->isMoveAssignmentOperator()) {
5434 UserDeclaredMove = I;
5435 break;
5436 }
5437 }
5438 assert(UserDeclaredMove);
5439 }
5440
5441 if (UserDeclaredMove) {
5442 Diag(UserDeclaredMove->getLocation(),
5443 diag::note_deleted_copy_user_declared_move)
5444 << (CSM == CXXCopyAssignment) << RD
5445 << UserDeclaredMove->isMoveAssignmentOperator();
5446 return true;
5447 }
5448 }
5449
5450 // Do access control from the special member function
5451 ContextRAII MethodContext(*this, MD);
5452
5453 // C++11 [class.dtor]p5:
5454 // -- for a virtual destructor, lookup of the non-array deallocation function
5455 // results in an ambiguity or in a function that is deleted or inaccessible
5456 if (CSM == CXXDestructor && MD->isVirtual()) {
5457 FunctionDecl *OperatorDelete = nullptr;
5458 DeclarationName Name =
5459 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
5460 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
5461 OperatorDelete, false)) {
5462 if (Diagnose)
5463 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
5464 return true;
5465 }
5466 }
5467
5468 SpecialMemberDeletionInfo SMI(*this, MD, CSM, Diagnose);
5469
5470 for (auto &BI : RD->bases())
5471 if (!BI.isVirtual() &&
5472 SMI.shouldDeleteForBase(&BI))
5473 return true;
5474
5475 // Per DR1611, do not consider virtual bases of constructors of abstract
5476 // classes, since we are not going to construct them.
5477 if (!RD->isAbstract() || !SMI.IsConstructor) {
5478 for (auto &BI : RD->vbases())
5479 if (SMI.shouldDeleteForBase(&BI))
5480 return true;
5481 }
5482
5483 for (auto *FI : RD->fields())
5484 if (!FI->isInvalidDecl() && !FI->isUnnamedBitfield() &&
5485 SMI.shouldDeleteForField(FI))
5486 return true;
5487
5488 if (SMI.shouldDeleteForAllConstMembers())
5489 return true;
5490
5491 return false;
5492 }
5493
5494 /// Perform lookup for a special member of the specified kind, and determine
5495 /// whether it is trivial. If the triviality can be determined without the
5496 /// lookup, skip it. This is intended for use when determining whether a
5497 /// special member of a containing object is trivial, and thus does not ever
5498 /// perform overload resolution for default constructors.
5499 ///
5500 /// If \p Selected is not \c NULL, \c *Selected will be filled in with the
5501 /// member that was most likely to be intended to be trivial, if any.
findTrivialSpecialMember(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,unsigned Quals,bool ConstRHS,CXXMethodDecl ** Selected)5502 static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
5503 Sema::CXXSpecialMember CSM, unsigned Quals,
5504 bool ConstRHS, CXXMethodDecl **Selected) {
5505 if (Selected)
5506 *Selected = nullptr;
5507
5508 switch (CSM) {
5509 case Sema::CXXInvalid:
5510 llvm_unreachable("not a special member");
5511
5512 case Sema::CXXDefaultConstructor:
5513 // C++11 [class.ctor]p5:
5514 // A default constructor is trivial if:
5515 // - all the [direct subobjects] have trivial default constructors
5516 //
5517 // Note, no overload resolution is performed in this case.
5518 if (RD->hasTrivialDefaultConstructor())
5519 return true;
5520
5521 if (Selected) {
5522 // If there's a default constructor which could have been trivial, dig it
5523 // out. Otherwise, if there's any user-provided default constructor, point
5524 // to that as an example of why there's not a trivial one.
5525 CXXConstructorDecl *DefCtor = nullptr;
5526 if (RD->needsImplicitDefaultConstructor())
5527 S.DeclareImplicitDefaultConstructor(RD);
5528 for (auto *CI : RD->ctors()) {
5529 if (!CI->isDefaultConstructor())
5530 continue;
5531 DefCtor = CI;
5532 if (!DefCtor->isUserProvided())
5533 break;
5534 }
5535
5536 *Selected = DefCtor;
5537 }
5538
5539 return false;
5540
5541 case Sema::CXXDestructor:
5542 // C++11 [class.dtor]p5:
5543 // A destructor is trivial if:
5544 // - all the direct [subobjects] have trivial destructors
5545 if (RD->hasTrivialDestructor())
5546 return true;
5547
5548 if (Selected) {
5549 if (RD->needsImplicitDestructor())
5550 S.DeclareImplicitDestructor(RD);
5551 *Selected = RD->getDestructor();
5552 }
5553
5554 return false;
5555
5556 case Sema::CXXCopyConstructor:
5557 // C++11 [class.copy]p12:
5558 // A copy constructor is trivial if:
5559 // - the constructor selected to copy each direct [subobject] is trivial
5560 if (RD->hasTrivialCopyConstructor()) {
5561 if (Quals == Qualifiers::Const)
5562 // We must either select the trivial copy constructor or reach an
5563 // ambiguity; no need to actually perform overload resolution.
5564 return true;
5565 } else if (!Selected) {
5566 return false;
5567 }
5568 // In C++98, we are not supposed to perform overload resolution here, but we
5569 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
5570 // cases like B as having a non-trivial copy constructor:
5571 // struct A { template<typename T> A(T&); };
5572 // struct B { mutable A a; };
5573 goto NeedOverloadResolution;
5574
5575 case Sema::CXXCopyAssignment:
5576 // C++11 [class.copy]p25:
5577 // A copy assignment operator is trivial if:
5578 // - the assignment operator selected to copy each direct [subobject] is
5579 // trivial
5580 if (RD->hasTrivialCopyAssignment()) {
5581 if (Quals == Qualifiers::Const)
5582 return true;
5583 } else if (!Selected) {
5584 return false;
5585 }
5586 // In C++98, we are not supposed to perform overload resolution here, but we
5587 // treat that as a language defect.
5588 goto NeedOverloadResolution;
5589
5590 case Sema::CXXMoveConstructor:
5591 case Sema::CXXMoveAssignment:
5592 NeedOverloadResolution:
5593 Sema::SpecialMemberOverloadResult *SMOR =
5594 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
5595
5596 // The standard doesn't describe how to behave if the lookup is ambiguous.
5597 // We treat it as not making the member non-trivial, just like the standard
5598 // mandates for the default constructor. This should rarely matter, because
5599 // the member will also be deleted.
5600 if (SMOR->getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
5601 return true;
5602
5603 if (!SMOR->getMethod()) {
5604 assert(SMOR->getKind() ==
5605 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted);
5606 return false;
5607 }
5608
5609 // We deliberately don't check if we found a deleted special member. We're
5610 // not supposed to!
5611 if (Selected)
5612 *Selected = SMOR->getMethod();
5613 return SMOR->getMethod()->isTrivial();
5614 }
5615
5616 llvm_unreachable("unknown special method kind");
5617 }
5618
findUserDeclaredCtor(CXXRecordDecl * RD)5619 static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
5620 for (auto *CI : RD->ctors())
5621 if (!CI->isImplicit())
5622 return CI;
5623
5624 // Look for constructor templates.
5625 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
5626 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
5627 if (CXXConstructorDecl *CD =
5628 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
5629 return CD;
5630 }
5631
5632 return nullptr;
5633 }
5634
5635 /// The kind of subobject we are checking for triviality. The values of this
5636 /// enumeration are used in diagnostics.
5637 enum TrivialSubobjectKind {
5638 /// The subobject is a base class.
5639 TSK_BaseClass,
5640 /// The subobject is a non-static data member.
5641 TSK_Field,
5642 /// The object is actually the complete object.
5643 TSK_CompleteObject
5644 };
5645
5646 /// Check whether the special member selected for a given type would be trivial.
checkTrivialSubobjectCall(Sema & S,SourceLocation SubobjLoc,QualType SubType,bool ConstRHS,Sema::CXXSpecialMember CSM,TrivialSubobjectKind Kind,bool Diagnose)5647 static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
5648 QualType SubType, bool ConstRHS,
5649 Sema::CXXSpecialMember CSM,
5650 TrivialSubobjectKind Kind,
5651 bool Diagnose) {
5652 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
5653 if (!SubRD)
5654 return true;
5655
5656 CXXMethodDecl *Selected;
5657 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
5658 ConstRHS, Diagnose ? &Selected : nullptr))
5659 return true;
5660
5661 if (Diagnose) {
5662 if (ConstRHS)
5663 SubType.addConst();
5664
5665 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
5666 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
5667 << Kind << SubType.getUnqualifiedType();
5668 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
5669 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
5670 } else if (!Selected)
5671 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
5672 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
5673 else if (Selected->isUserProvided()) {
5674 if (Kind == TSK_CompleteObject)
5675 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
5676 << Kind << SubType.getUnqualifiedType() << CSM;
5677 else {
5678 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
5679 << Kind << SubType.getUnqualifiedType() << CSM;
5680 S.Diag(Selected->getLocation(), diag::note_declared_at);
5681 }
5682 } else {
5683 if (Kind != TSK_CompleteObject)
5684 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
5685 << Kind << SubType.getUnqualifiedType() << CSM;
5686
5687 // Explain why the defaulted or deleted special member isn't trivial.
5688 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
5689 }
5690 }
5691
5692 return false;
5693 }
5694
5695 /// Check whether the members of a class type allow a special member to be
5696 /// trivial.
checkTrivialClassMembers(Sema & S,CXXRecordDecl * RD,Sema::CXXSpecialMember CSM,bool ConstArg,bool Diagnose)5697 static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
5698 Sema::CXXSpecialMember CSM,
5699 bool ConstArg, bool Diagnose) {
5700 for (const auto *FI : RD->fields()) {
5701 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
5702 continue;
5703
5704 QualType FieldType = S.Context.getBaseElementType(FI->getType());
5705
5706 // Pretend anonymous struct or union members are members of this class.
5707 if (FI->isAnonymousStructOrUnion()) {
5708 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
5709 CSM, ConstArg, Diagnose))
5710 return false;
5711 continue;
5712 }
5713
5714 // C++11 [class.ctor]p5:
5715 // A default constructor is trivial if [...]
5716 // -- no non-static data member of its class has a
5717 // brace-or-equal-initializer
5718 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
5719 if (Diagnose)
5720 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
5721 return false;
5722 }
5723
5724 // Objective C ARC 4.3.5:
5725 // [...] nontrivally ownership-qualified types are [...] not trivially
5726 // default constructible, copy constructible, move constructible, copy
5727 // assignable, move assignable, or destructible [...]
5728 if (S.getLangOpts().ObjCAutoRefCount &&
5729 FieldType.hasNonTrivialObjCLifetime()) {
5730 if (Diagnose)
5731 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
5732 << RD << FieldType.getObjCLifetime();
5733 return false;
5734 }
5735
5736 bool ConstRHS = ConstArg && !FI->isMutable();
5737 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
5738 CSM, TSK_Field, Diagnose))
5739 return false;
5740 }
5741
5742 return true;
5743 }
5744
5745 /// Diagnose why the specified class does not have a trivial special member of
5746 /// the given kind.
DiagnoseNontrivial(const CXXRecordDecl * RD,CXXSpecialMember CSM)5747 void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
5748 QualType Ty = Context.getRecordType(RD);
5749
5750 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
5751 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
5752 TSK_CompleteObject, /*Diagnose*/true);
5753 }
5754
5755 /// Determine whether a defaulted or deleted special member function is trivial,
5756 /// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
5757 /// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
SpecialMemberIsTrivial(CXXMethodDecl * MD,CXXSpecialMember CSM,bool Diagnose)5758 bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
5759 bool Diagnose) {
5760 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough");
5761
5762 CXXRecordDecl *RD = MD->getParent();
5763
5764 bool ConstArg = false;
5765
5766 // C++11 [class.copy]p12, p25: [DR1593]
5767 // A [special member] is trivial if [...] its parameter-type-list is
5768 // equivalent to the parameter-type-list of an implicit declaration [...]
5769 switch (CSM) {
5770 case CXXDefaultConstructor:
5771 case CXXDestructor:
5772 // Trivial default constructors and destructors cannot have parameters.
5773 break;
5774
5775 case CXXCopyConstructor:
5776 case CXXCopyAssignment: {
5777 // Trivial copy operations always have const, non-volatile parameter types.
5778 ConstArg = true;
5779 const ParmVarDecl *Param0 = MD->getParamDecl(0);
5780 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
5781 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
5782 if (Diagnose)
5783 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5784 << Param0->getSourceRange() << Param0->getType()
5785 << Context.getLValueReferenceType(
5786 Context.getRecordType(RD).withConst());
5787 return false;
5788 }
5789 break;
5790 }
5791
5792 case CXXMoveConstructor:
5793 case CXXMoveAssignment: {
5794 // Trivial move operations always have non-cv-qualified parameters.
5795 const ParmVarDecl *Param0 = MD->getParamDecl(0);
5796 const RValueReferenceType *RT =
5797 Param0->getType()->getAs<RValueReferenceType>();
5798 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
5799 if (Diagnose)
5800 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
5801 << Param0->getSourceRange() << Param0->getType()
5802 << Context.getRValueReferenceType(Context.getRecordType(RD));
5803 return false;
5804 }
5805 break;
5806 }
5807
5808 case CXXInvalid:
5809 llvm_unreachable("not a special member");
5810 }
5811
5812 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
5813 if (Diagnose)
5814 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
5815 diag::note_nontrivial_default_arg)
5816 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
5817 return false;
5818 }
5819 if (MD->isVariadic()) {
5820 if (Diagnose)
5821 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
5822 return false;
5823 }
5824
5825 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5826 // A copy/move [constructor or assignment operator] is trivial if
5827 // -- the [member] selected to copy/move each direct base class subobject
5828 // is trivial
5829 //
5830 // C++11 [class.copy]p12, C++11 [class.copy]p25:
5831 // A [default constructor or destructor] is trivial if
5832 // -- all the direct base classes have trivial [default constructors or
5833 // destructors]
5834 for (const auto &BI : RD->bases())
5835 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
5836 ConstArg, CSM, TSK_BaseClass, Diagnose))
5837 return false;
5838
5839 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
5840 // A copy/move [constructor or assignment operator] for a class X is
5841 // trivial if
5842 // -- for each non-static data member of X that is of class type (or array
5843 // thereof), the constructor selected to copy/move that member is
5844 // trivial
5845 //
5846 // C++11 [class.copy]p12, C++11 [class.copy]p25:
5847 // A [default constructor or destructor] is trivial if
5848 // -- for all of the non-static data members of its class that are of class
5849 // type (or array thereof), each such class has a trivial [default
5850 // constructor or destructor]
5851 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
5852 return false;
5853
5854 // C++11 [class.dtor]p5:
5855 // A destructor is trivial if [...]
5856 // -- the destructor is not virtual
5857 if (CSM == CXXDestructor && MD->isVirtual()) {
5858 if (Diagnose)
5859 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
5860 return false;
5861 }
5862
5863 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
5864 // A [special member] for class X is trivial if [...]
5865 // -- class X has no virtual functions and no virtual base classes
5866 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
5867 if (!Diagnose)
5868 return false;
5869
5870 if (RD->getNumVBases()) {
5871 // Check for virtual bases. We already know that the corresponding
5872 // member in all bases is trivial, so vbases must all be direct.
5873 CXXBaseSpecifier &BS = *RD->vbases_begin();
5874 assert(BS.isVirtual());
5875 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
5876 return false;
5877 }
5878
5879 // Must have a virtual method.
5880 for (const auto *MI : RD->methods()) {
5881 if (MI->isVirtual()) {
5882 SourceLocation MLoc = MI->getLocStart();
5883 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
5884 return false;
5885 }
5886 }
5887
5888 llvm_unreachable("dynamic class with no vbases and no virtual functions");
5889 }
5890
5891 // Looks like it's trivial!
5892 return true;
5893 }
5894
5895 /// \brief Data used with FindHiddenVirtualMethod
5896 namespace {
5897 struct FindHiddenVirtualMethodData {
5898 Sema *S;
5899 CXXMethodDecl *Method;
5900 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
5901 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
5902 };
5903 }
5904
5905 /// \brief Check whether any most overriden method from MD in Methods
CheckMostOverridenMethods(const CXXMethodDecl * MD,const llvm::SmallPtrSet<const CXXMethodDecl *,8> & Methods)5906 static bool CheckMostOverridenMethods(const CXXMethodDecl *MD,
5907 const llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5908 if (MD->size_overridden_methods() == 0)
5909 return Methods.count(MD->getCanonicalDecl());
5910 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5911 E = MD->end_overridden_methods();
5912 I != E; ++I)
5913 if (CheckMostOverridenMethods(*I, Methods))
5914 return true;
5915 return false;
5916 }
5917
5918 /// \brief Member lookup function that determines whether a given C++
5919 /// method overloads virtual methods in a base class without overriding any,
5920 /// to be used with CXXRecordDecl::lookupInBases().
FindHiddenVirtualMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)5921 static bool FindHiddenVirtualMethod(const CXXBaseSpecifier *Specifier,
5922 CXXBasePath &Path,
5923 void *UserData) {
5924 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5925
5926 FindHiddenVirtualMethodData &Data
5927 = *static_cast<FindHiddenVirtualMethodData*>(UserData);
5928
5929 DeclarationName Name = Data.Method->getDeclName();
5930 assert(Name.getNameKind() == DeclarationName::Identifier);
5931
5932 bool foundSameNameMethod = false;
5933 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
5934 for (Path.Decls = BaseRecord->lookup(Name);
5935 !Path.Decls.empty();
5936 Path.Decls = Path.Decls.slice(1)) {
5937 NamedDecl *D = Path.Decls.front();
5938 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5939 MD = MD->getCanonicalDecl();
5940 foundSameNameMethod = true;
5941 // Interested only in hidden virtual methods.
5942 if (!MD->isVirtual())
5943 continue;
5944 // If the method we are checking overrides a method from its base
5945 // don't warn about the other overloaded methods.
5946 if (!Data.S->IsOverload(Data.Method, MD, false))
5947 return true;
5948 // Collect the overload only if its hidden.
5949 if (!CheckMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods))
5950 overloadedMethods.push_back(MD);
5951 }
5952 }
5953
5954 if (foundSameNameMethod)
5955 Data.OverloadedMethods.append(overloadedMethods.begin(),
5956 overloadedMethods.end());
5957 return foundSameNameMethod;
5958 }
5959
5960 /// \brief Add the most overriden methods from MD to Methods
AddMostOverridenMethods(const CXXMethodDecl * MD,llvm::SmallPtrSet<const CXXMethodDecl *,8> & Methods)5961 static void AddMostOverridenMethods(const CXXMethodDecl *MD,
5962 llvm::SmallPtrSet<const CXXMethodDecl *, 8>& Methods) {
5963 if (MD->size_overridden_methods() == 0)
5964 Methods.insert(MD->getCanonicalDecl());
5965 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5966 E = MD->end_overridden_methods();
5967 I != E; ++I)
5968 AddMostOverridenMethods(*I, Methods);
5969 }
5970
5971 /// \brief Check if a method overloads virtual methods in a base class without
5972 /// overriding any.
FindHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)5973 void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
5974 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
5975 if (!MD->getDeclName().isIdentifier())
5976 return;
5977
5978 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
5979 /*bool RecordPaths=*/false,
5980 /*bool DetectVirtual=*/false);
5981 FindHiddenVirtualMethodData Data;
5982 Data.Method = MD;
5983 Data.S = this;
5984
5985 // Keep the base methods that were overriden or introduced in the subclass
5986 // by 'using' in a set. A base method not in this set is hidden.
5987 CXXRecordDecl *DC = MD->getParent();
5988 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
5989 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
5990 NamedDecl *ND = *I;
5991 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
5992 ND = shad->getTargetDecl();
5993 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
5994 AddMostOverridenMethods(MD, Data.OverridenAndUsingBaseMethods);
5995 }
5996
5997 if (DC->lookupInBases(&FindHiddenVirtualMethod, &Data, Paths))
5998 OverloadedMethods = Data.OverloadedMethods;
5999 }
6000
NoteHiddenVirtualMethods(CXXMethodDecl * MD,SmallVectorImpl<CXXMethodDecl * > & OverloadedMethods)6001 void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
6002 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
6003 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
6004 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
6005 PartialDiagnostic PD = PDiag(
6006 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
6007 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
6008 Diag(overloadedMD->getLocation(), PD);
6009 }
6010 }
6011
6012 /// \brief Diagnose methods which overload virtual methods in a base class
6013 /// without overriding any.
DiagnoseHiddenVirtualMethods(CXXMethodDecl * MD)6014 void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
6015 if (MD->isInvalidDecl())
6016 return;
6017
6018 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
6019 return;
6020
6021 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
6022 FindHiddenVirtualMethods(MD, OverloadedMethods);
6023 if (!OverloadedMethods.empty()) {
6024 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
6025 << MD << (OverloadedMethods.size() > 1);
6026
6027 NoteHiddenVirtualMethods(MD, OverloadedMethods);
6028 }
6029 }
6030
ActOnFinishCXXMemberSpecification(Scope * S,SourceLocation RLoc,Decl * TagDecl,SourceLocation LBrac,SourceLocation RBrac,AttributeList * AttrList)6031 void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
6032 Decl *TagDecl,
6033 SourceLocation LBrac,
6034 SourceLocation RBrac,
6035 AttributeList *AttrList) {
6036 if (!TagDecl)
6037 return;
6038
6039 AdjustDeclIfTemplate(TagDecl);
6040
6041 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
6042 if (l->getKind() != AttributeList::AT_Visibility)
6043 continue;
6044 l->setInvalid();
6045 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
6046 l->getName();
6047 }
6048
6049 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
6050 // strict aliasing violation!
6051 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
6052 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
6053
6054 CheckCompletedCXXClass(
6055 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
6056 }
6057
6058 /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
6059 /// special functions, such as the default constructor, copy
6060 /// constructor, or destructor, to the given C++ class (C++
6061 /// [special]p1). This routine can only be executed just before the
6062 /// definition of the class is complete.
AddImplicitlyDeclaredMembersToClass(CXXRecordDecl * ClassDecl)6063 void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
6064 if (!ClassDecl->hasUserDeclaredConstructor())
6065 ++ASTContext::NumImplicitDefaultConstructors;
6066
6067 if (!ClassDecl->hasUserDeclaredCopyConstructor()) {
6068 ++ASTContext::NumImplicitCopyConstructors;
6069
6070 // If the properties or semantics of the copy constructor couldn't be
6071 // determined while the class was being declared, force a declaration
6072 // of it now.
6073 if (ClassDecl->needsOverloadResolutionForCopyConstructor())
6074 DeclareImplicitCopyConstructor(ClassDecl);
6075 }
6076
6077 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
6078 ++ASTContext::NumImplicitMoveConstructors;
6079
6080 if (ClassDecl->needsOverloadResolutionForMoveConstructor())
6081 DeclareImplicitMoveConstructor(ClassDecl);
6082 }
6083
6084 if (!ClassDecl->hasUserDeclaredCopyAssignment()) {
6085 ++ASTContext::NumImplicitCopyAssignmentOperators;
6086
6087 // If we have a dynamic class, then the copy assignment operator may be
6088 // virtual, so we have to declare it immediately. This ensures that, e.g.,
6089 // it shows up in the right place in the vtable and that we diagnose
6090 // problems with the implicit exception specification.
6091 if (ClassDecl->isDynamicClass() ||
6092 ClassDecl->needsOverloadResolutionForCopyAssignment())
6093 DeclareImplicitCopyAssignment(ClassDecl);
6094 }
6095
6096 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
6097 ++ASTContext::NumImplicitMoveAssignmentOperators;
6098
6099 // Likewise for the move assignment operator.
6100 if (ClassDecl->isDynamicClass() ||
6101 ClassDecl->needsOverloadResolutionForMoveAssignment())
6102 DeclareImplicitMoveAssignment(ClassDecl);
6103 }
6104
6105 if (!ClassDecl->hasUserDeclaredDestructor()) {
6106 ++ASTContext::NumImplicitDestructors;
6107
6108 // If we have a dynamic class, then the destructor may be virtual, so we
6109 // have to declare the destructor immediately. This ensures that, e.g., it
6110 // shows up in the right place in the vtable and that we diagnose problems
6111 // with the implicit exception specification.
6112 if (ClassDecl->isDynamicClass() ||
6113 ClassDecl->needsOverloadResolutionForDestructor())
6114 DeclareImplicitDestructor(ClassDecl);
6115 }
6116 }
6117
ActOnReenterTemplateScope(Scope * S,Decl * D)6118 unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
6119 if (!D)
6120 return 0;
6121
6122 // The order of template parameters is not important here. All names
6123 // get added to the same scope.
6124 SmallVector<TemplateParameterList *, 4> ParameterLists;
6125
6126 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
6127 D = TD->getTemplatedDecl();
6128
6129 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
6130 ParameterLists.push_back(PSD->getTemplateParameters());
6131
6132 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
6133 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
6134 ParameterLists.push_back(DD->getTemplateParameterList(i));
6135
6136 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
6137 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
6138 ParameterLists.push_back(FTD->getTemplateParameters());
6139 }
6140 }
6141
6142 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
6143 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
6144 ParameterLists.push_back(TD->getTemplateParameterList(i));
6145
6146 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
6147 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
6148 ParameterLists.push_back(CTD->getTemplateParameters());
6149 }
6150 }
6151
6152 unsigned Count = 0;
6153 for (TemplateParameterList *Params : ParameterLists) {
6154 if (Params->size() > 0)
6155 // Ignore explicit specializations; they don't contribute to the template
6156 // depth.
6157 ++Count;
6158 for (NamedDecl *Param : *Params) {
6159 if (Param->getDeclName()) {
6160 S->AddDecl(Param);
6161 IdResolver.AddDecl(Param);
6162 }
6163 }
6164 }
6165
6166 return Count;
6167 }
6168
ActOnStartDelayedMemberDeclarations(Scope * S,Decl * RecordD)6169 void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6170 if (!RecordD) return;
6171 AdjustDeclIfTemplate(RecordD);
6172 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
6173 PushDeclContext(S, Record);
6174 }
6175
ActOnFinishDelayedMemberDeclarations(Scope * S,Decl * RecordD)6176 void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
6177 if (!RecordD) return;
6178 PopDeclContext();
6179 }
6180
6181 /// This is used to implement the constant expression evaluation part of the
6182 /// attribute enable_if extension. There is nothing in standard C++ which would
6183 /// require reentering parameters.
ActOnReenterCXXMethodParameter(Scope * S,ParmVarDecl * Param)6184 void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
6185 if (!Param)
6186 return;
6187
6188 S->AddDecl(Param);
6189 if (Param->getDeclName())
6190 IdResolver.AddDecl(Param);
6191 }
6192
6193 /// ActOnStartDelayedCXXMethodDeclaration - We have completed
6194 /// parsing a top-level (non-nested) C++ class, and we are now
6195 /// parsing those parts of the given Method declaration that could
6196 /// not be parsed earlier (C++ [class.mem]p2), such as default
6197 /// arguments. This action should enter the scope of the given
6198 /// Method declaration as if we had just parsed the qualified method
6199 /// name. However, it should not bring the parameters into scope;
6200 /// that will be performed by ActOnDelayedCXXMethodParameter.
ActOnStartDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6201 void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6202 }
6203
6204 /// ActOnDelayedCXXMethodParameter - We've already started a delayed
6205 /// C++ method declaration. We're (re-)introducing the given
6206 /// function parameter into scope for use in parsing later parts of
6207 /// the method declaration. For example, we could see an
6208 /// ActOnParamDefaultArgument event for this parameter.
ActOnDelayedCXXMethodParameter(Scope * S,Decl * ParamD)6209 void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
6210 if (!ParamD)
6211 return;
6212
6213 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
6214
6215 // If this parameter has an unparsed default argument, clear it out
6216 // to make way for the parsed default argument.
6217 if (Param->hasUnparsedDefaultArg())
6218 Param->setDefaultArg(nullptr);
6219
6220 S->AddDecl(Param);
6221 if (Param->getDeclName())
6222 IdResolver.AddDecl(Param);
6223 }
6224
6225 /// ActOnFinishDelayedCXXMethodDeclaration - We have finished
6226 /// processing the delayed method declaration for Method. The method
6227 /// declaration is now considered finished. There may be a separate
6228 /// ActOnStartOfFunctionDef action later (not necessarily
6229 /// immediately!) for this method, if it was also defined inside the
6230 /// class body.
ActOnFinishDelayedCXXMethodDeclaration(Scope * S,Decl * MethodD)6231 void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
6232 if (!MethodD)
6233 return;
6234
6235 AdjustDeclIfTemplate(MethodD);
6236
6237 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
6238
6239 // Now that we have our default arguments, check the constructor
6240 // again. It could produce additional diagnostics or affect whether
6241 // the class has implicitly-declared destructors, among other
6242 // things.
6243 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
6244 CheckConstructor(Constructor);
6245
6246 // Check the default arguments, which we may have added.
6247 if (!Method->isInvalidDecl())
6248 CheckCXXDefaultArguments(Method);
6249 }
6250
6251 /// CheckConstructorDeclarator - Called by ActOnDeclarator to check
6252 /// the well-formedness of the constructor declarator @p D with type @p
6253 /// R. If there are any errors in the declarator, this routine will
6254 /// emit diagnostics and set the invalid bit to true. In any case, the type
6255 /// will be updated to reflect a well-formed type for the constructor and
6256 /// returned.
CheckConstructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6257 QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
6258 StorageClass &SC) {
6259 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6260
6261 // C++ [class.ctor]p3:
6262 // A constructor shall not be virtual (10.3) or static (9.4). A
6263 // constructor can be invoked for a const, volatile or const
6264 // volatile object. A constructor shall not be declared const,
6265 // volatile, or const volatile (9.3.2).
6266 if (isVirtual) {
6267 if (!D.isInvalidType())
6268 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6269 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
6270 << SourceRange(D.getIdentifierLoc());
6271 D.setInvalidType();
6272 }
6273 if (SC == SC_Static) {
6274 if (!D.isInvalidType())
6275 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
6276 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6277 << SourceRange(D.getIdentifierLoc());
6278 D.setInvalidType();
6279 SC = SC_None;
6280 }
6281
6282 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6283 diagnoseIgnoredQualifiers(
6284 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
6285 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
6286 D.getDeclSpec().getRestrictSpecLoc(),
6287 D.getDeclSpec().getAtomicSpecLoc());
6288 D.setInvalidType();
6289 }
6290
6291 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6292 if (FTI.TypeQuals != 0) {
6293 if (FTI.TypeQuals & Qualifiers::Const)
6294 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6295 << "const" << SourceRange(D.getIdentifierLoc());
6296 if (FTI.TypeQuals & Qualifiers::Volatile)
6297 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6298 << "volatile" << SourceRange(D.getIdentifierLoc());
6299 if (FTI.TypeQuals & Qualifiers::Restrict)
6300 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
6301 << "restrict" << SourceRange(D.getIdentifierLoc());
6302 D.setInvalidType();
6303 }
6304
6305 // C++0x [class.ctor]p4:
6306 // A constructor shall not be declared with a ref-qualifier.
6307 if (FTI.hasRefQualifier()) {
6308 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
6309 << FTI.RefQualifierIsLValueRef
6310 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6311 D.setInvalidType();
6312 }
6313
6314 // Rebuild the function type "R" without any type qualifiers (in
6315 // case any of the errors above fired) and with "void" as the
6316 // return type, since constructors don't have return types.
6317 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6318 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
6319 return R;
6320
6321 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6322 EPI.TypeQuals = 0;
6323 EPI.RefQualifier = RQ_None;
6324
6325 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
6326 }
6327
6328 /// CheckConstructor - Checks a fully-formed constructor for
6329 /// well-formedness, issuing any diagnostics required. Returns true if
6330 /// the constructor declarator is invalid.
CheckConstructor(CXXConstructorDecl * Constructor)6331 void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
6332 CXXRecordDecl *ClassDecl
6333 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
6334 if (!ClassDecl)
6335 return Constructor->setInvalidDecl();
6336
6337 // C++ [class.copy]p3:
6338 // A declaration of a constructor for a class X is ill-formed if
6339 // its first parameter is of type (optionally cv-qualified) X and
6340 // either there are no other parameters or else all other
6341 // parameters have default arguments.
6342 if (!Constructor->isInvalidDecl() &&
6343 ((Constructor->getNumParams() == 1) ||
6344 (Constructor->getNumParams() > 1 &&
6345 Constructor->getParamDecl(1)->hasDefaultArg())) &&
6346 Constructor->getTemplateSpecializationKind()
6347 != TSK_ImplicitInstantiation) {
6348 QualType ParamType = Constructor->getParamDecl(0)->getType();
6349 QualType ClassTy = Context.getTagDeclType(ClassDecl);
6350 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
6351 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
6352 const char *ConstRef
6353 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
6354 : " const &";
6355 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
6356 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
6357
6358 // FIXME: Rather that making the constructor invalid, we should endeavor
6359 // to fix the type.
6360 Constructor->setInvalidDecl();
6361 }
6362 }
6363 }
6364
6365 /// CheckDestructor - Checks a fully-formed destructor definition for
6366 /// well-formedness, issuing any diagnostics required. Returns true
6367 /// on error.
CheckDestructor(CXXDestructorDecl * Destructor)6368 bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
6369 CXXRecordDecl *RD = Destructor->getParent();
6370
6371 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
6372 SourceLocation Loc;
6373
6374 if (!Destructor->isImplicit())
6375 Loc = Destructor->getLocation();
6376 else
6377 Loc = RD->getLocation();
6378
6379 // If we have a virtual destructor, look up the deallocation function
6380 FunctionDecl *OperatorDelete = nullptr;
6381 DeclarationName Name =
6382 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6383 if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete))
6384 return true;
6385 // If there's no class-specific operator delete, look up the global
6386 // non-array delete.
6387 if (!OperatorDelete)
6388 OperatorDelete = FindUsualDeallocationFunction(Loc, true, Name);
6389
6390 MarkFunctionReferenced(Loc, OperatorDelete);
6391
6392 Destructor->setOperatorDelete(OperatorDelete);
6393 }
6394
6395 return false;
6396 }
6397
6398 /// CheckDestructorDeclarator - Called by ActOnDeclarator to check
6399 /// the well-formednes of the destructor declarator @p D with type @p
6400 /// R. If there are any errors in the declarator, this routine will
6401 /// emit diagnostics and set the declarator to invalid. Even if this happens,
6402 /// will be updated to reflect a well-formed type for the destructor and
6403 /// returned.
CheckDestructorDeclarator(Declarator & D,QualType R,StorageClass & SC)6404 QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
6405 StorageClass& SC) {
6406 // C++ [class.dtor]p1:
6407 // [...] A typedef-name that names a class is a class-name
6408 // (7.1.3); however, a typedef-name that names a class shall not
6409 // be used as the identifier in the declarator for a destructor
6410 // declaration.
6411 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
6412 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
6413 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6414 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
6415 else if (const TemplateSpecializationType *TST =
6416 DeclaratorType->getAs<TemplateSpecializationType>())
6417 if (TST->isTypeAlias())
6418 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
6419 << DeclaratorType << 1;
6420
6421 // C++ [class.dtor]p2:
6422 // A destructor is used to destroy objects of its class type. A
6423 // destructor takes no parameters, and no return type can be
6424 // specified for it (not even void). The address of a destructor
6425 // shall not be taken. A destructor shall not be static. A
6426 // destructor can be invoked for a const, volatile or const
6427 // volatile object. A destructor shall not be declared const,
6428 // volatile or const volatile (9.3.2).
6429 if (SC == SC_Static) {
6430 if (!D.isInvalidType())
6431 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
6432 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6433 << SourceRange(D.getIdentifierLoc())
6434 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6435
6436 SC = SC_None;
6437 }
6438 if (!D.isInvalidType()) {
6439 // Destructors don't have return types, but the parser will
6440 // happily parse something like:
6441 //
6442 // class X {
6443 // float ~X();
6444 // };
6445 //
6446 // The return type will be eliminated later.
6447 if (D.getDeclSpec().hasTypeSpecifier())
6448 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
6449 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6450 << SourceRange(D.getIdentifierLoc());
6451 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
6452 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
6453 SourceLocation(),
6454 D.getDeclSpec().getConstSpecLoc(),
6455 D.getDeclSpec().getVolatileSpecLoc(),
6456 D.getDeclSpec().getRestrictSpecLoc(),
6457 D.getDeclSpec().getAtomicSpecLoc());
6458 D.setInvalidType();
6459 }
6460 }
6461
6462 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6463 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
6464 if (FTI.TypeQuals & Qualifiers::Const)
6465 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6466 << "const" << SourceRange(D.getIdentifierLoc());
6467 if (FTI.TypeQuals & Qualifiers::Volatile)
6468 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6469 << "volatile" << SourceRange(D.getIdentifierLoc());
6470 if (FTI.TypeQuals & Qualifiers::Restrict)
6471 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
6472 << "restrict" << SourceRange(D.getIdentifierLoc());
6473 D.setInvalidType();
6474 }
6475
6476 // C++0x [class.dtor]p2:
6477 // A destructor shall not be declared with a ref-qualifier.
6478 if (FTI.hasRefQualifier()) {
6479 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
6480 << FTI.RefQualifierIsLValueRef
6481 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
6482 D.setInvalidType();
6483 }
6484
6485 // Make sure we don't have any parameters.
6486 if (FTIHasNonVoidParameters(FTI)) {
6487 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
6488
6489 // Delete the parameters.
6490 FTI.freeParams();
6491 D.setInvalidType();
6492 }
6493
6494 // Make sure the destructor isn't variadic.
6495 if (FTI.isVariadic) {
6496 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
6497 D.setInvalidType();
6498 }
6499
6500 // Rebuild the function type "R" without any type qualifiers or
6501 // parameters (in case any of the errors above fired) and with
6502 // "void" as the return type, since destructors don't have return
6503 // types.
6504 if (!D.isInvalidType())
6505 return R;
6506
6507 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6508 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
6509 EPI.Variadic = false;
6510 EPI.TypeQuals = 0;
6511 EPI.RefQualifier = RQ_None;
6512 return Context.getFunctionType(Context.VoidTy, None, EPI);
6513 }
6514
6515 /// CheckConversionDeclarator - Called by ActOnDeclarator to check the
6516 /// well-formednes of the conversion function declarator @p D with
6517 /// type @p R. If there are any errors in the declarator, this routine
6518 /// will emit diagnostics and return true. Otherwise, it will return
6519 /// false. Either way, the type @p R will be updated to reflect a
6520 /// well-formed type for the conversion operator.
CheckConversionDeclarator(Declarator & D,QualType & R,StorageClass & SC)6521 void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
6522 StorageClass& SC) {
6523 // C++ [class.conv.fct]p1:
6524 // Neither parameter types nor return type can be specified. The
6525 // type of a conversion function (8.3.5) is "function taking no
6526 // parameter returning conversion-type-id."
6527 if (SC == SC_Static) {
6528 if (!D.isInvalidType())
6529 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
6530 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
6531 << D.getName().getSourceRange();
6532 D.setInvalidType();
6533 SC = SC_None;
6534 }
6535
6536 QualType ConvType = GetTypeFromParser(D.getName().ConversionFunctionId);
6537
6538 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
6539 // Conversion functions don't have return types, but the parser will
6540 // happily parse something like:
6541 //
6542 // class X {
6543 // float operator bool();
6544 // };
6545 //
6546 // The return type will be changed later anyway.
6547 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
6548 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6549 << SourceRange(D.getIdentifierLoc());
6550 D.setInvalidType();
6551 }
6552
6553 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
6554
6555 // Make sure we don't have any parameters.
6556 if (Proto->getNumParams() > 0) {
6557 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
6558
6559 // Delete the parameters.
6560 D.getFunctionTypeInfo().freeParams();
6561 D.setInvalidType();
6562 } else if (Proto->isVariadic()) {
6563 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
6564 D.setInvalidType();
6565 }
6566
6567 // Diagnose "&operator bool()" and other such nonsense. This
6568 // is actually a gcc extension which we don't support.
6569 if (Proto->getReturnType() != ConvType) {
6570 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_complex_decl)
6571 << Proto->getReturnType();
6572 D.setInvalidType();
6573 ConvType = Proto->getReturnType();
6574 }
6575
6576 // C++ [class.conv.fct]p4:
6577 // The conversion-type-id shall not represent a function type nor
6578 // an array type.
6579 if (ConvType->isArrayType()) {
6580 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array);
6581 ConvType = Context.getPointerType(ConvType);
6582 D.setInvalidType();
6583 } else if (ConvType->isFunctionType()) {
6584 Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function);
6585 ConvType = Context.getPointerType(ConvType);
6586 D.setInvalidType();
6587 }
6588
6589 // Rebuild the function type "R" without any parameters (in case any
6590 // of the errors above fired) and with the conversion type as the
6591 // return type.
6592 if (D.isInvalidType())
6593 R = Context.getFunctionType(ConvType, None, Proto->getExtProtoInfo());
6594
6595 // C++0x explicit conversion operators.
6596 if (D.getDeclSpec().isExplicitSpecified())
6597 Diag(D.getDeclSpec().getExplicitSpecLoc(),
6598 getLangOpts().CPlusPlus11 ?
6599 diag::warn_cxx98_compat_explicit_conversion_functions :
6600 diag::ext_explicit_conversion_functions)
6601 << SourceRange(D.getDeclSpec().getExplicitSpecLoc());
6602 }
6603
6604 /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete
6605 /// the declaration of the given C++ conversion function. This routine
6606 /// is responsible for recording the conversion function in the C++
6607 /// class, if possible.
ActOnConversionDeclarator(CXXConversionDecl * Conversion)6608 Decl *Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) {
6609 assert(Conversion && "Expected to receive a conversion function declaration");
6610
6611 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext());
6612
6613 // Make sure we aren't redeclaring the conversion function.
6614 QualType ConvType = Context.getCanonicalType(Conversion->getConversionType());
6615
6616 // C++ [class.conv.fct]p1:
6617 // [...] A conversion function is never used to convert a
6618 // (possibly cv-qualified) object to the (possibly cv-qualified)
6619 // same object type (or a reference to it), to a (possibly
6620 // cv-qualified) base class of that type (or a reference to it),
6621 // or to (possibly cv-qualified) void.
6622 // FIXME: Suppress this warning if the conversion function ends up being a
6623 // virtual function that overrides a virtual function in a base class.
6624 QualType ClassType
6625 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
6626 if (const ReferenceType *ConvTypeRef = ConvType->getAs<ReferenceType>())
6627 ConvType = ConvTypeRef->getPointeeType();
6628 if (Conversion->getTemplateSpecializationKind() != TSK_Undeclared &&
6629 Conversion->getTemplateSpecializationKind() != TSK_ExplicitSpecialization)
6630 /* Suppress diagnostics for instantiations. */;
6631 else if (ConvType->isRecordType()) {
6632 ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType();
6633 if (ConvType == ClassType)
6634 Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used)
6635 << ClassType;
6636 else if (IsDerivedFrom(ClassType, ConvType))
6637 Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used)
6638 << ClassType << ConvType;
6639 } else if (ConvType->isVoidType()) {
6640 Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used)
6641 << ClassType << ConvType;
6642 }
6643
6644 if (FunctionTemplateDecl *ConversionTemplate
6645 = Conversion->getDescribedFunctionTemplate())
6646 return ConversionTemplate;
6647
6648 return Conversion;
6649 }
6650
6651 //===----------------------------------------------------------------------===//
6652 // Namespace Handling
6653 //===----------------------------------------------------------------------===//
6654
6655 /// \brief Diagnose a mismatch in 'inline' qualifiers when a namespace is
6656 /// reopened.
DiagnoseNamespaceInlineMismatch(Sema & S,SourceLocation KeywordLoc,SourceLocation Loc,IdentifierInfo * II,bool * IsInline,NamespaceDecl * PrevNS)6657 static void DiagnoseNamespaceInlineMismatch(Sema &S, SourceLocation KeywordLoc,
6658 SourceLocation Loc,
6659 IdentifierInfo *II, bool *IsInline,
6660 NamespaceDecl *PrevNS) {
6661 assert(*IsInline != PrevNS->isInline());
6662
6663 // HACK: Work around a bug in libstdc++4.6's <atomic>, where
6664 // std::__atomic[0,1,2] are defined as non-inline namespaces, then reopened as
6665 // inline namespaces, with the intention of bringing names into namespace std.
6666 //
6667 // We support this just well enough to get that case working; this is not
6668 // sufficient to support reopening namespaces as inline in general.
6669 if (*IsInline && II && II->getName().startswith("__atomic") &&
6670 S.getSourceManager().isInSystemHeader(Loc)) {
6671 // Mark all prior declarations of the namespace as inline.
6672 for (NamespaceDecl *NS = PrevNS->getMostRecentDecl(); NS;
6673 NS = NS->getPreviousDecl())
6674 NS->setInline(*IsInline);
6675 // Patch up the lookup table for the containing namespace. This isn't really
6676 // correct, but it's good enough for this particular case.
6677 for (auto *I : PrevNS->decls())
6678 if (auto *ND = dyn_cast<NamedDecl>(I))
6679 PrevNS->getParent()->makeDeclVisibleInContext(ND);
6680 return;
6681 }
6682
6683 if (PrevNS->isInline())
6684 // The user probably just forgot the 'inline', so suggest that it
6685 // be added back.
6686 S.Diag(Loc, diag::warn_inline_namespace_reopened_noninline)
6687 << FixItHint::CreateInsertion(KeywordLoc, "inline ");
6688 else
6689 S.Diag(Loc, diag::err_inline_namespace_mismatch) << *IsInline;
6690
6691 S.Diag(PrevNS->getLocation(), diag::note_previous_definition);
6692 *IsInline = PrevNS->isInline();
6693 }
6694
6695 /// ActOnStartNamespaceDef - This is called at the start of a namespace
6696 /// definition.
ActOnStartNamespaceDef(Scope * NamespcScope,SourceLocation InlineLoc,SourceLocation NamespaceLoc,SourceLocation IdentLoc,IdentifierInfo * II,SourceLocation LBrace,AttributeList * AttrList)6697 Decl *Sema::ActOnStartNamespaceDef(Scope *NamespcScope,
6698 SourceLocation InlineLoc,
6699 SourceLocation NamespaceLoc,
6700 SourceLocation IdentLoc,
6701 IdentifierInfo *II,
6702 SourceLocation LBrace,
6703 AttributeList *AttrList) {
6704 SourceLocation StartLoc = InlineLoc.isValid() ? InlineLoc : NamespaceLoc;
6705 // For anonymous namespace, take the location of the left brace.
6706 SourceLocation Loc = II ? IdentLoc : LBrace;
6707 bool IsInline = InlineLoc.isValid();
6708 bool IsInvalid = false;
6709 bool IsStd = false;
6710 bool AddToKnown = false;
6711 Scope *DeclRegionScope = NamespcScope->getParent();
6712
6713 NamespaceDecl *PrevNS = nullptr;
6714 if (II) {
6715 // C++ [namespace.def]p2:
6716 // The identifier in an original-namespace-definition shall not
6717 // have been previously defined in the declarative region in
6718 // which the original-namespace-definition appears. The
6719 // identifier in an original-namespace-definition is the name of
6720 // the namespace. Subsequently in that declarative region, it is
6721 // treated as an original-namespace-name.
6722 //
6723 // Since namespace names are unique in their scope, and we don't
6724 // look through using directives, just look for any ordinary names.
6725
6726 const unsigned IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Member |
6727 Decl::IDNS_Type | Decl::IDNS_Using | Decl::IDNS_Tag |
6728 Decl::IDNS_Namespace;
6729 NamedDecl *PrevDecl = nullptr;
6730 DeclContext::lookup_result R = CurContext->getRedeclContext()->lookup(II);
6731 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
6732 ++I) {
6733 if ((*I)->getIdentifierNamespace() & IDNS) {
6734 PrevDecl = *I;
6735 break;
6736 }
6737 }
6738
6739 PrevNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl);
6740
6741 if (PrevNS) {
6742 // This is an extended namespace definition.
6743 if (IsInline != PrevNS->isInline())
6744 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, Loc, II,
6745 &IsInline, PrevNS);
6746 } else if (PrevDecl) {
6747 // This is an invalid name redefinition.
6748 Diag(Loc, diag::err_redefinition_different_kind)
6749 << II;
6750 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6751 IsInvalid = true;
6752 // Continue on to push Namespc as current DeclContext and return it.
6753 } else if (II->isStr("std") &&
6754 CurContext->getRedeclContext()->isTranslationUnit()) {
6755 // This is the first "real" definition of the namespace "std", so update
6756 // our cache of the "std" namespace to point at this definition.
6757 PrevNS = getStdNamespace();
6758 IsStd = true;
6759 AddToKnown = !IsInline;
6760 } else {
6761 // We've seen this namespace for the first time.
6762 AddToKnown = !IsInline;
6763 }
6764 } else {
6765 // Anonymous namespaces.
6766
6767 // Determine whether the parent already has an anonymous namespace.
6768 DeclContext *Parent = CurContext->getRedeclContext();
6769 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6770 PrevNS = TU->getAnonymousNamespace();
6771 } else {
6772 NamespaceDecl *ND = cast<NamespaceDecl>(Parent);
6773 PrevNS = ND->getAnonymousNamespace();
6774 }
6775
6776 if (PrevNS && IsInline != PrevNS->isInline())
6777 DiagnoseNamespaceInlineMismatch(*this, NamespaceLoc, NamespaceLoc, II,
6778 &IsInline, PrevNS);
6779 }
6780
6781 NamespaceDecl *Namespc = NamespaceDecl::Create(Context, CurContext, IsInline,
6782 StartLoc, Loc, II, PrevNS);
6783 if (IsInvalid)
6784 Namespc->setInvalidDecl();
6785
6786 ProcessDeclAttributeList(DeclRegionScope, Namespc, AttrList);
6787
6788 // FIXME: Should we be merging attributes?
6789 if (const VisibilityAttr *Attr = Namespc->getAttr<VisibilityAttr>())
6790 PushNamespaceVisibilityAttr(Attr, Loc);
6791
6792 if (IsStd)
6793 StdNamespace = Namespc;
6794 if (AddToKnown)
6795 KnownNamespaces[Namespc] = false;
6796
6797 if (II) {
6798 PushOnScopeChains(Namespc, DeclRegionScope);
6799 } else {
6800 // Link the anonymous namespace into its parent.
6801 DeclContext *Parent = CurContext->getRedeclContext();
6802 if (TranslationUnitDecl *TU = dyn_cast<TranslationUnitDecl>(Parent)) {
6803 TU->setAnonymousNamespace(Namespc);
6804 } else {
6805 cast<NamespaceDecl>(Parent)->setAnonymousNamespace(Namespc);
6806 }
6807
6808 CurContext->addDecl(Namespc);
6809
6810 // C++ [namespace.unnamed]p1. An unnamed-namespace-definition
6811 // behaves as if it were replaced by
6812 // namespace unique { /* empty body */ }
6813 // using namespace unique;
6814 // namespace unique { namespace-body }
6815 // where all occurrences of 'unique' in a translation unit are
6816 // replaced by the same identifier and this identifier differs
6817 // from all other identifiers in the entire program.
6818
6819 // We just create the namespace with an empty name and then add an
6820 // implicit using declaration, just like the standard suggests.
6821 //
6822 // CodeGen enforces the "universally unique" aspect by giving all
6823 // declarations semantically contained within an anonymous
6824 // namespace internal linkage.
6825
6826 if (!PrevNS) {
6827 UsingDirectiveDecl* UD
6828 = UsingDirectiveDecl::Create(Context, Parent,
6829 /* 'using' */ LBrace,
6830 /* 'namespace' */ SourceLocation(),
6831 /* qualifier */ NestedNameSpecifierLoc(),
6832 /* identifier */ SourceLocation(),
6833 Namespc,
6834 /* Ancestor */ Parent);
6835 UD->setImplicit();
6836 Parent->addDecl(UD);
6837 }
6838 }
6839
6840 ActOnDocumentableDecl(Namespc);
6841
6842 // Although we could have an invalid decl (i.e. the namespace name is a
6843 // redefinition), push it as current DeclContext and try to continue parsing.
6844 // FIXME: We should be able to push Namespc here, so that the each DeclContext
6845 // for the namespace has the declarations that showed up in that particular
6846 // namespace definition.
6847 PushDeclContext(NamespcScope, Namespc);
6848 return Namespc;
6849 }
6850
6851 /// getNamespaceDecl - Returns the namespace a decl represents. If the decl
6852 /// is a namespace alias, returns the namespace it points to.
getNamespaceDecl(NamedDecl * D)6853 static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) {
6854 if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D))
6855 return AD->getNamespace();
6856 return dyn_cast_or_null<NamespaceDecl>(D);
6857 }
6858
6859 /// ActOnFinishNamespaceDef - This callback is called after a namespace is
6860 /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef.
ActOnFinishNamespaceDef(Decl * Dcl,SourceLocation RBrace)6861 void Sema::ActOnFinishNamespaceDef(Decl *Dcl, SourceLocation RBrace) {
6862 NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl);
6863 assert(Namespc && "Invalid parameter, expected NamespaceDecl");
6864 Namespc->setRBraceLoc(RBrace);
6865 PopDeclContext();
6866 if (Namespc->hasAttr<VisibilityAttr>())
6867 PopPragmaVisibility(true, RBrace);
6868 }
6869
getStdBadAlloc() const6870 CXXRecordDecl *Sema::getStdBadAlloc() const {
6871 return cast_or_null<CXXRecordDecl>(
6872 StdBadAlloc.get(Context.getExternalSource()));
6873 }
6874
getStdNamespace() const6875 NamespaceDecl *Sema::getStdNamespace() const {
6876 return cast_or_null<NamespaceDecl>(
6877 StdNamespace.get(Context.getExternalSource()));
6878 }
6879
6880 /// \brief Retrieve the special "std" namespace, which may require us to
6881 /// implicitly define the namespace.
getOrCreateStdNamespace()6882 NamespaceDecl *Sema::getOrCreateStdNamespace() {
6883 if (!StdNamespace) {
6884 // The "std" namespace has not yet been defined, so build one implicitly.
6885 StdNamespace = NamespaceDecl::Create(Context,
6886 Context.getTranslationUnitDecl(),
6887 /*Inline=*/false,
6888 SourceLocation(), SourceLocation(),
6889 &PP.getIdentifierTable().get("std"),
6890 /*PrevDecl=*/nullptr);
6891 getStdNamespace()->setImplicit(true);
6892 }
6893
6894 return getStdNamespace();
6895 }
6896
isStdInitializerList(QualType Ty,QualType * Element)6897 bool Sema::isStdInitializerList(QualType Ty, QualType *Element) {
6898 assert(getLangOpts().CPlusPlus &&
6899 "Looking for std::initializer_list outside of C++.");
6900
6901 // We're looking for implicit instantiations of
6902 // template <typename E> class std::initializer_list.
6903
6904 if (!StdNamespace) // If we haven't seen namespace std yet, this can't be it.
6905 return false;
6906
6907 ClassTemplateDecl *Template = nullptr;
6908 const TemplateArgument *Arguments = nullptr;
6909
6910 if (const RecordType *RT = Ty->getAs<RecordType>()) {
6911
6912 ClassTemplateSpecializationDecl *Specialization =
6913 dyn_cast<ClassTemplateSpecializationDecl>(RT->getDecl());
6914 if (!Specialization)
6915 return false;
6916
6917 Template = Specialization->getSpecializedTemplate();
6918 Arguments = Specialization->getTemplateArgs().data();
6919 } else if (const TemplateSpecializationType *TST =
6920 Ty->getAs<TemplateSpecializationType>()) {
6921 Template = dyn_cast_or_null<ClassTemplateDecl>(
6922 TST->getTemplateName().getAsTemplateDecl());
6923 Arguments = TST->getArgs();
6924 }
6925 if (!Template)
6926 return false;
6927
6928 if (!StdInitializerList) {
6929 // Haven't recognized std::initializer_list yet, maybe this is it.
6930 CXXRecordDecl *TemplateClass = Template->getTemplatedDecl();
6931 if (TemplateClass->getIdentifier() !=
6932 &PP.getIdentifierTable().get("initializer_list") ||
6933 !getStdNamespace()->InEnclosingNamespaceSetOf(
6934 TemplateClass->getDeclContext()))
6935 return false;
6936 // This is a template called std::initializer_list, but is it the right
6937 // template?
6938 TemplateParameterList *Params = Template->getTemplateParameters();
6939 if (Params->getMinRequiredArguments() != 1)
6940 return false;
6941 if (!isa<TemplateTypeParmDecl>(Params->getParam(0)))
6942 return false;
6943
6944 // It's the right template.
6945 StdInitializerList = Template;
6946 }
6947
6948 if (Template != StdInitializerList)
6949 return false;
6950
6951 // This is an instance of std::initializer_list. Find the argument type.
6952 if (Element)
6953 *Element = Arguments[0].getAsType();
6954 return true;
6955 }
6956
LookupStdInitializerList(Sema & S,SourceLocation Loc)6957 static ClassTemplateDecl *LookupStdInitializerList(Sema &S, SourceLocation Loc){
6958 NamespaceDecl *Std = S.getStdNamespace();
6959 if (!Std) {
6960 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6961 return nullptr;
6962 }
6963
6964 LookupResult Result(S, &S.PP.getIdentifierTable().get("initializer_list"),
6965 Loc, Sema::LookupOrdinaryName);
6966 if (!S.LookupQualifiedName(Result, Std)) {
6967 S.Diag(Loc, diag::err_implied_std_initializer_list_not_found);
6968 return nullptr;
6969 }
6970 ClassTemplateDecl *Template = Result.getAsSingle<ClassTemplateDecl>();
6971 if (!Template) {
6972 Result.suppressDiagnostics();
6973 // We found something weird. Complain about the first thing we found.
6974 NamedDecl *Found = *Result.begin();
6975 S.Diag(Found->getLocation(), diag::err_malformed_std_initializer_list);
6976 return nullptr;
6977 }
6978
6979 // We found some template called std::initializer_list. Now verify that it's
6980 // correct.
6981 TemplateParameterList *Params = Template->getTemplateParameters();
6982 if (Params->getMinRequiredArguments() != 1 ||
6983 !isa<TemplateTypeParmDecl>(Params->getParam(0))) {
6984 S.Diag(Template->getLocation(), diag::err_malformed_std_initializer_list);
6985 return nullptr;
6986 }
6987
6988 return Template;
6989 }
6990
BuildStdInitializerList(QualType Element,SourceLocation Loc)6991 QualType Sema::BuildStdInitializerList(QualType Element, SourceLocation Loc) {
6992 if (!StdInitializerList) {
6993 StdInitializerList = LookupStdInitializerList(*this, Loc);
6994 if (!StdInitializerList)
6995 return QualType();
6996 }
6997
6998 TemplateArgumentListInfo Args(Loc, Loc);
6999 Args.addArgument(TemplateArgumentLoc(TemplateArgument(Element),
7000 Context.getTrivialTypeSourceInfo(Element,
7001 Loc)));
7002 return Context.getCanonicalType(
7003 CheckTemplateIdType(TemplateName(StdInitializerList), Loc, Args));
7004 }
7005
isInitListConstructor(const CXXConstructorDecl * Ctor)7006 bool Sema::isInitListConstructor(const CXXConstructorDecl* Ctor) {
7007 // C++ [dcl.init.list]p2:
7008 // A constructor is an initializer-list constructor if its first parameter
7009 // is of type std::initializer_list<E> or reference to possibly cv-qualified
7010 // std::initializer_list<E> for some type E, and either there are no other
7011 // parameters or else all other parameters have default arguments.
7012 if (Ctor->getNumParams() < 1 ||
7013 (Ctor->getNumParams() > 1 && !Ctor->getParamDecl(1)->hasDefaultArg()))
7014 return false;
7015
7016 QualType ArgType = Ctor->getParamDecl(0)->getType();
7017 if (const ReferenceType *RT = ArgType->getAs<ReferenceType>())
7018 ArgType = RT->getPointeeType().getUnqualifiedType();
7019
7020 return isStdInitializerList(ArgType, nullptr);
7021 }
7022
7023 /// \brief Determine whether a using statement is in a context where it will be
7024 /// apply in all contexts.
IsUsingDirectiveInToplevelContext(DeclContext * CurContext)7025 static bool IsUsingDirectiveInToplevelContext(DeclContext *CurContext) {
7026 switch (CurContext->getDeclKind()) {
7027 case Decl::TranslationUnit:
7028 return true;
7029 case Decl::LinkageSpec:
7030 return IsUsingDirectiveInToplevelContext(CurContext->getParent());
7031 default:
7032 return false;
7033 }
7034 }
7035
7036 namespace {
7037
7038 // Callback to only accept typo corrections that are namespaces.
7039 class NamespaceValidatorCCC : public CorrectionCandidateCallback {
7040 public:
ValidateCandidate(const TypoCorrection & candidate)7041 bool ValidateCandidate(const TypoCorrection &candidate) override {
7042 if (NamedDecl *ND = candidate.getCorrectionDecl())
7043 return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
7044 return false;
7045 }
7046 };
7047
7048 }
7049
TryNamespaceTypoCorrection(Sema & S,LookupResult & R,Scope * Sc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)7050 static bool TryNamespaceTypoCorrection(Sema &S, LookupResult &R, Scope *Sc,
7051 CXXScopeSpec &SS,
7052 SourceLocation IdentLoc,
7053 IdentifierInfo *Ident) {
7054 NamespaceValidatorCCC Validator;
7055 R.clear();
7056 if (TypoCorrection Corrected = S.CorrectTypo(R.getLookupNameInfo(),
7057 R.getLookupKind(), Sc, &SS,
7058 Validator,
7059 Sema::CTK_ErrorRecovery)) {
7060 if (DeclContext *DC = S.computeDeclContext(SS, false)) {
7061 std::string CorrectedStr(Corrected.getAsString(S.getLangOpts()));
7062 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
7063 Ident->getName().equals(CorrectedStr);
7064 S.diagnoseTypo(Corrected,
7065 S.PDiag(diag::err_using_directive_member_suggest)
7066 << Ident << DC << DroppedSpecifier << SS.getRange(),
7067 S.PDiag(diag::note_namespace_defined_here));
7068 } else {
7069 S.diagnoseTypo(Corrected,
7070 S.PDiag(diag::err_using_directive_suggest) << Ident,
7071 S.PDiag(diag::note_namespace_defined_here));
7072 }
7073 R.addDecl(Corrected.getCorrectionDecl());
7074 return true;
7075 }
7076 return false;
7077 }
7078
ActOnUsingDirective(Scope * S,SourceLocation UsingLoc,SourceLocation NamespcLoc,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * NamespcName,AttributeList * AttrList)7079 Decl *Sema::ActOnUsingDirective(Scope *S,
7080 SourceLocation UsingLoc,
7081 SourceLocation NamespcLoc,
7082 CXXScopeSpec &SS,
7083 SourceLocation IdentLoc,
7084 IdentifierInfo *NamespcName,
7085 AttributeList *AttrList) {
7086 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7087 assert(NamespcName && "Invalid NamespcName.");
7088 assert(IdentLoc.isValid() && "Invalid NamespceName location.");
7089
7090 // This can only happen along a recovery path.
7091 while (S->getFlags() & Scope::TemplateParamScope)
7092 S = S->getParent();
7093 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7094
7095 UsingDirectiveDecl *UDir = nullptr;
7096 NestedNameSpecifier *Qualifier = nullptr;
7097 if (SS.isSet())
7098 Qualifier = SS.getScopeRep();
7099
7100 // Lookup namespace name.
7101 LookupResult R(*this, NamespcName, IdentLoc, LookupNamespaceName);
7102 LookupParsedName(R, S, &SS);
7103 if (R.isAmbiguous())
7104 return nullptr;
7105
7106 if (R.empty()) {
7107 R.clear();
7108 // Allow "using namespace std;" or "using namespace ::std;" even if
7109 // "std" hasn't been defined yet, for GCC compatibility.
7110 if ((!Qualifier || Qualifier->getKind() == NestedNameSpecifier::Global) &&
7111 NamespcName->isStr("std")) {
7112 Diag(IdentLoc, diag::ext_using_undefined_std);
7113 R.addDecl(getOrCreateStdNamespace());
7114 R.resolveKind();
7115 }
7116 // Otherwise, attempt typo correction.
7117 else TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, NamespcName);
7118 }
7119
7120 if (!R.empty()) {
7121 NamedDecl *Named = R.getFoundDecl();
7122 assert((isa<NamespaceDecl>(Named) || isa<NamespaceAliasDecl>(Named))
7123 && "expected namespace decl");
7124 // C++ [namespace.udir]p1:
7125 // A using-directive specifies that the names in the nominated
7126 // namespace can be used in the scope in which the
7127 // using-directive appears after the using-directive. During
7128 // unqualified name lookup (3.4.1), the names appear as if they
7129 // were declared in the nearest enclosing namespace which
7130 // contains both the using-directive and the nominated
7131 // namespace. [Note: in this context, "contains" means "contains
7132 // directly or indirectly". ]
7133
7134 // Find enclosing context containing both using-directive and
7135 // nominated namespace.
7136 NamespaceDecl *NS = getNamespaceDecl(Named);
7137 DeclContext *CommonAncestor = cast<DeclContext>(NS);
7138 while (CommonAncestor && !CommonAncestor->Encloses(CurContext))
7139 CommonAncestor = CommonAncestor->getParent();
7140
7141 UDir = UsingDirectiveDecl::Create(Context, CurContext, UsingLoc, NamespcLoc,
7142 SS.getWithLocInContext(Context),
7143 IdentLoc, Named, CommonAncestor);
7144
7145 if (IsUsingDirectiveInToplevelContext(CurContext) &&
7146 !SourceMgr.isInMainFile(SourceMgr.getExpansionLoc(IdentLoc))) {
7147 Diag(IdentLoc, diag::warn_using_directive_in_header);
7148 }
7149
7150 PushUsingDirective(S, UDir);
7151 } else {
7152 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
7153 }
7154
7155 if (UDir)
7156 ProcessDeclAttributeList(S, UDir, AttrList);
7157
7158 return UDir;
7159 }
7160
PushUsingDirective(Scope * S,UsingDirectiveDecl * UDir)7161 void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) {
7162 // If the scope has an associated entity and the using directive is at
7163 // namespace or translation unit scope, add the UsingDirectiveDecl into
7164 // its lookup structure so qualified name lookup can find it.
7165 DeclContext *Ctx = S->getEntity();
7166 if (Ctx && !Ctx->isFunctionOrMethod())
7167 Ctx->addDecl(UDir);
7168 else
7169 // Otherwise, it is at block scope. The using-directives will affect lookup
7170 // only to the end of the scope.
7171 S->PushUsingDirective(UDir);
7172 }
7173
7174
ActOnUsingDeclaration(Scope * S,AccessSpecifier AS,bool HasUsingKeyword,SourceLocation UsingLoc,CXXScopeSpec & SS,UnqualifiedId & Name,AttributeList * AttrList,bool HasTypenameKeyword,SourceLocation TypenameLoc)7175 Decl *Sema::ActOnUsingDeclaration(Scope *S,
7176 AccessSpecifier AS,
7177 bool HasUsingKeyword,
7178 SourceLocation UsingLoc,
7179 CXXScopeSpec &SS,
7180 UnqualifiedId &Name,
7181 AttributeList *AttrList,
7182 bool HasTypenameKeyword,
7183 SourceLocation TypenameLoc) {
7184 assert(S->getFlags() & Scope::DeclScope && "Invalid Scope.");
7185
7186 switch (Name.getKind()) {
7187 case UnqualifiedId::IK_ImplicitSelfParam:
7188 case UnqualifiedId::IK_Identifier:
7189 case UnqualifiedId::IK_OperatorFunctionId:
7190 case UnqualifiedId::IK_LiteralOperatorId:
7191 case UnqualifiedId::IK_ConversionFunctionId:
7192 break;
7193
7194 case UnqualifiedId::IK_ConstructorName:
7195 case UnqualifiedId::IK_ConstructorTemplateId:
7196 // C++11 inheriting constructors.
7197 Diag(Name.getLocStart(),
7198 getLangOpts().CPlusPlus11 ?
7199 diag::warn_cxx98_compat_using_decl_constructor :
7200 diag::err_using_decl_constructor)
7201 << SS.getRange();
7202
7203 if (getLangOpts().CPlusPlus11) break;
7204
7205 return nullptr;
7206
7207 case UnqualifiedId::IK_DestructorName:
7208 Diag(Name.getLocStart(), diag::err_using_decl_destructor)
7209 << SS.getRange();
7210 return nullptr;
7211
7212 case UnqualifiedId::IK_TemplateId:
7213 Diag(Name.getLocStart(), diag::err_using_decl_template_id)
7214 << SourceRange(Name.TemplateId->LAngleLoc, Name.TemplateId->RAngleLoc);
7215 return nullptr;
7216 }
7217
7218 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name);
7219 DeclarationName TargetName = TargetNameInfo.getName();
7220 if (!TargetName)
7221 return nullptr;
7222
7223 // Warn about access declarations.
7224 if (!HasUsingKeyword) {
7225 Diag(Name.getLocStart(),
7226 getLangOpts().CPlusPlus11 ? diag::err_access_decl
7227 : diag::warn_access_decl_deprecated)
7228 << FixItHint::CreateInsertion(SS.getRange().getBegin(), "using ");
7229 }
7230
7231 if (DiagnoseUnexpandedParameterPack(SS, UPPC_UsingDeclaration) ||
7232 DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC_UsingDeclaration))
7233 return nullptr;
7234
7235 NamedDecl *UD = BuildUsingDeclaration(S, AS, UsingLoc, SS,
7236 TargetNameInfo, AttrList,
7237 /* IsInstantiation */ false,
7238 HasTypenameKeyword, TypenameLoc);
7239 if (UD)
7240 PushOnScopeChains(UD, S, /*AddToContext*/ false);
7241
7242 return UD;
7243 }
7244
7245 /// \brief Determine whether a using declaration considers the given
7246 /// declarations as "equivalent", e.g., if they are redeclarations of
7247 /// the same entity or are both typedefs of the same type.
7248 static bool
IsEquivalentForUsingDecl(ASTContext & Context,NamedDecl * D1,NamedDecl * D2)7249 IsEquivalentForUsingDecl(ASTContext &Context, NamedDecl *D1, NamedDecl *D2) {
7250 if (D1->getCanonicalDecl() == D2->getCanonicalDecl())
7251 return true;
7252
7253 if (TypedefNameDecl *TD1 = dyn_cast<TypedefNameDecl>(D1))
7254 if (TypedefNameDecl *TD2 = dyn_cast<TypedefNameDecl>(D2))
7255 return Context.hasSameType(TD1->getUnderlyingType(),
7256 TD2->getUnderlyingType());
7257
7258 return false;
7259 }
7260
7261
7262 /// Determines whether to create a using shadow decl for a particular
7263 /// decl, given the set of decls existing prior to this using lookup.
CheckUsingShadowDecl(UsingDecl * Using,NamedDecl * Orig,const LookupResult & Previous,UsingShadowDecl * & PrevShadow)7264 bool Sema::CheckUsingShadowDecl(UsingDecl *Using, NamedDecl *Orig,
7265 const LookupResult &Previous,
7266 UsingShadowDecl *&PrevShadow) {
7267 // Diagnose finding a decl which is not from a base class of the
7268 // current class. We do this now because there are cases where this
7269 // function will silently decide not to build a shadow decl, which
7270 // will pre-empt further diagnostics.
7271 //
7272 // We don't need to do this in C++0x because we do the check once on
7273 // the qualifier.
7274 //
7275 // FIXME: diagnose the following if we care enough:
7276 // struct A { int foo; };
7277 // struct B : A { using A::foo; };
7278 // template <class T> struct C : A {};
7279 // template <class T> struct D : C<T> { using B::foo; } // <---
7280 // This is invalid (during instantiation) in C++03 because B::foo
7281 // resolves to the using decl in B, which is not a base class of D<T>.
7282 // We can't diagnose it immediately because C<T> is an unknown
7283 // specialization. The UsingShadowDecl in D<T> then points directly
7284 // to A::foo, which will look well-formed when we instantiate.
7285 // The right solution is to not collapse the shadow-decl chain.
7286 if (!getLangOpts().CPlusPlus11 && CurContext->isRecord()) {
7287 DeclContext *OrigDC = Orig->getDeclContext();
7288
7289 // Handle enums and anonymous structs.
7290 if (isa<EnumDecl>(OrigDC)) OrigDC = OrigDC->getParent();
7291 CXXRecordDecl *OrigRec = cast<CXXRecordDecl>(OrigDC);
7292 while (OrigRec->isAnonymousStructOrUnion())
7293 OrigRec = cast<CXXRecordDecl>(OrigRec->getDeclContext());
7294
7295 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(OrigRec)) {
7296 if (OrigDC == CurContext) {
7297 Diag(Using->getLocation(),
7298 diag::err_using_decl_nested_name_specifier_is_current_class)
7299 << Using->getQualifierLoc().getSourceRange();
7300 Diag(Orig->getLocation(), diag::note_using_decl_target);
7301 return true;
7302 }
7303
7304 Diag(Using->getQualifierLoc().getBeginLoc(),
7305 diag::err_using_decl_nested_name_specifier_is_not_base_class)
7306 << Using->getQualifier()
7307 << cast<CXXRecordDecl>(CurContext)
7308 << Using->getQualifierLoc().getSourceRange();
7309 Diag(Orig->getLocation(), diag::note_using_decl_target);
7310 return true;
7311 }
7312 }
7313
7314 if (Previous.empty()) return false;
7315
7316 NamedDecl *Target = Orig;
7317 if (isa<UsingShadowDecl>(Target))
7318 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7319
7320 // If the target happens to be one of the previous declarations, we
7321 // don't have a conflict.
7322 //
7323 // FIXME: but we might be increasing its access, in which case we
7324 // should redeclare it.
7325 NamedDecl *NonTag = nullptr, *Tag = nullptr;
7326 bool FoundEquivalentDecl = false;
7327 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7328 I != E; ++I) {
7329 NamedDecl *D = (*I)->getUnderlyingDecl();
7330 if (IsEquivalentForUsingDecl(Context, D, Target)) {
7331 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(*I))
7332 PrevShadow = Shadow;
7333 FoundEquivalentDecl = true;
7334 }
7335
7336 (isa<TagDecl>(D) ? Tag : NonTag) = D;
7337 }
7338
7339 if (FoundEquivalentDecl)
7340 return false;
7341
7342 if (FunctionDecl *FD = Target->getAsFunction()) {
7343 NamedDecl *OldDecl = nullptr;
7344 switch (CheckOverload(nullptr, FD, Previous, OldDecl,
7345 /*IsForUsingDecl*/ true)) {
7346 case Ovl_Overload:
7347 return false;
7348
7349 case Ovl_NonFunction:
7350 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7351 break;
7352
7353 // We found a decl with the exact signature.
7354 case Ovl_Match:
7355 // If we're in a record, we want to hide the target, so we
7356 // return true (without a diagnostic) to tell the caller not to
7357 // build a shadow decl.
7358 if (CurContext->isRecord())
7359 return true;
7360
7361 // If we're not in a record, this is an error.
7362 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7363 break;
7364 }
7365
7366 Diag(Target->getLocation(), diag::note_using_decl_target);
7367 Diag(OldDecl->getLocation(), diag::note_using_decl_conflict);
7368 return true;
7369 }
7370
7371 // Target is not a function.
7372
7373 if (isa<TagDecl>(Target)) {
7374 // No conflict between a tag and a non-tag.
7375 if (!Tag) return false;
7376
7377 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7378 Diag(Target->getLocation(), diag::note_using_decl_target);
7379 Diag(Tag->getLocation(), diag::note_using_decl_conflict);
7380 return true;
7381 }
7382
7383 // No conflict between a tag and a non-tag.
7384 if (!NonTag) return false;
7385
7386 Diag(Using->getLocation(), diag::err_using_decl_conflict);
7387 Diag(Target->getLocation(), diag::note_using_decl_target);
7388 Diag(NonTag->getLocation(), diag::note_using_decl_conflict);
7389 return true;
7390 }
7391
7392 /// Builds a shadow declaration corresponding to a 'using' declaration.
BuildUsingShadowDecl(Scope * S,UsingDecl * UD,NamedDecl * Orig,UsingShadowDecl * PrevDecl)7393 UsingShadowDecl *Sema::BuildUsingShadowDecl(Scope *S,
7394 UsingDecl *UD,
7395 NamedDecl *Orig,
7396 UsingShadowDecl *PrevDecl) {
7397
7398 // If we resolved to another shadow declaration, just coalesce them.
7399 NamedDecl *Target = Orig;
7400 if (isa<UsingShadowDecl>(Target)) {
7401 Target = cast<UsingShadowDecl>(Target)->getTargetDecl();
7402 assert(!isa<UsingShadowDecl>(Target) && "nested shadow declaration");
7403 }
7404
7405 UsingShadowDecl *Shadow
7406 = UsingShadowDecl::Create(Context, CurContext,
7407 UD->getLocation(), UD, Target);
7408 UD->addShadowDecl(Shadow);
7409
7410 Shadow->setAccess(UD->getAccess());
7411 if (Orig->isInvalidDecl() || UD->isInvalidDecl())
7412 Shadow->setInvalidDecl();
7413
7414 Shadow->setPreviousDecl(PrevDecl);
7415
7416 if (S)
7417 PushOnScopeChains(Shadow, S);
7418 else
7419 CurContext->addDecl(Shadow);
7420
7421
7422 return Shadow;
7423 }
7424
7425 /// Hides a using shadow declaration. This is required by the current
7426 /// using-decl implementation when a resolvable using declaration in a
7427 /// class is followed by a declaration which would hide or override
7428 /// one or more of the using decl's targets; for example:
7429 ///
7430 /// struct Base { void foo(int); };
7431 /// struct Derived : Base {
7432 /// using Base::foo;
7433 /// void foo(int);
7434 /// };
7435 ///
7436 /// The governing language is C++03 [namespace.udecl]p12:
7437 ///
7438 /// When a using-declaration brings names from a base class into a
7439 /// derived class scope, member functions in the derived class
7440 /// override and/or hide member functions with the same name and
7441 /// parameter types in a base class (rather than conflicting).
7442 ///
7443 /// There are two ways to implement this:
7444 /// (1) optimistically create shadow decls when they're not hidden
7445 /// by existing declarations, or
7446 /// (2) don't create any shadow decls (or at least don't make them
7447 /// visible) until we've fully parsed/instantiated the class.
7448 /// The problem with (1) is that we might have to retroactively remove
7449 /// a shadow decl, which requires several O(n) operations because the
7450 /// decl structures are (very reasonably) not designed for removal.
7451 /// (2) avoids this but is very fiddly and phase-dependent.
HideUsingShadowDecl(Scope * S,UsingShadowDecl * Shadow)7452 void Sema::HideUsingShadowDecl(Scope *S, UsingShadowDecl *Shadow) {
7453 if (Shadow->getDeclName().getNameKind() ==
7454 DeclarationName::CXXConversionFunctionName)
7455 cast<CXXRecordDecl>(Shadow->getDeclContext())->removeConversion(Shadow);
7456
7457 // Remove it from the DeclContext...
7458 Shadow->getDeclContext()->removeDecl(Shadow);
7459
7460 // ...and the scope, if applicable...
7461 if (S) {
7462 S->RemoveDecl(Shadow);
7463 IdResolver.RemoveDecl(Shadow);
7464 }
7465
7466 // ...and the using decl.
7467 Shadow->getUsingDecl()->removeShadowDecl(Shadow);
7468
7469 // TODO: complain somehow if Shadow was used. It shouldn't
7470 // be possible for this to happen, because...?
7471 }
7472
7473 /// Find the base specifier for a base class with the given type.
findDirectBaseWithType(CXXRecordDecl * Derived,QualType DesiredBase,bool & AnyDependentBases)7474 static CXXBaseSpecifier *findDirectBaseWithType(CXXRecordDecl *Derived,
7475 QualType DesiredBase,
7476 bool &AnyDependentBases) {
7477 // Check whether the named type is a direct base class.
7478 CanQualType CanonicalDesiredBase = DesiredBase->getCanonicalTypeUnqualified();
7479 for (auto &Base : Derived->bases()) {
7480 CanQualType BaseType = Base.getType()->getCanonicalTypeUnqualified();
7481 if (CanonicalDesiredBase == BaseType)
7482 return &Base;
7483 if (BaseType->isDependentType())
7484 AnyDependentBases = true;
7485 }
7486 return nullptr;
7487 }
7488
7489 namespace {
7490 class UsingValidatorCCC : public CorrectionCandidateCallback {
7491 public:
UsingValidatorCCC(bool HasTypenameKeyword,bool IsInstantiation,NestedNameSpecifier * NNS,CXXRecordDecl * RequireMemberOf)7492 UsingValidatorCCC(bool HasTypenameKeyword, bool IsInstantiation,
7493 NestedNameSpecifier *NNS, CXXRecordDecl *RequireMemberOf)
7494 : HasTypenameKeyword(HasTypenameKeyword),
7495 IsInstantiation(IsInstantiation), OldNNS(NNS),
7496 RequireMemberOf(RequireMemberOf) {}
7497
ValidateCandidate(const TypoCorrection & Candidate)7498 bool ValidateCandidate(const TypoCorrection &Candidate) override {
7499 NamedDecl *ND = Candidate.getCorrectionDecl();
7500
7501 // Keywords are not valid here.
7502 if (!ND || isa<NamespaceDecl>(ND))
7503 return false;
7504
7505 // Completely unqualified names are invalid for a 'using' declaration.
7506 if (Candidate.WillReplaceSpecifier() && !Candidate.getCorrectionSpecifier())
7507 return false;
7508
7509 if (RequireMemberOf) {
7510 auto *FoundRecord = dyn_cast<CXXRecordDecl>(ND);
7511 if (FoundRecord && FoundRecord->isInjectedClassName()) {
7512 // No-one ever wants a using-declaration to name an injected-class-name
7513 // of a base class, unless they're declaring an inheriting constructor.
7514 ASTContext &Ctx = ND->getASTContext();
7515 if (!Ctx.getLangOpts().CPlusPlus11)
7516 return false;
7517 QualType FoundType = Ctx.getRecordType(FoundRecord);
7518
7519 // Check that the injected-class-name is named as a member of its own
7520 // type; we don't want to suggest 'using Derived::Base;', since that
7521 // means something else.
7522 NestedNameSpecifier *Specifier =
7523 Candidate.WillReplaceSpecifier()
7524 ? Candidate.getCorrectionSpecifier()
7525 : OldNNS;
7526 if (!Specifier->getAsType() ||
7527 !Ctx.hasSameType(QualType(Specifier->getAsType(), 0), FoundType))
7528 return false;
7529
7530 // Check that this inheriting constructor declaration actually names a
7531 // direct base class of the current class.
7532 bool AnyDependentBases = false;
7533 if (!findDirectBaseWithType(RequireMemberOf,
7534 Ctx.getRecordType(FoundRecord),
7535 AnyDependentBases) &&
7536 !AnyDependentBases)
7537 return false;
7538 } else {
7539 auto *RD = dyn_cast<CXXRecordDecl>(ND->getDeclContext());
7540 if (!RD || RequireMemberOf->isProvablyNotDerivedFrom(RD))
7541 return false;
7542
7543 // FIXME: Check that the base class member is accessible?
7544 }
7545 }
7546
7547 if (isa<TypeDecl>(ND))
7548 return HasTypenameKeyword || !IsInstantiation;
7549
7550 return !HasTypenameKeyword;
7551 }
7552
7553 private:
7554 bool HasTypenameKeyword;
7555 bool IsInstantiation;
7556 NestedNameSpecifier *OldNNS;
7557 CXXRecordDecl *RequireMemberOf;
7558 };
7559 } // end anonymous namespace
7560
7561 /// Builds a using declaration.
7562 ///
7563 /// \param IsInstantiation - Whether this call arises from an
7564 /// instantiation of an unresolved using declaration. We treat
7565 /// the lookup differently for these declarations.
BuildUsingDeclaration(Scope * S,AccessSpecifier AS,SourceLocation UsingLoc,CXXScopeSpec & SS,DeclarationNameInfo NameInfo,AttributeList * AttrList,bool IsInstantiation,bool HasTypenameKeyword,SourceLocation TypenameLoc)7566 NamedDecl *Sema::BuildUsingDeclaration(Scope *S, AccessSpecifier AS,
7567 SourceLocation UsingLoc,
7568 CXXScopeSpec &SS,
7569 DeclarationNameInfo NameInfo,
7570 AttributeList *AttrList,
7571 bool IsInstantiation,
7572 bool HasTypenameKeyword,
7573 SourceLocation TypenameLoc) {
7574 assert(!SS.isInvalid() && "Invalid CXXScopeSpec.");
7575 SourceLocation IdentLoc = NameInfo.getLoc();
7576 assert(IdentLoc.isValid() && "Invalid TargetName location.");
7577
7578 // FIXME: We ignore attributes for now.
7579
7580 if (SS.isEmpty()) {
7581 Diag(IdentLoc, diag::err_using_requires_qualname);
7582 return nullptr;
7583 }
7584
7585 // Do the redeclaration lookup in the current scope.
7586 LookupResult Previous(*this, NameInfo, LookupUsingDeclName,
7587 ForRedeclaration);
7588 Previous.setHideTags(false);
7589 if (S) {
7590 LookupName(Previous, S);
7591
7592 // It is really dumb that we have to do this.
7593 LookupResult::Filter F = Previous.makeFilter();
7594 while (F.hasNext()) {
7595 NamedDecl *D = F.next();
7596 if (!isDeclInScope(D, CurContext, S))
7597 F.erase();
7598 // If we found a local extern declaration that's not ordinarily visible,
7599 // and this declaration is being added to a non-block scope, ignore it.
7600 // We're only checking for scope conflicts here, not also for violations
7601 // of the linkage rules.
7602 else if (!CurContext->isFunctionOrMethod() && D->isLocalExternDecl() &&
7603 !(D->getIdentifierNamespace() & Decl::IDNS_Ordinary))
7604 F.erase();
7605 }
7606 F.done();
7607 } else {
7608 assert(IsInstantiation && "no scope in non-instantiation");
7609 assert(CurContext->isRecord() && "scope not record in instantiation");
7610 LookupQualifiedName(Previous, CurContext);
7611 }
7612
7613 // Check for invalid redeclarations.
7614 if (CheckUsingDeclRedeclaration(UsingLoc, HasTypenameKeyword,
7615 SS, IdentLoc, Previous))
7616 return nullptr;
7617
7618 // Check for bad qualifiers.
7619 if (CheckUsingDeclQualifier(UsingLoc, SS, NameInfo, IdentLoc))
7620 return nullptr;
7621
7622 DeclContext *LookupContext = computeDeclContext(SS);
7623 NamedDecl *D;
7624 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
7625 if (!LookupContext) {
7626 if (HasTypenameKeyword) {
7627 // FIXME: not all declaration name kinds are legal here
7628 D = UnresolvedUsingTypenameDecl::Create(Context, CurContext,
7629 UsingLoc, TypenameLoc,
7630 QualifierLoc,
7631 IdentLoc, NameInfo.getName());
7632 } else {
7633 D = UnresolvedUsingValueDecl::Create(Context, CurContext, UsingLoc,
7634 QualifierLoc, NameInfo);
7635 }
7636 D->setAccess(AS);
7637 CurContext->addDecl(D);
7638 return D;
7639 }
7640
7641 auto Build = [&](bool Invalid) {
7642 UsingDecl *UD =
7643 UsingDecl::Create(Context, CurContext, UsingLoc, QualifierLoc, NameInfo,
7644 HasTypenameKeyword);
7645 UD->setAccess(AS);
7646 CurContext->addDecl(UD);
7647 UD->setInvalidDecl(Invalid);
7648 return UD;
7649 };
7650 auto BuildInvalid = [&]{ return Build(true); };
7651 auto BuildValid = [&]{ return Build(false); };
7652
7653 if (RequireCompleteDeclContext(SS, LookupContext))
7654 return BuildInvalid();
7655
7656 // The normal rules do not apply to inheriting constructor declarations.
7657 if (NameInfo.getName().getNameKind() == DeclarationName::CXXConstructorName) {
7658 UsingDecl *UD = BuildValid();
7659 CheckInheritingConstructorUsingDecl(UD);
7660 return UD;
7661 }
7662
7663 // Otherwise, look up the target name.
7664
7665 LookupResult R(*this, NameInfo, LookupOrdinaryName);
7666
7667 // Unlike most lookups, we don't always want to hide tag
7668 // declarations: tag names are visible through the using declaration
7669 // even if hidden by ordinary names, *except* in a dependent context
7670 // where it's important for the sanity of two-phase lookup.
7671 if (!IsInstantiation)
7672 R.setHideTags(false);
7673
7674 // For the purposes of this lookup, we have a base object type
7675 // equal to that of the current context.
7676 if (CurContext->isRecord()) {
7677 R.setBaseObjectType(
7678 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext)));
7679 }
7680
7681 LookupQualifiedName(R, LookupContext);
7682
7683 // Try to correct typos if possible.
7684 if (R.empty()) {
7685 UsingValidatorCCC CCC(HasTypenameKeyword, IsInstantiation, SS.getScopeRep(),
7686 dyn_cast<CXXRecordDecl>(CurContext));
7687 if (TypoCorrection Corrected = CorrectTypo(R.getLookupNameInfo(),
7688 R.getLookupKind(), S, &SS, CCC,
7689 CTK_ErrorRecovery)){
7690 // We reject any correction for which ND would be NULL.
7691 NamedDecl *ND = Corrected.getCorrectionDecl();
7692
7693 // We reject candidates where DroppedSpecifier == true, hence the
7694 // literal '0' below.
7695 diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
7696 << NameInfo.getName() << LookupContext << 0
7697 << SS.getRange());
7698
7699 // If we corrected to an inheriting constructor, handle it as one.
7700 auto *RD = dyn_cast<CXXRecordDecl>(ND);
7701 if (RD && RD->isInjectedClassName()) {
7702 // Fix up the information we'll use to build the using declaration.
7703 if (Corrected.WillReplaceSpecifier()) {
7704 NestedNameSpecifierLocBuilder Builder;
7705 Builder.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
7706 QualifierLoc.getSourceRange());
7707 QualifierLoc = Builder.getWithLocInContext(Context);
7708 }
7709
7710 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
7711 Context.getCanonicalType(Context.getRecordType(RD))));
7712 NameInfo.setNamedTypeInfo(nullptr);
7713
7714 // Build it and process it as an inheriting constructor.
7715 UsingDecl *UD = BuildValid();
7716 CheckInheritingConstructorUsingDecl(UD);
7717 return UD;
7718 }
7719
7720 // FIXME: Pick up all the declarations if we found an overloaded function.
7721 R.setLookupName(Corrected.getCorrection());
7722 R.addDecl(ND);
7723 } else {
7724 Diag(IdentLoc, diag::err_no_member)
7725 << NameInfo.getName() << LookupContext << SS.getRange();
7726 return BuildInvalid();
7727 }
7728 }
7729
7730 if (R.isAmbiguous())
7731 return BuildInvalid();
7732
7733 if (HasTypenameKeyword) {
7734 // If we asked for a typename and got a non-type decl, error out.
7735 if (!R.getAsSingle<TypeDecl>()) {
7736 Diag(IdentLoc, diag::err_using_typename_non_type);
7737 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
7738 Diag((*I)->getUnderlyingDecl()->getLocation(),
7739 diag::note_using_decl_target);
7740 return BuildInvalid();
7741 }
7742 } else {
7743 // If we asked for a non-typename and we got a type, error out,
7744 // but only if this is an instantiation of an unresolved using
7745 // decl. Otherwise just silently find the type name.
7746 if (IsInstantiation && R.getAsSingle<TypeDecl>()) {
7747 Diag(IdentLoc, diag::err_using_dependent_value_is_type);
7748 Diag(R.getFoundDecl()->getLocation(), diag::note_using_decl_target);
7749 return BuildInvalid();
7750 }
7751 }
7752
7753 // C++0x N2914 [namespace.udecl]p6:
7754 // A using-declaration shall not name a namespace.
7755 if (R.getAsSingle<NamespaceDecl>()) {
7756 Diag(IdentLoc, diag::err_using_decl_can_not_refer_to_namespace)
7757 << SS.getRange();
7758 return BuildInvalid();
7759 }
7760
7761 UsingDecl *UD = BuildValid();
7762 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
7763 UsingShadowDecl *PrevDecl = nullptr;
7764 if (!CheckUsingShadowDecl(UD, *I, Previous, PrevDecl))
7765 BuildUsingShadowDecl(S, UD, *I, PrevDecl);
7766 }
7767
7768 return UD;
7769 }
7770
7771 /// Additional checks for a using declaration referring to a constructor name.
CheckInheritingConstructorUsingDecl(UsingDecl * UD)7772 bool Sema::CheckInheritingConstructorUsingDecl(UsingDecl *UD) {
7773 assert(!UD->hasTypename() && "expecting a constructor name");
7774
7775 const Type *SourceType = UD->getQualifier()->getAsType();
7776 assert(SourceType &&
7777 "Using decl naming constructor doesn't have type in scope spec.");
7778 CXXRecordDecl *TargetClass = cast<CXXRecordDecl>(CurContext);
7779
7780 // Check whether the named type is a direct base class.
7781 bool AnyDependentBases = false;
7782 auto *Base = findDirectBaseWithType(TargetClass, QualType(SourceType, 0),
7783 AnyDependentBases);
7784 if (!Base && !AnyDependentBases) {
7785 Diag(UD->getUsingLoc(),
7786 diag::err_using_decl_constructor_not_in_direct_base)
7787 << UD->getNameInfo().getSourceRange()
7788 << QualType(SourceType, 0) << TargetClass;
7789 UD->setInvalidDecl();
7790 return true;
7791 }
7792
7793 if (Base)
7794 Base->setInheritConstructors();
7795
7796 return false;
7797 }
7798
7799 /// Checks that the given using declaration is not an invalid
7800 /// redeclaration. Note that this is checking only for the using decl
7801 /// itself, not for any ill-formedness among the UsingShadowDecls.
CheckUsingDeclRedeclaration(SourceLocation UsingLoc,bool HasTypenameKeyword,const CXXScopeSpec & SS,SourceLocation NameLoc,const LookupResult & Prev)7802 bool Sema::CheckUsingDeclRedeclaration(SourceLocation UsingLoc,
7803 bool HasTypenameKeyword,
7804 const CXXScopeSpec &SS,
7805 SourceLocation NameLoc,
7806 const LookupResult &Prev) {
7807 // C++03 [namespace.udecl]p8:
7808 // C++0x [namespace.udecl]p10:
7809 // A using-declaration is a declaration and can therefore be used
7810 // repeatedly where (and only where) multiple declarations are
7811 // allowed.
7812 //
7813 // That's in non-member contexts.
7814 if (!CurContext->getRedeclContext()->isRecord())
7815 return false;
7816
7817 NestedNameSpecifier *Qual = SS.getScopeRep();
7818
7819 for (LookupResult::iterator I = Prev.begin(), E = Prev.end(); I != E; ++I) {
7820 NamedDecl *D = *I;
7821
7822 bool DTypename;
7823 NestedNameSpecifier *DQual;
7824 if (UsingDecl *UD = dyn_cast<UsingDecl>(D)) {
7825 DTypename = UD->hasTypename();
7826 DQual = UD->getQualifier();
7827 } else if (UnresolvedUsingValueDecl *UD
7828 = dyn_cast<UnresolvedUsingValueDecl>(D)) {
7829 DTypename = false;
7830 DQual = UD->getQualifier();
7831 } else if (UnresolvedUsingTypenameDecl *UD
7832 = dyn_cast<UnresolvedUsingTypenameDecl>(D)) {
7833 DTypename = true;
7834 DQual = UD->getQualifier();
7835 } else continue;
7836
7837 // using decls differ if one says 'typename' and the other doesn't.
7838 // FIXME: non-dependent using decls?
7839 if (HasTypenameKeyword != DTypename) continue;
7840
7841 // using decls differ if they name different scopes (but note that
7842 // template instantiation can cause this check to trigger when it
7843 // didn't before instantiation).
7844 if (Context.getCanonicalNestedNameSpecifier(Qual) !=
7845 Context.getCanonicalNestedNameSpecifier(DQual))
7846 continue;
7847
7848 Diag(NameLoc, diag::err_using_decl_redeclaration) << SS.getRange();
7849 Diag(D->getLocation(), diag::note_using_decl) << 1;
7850 return true;
7851 }
7852
7853 return false;
7854 }
7855
7856
7857 /// Checks that the given nested-name qualifier used in a using decl
7858 /// in the current context is appropriately related to the current
7859 /// scope. If an error is found, diagnoses it and returns true.
CheckUsingDeclQualifier(SourceLocation UsingLoc,const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,SourceLocation NameLoc)7860 bool Sema::CheckUsingDeclQualifier(SourceLocation UsingLoc,
7861 const CXXScopeSpec &SS,
7862 const DeclarationNameInfo &NameInfo,
7863 SourceLocation NameLoc) {
7864 DeclContext *NamedContext = computeDeclContext(SS);
7865
7866 if (!CurContext->isRecord()) {
7867 // C++03 [namespace.udecl]p3:
7868 // C++0x [namespace.udecl]p8:
7869 // A using-declaration for a class member shall be a member-declaration.
7870
7871 // If we weren't able to compute a valid scope, it must be a
7872 // dependent class scope.
7873 if (!NamedContext || NamedContext->isRecord()) {
7874 auto *RD = dyn_cast<CXXRecordDecl>(NamedContext);
7875 if (RD && RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), RD))
7876 RD = nullptr;
7877
7878 Diag(NameLoc, diag::err_using_decl_can_not_refer_to_class_member)
7879 << SS.getRange();
7880
7881 // If we have a complete, non-dependent source type, try to suggest a
7882 // way to get the same effect.
7883 if (!RD)
7884 return true;
7885
7886 // Find what this using-declaration was referring to.
7887 LookupResult R(*this, NameInfo, LookupOrdinaryName);
7888 R.setHideTags(false);
7889 R.suppressDiagnostics();
7890 LookupQualifiedName(R, RD);
7891
7892 if (R.getAsSingle<TypeDecl>()) {
7893 if (getLangOpts().CPlusPlus11) {
7894 // Convert 'using X::Y;' to 'using Y = X::Y;'.
7895 Diag(SS.getBeginLoc(), diag::note_using_decl_class_member_workaround)
7896 << 0 // alias declaration
7897 << FixItHint::CreateInsertion(SS.getBeginLoc(),
7898 NameInfo.getName().getAsString() +
7899 " = ");
7900 } else {
7901 // Convert 'using X::Y;' to 'typedef X::Y Y;'.
7902 SourceLocation InsertLoc =
7903 PP.getLocForEndOfToken(NameInfo.getLocEnd());
7904 Diag(InsertLoc, diag::note_using_decl_class_member_workaround)
7905 << 1 // typedef declaration
7906 << FixItHint::CreateReplacement(UsingLoc, "typedef")
7907 << FixItHint::CreateInsertion(
7908 InsertLoc, " " + NameInfo.getName().getAsString());
7909 }
7910 } else if (R.getAsSingle<VarDecl>()) {
7911 // Don't provide a fixit outside C++11 mode; we don't want to suggest
7912 // repeating the type of the static data member here.
7913 FixItHint FixIt;
7914 if (getLangOpts().CPlusPlus11) {
7915 // Convert 'using X::Y;' to 'auto &Y = X::Y;'.
7916 FixIt = FixItHint::CreateReplacement(
7917 UsingLoc, "auto &" + NameInfo.getName().getAsString() + " = ");
7918 }
7919
7920 Diag(UsingLoc, diag::note_using_decl_class_member_workaround)
7921 << 2 // reference declaration
7922 << FixIt;
7923 }
7924 return true;
7925 }
7926
7927 // Otherwise, everything is known to be fine.
7928 return false;
7929 }
7930
7931 // The current scope is a record.
7932
7933 // If the named context is dependent, we can't decide much.
7934 if (!NamedContext) {
7935 // FIXME: in C++0x, we can diagnose if we can prove that the
7936 // nested-name-specifier does not refer to a base class, which is
7937 // still possible in some cases.
7938
7939 // Otherwise we have to conservatively report that things might be
7940 // okay.
7941 return false;
7942 }
7943
7944 if (!NamedContext->isRecord()) {
7945 // Ideally this would point at the last name in the specifier,
7946 // but we don't have that level of source info.
7947 Diag(SS.getRange().getBegin(),
7948 diag::err_using_decl_nested_name_specifier_is_not_class)
7949 << SS.getScopeRep() << SS.getRange();
7950 return true;
7951 }
7952
7953 if (!NamedContext->isDependentContext() &&
7954 RequireCompleteDeclContext(const_cast<CXXScopeSpec&>(SS), NamedContext))
7955 return true;
7956
7957 if (getLangOpts().CPlusPlus11) {
7958 // C++0x [namespace.udecl]p3:
7959 // In a using-declaration used as a member-declaration, the
7960 // nested-name-specifier shall name a base class of the class
7961 // being defined.
7962
7963 if (cast<CXXRecordDecl>(CurContext)->isProvablyNotDerivedFrom(
7964 cast<CXXRecordDecl>(NamedContext))) {
7965 if (CurContext == NamedContext) {
7966 Diag(NameLoc,
7967 diag::err_using_decl_nested_name_specifier_is_current_class)
7968 << SS.getRange();
7969 return true;
7970 }
7971
7972 Diag(SS.getRange().getBegin(),
7973 diag::err_using_decl_nested_name_specifier_is_not_base_class)
7974 << SS.getScopeRep()
7975 << cast<CXXRecordDecl>(CurContext)
7976 << SS.getRange();
7977 return true;
7978 }
7979
7980 return false;
7981 }
7982
7983 // C++03 [namespace.udecl]p4:
7984 // A using-declaration used as a member-declaration shall refer
7985 // to a member of a base class of the class being defined [etc.].
7986
7987 // Salient point: SS doesn't have to name a base class as long as
7988 // lookup only finds members from base classes. Therefore we can
7989 // diagnose here only if we can prove that that can't happen,
7990 // i.e. if the class hierarchies provably don't intersect.
7991
7992 // TODO: it would be nice if "definitely valid" results were cached
7993 // in the UsingDecl and UsingShadowDecl so that these checks didn't
7994 // need to be repeated.
7995
7996 struct UserData {
7997 llvm::SmallPtrSet<const CXXRecordDecl*, 4> Bases;
7998
7999 static bool collect(const CXXRecordDecl *Base, void *OpaqueData) {
8000 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8001 Data->Bases.insert(Base);
8002 return true;
8003 }
8004
8005 bool hasDependentBases(const CXXRecordDecl *Class) {
8006 return !Class->forallBases(collect, this);
8007 }
8008
8009 /// Returns true if the base is dependent or is one of the
8010 /// accumulated base classes.
8011 static bool doesNotContain(const CXXRecordDecl *Base, void *OpaqueData) {
8012 UserData *Data = reinterpret_cast<UserData*>(OpaqueData);
8013 return !Data->Bases.count(Base);
8014 }
8015
8016 bool mightShareBases(const CXXRecordDecl *Class) {
8017 return Bases.count(Class) || !Class->forallBases(doesNotContain, this);
8018 }
8019 };
8020
8021 UserData Data;
8022
8023 // Returns false if we find a dependent base.
8024 if (Data.hasDependentBases(cast<CXXRecordDecl>(CurContext)))
8025 return false;
8026
8027 // Returns false if the class has a dependent base or if it or one
8028 // of its bases is present in the base set of the current context.
8029 if (Data.mightShareBases(cast<CXXRecordDecl>(NamedContext)))
8030 return false;
8031
8032 Diag(SS.getRange().getBegin(),
8033 diag::err_using_decl_nested_name_specifier_is_not_base_class)
8034 << SS.getScopeRep()
8035 << cast<CXXRecordDecl>(CurContext)
8036 << SS.getRange();
8037
8038 return true;
8039 }
8040
ActOnAliasDeclaration(Scope * S,AccessSpecifier AS,MultiTemplateParamsArg TemplateParamLists,SourceLocation UsingLoc,UnqualifiedId & Name,AttributeList * AttrList,TypeResult Type)8041 Decl *Sema::ActOnAliasDeclaration(Scope *S,
8042 AccessSpecifier AS,
8043 MultiTemplateParamsArg TemplateParamLists,
8044 SourceLocation UsingLoc,
8045 UnqualifiedId &Name,
8046 AttributeList *AttrList,
8047 TypeResult Type) {
8048 // Skip up to the relevant declaration scope.
8049 while (S->getFlags() & Scope::TemplateParamScope)
8050 S = S->getParent();
8051 assert((S->getFlags() & Scope::DeclScope) &&
8052 "got alias-declaration outside of declaration scope");
8053
8054 if (Type.isInvalid())
8055 return nullptr;
8056
8057 bool Invalid = false;
8058 DeclarationNameInfo NameInfo = GetNameFromUnqualifiedId(Name);
8059 TypeSourceInfo *TInfo = nullptr;
8060 GetTypeFromParser(Type.get(), &TInfo);
8061
8062 if (DiagnoseClassNameShadow(CurContext, NameInfo))
8063 return nullptr;
8064
8065 if (DiagnoseUnexpandedParameterPack(Name.StartLocation, TInfo,
8066 UPPC_DeclarationType)) {
8067 Invalid = true;
8068 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
8069 TInfo->getTypeLoc().getBeginLoc());
8070 }
8071
8072 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
8073 LookupName(Previous, S);
8074
8075 // Warn about shadowing the name of a template parameter.
8076 if (Previous.isSingleResult() &&
8077 Previous.getFoundDecl()->isTemplateParameter()) {
8078 DiagnoseTemplateParameterShadow(Name.StartLocation,Previous.getFoundDecl());
8079 Previous.clear();
8080 }
8081
8082 assert(Name.Kind == UnqualifiedId::IK_Identifier &&
8083 "name in alias declaration must be an identifier");
8084 TypeAliasDecl *NewTD = TypeAliasDecl::Create(Context, CurContext, UsingLoc,
8085 Name.StartLocation,
8086 Name.Identifier, TInfo);
8087
8088 NewTD->setAccess(AS);
8089
8090 if (Invalid)
8091 NewTD->setInvalidDecl();
8092
8093 ProcessDeclAttributeList(S, NewTD, AttrList);
8094
8095 CheckTypedefForVariablyModifiedType(S, NewTD);
8096 Invalid |= NewTD->isInvalidDecl();
8097
8098 bool Redeclaration = false;
8099
8100 NamedDecl *NewND;
8101 if (TemplateParamLists.size()) {
8102 TypeAliasTemplateDecl *OldDecl = nullptr;
8103 TemplateParameterList *OldTemplateParams = nullptr;
8104
8105 if (TemplateParamLists.size() != 1) {
8106 Diag(UsingLoc, diag::err_alias_template_extra_headers)
8107 << SourceRange(TemplateParamLists[1]->getTemplateLoc(),
8108 TemplateParamLists[TemplateParamLists.size()-1]->getRAngleLoc());
8109 }
8110 TemplateParameterList *TemplateParams = TemplateParamLists[0];
8111
8112 // Only consider previous declarations in the same scope.
8113 FilterLookupForScope(Previous, CurContext, S, /*ConsiderLinkage*/false,
8114 /*ExplicitInstantiationOrSpecialization*/false);
8115 if (!Previous.empty()) {
8116 Redeclaration = true;
8117
8118 OldDecl = Previous.getAsSingle<TypeAliasTemplateDecl>();
8119 if (!OldDecl && !Invalid) {
8120 Diag(UsingLoc, diag::err_redefinition_different_kind)
8121 << Name.Identifier;
8122
8123 NamedDecl *OldD = Previous.getRepresentativeDecl();
8124 if (OldD->getLocation().isValid())
8125 Diag(OldD->getLocation(), diag::note_previous_definition);
8126
8127 Invalid = true;
8128 }
8129
8130 if (!Invalid && OldDecl && !OldDecl->isInvalidDecl()) {
8131 if (TemplateParameterListsAreEqual(TemplateParams,
8132 OldDecl->getTemplateParameters(),
8133 /*Complain=*/true,
8134 TPL_TemplateMatch))
8135 OldTemplateParams = OldDecl->getTemplateParameters();
8136 else
8137 Invalid = true;
8138
8139 TypeAliasDecl *OldTD = OldDecl->getTemplatedDecl();
8140 if (!Invalid &&
8141 !Context.hasSameType(OldTD->getUnderlyingType(),
8142 NewTD->getUnderlyingType())) {
8143 // FIXME: The C++0x standard does not clearly say this is ill-formed,
8144 // but we can't reasonably accept it.
8145 Diag(NewTD->getLocation(), diag::err_redefinition_different_typedef)
8146 << 2 << NewTD->getUnderlyingType() << OldTD->getUnderlyingType();
8147 if (OldTD->getLocation().isValid())
8148 Diag(OldTD->getLocation(), diag::note_previous_definition);
8149 Invalid = true;
8150 }
8151 }
8152 }
8153
8154 // Merge any previous default template arguments into our parameters,
8155 // and check the parameter list.
8156 if (CheckTemplateParameterList(TemplateParams, OldTemplateParams,
8157 TPC_TypeAliasTemplate))
8158 return nullptr;
8159
8160 TypeAliasTemplateDecl *NewDecl =
8161 TypeAliasTemplateDecl::Create(Context, CurContext, UsingLoc,
8162 Name.Identifier, TemplateParams,
8163 NewTD);
8164
8165 NewDecl->setAccess(AS);
8166
8167 if (Invalid)
8168 NewDecl->setInvalidDecl();
8169 else if (OldDecl)
8170 NewDecl->setPreviousDecl(OldDecl);
8171
8172 NewND = NewDecl;
8173 } else {
8174 ActOnTypedefNameDecl(S, CurContext, NewTD, Previous, Redeclaration);
8175 NewND = NewTD;
8176 }
8177
8178 if (!Redeclaration)
8179 PushOnScopeChains(NewND, S);
8180
8181 ActOnDocumentableDecl(NewND);
8182 return NewND;
8183 }
8184
ActOnNamespaceAliasDef(Scope * S,SourceLocation NamespaceLoc,SourceLocation AliasLoc,IdentifierInfo * Alias,CXXScopeSpec & SS,SourceLocation IdentLoc,IdentifierInfo * Ident)8185 Decl *Sema::ActOnNamespaceAliasDef(Scope *S,
8186 SourceLocation NamespaceLoc,
8187 SourceLocation AliasLoc,
8188 IdentifierInfo *Alias,
8189 CXXScopeSpec &SS,
8190 SourceLocation IdentLoc,
8191 IdentifierInfo *Ident) {
8192
8193 // Lookup the namespace name.
8194 LookupResult R(*this, Ident, IdentLoc, LookupNamespaceName);
8195 LookupParsedName(R, S, &SS);
8196
8197 // Check if we have a previous declaration with the same name.
8198 NamedDecl *PrevDecl
8199 = LookupSingleName(S, Alias, AliasLoc, LookupOrdinaryName,
8200 ForRedeclaration);
8201 if (PrevDecl && !isDeclInScope(PrevDecl, CurContext, S))
8202 PrevDecl = nullptr;
8203
8204 if (PrevDecl) {
8205 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) {
8206 // We already have an alias with the same name that points to the same
8207 // namespace, so don't create a new one.
8208 // FIXME: At some point, we'll want to create the (redundant)
8209 // declaration to maintain better source information.
8210 if (!R.isAmbiguous() && !R.empty() &&
8211 AD->getNamespace()->Equals(getNamespaceDecl(R.getFoundDecl())))
8212 return nullptr;
8213 }
8214
8215 unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition :
8216 diag::err_redefinition_different_kind;
8217 Diag(AliasLoc, DiagID) << Alias;
8218 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8219 return nullptr;
8220 }
8221
8222 if (R.isAmbiguous())
8223 return nullptr;
8224
8225 if (R.empty()) {
8226 if (!TryNamespaceTypoCorrection(*this, R, S, SS, IdentLoc, Ident)) {
8227 Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange();
8228 return nullptr;
8229 }
8230 }
8231
8232 NamespaceAliasDecl *AliasDecl =
8233 NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc,
8234 Alias, SS.getWithLocInContext(Context),
8235 IdentLoc, R.getFoundDecl());
8236
8237 PushOnScopeChains(AliasDecl, S);
8238 return AliasDecl;
8239 }
8240
8241 Sema::ImplicitExceptionSpecification
ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,CXXMethodDecl * MD)8242 Sema::ComputeDefaultedDefaultCtorExceptionSpec(SourceLocation Loc,
8243 CXXMethodDecl *MD) {
8244 CXXRecordDecl *ClassDecl = MD->getParent();
8245
8246 // C++ [except.spec]p14:
8247 // An implicitly declared special member function (Clause 12) shall have an
8248 // exception-specification. [...]
8249 ImplicitExceptionSpecification ExceptSpec(*this);
8250 if (ClassDecl->isInvalidDecl())
8251 return ExceptSpec;
8252
8253 // Direct base-class constructors.
8254 for (const auto &B : ClassDecl->bases()) {
8255 if (B.isVirtual()) // Handled below.
8256 continue;
8257
8258 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8259 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8260 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8261 // If this is a deleted function, add it anyway. This might be conformant
8262 // with the standard. This might not. I'm not sure. It might not matter.
8263 if (Constructor)
8264 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8265 }
8266 }
8267
8268 // Virtual base-class constructors.
8269 for (const auto &B : ClassDecl->vbases()) {
8270 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8271 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8272 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8273 // If this is a deleted function, add it anyway. This might be conformant
8274 // with the standard. This might not. I'm not sure. It might not matter.
8275 if (Constructor)
8276 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8277 }
8278 }
8279
8280 // Field constructors.
8281 for (const auto *F : ClassDecl->fields()) {
8282 if (F->hasInClassInitializer()) {
8283 if (Expr *E = F->getInClassInitializer())
8284 ExceptSpec.CalledExpr(E);
8285 else if (!F->isInvalidDecl())
8286 // DR1351:
8287 // If the brace-or-equal-initializer of a non-static data member
8288 // invokes a defaulted default constructor of its class or of an
8289 // enclosing class in a potentially evaluated subexpression, the
8290 // program is ill-formed.
8291 //
8292 // This resolution is unworkable: the exception specification of the
8293 // default constructor can be needed in an unevaluated context, in
8294 // particular, in the operand of a noexcept-expression, and we can be
8295 // unable to compute an exception specification for an enclosed class.
8296 //
8297 // We do not allow an in-class initializer to require the evaluation
8298 // of the exception specification for any in-class initializer whose
8299 // definition is not lexically complete.
8300 Diag(Loc, diag::err_in_class_initializer_references_def_ctor) << MD;
8301 } else if (const RecordType *RecordTy
8302 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8303 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8304 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8305 // If this is a deleted function, add it anyway. This might be conformant
8306 // with the standard. This might not. I'm not sure. It might not matter.
8307 // In particular, the problem is that this function never gets called. It
8308 // might just be ill-formed because this function attempts to refer to
8309 // a deleted function here.
8310 if (Constructor)
8311 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8312 }
8313 }
8314
8315 return ExceptSpec;
8316 }
8317
8318 Sema::ImplicitExceptionSpecification
ComputeInheritingCtorExceptionSpec(CXXConstructorDecl * CD)8319 Sema::ComputeInheritingCtorExceptionSpec(CXXConstructorDecl *CD) {
8320 CXXRecordDecl *ClassDecl = CD->getParent();
8321
8322 // C++ [except.spec]p14:
8323 // An inheriting constructor [...] shall have an exception-specification. [...]
8324 ImplicitExceptionSpecification ExceptSpec(*this);
8325 if (ClassDecl->isInvalidDecl())
8326 return ExceptSpec;
8327
8328 // Inherited constructor.
8329 const CXXConstructorDecl *InheritedCD = CD->getInheritedConstructor();
8330 const CXXRecordDecl *InheritedDecl = InheritedCD->getParent();
8331 // FIXME: Copying or moving the parameters could add extra exceptions to the
8332 // set, as could the default arguments for the inherited constructor. This
8333 // will be addressed when we implement the resolution of core issue 1351.
8334 ExceptSpec.CalledDecl(CD->getLocStart(), InheritedCD);
8335
8336 // Direct base-class constructors.
8337 for (const auto &B : ClassDecl->bases()) {
8338 if (B.isVirtual()) // Handled below.
8339 continue;
8340
8341 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8342 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8343 if (BaseClassDecl == InheritedDecl)
8344 continue;
8345 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8346 if (Constructor)
8347 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8348 }
8349 }
8350
8351 // Virtual base-class constructors.
8352 for (const auto &B : ClassDecl->vbases()) {
8353 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
8354 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
8355 if (BaseClassDecl == InheritedDecl)
8356 continue;
8357 CXXConstructorDecl *Constructor = LookupDefaultConstructor(BaseClassDecl);
8358 if (Constructor)
8359 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
8360 }
8361 }
8362
8363 // Field constructors.
8364 for (const auto *F : ClassDecl->fields()) {
8365 if (F->hasInClassInitializer()) {
8366 if (Expr *E = F->getInClassInitializer())
8367 ExceptSpec.CalledExpr(E);
8368 else if (!F->isInvalidDecl())
8369 Diag(CD->getLocation(),
8370 diag::err_in_class_initializer_references_def_ctor) << CD;
8371 } else if (const RecordType *RecordTy
8372 = Context.getBaseElementType(F->getType())->getAs<RecordType>()) {
8373 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
8374 CXXConstructorDecl *Constructor = LookupDefaultConstructor(FieldRecDecl);
8375 if (Constructor)
8376 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
8377 }
8378 }
8379
8380 return ExceptSpec;
8381 }
8382
8383 namespace {
8384 /// RAII object to register a special member as being currently declared.
8385 struct DeclaringSpecialMember {
8386 Sema &S;
8387 Sema::SpecialMemberDecl D;
8388 bool WasAlreadyBeingDeclared;
8389
DeclaringSpecialMember__anon597a90e60e11::DeclaringSpecialMember8390 DeclaringSpecialMember(Sema &S, CXXRecordDecl *RD, Sema::CXXSpecialMember CSM)
8391 : S(S), D(RD, CSM) {
8392 WasAlreadyBeingDeclared = !S.SpecialMembersBeingDeclared.insert(D);
8393 if (WasAlreadyBeingDeclared)
8394 // This almost never happens, but if it does, ensure that our cache
8395 // doesn't contain a stale result.
8396 S.SpecialMemberCache.clear();
8397
8398 // FIXME: Register a note to be produced if we encounter an error while
8399 // declaring the special member.
8400 }
~DeclaringSpecialMember__anon597a90e60e11::DeclaringSpecialMember8401 ~DeclaringSpecialMember() {
8402 if (!WasAlreadyBeingDeclared)
8403 S.SpecialMembersBeingDeclared.erase(D);
8404 }
8405
8406 /// \brief Are we already trying to declare this special member?
isAlreadyBeingDeclared__anon597a90e60e11::DeclaringSpecialMember8407 bool isAlreadyBeingDeclared() const {
8408 return WasAlreadyBeingDeclared;
8409 }
8410 };
8411 }
8412
DeclareImplicitDefaultConstructor(CXXRecordDecl * ClassDecl)8413 CXXConstructorDecl *Sema::DeclareImplicitDefaultConstructor(
8414 CXXRecordDecl *ClassDecl) {
8415 // C++ [class.ctor]p5:
8416 // A default constructor for a class X is a constructor of class X
8417 // that can be called without an argument. If there is no
8418 // user-declared constructor for class X, a default constructor is
8419 // implicitly declared. An implicitly-declared default constructor
8420 // is an inline public member of its class.
8421 assert(ClassDecl->needsImplicitDefaultConstructor() &&
8422 "Should not build implicit default constructor!");
8423
8424 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDefaultConstructor);
8425 if (DSM.isAlreadyBeingDeclared())
8426 return nullptr;
8427
8428 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
8429 CXXDefaultConstructor,
8430 false);
8431
8432 // Create the actual constructor declaration.
8433 CanQualType ClassType
8434 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8435 SourceLocation ClassLoc = ClassDecl->getLocation();
8436 DeclarationName Name
8437 = Context.DeclarationNames.getCXXConstructorName(ClassType);
8438 DeclarationNameInfo NameInfo(Name, ClassLoc);
8439 CXXConstructorDecl *DefaultCon = CXXConstructorDecl::Create(
8440 Context, ClassDecl, ClassLoc, NameInfo, /*Type*/QualType(),
8441 /*TInfo=*/nullptr, /*isExplicit=*/false, /*isInline=*/true,
8442 /*isImplicitlyDeclared=*/true, Constexpr);
8443 DefaultCon->setAccess(AS_public);
8444 DefaultCon->setDefaulted();
8445 DefaultCon->setImplicit();
8446
8447 // Build an exception specification pointing back at this constructor.
8448 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, DefaultCon);
8449 DefaultCon->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8450
8451 // We don't need to use SpecialMemberIsTrivial here; triviality for default
8452 // constructors is easy to compute.
8453 DefaultCon->setTrivial(ClassDecl->hasTrivialDefaultConstructor());
8454
8455 if (ShouldDeleteSpecialMember(DefaultCon, CXXDefaultConstructor))
8456 SetDeclDeleted(DefaultCon, ClassLoc);
8457
8458 // Note that we have declared this constructor.
8459 ++ASTContext::NumImplicitDefaultConstructorsDeclared;
8460
8461 if (Scope *S = getScopeForContext(ClassDecl))
8462 PushOnScopeChains(DefaultCon, S, false);
8463 ClassDecl->addDecl(DefaultCon);
8464
8465 return DefaultCon;
8466 }
8467
DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)8468 void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation,
8469 CXXConstructorDecl *Constructor) {
8470 assert((Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
8471 !Constructor->doesThisDeclarationHaveABody() &&
8472 !Constructor->isDeleted()) &&
8473 "DefineImplicitDefaultConstructor - call it for implicit default ctor");
8474
8475 CXXRecordDecl *ClassDecl = Constructor->getParent();
8476 assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor");
8477
8478 SynthesizedFunctionScope Scope(*this, Constructor);
8479 DiagnosticErrorTrap Trap(Diags);
8480 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8481 Trap.hasErrorOccurred()) {
8482 Diag(CurrentLocation, diag::note_member_synthesized_at)
8483 << CXXDefaultConstructor << Context.getTagDeclType(ClassDecl);
8484 Constructor->setInvalidDecl();
8485 return;
8486 }
8487
8488 SourceLocation Loc = Constructor->getLocEnd().isValid()
8489 ? Constructor->getLocEnd()
8490 : Constructor->getLocation();
8491 Constructor->setBody(new (Context) CompoundStmt(Loc));
8492
8493 Constructor->markUsed(Context);
8494 MarkVTableUsed(CurrentLocation, ClassDecl);
8495
8496 if (ASTMutationListener *L = getASTMutationListener()) {
8497 L->CompletedImplicitDefinition(Constructor);
8498 }
8499
8500 DiagnoseUninitializedFields(*this, Constructor);
8501 }
8502
ActOnFinishDelayedMemberInitializers(Decl * D)8503 void Sema::ActOnFinishDelayedMemberInitializers(Decl *D) {
8504 // Perform any delayed checks on exception specifications.
8505 CheckDelayedMemberExceptionSpecs();
8506 }
8507
8508 namespace {
8509 /// Information on inheriting constructors to declare.
8510 class InheritingConstructorInfo {
8511 public:
InheritingConstructorInfo(Sema & SemaRef,CXXRecordDecl * Derived)8512 InheritingConstructorInfo(Sema &SemaRef, CXXRecordDecl *Derived)
8513 : SemaRef(SemaRef), Derived(Derived) {
8514 // Mark the constructors that we already have in the derived class.
8515 //
8516 // C++11 [class.inhctor]p3: [...] a constructor is implicitly declared [...]
8517 // unless there is a user-declared constructor with the same signature in
8518 // the class where the using-declaration appears.
8519 visitAll(Derived, &InheritingConstructorInfo::noteDeclaredInDerived);
8520 }
8521
inheritAll(CXXRecordDecl * RD)8522 void inheritAll(CXXRecordDecl *RD) {
8523 visitAll(RD, &InheritingConstructorInfo::inherit);
8524 }
8525
8526 private:
8527 /// Information about an inheriting constructor.
8528 struct InheritingConstructor {
InheritingConstructor__anon597a90e60f11::InheritingConstructorInfo::InheritingConstructor8529 InheritingConstructor()
8530 : DeclaredInDerived(false), BaseCtor(nullptr), DerivedCtor(nullptr) {}
8531
8532 /// If \c true, a constructor with this signature is already declared
8533 /// in the derived class.
8534 bool DeclaredInDerived;
8535
8536 /// The constructor which is inherited.
8537 const CXXConstructorDecl *BaseCtor;
8538
8539 /// The derived constructor we declared.
8540 CXXConstructorDecl *DerivedCtor;
8541 };
8542
8543 /// Inheriting constructors with a given canonical type. There can be at
8544 /// most one such non-template constructor, and any number of templated
8545 /// constructors.
8546 struct InheritingConstructorsForType {
8547 InheritingConstructor NonTemplate;
8548 SmallVector<std::pair<TemplateParameterList *, InheritingConstructor>, 4>
8549 Templates;
8550
getEntry__anon597a90e60f11::InheritingConstructorInfo::InheritingConstructorsForType8551 InheritingConstructor &getEntry(Sema &S, const CXXConstructorDecl *Ctor) {
8552 if (FunctionTemplateDecl *FTD = Ctor->getDescribedFunctionTemplate()) {
8553 TemplateParameterList *ParamList = FTD->getTemplateParameters();
8554 for (unsigned I = 0, N = Templates.size(); I != N; ++I)
8555 if (S.TemplateParameterListsAreEqual(ParamList, Templates[I].first,
8556 false, S.TPL_TemplateMatch))
8557 return Templates[I].second;
8558 Templates.push_back(std::make_pair(ParamList, InheritingConstructor()));
8559 return Templates.back().second;
8560 }
8561
8562 return NonTemplate;
8563 }
8564 };
8565
8566 /// Get or create the inheriting constructor record for a constructor.
getEntry(const CXXConstructorDecl * Ctor,QualType CtorType)8567 InheritingConstructor &getEntry(const CXXConstructorDecl *Ctor,
8568 QualType CtorType) {
8569 return Map[CtorType.getCanonicalType()->castAs<FunctionProtoType>()]
8570 .getEntry(SemaRef, Ctor);
8571 }
8572
8573 typedef void (InheritingConstructorInfo::*VisitFn)(const CXXConstructorDecl*);
8574
8575 /// Process all constructors for a class.
visitAll(const CXXRecordDecl * RD,VisitFn Callback)8576 void visitAll(const CXXRecordDecl *RD, VisitFn Callback) {
8577 for (const auto *Ctor : RD->ctors())
8578 (this->*Callback)(Ctor);
8579 for (CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
8580 I(RD->decls_begin()), E(RD->decls_end());
8581 I != E; ++I) {
8582 const FunctionDecl *FD = (*I)->getTemplatedDecl();
8583 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD))
8584 (this->*Callback)(CD);
8585 }
8586 }
8587
8588 /// Note that a constructor (or constructor template) was declared in Derived.
noteDeclaredInDerived(const CXXConstructorDecl * Ctor)8589 void noteDeclaredInDerived(const CXXConstructorDecl *Ctor) {
8590 getEntry(Ctor, Ctor->getType()).DeclaredInDerived = true;
8591 }
8592
8593 /// Inherit a single constructor.
inherit(const CXXConstructorDecl * Ctor)8594 void inherit(const CXXConstructorDecl *Ctor) {
8595 const FunctionProtoType *CtorType =
8596 Ctor->getType()->castAs<FunctionProtoType>();
8597 ArrayRef<QualType> ArgTypes(CtorType->getParamTypes());
8598 FunctionProtoType::ExtProtoInfo EPI = CtorType->getExtProtoInfo();
8599
8600 SourceLocation UsingLoc = getUsingLoc(Ctor->getParent());
8601
8602 // Core issue (no number yet): the ellipsis is always discarded.
8603 if (EPI.Variadic) {
8604 SemaRef.Diag(UsingLoc, diag::warn_using_decl_constructor_ellipsis);
8605 SemaRef.Diag(Ctor->getLocation(),
8606 diag::note_using_decl_constructor_ellipsis);
8607 EPI.Variadic = false;
8608 }
8609
8610 // Declare a constructor for each number of parameters.
8611 //
8612 // C++11 [class.inhctor]p1:
8613 // The candidate set of inherited constructors from the class X named in
8614 // the using-declaration consists of [... modulo defects ...] for each
8615 // constructor or constructor template of X, the set of constructors or
8616 // constructor templates that results from omitting any ellipsis parameter
8617 // specification and successively omitting parameters with a default
8618 // argument from the end of the parameter-type-list
8619 unsigned MinParams = minParamsToInherit(Ctor);
8620 unsigned Params = Ctor->getNumParams();
8621 if (Params >= MinParams) {
8622 do
8623 declareCtor(UsingLoc, Ctor,
8624 SemaRef.Context.getFunctionType(
8625 Ctor->getReturnType(), ArgTypes.slice(0, Params), EPI));
8626 while (Params > MinParams &&
8627 Ctor->getParamDecl(--Params)->hasDefaultArg());
8628 }
8629 }
8630
8631 /// Find the using-declaration which specified that we should inherit the
8632 /// constructors of \p Base.
getUsingLoc(const CXXRecordDecl * Base)8633 SourceLocation getUsingLoc(const CXXRecordDecl *Base) {
8634 // No fancy lookup required; just look for the base constructor name
8635 // directly within the derived class.
8636 ASTContext &Context = SemaRef.Context;
8637 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8638 Context.getCanonicalType(Context.getRecordType(Base)));
8639 DeclContext::lookup_const_result Decls = Derived->lookup(Name);
8640 return Decls.empty() ? Derived->getLocation() : Decls[0]->getLocation();
8641 }
8642
minParamsToInherit(const CXXConstructorDecl * Ctor)8643 unsigned minParamsToInherit(const CXXConstructorDecl *Ctor) {
8644 // C++11 [class.inhctor]p3:
8645 // [F]or each constructor template in the candidate set of inherited
8646 // constructors, a constructor template is implicitly declared
8647 if (Ctor->getDescribedFunctionTemplate())
8648 return 0;
8649
8650 // For each non-template constructor in the candidate set of inherited
8651 // constructors other than a constructor having no parameters or a
8652 // copy/move constructor having a single parameter, a constructor is
8653 // implicitly declared [...]
8654 if (Ctor->getNumParams() == 0)
8655 return 1;
8656 if (Ctor->isCopyOrMoveConstructor())
8657 return 2;
8658
8659 // Per discussion on core reflector, never inherit a constructor which
8660 // would become a default, copy, or move constructor of Derived either.
8661 const ParmVarDecl *PD = Ctor->getParamDecl(0);
8662 const ReferenceType *RT = PD->getType()->getAs<ReferenceType>();
8663 return (RT && RT->getPointeeCXXRecordDecl() == Derived) ? 2 : 1;
8664 }
8665
8666 /// Declare a single inheriting constructor, inheriting the specified
8667 /// constructor, with the given type.
declareCtor(SourceLocation UsingLoc,const CXXConstructorDecl * BaseCtor,QualType DerivedType)8668 void declareCtor(SourceLocation UsingLoc, const CXXConstructorDecl *BaseCtor,
8669 QualType DerivedType) {
8670 InheritingConstructor &Entry = getEntry(BaseCtor, DerivedType);
8671
8672 // C++11 [class.inhctor]p3:
8673 // ... a constructor is implicitly declared with the same constructor
8674 // characteristics unless there is a user-declared constructor with
8675 // the same signature in the class where the using-declaration appears
8676 if (Entry.DeclaredInDerived)
8677 return;
8678
8679 // C++11 [class.inhctor]p7:
8680 // If two using-declarations declare inheriting constructors with the
8681 // same signature, the program is ill-formed
8682 if (Entry.DerivedCtor) {
8683 if (BaseCtor->getParent() != Entry.BaseCtor->getParent()) {
8684 // Only diagnose this once per constructor.
8685 if (Entry.DerivedCtor->isInvalidDecl())
8686 return;
8687 Entry.DerivedCtor->setInvalidDecl();
8688
8689 SemaRef.Diag(UsingLoc, diag::err_using_decl_constructor_conflict);
8690 SemaRef.Diag(BaseCtor->getLocation(),
8691 diag::note_using_decl_constructor_conflict_current_ctor);
8692 SemaRef.Diag(Entry.BaseCtor->getLocation(),
8693 diag::note_using_decl_constructor_conflict_previous_ctor);
8694 SemaRef.Diag(Entry.DerivedCtor->getLocation(),
8695 diag::note_using_decl_constructor_conflict_previous_using);
8696 } else {
8697 // Core issue (no number): if the same inheriting constructor is
8698 // produced by multiple base class constructors from the same base
8699 // class, the inheriting constructor is defined as deleted.
8700 SemaRef.SetDeclDeleted(Entry.DerivedCtor, UsingLoc);
8701 }
8702
8703 return;
8704 }
8705
8706 ASTContext &Context = SemaRef.Context;
8707 DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(
8708 Context.getCanonicalType(Context.getRecordType(Derived)));
8709 DeclarationNameInfo NameInfo(Name, UsingLoc);
8710
8711 TemplateParameterList *TemplateParams = nullptr;
8712 if (const FunctionTemplateDecl *FTD =
8713 BaseCtor->getDescribedFunctionTemplate()) {
8714 TemplateParams = FTD->getTemplateParameters();
8715 // We're reusing template parameters from a different DeclContext. This
8716 // is questionable at best, but works out because the template depth in
8717 // both places is guaranteed to be 0.
8718 // FIXME: Rebuild the template parameters in the new context, and
8719 // transform the function type to refer to them.
8720 }
8721
8722 // Build type source info pointing at the using-declaration. This is
8723 // required by template instantiation.
8724 TypeSourceInfo *TInfo =
8725 Context.getTrivialTypeSourceInfo(DerivedType, UsingLoc);
8726 FunctionProtoTypeLoc ProtoLoc =
8727 TInfo->getTypeLoc().IgnoreParens().castAs<FunctionProtoTypeLoc>();
8728
8729 CXXConstructorDecl *DerivedCtor = CXXConstructorDecl::Create(
8730 Context, Derived, UsingLoc, NameInfo, DerivedType,
8731 TInfo, BaseCtor->isExplicit(), /*Inline=*/true,
8732 /*ImplicitlyDeclared=*/true, /*Constexpr=*/BaseCtor->isConstexpr());
8733
8734 // Build an unevaluated exception specification for this constructor.
8735 const FunctionProtoType *FPT = DerivedType->castAs<FunctionProtoType>();
8736 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
8737 EPI.ExceptionSpecType = EST_Unevaluated;
8738 EPI.ExceptionSpecDecl = DerivedCtor;
8739 DerivedCtor->setType(Context.getFunctionType(FPT->getReturnType(),
8740 FPT->getParamTypes(), EPI));
8741
8742 // Build the parameter declarations.
8743 SmallVector<ParmVarDecl *, 16> ParamDecls;
8744 for (unsigned I = 0, N = FPT->getNumParams(); I != N; ++I) {
8745 TypeSourceInfo *TInfo =
8746 Context.getTrivialTypeSourceInfo(FPT->getParamType(I), UsingLoc);
8747 ParmVarDecl *PD = ParmVarDecl::Create(
8748 Context, DerivedCtor, UsingLoc, UsingLoc, /*IdentifierInfo=*/nullptr,
8749 FPT->getParamType(I), TInfo, SC_None, /*DefaultArg=*/nullptr);
8750 PD->setScopeInfo(0, I);
8751 PD->setImplicit();
8752 ParamDecls.push_back(PD);
8753 ProtoLoc.setParam(I, PD);
8754 }
8755
8756 // Set up the new constructor.
8757 DerivedCtor->setAccess(BaseCtor->getAccess());
8758 DerivedCtor->setParams(ParamDecls);
8759 DerivedCtor->setInheritedConstructor(BaseCtor);
8760 if (BaseCtor->isDeleted())
8761 SemaRef.SetDeclDeleted(DerivedCtor, UsingLoc);
8762
8763 // If this is a constructor template, build the template declaration.
8764 if (TemplateParams) {
8765 FunctionTemplateDecl *DerivedTemplate =
8766 FunctionTemplateDecl::Create(SemaRef.Context, Derived, UsingLoc, Name,
8767 TemplateParams, DerivedCtor);
8768 DerivedTemplate->setAccess(BaseCtor->getAccess());
8769 DerivedCtor->setDescribedFunctionTemplate(DerivedTemplate);
8770 Derived->addDecl(DerivedTemplate);
8771 } else {
8772 Derived->addDecl(DerivedCtor);
8773 }
8774
8775 Entry.BaseCtor = BaseCtor;
8776 Entry.DerivedCtor = DerivedCtor;
8777 }
8778
8779 Sema &SemaRef;
8780 CXXRecordDecl *Derived;
8781 typedef llvm::DenseMap<const Type *, InheritingConstructorsForType> MapType;
8782 MapType Map;
8783 };
8784 }
8785
DeclareInheritingConstructors(CXXRecordDecl * ClassDecl)8786 void Sema::DeclareInheritingConstructors(CXXRecordDecl *ClassDecl) {
8787 // Defer declaring the inheriting constructors until the class is
8788 // instantiated.
8789 if (ClassDecl->isDependentContext())
8790 return;
8791
8792 // Find base classes from which we might inherit constructors.
8793 SmallVector<CXXRecordDecl*, 4> InheritedBases;
8794 for (const auto &BaseIt : ClassDecl->bases())
8795 if (BaseIt.getInheritConstructors())
8796 InheritedBases.push_back(BaseIt.getType()->getAsCXXRecordDecl());
8797
8798 // Go no further if we're not inheriting any constructors.
8799 if (InheritedBases.empty())
8800 return;
8801
8802 // Declare the inherited constructors.
8803 InheritingConstructorInfo ICI(*this, ClassDecl);
8804 for (unsigned I = 0, N = InheritedBases.size(); I != N; ++I)
8805 ICI.inheritAll(InheritedBases[I]);
8806 }
8807
DefineInheritingConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * Constructor)8808 void Sema::DefineInheritingConstructor(SourceLocation CurrentLocation,
8809 CXXConstructorDecl *Constructor) {
8810 CXXRecordDecl *ClassDecl = Constructor->getParent();
8811 assert(Constructor->getInheritedConstructor() &&
8812 !Constructor->doesThisDeclarationHaveABody() &&
8813 !Constructor->isDeleted());
8814
8815 SynthesizedFunctionScope Scope(*this, Constructor);
8816 DiagnosticErrorTrap Trap(Diags);
8817 if (SetCtorInitializers(Constructor, /*AnyErrors=*/false) ||
8818 Trap.hasErrorOccurred()) {
8819 Diag(CurrentLocation, diag::note_inhctor_synthesized_at)
8820 << Context.getTagDeclType(ClassDecl);
8821 Constructor->setInvalidDecl();
8822 return;
8823 }
8824
8825 SourceLocation Loc = Constructor->getLocation();
8826 Constructor->setBody(new (Context) CompoundStmt(Loc));
8827
8828 Constructor->markUsed(Context);
8829 MarkVTableUsed(CurrentLocation, ClassDecl);
8830
8831 if (ASTMutationListener *L = getASTMutationListener()) {
8832 L->CompletedImplicitDefinition(Constructor);
8833 }
8834 }
8835
8836
8837 Sema::ImplicitExceptionSpecification
ComputeDefaultedDtorExceptionSpec(CXXMethodDecl * MD)8838 Sema::ComputeDefaultedDtorExceptionSpec(CXXMethodDecl *MD) {
8839 CXXRecordDecl *ClassDecl = MD->getParent();
8840
8841 // C++ [except.spec]p14:
8842 // An implicitly declared special member function (Clause 12) shall have
8843 // an exception-specification.
8844 ImplicitExceptionSpecification ExceptSpec(*this);
8845 if (ClassDecl->isInvalidDecl())
8846 return ExceptSpec;
8847
8848 // Direct base-class destructors.
8849 for (const auto &B : ClassDecl->bases()) {
8850 if (B.isVirtual()) // Handled below.
8851 continue;
8852
8853 if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
8854 ExceptSpec.CalledDecl(B.getLocStart(),
8855 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8856 }
8857
8858 // Virtual base-class destructors.
8859 for (const auto &B : ClassDecl->vbases()) {
8860 if (const RecordType *BaseType = B.getType()->getAs<RecordType>())
8861 ExceptSpec.CalledDecl(B.getLocStart(),
8862 LookupDestructor(cast<CXXRecordDecl>(BaseType->getDecl())));
8863 }
8864
8865 // Field destructors.
8866 for (const auto *F : ClassDecl->fields()) {
8867 if (const RecordType *RecordTy
8868 = Context.getBaseElementType(F->getType())->getAs<RecordType>())
8869 ExceptSpec.CalledDecl(F->getLocation(),
8870 LookupDestructor(cast<CXXRecordDecl>(RecordTy->getDecl())));
8871 }
8872
8873 return ExceptSpec;
8874 }
8875
DeclareImplicitDestructor(CXXRecordDecl * ClassDecl)8876 CXXDestructorDecl *Sema::DeclareImplicitDestructor(CXXRecordDecl *ClassDecl) {
8877 // C++ [class.dtor]p2:
8878 // If a class has no user-declared destructor, a destructor is
8879 // declared implicitly. An implicitly-declared destructor is an
8880 // inline public member of its class.
8881 assert(ClassDecl->needsImplicitDestructor());
8882
8883 DeclaringSpecialMember DSM(*this, ClassDecl, CXXDestructor);
8884 if (DSM.isAlreadyBeingDeclared())
8885 return nullptr;
8886
8887 // Create the actual destructor declaration.
8888 CanQualType ClassType
8889 = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl));
8890 SourceLocation ClassLoc = ClassDecl->getLocation();
8891 DeclarationName Name
8892 = Context.DeclarationNames.getCXXDestructorName(ClassType);
8893 DeclarationNameInfo NameInfo(Name, ClassLoc);
8894 CXXDestructorDecl *Destructor
8895 = CXXDestructorDecl::Create(Context, ClassDecl, ClassLoc, NameInfo,
8896 QualType(), nullptr, /*isInline=*/true,
8897 /*isImplicitlyDeclared=*/true);
8898 Destructor->setAccess(AS_public);
8899 Destructor->setDefaulted();
8900 Destructor->setImplicit();
8901
8902 // Build an exception specification pointing back at this destructor.
8903 FunctionProtoType::ExtProtoInfo EPI = getImplicitMethodEPI(*this, Destructor);
8904 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8905
8906 AddOverriddenMethods(ClassDecl, Destructor);
8907
8908 // We don't need to use SpecialMemberIsTrivial here; triviality for
8909 // destructors is easy to compute.
8910 Destructor->setTrivial(ClassDecl->hasTrivialDestructor());
8911
8912 if (ShouldDeleteSpecialMember(Destructor, CXXDestructor))
8913 SetDeclDeleted(Destructor, ClassLoc);
8914
8915 // Note that we have declared this destructor.
8916 ++ASTContext::NumImplicitDestructorsDeclared;
8917
8918 // Introduce this destructor into its scope.
8919 if (Scope *S = getScopeForContext(ClassDecl))
8920 PushOnScopeChains(Destructor, S, false);
8921 ClassDecl->addDecl(Destructor);
8922
8923 return Destructor;
8924 }
8925
DefineImplicitDestructor(SourceLocation CurrentLocation,CXXDestructorDecl * Destructor)8926 void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation,
8927 CXXDestructorDecl *Destructor) {
8928 assert((Destructor->isDefaulted() &&
8929 !Destructor->doesThisDeclarationHaveABody() &&
8930 !Destructor->isDeleted()) &&
8931 "DefineImplicitDestructor - call it for implicit default dtor");
8932 CXXRecordDecl *ClassDecl = Destructor->getParent();
8933 assert(ClassDecl && "DefineImplicitDestructor - invalid destructor");
8934
8935 if (Destructor->isInvalidDecl())
8936 return;
8937
8938 SynthesizedFunctionScope Scope(*this, Destructor);
8939
8940 DiagnosticErrorTrap Trap(Diags);
8941 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8942 Destructor->getParent());
8943
8944 if (CheckDestructor(Destructor) || Trap.hasErrorOccurred()) {
8945 Diag(CurrentLocation, diag::note_member_synthesized_at)
8946 << CXXDestructor << Context.getTagDeclType(ClassDecl);
8947
8948 Destructor->setInvalidDecl();
8949 return;
8950 }
8951
8952 SourceLocation Loc = Destructor->getLocEnd().isValid()
8953 ? Destructor->getLocEnd()
8954 : Destructor->getLocation();
8955 Destructor->setBody(new (Context) CompoundStmt(Loc));
8956 Destructor->markUsed(Context);
8957 MarkVTableUsed(CurrentLocation, ClassDecl);
8958
8959 if (ASTMutationListener *L = getASTMutationListener()) {
8960 L->CompletedImplicitDefinition(Destructor);
8961 }
8962 }
8963
8964 /// \brief Perform any semantic analysis which needs to be delayed until all
8965 /// pending class member declarations have been parsed.
ActOnFinishCXXMemberDecls()8966 void Sema::ActOnFinishCXXMemberDecls() {
8967 // If the context is an invalid C++ class, just suppress these checks.
8968 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(CurContext)) {
8969 if (Record->isInvalidDecl()) {
8970 DelayedDefaultedMemberExceptionSpecs.clear();
8971 DelayedDestructorExceptionSpecChecks.clear();
8972 return;
8973 }
8974 }
8975 }
8976
AdjustDestructorExceptionSpec(CXXRecordDecl * ClassDecl,CXXDestructorDecl * Destructor)8977 void Sema::AdjustDestructorExceptionSpec(CXXRecordDecl *ClassDecl,
8978 CXXDestructorDecl *Destructor) {
8979 assert(getLangOpts().CPlusPlus11 &&
8980 "adjusting dtor exception specs was introduced in c++11");
8981
8982 // C++11 [class.dtor]p3:
8983 // A declaration of a destructor that does not have an exception-
8984 // specification is implicitly considered to have the same exception-
8985 // specification as an implicit declaration.
8986 const FunctionProtoType *DtorType = Destructor->getType()->
8987 getAs<FunctionProtoType>();
8988 if (DtorType->hasExceptionSpec())
8989 return;
8990
8991 // Replace the destructor's type, building off the existing one. Fortunately,
8992 // the only thing of interest in the destructor type is its extended info.
8993 // The return and arguments are fixed.
8994 FunctionProtoType::ExtProtoInfo EPI = DtorType->getExtProtoInfo();
8995 EPI.ExceptionSpecType = EST_Unevaluated;
8996 EPI.ExceptionSpecDecl = Destructor;
8997 Destructor->setType(Context.getFunctionType(Context.VoidTy, None, EPI));
8998
8999 // FIXME: If the destructor has a body that could throw, and the newly created
9000 // spec doesn't allow exceptions, we should emit a warning, because this
9001 // change in behavior can break conforming C++03 programs at runtime.
9002 // However, we don't have a body or an exception specification yet, so it
9003 // needs to be done somewhere else.
9004 }
9005
9006 namespace {
9007 /// \brief An abstract base class for all helper classes used in building the
9008 // copy/move operators. These classes serve as factory functions and help us
9009 // avoid using the same Expr* in the AST twice.
9010 class ExprBuilder {
9011 ExprBuilder(const ExprBuilder&) LLVM_DELETED_FUNCTION;
9012 ExprBuilder &operator=(const ExprBuilder&) LLVM_DELETED_FUNCTION;
9013
9014 protected:
assertNotNull(Expr * E)9015 static Expr *assertNotNull(Expr *E) {
9016 assert(E && "Expression construction must not fail.");
9017 return E;
9018 }
9019
9020 public:
ExprBuilder()9021 ExprBuilder() {}
~ExprBuilder()9022 virtual ~ExprBuilder() {}
9023
9024 virtual Expr *build(Sema &S, SourceLocation Loc) const = 0;
9025 };
9026
9027 class RefBuilder: public ExprBuilder {
9028 VarDecl *Var;
9029 QualType VarType;
9030
9031 public:
build(Sema & S,SourceLocation Loc) const9032 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9033 return assertNotNull(S.BuildDeclRefExpr(Var, VarType, VK_LValue, Loc).get());
9034 }
9035
RefBuilder(VarDecl * Var,QualType VarType)9036 RefBuilder(VarDecl *Var, QualType VarType)
9037 : Var(Var), VarType(VarType) {}
9038 };
9039
9040 class ThisBuilder: public ExprBuilder {
9041 public:
build(Sema & S,SourceLocation Loc) const9042 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9043 return assertNotNull(S.ActOnCXXThis(Loc).getAs<Expr>());
9044 }
9045 };
9046
9047 class CastBuilder: public ExprBuilder {
9048 const ExprBuilder &Builder;
9049 QualType Type;
9050 ExprValueKind Kind;
9051 const CXXCastPath &Path;
9052
9053 public:
build(Sema & S,SourceLocation Loc) const9054 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9055 return assertNotNull(S.ImpCastExprToType(Builder.build(S, Loc), Type,
9056 CK_UncheckedDerivedToBase, Kind,
9057 &Path).get());
9058 }
9059
CastBuilder(const ExprBuilder & Builder,QualType Type,ExprValueKind Kind,const CXXCastPath & Path)9060 CastBuilder(const ExprBuilder &Builder, QualType Type, ExprValueKind Kind,
9061 const CXXCastPath &Path)
9062 : Builder(Builder), Type(Type), Kind(Kind), Path(Path) {}
9063 };
9064
9065 class DerefBuilder: public ExprBuilder {
9066 const ExprBuilder &Builder;
9067
9068 public:
build(Sema & S,SourceLocation Loc) const9069 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9070 return assertNotNull(
9071 S.CreateBuiltinUnaryOp(Loc, UO_Deref, Builder.build(S, Loc)).get());
9072 }
9073
DerefBuilder(const ExprBuilder & Builder)9074 DerefBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9075 };
9076
9077 class MemberBuilder: public ExprBuilder {
9078 const ExprBuilder &Builder;
9079 QualType Type;
9080 CXXScopeSpec SS;
9081 bool IsArrow;
9082 LookupResult &MemberLookup;
9083
9084 public:
build(Sema & S,SourceLocation Loc) const9085 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9086 return assertNotNull(S.BuildMemberReferenceExpr(
9087 Builder.build(S, Loc), Type, Loc, IsArrow, SS, SourceLocation(),
9088 nullptr, MemberLookup, nullptr).get());
9089 }
9090
MemberBuilder(const ExprBuilder & Builder,QualType Type,bool IsArrow,LookupResult & MemberLookup)9091 MemberBuilder(const ExprBuilder &Builder, QualType Type, bool IsArrow,
9092 LookupResult &MemberLookup)
9093 : Builder(Builder), Type(Type), IsArrow(IsArrow),
9094 MemberLookup(MemberLookup) {}
9095 };
9096
9097 class MoveCastBuilder: public ExprBuilder {
9098 const ExprBuilder &Builder;
9099
9100 public:
build(Sema & S,SourceLocation Loc) const9101 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9102 return assertNotNull(CastForMoving(S, Builder.build(S, Loc)));
9103 }
9104
MoveCastBuilder(const ExprBuilder & Builder)9105 MoveCastBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9106 };
9107
9108 class LvalueConvBuilder: public ExprBuilder {
9109 const ExprBuilder &Builder;
9110
9111 public:
build(Sema & S,SourceLocation Loc) const9112 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9113 return assertNotNull(
9114 S.DefaultLvalueConversion(Builder.build(S, Loc)).get());
9115 }
9116
LvalueConvBuilder(const ExprBuilder & Builder)9117 LvalueConvBuilder(const ExprBuilder &Builder) : Builder(Builder) {}
9118 };
9119
9120 class SubscriptBuilder: public ExprBuilder {
9121 const ExprBuilder &Base;
9122 const ExprBuilder &Index;
9123
9124 public:
build(Sema & S,SourceLocation Loc) const9125 virtual Expr *build(Sema &S, SourceLocation Loc) const override {
9126 return assertNotNull(S.CreateBuiltinArraySubscriptExpr(
9127 Base.build(S, Loc), Loc, Index.build(S, Loc), Loc).get());
9128 }
9129
SubscriptBuilder(const ExprBuilder & Base,const ExprBuilder & Index)9130 SubscriptBuilder(const ExprBuilder &Base, const ExprBuilder &Index)
9131 : Base(Base), Index(Index) {}
9132 };
9133
9134 } // end anonymous namespace
9135
9136 /// When generating a defaulted copy or move assignment operator, if a field
9137 /// should be copied with __builtin_memcpy rather than via explicit assignments,
9138 /// do so. This optimization only applies for arrays of scalars, and for arrays
9139 /// of class type where the selected copy/move-assignment operator is trivial.
9140 static StmtResult
buildMemcpyForAssignmentOp(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & ToB,const ExprBuilder & FromB)9141 buildMemcpyForAssignmentOp(Sema &S, SourceLocation Loc, QualType T,
9142 const ExprBuilder &ToB, const ExprBuilder &FromB) {
9143 // Compute the size of the memory buffer to be copied.
9144 QualType SizeType = S.Context.getSizeType();
9145 llvm::APInt Size(S.Context.getTypeSize(SizeType),
9146 S.Context.getTypeSizeInChars(T).getQuantity());
9147
9148 // Take the address of the field references for "from" and "to". We
9149 // directly construct UnaryOperators here because semantic analysis
9150 // does not permit us to take the address of an xvalue.
9151 Expr *From = FromB.build(S, Loc);
9152 From = new (S.Context) UnaryOperator(From, UO_AddrOf,
9153 S.Context.getPointerType(From->getType()),
9154 VK_RValue, OK_Ordinary, Loc);
9155 Expr *To = ToB.build(S, Loc);
9156 To = new (S.Context) UnaryOperator(To, UO_AddrOf,
9157 S.Context.getPointerType(To->getType()),
9158 VK_RValue, OK_Ordinary, Loc);
9159
9160 const Type *E = T->getBaseElementTypeUnsafe();
9161 bool NeedsCollectableMemCpy =
9162 E->isRecordType() && E->getAs<RecordType>()->getDecl()->hasObjectMember();
9163
9164 // Create a reference to the __builtin_objc_memmove_collectable function
9165 StringRef MemCpyName = NeedsCollectableMemCpy ?
9166 "__builtin_objc_memmove_collectable" :
9167 "__builtin_memcpy";
9168 LookupResult R(S, &S.Context.Idents.get(MemCpyName), Loc,
9169 Sema::LookupOrdinaryName);
9170 S.LookupName(R, S.TUScope, true);
9171
9172 FunctionDecl *MemCpy = R.getAsSingle<FunctionDecl>();
9173 if (!MemCpy)
9174 // Something went horribly wrong earlier, and we will have complained
9175 // about it.
9176 return StmtError();
9177
9178 ExprResult MemCpyRef = S.BuildDeclRefExpr(MemCpy, S.Context.BuiltinFnTy,
9179 VK_RValue, Loc, nullptr);
9180 assert(MemCpyRef.isUsable() && "Builtin reference cannot fail");
9181
9182 Expr *CallArgs[] = {
9183 To, From, IntegerLiteral::Create(S.Context, Size, SizeType, Loc)
9184 };
9185 ExprResult Call = S.ActOnCallExpr(/*Scope=*/nullptr, MemCpyRef.get(),
9186 Loc, CallArgs, Loc);
9187
9188 assert(!Call.isInvalid() && "Call to __builtin_memcpy cannot fail!");
9189 return Call.getAs<Stmt>();
9190 }
9191
9192 /// \brief Builds a statement that copies/moves the given entity from \p From to
9193 /// \c To.
9194 ///
9195 /// This routine is used to copy/move the members of a class with an
9196 /// implicitly-declared copy/move assignment operator. When the entities being
9197 /// copied are arrays, this routine builds for loops to copy them.
9198 ///
9199 /// \param S The Sema object used for type-checking.
9200 ///
9201 /// \param Loc The location where the implicit copy/move is being generated.
9202 ///
9203 /// \param T The type of the expressions being copied/moved. Both expressions
9204 /// must have this type.
9205 ///
9206 /// \param To The expression we are copying/moving to.
9207 ///
9208 /// \param From The expression we are copying/moving from.
9209 ///
9210 /// \param CopyingBaseSubobject Whether we're copying/moving a base subobject.
9211 /// Otherwise, it's a non-static member subobject.
9212 ///
9213 /// \param Copying Whether we're copying or moving.
9214 ///
9215 /// \param Depth Internal parameter recording the depth of the recursion.
9216 ///
9217 /// \returns A statement or a loop that copies the expressions, or StmtResult(0)
9218 /// if a memcpy should be used instead.
9219 static StmtResult
buildSingleCopyAssignRecursively(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying,unsigned Depth=0)9220 buildSingleCopyAssignRecursively(Sema &S, SourceLocation Loc, QualType T,
9221 const ExprBuilder &To, const ExprBuilder &From,
9222 bool CopyingBaseSubobject, bool Copying,
9223 unsigned Depth = 0) {
9224 // C++11 [class.copy]p28:
9225 // Each subobject is assigned in the manner appropriate to its type:
9226 //
9227 // - if the subobject is of class type, as if by a call to operator= with
9228 // the subobject as the object expression and the corresponding
9229 // subobject of x as a single function argument (as if by explicit
9230 // qualification; that is, ignoring any possible virtual overriding
9231 // functions in more derived classes);
9232 //
9233 // C++03 [class.copy]p13:
9234 // - if the subobject is of class type, the copy assignment operator for
9235 // the class is used (as if by explicit qualification; that is,
9236 // ignoring any possible virtual overriding functions in more derived
9237 // classes);
9238 if (const RecordType *RecordTy = T->getAs<RecordType>()) {
9239 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
9240
9241 // Look for operator=.
9242 DeclarationName Name
9243 = S.Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9244 LookupResult OpLookup(S, Name, Loc, Sema::LookupOrdinaryName);
9245 S.LookupQualifiedName(OpLookup, ClassDecl, false);
9246
9247 // Prior to C++11, filter out any result that isn't a copy/move-assignment
9248 // operator.
9249 if (!S.getLangOpts().CPlusPlus11) {
9250 LookupResult::Filter F = OpLookup.makeFilter();
9251 while (F.hasNext()) {
9252 NamedDecl *D = F.next();
9253 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
9254 if (Method->isCopyAssignmentOperator() ||
9255 (!Copying && Method->isMoveAssignmentOperator()))
9256 continue;
9257
9258 F.erase();
9259 }
9260 F.done();
9261 }
9262
9263 // Suppress the protected check (C++ [class.protected]) for each of the
9264 // assignment operators we found. This strange dance is required when
9265 // we're assigning via a base classes's copy-assignment operator. To
9266 // ensure that we're getting the right base class subobject (without
9267 // ambiguities), we need to cast "this" to that subobject type; to
9268 // ensure that we don't go through the virtual call mechanism, we need
9269 // to qualify the operator= name with the base class (see below). However,
9270 // this means that if the base class has a protected copy assignment
9271 // operator, the protected member access check will fail. So, we
9272 // rewrite "protected" access to "public" access in this case, since we
9273 // know by construction that we're calling from a derived class.
9274 if (CopyingBaseSubobject) {
9275 for (LookupResult::iterator L = OpLookup.begin(), LEnd = OpLookup.end();
9276 L != LEnd; ++L) {
9277 if (L.getAccess() == AS_protected)
9278 L.setAccess(AS_public);
9279 }
9280 }
9281
9282 // Create the nested-name-specifier that will be used to qualify the
9283 // reference to operator=; this is required to suppress the virtual
9284 // call mechanism.
9285 CXXScopeSpec SS;
9286 const Type *CanonicalT = S.Context.getCanonicalType(T.getTypePtr());
9287 SS.MakeTrivial(S.Context,
9288 NestedNameSpecifier::Create(S.Context, nullptr, false,
9289 CanonicalT),
9290 Loc);
9291
9292 // Create the reference to operator=.
9293 ExprResult OpEqualRef
9294 = S.BuildMemberReferenceExpr(To.build(S, Loc), T, Loc, /*isArrow=*/false,
9295 SS, /*TemplateKWLoc=*/SourceLocation(),
9296 /*FirstQualifierInScope=*/nullptr,
9297 OpLookup,
9298 /*TemplateArgs=*/nullptr,
9299 /*SuppressQualifierCheck=*/true);
9300 if (OpEqualRef.isInvalid())
9301 return StmtError();
9302
9303 // Build the call to the assignment operator.
9304
9305 Expr *FromInst = From.build(S, Loc);
9306 ExprResult Call = S.BuildCallToMemberFunction(/*Scope=*/nullptr,
9307 OpEqualRef.getAs<Expr>(),
9308 Loc, FromInst, Loc);
9309 if (Call.isInvalid())
9310 return StmtError();
9311
9312 // If we built a call to a trivial 'operator=' while copying an array,
9313 // bail out. We'll replace the whole shebang with a memcpy.
9314 CXXMemberCallExpr *CE = dyn_cast<CXXMemberCallExpr>(Call.get());
9315 if (CE && CE->getMethodDecl()->isTrivial() && Depth)
9316 return StmtResult((Stmt*)nullptr);
9317
9318 // Convert to an expression-statement, and clean up any produced
9319 // temporaries.
9320 return S.ActOnExprStmt(Call);
9321 }
9322
9323 // - if the subobject is of scalar type, the built-in assignment
9324 // operator is used.
9325 const ConstantArrayType *ArrayTy = S.Context.getAsConstantArrayType(T);
9326 if (!ArrayTy) {
9327 ExprResult Assignment = S.CreateBuiltinBinOp(
9328 Loc, BO_Assign, To.build(S, Loc), From.build(S, Loc));
9329 if (Assignment.isInvalid())
9330 return StmtError();
9331 return S.ActOnExprStmt(Assignment);
9332 }
9333
9334 // - if the subobject is an array, each element is assigned, in the
9335 // manner appropriate to the element type;
9336
9337 // Construct a loop over the array bounds, e.g.,
9338 //
9339 // for (__SIZE_TYPE__ i0 = 0; i0 != array-size; ++i0)
9340 //
9341 // that will copy each of the array elements.
9342 QualType SizeType = S.Context.getSizeType();
9343
9344 // Create the iteration variable.
9345 IdentifierInfo *IterationVarName = nullptr;
9346 {
9347 SmallString<8> Str;
9348 llvm::raw_svector_ostream OS(Str);
9349 OS << "__i" << Depth;
9350 IterationVarName = &S.Context.Idents.get(OS.str());
9351 }
9352 VarDecl *IterationVar = VarDecl::Create(S.Context, S.CurContext, Loc, Loc,
9353 IterationVarName, SizeType,
9354 S.Context.getTrivialTypeSourceInfo(SizeType, Loc),
9355 SC_None);
9356
9357 // Initialize the iteration variable to zero.
9358 llvm::APInt Zero(S.Context.getTypeSize(SizeType), 0);
9359 IterationVar->setInit(IntegerLiteral::Create(S.Context, Zero, SizeType, Loc));
9360
9361 // Creates a reference to the iteration variable.
9362 RefBuilder IterationVarRef(IterationVar, SizeType);
9363 LvalueConvBuilder IterationVarRefRVal(IterationVarRef);
9364
9365 // Create the DeclStmt that holds the iteration variable.
9366 Stmt *InitStmt = new (S.Context) DeclStmt(DeclGroupRef(IterationVar),Loc,Loc);
9367
9368 // Subscript the "from" and "to" expressions with the iteration variable.
9369 SubscriptBuilder FromIndexCopy(From, IterationVarRefRVal);
9370 MoveCastBuilder FromIndexMove(FromIndexCopy);
9371 const ExprBuilder *FromIndex;
9372 if (Copying)
9373 FromIndex = &FromIndexCopy;
9374 else
9375 FromIndex = &FromIndexMove;
9376
9377 SubscriptBuilder ToIndex(To, IterationVarRefRVal);
9378
9379 // Build the copy/move for an individual element of the array.
9380 StmtResult Copy =
9381 buildSingleCopyAssignRecursively(S, Loc, ArrayTy->getElementType(),
9382 ToIndex, *FromIndex, CopyingBaseSubobject,
9383 Copying, Depth + 1);
9384 // Bail out if copying fails or if we determined that we should use memcpy.
9385 if (Copy.isInvalid() || !Copy.get())
9386 return Copy;
9387
9388 // Create the comparison against the array bound.
9389 llvm::APInt Upper
9390 = ArrayTy->getSize().zextOrTrunc(S.Context.getTypeSize(SizeType));
9391 Expr *Comparison
9392 = new (S.Context) BinaryOperator(IterationVarRefRVal.build(S, Loc),
9393 IntegerLiteral::Create(S.Context, Upper, SizeType, Loc),
9394 BO_NE, S.Context.BoolTy,
9395 VK_RValue, OK_Ordinary, Loc, false);
9396
9397 // Create the pre-increment of the iteration variable.
9398 Expr *Increment
9399 = new (S.Context) UnaryOperator(IterationVarRef.build(S, Loc), UO_PreInc,
9400 SizeType, VK_LValue, OK_Ordinary, Loc);
9401
9402 // Construct the loop that copies all elements of this array.
9403 return S.ActOnForStmt(Loc, Loc, InitStmt,
9404 S.MakeFullExpr(Comparison),
9405 nullptr, S.MakeFullDiscardedValueExpr(Increment),
9406 Loc, Copy.get());
9407 }
9408
9409 static StmtResult
buildSingleCopyAssign(Sema & S,SourceLocation Loc,QualType T,const ExprBuilder & To,const ExprBuilder & From,bool CopyingBaseSubobject,bool Copying)9410 buildSingleCopyAssign(Sema &S, SourceLocation Loc, QualType T,
9411 const ExprBuilder &To, const ExprBuilder &From,
9412 bool CopyingBaseSubobject, bool Copying) {
9413 // Maybe we should use a memcpy?
9414 if (T->isArrayType() && !T.isConstQualified() && !T.isVolatileQualified() &&
9415 T.isTriviallyCopyableType(S.Context))
9416 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9417
9418 StmtResult Result(buildSingleCopyAssignRecursively(S, Loc, T, To, From,
9419 CopyingBaseSubobject,
9420 Copying, 0));
9421
9422 // If we ended up picking a trivial assignment operator for an array of a
9423 // non-trivially-copyable class type, just emit a memcpy.
9424 if (!Result.isInvalid() && !Result.get())
9425 return buildMemcpyForAssignmentOp(S, Loc, T, To, From);
9426
9427 return Result;
9428 }
9429
9430 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl * MD)9431 Sema::ComputeDefaultedCopyAssignmentExceptionSpec(CXXMethodDecl *MD) {
9432 CXXRecordDecl *ClassDecl = MD->getParent();
9433
9434 ImplicitExceptionSpecification ExceptSpec(*this);
9435 if (ClassDecl->isInvalidDecl())
9436 return ExceptSpec;
9437
9438 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
9439 assert(T->getNumParams() == 1 && "not a copy assignment op");
9440 unsigned ArgQuals =
9441 T->getParamType(0).getNonReferenceType().getCVRQualifiers();
9442
9443 // C++ [except.spec]p14:
9444 // An implicitly declared special member function (Clause 12) shall have an
9445 // exception-specification. [...]
9446
9447 // It is unspecified whether or not an implicit copy assignment operator
9448 // attempts to deduplicate calls to assignment operators of virtual bases are
9449 // made. As such, this exception specification is effectively unspecified.
9450 // Based on a similar decision made for constness in C++0x, we're erring on
9451 // the side of assuming such calls to be made regardless of whether they
9452 // actually happen.
9453 for (const auto &Base : ClassDecl->bases()) {
9454 if (Base.isVirtual())
9455 continue;
9456
9457 CXXRecordDecl *BaseClassDecl
9458 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9459 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9460 ArgQuals, false, 0))
9461 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9462 }
9463
9464 for (const auto &Base : ClassDecl->vbases()) {
9465 CXXRecordDecl *BaseClassDecl
9466 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9467 if (CXXMethodDecl *CopyAssign = LookupCopyingAssignment(BaseClassDecl,
9468 ArgQuals, false, 0))
9469 ExceptSpec.CalledDecl(Base.getLocStart(), CopyAssign);
9470 }
9471
9472 for (const auto *Field : ClassDecl->fields()) {
9473 QualType FieldType = Context.getBaseElementType(Field->getType());
9474 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9475 if (CXXMethodDecl *CopyAssign =
9476 LookupCopyingAssignment(FieldClassDecl,
9477 ArgQuals | FieldType.getCVRQualifiers(),
9478 false, 0))
9479 ExceptSpec.CalledDecl(Field->getLocation(), CopyAssign);
9480 }
9481 }
9482
9483 return ExceptSpec;
9484 }
9485
DeclareImplicitCopyAssignment(CXXRecordDecl * ClassDecl)9486 CXXMethodDecl *Sema::DeclareImplicitCopyAssignment(CXXRecordDecl *ClassDecl) {
9487 // Note: The following rules are largely analoguous to the copy
9488 // constructor rules. Note that virtual bases are not taken into account
9489 // for determining the argument type of the operator. Note also that
9490 // operators taking an object instead of a reference are allowed.
9491 assert(ClassDecl->needsImplicitCopyAssignment());
9492
9493 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyAssignment);
9494 if (DSM.isAlreadyBeingDeclared())
9495 return nullptr;
9496
9497 QualType ArgType = Context.getTypeDeclType(ClassDecl);
9498 QualType RetType = Context.getLValueReferenceType(ArgType);
9499 bool Const = ClassDecl->implicitCopyAssignmentHasConstParam();
9500 if (Const)
9501 ArgType = ArgType.withConst();
9502 ArgType = Context.getLValueReferenceType(ArgType);
9503
9504 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9505 CXXCopyAssignment,
9506 Const);
9507
9508 // An implicitly-declared copy assignment operator is an inline public
9509 // member of its class.
9510 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9511 SourceLocation ClassLoc = ClassDecl->getLocation();
9512 DeclarationNameInfo NameInfo(Name, ClassLoc);
9513 CXXMethodDecl *CopyAssignment =
9514 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9515 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
9516 /*isInline=*/true, Constexpr, SourceLocation());
9517 CopyAssignment->setAccess(AS_public);
9518 CopyAssignment->setDefaulted();
9519 CopyAssignment->setImplicit();
9520
9521 // Build an exception specification pointing back at this member.
9522 FunctionProtoType::ExtProtoInfo EPI =
9523 getImplicitMethodEPI(*this, CopyAssignment);
9524 CopyAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9525
9526 // Add the parameter to the operator.
9527 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment,
9528 ClassLoc, ClassLoc,
9529 /*Id=*/nullptr, ArgType,
9530 /*TInfo=*/nullptr, SC_None,
9531 nullptr);
9532 CopyAssignment->setParams(FromParam);
9533
9534 AddOverriddenMethods(ClassDecl, CopyAssignment);
9535
9536 CopyAssignment->setTrivial(
9537 ClassDecl->needsOverloadResolutionForCopyAssignment()
9538 ? SpecialMemberIsTrivial(CopyAssignment, CXXCopyAssignment)
9539 : ClassDecl->hasTrivialCopyAssignment());
9540
9541 if (ShouldDeleteSpecialMember(CopyAssignment, CXXCopyAssignment))
9542 SetDeclDeleted(CopyAssignment, ClassLoc);
9543
9544 // Note that we have added this copy-assignment operator.
9545 ++ASTContext::NumImplicitCopyAssignmentOperatorsDeclared;
9546
9547 if (Scope *S = getScopeForContext(ClassDecl))
9548 PushOnScopeChains(CopyAssignment, S, false);
9549 ClassDecl->addDecl(CopyAssignment);
9550
9551 return CopyAssignment;
9552 }
9553
9554 /// Diagnose an implicit copy operation for a class which is odr-used, but
9555 /// which is deprecated because the class has a user-declared copy constructor,
9556 /// copy assignment operator, or destructor.
diagnoseDeprecatedCopyOperation(Sema & S,CXXMethodDecl * CopyOp,SourceLocation UseLoc)9557 static void diagnoseDeprecatedCopyOperation(Sema &S, CXXMethodDecl *CopyOp,
9558 SourceLocation UseLoc) {
9559 assert(CopyOp->isImplicit());
9560
9561 CXXRecordDecl *RD = CopyOp->getParent();
9562 CXXMethodDecl *UserDeclaredOperation = nullptr;
9563
9564 // In Microsoft mode, assignment operations don't affect constructors and
9565 // vice versa.
9566 if (RD->hasUserDeclaredDestructor()) {
9567 UserDeclaredOperation = RD->getDestructor();
9568 } else if (!isa<CXXConstructorDecl>(CopyOp) &&
9569 RD->hasUserDeclaredCopyConstructor() &&
9570 !S.getLangOpts().MSVCCompat) {
9571 // Find any user-declared copy constructor.
9572 for (auto *I : RD->ctors()) {
9573 if (I->isCopyConstructor()) {
9574 UserDeclaredOperation = I;
9575 break;
9576 }
9577 }
9578 assert(UserDeclaredOperation);
9579 } else if (isa<CXXConstructorDecl>(CopyOp) &&
9580 RD->hasUserDeclaredCopyAssignment() &&
9581 !S.getLangOpts().MSVCCompat) {
9582 // Find any user-declared move assignment operator.
9583 for (auto *I : RD->methods()) {
9584 if (I->isCopyAssignmentOperator()) {
9585 UserDeclaredOperation = I;
9586 break;
9587 }
9588 }
9589 assert(UserDeclaredOperation);
9590 }
9591
9592 if (UserDeclaredOperation) {
9593 S.Diag(UserDeclaredOperation->getLocation(),
9594 diag::warn_deprecated_copy_operation)
9595 << RD << /*copy assignment*/!isa<CXXConstructorDecl>(CopyOp)
9596 << /*destructor*/isa<CXXDestructorDecl>(UserDeclaredOperation);
9597 S.Diag(UseLoc, diag::note_member_synthesized_at)
9598 << (isa<CXXConstructorDecl>(CopyOp) ? Sema::CXXCopyConstructor
9599 : Sema::CXXCopyAssignment)
9600 << RD;
9601 }
9602 }
9603
DefineImplicitCopyAssignment(SourceLocation CurrentLocation,CXXMethodDecl * CopyAssignOperator)9604 void Sema::DefineImplicitCopyAssignment(SourceLocation CurrentLocation,
9605 CXXMethodDecl *CopyAssignOperator) {
9606 assert((CopyAssignOperator->isDefaulted() &&
9607 CopyAssignOperator->isOverloadedOperator() &&
9608 CopyAssignOperator->getOverloadedOperator() == OO_Equal &&
9609 !CopyAssignOperator->doesThisDeclarationHaveABody() &&
9610 !CopyAssignOperator->isDeleted()) &&
9611 "DefineImplicitCopyAssignment called for wrong function");
9612
9613 CXXRecordDecl *ClassDecl = CopyAssignOperator->getParent();
9614
9615 if (ClassDecl->isInvalidDecl() || CopyAssignOperator->isInvalidDecl()) {
9616 CopyAssignOperator->setInvalidDecl();
9617 return;
9618 }
9619
9620 // C++11 [class.copy]p18:
9621 // The [definition of an implicitly declared copy assignment operator] is
9622 // deprecated if the class has a user-declared copy constructor or a
9623 // user-declared destructor.
9624 if (getLangOpts().CPlusPlus11 && CopyAssignOperator->isImplicit())
9625 diagnoseDeprecatedCopyOperation(*this, CopyAssignOperator, CurrentLocation);
9626
9627 CopyAssignOperator->markUsed(Context);
9628
9629 SynthesizedFunctionScope Scope(*this, CopyAssignOperator);
9630 DiagnosticErrorTrap Trap(Diags);
9631
9632 // C++0x [class.copy]p30:
9633 // The implicitly-defined or explicitly-defaulted copy assignment operator
9634 // for a non-union class X performs memberwise copy assignment of its
9635 // subobjects. The direct base classes of X are assigned first, in the
9636 // order of their declaration in the base-specifier-list, and then the
9637 // immediate non-static data members of X are assigned, in the order in
9638 // which they were declared in the class definition.
9639
9640 // The statements that form the synthesized function body.
9641 SmallVector<Stmt*, 8> Statements;
9642
9643 // The parameter for the "other" object, which we are copying from.
9644 ParmVarDecl *Other = CopyAssignOperator->getParamDecl(0);
9645 Qualifiers OtherQuals = Other->getType().getQualifiers();
9646 QualType OtherRefType = Other->getType();
9647 if (const LValueReferenceType *OtherRef
9648 = OtherRefType->getAs<LValueReferenceType>()) {
9649 OtherRefType = OtherRef->getPointeeType();
9650 OtherQuals = OtherRefType.getQualifiers();
9651 }
9652
9653 // Our location for everything implicitly-generated.
9654 SourceLocation Loc = CopyAssignOperator->getLocEnd().isValid()
9655 ? CopyAssignOperator->getLocEnd()
9656 : CopyAssignOperator->getLocation();
9657
9658 // Builds a DeclRefExpr for the "other" object.
9659 RefBuilder OtherRef(Other, OtherRefType);
9660
9661 // Builds the "this" pointer.
9662 ThisBuilder This;
9663
9664 // Assign base classes.
9665 bool Invalid = false;
9666 for (auto &Base : ClassDecl->bases()) {
9667 // Form the assignment:
9668 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&>(other));
9669 QualType BaseType = Base.getType().getUnqualifiedType();
9670 if (!BaseType->isRecordType()) {
9671 Invalid = true;
9672 continue;
9673 }
9674
9675 CXXCastPath BasePath;
9676 BasePath.push_back(&Base);
9677
9678 // Construct the "from" expression, which is an implicit cast to the
9679 // appropriately-qualified base type.
9680 CastBuilder From(OtherRef, Context.getQualifiedType(BaseType, OtherQuals),
9681 VK_LValue, BasePath);
9682
9683 // Dereference "this".
9684 DerefBuilder DerefThis(This);
9685 CastBuilder To(DerefThis,
9686 Context.getCVRQualifiedType(
9687 BaseType, CopyAssignOperator->getTypeQualifiers()),
9688 VK_LValue, BasePath);
9689
9690 // Build the copy.
9691 StmtResult Copy = buildSingleCopyAssign(*this, Loc, BaseType,
9692 To, From,
9693 /*CopyingBaseSubobject=*/true,
9694 /*Copying=*/true);
9695 if (Copy.isInvalid()) {
9696 Diag(CurrentLocation, diag::note_member_synthesized_at)
9697 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9698 CopyAssignOperator->setInvalidDecl();
9699 return;
9700 }
9701
9702 // Success! Record the copy.
9703 Statements.push_back(Copy.getAs<Expr>());
9704 }
9705
9706 // Assign non-static members.
9707 for (auto *Field : ClassDecl->fields()) {
9708 if (Field->isUnnamedBitfield())
9709 continue;
9710
9711 if (Field->isInvalidDecl()) {
9712 Invalid = true;
9713 continue;
9714 }
9715
9716 // Check for members of reference type; we can't copy those.
9717 if (Field->getType()->isReferenceType()) {
9718 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9719 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
9720 Diag(Field->getLocation(), diag::note_declared_at);
9721 Diag(CurrentLocation, diag::note_member_synthesized_at)
9722 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9723 Invalid = true;
9724 continue;
9725 }
9726
9727 // Check for members of const-qualified, non-class type.
9728 QualType BaseType = Context.getBaseElementType(Field->getType());
9729 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
9730 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
9731 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
9732 Diag(Field->getLocation(), diag::note_declared_at);
9733 Diag(CurrentLocation, diag::note_member_synthesized_at)
9734 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9735 Invalid = true;
9736 continue;
9737 }
9738
9739 // Suppress assigning zero-width bitfields.
9740 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
9741 continue;
9742
9743 QualType FieldType = Field->getType().getNonReferenceType();
9744 if (FieldType->isIncompleteArrayType()) {
9745 assert(ClassDecl->hasFlexibleArrayMember() &&
9746 "Incomplete array type is not valid");
9747 continue;
9748 }
9749
9750 // Build references to the field in the object we're copying from and to.
9751 CXXScopeSpec SS; // Intentionally empty
9752 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
9753 LookupMemberName);
9754 MemberLookup.addDecl(Field);
9755 MemberLookup.resolveKind();
9756
9757 MemberBuilder From(OtherRef, OtherRefType, /*IsArrow=*/false, MemberLookup);
9758
9759 MemberBuilder To(This, getCurrentThisType(), /*IsArrow=*/true, MemberLookup);
9760
9761 // Build the copy of this field.
9762 StmtResult Copy = buildSingleCopyAssign(*this, Loc, FieldType,
9763 To, From,
9764 /*CopyingBaseSubobject=*/false,
9765 /*Copying=*/true);
9766 if (Copy.isInvalid()) {
9767 Diag(CurrentLocation, diag::note_member_synthesized_at)
9768 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9769 CopyAssignOperator->setInvalidDecl();
9770 return;
9771 }
9772
9773 // Success! Record the copy.
9774 Statements.push_back(Copy.getAs<Stmt>());
9775 }
9776
9777 if (!Invalid) {
9778 // Add a "return *this;"
9779 ExprResult ThisObj = CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
9780
9781 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
9782 if (Return.isInvalid())
9783 Invalid = true;
9784 else {
9785 Statements.push_back(Return.getAs<Stmt>());
9786
9787 if (Trap.hasErrorOccurred()) {
9788 Diag(CurrentLocation, diag::note_member_synthesized_at)
9789 << CXXCopyAssignment << Context.getTagDeclType(ClassDecl);
9790 Invalid = true;
9791 }
9792 }
9793 }
9794
9795 if (Invalid) {
9796 CopyAssignOperator->setInvalidDecl();
9797 return;
9798 }
9799
9800 StmtResult Body;
9801 {
9802 CompoundScopeRAII CompoundScope(*this);
9803 Body = ActOnCompoundStmt(Loc, Loc, Statements,
9804 /*isStmtExpr=*/false);
9805 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
9806 }
9807 CopyAssignOperator->setBody(Body.getAs<Stmt>());
9808
9809 if (ASTMutationListener *L = getASTMutationListener()) {
9810 L->CompletedImplicitDefinition(CopyAssignOperator);
9811 }
9812 }
9813
9814 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl * MD)9815 Sema::ComputeDefaultedMoveAssignmentExceptionSpec(CXXMethodDecl *MD) {
9816 CXXRecordDecl *ClassDecl = MD->getParent();
9817
9818 ImplicitExceptionSpecification ExceptSpec(*this);
9819 if (ClassDecl->isInvalidDecl())
9820 return ExceptSpec;
9821
9822 // C++0x [except.spec]p14:
9823 // An implicitly declared special member function (Clause 12) shall have an
9824 // exception-specification. [...]
9825
9826 // It is unspecified whether or not an implicit move assignment operator
9827 // attempts to deduplicate calls to assignment operators of virtual bases are
9828 // made. As such, this exception specification is effectively unspecified.
9829 // Based on a similar decision made for constness in C++0x, we're erring on
9830 // the side of assuming such calls to be made regardless of whether they
9831 // actually happen.
9832 // Note that a move constructor is not implicitly declared when there are
9833 // virtual bases, but it can still be user-declared and explicitly defaulted.
9834 for (const auto &Base : ClassDecl->bases()) {
9835 if (Base.isVirtual())
9836 continue;
9837
9838 CXXRecordDecl *BaseClassDecl
9839 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9840 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9841 0, false, 0))
9842 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
9843 }
9844
9845 for (const auto &Base : ClassDecl->vbases()) {
9846 CXXRecordDecl *BaseClassDecl
9847 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
9848 if (CXXMethodDecl *MoveAssign = LookupMovingAssignment(BaseClassDecl,
9849 0, false, 0))
9850 ExceptSpec.CalledDecl(Base.getLocStart(), MoveAssign);
9851 }
9852
9853 for (const auto *Field : ClassDecl->fields()) {
9854 QualType FieldType = Context.getBaseElementType(Field->getType());
9855 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
9856 if (CXXMethodDecl *MoveAssign =
9857 LookupMovingAssignment(FieldClassDecl,
9858 FieldType.getCVRQualifiers(),
9859 false, 0))
9860 ExceptSpec.CalledDecl(Field->getLocation(), MoveAssign);
9861 }
9862 }
9863
9864 return ExceptSpec;
9865 }
9866
DeclareImplicitMoveAssignment(CXXRecordDecl * ClassDecl)9867 CXXMethodDecl *Sema::DeclareImplicitMoveAssignment(CXXRecordDecl *ClassDecl) {
9868 assert(ClassDecl->needsImplicitMoveAssignment());
9869
9870 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveAssignment);
9871 if (DSM.isAlreadyBeingDeclared())
9872 return nullptr;
9873
9874 // Note: The following rules are largely analoguous to the move
9875 // constructor rules.
9876
9877 QualType ArgType = Context.getTypeDeclType(ClassDecl);
9878 QualType RetType = Context.getLValueReferenceType(ArgType);
9879 ArgType = Context.getRValueReferenceType(ArgType);
9880
9881 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
9882 CXXMoveAssignment,
9883 false);
9884
9885 // An implicitly-declared move assignment operator is an inline public
9886 // member of its class.
9887 DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal);
9888 SourceLocation ClassLoc = ClassDecl->getLocation();
9889 DeclarationNameInfo NameInfo(Name, ClassLoc);
9890 CXXMethodDecl *MoveAssignment =
9891 CXXMethodDecl::Create(Context, ClassDecl, ClassLoc, NameInfo, QualType(),
9892 /*TInfo=*/nullptr, /*StorageClass=*/SC_None,
9893 /*isInline=*/true, Constexpr, SourceLocation());
9894 MoveAssignment->setAccess(AS_public);
9895 MoveAssignment->setDefaulted();
9896 MoveAssignment->setImplicit();
9897
9898 // Build an exception specification pointing back at this member.
9899 FunctionProtoType::ExtProtoInfo EPI =
9900 getImplicitMethodEPI(*this, MoveAssignment);
9901 MoveAssignment->setType(Context.getFunctionType(RetType, ArgType, EPI));
9902
9903 // Add the parameter to the operator.
9904 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveAssignment,
9905 ClassLoc, ClassLoc,
9906 /*Id=*/nullptr, ArgType,
9907 /*TInfo=*/nullptr, SC_None,
9908 nullptr);
9909 MoveAssignment->setParams(FromParam);
9910
9911 AddOverriddenMethods(ClassDecl, MoveAssignment);
9912
9913 MoveAssignment->setTrivial(
9914 ClassDecl->needsOverloadResolutionForMoveAssignment()
9915 ? SpecialMemberIsTrivial(MoveAssignment, CXXMoveAssignment)
9916 : ClassDecl->hasTrivialMoveAssignment());
9917
9918 if (ShouldDeleteSpecialMember(MoveAssignment, CXXMoveAssignment)) {
9919 ClassDecl->setImplicitMoveAssignmentIsDeleted();
9920 SetDeclDeleted(MoveAssignment, ClassLoc);
9921 }
9922
9923 // Note that we have added this copy-assignment operator.
9924 ++ASTContext::NumImplicitMoveAssignmentOperatorsDeclared;
9925
9926 if (Scope *S = getScopeForContext(ClassDecl))
9927 PushOnScopeChains(MoveAssignment, S, false);
9928 ClassDecl->addDecl(MoveAssignment);
9929
9930 return MoveAssignment;
9931 }
9932
9933 /// Check if we're implicitly defining a move assignment operator for a class
9934 /// with virtual bases. Such a move assignment might move-assign the virtual
9935 /// base multiple times.
checkMoveAssignmentForRepeatedMove(Sema & S,CXXRecordDecl * Class,SourceLocation CurrentLocation)9936 static void checkMoveAssignmentForRepeatedMove(Sema &S, CXXRecordDecl *Class,
9937 SourceLocation CurrentLocation) {
9938 assert(!Class->isDependentContext() && "should not define dependent move");
9939
9940 // Only a virtual base could get implicitly move-assigned multiple times.
9941 // Only a non-trivial move assignment can observe this. We only want to
9942 // diagnose if we implicitly define an assignment operator that assigns
9943 // two base classes, both of which move-assign the same virtual base.
9944 if (Class->getNumVBases() == 0 || Class->hasTrivialMoveAssignment() ||
9945 Class->getNumBases() < 2)
9946 return;
9947
9948 llvm::SmallVector<CXXBaseSpecifier *, 16> Worklist;
9949 typedef llvm::DenseMap<CXXRecordDecl*, CXXBaseSpecifier*> VBaseMap;
9950 VBaseMap VBases;
9951
9952 for (auto &BI : Class->bases()) {
9953 Worklist.push_back(&BI);
9954 while (!Worklist.empty()) {
9955 CXXBaseSpecifier *BaseSpec = Worklist.pop_back_val();
9956 CXXRecordDecl *Base = BaseSpec->getType()->getAsCXXRecordDecl();
9957
9958 // If the base has no non-trivial move assignment operators,
9959 // we don't care about moves from it.
9960 if (!Base->hasNonTrivialMoveAssignment())
9961 continue;
9962
9963 // If there's nothing virtual here, skip it.
9964 if (!BaseSpec->isVirtual() && !Base->getNumVBases())
9965 continue;
9966
9967 // If we're not actually going to call a move assignment for this base,
9968 // or the selected move assignment is trivial, skip it.
9969 Sema::SpecialMemberOverloadResult *SMOR =
9970 S.LookupSpecialMember(Base, Sema::CXXMoveAssignment,
9971 /*ConstArg*/false, /*VolatileArg*/false,
9972 /*RValueThis*/true, /*ConstThis*/false,
9973 /*VolatileThis*/false);
9974 if (!SMOR->getMethod() || SMOR->getMethod()->isTrivial() ||
9975 !SMOR->getMethod()->isMoveAssignmentOperator())
9976 continue;
9977
9978 if (BaseSpec->isVirtual()) {
9979 // We're going to move-assign this virtual base, and its move
9980 // assignment operator is not trivial. If this can happen for
9981 // multiple distinct direct bases of Class, diagnose it. (If it
9982 // only happens in one base, we'll diagnose it when synthesizing
9983 // that base class's move assignment operator.)
9984 CXXBaseSpecifier *&Existing =
9985 VBases.insert(std::make_pair(Base->getCanonicalDecl(), &BI))
9986 .first->second;
9987 if (Existing && Existing != &BI) {
9988 S.Diag(CurrentLocation, diag::warn_vbase_moved_multiple_times)
9989 << Class << Base;
9990 S.Diag(Existing->getLocStart(), diag::note_vbase_moved_here)
9991 << (Base->getCanonicalDecl() ==
9992 Existing->getType()->getAsCXXRecordDecl()->getCanonicalDecl())
9993 << Base << Existing->getType() << Existing->getSourceRange();
9994 S.Diag(BI.getLocStart(), diag::note_vbase_moved_here)
9995 << (Base->getCanonicalDecl() ==
9996 BI.getType()->getAsCXXRecordDecl()->getCanonicalDecl())
9997 << Base << BI.getType() << BaseSpec->getSourceRange();
9998
9999 // Only diagnose each vbase once.
10000 Existing = nullptr;
10001 }
10002 } else {
10003 // Only walk over bases that have defaulted move assignment operators.
10004 // We assume that any user-provided move assignment operator handles
10005 // the multiple-moves-of-vbase case itself somehow.
10006 if (!SMOR->getMethod()->isDefaulted())
10007 continue;
10008
10009 // We're going to move the base classes of Base. Add them to the list.
10010 for (auto &BI : Base->bases())
10011 Worklist.push_back(&BI);
10012 }
10013 }
10014 }
10015 }
10016
DefineImplicitMoveAssignment(SourceLocation CurrentLocation,CXXMethodDecl * MoveAssignOperator)10017 void Sema::DefineImplicitMoveAssignment(SourceLocation CurrentLocation,
10018 CXXMethodDecl *MoveAssignOperator) {
10019 assert((MoveAssignOperator->isDefaulted() &&
10020 MoveAssignOperator->isOverloadedOperator() &&
10021 MoveAssignOperator->getOverloadedOperator() == OO_Equal &&
10022 !MoveAssignOperator->doesThisDeclarationHaveABody() &&
10023 !MoveAssignOperator->isDeleted()) &&
10024 "DefineImplicitMoveAssignment called for wrong function");
10025
10026 CXXRecordDecl *ClassDecl = MoveAssignOperator->getParent();
10027
10028 if (ClassDecl->isInvalidDecl() || MoveAssignOperator->isInvalidDecl()) {
10029 MoveAssignOperator->setInvalidDecl();
10030 return;
10031 }
10032
10033 MoveAssignOperator->markUsed(Context);
10034
10035 SynthesizedFunctionScope Scope(*this, MoveAssignOperator);
10036 DiagnosticErrorTrap Trap(Diags);
10037
10038 // C++0x [class.copy]p28:
10039 // The implicitly-defined or move assignment operator for a non-union class
10040 // X performs memberwise move assignment of its subobjects. The direct base
10041 // classes of X are assigned first, in the order of their declaration in the
10042 // base-specifier-list, and then the immediate non-static data members of X
10043 // are assigned, in the order in which they were declared in the class
10044 // definition.
10045
10046 // Issue a warning if our implicit move assignment operator will move
10047 // from a virtual base more than once.
10048 checkMoveAssignmentForRepeatedMove(*this, ClassDecl, CurrentLocation);
10049
10050 // The statements that form the synthesized function body.
10051 SmallVector<Stmt*, 8> Statements;
10052
10053 // The parameter for the "other" object, which we are move from.
10054 ParmVarDecl *Other = MoveAssignOperator->getParamDecl(0);
10055 QualType OtherRefType = Other->getType()->
10056 getAs<RValueReferenceType>()->getPointeeType();
10057 assert(!OtherRefType.getQualifiers() &&
10058 "Bad argument type of defaulted move assignment");
10059
10060 // Our location for everything implicitly-generated.
10061 SourceLocation Loc = MoveAssignOperator->getLocEnd().isValid()
10062 ? MoveAssignOperator->getLocEnd()
10063 : MoveAssignOperator->getLocation();
10064
10065 // Builds a reference to the "other" object.
10066 RefBuilder OtherRef(Other, OtherRefType);
10067 // Cast to rvalue.
10068 MoveCastBuilder MoveOther(OtherRef);
10069
10070 // Builds the "this" pointer.
10071 ThisBuilder This;
10072
10073 // Assign base classes.
10074 bool Invalid = false;
10075 for (auto &Base : ClassDecl->bases()) {
10076 // C++11 [class.copy]p28:
10077 // It is unspecified whether subobjects representing virtual base classes
10078 // are assigned more than once by the implicitly-defined copy assignment
10079 // operator.
10080 // FIXME: Do not assign to a vbase that will be assigned by some other base
10081 // class. For a move-assignment, this can result in the vbase being moved
10082 // multiple times.
10083
10084 // Form the assignment:
10085 // static_cast<Base*>(this)->Base::operator=(static_cast<Base&&>(other));
10086 QualType BaseType = Base.getType().getUnqualifiedType();
10087 if (!BaseType->isRecordType()) {
10088 Invalid = true;
10089 continue;
10090 }
10091
10092 CXXCastPath BasePath;
10093 BasePath.push_back(&Base);
10094
10095 // Construct the "from" expression, which is an implicit cast to the
10096 // appropriately-qualified base type.
10097 CastBuilder From(OtherRef, BaseType, VK_XValue, BasePath);
10098
10099 // Dereference "this".
10100 DerefBuilder DerefThis(This);
10101
10102 // Implicitly cast "this" to the appropriately-qualified base type.
10103 CastBuilder To(DerefThis,
10104 Context.getCVRQualifiedType(
10105 BaseType, MoveAssignOperator->getTypeQualifiers()),
10106 VK_LValue, BasePath);
10107
10108 // Build the move.
10109 StmtResult Move = buildSingleCopyAssign(*this, Loc, BaseType,
10110 To, From,
10111 /*CopyingBaseSubobject=*/true,
10112 /*Copying=*/false);
10113 if (Move.isInvalid()) {
10114 Diag(CurrentLocation, diag::note_member_synthesized_at)
10115 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10116 MoveAssignOperator->setInvalidDecl();
10117 return;
10118 }
10119
10120 // Success! Record the move.
10121 Statements.push_back(Move.getAs<Expr>());
10122 }
10123
10124 // Assign non-static members.
10125 for (auto *Field : ClassDecl->fields()) {
10126 if (Field->isUnnamedBitfield())
10127 continue;
10128
10129 if (Field->isInvalidDecl()) {
10130 Invalid = true;
10131 continue;
10132 }
10133
10134 // Check for members of reference type; we can't move those.
10135 if (Field->getType()->isReferenceType()) {
10136 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10137 << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName();
10138 Diag(Field->getLocation(), diag::note_declared_at);
10139 Diag(CurrentLocation, diag::note_member_synthesized_at)
10140 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10141 Invalid = true;
10142 continue;
10143 }
10144
10145 // Check for members of const-qualified, non-class type.
10146 QualType BaseType = Context.getBaseElementType(Field->getType());
10147 if (!BaseType->getAs<RecordType>() && BaseType.isConstQualified()) {
10148 Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign)
10149 << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName();
10150 Diag(Field->getLocation(), diag::note_declared_at);
10151 Diag(CurrentLocation, diag::note_member_synthesized_at)
10152 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10153 Invalid = true;
10154 continue;
10155 }
10156
10157 // Suppress assigning zero-width bitfields.
10158 if (Field->isBitField() && Field->getBitWidthValue(Context) == 0)
10159 continue;
10160
10161 QualType FieldType = Field->getType().getNonReferenceType();
10162 if (FieldType->isIncompleteArrayType()) {
10163 assert(ClassDecl->hasFlexibleArrayMember() &&
10164 "Incomplete array type is not valid");
10165 continue;
10166 }
10167
10168 // Build references to the field in the object we're copying from and to.
10169 LookupResult MemberLookup(*this, Field->getDeclName(), Loc,
10170 LookupMemberName);
10171 MemberLookup.addDecl(Field);
10172 MemberLookup.resolveKind();
10173 MemberBuilder From(MoveOther, OtherRefType,
10174 /*IsArrow=*/false, MemberLookup);
10175 MemberBuilder To(This, getCurrentThisType(),
10176 /*IsArrow=*/true, MemberLookup);
10177
10178 assert(!From.build(*this, Loc)->isLValue() && // could be xvalue or prvalue
10179 "Member reference with rvalue base must be rvalue except for reference "
10180 "members, which aren't allowed for move assignment.");
10181
10182 // Build the move of this field.
10183 StmtResult Move = buildSingleCopyAssign(*this, Loc, FieldType,
10184 To, From,
10185 /*CopyingBaseSubobject=*/false,
10186 /*Copying=*/false);
10187 if (Move.isInvalid()) {
10188 Diag(CurrentLocation, diag::note_member_synthesized_at)
10189 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10190 MoveAssignOperator->setInvalidDecl();
10191 return;
10192 }
10193
10194 // Success! Record the copy.
10195 Statements.push_back(Move.getAs<Stmt>());
10196 }
10197
10198 if (!Invalid) {
10199 // Add a "return *this;"
10200 ExprResult ThisObj =
10201 CreateBuiltinUnaryOp(Loc, UO_Deref, This.build(*this, Loc));
10202
10203 StmtResult Return = BuildReturnStmt(Loc, ThisObj.get());
10204 if (Return.isInvalid())
10205 Invalid = true;
10206 else {
10207 Statements.push_back(Return.getAs<Stmt>());
10208
10209 if (Trap.hasErrorOccurred()) {
10210 Diag(CurrentLocation, diag::note_member_synthesized_at)
10211 << CXXMoveAssignment << Context.getTagDeclType(ClassDecl);
10212 Invalid = true;
10213 }
10214 }
10215 }
10216
10217 if (Invalid) {
10218 MoveAssignOperator->setInvalidDecl();
10219 return;
10220 }
10221
10222 StmtResult Body;
10223 {
10224 CompoundScopeRAII CompoundScope(*this);
10225 Body = ActOnCompoundStmt(Loc, Loc, Statements,
10226 /*isStmtExpr=*/false);
10227 assert(!Body.isInvalid() && "Compound statement creation cannot fail");
10228 }
10229 MoveAssignOperator->setBody(Body.getAs<Stmt>());
10230
10231 if (ASTMutationListener *L = getASTMutationListener()) {
10232 L->CompletedImplicitDefinition(MoveAssignOperator);
10233 }
10234 }
10235
10236 Sema::ImplicitExceptionSpecification
ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl * MD)10237 Sema::ComputeDefaultedCopyCtorExceptionSpec(CXXMethodDecl *MD) {
10238 CXXRecordDecl *ClassDecl = MD->getParent();
10239
10240 ImplicitExceptionSpecification ExceptSpec(*this);
10241 if (ClassDecl->isInvalidDecl())
10242 return ExceptSpec;
10243
10244 const FunctionProtoType *T = MD->getType()->castAs<FunctionProtoType>();
10245 assert(T->getNumParams() >= 1 && "not a copy ctor");
10246 unsigned Quals = T->getParamType(0).getNonReferenceType().getCVRQualifiers();
10247
10248 // C++ [except.spec]p14:
10249 // An implicitly declared special member function (Clause 12) shall have an
10250 // exception-specification. [...]
10251 for (const auto &Base : ClassDecl->bases()) {
10252 // Virtual bases are handled below.
10253 if (Base.isVirtual())
10254 continue;
10255
10256 CXXRecordDecl *BaseClassDecl
10257 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10258 if (CXXConstructorDecl *CopyConstructor =
10259 LookupCopyingConstructor(BaseClassDecl, Quals))
10260 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10261 }
10262 for (const auto &Base : ClassDecl->vbases()) {
10263 CXXRecordDecl *BaseClassDecl
10264 = cast<CXXRecordDecl>(Base.getType()->getAs<RecordType>()->getDecl());
10265 if (CXXConstructorDecl *CopyConstructor =
10266 LookupCopyingConstructor(BaseClassDecl, Quals))
10267 ExceptSpec.CalledDecl(Base.getLocStart(), CopyConstructor);
10268 }
10269 for (const auto *Field : ClassDecl->fields()) {
10270 QualType FieldType = Context.getBaseElementType(Field->getType());
10271 if (CXXRecordDecl *FieldClassDecl = FieldType->getAsCXXRecordDecl()) {
10272 if (CXXConstructorDecl *CopyConstructor =
10273 LookupCopyingConstructor(FieldClassDecl,
10274 Quals | FieldType.getCVRQualifiers()))
10275 ExceptSpec.CalledDecl(Field->getLocation(), CopyConstructor);
10276 }
10277 }
10278
10279 return ExceptSpec;
10280 }
10281
DeclareImplicitCopyConstructor(CXXRecordDecl * ClassDecl)10282 CXXConstructorDecl *Sema::DeclareImplicitCopyConstructor(
10283 CXXRecordDecl *ClassDecl) {
10284 // C++ [class.copy]p4:
10285 // If the class definition does not explicitly declare a copy
10286 // constructor, one is declared implicitly.
10287 assert(ClassDecl->needsImplicitCopyConstructor());
10288
10289 DeclaringSpecialMember DSM(*this, ClassDecl, CXXCopyConstructor);
10290 if (DSM.isAlreadyBeingDeclared())
10291 return nullptr;
10292
10293 QualType ClassType = Context.getTypeDeclType(ClassDecl);
10294 QualType ArgType = ClassType;
10295 bool Const = ClassDecl->implicitCopyConstructorHasConstParam();
10296 if (Const)
10297 ArgType = ArgType.withConst();
10298 ArgType = Context.getLValueReferenceType(ArgType);
10299
10300 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10301 CXXCopyConstructor,
10302 Const);
10303
10304 DeclarationName Name
10305 = Context.DeclarationNames.getCXXConstructorName(
10306 Context.getCanonicalType(ClassType));
10307 SourceLocation ClassLoc = ClassDecl->getLocation();
10308 DeclarationNameInfo NameInfo(Name, ClassLoc);
10309
10310 // An implicitly-declared copy constructor is an inline public
10311 // member of its class.
10312 CXXConstructorDecl *CopyConstructor = CXXConstructorDecl::Create(
10313 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10314 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10315 Constexpr);
10316 CopyConstructor->setAccess(AS_public);
10317 CopyConstructor->setDefaulted();
10318
10319 // Build an exception specification pointing back at this member.
10320 FunctionProtoType::ExtProtoInfo EPI =
10321 getImplicitMethodEPI(*this, CopyConstructor);
10322 CopyConstructor->setType(
10323 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10324
10325 // Add the parameter to the constructor.
10326 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor,
10327 ClassLoc, ClassLoc,
10328 /*IdentifierInfo=*/nullptr,
10329 ArgType, /*TInfo=*/nullptr,
10330 SC_None, nullptr);
10331 CopyConstructor->setParams(FromParam);
10332
10333 CopyConstructor->setTrivial(
10334 ClassDecl->needsOverloadResolutionForCopyConstructor()
10335 ? SpecialMemberIsTrivial(CopyConstructor, CXXCopyConstructor)
10336 : ClassDecl->hasTrivialCopyConstructor());
10337
10338 if (ShouldDeleteSpecialMember(CopyConstructor, CXXCopyConstructor))
10339 SetDeclDeleted(CopyConstructor, ClassLoc);
10340
10341 // Note that we have declared this constructor.
10342 ++ASTContext::NumImplicitCopyConstructorsDeclared;
10343
10344 if (Scope *S = getScopeForContext(ClassDecl))
10345 PushOnScopeChains(CopyConstructor, S, false);
10346 ClassDecl->addDecl(CopyConstructor);
10347
10348 return CopyConstructor;
10349 }
10350
DefineImplicitCopyConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * CopyConstructor)10351 void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation,
10352 CXXConstructorDecl *CopyConstructor) {
10353 assert((CopyConstructor->isDefaulted() &&
10354 CopyConstructor->isCopyConstructor() &&
10355 !CopyConstructor->doesThisDeclarationHaveABody() &&
10356 !CopyConstructor->isDeleted()) &&
10357 "DefineImplicitCopyConstructor - call it for implicit copy ctor");
10358
10359 CXXRecordDecl *ClassDecl = CopyConstructor->getParent();
10360 assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor");
10361
10362 // C++11 [class.copy]p7:
10363 // The [definition of an implicitly declared copy constructor] is
10364 // deprecated if the class has a user-declared copy assignment operator
10365 // or a user-declared destructor.
10366 if (getLangOpts().CPlusPlus11 && CopyConstructor->isImplicit())
10367 diagnoseDeprecatedCopyOperation(*this, CopyConstructor, CurrentLocation);
10368
10369 SynthesizedFunctionScope Scope(*this, CopyConstructor);
10370 DiagnosticErrorTrap Trap(Diags);
10371
10372 if (SetCtorInitializers(CopyConstructor, /*AnyErrors=*/false) ||
10373 Trap.hasErrorOccurred()) {
10374 Diag(CurrentLocation, diag::note_member_synthesized_at)
10375 << CXXCopyConstructor << Context.getTagDeclType(ClassDecl);
10376 CopyConstructor->setInvalidDecl();
10377 } else {
10378 SourceLocation Loc = CopyConstructor->getLocEnd().isValid()
10379 ? CopyConstructor->getLocEnd()
10380 : CopyConstructor->getLocation();
10381 Sema::CompoundScopeRAII CompoundScope(*this);
10382 CopyConstructor->setBody(
10383 ActOnCompoundStmt(Loc, Loc, None, /*isStmtExpr=*/false).getAs<Stmt>());
10384 }
10385
10386 CopyConstructor->markUsed(Context);
10387 if (ASTMutationListener *L = getASTMutationListener()) {
10388 L->CompletedImplicitDefinition(CopyConstructor);
10389 }
10390 }
10391
10392 Sema::ImplicitExceptionSpecification
ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl * MD)10393 Sema::ComputeDefaultedMoveCtorExceptionSpec(CXXMethodDecl *MD) {
10394 CXXRecordDecl *ClassDecl = MD->getParent();
10395
10396 // C++ [except.spec]p14:
10397 // An implicitly declared special member function (Clause 12) shall have an
10398 // exception-specification. [...]
10399 ImplicitExceptionSpecification ExceptSpec(*this);
10400 if (ClassDecl->isInvalidDecl())
10401 return ExceptSpec;
10402
10403 // Direct base-class constructors.
10404 for (const auto &B : ClassDecl->bases()) {
10405 if (B.isVirtual()) // Handled below.
10406 continue;
10407
10408 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10409 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10410 CXXConstructorDecl *Constructor =
10411 LookupMovingConstructor(BaseClassDecl, 0);
10412 // If this is a deleted function, add it anyway. This might be conformant
10413 // with the standard. This might not. I'm not sure. It might not matter.
10414 if (Constructor)
10415 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10416 }
10417 }
10418
10419 // Virtual base-class constructors.
10420 for (const auto &B : ClassDecl->vbases()) {
10421 if (const RecordType *BaseType = B.getType()->getAs<RecordType>()) {
10422 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
10423 CXXConstructorDecl *Constructor =
10424 LookupMovingConstructor(BaseClassDecl, 0);
10425 // If this is a deleted function, add it anyway. This might be conformant
10426 // with the standard. This might not. I'm not sure. It might not matter.
10427 if (Constructor)
10428 ExceptSpec.CalledDecl(B.getLocStart(), Constructor);
10429 }
10430 }
10431
10432 // Field constructors.
10433 for (const auto *F : ClassDecl->fields()) {
10434 QualType FieldType = Context.getBaseElementType(F->getType());
10435 if (CXXRecordDecl *FieldRecDecl = FieldType->getAsCXXRecordDecl()) {
10436 CXXConstructorDecl *Constructor =
10437 LookupMovingConstructor(FieldRecDecl, FieldType.getCVRQualifiers());
10438 // If this is a deleted function, add it anyway. This might be conformant
10439 // with the standard. This might not. I'm not sure. It might not matter.
10440 // In particular, the problem is that this function never gets called. It
10441 // might just be ill-formed because this function attempts to refer to
10442 // a deleted function here.
10443 if (Constructor)
10444 ExceptSpec.CalledDecl(F->getLocation(), Constructor);
10445 }
10446 }
10447
10448 return ExceptSpec;
10449 }
10450
DeclareImplicitMoveConstructor(CXXRecordDecl * ClassDecl)10451 CXXConstructorDecl *Sema::DeclareImplicitMoveConstructor(
10452 CXXRecordDecl *ClassDecl) {
10453 assert(ClassDecl->needsImplicitMoveConstructor());
10454
10455 DeclaringSpecialMember DSM(*this, ClassDecl, CXXMoveConstructor);
10456 if (DSM.isAlreadyBeingDeclared())
10457 return nullptr;
10458
10459 QualType ClassType = Context.getTypeDeclType(ClassDecl);
10460 QualType ArgType = Context.getRValueReferenceType(ClassType);
10461
10462 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, ClassDecl,
10463 CXXMoveConstructor,
10464 false);
10465
10466 DeclarationName Name
10467 = Context.DeclarationNames.getCXXConstructorName(
10468 Context.getCanonicalType(ClassType));
10469 SourceLocation ClassLoc = ClassDecl->getLocation();
10470 DeclarationNameInfo NameInfo(Name, ClassLoc);
10471
10472 // C++11 [class.copy]p11:
10473 // An implicitly-declared copy/move constructor is an inline public
10474 // member of its class.
10475 CXXConstructorDecl *MoveConstructor = CXXConstructorDecl::Create(
10476 Context, ClassDecl, ClassLoc, NameInfo, QualType(), /*TInfo=*/nullptr,
10477 /*isExplicit=*/false, /*isInline=*/true, /*isImplicitlyDeclared=*/true,
10478 Constexpr);
10479 MoveConstructor->setAccess(AS_public);
10480 MoveConstructor->setDefaulted();
10481
10482 // Build an exception specification pointing back at this member.
10483 FunctionProtoType::ExtProtoInfo EPI =
10484 getImplicitMethodEPI(*this, MoveConstructor);
10485 MoveConstructor->setType(
10486 Context.getFunctionType(Context.VoidTy, ArgType, EPI));
10487
10488 // Add the parameter to the constructor.
10489 ParmVarDecl *FromParam = ParmVarDecl::Create(Context, MoveConstructor,
10490 ClassLoc, ClassLoc,
10491 /*IdentifierInfo=*/nullptr,
10492 ArgType, /*TInfo=*/nullptr,
10493 SC_None, nullptr);
10494 MoveConstructor->setParams(FromParam);
10495
10496 MoveConstructor->setTrivial(
10497 ClassDecl->needsOverloadResolutionForMoveConstructor()
10498 ? SpecialMemberIsTrivial(MoveConstructor, CXXMoveConstructor)
10499 : ClassDecl->hasTrivialMoveConstructor());
10500
10501 if (ShouldDeleteSpecialMember(MoveConstructor, CXXMoveConstructor)) {
10502 ClassDecl->setImplicitMoveConstructorIsDeleted();
10503 SetDeclDeleted(MoveConstructor, ClassLoc);
10504 }
10505
10506 // Note that we have declared this constructor.
10507 ++ASTContext::NumImplicitMoveConstructorsDeclared;
10508
10509 if (Scope *S = getScopeForContext(ClassDecl))
10510 PushOnScopeChains(MoveConstructor, S, false);
10511 ClassDecl->addDecl(MoveConstructor);
10512
10513 return MoveConstructor;
10514 }
10515
DefineImplicitMoveConstructor(SourceLocation CurrentLocation,CXXConstructorDecl * MoveConstructor)10516 void Sema::DefineImplicitMoveConstructor(SourceLocation CurrentLocation,
10517 CXXConstructorDecl *MoveConstructor) {
10518 assert((MoveConstructor->isDefaulted() &&
10519 MoveConstructor->isMoveConstructor() &&
10520 !MoveConstructor->doesThisDeclarationHaveABody() &&
10521 !MoveConstructor->isDeleted()) &&
10522 "DefineImplicitMoveConstructor - call it for implicit move ctor");
10523
10524 CXXRecordDecl *ClassDecl = MoveConstructor->getParent();
10525 assert(ClassDecl && "DefineImplicitMoveConstructor - invalid constructor");
10526
10527 SynthesizedFunctionScope Scope(*this, MoveConstructor);
10528 DiagnosticErrorTrap Trap(Diags);
10529
10530 if (SetCtorInitializers(MoveConstructor, /*AnyErrors=*/false) ||
10531 Trap.hasErrorOccurred()) {
10532 Diag(CurrentLocation, diag::note_member_synthesized_at)
10533 << CXXMoveConstructor << Context.getTagDeclType(ClassDecl);
10534 MoveConstructor->setInvalidDecl();
10535 } else {
10536 SourceLocation Loc = MoveConstructor->getLocEnd().isValid()
10537 ? MoveConstructor->getLocEnd()
10538 : MoveConstructor->getLocation();
10539 Sema::CompoundScopeRAII CompoundScope(*this);
10540 MoveConstructor->setBody(ActOnCompoundStmt(
10541 Loc, Loc, None, /*isStmtExpr=*/ false).getAs<Stmt>());
10542 }
10543
10544 MoveConstructor->markUsed(Context);
10545
10546 if (ASTMutationListener *L = getASTMutationListener()) {
10547 L->CompletedImplicitDefinition(MoveConstructor);
10548 }
10549 }
10550
isImplicitlyDeleted(FunctionDecl * FD)10551 bool Sema::isImplicitlyDeleted(FunctionDecl *FD) {
10552 return FD->isDeleted() && FD->isDefaulted() && isa<CXXMethodDecl>(FD);
10553 }
10554
DefineImplicitLambdaToFunctionPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)10555 void Sema::DefineImplicitLambdaToFunctionPointerConversion(
10556 SourceLocation CurrentLocation,
10557 CXXConversionDecl *Conv) {
10558 CXXRecordDecl *Lambda = Conv->getParent();
10559 CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
10560 // If we are defining a specialization of a conversion to function-ptr
10561 // cache the deduced template arguments for this specialization
10562 // so that we can use them to retrieve the corresponding call-operator
10563 // and static-invoker.
10564 const TemplateArgumentList *DeducedTemplateArgs = nullptr;
10565
10566 // Retrieve the corresponding call-operator specialization.
10567 if (Lambda->isGenericLambda()) {
10568 assert(Conv->isFunctionTemplateSpecialization());
10569 FunctionTemplateDecl *CallOpTemplate =
10570 CallOp->getDescribedFunctionTemplate();
10571 DeducedTemplateArgs = Conv->getTemplateSpecializationArgs();
10572 void *InsertPos = nullptr;
10573 FunctionDecl *CallOpSpec = CallOpTemplate->findSpecialization(
10574 DeducedTemplateArgs->asArray(),
10575 InsertPos);
10576 assert(CallOpSpec &&
10577 "Conversion operator must have a corresponding call operator");
10578 CallOp = cast<CXXMethodDecl>(CallOpSpec);
10579 }
10580 // Mark the call operator referenced (and add to pending instantiations
10581 // if necessary).
10582 // For both the conversion and static-invoker template specializations
10583 // we construct their body's in this function, so no need to add them
10584 // to the PendingInstantiations.
10585 MarkFunctionReferenced(CurrentLocation, CallOp);
10586
10587 SynthesizedFunctionScope Scope(*this, Conv);
10588 DiagnosticErrorTrap Trap(Diags);
10589
10590 // Retrieve the static invoker...
10591 CXXMethodDecl *Invoker = Lambda->getLambdaStaticInvoker();
10592 // ... and get the corresponding specialization for a generic lambda.
10593 if (Lambda->isGenericLambda()) {
10594 assert(DeducedTemplateArgs &&
10595 "Must have deduced template arguments from Conversion Operator");
10596 FunctionTemplateDecl *InvokeTemplate =
10597 Invoker->getDescribedFunctionTemplate();
10598 void *InsertPos = nullptr;
10599 FunctionDecl *InvokeSpec = InvokeTemplate->findSpecialization(
10600 DeducedTemplateArgs->asArray(),
10601 InsertPos);
10602 assert(InvokeSpec &&
10603 "Must have a corresponding static invoker specialization");
10604 Invoker = cast<CXXMethodDecl>(InvokeSpec);
10605 }
10606 // Construct the body of the conversion function { return __invoke; }.
10607 Expr *FunctionRef = BuildDeclRefExpr(Invoker, Invoker->getType(),
10608 VK_LValue, Conv->getLocation()).get();
10609 assert(FunctionRef && "Can't refer to __invoke function?");
10610 Stmt *Return = BuildReturnStmt(Conv->getLocation(), FunctionRef).get();
10611 Conv->setBody(new (Context) CompoundStmt(Context, Return,
10612 Conv->getLocation(),
10613 Conv->getLocation()));
10614
10615 Conv->markUsed(Context);
10616 Conv->setReferenced();
10617
10618 // Fill in the __invoke function with a dummy implementation. IR generation
10619 // will fill in the actual details.
10620 Invoker->markUsed(Context);
10621 Invoker->setReferenced();
10622 Invoker->setBody(new (Context) CompoundStmt(Conv->getLocation()));
10623
10624 if (ASTMutationListener *L = getASTMutationListener()) {
10625 L->CompletedImplicitDefinition(Conv);
10626 L->CompletedImplicitDefinition(Invoker);
10627 }
10628 }
10629
10630
10631
DefineImplicitLambdaToBlockPointerConversion(SourceLocation CurrentLocation,CXXConversionDecl * Conv)10632 void Sema::DefineImplicitLambdaToBlockPointerConversion(
10633 SourceLocation CurrentLocation,
10634 CXXConversionDecl *Conv)
10635 {
10636 assert(!Conv->getParent()->isGenericLambda());
10637
10638 Conv->markUsed(Context);
10639
10640 SynthesizedFunctionScope Scope(*this, Conv);
10641 DiagnosticErrorTrap Trap(Diags);
10642
10643 // Copy-initialize the lambda object as needed to capture it.
10644 Expr *This = ActOnCXXThis(CurrentLocation).get();
10645 Expr *DerefThis =CreateBuiltinUnaryOp(CurrentLocation, UO_Deref, This).get();
10646
10647 ExprResult BuildBlock = BuildBlockForLambdaConversion(CurrentLocation,
10648 Conv->getLocation(),
10649 Conv, DerefThis);
10650
10651 // If we're not under ARC, make sure we still get the _Block_copy/autorelease
10652 // behavior. Note that only the general conversion function does this
10653 // (since it's unusable otherwise); in the case where we inline the
10654 // block literal, it has block literal lifetime semantics.
10655 if (!BuildBlock.isInvalid() && !getLangOpts().ObjCAutoRefCount)
10656 BuildBlock = ImplicitCastExpr::Create(Context, BuildBlock.get()->getType(),
10657 CK_CopyAndAutoreleaseBlockObject,
10658 BuildBlock.get(), nullptr, VK_RValue);
10659
10660 if (BuildBlock.isInvalid()) {
10661 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10662 Conv->setInvalidDecl();
10663 return;
10664 }
10665
10666 // Create the return statement that returns the block from the conversion
10667 // function.
10668 StmtResult Return = BuildReturnStmt(Conv->getLocation(), BuildBlock.get());
10669 if (Return.isInvalid()) {
10670 Diag(CurrentLocation, diag::note_lambda_to_block_conv);
10671 Conv->setInvalidDecl();
10672 return;
10673 }
10674
10675 // Set the body of the conversion function.
10676 Stmt *ReturnS = Return.get();
10677 Conv->setBody(new (Context) CompoundStmt(Context, ReturnS,
10678 Conv->getLocation(),
10679 Conv->getLocation()));
10680
10681 // We're done; notify the mutation listener, if any.
10682 if (ASTMutationListener *L = getASTMutationListener()) {
10683 L->CompletedImplicitDefinition(Conv);
10684 }
10685 }
10686
10687 /// \brief Determine whether the given list arguments contains exactly one
10688 /// "real" (non-default) argument.
hasOneRealArgument(MultiExprArg Args)10689 static bool hasOneRealArgument(MultiExprArg Args) {
10690 switch (Args.size()) {
10691 case 0:
10692 return false;
10693
10694 default:
10695 if (!Args[1]->isDefaultArgument())
10696 return false;
10697
10698 // fall through
10699 case 1:
10700 return !Args[0]->isDefaultArgument();
10701 }
10702
10703 return false;
10704 }
10705
10706 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)10707 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10708 CXXConstructorDecl *Constructor,
10709 MultiExprArg ExprArgs,
10710 bool HadMultipleCandidates,
10711 bool IsListInitialization,
10712 bool RequiresZeroInit,
10713 unsigned ConstructKind,
10714 SourceRange ParenRange) {
10715 bool Elidable = false;
10716
10717 // C++0x [class.copy]p34:
10718 // When certain criteria are met, an implementation is allowed to
10719 // omit the copy/move construction of a class object, even if the
10720 // copy/move constructor and/or destructor for the object have
10721 // side effects. [...]
10722 // - when a temporary class object that has not been bound to a
10723 // reference (12.2) would be copied/moved to a class object
10724 // with the same cv-unqualified type, the copy/move operation
10725 // can be omitted by constructing the temporary object
10726 // directly into the target of the omitted copy/move
10727 if (ConstructKind == CXXConstructExpr::CK_Complete &&
10728 Constructor->isCopyOrMoveConstructor() && hasOneRealArgument(ExprArgs)) {
10729 Expr *SubExpr = ExprArgs[0];
10730 Elidable = SubExpr->isTemporaryObject(Context, Constructor->getParent());
10731 }
10732
10733 return BuildCXXConstructExpr(ConstructLoc, DeclInitType, Constructor,
10734 Elidable, ExprArgs, HadMultipleCandidates,
10735 IsListInitialization, RequiresZeroInit,
10736 ConstructKind, ParenRange);
10737 }
10738
10739 /// BuildCXXConstructExpr - Creates a complete call to a constructor,
10740 /// including handling of its default argument expressions.
10741 ExprResult
BuildCXXConstructExpr(SourceLocation ConstructLoc,QualType DeclInitType,CXXConstructorDecl * Constructor,bool Elidable,MultiExprArg ExprArgs,bool HadMultipleCandidates,bool IsListInitialization,bool RequiresZeroInit,unsigned ConstructKind,SourceRange ParenRange)10742 Sema::BuildCXXConstructExpr(SourceLocation ConstructLoc, QualType DeclInitType,
10743 CXXConstructorDecl *Constructor, bool Elidable,
10744 MultiExprArg ExprArgs,
10745 bool HadMultipleCandidates,
10746 bool IsListInitialization,
10747 bool RequiresZeroInit,
10748 unsigned ConstructKind,
10749 SourceRange ParenRange) {
10750 MarkFunctionReferenced(ConstructLoc, Constructor);
10751 return CXXConstructExpr::Create(
10752 Context, DeclInitType, ConstructLoc, Constructor, Elidable, ExprArgs,
10753 HadMultipleCandidates, IsListInitialization, RequiresZeroInit,
10754 static_cast<CXXConstructExpr::ConstructionKind>(ConstructKind),
10755 ParenRange);
10756 }
10757
FinalizeVarWithDestructor(VarDecl * VD,const RecordType * Record)10758 void Sema::FinalizeVarWithDestructor(VarDecl *VD, const RecordType *Record) {
10759 if (VD->isInvalidDecl()) return;
10760
10761 CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Record->getDecl());
10762 if (ClassDecl->isInvalidDecl()) return;
10763 if (ClassDecl->hasIrrelevantDestructor()) return;
10764 if (ClassDecl->isDependentContext()) return;
10765
10766 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
10767 MarkFunctionReferenced(VD->getLocation(), Destructor);
10768 CheckDestructorAccess(VD->getLocation(), Destructor,
10769 PDiag(diag::err_access_dtor_var)
10770 << VD->getDeclName()
10771 << VD->getType());
10772 DiagnoseUseOfDecl(Destructor, VD->getLocation());
10773
10774 if (Destructor->isTrivial()) return;
10775 if (!VD->hasGlobalStorage()) return;
10776
10777 // Emit warning for non-trivial dtor in global scope (a real global,
10778 // class-static, function-static).
10779 Diag(VD->getLocation(), diag::warn_exit_time_destructor);
10780
10781 // TODO: this should be re-enabled for static locals by !CXAAtExit
10782 if (!VD->isStaticLocal())
10783 Diag(VD->getLocation(), diag::warn_global_destructor);
10784 }
10785
10786 /// \brief Given a constructor and the set of arguments provided for the
10787 /// constructor, convert the arguments and add any required default arguments
10788 /// to form a proper call to this constructor.
10789 ///
10790 /// \returns true if an error occurred, false otherwise.
10791 bool
CompleteConstructorCall(CXXConstructorDecl * Constructor,MultiExprArg ArgsPtr,SourceLocation Loc,SmallVectorImpl<Expr * > & ConvertedArgs,bool AllowExplicit,bool IsListInitialization)10792 Sema::CompleteConstructorCall(CXXConstructorDecl *Constructor,
10793 MultiExprArg ArgsPtr,
10794 SourceLocation Loc,
10795 SmallVectorImpl<Expr*> &ConvertedArgs,
10796 bool AllowExplicit,
10797 bool IsListInitialization) {
10798 // FIXME: This duplicates a lot of code from Sema::ConvertArgumentsForCall.
10799 unsigned NumArgs = ArgsPtr.size();
10800 Expr **Args = ArgsPtr.data();
10801
10802 const FunctionProtoType *Proto
10803 = Constructor->getType()->getAs<FunctionProtoType>();
10804 assert(Proto && "Constructor without a prototype?");
10805 unsigned NumParams = Proto->getNumParams();
10806
10807 // If too few arguments are available, we'll fill in the rest with defaults.
10808 if (NumArgs < NumParams)
10809 ConvertedArgs.reserve(NumParams);
10810 else
10811 ConvertedArgs.reserve(NumArgs);
10812
10813 VariadicCallType CallType =
10814 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
10815 SmallVector<Expr *, 8> AllArgs;
10816 bool Invalid = GatherArgumentsForCall(Loc, Constructor,
10817 Proto, 0,
10818 llvm::makeArrayRef(Args, NumArgs),
10819 AllArgs,
10820 CallType, AllowExplicit,
10821 IsListInitialization);
10822 ConvertedArgs.append(AllArgs.begin(), AllArgs.end());
10823
10824 DiagnoseSentinelCalls(Constructor, Loc, AllArgs);
10825
10826 CheckConstructorCall(Constructor,
10827 llvm::makeArrayRef<const Expr *>(AllArgs.data(),
10828 AllArgs.size()),
10829 Proto, Loc);
10830
10831 return Invalid;
10832 }
10833
10834 static inline bool
CheckOperatorNewDeleteDeclarationScope(Sema & SemaRef,const FunctionDecl * FnDecl)10835 CheckOperatorNewDeleteDeclarationScope(Sema &SemaRef,
10836 const FunctionDecl *FnDecl) {
10837 const DeclContext *DC = FnDecl->getDeclContext()->getRedeclContext();
10838 if (isa<NamespaceDecl>(DC)) {
10839 return SemaRef.Diag(FnDecl->getLocation(),
10840 diag::err_operator_new_delete_declared_in_namespace)
10841 << FnDecl->getDeclName();
10842 }
10843
10844 if (isa<TranslationUnitDecl>(DC) &&
10845 FnDecl->getStorageClass() == SC_Static) {
10846 return SemaRef.Diag(FnDecl->getLocation(),
10847 diag::err_operator_new_delete_declared_static)
10848 << FnDecl->getDeclName();
10849 }
10850
10851 return false;
10852 }
10853
10854 static inline bool
CheckOperatorNewDeleteTypes(Sema & SemaRef,const FunctionDecl * FnDecl,CanQualType ExpectedResultType,CanQualType ExpectedFirstParamType,unsigned DependentParamTypeDiag,unsigned InvalidParamTypeDiag)10855 CheckOperatorNewDeleteTypes(Sema &SemaRef, const FunctionDecl *FnDecl,
10856 CanQualType ExpectedResultType,
10857 CanQualType ExpectedFirstParamType,
10858 unsigned DependentParamTypeDiag,
10859 unsigned InvalidParamTypeDiag) {
10860 QualType ResultType =
10861 FnDecl->getType()->getAs<FunctionType>()->getReturnType();
10862
10863 // Check that the result type is not dependent.
10864 if (ResultType->isDependentType())
10865 return SemaRef.Diag(FnDecl->getLocation(),
10866 diag::err_operator_new_delete_dependent_result_type)
10867 << FnDecl->getDeclName() << ExpectedResultType;
10868
10869 // Check that the result type is what we expect.
10870 if (SemaRef.Context.getCanonicalType(ResultType) != ExpectedResultType)
10871 return SemaRef.Diag(FnDecl->getLocation(),
10872 diag::err_operator_new_delete_invalid_result_type)
10873 << FnDecl->getDeclName() << ExpectedResultType;
10874
10875 // A function template must have at least 2 parameters.
10876 if (FnDecl->getDescribedFunctionTemplate() && FnDecl->getNumParams() < 2)
10877 return SemaRef.Diag(FnDecl->getLocation(),
10878 diag::err_operator_new_delete_template_too_few_parameters)
10879 << FnDecl->getDeclName();
10880
10881 // The function decl must have at least 1 parameter.
10882 if (FnDecl->getNumParams() == 0)
10883 return SemaRef.Diag(FnDecl->getLocation(),
10884 diag::err_operator_new_delete_too_few_parameters)
10885 << FnDecl->getDeclName();
10886
10887 // Check the first parameter type is not dependent.
10888 QualType FirstParamType = FnDecl->getParamDecl(0)->getType();
10889 if (FirstParamType->isDependentType())
10890 return SemaRef.Diag(FnDecl->getLocation(), DependentParamTypeDiag)
10891 << FnDecl->getDeclName() << ExpectedFirstParamType;
10892
10893 // Check that the first parameter type is what we expect.
10894 if (SemaRef.Context.getCanonicalType(FirstParamType).getUnqualifiedType() !=
10895 ExpectedFirstParamType)
10896 return SemaRef.Diag(FnDecl->getLocation(), InvalidParamTypeDiag)
10897 << FnDecl->getDeclName() << ExpectedFirstParamType;
10898
10899 return false;
10900 }
10901
10902 static bool
CheckOperatorNewDeclaration(Sema & SemaRef,const FunctionDecl * FnDecl)10903 CheckOperatorNewDeclaration(Sema &SemaRef, const FunctionDecl *FnDecl) {
10904 // C++ [basic.stc.dynamic.allocation]p1:
10905 // A program is ill-formed if an allocation function is declared in a
10906 // namespace scope other than global scope or declared static in global
10907 // scope.
10908 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10909 return true;
10910
10911 CanQualType SizeTy =
10912 SemaRef.Context.getCanonicalType(SemaRef.Context.getSizeType());
10913
10914 // C++ [basic.stc.dynamic.allocation]p1:
10915 // The return type shall be void*. The first parameter shall have type
10916 // std::size_t.
10917 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidPtrTy,
10918 SizeTy,
10919 diag::err_operator_new_dependent_param_type,
10920 diag::err_operator_new_param_type))
10921 return true;
10922
10923 // C++ [basic.stc.dynamic.allocation]p1:
10924 // The first parameter shall not have an associated default argument.
10925 if (FnDecl->getParamDecl(0)->hasDefaultArg())
10926 return SemaRef.Diag(FnDecl->getLocation(),
10927 diag::err_operator_new_default_arg)
10928 << FnDecl->getDeclName() << FnDecl->getParamDecl(0)->getDefaultArgRange();
10929
10930 return false;
10931 }
10932
10933 static bool
CheckOperatorDeleteDeclaration(Sema & SemaRef,FunctionDecl * FnDecl)10934 CheckOperatorDeleteDeclaration(Sema &SemaRef, FunctionDecl *FnDecl) {
10935 // C++ [basic.stc.dynamic.deallocation]p1:
10936 // A program is ill-formed if deallocation functions are declared in a
10937 // namespace scope other than global scope or declared static in global
10938 // scope.
10939 if (CheckOperatorNewDeleteDeclarationScope(SemaRef, FnDecl))
10940 return true;
10941
10942 // C++ [basic.stc.dynamic.deallocation]p2:
10943 // Each deallocation function shall return void and its first parameter
10944 // shall be void*.
10945 if (CheckOperatorNewDeleteTypes(SemaRef, FnDecl, SemaRef.Context.VoidTy,
10946 SemaRef.Context.VoidPtrTy,
10947 diag::err_operator_delete_dependent_param_type,
10948 diag::err_operator_delete_param_type))
10949 return true;
10950
10951 return false;
10952 }
10953
10954 /// CheckOverloadedOperatorDeclaration - Check whether the declaration
10955 /// of this overloaded operator is well-formed. If so, returns false;
10956 /// otherwise, emits appropriate diagnostics and returns true.
CheckOverloadedOperatorDeclaration(FunctionDecl * FnDecl)10957 bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) {
10958 assert(FnDecl && FnDecl->isOverloadedOperator() &&
10959 "Expected an overloaded operator declaration");
10960
10961 OverloadedOperatorKind Op = FnDecl->getOverloadedOperator();
10962
10963 // C++ [over.oper]p5:
10964 // The allocation and deallocation functions, operator new,
10965 // operator new[], operator delete and operator delete[], are
10966 // described completely in 3.7.3. The attributes and restrictions
10967 // found in the rest of this subclause do not apply to them unless
10968 // explicitly stated in 3.7.3.
10969 if (Op == OO_Delete || Op == OO_Array_Delete)
10970 return CheckOperatorDeleteDeclaration(*this, FnDecl);
10971
10972 if (Op == OO_New || Op == OO_Array_New)
10973 return CheckOperatorNewDeclaration(*this, FnDecl);
10974
10975 // C++ [over.oper]p6:
10976 // An operator function shall either be a non-static member
10977 // function or be a non-member function and have at least one
10978 // parameter whose type is a class, a reference to a class, an
10979 // enumeration, or a reference to an enumeration.
10980 if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) {
10981 if (MethodDecl->isStatic())
10982 return Diag(FnDecl->getLocation(),
10983 diag::err_operator_overload_static) << FnDecl->getDeclName();
10984 } else {
10985 bool ClassOrEnumParam = false;
10986 for (auto Param : FnDecl->params()) {
10987 QualType ParamType = Param->getType().getNonReferenceType();
10988 if (ParamType->isDependentType() || ParamType->isRecordType() ||
10989 ParamType->isEnumeralType()) {
10990 ClassOrEnumParam = true;
10991 break;
10992 }
10993 }
10994
10995 if (!ClassOrEnumParam)
10996 return Diag(FnDecl->getLocation(),
10997 diag::err_operator_overload_needs_class_or_enum)
10998 << FnDecl->getDeclName();
10999 }
11000
11001 // C++ [over.oper]p8:
11002 // An operator function cannot have default arguments (8.3.6),
11003 // except where explicitly stated below.
11004 //
11005 // Only the function-call operator allows default arguments
11006 // (C++ [over.call]p1).
11007 if (Op != OO_Call) {
11008 for (auto Param : FnDecl->params()) {
11009 if (Param->hasDefaultArg())
11010 return Diag(Param->getLocation(),
11011 diag::err_operator_overload_default_arg)
11012 << FnDecl->getDeclName() << Param->getDefaultArgRange();
11013 }
11014 }
11015
11016 static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = {
11017 { false, false, false }
11018 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
11019 , { Unary, Binary, MemberOnly }
11020 #include "clang/Basic/OperatorKinds.def"
11021 };
11022
11023 bool CanBeUnaryOperator = OperatorUses[Op][0];
11024 bool CanBeBinaryOperator = OperatorUses[Op][1];
11025 bool MustBeMemberOperator = OperatorUses[Op][2];
11026
11027 // C++ [over.oper]p8:
11028 // [...] Operator functions cannot have more or fewer parameters
11029 // than the number required for the corresponding operator, as
11030 // described in the rest of this subclause.
11031 unsigned NumParams = FnDecl->getNumParams()
11032 + (isa<CXXMethodDecl>(FnDecl)? 1 : 0);
11033 if (Op != OO_Call &&
11034 ((NumParams == 1 && !CanBeUnaryOperator) ||
11035 (NumParams == 2 && !CanBeBinaryOperator) ||
11036 (NumParams < 1) || (NumParams > 2))) {
11037 // We have the wrong number of parameters.
11038 unsigned ErrorKind;
11039 if (CanBeUnaryOperator && CanBeBinaryOperator) {
11040 ErrorKind = 2; // 2 -> unary or binary.
11041 } else if (CanBeUnaryOperator) {
11042 ErrorKind = 0; // 0 -> unary
11043 } else {
11044 assert(CanBeBinaryOperator &&
11045 "All non-call overloaded operators are unary or binary!");
11046 ErrorKind = 1; // 1 -> binary
11047 }
11048
11049 return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be)
11050 << FnDecl->getDeclName() << NumParams << ErrorKind;
11051 }
11052
11053 // Overloaded operators other than operator() cannot be variadic.
11054 if (Op != OO_Call &&
11055 FnDecl->getType()->getAs<FunctionProtoType>()->isVariadic()) {
11056 return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic)
11057 << FnDecl->getDeclName();
11058 }
11059
11060 // Some operators must be non-static member functions.
11061 if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) {
11062 return Diag(FnDecl->getLocation(),
11063 diag::err_operator_overload_must_be_member)
11064 << FnDecl->getDeclName();
11065 }
11066
11067 // C++ [over.inc]p1:
11068 // The user-defined function called operator++ implements the
11069 // prefix and postfix ++ operator. If this function is a member
11070 // function with no parameters, or a non-member function with one
11071 // parameter of class or enumeration type, it defines the prefix
11072 // increment operator ++ for objects of that type. If the function
11073 // is a member function with one parameter (which shall be of type
11074 // int) or a non-member function with two parameters (the second
11075 // of which shall be of type int), it defines the postfix
11076 // increment operator ++ for objects of that type.
11077 if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) {
11078 ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1);
11079 QualType ParamType = LastParam->getType();
11080
11081 if (!ParamType->isSpecificBuiltinType(BuiltinType::Int) &&
11082 !ParamType->isDependentType())
11083 return Diag(LastParam->getLocation(),
11084 diag::err_operator_overload_post_incdec_must_be_int)
11085 << LastParam->getType() << (Op == OO_MinusMinus);
11086 }
11087
11088 return false;
11089 }
11090
11091 /// CheckLiteralOperatorDeclaration - Check whether the declaration
11092 /// of this literal operator function is well-formed. If so, returns
11093 /// false; otherwise, emits appropriate diagnostics and returns true.
CheckLiteralOperatorDeclaration(FunctionDecl * FnDecl)11094 bool Sema::CheckLiteralOperatorDeclaration(FunctionDecl *FnDecl) {
11095 if (isa<CXXMethodDecl>(FnDecl)) {
11096 Diag(FnDecl->getLocation(), diag::err_literal_operator_outside_namespace)
11097 << FnDecl->getDeclName();
11098 return true;
11099 }
11100
11101 if (FnDecl->isExternC()) {
11102 Diag(FnDecl->getLocation(), diag::err_literal_operator_extern_c);
11103 return true;
11104 }
11105
11106 bool Valid = false;
11107
11108 // This might be the definition of a literal operator template.
11109 FunctionTemplateDecl *TpDecl = FnDecl->getDescribedFunctionTemplate();
11110 // This might be a specialization of a literal operator template.
11111 if (!TpDecl)
11112 TpDecl = FnDecl->getPrimaryTemplate();
11113
11114 // template <char...> type operator "" name() and
11115 // template <class T, T...> type operator "" name() are the only valid
11116 // template signatures, and the only valid signatures with no parameters.
11117 if (TpDecl) {
11118 if (FnDecl->param_size() == 0) {
11119 // Must have one or two template parameters
11120 TemplateParameterList *Params = TpDecl->getTemplateParameters();
11121 if (Params->size() == 1) {
11122 NonTypeTemplateParmDecl *PmDecl =
11123 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(0));
11124
11125 // The template parameter must be a char parameter pack.
11126 if (PmDecl && PmDecl->isTemplateParameterPack() &&
11127 Context.hasSameType(PmDecl->getType(), Context.CharTy))
11128 Valid = true;
11129 } else if (Params->size() == 2) {
11130 TemplateTypeParmDecl *PmType =
11131 dyn_cast<TemplateTypeParmDecl>(Params->getParam(0));
11132 NonTypeTemplateParmDecl *PmArgs =
11133 dyn_cast<NonTypeTemplateParmDecl>(Params->getParam(1));
11134
11135 // The second template parameter must be a parameter pack with the
11136 // first template parameter as its type.
11137 if (PmType && PmArgs &&
11138 !PmType->isTemplateParameterPack() &&
11139 PmArgs->isTemplateParameterPack()) {
11140 const TemplateTypeParmType *TArgs =
11141 PmArgs->getType()->getAs<TemplateTypeParmType>();
11142 if (TArgs && TArgs->getDepth() == PmType->getDepth() &&
11143 TArgs->getIndex() == PmType->getIndex()) {
11144 Valid = true;
11145 if (ActiveTemplateInstantiations.empty())
11146 Diag(FnDecl->getLocation(),
11147 diag::ext_string_literal_operator_template);
11148 }
11149 }
11150 }
11151 }
11152 } else if (FnDecl->param_size()) {
11153 // Check the first parameter
11154 FunctionDecl::param_iterator Param = FnDecl->param_begin();
11155
11156 QualType T = (*Param)->getType().getUnqualifiedType();
11157
11158 // unsigned long long int, long double, and any character type are allowed
11159 // as the only parameters.
11160 if (Context.hasSameType(T, Context.UnsignedLongLongTy) ||
11161 Context.hasSameType(T, Context.LongDoubleTy) ||
11162 Context.hasSameType(T, Context.CharTy) ||
11163 Context.hasSameType(T, Context.WideCharTy) ||
11164 Context.hasSameType(T, Context.Char16Ty) ||
11165 Context.hasSameType(T, Context.Char32Ty)) {
11166 if (++Param == FnDecl->param_end())
11167 Valid = true;
11168 goto FinishedParams;
11169 }
11170
11171 // Otherwise it must be a pointer to const; let's strip those qualifiers.
11172 const PointerType *PT = T->getAs<PointerType>();
11173 if (!PT)
11174 goto FinishedParams;
11175 T = PT->getPointeeType();
11176 if (!T.isConstQualified() || T.isVolatileQualified())
11177 goto FinishedParams;
11178 T = T.getUnqualifiedType();
11179
11180 // Move on to the second parameter;
11181 ++Param;
11182
11183 // If there is no second parameter, the first must be a const char *
11184 if (Param == FnDecl->param_end()) {
11185 if (Context.hasSameType(T, Context.CharTy))
11186 Valid = true;
11187 goto FinishedParams;
11188 }
11189
11190 // const char *, const wchar_t*, const char16_t*, and const char32_t*
11191 // are allowed as the first parameter to a two-parameter function
11192 if (!(Context.hasSameType(T, Context.CharTy) ||
11193 Context.hasSameType(T, Context.WideCharTy) ||
11194 Context.hasSameType(T, Context.Char16Ty) ||
11195 Context.hasSameType(T, Context.Char32Ty)))
11196 goto FinishedParams;
11197
11198 // The second and final parameter must be an std::size_t
11199 T = (*Param)->getType().getUnqualifiedType();
11200 if (Context.hasSameType(T, Context.getSizeType()) &&
11201 ++Param == FnDecl->param_end())
11202 Valid = true;
11203 }
11204
11205 // FIXME: This diagnostic is absolutely terrible.
11206 FinishedParams:
11207 if (!Valid) {
11208 Diag(FnDecl->getLocation(), diag::err_literal_operator_params)
11209 << FnDecl->getDeclName();
11210 return true;
11211 }
11212
11213 // A parameter-declaration-clause containing a default argument is not
11214 // equivalent to any of the permitted forms.
11215 for (auto Param : FnDecl->params()) {
11216 if (Param->hasDefaultArg()) {
11217 Diag(Param->getDefaultArgRange().getBegin(),
11218 diag::err_literal_operator_default_argument)
11219 << Param->getDefaultArgRange();
11220 break;
11221 }
11222 }
11223
11224 StringRef LiteralName
11225 = FnDecl->getDeclName().getCXXLiteralIdentifier()->getName();
11226 if (LiteralName[0] != '_') {
11227 // C++11 [usrlit.suffix]p1:
11228 // Literal suffix identifiers that do not start with an underscore
11229 // are reserved for future standardization.
11230 Diag(FnDecl->getLocation(), diag::warn_user_literal_reserved)
11231 << NumericLiteralParser::isValidUDSuffix(getLangOpts(), LiteralName);
11232 }
11233
11234 return false;
11235 }
11236
11237 /// ActOnStartLinkageSpecification - Parsed the beginning of a C++
11238 /// linkage specification, including the language and (if present)
11239 /// the '{'. ExternLoc is the location of the 'extern', Lang is the
11240 /// language string literal. LBraceLoc, if valid, provides the location of
11241 /// the '{' brace. Otherwise, this linkage specification does not
11242 /// have any braces.
ActOnStartLinkageSpecification(Scope * S,SourceLocation ExternLoc,Expr * LangStr,SourceLocation LBraceLoc)11243 Decl *Sema::ActOnStartLinkageSpecification(Scope *S, SourceLocation ExternLoc,
11244 Expr *LangStr,
11245 SourceLocation LBraceLoc) {
11246 StringLiteral *Lit = cast<StringLiteral>(LangStr);
11247 if (!Lit->isAscii()) {
11248 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_not_ascii)
11249 << LangStr->getSourceRange();
11250 return nullptr;
11251 }
11252
11253 StringRef Lang = Lit->getString();
11254 LinkageSpecDecl::LanguageIDs Language;
11255 if (Lang == "C")
11256 Language = LinkageSpecDecl::lang_c;
11257 else if (Lang == "C++")
11258 Language = LinkageSpecDecl::lang_cxx;
11259 else {
11260 Diag(LangStr->getExprLoc(), diag::err_language_linkage_spec_unknown)
11261 << LangStr->getSourceRange();
11262 return nullptr;
11263 }
11264
11265 // FIXME: Add all the various semantics of linkage specifications
11266
11267 LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, ExternLoc,
11268 LangStr->getExprLoc(), Language,
11269 LBraceLoc.isValid());
11270 CurContext->addDecl(D);
11271 PushDeclContext(S, D);
11272 return D;
11273 }
11274
11275 /// ActOnFinishLinkageSpecification - Complete the definition of
11276 /// the C++ linkage specification LinkageSpec. If RBraceLoc is
11277 /// valid, it's the position of the closing '}' brace in a linkage
11278 /// specification that uses braces.
ActOnFinishLinkageSpecification(Scope * S,Decl * LinkageSpec,SourceLocation RBraceLoc)11279 Decl *Sema::ActOnFinishLinkageSpecification(Scope *S,
11280 Decl *LinkageSpec,
11281 SourceLocation RBraceLoc) {
11282 if (RBraceLoc.isValid()) {
11283 LinkageSpecDecl* LSDecl = cast<LinkageSpecDecl>(LinkageSpec);
11284 LSDecl->setRBraceLoc(RBraceLoc);
11285 }
11286 PopDeclContext();
11287 return LinkageSpec;
11288 }
11289
ActOnEmptyDeclaration(Scope * S,AttributeList * AttrList,SourceLocation SemiLoc)11290 Decl *Sema::ActOnEmptyDeclaration(Scope *S,
11291 AttributeList *AttrList,
11292 SourceLocation SemiLoc) {
11293 Decl *ED = EmptyDecl::Create(Context, CurContext, SemiLoc);
11294 // Attribute declarations appertain to empty declaration so we handle
11295 // them here.
11296 if (AttrList)
11297 ProcessDeclAttributeList(S, ED, AttrList);
11298
11299 CurContext->addDecl(ED);
11300 return ED;
11301 }
11302
11303 /// \brief Perform semantic analysis for the variable declaration that
11304 /// occurs within a C++ catch clause, returning the newly-created
11305 /// variable.
BuildExceptionDeclaration(Scope * S,TypeSourceInfo * TInfo,SourceLocation StartLoc,SourceLocation Loc,IdentifierInfo * Name)11306 VarDecl *Sema::BuildExceptionDeclaration(Scope *S,
11307 TypeSourceInfo *TInfo,
11308 SourceLocation StartLoc,
11309 SourceLocation Loc,
11310 IdentifierInfo *Name) {
11311 bool Invalid = false;
11312 QualType ExDeclType = TInfo->getType();
11313
11314 // Arrays and functions decay.
11315 if (ExDeclType->isArrayType())
11316 ExDeclType = Context.getArrayDecayedType(ExDeclType);
11317 else if (ExDeclType->isFunctionType())
11318 ExDeclType = Context.getPointerType(ExDeclType);
11319
11320 // C++ 15.3p1: The exception-declaration shall not denote an incomplete type.
11321 // The exception-declaration shall not denote a pointer or reference to an
11322 // incomplete type, other than [cv] void*.
11323 // N2844 forbids rvalue references.
11324 if (!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) {
11325 Diag(Loc, diag::err_catch_rvalue_ref);
11326 Invalid = true;
11327 }
11328
11329 QualType BaseType = ExDeclType;
11330 int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference
11331 unsigned DK = diag::err_catch_incomplete;
11332 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
11333 BaseType = Ptr->getPointeeType();
11334 Mode = 1;
11335 DK = diag::err_catch_incomplete_ptr;
11336 } else if (const ReferenceType *Ref = BaseType->getAs<ReferenceType>()) {
11337 // For the purpose of error recovery, we treat rvalue refs like lvalue refs.
11338 BaseType = Ref->getPointeeType();
11339 Mode = 2;
11340 DK = diag::err_catch_incomplete_ref;
11341 }
11342 if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) &&
11343 !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK))
11344 Invalid = true;
11345
11346 if (!Invalid && !ExDeclType->isDependentType() &&
11347 RequireNonAbstractType(Loc, ExDeclType,
11348 diag::err_abstract_type_in_decl,
11349 AbstractVariableType))
11350 Invalid = true;
11351
11352 // Only the non-fragile NeXT runtime currently supports C++ catches
11353 // of ObjC types, and no runtime supports catching ObjC types by value.
11354 if (!Invalid && getLangOpts().ObjC1) {
11355 QualType T = ExDeclType;
11356 if (const ReferenceType *RT = T->getAs<ReferenceType>())
11357 T = RT->getPointeeType();
11358
11359 if (T->isObjCObjectType()) {
11360 Diag(Loc, diag::err_objc_object_catch);
11361 Invalid = true;
11362 } else if (T->isObjCObjectPointerType()) {
11363 // FIXME: should this be a test for macosx-fragile specifically?
11364 if (getLangOpts().ObjCRuntime.isFragile())
11365 Diag(Loc, diag::warn_objc_pointer_cxx_catch_fragile);
11366 }
11367 }
11368
11369 VarDecl *ExDecl = VarDecl::Create(Context, CurContext, StartLoc, Loc, Name,
11370 ExDeclType, TInfo, SC_None);
11371 ExDecl->setExceptionVariable(true);
11372
11373 // In ARC, infer 'retaining' for variables of retainable type.
11374 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(ExDecl))
11375 Invalid = true;
11376
11377 if (!Invalid && !ExDeclType->isDependentType()) {
11378 if (const RecordType *recordType = ExDeclType->getAs<RecordType>()) {
11379 // Insulate this from anything else we might currently be parsing.
11380 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
11381
11382 // C++ [except.handle]p16:
11383 // The object declared in an exception-declaration or, if the
11384 // exception-declaration does not specify a name, a temporary (12.2) is
11385 // copy-initialized (8.5) from the exception object. [...]
11386 // The object is destroyed when the handler exits, after the destruction
11387 // of any automatic objects initialized within the handler.
11388 //
11389 // We just pretend to initialize the object with itself, then make sure
11390 // it can be destroyed later.
11391 QualType initType = ExDeclType;
11392
11393 InitializedEntity entity =
11394 InitializedEntity::InitializeVariable(ExDecl);
11395 InitializationKind initKind =
11396 InitializationKind::CreateCopy(Loc, SourceLocation());
11397
11398 Expr *opaqueValue =
11399 new (Context) OpaqueValueExpr(Loc, initType, VK_LValue, OK_Ordinary);
11400 InitializationSequence sequence(*this, entity, initKind, opaqueValue);
11401 ExprResult result = sequence.Perform(*this, entity, initKind, opaqueValue);
11402 if (result.isInvalid())
11403 Invalid = true;
11404 else {
11405 // If the constructor used was non-trivial, set this as the
11406 // "initializer".
11407 CXXConstructExpr *construct = result.getAs<CXXConstructExpr>();
11408 if (!construct->getConstructor()->isTrivial()) {
11409 Expr *init = MaybeCreateExprWithCleanups(construct);
11410 ExDecl->setInit(init);
11411 }
11412
11413 // And make sure it's destructable.
11414 FinalizeVarWithDestructor(ExDecl, recordType);
11415 }
11416 }
11417 }
11418
11419 if (Invalid)
11420 ExDecl->setInvalidDecl();
11421
11422 return ExDecl;
11423 }
11424
11425 /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch
11426 /// handler.
ActOnExceptionDeclarator(Scope * S,Declarator & D)11427 Decl *Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) {
11428 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11429 bool Invalid = D.isInvalidType();
11430
11431 // Check for unexpanded parameter packs.
11432 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11433 UPPC_ExceptionType)) {
11434 TInfo = Context.getTrivialTypeSourceInfo(Context.IntTy,
11435 D.getIdentifierLoc());
11436 Invalid = true;
11437 }
11438
11439 IdentifierInfo *II = D.getIdentifier();
11440 if (NamedDecl *PrevDecl = LookupSingleName(S, II, D.getIdentifierLoc(),
11441 LookupOrdinaryName,
11442 ForRedeclaration)) {
11443 // The scope should be freshly made just for us. There is just no way
11444 // it contains any previous declaration, except for function parameters in
11445 // a function-try-block's catch statement.
11446 assert(!S->isDeclScope(PrevDecl));
11447 if (isDeclInScope(PrevDecl, CurContext, S)) {
11448 Diag(D.getIdentifierLoc(), diag::err_redefinition)
11449 << D.getIdentifier();
11450 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11451 Invalid = true;
11452 } else if (PrevDecl->isTemplateParameter())
11453 // Maybe we will complain about the shadowed template parameter.
11454 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11455 }
11456
11457 if (D.getCXXScopeSpec().isSet() && !Invalid) {
11458 Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator)
11459 << D.getCXXScopeSpec().getRange();
11460 Invalid = true;
11461 }
11462
11463 VarDecl *ExDecl = BuildExceptionDeclaration(S, TInfo,
11464 D.getLocStart(),
11465 D.getIdentifierLoc(),
11466 D.getIdentifier());
11467 if (Invalid)
11468 ExDecl->setInvalidDecl();
11469
11470 // Add the exception declaration into this scope.
11471 if (II)
11472 PushOnScopeChains(ExDecl, S);
11473 else
11474 CurContext->addDecl(ExDecl);
11475
11476 ProcessDeclAttributes(S, ExDecl, D);
11477 return ExDecl;
11478 }
11479
ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,Expr * AssertMessageExpr,SourceLocation RParenLoc)11480 Decl *Sema::ActOnStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11481 Expr *AssertExpr,
11482 Expr *AssertMessageExpr,
11483 SourceLocation RParenLoc) {
11484 StringLiteral *AssertMessage =
11485 AssertMessageExpr ? cast<StringLiteral>(AssertMessageExpr) : nullptr;
11486
11487 if (DiagnoseUnexpandedParameterPack(AssertExpr, UPPC_StaticAssertExpression))
11488 return nullptr;
11489
11490 return BuildStaticAssertDeclaration(StaticAssertLoc, AssertExpr,
11491 AssertMessage, RParenLoc, false);
11492 }
11493
BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,Expr * AssertExpr,StringLiteral * AssertMessage,SourceLocation RParenLoc,bool Failed)11494 Decl *Sema::BuildStaticAssertDeclaration(SourceLocation StaticAssertLoc,
11495 Expr *AssertExpr,
11496 StringLiteral *AssertMessage,
11497 SourceLocation RParenLoc,
11498 bool Failed) {
11499 assert(AssertExpr != nullptr && "Expected non-null condition");
11500 if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent() &&
11501 !Failed) {
11502 // In a static_assert-declaration, the constant-expression shall be a
11503 // constant expression that can be contextually converted to bool.
11504 ExprResult Converted = PerformContextuallyConvertToBool(AssertExpr);
11505 if (Converted.isInvalid())
11506 Failed = true;
11507
11508 llvm::APSInt Cond;
11509 if (!Failed && VerifyIntegerConstantExpression(Converted.get(), &Cond,
11510 diag::err_static_assert_expression_is_not_constant,
11511 /*AllowFold=*/false).isInvalid())
11512 Failed = true;
11513
11514 if (!Failed && !Cond) {
11515 SmallString<256> MsgBuffer;
11516 llvm::raw_svector_ostream Msg(MsgBuffer);
11517 if (AssertMessage)
11518 AssertMessage->printPretty(Msg, nullptr, getPrintingPolicy());
11519 Diag(StaticAssertLoc, diag::err_static_assert_failed)
11520 << !AssertMessage << Msg.str() << AssertExpr->getSourceRange();
11521 Failed = true;
11522 }
11523 }
11524
11525 Decl *Decl = StaticAssertDecl::Create(Context, CurContext, StaticAssertLoc,
11526 AssertExpr, AssertMessage, RParenLoc,
11527 Failed);
11528
11529 CurContext->addDecl(Decl);
11530 return Decl;
11531 }
11532
11533 /// \brief Perform semantic analysis of the given friend type declaration.
11534 ///
11535 /// \returns A friend declaration that.
CheckFriendTypeDecl(SourceLocation LocStart,SourceLocation FriendLoc,TypeSourceInfo * TSInfo)11536 FriendDecl *Sema::CheckFriendTypeDecl(SourceLocation LocStart,
11537 SourceLocation FriendLoc,
11538 TypeSourceInfo *TSInfo) {
11539 assert(TSInfo && "NULL TypeSourceInfo for friend type declaration");
11540
11541 QualType T = TSInfo->getType();
11542 SourceRange TypeRange = TSInfo->getTypeLoc().getLocalSourceRange();
11543
11544 // C++03 [class.friend]p2:
11545 // An elaborated-type-specifier shall be used in a friend declaration
11546 // for a class.*
11547 //
11548 // * The class-key of the elaborated-type-specifier is required.
11549 if (!ActiveTemplateInstantiations.empty()) {
11550 // Do not complain about the form of friend template types during
11551 // template instantiation; we will already have complained when the
11552 // template was declared.
11553 } else {
11554 if (!T->isElaboratedTypeSpecifier()) {
11555 // If we evaluated the type to a record type, suggest putting
11556 // a tag in front.
11557 if (const RecordType *RT = T->getAs<RecordType>()) {
11558 RecordDecl *RD = RT->getDecl();
11559
11560 SmallString<16> InsertionText(" ");
11561 InsertionText += RD->getKindName();
11562
11563 Diag(TypeRange.getBegin(),
11564 getLangOpts().CPlusPlus11 ?
11565 diag::warn_cxx98_compat_unelaborated_friend_type :
11566 diag::ext_unelaborated_friend_type)
11567 << (unsigned) RD->getTagKind()
11568 << T
11569 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(FriendLoc),
11570 InsertionText);
11571 } else {
11572 Diag(FriendLoc,
11573 getLangOpts().CPlusPlus11 ?
11574 diag::warn_cxx98_compat_nonclass_type_friend :
11575 diag::ext_nonclass_type_friend)
11576 << T
11577 << TypeRange;
11578 }
11579 } else if (T->getAs<EnumType>()) {
11580 Diag(FriendLoc,
11581 getLangOpts().CPlusPlus11 ?
11582 diag::warn_cxx98_compat_enum_friend :
11583 diag::ext_enum_friend)
11584 << T
11585 << TypeRange;
11586 }
11587
11588 // C++11 [class.friend]p3:
11589 // A friend declaration that does not declare a function shall have one
11590 // of the following forms:
11591 // friend elaborated-type-specifier ;
11592 // friend simple-type-specifier ;
11593 // friend typename-specifier ;
11594 if (getLangOpts().CPlusPlus11 && LocStart != FriendLoc)
11595 Diag(FriendLoc, diag::err_friend_not_first_in_declaration) << T;
11596 }
11597
11598 // If the type specifier in a friend declaration designates a (possibly
11599 // cv-qualified) class type, that class is declared as a friend; otherwise,
11600 // the friend declaration is ignored.
11601 return FriendDecl::Create(Context, CurContext,
11602 TSInfo->getTypeLoc().getLocStart(), TSInfo,
11603 FriendLoc);
11604 }
11605
11606 /// Handle a friend tag declaration where the scope specifier was
11607 /// templated.
ActOnTemplatedFriendTag(Scope * S,SourceLocation FriendLoc,unsigned TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,MultiTemplateParamsArg TempParamLists)11608 Decl *Sema::ActOnTemplatedFriendTag(Scope *S, SourceLocation FriendLoc,
11609 unsigned TagSpec, SourceLocation TagLoc,
11610 CXXScopeSpec &SS,
11611 IdentifierInfo *Name,
11612 SourceLocation NameLoc,
11613 AttributeList *Attr,
11614 MultiTemplateParamsArg TempParamLists) {
11615 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
11616
11617 bool isExplicitSpecialization = false;
11618 bool Invalid = false;
11619
11620 if (TemplateParameterList *TemplateParams =
11621 MatchTemplateParametersToScopeSpecifier(
11622 TagLoc, NameLoc, SS, nullptr, TempParamLists, /*friend*/ true,
11623 isExplicitSpecialization, Invalid)) {
11624 if (TemplateParams->size() > 0) {
11625 // This is a declaration of a class template.
11626 if (Invalid)
11627 return nullptr;
11628
11629 return CheckClassTemplate(S, TagSpec, TUK_Friend, TagLoc,
11630 SS, Name, NameLoc, Attr,
11631 TemplateParams, AS_public,
11632 /*ModulePrivateLoc=*/SourceLocation(),
11633 TempParamLists.size() - 1,
11634 TempParamLists.data()).get();
11635 } else {
11636 // The "template<>" header is extraneous.
11637 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
11638 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
11639 isExplicitSpecialization = true;
11640 }
11641 }
11642
11643 if (Invalid) return nullptr;
11644
11645 bool isAllExplicitSpecializations = true;
11646 for (unsigned I = TempParamLists.size(); I-- > 0; ) {
11647 if (TempParamLists[I]->size()) {
11648 isAllExplicitSpecializations = false;
11649 break;
11650 }
11651 }
11652
11653 // FIXME: don't ignore attributes.
11654
11655 // If it's explicit specializations all the way down, just forget
11656 // about the template header and build an appropriate non-templated
11657 // friend. TODO: for source fidelity, remember the headers.
11658 if (isAllExplicitSpecializations) {
11659 if (SS.isEmpty()) {
11660 bool Owned = false;
11661 bool IsDependent = false;
11662 return ActOnTag(S, TagSpec, TUK_Friend, TagLoc, SS, Name, NameLoc,
11663 Attr, AS_public,
11664 /*ModulePrivateLoc=*/SourceLocation(),
11665 MultiTemplateParamsArg(), Owned, IsDependent,
11666 /*ScopedEnumKWLoc=*/SourceLocation(),
11667 /*ScopedEnumUsesClassTag=*/false,
11668 /*UnderlyingType=*/TypeResult(),
11669 /*IsTypeSpecifier=*/false);
11670 }
11671
11672 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
11673 ElaboratedTypeKeyword Keyword
11674 = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11675 QualType T = CheckTypenameType(Keyword, TagLoc, QualifierLoc,
11676 *Name, NameLoc);
11677 if (T.isNull())
11678 return nullptr;
11679
11680 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11681 if (isa<DependentNameType>(T)) {
11682 DependentNameTypeLoc TL =
11683 TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11684 TL.setElaboratedKeywordLoc(TagLoc);
11685 TL.setQualifierLoc(QualifierLoc);
11686 TL.setNameLoc(NameLoc);
11687 } else {
11688 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
11689 TL.setElaboratedKeywordLoc(TagLoc);
11690 TL.setQualifierLoc(QualifierLoc);
11691 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(NameLoc);
11692 }
11693
11694 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11695 TSI, FriendLoc, TempParamLists);
11696 Friend->setAccess(AS_public);
11697 CurContext->addDecl(Friend);
11698 return Friend;
11699 }
11700
11701 assert(SS.isNotEmpty() && "valid templated tag with no SS and no direct?");
11702
11703
11704
11705 // Handle the case of a templated-scope friend class. e.g.
11706 // template <class T> class A<T>::B;
11707 // FIXME: we don't support these right now.
11708 Diag(NameLoc, diag::warn_template_qualified_friend_unsupported)
11709 << SS.getScopeRep() << SS.getRange() << cast<CXXRecordDecl>(CurContext);
11710 ElaboratedTypeKeyword ETK = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
11711 QualType T = Context.getDependentNameType(ETK, SS.getScopeRep(), Name);
11712 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
11713 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
11714 TL.setElaboratedKeywordLoc(TagLoc);
11715 TL.setQualifierLoc(SS.getWithLocInContext(Context));
11716 TL.setNameLoc(NameLoc);
11717
11718 FriendDecl *Friend = FriendDecl::Create(Context, CurContext, NameLoc,
11719 TSI, FriendLoc, TempParamLists);
11720 Friend->setAccess(AS_public);
11721 Friend->setUnsupportedFriend(true);
11722 CurContext->addDecl(Friend);
11723 return Friend;
11724 }
11725
11726
11727 /// Handle a friend type declaration. This works in tandem with
11728 /// ActOnTag.
11729 ///
11730 /// Notes on friend class templates:
11731 ///
11732 /// We generally treat friend class declarations as if they were
11733 /// declaring a class. So, for example, the elaborated type specifier
11734 /// in a friend declaration is required to obey the restrictions of a
11735 /// class-head (i.e. no typedefs in the scope chain), template
11736 /// parameters are required to match up with simple template-ids, &c.
11737 /// However, unlike when declaring a template specialization, it's
11738 /// okay to refer to a template specialization without an empty
11739 /// template parameter declaration, e.g.
11740 /// friend class A<T>::B<unsigned>;
11741 /// We permit this as a special case; if there are any template
11742 /// parameters present at all, require proper matching, i.e.
11743 /// template <> template \<class T> friend class A<int>::B;
ActOnFriendTypeDecl(Scope * S,const DeclSpec & DS,MultiTemplateParamsArg TempParams)11744 Decl *Sema::ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
11745 MultiTemplateParamsArg TempParams) {
11746 SourceLocation Loc = DS.getLocStart();
11747
11748 assert(DS.isFriendSpecified());
11749 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11750
11751 // Try to convert the decl specifier to a type. This works for
11752 // friend templates because ActOnTag never produces a ClassTemplateDecl
11753 // for a TUK_Friend.
11754 Declarator TheDeclarator(DS, Declarator::MemberContext);
11755 TypeSourceInfo *TSI = GetTypeForDeclarator(TheDeclarator, S);
11756 QualType T = TSI->getType();
11757 if (TheDeclarator.isInvalidType())
11758 return nullptr;
11759
11760 if (DiagnoseUnexpandedParameterPack(Loc, TSI, UPPC_FriendDeclaration))
11761 return nullptr;
11762
11763 // This is definitely an error in C++98. It's probably meant to
11764 // be forbidden in C++0x, too, but the specification is just
11765 // poorly written.
11766 //
11767 // The problem is with declarations like the following:
11768 // template <T> friend A<T>::foo;
11769 // where deciding whether a class C is a friend or not now hinges
11770 // on whether there exists an instantiation of A that causes
11771 // 'foo' to equal C. There are restrictions on class-heads
11772 // (which we declare (by fiat) elaborated friend declarations to
11773 // be) that makes this tractable.
11774 //
11775 // FIXME: handle "template <> friend class A<T>;", which
11776 // is possibly well-formed? Who even knows?
11777 if (TempParams.size() && !T->isElaboratedTypeSpecifier()) {
11778 Diag(Loc, diag::err_tagless_friend_type_template)
11779 << DS.getSourceRange();
11780 return nullptr;
11781 }
11782
11783 // C++98 [class.friend]p1: A friend of a class is a function
11784 // or class that is not a member of the class . . .
11785 // This is fixed in DR77, which just barely didn't make the C++03
11786 // deadline. It's also a very silly restriction that seriously
11787 // affects inner classes and which nobody else seems to implement;
11788 // thus we never diagnose it, not even in -pedantic.
11789 //
11790 // But note that we could warn about it: it's always useless to
11791 // friend one of your own members (it's not, however, worthless to
11792 // friend a member of an arbitrary specialization of your template).
11793
11794 Decl *D;
11795 if (unsigned NumTempParamLists = TempParams.size())
11796 D = FriendTemplateDecl::Create(Context, CurContext, Loc,
11797 NumTempParamLists,
11798 TempParams.data(),
11799 TSI,
11800 DS.getFriendSpecLoc());
11801 else
11802 D = CheckFriendTypeDecl(Loc, DS.getFriendSpecLoc(), TSI);
11803
11804 if (!D)
11805 return nullptr;
11806
11807 D->setAccess(AS_public);
11808 CurContext->addDecl(D);
11809
11810 return D;
11811 }
11812
ActOnFriendFunctionDecl(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParams)11813 NamedDecl *Sema::ActOnFriendFunctionDecl(Scope *S, Declarator &D,
11814 MultiTemplateParamsArg TemplateParams) {
11815 const DeclSpec &DS = D.getDeclSpec();
11816
11817 assert(DS.isFriendSpecified());
11818 assert(DS.getStorageClassSpec() == DeclSpec::SCS_unspecified);
11819
11820 SourceLocation Loc = D.getIdentifierLoc();
11821 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11822
11823 // C++ [class.friend]p1
11824 // A friend of a class is a function or class....
11825 // Note that this sees through typedefs, which is intended.
11826 // It *doesn't* see through dependent types, which is correct
11827 // according to [temp.arg.type]p3:
11828 // If a declaration acquires a function type through a
11829 // type dependent on a template-parameter and this causes
11830 // a declaration that does not use the syntactic form of a
11831 // function declarator to have a function type, the program
11832 // is ill-formed.
11833 if (!TInfo->getType()->isFunctionType()) {
11834 Diag(Loc, diag::err_unexpected_friend);
11835
11836 // It might be worthwhile to try to recover by creating an
11837 // appropriate declaration.
11838 return nullptr;
11839 }
11840
11841 // C++ [namespace.memdef]p3
11842 // - If a friend declaration in a non-local class first declares a
11843 // class or function, the friend class or function is a member
11844 // of the innermost enclosing namespace.
11845 // - The name of the friend is not found by simple name lookup
11846 // until a matching declaration is provided in that namespace
11847 // scope (either before or after the class declaration granting
11848 // friendship).
11849 // - If a friend function is called, its name may be found by the
11850 // name lookup that considers functions from namespaces and
11851 // classes associated with the types of the function arguments.
11852 // - When looking for a prior declaration of a class or a function
11853 // declared as a friend, scopes outside the innermost enclosing
11854 // namespace scope are not considered.
11855
11856 CXXScopeSpec &SS = D.getCXXScopeSpec();
11857 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
11858 DeclarationName Name = NameInfo.getName();
11859 assert(Name);
11860
11861 // Check for unexpanded parameter packs.
11862 if (DiagnoseUnexpandedParameterPack(Loc, TInfo, UPPC_FriendDeclaration) ||
11863 DiagnoseUnexpandedParameterPack(NameInfo, UPPC_FriendDeclaration) ||
11864 DiagnoseUnexpandedParameterPack(SS, UPPC_FriendDeclaration))
11865 return nullptr;
11866
11867 // The context we found the declaration in, or in which we should
11868 // create the declaration.
11869 DeclContext *DC;
11870 Scope *DCScope = S;
11871 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
11872 ForRedeclaration);
11873
11874 // There are five cases here.
11875 // - There's no scope specifier and we're in a local class. Only look
11876 // for functions declared in the immediately-enclosing block scope.
11877 // We recover from invalid scope qualifiers as if they just weren't there.
11878 FunctionDecl *FunctionContainingLocalClass = nullptr;
11879 if ((SS.isInvalid() || !SS.isSet()) &&
11880 (FunctionContainingLocalClass =
11881 cast<CXXRecordDecl>(CurContext)->isLocalClass())) {
11882 // C++11 [class.friend]p11:
11883 // If a friend declaration appears in a local class and the name
11884 // specified is an unqualified name, a prior declaration is
11885 // looked up without considering scopes that are outside the
11886 // innermost enclosing non-class scope. For a friend function
11887 // declaration, if there is no prior declaration, the program is
11888 // ill-formed.
11889
11890 // Find the innermost enclosing non-class scope. This is the block
11891 // scope containing the local class definition (or for a nested class,
11892 // the outer local class).
11893 DCScope = S->getFnParent();
11894
11895 // Look up the function name in the scope.
11896 Previous.clear(LookupLocalFriendName);
11897 LookupName(Previous, S, /*AllowBuiltinCreation*/false);
11898
11899 if (!Previous.empty()) {
11900 // All possible previous declarations must have the same context:
11901 // either they were declared at block scope or they are members of
11902 // one of the enclosing local classes.
11903 DC = Previous.getRepresentativeDecl()->getDeclContext();
11904 } else {
11905 // This is ill-formed, but provide the context that we would have
11906 // declared the function in, if we were permitted to, for error recovery.
11907 DC = FunctionContainingLocalClass;
11908 }
11909 adjustContextForLocalExternDecl(DC);
11910
11911 // C++ [class.friend]p6:
11912 // A function can be defined in a friend declaration of a class if and
11913 // only if the class is a non-local class (9.8), the function name is
11914 // unqualified, and the function has namespace scope.
11915 if (D.isFunctionDefinition()) {
11916 Diag(NameInfo.getBeginLoc(), diag::err_friend_def_in_local_class);
11917 }
11918
11919 // - There's no scope specifier, in which case we just go to the
11920 // appropriate scope and look for a function or function template
11921 // there as appropriate.
11922 } else if (SS.isInvalid() || !SS.isSet()) {
11923 // C++11 [namespace.memdef]p3:
11924 // If the name in a friend declaration is neither qualified nor
11925 // a template-id and the declaration is a function or an
11926 // elaborated-type-specifier, the lookup to determine whether
11927 // the entity has been previously declared shall not consider
11928 // any scopes outside the innermost enclosing namespace.
11929 bool isTemplateId = D.getName().getKind() == UnqualifiedId::IK_TemplateId;
11930
11931 // Find the appropriate context according to the above.
11932 DC = CurContext;
11933
11934 // Skip class contexts. If someone can cite chapter and verse
11935 // for this behavior, that would be nice --- it's what GCC and
11936 // EDG do, and it seems like a reasonable intent, but the spec
11937 // really only says that checks for unqualified existing
11938 // declarations should stop at the nearest enclosing namespace,
11939 // not that they should only consider the nearest enclosing
11940 // namespace.
11941 while (DC->isRecord())
11942 DC = DC->getParent();
11943
11944 DeclContext *LookupDC = DC;
11945 while (LookupDC->isTransparentContext())
11946 LookupDC = LookupDC->getParent();
11947
11948 while (true) {
11949 LookupQualifiedName(Previous, LookupDC);
11950
11951 if (!Previous.empty()) {
11952 DC = LookupDC;
11953 break;
11954 }
11955
11956 if (isTemplateId) {
11957 if (isa<TranslationUnitDecl>(LookupDC)) break;
11958 } else {
11959 if (LookupDC->isFileContext()) break;
11960 }
11961 LookupDC = LookupDC->getParent();
11962 }
11963
11964 DCScope = getScopeForDeclContext(S, DC);
11965
11966 // - There's a non-dependent scope specifier, in which case we
11967 // compute it and do a previous lookup there for a function
11968 // or function template.
11969 } else if (!SS.getScopeRep()->isDependent()) {
11970 DC = computeDeclContext(SS);
11971 if (!DC) return nullptr;
11972
11973 if (RequireCompleteDeclContext(SS, DC)) return nullptr;
11974
11975 LookupQualifiedName(Previous, DC);
11976
11977 // Ignore things found implicitly in the wrong scope.
11978 // TODO: better diagnostics for this case. Suggesting the right
11979 // qualified scope would be nice...
11980 LookupResult::Filter F = Previous.makeFilter();
11981 while (F.hasNext()) {
11982 NamedDecl *D = F.next();
11983 if (!DC->InEnclosingNamespaceSetOf(
11984 D->getDeclContext()->getRedeclContext()))
11985 F.erase();
11986 }
11987 F.done();
11988
11989 if (Previous.empty()) {
11990 D.setInvalidType();
11991 Diag(Loc, diag::err_qualified_friend_not_found)
11992 << Name << TInfo->getType();
11993 return nullptr;
11994 }
11995
11996 // C++ [class.friend]p1: A friend of a class is a function or
11997 // class that is not a member of the class . . .
11998 if (DC->Equals(CurContext))
11999 Diag(DS.getFriendSpecLoc(),
12000 getLangOpts().CPlusPlus11 ?
12001 diag::warn_cxx98_compat_friend_is_member :
12002 diag::err_friend_is_member);
12003
12004 if (D.isFunctionDefinition()) {
12005 // C++ [class.friend]p6:
12006 // A function can be defined in a friend declaration of a class if and
12007 // only if the class is a non-local class (9.8), the function name is
12008 // unqualified, and the function has namespace scope.
12009 SemaDiagnosticBuilder DB
12010 = Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def);
12011
12012 DB << SS.getScopeRep();
12013 if (DC->isFileContext())
12014 DB << FixItHint::CreateRemoval(SS.getRange());
12015 SS.clear();
12016 }
12017
12018 // - There's a scope specifier that does not match any template
12019 // parameter lists, in which case we use some arbitrary context,
12020 // create a method or method template, and wait for instantiation.
12021 // - There's a scope specifier that does match some template
12022 // parameter lists, which we don't handle right now.
12023 } else {
12024 if (D.isFunctionDefinition()) {
12025 // C++ [class.friend]p6:
12026 // A function can be defined in a friend declaration of a class if and
12027 // only if the class is a non-local class (9.8), the function name is
12028 // unqualified, and the function has namespace scope.
12029 Diag(SS.getRange().getBegin(), diag::err_qualified_friend_def)
12030 << SS.getScopeRep();
12031 }
12032
12033 DC = CurContext;
12034 assert(isa<CXXRecordDecl>(DC) && "friend declaration not in class?");
12035 }
12036
12037 if (!DC->isRecord()) {
12038 // This implies that it has to be an operator or function.
12039 if (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ||
12040 D.getName().getKind() == UnqualifiedId::IK_DestructorName ||
12041 D.getName().getKind() == UnqualifiedId::IK_ConversionFunctionId) {
12042 Diag(Loc, diag::err_introducing_special_friend) <<
12043 (D.getName().getKind() == UnqualifiedId::IK_ConstructorName ? 0 :
12044 D.getName().getKind() == UnqualifiedId::IK_DestructorName ? 1 : 2);
12045 return nullptr;
12046 }
12047 }
12048
12049 // FIXME: This is an egregious hack to cope with cases where the scope stack
12050 // does not contain the declaration context, i.e., in an out-of-line
12051 // definition of a class.
12052 Scope FakeDCScope(S, Scope::DeclScope, Diags);
12053 if (!DCScope) {
12054 FakeDCScope.setEntity(DC);
12055 DCScope = &FakeDCScope;
12056 }
12057
12058 bool AddToScope = true;
12059 NamedDecl *ND = ActOnFunctionDeclarator(DCScope, D, DC, TInfo, Previous,
12060 TemplateParams, AddToScope);
12061 if (!ND) return nullptr;
12062
12063 assert(ND->getLexicalDeclContext() == CurContext);
12064
12065 // If we performed typo correction, we might have added a scope specifier
12066 // and changed the decl context.
12067 DC = ND->getDeclContext();
12068
12069 // Add the function declaration to the appropriate lookup tables,
12070 // adjusting the redeclarations list as necessary. We don't
12071 // want to do this yet if the friending class is dependent.
12072 //
12073 // Also update the scope-based lookup if the target context's
12074 // lookup context is in lexical scope.
12075 if (!CurContext->isDependentContext()) {
12076 DC = DC->getRedeclContext();
12077 DC->makeDeclVisibleInContext(ND);
12078 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
12079 PushOnScopeChains(ND, EnclosingScope, /*AddToContext=*/ false);
12080 }
12081
12082 FriendDecl *FrD = FriendDecl::Create(Context, CurContext,
12083 D.getIdentifierLoc(), ND,
12084 DS.getFriendSpecLoc());
12085 FrD->setAccess(AS_public);
12086 CurContext->addDecl(FrD);
12087
12088 if (ND->isInvalidDecl()) {
12089 FrD->setInvalidDecl();
12090 } else {
12091 if (DC->isRecord()) CheckFriendAccess(ND);
12092
12093 FunctionDecl *FD;
12094 if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
12095 FD = FTD->getTemplatedDecl();
12096 else
12097 FD = cast<FunctionDecl>(ND);
12098
12099 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a
12100 // default argument expression, that declaration shall be a definition
12101 // and shall be the only declaration of the function or function
12102 // template in the translation unit.
12103 if (functionDeclHasDefaultArgument(FD)) {
12104 if (FunctionDecl *OldFD = FD->getPreviousDecl()) {
12105 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
12106 Diag(OldFD->getLocation(), diag::note_previous_declaration);
12107 } else if (!D.isFunctionDefinition())
12108 Diag(FD->getLocation(), diag::err_friend_decl_with_def_arg_must_be_def);
12109 }
12110
12111 // Mark templated-scope function declarations as unsupported.
12112 if (FD->getNumTemplateParameterLists())
12113 FrD->setUnsupportedFriend(true);
12114 }
12115
12116 return ND;
12117 }
12118
SetDeclDeleted(Decl * Dcl,SourceLocation DelLoc)12119 void Sema::SetDeclDeleted(Decl *Dcl, SourceLocation DelLoc) {
12120 AdjustDeclIfTemplate(Dcl);
12121
12122 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(Dcl);
12123 if (!Fn) {
12124 Diag(DelLoc, diag::err_deleted_non_function);
12125 return;
12126 }
12127
12128 if (const FunctionDecl *Prev = Fn->getPreviousDecl()) {
12129 // Don't consider the implicit declaration we generate for explicit
12130 // specializations. FIXME: Do not generate these implicit declarations.
12131 if ((Prev->getTemplateSpecializationKind() != TSK_ExplicitSpecialization ||
12132 Prev->getPreviousDecl()) &&
12133 !Prev->isDefined()) {
12134 Diag(DelLoc, diag::err_deleted_decl_not_first);
12135 Diag(Prev->getLocation().isInvalid() ? DelLoc : Prev->getLocation(),
12136 Prev->isImplicit() ? diag::note_previous_implicit_declaration
12137 : diag::note_previous_declaration);
12138 }
12139 // If the declaration wasn't the first, we delete the function anyway for
12140 // recovery.
12141 Fn = Fn->getCanonicalDecl();
12142 }
12143
12144 // dllimport/dllexport cannot be deleted.
12145 if (const InheritableAttr *DLLAttr = getDLLAttr(Fn)) {
12146 Diag(Fn->getLocation(), diag::err_attribute_dll_deleted) << DLLAttr;
12147 Fn->setInvalidDecl();
12148 }
12149
12150 if (Fn->isDeleted())
12151 return;
12152
12153 // See if we're deleting a function which is already known to override a
12154 // non-deleted virtual function.
12155 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Fn)) {
12156 bool IssuedDiagnostic = false;
12157 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
12158 E = MD->end_overridden_methods();
12159 I != E; ++I) {
12160 if (!(*MD->begin_overridden_methods())->isDeleted()) {
12161 if (!IssuedDiagnostic) {
12162 Diag(DelLoc, diag::err_deleted_override) << MD->getDeclName();
12163 IssuedDiagnostic = true;
12164 }
12165 Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
12166 }
12167 }
12168 }
12169
12170 // C++11 [basic.start.main]p3:
12171 // A program that defines main as deleted [...] is ill-formed.
12172 if (Fn->isMain())
12173 Diag(DelLoc, diag::err_deleted_main);
12174
12175 Fn->setDeletedAsWritten();
12176 }
12177
SetDeclDefaulted(Decl * Dcl,SourceLocation DefaultLoc)12178 void Sema::SetDeclDefaulted(Decl *Dcl, SourceLocation DefaultLoc) {
12179 CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Dcl);
12180
12181 if (MD) {
12182 if (MD->getParent()->isDependentType()) {
12183 MD->setDefaulted();
12184 MD->setExplicitlyDefaulted();
12185 return;
12186 }
12187
12188 CXXSpecialMember Member = getSpecialMember(MD);
12189 if (Member == CXXInvalid) {
12190 if (!MD->isInvalidDecl())
12191 Diag(DefaultLoc, diag::err_default_special_members);
12192 return;
12193 }
12194
12195 MD->setDefaulted();
12196 MD->setExplicitlyDefaulted();
12197
12198 // If this definition appears within the record, do the checking when
12199 // the record is complete.
12200 const FunctionDecl *Primary = MD;
12201 if (const FunctionDecl *Pattern = MD->getTemplateInstantiationPattern())
12202 // Find the uninstantiated declaration that actually had the '= default'
12203 // on it.
12204 Pattern->isDefined(Primary);
12205
12206 // If the method was defaulted on its first declaration, we will have
12207 // already performed the checking in CheckCompletedCXXClass. Such a
12208 // declaration doesn't trigger an implicit definition.
12209 if (Primary == Primary->getCanonicalDecl())
12210 return;
12211
12212 CheckExplicitlyDefaultedSpecialMember(MD);
12213
12214 // The exception specification is needed because we are defining the
12215 // function.
12216 ResolveExceptionSpec(DefaultLoc,
12217 MD->getType()->castAs<FunctionProtoType>());
12218
12219 if (MD->isInvalidDecl())
12220 return;
12221
12222 switch (Member) {
12223 case CXXDefaultConstructor:
12224 DefineImplicitDefaultConstructor(DefaultLoc,
12225 cast<CXXConstructorDecl>(MD));
12226 break;
12227 case CXXCopyConstructor:
12228 DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12229 break;
12230 case CXXCopyAssignment:
12231 DefineImplicitCopyAssignment(DefaultLoc, MD);
12232 break;
12233 case CXXDestructor:
12234 DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
12235 break;
12236 case CXXMoveConstructor:
12237 DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
12238 break;
12239 case CXXMoveAssignment:
12240 DefineImplicitMoveAssignment(DefaultLoc, MD);
12241 break;
12242 case CXXInvalid:
12243 llvm_unreachable("Invalid special member.");
12244 }
12245 } else {
12246 Diag(DefaultLoc, diag::err_default_special_members);
12247 }
12248 }
12249
SearchForReturnInStmt(Sema & Self,Stmt * S)12250 static void SearchForReturnInStmt(Sema &Self, Stmt *S) {
12251 for (Stmt::child_range CI = S->children(); CI; ++CI) {
12252 Stmt *SubStmt = *CI;
12253 if (!SubStmt)
12254 continue;
12255 if (isa<ReturnStmt>(SubStmt))
12256 Self.Diag(SubStmt->getLocStart(),
12257 diag::err_return_in_constructor_handler);
12258 if (!isa<Expr>(SubStmt))
12259 SearchForReturnInStmt(Self, SubStmt);
12260 }
12261 }
12262
DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt * TryBlock)12263 void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) {
12264 for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) {
12265 CXXCatchStmt *Handler = TryBlock->getHandler(I);
12266 SearchForReturnInStmt(*this, Handler);
12267 }
12268 }
12269
CheckOverridingFunctionAttributes(const CXXMethodDecl * New,const CXXMethodDecl * Old)12270 bool Sema::CheckOverridingFunctionAttributes(const CXXMethodDecl *New,
12271 const CXXMethodDecl *Old) {
12272 const FunctionType *NewFT = New->getType()->getAs<FunctionType>();
12273 const FunctionType *OldFT = Old->getType()->getAs<FunctionType>();
12274
12275 CallingConv NewCC = NewFT->getCallConv(), OldCC = OldFT->getCallConv();
12276
12277 // If the calling conventions match, everything is fine
12278 if (NewCC == OldCC)
12279 return false;
12280
12281 // If the calling conventions mismatch because the new function is static,
12282 // suppress the calling convention mismatch error; the error about static
12283 // function override (err_static_overrides_virtual from
12284 // Sema::CheckFunctionDeclaration) is more clear.
12285 if (New->getStorageClass() == SC_Static)
12286 return false;
12287
12288 Diag(New->getLocation(),
12289 diag::err_conflicting_overriding_cc_attributes)
12290 << New->getDeclName() << New->getType() << Old->getType();
12291 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
12292 return true;
12293 }
12294
CheckOverridingFunctionReturnType(const CXXMethodDecl * New,const CXXMethodDecl * Old)12295 bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New,
12296 const CXXMethodDecl *Old) {
12297 QualType NewTy = New->getType()->getAs<FunctionType>()->getReturnType();
12298 QualType OldTy = Old->getType()->getAs<FunctionType>()->getReturnType();
12299
12300 if (Context.hasSameType(NewTy, OldTy) ||
12301 NewTy->isDependentType() || OldTy->isDependentType())
12302 return false;
12303
12304 // Check if the return types are covariant
12305 QualType NewClassTy, OldClassTy;
12306
12307 /// Both types must be pointers or references to classes.
12308 if (const PointerType *NewPT = NewTy->getAs<PointerType>()) {
12309 if (const PointerType *OldPT = OldTy->getAs<PointerType>()) {
12310 NewClassTy = NewPT->getPointeeType();
12311 OldClassTy = OldPT->getPointeeType();
12312 }
12313 } else if (const ReferenceType *NewRT = NewTy->getAs<ReferenceType>()) {
12314 if (const ReferenceType *OldRT = OldTy->getAs<ReferenceType>()) {
12315 if (NewRT->getTypeClass() == OldRT->getTypeClass()) {
12316 NewClassTy = NewRT->getPointeeType();
12317 OldClassTy = OldRT->getPointeeType();
12318 }
12319 }
12320 }
12321
12322 // The return types aren't either both pointers or references to a class type.
12323 if (NewClassTy.isNull()) {
12324 Diag(New->getLocation(),
12325 diag::err_different_return_type_for_overriding_virtual_function)
12326 << New->getDeclName() << NewTy << OldTy
12327 << New->getReturnTypeSourceRange();
12328 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12329 << Old->getReturnTypeSourceRange();
12330
12331 return true;
12332 }
12333
12334 // C++ [class.virtual]p6:
12335 // If the return type of D::f differs from the return type of B::f, the
12336 // class type in the return type of D::f shall be complete at the point of
12337 // declaration of D::f or shall be the class type D.
12338 if (const RecordType *RT = NewClassTy->getAs<RecordType>()) {
12339 if (!RT->isBeingDefined() &&
12340 RequireCompleteType(New->getLocation(), NewClassTy,
12341 diag::err_covariant_return_incomplete,
12342 New->getDeclName()))
12343 return true;
12344 }
12345
12346 if (!Context.hasSameUnqualifiedType(NewClassTy, OldClassTy)) {
12347 // Check if the new class derives from the old class.
12348 if (!IsDerivedFrom(NewClassTy, OldClassTy)) {
12349 Diag(New->getLocation(), diag::err_covariant_return_not_derived)
12350 << New->getDeclName() << NewTy << OldTy
12351 << New->getReturnTypeSourceRange();
12352 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12353 << Old->getReturnTypeSourceRange();
12354 return true;
12355 }
12356
12357 // Check if we the conversion from derived to base is valid.
12358 if (CheckDerivedToBaseConversion(
12359 NewClassTy, OldClassTy,
12360 diag::err_covariant_return_inaccessible_base,
12361 diag::err_covariant_return_ambiguous_derived_to_base_conv,
12362 New->getLocation(), New->getReturnTypeSourceRange(),
12363 New->getDeclName(), nullptr)) {
12364 // FIXME: this note won't trigger for delayed access control
12365 // diagnostics, and it's impossible to get an undelayed error
12366 // here from access control during the original parse because
12367 // the ParsingDeclSpec/ParsingDeclarator are still in scope.
12368 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12369 << Old->getReturnTypeSourceRange();
12370 return true;
12371 }
12372 }
12373
12374 // The qualifiers of the return types must be the same.
12375 if (NewTy.getLocalCVRQualifiers() != OldTy.getLocalCVRQualifiers()) {
12376 Diag(New->getLocation(),
12377 diag::err_covariant_return_type_different_qualifications)
12378 << New->getDeclName() << NewTy << OldTy
12379 << New->getReturnTypeSourceRange();
12380 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12381 << Old->getReturnTypeSourceRange();
12382 return true;
12383 };
12384
12385
12386 // The new class type must have the same or less qualifiers as the old type.
12387 if (NewClassTy.isMoreQualifiedThan(OldClassTy)) {
12388 Diag(New->getLocation(),
12389 diag::err_covariant_return_type_class_type_more_qualified)
12390 << New->getDeclName() << NewTy << OldTy
12391 << New->getReturnTypeSourceRange();
12392 Diag(Old->getLocation(), diag::note_overridden_virtual_function)
12393 << Old->getReturnTypeSourceRange();
12394 return true;
12395 };
12396
12397 return false;
12398 }
12399
12400 /// \brief Mark the given method pure.
12401 ///
12402 /// \param Method the method to be marked pure.
12403 ///
12404 /// \param InitRange the source range that covers the "0" initializer.
CheckPureMethod(CXXMethodDecl * Method,SourceRange InitRange)12405 bool Sema::CheckPureMethod(CXXMethodDecl *Method, SourceRange InitRange) {
12406 SourceLocation EndLoc = InitRange.getEnd();
12407 if (EndLoc.isValid())
12408 Method->setRangeEnd(EndLoc);
12409
12410 if (Method->isVirtual() || Method->getParent()->isDependentContext()) {
12411 Method->setPure();
12412 return false;
12413 }
12414
12415 if (!Method->isInvalidDecl())
12416 Diag(Method->getLocation(), diag::err_non_virtual_pure)
12417 << Method->getDeclName() << InitRange;
12418 return true;
12419 }
12420
12421 /// \brief Determine whether the given declaration is a static data member.
isStaticDataMember(const Decl * D)12422 static bool isStaticDataMember(const Decl *D) {
12423 if (const VarDecl *Var = dyn_cast_or_null<VarDecl>(D))
12424 return Var->isStaticDataMember();
12425
12426 return false;
12427 }
12428
12429 /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse
12430 /// an initializer for the out-of-line declaration 'Dcl'. The scope
12431 /// is a fresh scope pushed for just this purpose.
12432 ///
12433 /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
12434 /// static data member of class X, names should be looked up in the scope of
12435 /// class X.
ActOnCXXEnterDeclInitializer(Scope * S,Decl * D)12436 void Sema::ActOnCXXEnterDeclInitializer(Scope *S, Decl *D) {
12437 // If there is no declaration, there was an error parsing it.
12438 if (!D || D->isInvalidDecl())
12439 return;
12440
12441 // We will always have a nested name specifier here, but this declaration
12442 // might not be out of line if the specifier names the current namespace:
12443 // extern int n;
12444 // int ::n = 0;
12445 if (D->isOutOfLine())
12446 EnterDeclaratorContext(S, D->getDeclContext());
12447
12448 // If we are parsing the initializer for a static data member, push a
12449 // new expression evaluation context that is associated with this static
12450 // data member.
12451 if (isStaticDataMember(D))
12452 PushExpressionEvaluationContext(PotentiallyEvaluated, D);
12453 }
12454
12455 /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
12456 /// initializer for the out-of-line declaration 'D'.
ActOnCXXExitDeclInitializer(Scope * S,Decl * D)12457 void Sema::ActOnCXXExitDeclInitializer(Scope *S, Decl *D) {
12458 // If there is no declaration, there was an error parsing it.
12459 if (!D || D->isInvalidDecl())
12460 return;
12461
12462 if (isStaticDataMember(D))
12463 PopExpressionEvaluationContext();
12464
12465 if (D->isOutOfLine())
12466 ExitDeclaratorContext(S);
12467 }
12468
12469 /// ActOnCXXConditionDeclarationExpr - Parsed a condition declaration of a
12470 /// C++ if/switch/while/for statement.
12471 /// e.g: "if (int x = f()) {...}"
ActOnCXXConditionDeclaration(Scope * S,Declarator & D)12472 DeclResult Sema::ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
12473 // C++ 6.4p2:
12474 // The declarator shall not specify a function or an array.
12475 // The type-specifier-seq shall not contain typedef and shall not declare a
12476 // new class or enumeration.
12477 assert(D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
12478 "Parser allowed 'typedef' as storage class of condition decl.");
12479
12480 Decl *Dcl = ActOnDeclarator(S, D);
12481 if (!Dcl)
12482 return true;
12483
12484 if (isa<FunctionDecl>(Dcl)) { // The declarator shall not specify a function.
12485 Diag(Dcl->getLocation(), diag::err_invalid_use_of_function_type)
12486 << D.getSourceRange();
12487 return true;
12488 }
12489
12490 return Dcl;
12491 }
12492
LoadExternalVTableUses()12493 void Sema::LoadExternalVTableUses() {
12494 if (!ExternalSource)
12495 return;
12496
12497 SmallVector<ExternalVTableUse, 4> VTables;
12498 ExternalSource->ReadUsedVTables(VTables);
12499 SmallVector<VTableUse, 4> NewUses;
12500 for (unsigned I = 0, N = VTables.size(); I != N; ++I) {
12501 llvm::DenseMap<CXXRecordDecl *, bool>::iterator Pos
12502 = VTablesUsed.find(VTables[I].Record);
12503 // Even if a definition wasn't required before, it may be required now.
12504 if (Pos != VTablesUsed.end()) {
12505 if (!Pos->second && VTables[I].DefinitionRequired)
12506 Pos->second = true;
12507 continue;
12508 }
12509
12510 VTablesUsed[VTables[I].Record] = VTables[I].DefinitionRequired;
12511 NewUses.push_back(VTableUse(VTables[I].Record, VTables[I].Location));
12512 }
12513
12514 VTableUses.insert(VTableUses.begin(), NewUses.begin(), NewUses.end());
12515 }
12516
MarkVTableUsed(SourceLocation Loc,CXXRecordDecl * Class,bool DefinitionRequired)12517 void Sema::MarkVTableUsed(SourceLocation Loc, CXXRecordDecl *Class,
12518 bool DefinitionRequired) {
12519 // Ignore any vtable uses in unevaluated operands or for classes that do
12520 // not have a vtable.
12521 if (!Class->isDynamicClass() || Class->isDependentContext() ||
12522 CurContext->isDependentContext() || isUnevaluatedContext())
12523 return;
12524
12525 // Try to insert this class into the map.
12526 LoadExternalVTableUses();
12527 Class = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12528 std::pair<llvm::DenseMap<CXXRecordDecl *, bool>::iterator, bool>
12529 Pos = VTablesUsed.insert(std::make_pair(Class, DefinitionRequired));
12530 if (!Pos.second) {
12531 // If we already had an entry, check to see if we are promoting this vtable
12532 // to required a definition. If so, we need to reappend to the VTableUses
12533 // list, since we may have already processed the first entry.
12534 if (DefinitionRequired && !Pos.first->second) {
12535 Pos.first->second = true;
12536 } else {
12537 // Otherwise, we can early exit.
12538 return;
12539 }
12540 } else {
12541 // The Microsoft ABI requires that we perform the destructor body
12542 // checks (i.e. operator delete() lookup) when the vtable is marked used, as
12543 // the deleting destructor is emitted with the vtable, not with the
12544 // destructor definition as in the Itanium ABI.
12545 // If it has a definition, we do the check at that point instead.
12546 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12547 Class->hasUserDeclaredDestructor() &&
12548 !Class->getDestructor()->isDefined() &&
12549 !Class->getDestructor()->isDeleted()) {
12550 CXXDestructorDecl *DD = Class->getDestructor();
12551 ContextRAII SavedContext(*this, DD);
12552 CheckDestructor(DD);
12553 }
12554 }
12555
12556 // Local classes need to have their virtual members marked
12557 // immediately. For all other classes, we mark their virtual members
12558 // at the end of the translation unit.
12559 if (Class->isLocalClass())
12560 MarkVirtualMembersReferenced(Loc, Class);
12561 else
12562 VTableUses.push_back(std::make_pair(Class, Loc));
12563 }
12564
DefineUsedVTables()12565 bool Sema::DefineUsedVTables() {
12566 LoadExternalVTableUses();
12567 if (VTableUses.empty())
12568 return false;
12569
12570 // Note: The VTableUses vector could grow as a result of marking
12571 // the members of a class as "used", so we check the size each
12572 // time through the loop and prefer indices (which are stable) to
12573 // iterators (which are not).
12574 bool DefinedAnything = false;
12575 for (unsigned I = 0; I != VTableUses.size(); ++I) {
12576 CXXRecordDecl *Class = VTableUses[I].first->getDefinition();
12577 if (!Class)
12578 continue;
12579
12580 SourceLocation Loc = VTableUses[I].second;
12581
12582 bool DefineVTable = true;
12583
12584 // If this class has a key function, but that key function is
12585 // defined in another translation unit, we don't need to emit the
12586 // vtable even though we're using it.
12587 const CXXMethodDecl *KeyFunction = Context.getCurrentKeyFunction(Class);
12588 if (KeyFunction && !KeyFunction->hasBody()) {
12589 // The key function is in another translation unit.
12590 DefineVTable = false;
12591 TemplateSpecializationKind TSK =
12592 KeyFunction->getTemplateSpecializationKind();
12593 assert(TSK != TSK_ExplicitInstantiationDefinition &&
12594 TSK != TSK_ImplicitInstantiation &&
12595 "Instantiations don't have key functions");
12596 (void)TSK;
12597 } else if (!KeyFunction) {
12598 // If we have a class with no key function that is the subject
12599 // of an explicit instantiation declaration, suppress the
12600 // vtable; it will live with the explicit instantiation
12601 // definition.
12602 bool IsExplicitInstantiationDeclaration
12603 = Class->getTemplateSpecializationKind()
12604 == TSK_ExplicitInstantiationDeclaration;
12605 for (auto R : Class->redecls()) {
12606 TemplateSpecializationKind TSK
12607 = cast<CXXRecordDecl>(R)->getTemplateSpecializationKind();
12608 if (TSK == TSK_ExplicitInstantiationDeclaration)
12609 IsExplicitInstantiationDeclaration = true;
12610 else if (TSK == TSK_ExplicitInstantiationDefinition) {
12611 IsExplicitInstantiationDeclaration = false;
12612 break;
12613 }
12614 }
12615
12616 if (IsExplicitInstantiationDeclaration)
12617 DefineVTable = false;
12618 }
12619
12620 // The exception specifications for all virtual members may be needed even
12621 // if we are not providing an authoritative form of the vtable in this TU.
12622 // We may choose to emit it available_externally anyway.
12623 if (!DefineVTable) {
12624 MarkVirtualMemberExceptionSpecsNeeded(Loc, Class);
12625 continue;
12626 }
12627
12628 // Mark all of the virtual members of this class as referenced, so
12629 // that we can build a vtable. Then, tell the AST consumer that a
12630 // vtable for this class is required.
12631 DefinedAnything = true;
12632 MarkVirtualMembersReferenced(Loc, Class);
12633 CXXRecordDecl *Canonical = cast<CXXRecordDecl>(Class->getCanonicalDecl());
12634 Consumer.HandleVTable(Class, VTablesUsed[Canonical]);
12635
12636 // Optionally warn if we're emitting a weak vtable.
12637 if (Class->isExternallyVisible() &&
12638 Class->getTemplateSpecializationKind() != TSK_ImplicitInstantiation) {
12639 const FunctionDecl *KeyFunctionDef = nullptr;
12640 if (!KeyFunction ||
12641 (KeyFunction->hasBody(KeyFunctionDef) &&
12642 KeyFunctionDef->isInlined()))
12643 Diag(Class->getLocation(), Class->getTemplateSpecializationKind() ==
12644 TSK_ExplicitInstantiationDefinition
12645 ? diag::warn_weak_template_vtable : diag::warn_weak_vtable)
12646 << Class;
12647 }
12648 }
12649 VTableUses.clear();
12650
12651 return DefinedAnything;
12652 }
12653
MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,const CXXRecordDecl * RD)12654 void Sema::MarkVirtualMemberExceptionSpecsNeeded(SourceLocation Loc,
12655 const CXXRecordDecl *RD) {
12656 for (const auto *I : RD->methods())
12657 if (I->isVirtual() && !I->isPure())
12658 ResolveExceptionSpec(Loc, I->getType()->castAs<FunctionProtoType>());
12659 }
12660
MarkVirtualMembersReferenced(SourceLocation Loc,const CXXRecordDecl * RD)12661 void Sema::MarkVirtualMembersReferenced(SourceLocation Loc,
12662 const CXXRecordDecl *RD) {
12663 // Mark all functions which will appear in RD's vtable as used.
12664 CXXFinalOverriderMap FinalOverriders;
12665 RD->getFinalOverriders(FinalOverriders);
12666 for (CXXFinalOverriderMap::const_iterator I = FinalOverriders.begin(),
12667 E = FinalOverriders.end();
12668 I != E; ++I) {
12669 for (OverridingMethods::const_iterator OI = I->second.begin(),
12670 OE = I->second.end();
12671 OI != OE; ++OI) {
12672 assert(OI->second.size() > 0 && "no final overrider");
12673 CXXMethodDecl *Overrider = OI->second.front().Method;
12674
12675 // C++ [basic.def.odr]p2:
12676 // [...] A virtual member function is used if it is not pure. [...]
12677 if (!Overrider->isPure())
12678 MarkFunctionReferenced(Loc, Overrider);
12679 }
12680 }
12681
12682 // Only classes that have virtual bases need a VTT.
12683 if (RD->getNumVBases() == 0)
12684 return;
12685
12686 for (const auto &I : RD->bases()) {
12687 const CXXRecordDecl *Base =
12688 cast<CXXRecordDecl>(I.getType()->getAs<RecordType>()->getDecl());
12689 if (Base->getNumVBases() == 0)
12690 continue;
12691 MarkVirtualMembersReferenced(Loc, Base);
12692 }
12693 }
12694
12695 /// SetIvarInitializers - This routine builds initialization ASTs for the
12696 /// Objective-C implementation whose ivars need be initialized.
SetIvarInitializers(ObjCImplementationDecl * ObjCImplementation)12697 void Sema::SetIvarInitializers(ObjCImplementationDecl *ObjCImplementation) {
12698 if (!getLangOpts().CPlusPlus)
12699 return;
12700 if (ObjCInterfaceDecl *OID = ObjCImplementation->getClassInterface()) {
12701 SmallVector<ObjCIvarDecl*, 8> ivars;
12702 CollectIvarsToConstructOrDestruct(OID, ivars);
12703 if (ivars.empty())
12704 return;
12705 SmallVector<CXXCtorInitializer*, 32> AllToInit;
12706 for (unsigned i = 0; i < ivars.size(); i++) {
12707 FieldDecl *Field = ivars[i];
12708 if (Field->isInvalidDecl())
12709 continue;
12710
12711 CXXCtorInitializer *Member;
12712 InitializedEntity InitEntity = InitializedEntity::InitializeMember(Field);
12713 InitializationKind InitKind =
12714 InitializationKind::CreateDefault(ObjCImplementation->getLocation());
12715
12716 InitializationSequence InitSeq(*this, InitEntity, InitKind, None);
12717 ExprResult MemberInit =
12718 InitSeq.Perform(*this, InitEntity, InitKind, None);
12719 MemberInit = MaybeCreateExprWithCleanups(MemberInit);
12720 // Note, MemberInit could actually come back empty if no initialization
12721 // is required (e.g., because it would call a trivial default constructor)
12722 if (!MemberInit.get() || MemberInit.isInvalid())
12723 continue;
12724
12725 Member =
12726 new (Context) CXXCtorInitializer(Context, Field, SourceLocation(),
12727 SourceLocation(),
12728 MemberInit.getAs<Expr>(),
12729 SourceLocation());
12730 AllToInit.push_back(Member);
12731
12732 // Be sure that the destructor is accessible and is marked as referenced.
12733 if (const RecordType *RecordTy
12734 = Context.getBaseElementType(Field->getType())
12735 ->getAs<RecordType>()) {
12736 CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl());
12737 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) {
12738 MarkFunctionReferenced(Field->getLocation(), Destructor);
12739 CheckDestructorAccess(Field->getLocation(), Destructor,
12740 PDiag(diag::err_access_dtor_ivar)
12741 << Context.getBaseElementType(Field->getType()));
12742 }
12743 }
12744 }
12745 ObjCImplementation->setIvarInitializers(Context,
12746 AllToInit.data(), AllToInit.size());
12747 }
12748 }
12749
12750 static
DelegatingCycleHelper(CXXConstructorDecl * Ctor,llvm::SmallSet<CXXConstructorDecl *,4> & Valid,llvm::SmallSet<CXXConstructorDecl *,4> & Invalid,llvm::SmallSet<CXXConstructorDecl *,4> & Current,Sema & S)12751 void DelegatingCycleHelper(CXXConstructorDecl* Ctor,
12752 llvm::SmallSet<CXXConstructorDecl*, 4> &Valid,
12753 llvm::SmallSet<CXXConstructorDecl*, 4> &Invalid,
12754 llvm::SmallSet<CXXConstructorDecl*, 4> &Current,
12755 Sema &S) {
12756 if (Ctor->isInvalidDecl())
12757 return;
12758
12759 CXXConstructorDecl *Target = Ctor->getTargetConstructor();
12760
12761 // Target may not be determinable yet, for instance if this is a dependent
12762 // call in an uninstantiated template.
12763 if (Target) {
12764 const FunctionDecl *FNTarget = nullptr;
12765 (void)Target->hasBody(FNTarget);
12766 Target = const_cast<CXXConstructorDecl*>(
12767 cast_or_null<CXXConstructorDecl>(FNTarget));
12768 }
12769
12770 CXXConstructorDecl *Canonical = Ctor->getCanonicalDecl(),
12771 // Avoid dereferencing a null pointer here.
12772 *TCanonical = Target? Target->getCanonicalDecl() : nullptr;
12773
12774 if (!Current.insert(Canonical))
12775 return;
12776
12777 // We know that beyond here, we aren't chaining into a cycle.
12778 if (!Target || !Target->isDelegatingConstructor() ||
12779 Target->isInvalidDecl() || Valid.count(TCanonical)) {
12780 Valid.insert(Current.begin(), Current.end());
12781 Current.clear();
12782 // We've hit a cycle.
12783 } else if (TCanonical == Canonical || Invalid.count(TCanonical) ||
12784 Current.count(TCanonical)) {
12785 // If we haven't diagnosed this cycle yet, do so now.
12786 if (!Invalid.count(TCanonical)) {
12787 S.Diag((*Ctor->init_begin())->getSourceLocation(),
12788 diag::warn_delegating_ctor_cycle)
12789 << Ctor;
12790
12791 // Don't add a note for a function delegating directly to itself.
12792 if (TCanonical != Canonical)
12793 S.Diag(Target->getLocation(), diag::note_it_delegates_to);
12794
12795 CXXConstructorDecl *C = Target;
12796 while (C->getCanonicalDecl() != Canonical) {
12797 const FunctionDecl *FNTarget = nullptr;
12798 (void)C->getTargetConstructor()->hasBody(FNTarget);
12799 assert(FNTarget && "Ctor cycle through bodiless function");
12800
12801 C = const_cast<CXXConstructorDecl*>(
12802 cast<CXXConstructorDecl>(FNTarget));
12803 S.Diag(C->getLocation(), diag::note_which_delegates_to);
12804 }
12805 }
12806
12807 Invalid.insert(Current.begin(), Current.end());
12808 Current.clear();
12809 } else {
12810 DelegatingCycleHelper(Target, Valid, Invalid, Current, S);
12811 }
12812 }
12813
12814
CheckDelegatingCtorCycles()12815 void Sema::CheckDelegatingCtorCycles() {
12816 llvm::SmallSet<CXXConstructorDecl*, 4> Valid, Invalid, Current;
12817
12818 for (DelegatingCtorDeclsType::iterator
12819 I = DelegatingCtorDecls.begin(ExternalSource),
12820 E = DelegatingCtorDecls.end();
12821 I != E; ++I)
12822 DelegatingCycleHelper(*I, Valid, Invalid, Current, *this);
12823
12824 for (llvm::SmallSet<CXXConstructorDecl *, 4>::iterator CI = Invalid.begin(),
12825 CE = Invalid.end();
12826 CI != CE; ++CI)
12827 (*CI)->setInvalidDecl();
12828 }
12829
12830 namespace {
12831 /// \brief AST visitor that finds references to the 'this' expression.
12832 class FindCXXThisExpr : public RecursiveASTVisitor<FindCXXThisExpr> {
12833 Sema &S;
12834
12835 public:
FindCXXThisExpr(Sema & S)12836 explicit FindCXXThisExpr(Sema &S) : S(S) { }
12837
VisitCXXThisExpr(CXXThisExpr * E)12838 bool VisitCXXThisExpr(CXXThisExpr *E) {
12839 S.Diag(E->getLocation(), diag::err_this_static_member_func)
12840 << E->isImplicit();
12841 return false;
12842 }
12843 };
12844 }
12845
checkThisInStaticMemberFunctionType(CXXMethodDecl * Method)12846 bool Sema::checkThisInStaticMemberFunctionType(CXXMethodDecl *Method) {
12847 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12848 if (!TSInfo)
12849 return false;
12850
12851 TypeLoc TL = TSInfo->getTypeLoc();
12852 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12853 if (!ProtoTL)
12854 return false;
12855
12856 // C++11 [expr.prim.general]p3:
12857 // [The expression this] shall not appear before the optional
12858 // cv-qualifier-seq and it shall not appear within the declaration of a
12859 // static member function (although its type and value category are defined
12860 // within a static member function as they are within a non-static member
12861 // function). [ Note: this is because declaration matching does not occur
12862 // until the complete declarator is known. - end note ]
12863 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12864 FindCXXThisExpr Finder(*this);
12865
12866 // If the return type came after the cv-qualifier-seq, check it now.
12867 if (Proto->hasTrailingReturn() &&
12868 !Finder.TraverseTypeLoc(ProtoTL.getReturnLoc()))
12869 return true;
12870
12871 // Check the exception specification.
12872 if (checkThisInStaticMemberFunctionExceptionSpec(Method))
12873 return true;
12874
12875 return checkThisInStaticMemberFunctionAttributes(Method);
12876 }
12877
checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl * Method)12878 bool Sema::checkThisInStaticMemberFunctionExceptionSpec(CXXMethodDecl *Method) {
12879 TypeSourceInfo *TSInfo = Method->getTypeSourceInfo();
12880 if (!TSInfo)
12881 return false;
12882
12883 TypeLoc TL = TSInfo->getTypeLoc();
12884 FunctionProtoTypeLoc ProtoTL = TL.getAs<FunctionProtoTypeLoc>();
12885 if (!ProtoTL)
12886 return false;
12887
12888 const FunctionProtoType *Proto = ProtoTL.getTypePtr();
12889 FindCXXThisExpr Finder(*this);
12890
12891 switch (Proto->getExceptionSpecType()) {
12892 case EST_Uninstantiated:
12893 case EST_Unevaluated:
12894 case EST_BasicNoexcept:
12895 case EST_DynamicNone:
12896 case EST_MSAny:
12897 case EST_None:
12898 break;
12899
12900 case EST_ComputedNoexcept:
12901 if (!Finder.TraverseStmt(Proto->getNoexceptExpr()))
12902 return true;
12903
12904 case EST_Dynamic:
12905 for (const auto &E : Proto->exceptions()) {
12906 if (!Finder.TraverseType(E))
12907 return true;
12908 }
12909 break;
12910 }
12911
12912 return false;
12913 }
12914
checkThisInStaticMemberFunctionAttributes(CXXMethodDecl * Method)12915 bool Sema::checkThisInStaticMemberFunctionAttributes(CXXMethodDecl *Method) {
12916 FindCXXThisExpr Finder(*this);
12917
12918 // Check attributes.
12919 for (const auto *A : Method->attrs()) {
12920 // FIXME: This should be emitted by tblgen.
12921 Expr *Arg = nullptr;
12922 ArrayRef<Expr *> Args;
12923 if (const auto *G = dyn_cast<GuardedByAttr>(A))
12924 Arg = G->getArg();
12925 else if (const auto *G = dyn_cast<PtGuardedByAttr>(A))
12926 Arg = G->getArg();
12927 else if (const auto *AA = dyn_cast<AcquiredAfterAttr>(A))
12928 Args = ArrayRef<Expr *>(AA->args_begin(), AA->args_size());
12929 else if (const auto *AB = dyn_cast<AcquiredBeforeAttr>(A))
12930 Args = ArrayRef<Expr *>(AB->args_begin(), AB->args_size());
12931 else if (const auto *ETLF = dyn_cast<ExclusiveTrylockFunctionAttr>(A)) {
12932 Arg = ETLF->getSuccessValue();
12933 Args = ArrayRef<Expr *>(ETLF->args_begin(), ETLF->args_size());
12934 } else if (const auto *STLF = dyn_cast<SharedTrylockFunctionAttr>(A)) {
12935 Arg = STLF->getSuccessValue();
12936 Args = ArrayRef<Expr *>(STLF->args_begin(), STLF->args_size());
12937 } else if (const auto *LR = dyn_cast<LockReturnedAttr>(A))
12938 Arg = LR->getArg();
12939 else if (const auto *LE = dyn_cast<LocksExcludedAttr>(A))
12940 Args = ArrayRef<Expr *>(LE->args_begin(), LE->args_size());
12941 else if (const auto *RC = dyn_cast<RequiresCapabilityAttr>(A))
12942 Args = ArrayRef<Expr *>(RC->args_begin(), RC->args_size());
12943 else if (const auto *AC = dyn_cast<AcquireCapabilityAttr>(A))
12944 Args = ArrayRef<Expr *>(AC->args_begin(), AC->args_size());
12945 else if (const auto *AC = dyn_cast<TryAcquireCapabilityAttr>(A))
12946 Args = ArrayRef<Expr *>(AC->args_begin(), AC->args_size());
12947 else if (const auto *RC = dyn_cast<ReleaseCapabilityAttr>(A))
12948 Args = ArrayRef<Expr *>(RC->args_begin(), RC->args_size());
12949
12950 if (Arg && !Finder.TraverseStmt(Arg))
12951 return true;
12952
12953 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
12954 if (!Finder.TraverseStmt(Args[I]))
12955 return true;
12956 }
12957 }
12958
12959 return false;
12960 }
12961
12962 void
checkExceptionSpecification(ExceptionSpecificationType EST,ArrayRef<ParsedType> DynamicExceptions,ArrayRef<SourceRange> DynamicExceptionRanges,Expr * NoexceptExpr,SmallVectorImpl<QualType> & Exceptions,FunctionProtoType::ExtProtoInfo & EPI)12963 Sema::checkExceptionSpecification(ExceptionSpecificationType EST,
12964 ArrayRef<ParsedType> DynamicExceptions,
12965 ArrayRef<SourceRange> DynamicExceptionRanges,
12966 Expr *NoexceptExpr,
12967 SmallVectorImpl<QualType> &Exceptions,
12968 FunctionProtoType::ExtProtoInfo &EPI) {
12969 Exceptions.clear();
12970 EPI.ExceptionSpecType = EST;
12971 if (EST == EST_Dynamic) {
12972 Exceptions.reserve(DynamicExceptions.size());
12973 for (unsigned ei = 0, ee = DynamicExceptions.size(); ei != ee; ++ei) {
12974 // FIXME: Preserve type source info.
12975 QualType ET = GetTypeFromParser(DynamicExceptions[ei]);
12976
12977 SmallVector<UnexpandedParameterPack, 2> Unexpanded;
12978 collectUnexpandedParameterPacks(ET, Unexpanded);
12979 if (!Unexpanded.empty()) {
12980 DiagnoseUnexpandedParameterPacks(DynamicExceptionRanges[ei].getBegin(),
12981 UPPC_ExceptionType,
12982 Unexpanded);
12983 continue;
12984 }
12985
12986 // Check that the type is valid for an exception spec, and
12987 // drop it if not.
12988 if (!CheckSpecifiedExceptionType(ET, DynamicExceptionRanges[ei]))
12989 Exceptions.push_back(ET);
12990 }
12991 EPI.NumExceptions = Exceptions.size();
12992 EPI.Exceptions = Exceptions.data();
12993 return;
12994 }
12995
12996 if (EST == EST_ComputedNoexcept) {
12997 // If an error occurred, there's no expression here.
12998 if (NoexceptExpr) {
12999 assert((NoexceptExpr->isTypeDependent() ||
13000 NoexceptExpr->getType()->getCanonicalTypeUnqualified() ==
13001 Context.BoolTy) &&
13002 "Parser should have made sure that the expression is boolean");
13003 if (NoexceptExpr && DiagnoseUnexpandedParameterPack(NoexceptExpr)) {
13004 EPI.ExceptionSpecType = EST_BasicNoexcept;
13005 return;
13006 }
13007
13008 if (!NoexceptExpr->isValueDependent())
13009 NoexceptExpr = VerifyIntegerConstantExpression(NoexceptExpr, nullptr,
13010 diag::err_noexcept_needs_constant_expression,
13011 /*AllowFold*/ false).get();
13012 EPI.NoexceptExpr = NoexceptExpr;
13013 }
13014 return;
13015 }
13016 }
13017
13018 /// IdentifyCUDATarget - Determine the CUDA compilation target for this function
IdentifyCUDATarget(const FunctionDecl * D)13019 Sema::CUDAFunctionTarget Sema::IdentifyCUDATarget(const FunctionDecl *D) {
13020 // Implicitly declared functions (e.g. copy constructors) are
13021 // __host__ __device__
13022 if (D->isImplicit())
13023 return CFT_HostDevice;
13024
13025 if (D->hasAttr<CUDAGlobalAttr>())
13026 return CFT_Global;
13027
13028 if (D->hasAttr<CUDADeviceAttr>()) {
13029 if (D->hasAttr<CUDAHostAttr>())
13030 return CFT_HostDevice;
13031 return CFT_Device;
13032 }
13033
13034 return CFT_Host;
13035 }
13036
CheckCUDATarget(CUDAFunctionTarget CallerTarget,CUDAFunctionTarget CalleeTarget)13037 bool Sema::CheckCUDATarget(CUDAFunctionTarget CallerTarget,
13038 CUDAFunctionTarget CalleeTarget) {
13039 // CUDA B.1.1 "The __device__ qualifier declares a function that is...
13040 // Callable from the device only."
13041 if (CallerTarget == CFT_Host && CalleeTarget == CFT_Device)
13042 return true;
13043
13044 // CUDA B.1.2 "The __global__ qualifier declares a function that is...
13045 // Callable from the host only."
13046 // CUDA B.1.3 "The __host__ qualifier declares a function that is...
13047 // Callable from the host only."
13048 if ((CallerTarget == CFT_Device || CallerTarget == CFT_Global) &&
13049 (CalleeTarget == CFT_Host || CalleeTarget == CFT_Global))
13050 return true;
13051
13052 if (CallerTarget == CFT_HostDevice && CalleeTarget != CFT_HostDevice)
13053 return true;
13054
13055 return false;
13056 }
13057
13058 /// HandleMSProperty - Analyze a __delcspec(property) field of a C++ class.
13059 ///
HandleMSProperty(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS,AttributeList * MSPropertyAttr)13060 MSPropertyDecl *Sema::HandleMSProperty(Scope *S, RecordDecl *Record,
13061 SourceLocation DeclStart,
13062 Declarator &D, Expr *BitWidth,
13063 InClassInitStyle InitStyle,
13064 AccessSpecifier AS,
13065 AttributeList *MSPropertyAttr) {
13066 IdentifierInfo *II = D.getIdentifier();
13067 if (!II) {
13068 Diag(DeclStart, diag::err_anonymous_property);
13069 return nullptr;
13070 }
13071 SourceLocation Loc = D.getIdentifierLoc();
13072
13073 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13074 QualType T = TInfo->getType();
13075 if (getLangOpts().CPlusPlus) {
13076 CheckExtraCXXDefaultArguments(D);
13077
13078 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
13079 UPPC_DataMemberType)) {
13080 D.setInvalidType();
13081 T = Context.IntTy;
13082 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
13083 }
13084 }
13085
13086 DiagnoseFunctionSpecifiers(D.getDeclSpec());
13087
13088 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
13089 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
13090 diag::err_invalid_thread)
13091 << DeclSpec::getSpecifierName(TSCS);
13092
13093 // Check to see if this name was declared as a member previously
13094 NamedDecl *PrevDecl = nullptr;
13095 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
13096 LookupName(Previous, S);
13097 switch (Previous.getResultKind()) {
13098 case LookupResult::Found:
13099 case LookupResult::FoundUnresolvedValue:
13100 PrevDecl = Previous.getAsSingle<NamedDecl>();
13101 break;
13102
13103 case LookupResult::FoundOverloaded:
13104 PrevDecl = Previous.getRepresentativeDecl();
13105 break;
13106
13107 case LookupResult::NotFound:
13108 case LookupResult::NotFoundInCurrentInstantiation:
13109 case LookupResult::Ambiguous:
13110 break;
13111 }
13112
13113 if (PrevDecl && PrevDecl->isTemplateParameter()) {
13114 // Maybe we will complain about the shadowed template parameter.
13115 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13116 // Just pretend that we didn't see the previous declaration.
13117 PrevDecl = nullptr;
13118 }
13119
13120 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
13121 PrevDecl = nullptr;
13122
13123 SourceLocation TSSL = D.getLocStart();
13124 const AttributeList::PropertyData &Data = MSPropertyAttr->getPropertyData();
13125 MSPropertyDecl *NewPD = MSPropertyDecl::Create(
13126 Context, Record, Loc, II, T, TInfo, TSSL, Data.GetterId, Data.SetterId);
13127 ProcessDeclAttributes(TUScope, NewPD, D);
13128 NewPD->setAccess(AS);
13129
13130 if (NewPD->isInvalidDecl())
13131 Record->setInvalidDecl();
13132
13133 if (D.getDeclSpec().isModulePrivateSpecified())
13134 NewPD->setModulePrivate();
13135
13136 if (NewPD->isInvalidDecl() && PrevDecl) {
13137 // Don't introduce NewFD into scope; there's already something
13138 // with the same name in the same scope.
13139 } else if (II) {
13140 PushOnScopeChains(NewPD, S);
13141 } else
13142 Record->addDecl(NewPD);
13143
13144 return NewPD;
13145 }
13146