1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #include "src/double.h"
8 #include "src/factory.h"
9 #include "src/hydrogen-infer-representation.h"
10 #include "src/property-details-inl.h"
11
12 #if V8_TARGET_ARCH_IA32
13 #include "src/ia32/lithium-ia32.h"
14 #elif V8_TARGET_ARCH_X64
15 #include "src/x64/lithium-x64.h"
16 #elif V8_TARGET_ARCH_ARM64
17 #include "src/arm64/lithium-arm64.h"
18 #elif V8_TARGET_ARCH_ARM
19 #include "src/arm/lithium-arm.h"
20 #elif V8_TARGET_ARCH_MIPS
21 #include "src/mips/lithium-mips.h"
22 #elif V8_TARGET_ARCH_X87
23 #include "src/x87/lithium-x87.h"
24 #else
25 #error Unsupported target architecture.
26 #endif
27
28 namespace v8 {
29 namespace internal {
30
31 #define DEFINE_COMPILE(type) \
32 LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
33 return builder->Do##type(this); \
34 }
HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)35 HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
36 #undef DEFINE_COMPILE
37
38
39 Isolate* HValue::isolate() const {
40 ASSERT(block() != NULL);
41 return block()->isolate();
42 }
43
44
AssumeRepresentation(Representation r)45 void HValue::AssumeRepresentation(Representation r) {
46 if (CheckFlag(kFlexibleRepresentation)) {
47 ChangeRepresentation(r);
48 // The representation of the value is dictated by type feedback and
49 // will not be changed later.
50 ClearFlag(kFlexibleRepresentation);
51 }
52 }
53
54
InferRepresentation(HInferRepresentationPhase * h_infer)55 void HValue::InferRepresentation(HInferRepresentationPhase* h_infer) {
56 ASSERT(CheckFlag(kFlexibleRepresentation));
57 Representation new_rep = RepresentationFromInputs();
58 UpdateRepresentation(new_rep, h_infer, "inputs");
59 new_rep = RepresentationFromUses();
60 UpdateRepresentation(new_rep, h_infer, "uses");
61 if (representation().IsSmi() && HasNonSmiUse()) {
62 UpdateRepresentation(
63 Representation::Integer32(), h_infer, "use requirements");
64 }
65 }
66
67
RepresentationFromUses()68 Representation HValue::RepresentationFromUses() {
69 if (HasNoUses()) return Representation::None();
70
71 // Array of use counts for each representation.
72 int use_count[Representation::kNumRepresentations] = { 0 };
73
74 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
75 HValue* use = it.value();
76 Representation rep = use->observed_input_representation(it.index());
77 if (rep.IsNone()) continue;
78 if (FLAG_trace_representation) {
79 PrintF("#%d %s is used by #%d %s as %s%s\n",
80 id(), Mnemonic(), use->id(), use->Mnemonic(), rep.Mnemonic(),
81 (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
82 }
83 use_count[rep.kind()] += 1;
84 }
85 if (IsPhi()) HPhi::cast(this)->AddIndirectUsesTo(&use_count[0]);
86 int tagged_count = use_count[Representation::kTagged];
87 int double_count = use_count[Representation::kDouble];
88 int int32_count = use_count[Representation::kInteger32];
89 int smi_count = use_count[Representation::kSmi];
90
91 if (tagged_count > 0) return Representation::Tagged();
92 if (double_count > 0) return Representation::Double();
93 if (int32_count > 0) return Representation::Integer32();
94 if (smi_count > 0) return Representation::Smi();
95
96 return Representation::None();
97 }
98
99
UpdateRepresentation(Representation new_rep,HInferRepresentationPhase * h_infer,const char * reason)100 void HValue::UpdateRepresentation(Representation new_rep,
101 HInferRepresentationPhase* h_infer,
102 const char* reason) {
103 Representation r = representation();
104 if (new_rep.is_more_general_than(r)) {
105 if (CheckFlag(kCannotBeTagged) && new_rep.IsTagged()) return;
106 if (FLAG_trace_representation) {
107 PrintF("Changing #%d %s representation %s -> %s based on %s\n",
108 id(), Mnemonic(), r.Mnemonic(), new_rep.Mnemonic(), reason);
109 }
110 ChangeRepresentation(new_rep);
111 AddDependantsToWorklist(h_infer);
112 }
113 }
114
115
AddDependantsToWorklist(HInferRepresentationPhase * h_infer)116 void HValue::AddDependantsToWorklist(HInferRepresentationPhase* h_infer) {
117 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
118 h_infer->AddToWorklist(it.value());
119 }
120 for (int i = 0; i < OperandCount(); ++i) {
121 h_infer->AddToWorklist(OperandAt(i));
122 }
123 }
124
125
ConvertAndSetOverflow(Representation r,int64_t result,bool * overflow)126 static int32_t ConvertAndSetOverflow(Representation r,
127 int64_t result,
128 bool* overflow) {
129 if (r.IsSmi()) {
130 if (result > Smi::kMaxValue) {
131 *overflow = true;
132 return Smi::kMaxValue;
133 }
134 if (result < Smi::kMinValue) {
135 *overflow = true;
136 return Smi::kMinValue;
137 }
138 } else {
139 if (result > kMaxInt) {
140 *overflow = true;
141 return kMaxInt;
142 }
143 if (result < kMinInt) {
144 *overflow = true;
145 return kMinInt;
146 }
147 }
148 return static_cast<int32_t>(result);
149 }
150
151
AddWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)152 static int32_t AddWithoutOverflow(Representation r,
153 int32_t a,
154 int32_t b,
155 bool* overflow) {
156 int64_t result = static_cast<int64_t>(a) + static_cast<int64_t>(b);
157 return ConvertAndSetOverflow(r, result, overflow);
158 }
159
160
SubWithoutOverflow(Representation r,int32_t a,int32_t b,bool * overflow)161 static int32_t SubWithoutOverflow(Representation r,
162 int32_t a,
163 int32_t b,
164 bool* overflow) {
165 int64_t result = static_cast<int64_t>(a) - static_cast<int64_t>(b);
166 return ConvertAndSetOverflow(r, result, overflow);
167 }
168
169
MulWithoutOverflow(const Representation & r,int32_t a,int32_t b,bool * overflow)170 static int32_t MulWithoutOverflow(const Representation& r,
171 int32_t a,
172 int32_t b,
173 bool* overflow) {
174 int64_t result = static_cast<int64_t>(a) * static_cast<int64_t>(b);
175 return ConvertAndSetOverflow(r, result, overflow);
176 }
177
178
Mask() const179 int32_t Range::Mask() const {
180 if (lower_ == upper_) return lower_;
181 if (lower_ >= 0) {
182 int32_t res = 1;
183 while (res < upper_) {
184 res = (res << 1) | 1;
185 }
186 return res;
187 }
188 return 0xffffffff;
189 }
190
191
AddConstant(int32_t value)192 void Range::AddConstant(int32_t value) {
193 if (value == 0) return;
194 bool may_overflow = false; // Overflow is ignored here.
195 Representation r = Representation::Integer32();
196 lower_ = AddWithoutOverflow(r, lower_, value, &may_overflow);
197 upper_ = AddWithoutOverflow(r, upper_, value, &may_overflow);
198 #ifdef DEBUG
199 Verify();
200 #endif
201 }
202
203
Intersect(Range * other)204 void Range::Intersect(Range* other) {
205 upper_ = Min(upper_, other->upper_);
206 lower_ = Max(lower_, other->lower_);
207 bool b = CanBeMinusZero() && other->CanBeMinusZero();
208 set_can_be_minus_zero(b);
209 }
210
211
Union(Range * other)212 void Range::Union(Range* other) {
213 upper_ = Max(upper_, other->upper_);
214 lower_ = Min(lower_, other->lower_);
215 bool b = CanBeMinusZero() || other->CanBeMinusZero();
216 set_can_be_minus_zero(b);
217 }
218
219
CombinedMax(Range * other)220 void Range::CombinedMax(Range* other) {
221 upper_ = Max(upper_, other->upper_);
222 lower_ = Max(lower_, other->lower_);
223 set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
224 }
225
226
CombinedMin(Range * other)227 void Range::CombinedMin(Range* other) {
228 upper_ = Min(upper_, other->upper_);
229 lower_ = Min(lower_, other->lower_);
230 set_can_be_minus_zero(CanBeMinusZero() || other->CanBeMinusZero());
231 }
232
233
Sar(int32_t value)234 void Range::Sar(int32_t value) {
235 int32_t bits = value & 0x1F;
236 lower_ = lower_ >> bits;
237 upper_ = upper_ >> bits;
238 set_can_be_minus_zero(false);
239 }
240
241
Shl(int32_t value)242 void Range::Shl(int32_t value) {
243 int32_t bits = value & 0x1F;
244 int old_lower = lower_;
245 int old_upper = upper_;
246 lower_ = lower_ << bits;
247 upper_ = upper_ << bits;
248 if (old_lower != lower_ >> bits || old_upper != upper_ >> bits) {
249 upper_ = kMaxInt;
250 lower_ = kMinInt;
251 }
252 set_can_be_minus_zero(false);
253 }
254
255
AddAndCheckOverflow(const Representation & r,Range * other)256 bool Range::AddAndCheckOverflow(const Representation& r, Range* other) {
257 bool may_overflow = false;
258 lower_ = AddWithoutOverflow(r, lower_, other->lower(), &may_overflow);
259 upper_ = AddWithoutOverflow(r, upper_, other->upper(), &may_overflow);
260 KeepOrder();
261 #ifdef DEBUG
262 Verify();
263 #endif
264 return may_overflow;
265 }
266
267
SubAndCheckOverflow(const Representation & r,Range * other)268 bool Range::SubAndCheckOverflow(const Representation& r, Range* other) {
269 bool may_overflow = false;
270 lower_ = SubWithoutOverflow(r, lower_, other->upper(), &may_overflow);
271 upper_ = SubWithoutOverflow(r, upper_, other->lower(), &may_overflow);
272 KeepOrder();
273 #ifdef DEBUG
274 Verify();
275 #endif
276 return may_overflow;
277 }
278
279
KeepOrder()280 void Range::KeepOrder() {
281 if (lower_ > upper_) {
282 int32_t tmp = lower_;
283 lower_ = upper_;
284 upper_ = tmp;
285 }
286 }
287
288
289 #ifdef DEBUG
Verify() const290 void Range::Verify() const {
291 ASSERT(lower_ <= upper_);
292 }
293 #endif
294
295
MulAndCheckOverflow(const Representation & r,Range * other)296 bool Range::MulAndCheckOverflow(const Representation& r, Range* other) {
297 bool may_overflow = false;
298 int v1 = MulWithoutOverflow(r, lower_, other->lower(), &may_overflow);
299 int v2 = MulWithoutOverflow(r, lower_, other->upper(), &may_overflow);
300 int v3 = MulWithoutOverflow(r, upper_, other->lower(), &may_overflow);
301 int v4 = MulWithoutOverflow(r, upper_, other->upper(), &may_overflow);
302 lower_ = Min(Min(v1, v2), Min(v3, v4));
303 upper_ = Max(Max(v1, v2), Max(v3, v4));
304 #ifdef DEBUG
305 Verify();
306 #endif
307 return may_overflow;
308 }
309
310
IsDefinedAfter(HBasicBlock * other) const311 bool HValue::IsDefinedAfter(HBasicBlock* other) const {
312 return block()->block_id() > other->block_id();
313 }
314
315
tail()316 HUseListNode* HUseListNode::tail() {
317 // Skip and remove dead items in the use list.
318 while (tail_ != NULL && tail_->value()->CheckFlag(HValue::kIsDead)) {
319 tail_ = tail_->tail_;
320 }
321 return tail_;
322 }
323
324
CheckUsesForFlag(Flag f) const325 bool HValue::CheckUsesForFlag(Flag f) const {
326 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
327 if (it.value()->IsSimulate()) continue;
328 if (!it.value()->CheckFlag(f)) return false;
329 }
330 return true;
331 }
332
333
CheckUsesForFlag(Flag f,HValue ** value) const334 bool HValue::CheckUsesForFlag(Flag f, HValue** value) const {
335 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
336 if (it.value()->IsSimulate()) continue;
337 if (!it.value()->CheckFlag(f)) {
338 *value = it.value();
339 return false;
340 }
341 }
342 return true;
343 }
344
345
HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const346 bool HValue::HasAtLeastOneUseWithFlagAndNoneWithout(Flag f) const {
347 bool return_value = false;
348 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
349 if (it.value()->IsSimulate()) continue;
350 if (!it.value()->CheckFlag(f)) return false;
351 return_value = true;
352 }
353 return return_value;
354 }
355
356
HUseIterator(HUseListNode * head)357 HUseIterator::HUseIterator(HUseListNode* head) : next_(head) {
358 Advance();
359 }
360
361
Advance()362 void HUseIterator::Advance() {
363 current_ = next_;
364 if (current_ != NULL) {
365 next_ = current_->tail();
366 value_ = current_->value();
367 index_ = current_->index();
368 }
369 }
370
371
UseCount() const372 int HValue::UseCount() const {
373 int count = 0;
374 for (HUseIterator it(uses()); !it.Done(); it.Advance()) ++count;
375 return count;
376 }
377
378
RemoveUse(HValue * value,int index)379 HUseListNode* HValue::RemoveUse(HValue* value, int index) {
380 HUseListNode* previous = NULL;
381 HUseListNode* current = use_list_;
382 while (current != NULL) {
383 if (current->value() == value && current->index() == index) {
384 if (previous == NULL) {
385 use_list_ = current->tail();
386 } else {
387 previous->set_tail(current->tail());
388 }
389 break;
390 }
391
392 previous = current;
393 current = current->tail();
394 }
395
396 #ifdef DEBUG
397 // Do not reuse use list nodes in debug mode, zap them.
398 if (current != NULL) {
399 HUseListNode* temp =
400 new(block()->zone())
401 HUseListNode(current->value(), current->index(), NULL);
402 current->Zap();
403 current = temp;
404 }
405 #endif
406 return current;
407 }
408
409
Equals(HValue * other)410 bool HValue::Equals(HValue* other) {
411 if (other->opcode() != opcode()) return false;
412 if (!other->representation().Equals(representation())) return false;
413 if (!other->type_.Equals(type_)) return false;
414 if (other->flags() != flags()) return false;
415 if (OperandCount() != other->OperandCount()) return false;
416 for (int i = 0; i < OperandCount(); ++i) {
417 if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
418 }
419 bool result = DataEquals(other);
420 ASSERT(!result || Hashcode() == other->Hashcode());
421 return result;
422 }
423
424
Hashcode()425 intptr_t HValue::Hashcode() {
426 intptr_t result = opcode();
427 int count = OperandCount();
428 for (int i = 0; i < count; ++i) {
429 result = result * 19 + OperandAt(i)->id() + (result >> 7);
430 }
431 return result;
432 }
433
434
Mnemonic() const435 const char* HValue::Mnemonic() const {
436 switch (opcode()) {
437 #define MAKE_CASE(type) case k##type: return #type;
438 HYDROGEN_CONCRETE_INSTRUCTION_LIST(MAKE_CASE)
439 #undef MAKE_CASE
440 case kPhi: return "Phi";
441 default: return "";
442 }
443 }
444
445
CanReplaceWithDummyUses()446 bool HValue::CanReplaceWithDummyUses() {
447 return FLAG_unreachable_code_elimination &&
448 !(block()->IsReachable() ||
449 IsBlockEntry() ||
450 IsControlInstruction() ||
451 IsArgumentsObject() ||
452 IsCapturedObject() ||
453 IsSimulate() ||
454 IsEnterInlined() ||
455 IsLeaveInlined());
456 }
457
458
IsInteger32Constant()459 bool HValue::IsInteger32Constant() {
460 return IsConstant() && HConstant::cast(this)->HasInteger32Value();
461 }
462
463
GetInteger32Constant()464 int32_t HValue::GetInteger32Constant() {
465 return HConstant::cast(this)->Integer32Value();
466 }
467
468
EqualsInteger32Constant(int32_t value)469 bool HValue::EqualsInteger32Constant(int32_t value) {
470 return IsInteger32Constant() && GetInteger32Constant() == value;
471 }
472
473
SetOperandAt(int index,HValue * value)474 void HValue::SetOperandAt(int index, HValue* value) {
475 RegisterUse(index, value);
476 InternalSetOperandAt(index, value);
477 }
478
479
DeleteAndReplaceWith(HValue * other)480 void HValue::DeleteAndReplaceWith(HValue* other) {
481 // We replace all uses first, so Delete can assert that there are none.
482 if (other != NULL) ReplaceAllUsesWith(other);
483 Kill();
484 DeleteFromGraph();
485 }
486
487
ReplaceAllUsesWith(HValue * other)488 void HValue::ReplaceAllUsesWith(HValue* other) {
489 while (use_list_ != NULL) {
490 HUseListNode* list_node = use_list_;
491 HValue* value = list_node->value();
492 ASSERT(!value->block()->IsStartBlock());
493 value->InternalSetOperandAt(list_node->index(), other);
494 use_list_ = list_node->tail();
495 list_node->set_tail(other->use_list_);
496 other->use_list_ = list_node;
497 }
498 }
499
500
Kill()501 void HValue::Kill() {
502 // Instead of going through the entire use list of each operand, we only
503 // check the first item in each use list and rely on the tail() method to
504 // skip dead items, removing them lazily next time we traverse the list.
505 SetFlag(kIsDead);
506 for (int i = 0; i < OperandCount(); ++i) {
507 HValue* operand = OperandAt(i);
508 if (operand == NULL) continue;
509 HUseListNode* first = operand->use_list_;
510 if (first != NULL && first->value()->CheckFlag(kIsDead)) {
511 operand->use_list_ = first->tail();
512 }
513 }
514 }
515
516
SetBlock(HBasicBlock * block)517 void HValue::SetBlock(HBasicBlock* block) {
518 ASSERT(block_ == NULL || block == NULL);
519 block_ = block;
520 if (id_ == kNoNumber && block != NULL) {
521 id_ = block->graph()->GetNextValueID(this);
522 }
523 }
524
525
PrintTypeTo(StringStream * stream)526 void HValue::PrintTypeTo(StringStream* stream) {
527 if (!representation().IsTagged() || type().Equals(HType::Tagged())) return;
528 stream->Add(" type:%s", type().ToString());
529 }
530
531
PrintChangesTo(StringStream * stream)532 void HValue::PrintChangesTo(StringStream* stream) {
533 GVNFlagSet changes_flags = ChangesFlags();
534 if (changes_flags.IsEmpty()) return;
535 stream->Add(" changes[");
536 if (changes_flags == AllSideEffectsFlagSet()) {
537 stream->Add("*");
538 } else {
539 bool add_comma = false;
540 #define PRINT_DO(Type) \
541 if (changes_flags.Contains(k##Type)) { \
542 if (add_comma) stream->Add(","); \
543 add_comma = true; \
544 stream->Add(#Type); \
545 }
546 GVN_TRACKED_FLAG_LIST(PRINT_DO);
547 GVN_UNTRACKED_FLAG_LIST(PRINT_DO);
548 #undef PRINT_DO
549 }
550 stream->Add("]");
551 }
552
553
PrintNameTo(StringStream * stream)554 void HValue::PrintNameTo(StringStream* stream) {
555 stream->Add("%s%d", representation_.Mnemonic(), id());
556 }
557
558
HasMonomorphicJSObjectType()559 bool HValue::HasMonomorphicJSObjectType() {
560 return !GetMonomorphicJSObjectMap().is_null();
561 }
562
563
UpdateInferredType()564 bool HValue::UpdateInferredType() {
565 HType type = CalculateInferredType();
566 bool result = (!type.Equals(type_));
567 type_ = type;
568 return result;
569 }
570
571
RegisterUse(int index,HValue * new_value)572 void HValue::RegisterUse(int index, HValue* new_value) {
573 HValue* old_value = OperandAt(index);
574 if (old_value == new_value) return;
575
576 HUseListNode* removed = NULL;
577 if (old_value != NULL) {
578 removed = old_value->RemoveUse(this, index);
579 }
580
581 if (new_value != NULL) {
582 if (removed == NULL) {
583 new_value->use_list_ = new(new_value->block()->zone()) HUseListNode(
584 this, index, new_value->use_list_);
585 } else {
586 removed->set_tail(new_value->use_list_);
587 new_value->use_list_ = removed;
588 }
589 }
590 }
591
592
AddNewRange(Range * r,Zone * zone)593 void HValue::AddNewRange(Range* r, Zone* zone) {
594 if (!HasRange()) ComputeInitialRange(zone);
595 if (!HasRange()) range_ = new(zone) Range();
596 ASSERT(HasRange());
597 r->StackUpon(range_);
598 range_ = r;
599 }
600
601
RemoveLastAddedRange()602 void HValue::RemoveLastAddedRange() {
603 ASSERT(HasRange());
604 ASSERT(range_->next() != NULL);
605 range_ = range_->next();
606 }
607
608
ComputeInitialRange(Zone * zone)609 void HValue::ComputeInitialRange(Zone* zone) {
610 ASSERT(!HasRange());
611 range_ = InferRange(zone);
612 ASSERT(HasRange());
613 }
614
615
PrintTo(FILE * out)616 void HSourcePosition::PrintTo(FILE* out) {
617 if (IsUnknown()) {
618 PrintF(out, "<?>");
619 } else {
620 if (FLAG_hydrogen_track_positions) {
621 PrintF(out, "<%d:%d>", inlining_id(), position());
622 } else {
623 PrintF(out, "<0:%d>", raw());
624 }
625 }
626 }
627
628
PrintTo(StringStream * stream)629 void HInstruction::PrintTo(StringStream* stream) {
630 PrintMnemonicTo(stream);
631 PrintDataTo(stream);
632 PrintChangesTo(stream);
633 PrintTypeTo(stream);
634 if (CheckFlag(HValue::kHasNoObservableSideEffects)) {
635 stream->Add(" [noOSE]");
636 }
637 if (CheckFlag(HValue::kIsDead)) {
638 stream->Add(" [dead]");
639 }
640 }
641
642
PrintDataTo(StringStream * stream)643 void HInstruction::PrintDataTo(StringStream *stream) {
644 for (int i = 0; i < OperandCount(); ++i) {
645 if (i > 0) stream->Add(" ");
646 OperandAt(i)->PrintNameTo(stream);
647 }
648 }
649
650
PrintMnemonicTo(StringStream * stream)651 void HInstruction::PrintMnemonicTo(StringStream* stream) {
652 stream->Add("%s ", Mnemonic());
653 }
654
655
Unlink()656 void HInstruction::Unlink() {
657 ASSERT(IsLinked());
658 ASSERT(!IsControlInstruction()); // Must never move control instructions.
659 ASSERT(!IsBlockEntry()); // Doesn't make sense to delete these.
660 ASSERT(previous_ != NULL);
661 previous_->next_ = next_;
662 if (next_ == NULL) {
663 ASSERT(block()->last() == this);
664 block()->set_last(previous_);
665 } else {
666 next_->previous_ = previous_;
667 }
668 clear_block();
669 }
670
671
InsertBefore(HInstruction * next)672 void HInstruction::InsertBefore(HInstruction* next) {
673 ASSERT(!IsLinked());
674 ASSERT(!next->IsBlockEntry());
675 ASSERT(!IsControlInstruction());
676 ASSERT(!next->block()->IsStartBlock());
677 ASSERT(next->previous_ != NULL);
678 HInstruction* prev = next->previous();
679 prev->next_ = this;
680 next->previous_ = this;
681 next_ = next;
682 previous_ = prev;
683 SetBlock(next->block());
684 if (!has_position() && next->has_position()) {
685 set_position(next->position());
686 }
687 }
688
689
InsertAfter(HInstruction * previous)690 void HInstruction::InsertAfter(HInstruction* previous) {
691 ASSERT(!IsLinked());
692 ASSERT(!previous->IsControlInstruction());
693 ASSERT(!IsControlInstruction() || previous->next_ == NULL);
694 HBasicBlock* block = previous->block();
695 // Never insert anything except constants into the start block after finishing
696 // it.
697 if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
698 ASSERT(block->end()->SecondSuccessor() == NULL);
699 InsertAfter(block->end()->FirstSuccessor()->first());
700 return;
701 }
702
703 // If we're inserting after an instruction with side-effects that is
704 // followed by a simulate instruction, we need to insert after the
705 // simulate instruction instead.
706 HInstruction* next = previous->next_;
707 if (previous->HasObservableSideEffects() && next != NULL) {
708 ASSERT(next->IsSimulate());
709 previous = next;
710 next = previous->next_;
711 }
712
713 previous_ = previous;
714 next_ = next;
715 SetBlock(block);
716 previous->next_ = this;
717 if (next != NULL) next->previous_ = this;
718 if (block->last() == previous) {
719 block->set_last(this);
720 }
721 if (!has_position() && previous->has_position()) {
722 set_position(previous->position());
723 }
724 }
725
726
Dominates(HInstruction * other)727 bool HInstruction::Dominates(HInstruction* other) {
728 if (block() != other->block()) {
729 return block()->Dominates(other->block());
730 }
731 // Both instructions are in the same basic block. This instruction
732 // should precede the other one in order to dominate it.
733 for (HInstruction* instr = next(); instr != NULL; instr = instr->next()) {
734 if (instr == other) {
735 return true;
736 }
737 }
738 return false;
739 }
740
741
742 #ifdef DEBUG
Verify()743 void HInstruction::Verify() {
744 // Verify that input operands are defined before use.
745 HBasicBlock* cur_block = block();
746 for (int i = 0; i < OperandCount(); ++i) {
747 HValue* other_operand = OperandAt(i);
748 if (other_operand == NULL) continue;
749 HBasicBlock* other_block = other_operand->block();
750 if (cur_block == other_block) {
751 if (!other_operand->IsPhi()) {
752 HInstruction* cur = this->previous();
753 while (cur != NULL) {
754 if (cur == other_operand) break;
755 cur = cur->previous();
756 }
757 // Must reach other operand in the same block!
758 ASSERT(cur == other_operand);
759 }
760 } else {
761 // If the following assert fires, you may have forgotten an
762 // AddInstruction.
763 ASSERT(other_block->Dominates(cur_block));
764 }
765 }
766
767 // Verify that instructions that may have side-effects are followed
768 // by a simulate instruction.
769 if (HasObservableSideEffects() && !IsOsrEntry()) {
770 ASSERT(next()->IsSimulate());
771 }
772
773 // Verify that instructions that can be eliminated by GVN have overridden
774 // HValue::DataEquals. The default implementation is UNREACHABLE. We
775 // don't actually care whether DataEquals returns true or false here.
776 if (CheckFlag(kUseGVN)) DataEquals(this);
777
778 // Verify that all uses are in the graph.
779 for (HUseIterator use = uses(); !use.Done(); use.Advance()) {
780 if (use.value()->IsInstruction()) {
781 ASSERT(HInstruction::cast(use.value())->IsLinked());
782 }
783 }
784 }
785 #endif
786
787
CanDeoptimize()788 bool HInstruction::CanDeoptimize() {
789 // TODO(titzer): make this a virtual method?
790 switch (opcode()) {
791 case HValue::kAbnormalExit:
792 case HValue::kAccessArgumentsAt:
793 case HValue::kAllocate:
794 case HValue::kArgumentsElements:
795 case HValue::kArgumentsLength:
796 case HValue::kArgumentsObject:
797 case HValue::kBlockEntry:
798 case HValue::kBoundsCheckBaseIndexInformation:
799 case HValue::kCallFunction:
800 case HValue::kCallNew:
801 case HValue::kCallNewArray:
802 case HValue::kCallStub:
803 case HValue::kCallWithDescriptor:
804 case HValue::kCapturedObject:
805 case HValue::kClassOfTestAndBranch:
806 case HValue::kCompareGeneric:
807 case HValue::kCompareHoleAndBranch:
808 case HValue::kCompareMap:
809 case HValue::kCompareMinusZeroAndBranch:
810 case HValue::kCompareNumericAndBranch:
811 case HValue::kCompareObjectEqAndBranch:
812 case HValue::kConstant:
813 case HValue::kConstructDouble:
814 case HValue::kContext:
815 case HValue::kDebugBreak:
816 case HValue::kDeclareGlobals:
817 case HValue::kDoubleBits:
818 case HValue::kDummyUse:
819 case HValue::kEnterInlined:
820 case HValue::kEnvironmentMarker:
821 case HValue::kForceRepresentation:
822 case HValue::kGetCachedArrayIndex:
823 case HValue::kGoto:
824 case HValue::kHasCachedArrayIndexAndBranch:
825 case HValue::kHasInstanceTypeAndBranch:
826 case HValue::kInnerAllocatedObject:
827 case HValue::kInstanceOf:
828 case HValue::kInstanceOfKnownGlobal:
829 case HValue::kIsConstructCallAndBranch:
830 case HValue::kIsObjectAndBranch:
831 case HValue::kIsSmiAndBranch:
832 case HValue::kIsStringAndBranch:
833 case HValue::kIsUndetectableAndBranch:
834 case HValue::kLeaveInlined:
835 case HValue::kLoadFieldByIndex:
836 case HValue::kLoadGlobalGeneric:
837 case HValue::kLoadNamedField:
838 case HValue::kLoadNamedGeneric:
839 case HValue::kLoadRoot:
840 case HValue::kMapEnumLength:
841 case HValue::kMathMinMax:
842 case HValue::kParameter:
843 case HValue::kPhi:
844 case HValue::kPushArguments:
845 case HValue::kRegExpLiteral:
846 case HValue::kReturn:
847 case HValue::kSeqStringGetChar:
848 case HValue::kStoreCodeEntry:
849 case HValue::kStoreFrameContext:
850 case HValue::kStoreKeyed:
851 case HValue::kStoreNamedField:
852 case HValue::kStoreNamedGeneric:
853 case HValue::kStringCharCodeAt:
854 case HValue::kStringCharFromCode:
855 case HValue::kThisFunction:
856 case HValue::kTypeofIsAndBranch:
857 case HValue::kUnknownOSRValue:
858 case HValue::kUseConst:
859 return false;
860
861 case HValue::kAdd:
862 case HValue::kAllocateBlockContext:
863 case HValue::kApplyArguments:
864 case HValue::kBitwise:
865 case HValue::kBoundsCheck:
866 case HValue::kBranch:
867 case HValue::kCallJSFunction:
868 case HValue::kCallRuntime:
869 case HValue::kChange:
870 case HValue::kCheckHeapObject:
871 case HValue::kCheckInstanceType:
872 case HValue::kCheckMapValue:
873 case HValue::kCheckMaps:
874 case HValue::kCheckSmi:
875 case HValue::kCheckValue:
876 case HValue::kClampToUint8:
877 case HValue::kDateField:
878 case HValue::kDeoptimize:
879 case HValue::kDiv:
880 case HValue::kForInCacheArray:
881 case HValue::kForInPrepareMap:
882 case HValue::kFunctionLiteral:
883 case HValue::kInvokeFunction:
884 case HValue::kLoadContextSlot:
885 case HValue::kLoadFunctionPrototype:
886 case HValue::kLoadGlobalCell:
887 case HValue::kLoadKeyed:
888 case HValue::kLoadKeyedGeneric:
889 case HValue::kMathFloorOfDiv:
890 case HValue::kMod:
891 case HValue::kMul:
892 case HValue::kOsrEntry:
893 case HValue::kPower:
894 case HValue::kRor:
895 case HValue::kSar:
896 case HValue::kSeqStringSetChar:
897 case HValue::kShl:
898 case HValue::kShr:
899 case HValue::kSimulate:
900 case HValue::kStackCheck:
901 case HValue::kStoreContextSlot:
902 case HValue::kStoreGlobalCell:
903 case HValue::kStoreKeyedGeneric:
904 case HValue::kStringAdd:
905 case HValue::kStringCompareAndBranch:
906 case HValue::kSub:
907 case HValue::kToFastProperties:
908 case HValue::kTransitionElementsKind:
909 case HValue::kTrapAllocationMemento:
910 case HValue::kTypeof:
911 case HValue::kUnaryMathOperation:
912 case HValue::kWrapReceiver:
913 return true;
914 }
915 UNREACHABLE();
916 return true;
917 }
918
919
PrintDataTo(StringStream * stream)920 void HDummyUse::PrintDataTo(StringStream* stream) {
921 value()->PrintNameTo(stream);
922 }
923
924
PrintDataTo(StringStream * stream)925 void HEnvironmentMarker::PrintDataTo(StringStream* stream) {
926 stream->Add("%s var[%d]", kind() == BIND ? "bind" : "lookup", index());
927 }
928
929
PrintDataTo(StringStream * stream)930 void HUnaryCall::PrintDataTo(StringStream* stream) {
931 value()->PrintNameTo(stream);
932 stream->Add(" ");
933 stream->Add("#%d", argument_count());
934 }
935
936
PrintDataTo(StringStream * stream)937 void HCallJSFunction::PrintDataTo(StringStream* stream) {
938 function()->PrintNameTo(stream);
939 stream->Add(" ");
940 stream->Add("#%d", argument_count());
941 }
942
943
New(Zone * zone,HValue * context,HValue * function,int argument_count,bool pass_argument_count)944 HCallJSFunction* HCallJSFunction::New(
945 Zone* zone,
946 HValue* context,
947 HValue* function,
948 int argument_count,
949 bool pass_argument_count) {
950 bool has_stack_check = false;
951 if (function->IsConstant()) {
952 HConstant* fun_const = HConstant::cast(function);
953 Handle<JSFunction> jsfun =
954 Handle<JSFunction>::cast(fun_const->handle(zone->isolate()));
955 has_stack_check = !jsfun.is_null() &&
956 (jsfun->code()->kind() == Code::FUNCTION ||
957 jsfun->code()->kind() == Code::OPTIMIZED_FUNCTION);
958 }
959
960 return new(zone) HCallJSFunction(
961 function, argument_count, pass_argument_count,
962 has_stack_check);
963 }
964
965
966
967
PrintDataTo(StringStream * stream)968 void HBinaryCall::PrintDataTo(StringStream* stream) {
969 first()->PrintNameTo(stream);
970 stream->Add(" ");
971 second()->PrintNameTo(stream);
972 stream->Add(" ");
973 stream->Add("#%d", argument_count());
974 }
975
976
ApplyIndexChange()977 void HBoundsCheck::ApplyIndexChange() {
978 if (skip_check()) return;
979
980 DecompositionResult decomposition;
981 bool index_is_decomposable = index()->TryDecompose(&decomposition);
982 if (index_is_decomposable) {
983 ASSERT(decomposition.base() == base());
984 if (decomposition.offset() == offset() &&
985 decomposition.scale() == scale()) return;
986 } else {
987 return;
988 }
989
990 ReplaceAllUsesWith(index());
991
992 HValue* current_index = decomposition.base();
993 int actual_offset = decomposition.offset() + offset();
994 int actual_scale = decomposition.scale() + scale();
995
996 Zone* zone = block()->graph()->zone();
997 HValue* context = block()->graph()->GetInvalidContext();
998 if (actual_offset != 0) {
999 HConstant* add_offset = HConstant::New(zone, context, actual_offset);
1000 add_offset->InsertBefore(this);
1001 HInstruction* add = HAdd::New(zone, context,
1002 current_index, add_offset);
1003 add->InsertBefore(this);
1004 add->AssumeRepresentation(index()->representation());
1005 add->ClearFlag(kCanOverflow);
1006 current_index = add;
1007 }
1008
1009 if (actual_scale != 0) {
1010 HConstant* sar_scale = HConstant::New(zone, context, actual_scale);
1011 sar_scale->InsertBefore(this);
1012 HInstruction* sar = HSar::New(zone, context,
1013 current_index, sar_scale);
1014 sar->InsertBefore(this);
1015 sar->AssumeRepresentation(index()->representation());
1016 current_index = sar;
1017 }
1018
1019 SetOperandAt(0, current_index);
1020
1021 base_ = NULL;
1022 offset_ = 0;
1023 scale_ = 0;
1024 }
1025
1026
PrintDataTo(StringStream * stream)1027 void HBoundsCheck::PrintDataTo(StringStream* stream) {
1028 index()->PrintNameTo(stream);
1029 stream->Add(" ");
1030 length()->PrintNameTo(stream);
1031 if (base() != NULL && (offset() != 0 || scale() != 0)) {
1032 stream->Add(" base: ((");
1033 if (base() != index()) {
1034 index()->PrintNameTo(stream);
1035 } else {
1036 stream->Add("index");
1037 }
1038 stream->Add(" + %d) >> %d)", offset(), scale());
1039 }
1040 if (skip_check()) {
1041 stream->Add(" [DISABLED]");
1042 }
1043 }
1044
1045
InferRepresentation(HInferRepresentationPhase * h_infer)1046 void HBoundsCheck::InferRepresentation(HInferRepresentationPhase* h_infer) {
1047 ASSERT(CheckFlag(kFlexibleRepresentation));
1048 HValue* actual_index = index()->ActualValue();
1049 HValue* actual_length = length()->ActualValue();
1050 Representation index_rep = actual_index->representation();
1051 Representation length_rep = actual_length->representation();
1052 if (index_rep.IsTagged() && actual_index->type().IsSmi()) {
1053 index_rep = Representation::Smi();
1054 }
1055 if (length_rep.IsTagged() && actual_length->type().IsSmi()) {
1056 length_rep = Representation::Smi();
1057 }
1058 Representation r = index_rep.generalize(length_rep);
1059 if (r.is_more_general_than(Representation::Integer32())) {
1060 r = Representation::Integer32();
1061 }
1062 UpdateRepresentation(r, h_infer, "boundscheck");
1063 }
1064
1065
InferRange(Zone * zone)1066 Range* HBoundsCheck::InferRange(Zone* zone) {
1067 Representation r = representation();
1068 if (r.IsSmiOrInteger32() && length()->HasRange()) {
1069 int upper = length()->range()->upper() - (allow_equality() ? 0 : 1);
1070 int lower = 0;
1071
1072 Range* result = new(zone) Range(lower, upper);
1073 if (index()->HasRange()) {
1074 result->Intersect(index()->range());
1075 }
1076
1077 // In case of Smi representation, clamp result to Smi::kMaxValue.
1078 if (r.IsSmi()) result->ClampToSmi();
1079 return result;
1080 }
1081 return HValue::InferRange(zone);
1082 }
1083
1084
PrintDataTo(StringStream * stream)1085 void HBoundsCheckBaseIndexInformation::PrintDataTo(StringStream* stream) {
1086 stream->Add("base: ");
1087 base_index()->PrintNameTo(stream);
1088 stream->Add(", check: ");
1089 base_index()->PrintNameTo(stream);
1090 }
1091
1092
PrintDataTo(StringStream * stream)1093 void HCallWithDescriptor::PrintDataTo(StringStream* stream) {
1094 for (int i = 0; i < OperandCount(); i++) {
1095 OperandAt(i)->PrintNameTo(stream);
1096 stream->Add(" ");
1097 }
1098 stream->Add("#%d", argument_count());
1099 }
1100
1101
PrintDataTo(StringStream * stream)1102 void HCallNewArray::PrintDataTo(StringStream* stream) {
1103 stream->Add(ElementsKindToString(elements_kind()));
1104 stream->Add(" ");
1105 HBinaryCall::PrintDataTo(stream);
1106 }
1107
1108
PrintDataTo(StringStream * stream)1109 void HCallRuntime::PrintDataTo(StringStream* stream) {
1110 stream->Add("%o ", *name());
1111 if (save_doubles() == kSaveFPRegs) {
1112 stream->Add("[save doubles] ");
1113 }
1114 stream->Add("#%d", argument_count());
1115 }
1116
1117
PrintDataTo(StringStream * stream)1118 void HClassOfTestAndBranch::PrintDataTo(StringStream* stream) {
1119 stream->Add("class_of_test(");
1120 value()->PrintNameTo(stream);
1121 stream->Add(", \"%o\")", *class_name());
1122 }
1123
1124
PrintDataTo(StringStream * stream)1125 void HWrapReceiver::PrintDataTo(StringStream* stream) {
1126 receiver()->PrintNameTo(stream);
1127 stream->Add(" ");
1128 function()->PrintNameTo(stream);
1129 }
1130
1131
PrintDataTo(StringStream * stream)1132 void HAccessArgumentsAt::PrintDataTo(StringStream* stream) {
1133 arguments()->PrintNameTo(stream);
1134 stream->Add("[");
1135 index()->PrintNameTo(stream);
1136 stream->Add("], length ");
1137 length()->PrintNameTo(stream);
1138 }
1139
1140
PrintDataTo(StringStream * stream)1141 void HAllocateBlockContext::PrintDataTo(StringStream* stream) {
1142 context()->PrintNameTo(stream);
1143 stream->Add(" ");
1144 function()->PrintNameTo(stream);
1145 }
1146
1147
PrintDataTo(StringStream * stream)1148 void HControlInstruction::PrintDataTo(StringStream* stream) {
1149 stream->Add(" goto (");
1150 bool first_block = true;
1151 for (HSuccessorIterator it(this); !it.Done(); it.Advance()) {
1152 stream->Add(first_block ? "B%d" : ", B%d", it.Current()->block_id());
1153 first_block = false;
1154 }
1155 stream->Add(")");
1156 }
1157
1158
PrintDataTo(StringStream * stream)1159 void HUnaryControlInstruction::PrintDataTo(StringStream* stream) {
1160 value()->PrintNameTo(stream);
1161 HControlInstruction::PrintDataTo(stream);
1162 }
1163
1164
PrintDataTo(StringStream * stream)1165 void HReturn::PrintDataTo(StringStream* stream) {
1166 value()->PrintNameTo(stream);
1167 stream->Add(" (pop ");
1168 parameter_count()->PrintNameTo(stream);
1169 stream->Add(" values)");
1170 }
1171
1172
observed_input_representation(int index)1173 Representation HBranch::observed_input_representation(int index) {
1174 static const ToBooleanStub::Types tagged_types(
1175 ToBooleanStub::NULL_TYPE |
1176 ToBooleanStub::SPEC_OBJECT |
1177 ToBooleanStub::STRING |
1178 ToBooleanStub::SYMBOL);
1179 if (expected_input_types_.ContainsAnyOf(tagged_types)) {
1180 return Representation::Tagged();
1181 }
1182 if (expected_input_types_.Contains(ToBooleanStub::UNDEFINED)) {
1183 if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1184 return Representation::Double();
1185 }
1186 return Representation::Tagged();
1187 }
1188 if (expected_input_types_.Contains(ToBooleanStub::HEAP_NUMBER)) {
1189 return Representation::Double();
1190 }
1191 if (expected_input_types_.Contains(ToBooleanStub::SMI)) {
1192 return Representation::Smi();
1193 }
1194 return Representation::None();
1195 }
1196
1197
KnownSuccessorBlock(HBasicBlock ** block)1198 bool HBranch::KnownSuccessorBlock(HBasicBlock** block) {
1199 HValue* value = this->value();
1200 if (value->EmitAtUses()) {
1201 ASSERT(value->IsConstant());
1202 ASSERT(!value->representation().IsDouble());
1203 *block = HConstant::cast(value)->BooleanValue()
1204 ? FirstSuccessor()
1205 : SecondSuccessor();
1206 return true;
1207 }
1208 *block = NULL;
1209 return false;
1210 }
1211
1212
PrintDataTo(StringStream * stream)1213 void HBranch::PrintDataTo(StringStream* stream) {
1214 HUnaryControlInstruction::PrintDataTo(stream);
1215 stream->Add(" ");
1216 expected_input_types().Print(stream);
1217 }
1218
1219
PrintDataTo(StringStream * stream)1220 void HCompareMap::PrintDataTo(StringStream* stream) {
1221 value()->PrintNameTo(stream);
1222 stream->Add(" (%p)", *map().handle());
1223 HControlInstruction::PrintDataTo(stream);
1224 if (known_successor_index() == 0) {
1225 stream->Add(" [true]");
1226 } else if (known_successor_index() == 1) {
1227 stream->Add(" [false]");
1228 }
1229 }
1230
1231
OpName() const1232 const char* HUnaryMathOperation::OpName() const {
1233 switch (op()) {
1234 case kMathFloor: return "floor";
1235 case kMathRound: return "round";
1236 case kMathAbs: return "abs";
1237 case kMathLog: return "log";
1238 case kMathExp: return "exp";
1239 case kMathSqrt: return "sqrt";
1240 case kMathPowHalf: return "pow-half";
1241 case kMathClz32: return "clz32";
1242 default:
1243 UNREACHABLE();
1244 return NULL;
1245 }
1246 }
1247
1248
InferRange(Zone * zone)1249 Range* HUnaryMathOperation::InferRange(Zone* zone) {
1250 Representation r = representation();
1251 if (op() == kMathClz32) return new(zone) Range(0, 32);
1252 if (r.IsSmiOrInteger32() && value()->HasRange()) {
1253 if (op() == kMathAbs) {
1254 int upper = value()->range()->upper();
1255 int lower = value()->range()->lower();
1256 bool spans_zero = value()->range()->CanBeZero();
1257 // Math.abs(kMinInt) overflows its representation, on which the
1258 // instruction deopts. Hence clamp it to kMaxInt.
1259 int abs_upper = upper == kMinInt ? kMaxInt : abs(upper);
1260 int abs_lower = lower == kMinInt ? kMaxInt : abs(lower);
1261 Range* result =
1262 new(zone) Range(spans_zero ? 0 : Min(abs_lower, abs_upper),
1263 Max(abs_lower, abs_upper));
1264 // In case of Smi representation, clamp Math.abs(Smi::kMinValue) to
1265 // Smi::kMaxValue.
1266 if (r.IsSmi()) result->ClampToSmi();
1267 return result;
1268 }
1269 }
1270 return HValue::InferRange(zone);
1271 }
1272
1273
PrintDataTo(StringStream * stream)1274 void HUnaryMathOperation::PrintDataTo(StringStream* stream) {
1275 const char* name = OpName();
1276 stream->Add("%s ", name);
1277 value()->PrintNameTo(stream);
1278 }
1279
1280
PrintDataTo(StringStream * stream)1281 void HUnaryOperation::PrintDataTo(StringStream* stream) {
1282 value()->PrintNameTo(stream);
1283 }
1284
1285
PrintDataTo(StringStream * stream)1286 void HHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) {
1287 value()->PrintNameTo(stream);
1288 switch (from_) {
1289 case FIRST_JS_RECEIVER_TYPE:
1290 if (to_ == LAST_TYPE) stream->Add(" spec_object");
1291 break;
1292 case JS_REGEXP_TYPE:
1293 if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
1294 break;
1295 case JS_ARRAY_TYPE:
1296 if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
1297 break;
1298 case JS_FUNCTION_TYPE:
1299 if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
1300 break;
1301 default:
1302 break;
1303 }
1304 }
1305
1306
PrintDataTo(StringStream * stream)1307 void HTypeofIsAndBranch::PrintDataTo(StringStream* stream) {
1308 value()->PrintNameTo(stream);
1309 stream->Add(" == %o", *type_literal_.handle());
1310 HControlInstruction::PrintDataTo(stream);
1311 }
1312
1313
TypeOfString(HConstant * constant,Isolate * isolate)1314 static String* TypeOfString(HConstant* constant, Isolate* isolate) {
1315 Heap* heap = isolate->heap();
1316 if (constant->HasNumberValue()) return heap->number_string();
1317 if (constant->IsUndetectable()) return heap->undefined_string();
1318 if (constant->HasStringValue()) return heap->string_string();
1319 switch (constant->GetInstanceType()) {
1320 case ODDBALL_TYPE: {
1321 Unique<Object> unique = constant->GetUnique();
1322 if (unique.IsKnownGlobal(heap->true_value()) ||
1323 unique.IsKnownGlobal(heap->false_value())) {
1324 return heap->boolean_string();
1325 }
1326 if (unique.IsKnownGlobal(heap->null_value())) {
1327 return FLAG_harmony_typeof ? heap->null_string()
1328 : heap->object_string();
1329 }
1330 ASSERT(unique.IsKnownGlobal(heap->undefined_value()));
1331 return heap->undefined_string();
1332 }
1333 case SYMBOL_TYPE:
1334 return heap->symbol_string();
1335 case JS_FUNCTION_TYPE:
1336 case JS_FUNCTION_PROXY_TYPE:
1337 return heap->function_string();
1338 default:
1339 return heap->object_string();
1340 }
1341 }
1342
1343
KnownSuccessorBlock(HBasicBlock ** block)1344 bool HTypeofIsAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
1345 if (FLAG_fold_constants && value()->IsConstant()) {
1346 HConstant* constant = HConstant::cast(value());
1347 String* type_string = TypeOfString(constant, isolate());
1348 bool same_type = type_literal_.IsKnownGlobal(type_string);
1349 *block = same_type ? FirstSuccessor() : SecondSuccessor();
1350 return true;
1351 } else if (value()->representation().IsSpecialization()) {
1352 bool number_type =
1353 type_literal_.IsKnownGlobal(isolate()->heap()->number_string());
1354 *block = number_type ? FirstSuccessor() : SecondSuccessor();
1355 return true;
1356 }
1357 *block = NULL;
1358 return false;
1359 }
1360
1361
PrintDataTo(StringStream * stream)1362 void HCheckMapValue::PrintDataTo(StringStream* stream) {
1363 value()->PrintNameTo(stream);
1364 stream->Add(" ");
1365 map()->PrintNameTo(stream);
1366 }
1367
1368
Canonicalize()1369 HValue* HCheckMapValue::Canonicalize() {
1370 if (map()->IsConstant()) {
1371 HConstant* c_map = HConstant::cast(map());
1372 return HCheckMaps::CreateAndInsertAfter(
1373 block()->graph()->zone(), value(), c_map->MapValue(),
1374 c_map->HasStableMapValue(), this);
1375 }
1376 return this;
1377 }
1378
1379
PrintDataTo(StringStream * stream)1380 void HForInPrepareMap::PrintDataTo(StringStream* stream) {
1381 enumerable()->PrintNameTo(stream);
1382 }
1383
1384
PrintDataTo(StringStream * stream)1385 void HForInCacheArray::PrintDataTo(StringStream* stream) {
1386 enumerable()->PrintNameTo(stream);
1387 stream->Add(" ");
1388 map()->PrintNameTo(stream);
1389 stream->Add("[%d]", idx_);
1390 }
1391
1392
PrintDataTo(StringStream * stream)1393 void HLoadFieldByIndex::PrintDataTo(StringStream* stream) {
1394 object()->PrintNameTo(stream);
1395 stream->Add(" ");
1396 index()->PrintNameTo(stream);
1397 }
1398
1399
MatchLeftIsOnes(HValue * l,HValue * r,HValue ** negated)1400 static bool MatchLeftIsOnes(HValue* l, HValue* r, HValue** negated) {
1401 if (!l->EqualsInteger32Constant(~0)) return false;
1402 *negated = r;
1403 return true;
1404 }
1405
1406
MatchNegationViaXor(HValue * instr,HValue ** negated)1407 static bool MatchNegationViaXor(HValue* instr, HValue** negated) {
1408 if (!instr->IsBitwise()) return false;
1409 HBitwise* b = HBitwise::cast(instr);
1410 return (b->op() == Token::BIT_XOR) &&
1411 (MatchLeftIsOnes(b->left(), b->right(), negated) ||
1412 MatchLeftIsOnes(b->right(), b->left(), negated));
1413 }
1414
1415
MatchDoubleNegation(HValue * instr,HValue ** arg)1416 static bool MatchDoubleNegation(HValue* instr, HValue** arg) {
1417 HValue* negated;
1418 return MatchNegationViaXor(instr, &negated) &&
1419 MatchNegationViaXor(negated, arg);
1420 }
1421
1422
Canonicalize()1423 HValue* HBitwise::Canonicalize() {
1424 if (!representation().IsSmiOrInteger32()) return this;
1425 // If x is an int32, then x & -1 == x, x | 0 == x and x ^ 0 == x.
1426 int32_t nop_constant = (op() == Token::BIT_AND) ? -1 : 0;
1427 if (left()->EqualsInteger32Constant(nop_constant) &&
1428 !right()->CheckFlag(kUint32)) {
1429 return right();
1430 }
1431 if (right()->EqualsInteger32Constant(nop_constant) &&
1432 !left()->CheckFlag(kUint32)) {
1433 return left();
1434 }
1435 // Optimize double negation, a common pattern used for ToInt32(x).
1436 HValue* arg;
1437 if (MatchDoubleNegation(this, &arg) && !arg->CheckFlag(kUint32)) {
1438 return arg;
1439 }
1440 return this;
1441 }
1442
1443
RepresentationFromInputs()1444 Representation HAdd::RepresentationFromInputs() {
1445 Representation left_rep = left()->representation();
1446 if (left_rep.IsExternal()) {
1447 return Representation::External();
1448 }
1449 return HArithmeticBinaryOperation::RepresentationFromInputs();
1450 }
1451
1452
RequiredInputRepresentation(int index)1453 Representation HAdd::RequiredInputRepresentation(int index) {
1454 if (index == 2) {
1455 Representation left_rep = left()->representation();
1456 if (left_rep.IsExternal()) {
1457 return Representation::Integer32();
1458 }
1459 }
1460 return HArithmeticBinaryOperation::RequiredInputRepresentation(index);
1461 }
1462
1463
IsIdentityOperation(HValue * arg1,HValue * arg2,int32_t identity)1464 static bool IsIdentityOperation(HValue* arg1, HValue* arg2, int32_t identity) {
1465 return arg1->representation().IsSpecialization() &&
1466 arg2->EqualsInteger32Constant(identity);
1467 }
1468
1469
Canonicalize()1470 HValue* HAdd::Canonicalize() {
1471 // Adding 0 is an identity operation except in case of -0: -0 + 0 = +0
1472 if (IsIdentityOperation(left(), right(), 0) &&
1473 !left()->representation().IsDouble()) { // Left could be -0.
1474 return left();
1475 }
1476 if (IsIdentityOperation(right(), left(), 0) &&
1477 !left()->representation().IsDouble()) { // Right could be -0.
1478 return right();
1479 }
1480 return this;
1481 }
1482
1483
Canonicalize()1484 HValue* HSub::Canonicalize() {
1485 if (IsIdentityOperation(left(), right(), 0)) return left();
1486 return this;
1487 }
1488
1489
Canonicalize()1490 HValue* HMul::Canonicalize() {
1491 if (IsIdentityOperation(left(), right(), 1)) return left();
1492 if (IsIdentityOperation(right(), left(), 1)) return right();
1493 return this;
1494 }
1495
1496
MulMinusOne()1497 bool HMul::MulMinusOne() {
1498 if (left()->EqualsInteger32Constant(-1) ||
1499 right()->EqualsInteger32Constant(-1)) {
1500 return true;
1501 }
1502
1503 return false;
1504 }
1505
1506
Canonicalize()1507 HValue* HMod::Canonicalize() {
1508 return this;
1509 }
1510
1511
Canonicalize()1512 HValue* HDiv::Canonicalize() {
1513 if (IsIdentityOperation(left(), right(), 1)) return left();
1514 return this;
1515 }
1516
1517
Canonicalize()1518 HValue* HChange::Canonicalize() {
1519 return (from().Equals(to())) ? value() : this;
1520 }
1521
1522
Canonicalize()1523 HValue* HWrapReceiver::Canonicalize() {
1524 if (HasNoUses()) return NULL;
1525 if (receiver()->type().IsJSObject()) {
1526 return receiver();
1527 }
1528 return this;
1529 }
1530
1531
PrintDataTo(StringStream * stream)1532 void HTypeof::PrintDataTo(StringStream* stream) {
1533 value()->PrintNameTo(stream);
1534 }
1535
1536
New(Zone * zone,HValue * context,HValue * value,Representation representation)1537 HInstruction* HForceRepresentation::New(Zone* zone, HValue* context,
1538 HValue* value, Representation representation) {
1539 if (FLAG_fold_constants && value->IsConstant()) {
1540 HConstant* c = HConstant::cast(value);
1541 if (c->HasNumberValue()) {
1542 double double_res = c->DoubleValue();
1543 if (representation.IsDouble()) {
1544 return HConstant::New(zone, context, double_res);
1545
1546 } else if (representation.CanContainDouble(double_res)) {
1547 return HConstant::New(zone, context,
1548 static_cast<int32_t>(double_res),
1549 representation);
1550 }
1551 }
1552 }
1553 return new(zone) HForceRepresentation(value, representation);
1554 }
1555
1556
PrintDataTo(StringStream * stream)1557 void HForceRepresentation::PrintDataTo(StringStream* stream) {
1558 stream->Add("%s ", representation().Mnemonic());
1559 value()->PrintNameTo(stream);
1560 }
1561
1562
PrintDataTo(StringStream * stream)1563 void HChange::PrintDataTo(StringStream* stream) {
1564 HUnaryOperation::PrintDataTo(stream);
1565 stream->Add(" %s to %s", from().Mnemonic(), to().Mnemonic());
1566
1567 if (CanTruncateToSmi()) stream->Add(" truncating-smi");
1568 if (CanTruncateToInt32()) stream->Add(" truncating-int32");
1569 if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
1570 if (CheckFlag(kAllowUndefinedAsNaN)) stream->Add(" allow-undefined-as-nan");
1571 }
1572
1573
Canonicalize()1574 HValue* HUnaryMathOperation::Canonicalize() {
1575 if (op() == kMathRound || op() == kMathFloor) {
1576 HValue* val = value();
1577 if (val->IsChange()) val = HChange::cast(val)->value();
1578 if (val->representation().IsSmiOrInteger32()) {
1579 if (val->representation().Equals(representation())) return val;
1580 return Prepend(new(block()->zone()) HChange(
1581 val, representation(), false, false));
1582 }
1583 }
1584 if (op() == kMathFloor && value()->IsDiv() && value()->UseCount() == 1) {
1585 HDiv* hdiv = HDiv::cast(value());
1586
1587 HValue* left = hdiv->left();
1588 if (left->representation().IsInteger32()) {
1589 // A value with an integer representation does not need to be transformed.
1590 } else if (left->IsChange() && HChange::cast(left)->from().IsInteger32()) {
1591 // A change from an integer32 can be replaced by the integer32 value.
1592 left = HChange::cast(left)->value();
1593 } else if (hdiv->observed_input_representation(1).IsSmiOrInteger32()) {
1594 left = Prepend(new(block()->zone()) HChange(
1595 left, Representation::Integer32(), false, false));
1596 } else {
1597 return this;
1598 }
1599
1600 HValue* right = hdiv->right();
1601 if (right->IsInteger32Constant()) {
1602 right = Prepend(HConstant::cast(right)->CopyToRepresentation(
1603 Representation::Integer32(), right->block()->zone()));
1604 } else if (right->representation().IsInteger32()) {
1605 // A value with an integer representation does not need to be transformed.
1606 } else if (right->IsChange() &&
1607 HChange::cast(right)->from().IsInteger32()) {
1608 // A change from an integer32 can be replaced by the integer32 value.
1609 right = HChange::cast(right)->value();
1610 } else if (hdiv->observed_input_representation(2).IsSmiOrInteger32()) {
1611 right = Prepend(new(block()->zone()) HChange(
1612 right, Representation::Integer32(), false, false));
1613 } else {
1614 return this;
1615 }
1616
1617 return Prepend(HMathFloorOfDiv::New(
1618 block()->zone(), context(), left, right));
1619 }
1620 return this;
1621 }
1622
1623
Canonicalize()1624 HValue* HCheckInstanceType::Canonicalize() {
1625 if ((check_ == IS_SPEC_OBJECT && value()->type().IsJSObject()) ||
1626 (check_ == IS_JS_ARRAY && value()->type().IsJSArray()) ||
1627 (check_ == IS_STRING && value()->type().IsString())) {
1628 return value();
1629 }
1630
1631 if (check_ == IS_INTERNALIZED_STRING && value()->IsConstant()) {
1632 if (HConstant::cast(value())->HasInternalizedStringValue()) {
1633 return value();
1634 }
1635 }
1636 return this;
1637 }
1638
1639
GetCheckInterval(InstanceType * first,InstanceType * last)1640 void HCheckInstanceType::GetCheckInterval(InstanceType* first,
1641 InstanceType* last) {
1642 ASSERT(is_interval_check());
1643 switch (check_) {
1644 case IS_SPEC_OBJECT:
1645 *first = FIRST_SPEC_OBJECT_TYPE;
1646 *last = LAST_SPEC_OBJECT_TYPE;
1647 return;
1648 case IS_JS_ARRAY:
1649 *first = *last = JS_ARRAY_TYPE;
1650 return;
1651 default:
1652 UNREACHABLE();
1653 }
1654 }
1655
1656
GetCheckMaskAndTag(uint8_t * mask,uint8_t * tag)1657 void HCheckInstanceType::GetCheckMaskAndTag(uint8_t* mask, uint8_t* tag) {
1658 ASSERT(!is_interval_check());
1659 switch (check_) {
1660 case IS_STRING:
1661 *mask = kIsNotStringMask;
1662 *tag = kStringTag;
1663 return;
1664 case IS_INTERNALIZED_STRING:
1665 *mask = kIsNotStringMask | kIsNotInternalizedMask;
1666 *tag = kInternalizedTag;
1667 return;
1668 default:
1669 UNREACHABLE();
1670 }
1671 }
1672
1673
PrintDataTo(StringStream * stream)1674 void HCheckMaps::PrintDataTo(StringStream* stream) {
1675 value()->PrintNameTo(stream);
1676 stream->Add(" [%p", *maps()->at(0).handle());
1677 for (int i = 1; i < maps()->size(); ++i) {
1678 stream->Add(",%p", *maps()->at(i).handle());
1679 }
1680 stream->Add("]%s", IsStabilityCheck() ? "(stability-check)" : "");
1681 }
1682
1683
Canonicalize()1684 HValue* HCheckMaps::Canonicalize() {
1685 if (!IsStabilityCheck() && maps_are_stable() && value()->IsConstant()) {
1686 HConstant* c_value = HConstant::cast(value());
1687 if (c_value->HasObjectMap()) {
1688 for (int i = 0; i < maps()->size(); ++i) {
1689 if (c_value->ObjectMap() == maps()->at(i)) {
1690 if (maps()->size() > 1) {
1691 set_maps(new(block()->graph()->zone()) UniqueSet<Map>(
1692 maps()->at(i), block()->graph()->zone()));
1693 }
1694 MarkAsStabilityCheck();
1695 break;
1696 }
1697 }
1698 }
1699 }
1700 return this;
1701 }
1702
1703
PrintDataTo(StringStream * stream)1704 void HCheckValue::PrintDataTo(StringStream* stream) {
1705 value()->PrintNameTo(stream);
1706 stream->Add(" ");
1707 object().handle()->ShortPrint(stream);
1708 }
1709
1710
Canonicalize()1711 HValue* HCheckValue::Canonicalize() {
1712 return (value()->IsConstant() &&
1713 HConstant::cast(value())->EqualsUnique(object_)) ? NULL : this;
1714 }
1715
1716
GetCheckName()1717 const char* HCheckInstanceType::GetCheckName() {
1718 switch (check_) {
1719 case IS_SPEC_OBJECT: return "object";
1720 case IS_JS_ARRAY: return "array";
1721 case IS_STRING: return "string";
1722 case IS_INTERNALIZED_STRING: return "internalized_string";
1723 }
1724 UNREACHABLE();
1725 return "";
1726 }
1727
1728
PrintDataTo(StringStream * stream)1729 void HCheckInstanceType::PrintDataTo(StringStream* stream) {
1730 stream->Add("%s ", GetCheckName());
1731 HUnaryOperation::PrintDataTo(stream);
1732 }
1733
1734
PrintDataTo(StringStream * stream)1735 void HCallStub::PrintDataTo(StringStream* stream) {
1736 stream->Add("%s ",
1737 CodeStub::MajorName(major_key_, false));
1738 HUnaryCall::PrintDataTo(stream);
1739 }
1740
1741
PrintDataTo(StringStream * stream)1742 void HUnknownOSRValue::PrintDataTo(StringStream *stream) {
1743 const char* type = "expression";
1744 if (environment_->is_local_index(index_)) type = "local";
1745 if (environment_->is_special_index(index_)) type = "special";
1746 if (environment_->is_parameter_index(index_)) type = "parameter";
1747 stream->Add("%s @ %d", type, index_);
1748 }
1749
1750
PrintDataTo(StringStream * stream)1751 void HInstanceOf::PrintDataTo(StringStream* stream) {
1752 left()->PrintNameTo(stream);
1753 stream->Add(" ");
1754 right()->PrintNameTo(stream);
1755 stream->Add(" ");
1756 context()->PrintNameTo(stream);
1757 }
1758
1759
InferRange(Zone * zone)1760 Range* HValue::InferRange(Zone* zone) {
1761 Range* result;
1762 if (representation().IsSmi() || type().IsSmi()) {
1763 result = new(zone) Range(Smi::kMinValue, Smi::kMaxValue);
1764 result->set_can_be_minus_zero(false);
1765 } else {
1766 result = new(zone) Range();
1767 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32));
1768 // TODO(jkummerow): The range cannot be minus zero when the upper type
1769 // bound is Integer32.
1770 }
1771 return result;
1772 }
1773
1774
InferRange(Zone * zone)1775 Range* HChange::InferRange(Zone* zone) {
1776 Range* input_range = value()->range();
1777 if (from().IsInteger32() && !value()->CheckFlag(HInstruction::kUint32) &&
1778 (to().IsSmi() ||
1779 (to().IsTagged() &&
1780 input_range != NULL &&
1781 input_range->IsInSmiRange()))) {
1782 set_type(HType::Smi());
1783 ClearChangesFlag(kNewSpacePromotion);
1784 }
1785 if (to().IsSmiOrTagged() &&
1786 input_range != NULL &&
1787 input_range->IsInSmiRange() &&
1788 (!SmiValuesAre32Bits() ||
1789 !value()->CheckFlag(HValue::kUint32) ||
1790 input_range->upper() != kMaxInt)) {
1791 // The Range class can't express upper bounds in the (kMaxInt, kMaxUint32]
1792 // interval, so we treat kMaxInt as a sentinel for this entire interval.
1793 ClearFlag(kCanOverflow);
1794 }
1795 Range* result = (input_range != NULL)
1796 ? input_range->Copy(zone)
1797 : HValue::InferRange(zone);
1798 result->set_can_be_minus_zero(!to().IsSmiOrInteger32() ||
1799 !(CheckFlag(kAllUsesTruncatingToInt32) ||
1800 CheckFlag(kAllUsesTruncatingToSmi)));
1801 if (to().IsSmi()) result->ClampToSmi();
1802 return result;
1803 }
1804
1805
InferRange(Zone * zone)1806 Range* HConstant::InferRange(Zone* zone) {
1807 if (has_int32_value_) {
1808 Range* result = new(zone) Range(int32_value_, int32_value_);
1809 result->set_can_be_minus_zero(false);
1810 return result;
1811 }
1812 return HValue::InferRange(zone);
1813 }
1814
1815
position() const1816 HSourcePosition HPhi::position() const {
1817 return block()->first()->position();
1818 }
1819
1820
InferRange(Zone * zone)1821 Range* HPhi::InferRange(Zone* zone) {
1822 Representation r = representation();
1823 if (r.IsSmiOrInteger32()) {
1824 if (block()->IsLoopHeader()) {
1825 Range* range = r.IsSmi()
1826 ? new(zone) Range(Smi::kMinValue, Smi::kMaxValue)
1827 : new(zone) Range(kMinInt, kMaxInt);
1828 return range;
1829 } else {
1830 Range* range = OperandAt(0)->range()->Copy(zone);
1831 for (int i = 1; i < OperandCount(); ++i) {
1832 range->Union(OperandAt(i)->range());
1833 }
1834 return range;
1835 }
1836 } else {
1837 return HValue::InferRange(zone);
1838 }
1839 }
1840
1841
InferRange(Zone * zone)1842 Range* HAdd::InferRange(Zone* zone) {
1843 Representation r = representation();
1844 if (r.IsSmiOrInteger32()) {
1845 Range* a = left()->range();
1846 Range* b = right()->range();
1847 Range* res = a->Copy(zone);
1848 if (!res->AddAndCheckOverflow(r, b) ||
1849 (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1850 (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1851 ClearFlag(kCanOverflow);
1852 }
1853 res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1854 !CheckFlag(kAllUsesTruncatingToInt32) &&
1855 a->CanBeMinusZero() && b->CanBeMinusZero());
1856 return res;
1857 } else {
1858 return HValue::InferRange(zone);
1859 }
1860 }
1861
1862
InferRange(Zone * zone)1863 Range* HSub::InferRange(Zone* zone) {
1864 Representation r = representation();
1865 if (r.IsSmiOrInteger32()) {
1866 Range* a = left()->range();
1867 Range* b = right()->range();
1868 Range* res = a->Copy(zone);
1869 if (!res->SubAndCheckOverflow(r, b) ||
1870 (r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1871 (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) {
1872 ClearFlag(kCanOverflow);
1873 }
1874 res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1875 !CheckFlag(kAllUsesTruncatingToInt32) &&
1876 a->CanBeMinusZero() && b->CanBeZero());
1877 return res;
1878 } else {
1879 return HValue::InferRange(zone);
1880 }
1881 }
1882
1883
InferRange(Zone * zone)1884 Range* HMul::InferRange(Zone* zone) {
1885 Representation r = representation();
1886 if (r.IsSmiOrInteger32()) {
1887 Range* a = left()->range();
1888 Range* b = right()->range();
1889 Range* res = a->Copy(zone);
1890 if (!res->MulAndCheckOverflow(r, b) ||
1891 (((r.IsInteger32() && CheckFlag(kAllUsesTruncatingToInt32)) ||
1892 (r.IsSmi() && CheckFlag(kAllUsesTruncatingToSmi))) &&
1893 MulMinusOne())) {
1894 // Truncated int multiplication is too precise and therefore not the
1895 // same as converting to Double and back.
1896 // Handle truncated integer multiplication by -1 special.
1897 ClearFlag(kCanOverflow);
1898 }
1899 res->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToSmi) &&
1900 !CheckFlag(kAllUsesTruncatingToInt32) &&
1901 ((a->CanBeZero() && b->CanBeNegative()) ||
1902 (a->CanBeNegative() && b->CanBeZero())));
1903 return res;
1904 } else {
1905 return HValue::InferRange(zone);
1906 }
1907 }
1908
1909
InferRange(Zone * zone)1910 Range* HDiv::InferRange(Zone* zone) {
1911 if (representation().IsInteger32()) {
1912 Range* a = left()->range();
1913 Range* b = right()->range();
1914 Range* result = new(zone) Range();
1915 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1916 (a->CanBeMinusZero() ||
1917 (a->CanBeZero() && b->CanBeNegative())));
1918 if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1919 ClearFlag(kCanOverflow);
1920 }
1921
1922 if (!b->CanBeZero()) {
1923 ClearFlag(kCanBeDivByZero);
1924 }
1925 return result;
1926 } else {
1927 return HValue::InferRange(zone);
1928 }
1929 }
1930
1931
InferRange(Zone * zone)1932 Range* HMathFloorOfDiv::InferRange(Zone* zone) {
1933 if (representation().IsInteger32()) {
1934 Range* a = left()->range();
1935 Range* b = right()->range();
1936 Range* result = new(zone) Range();
1937 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1938 (a->CanBeMinusZero() ||
1939 (a->CanBeZero() && b->CanBeNegative())));
1940 if (!a->Includes(kMinInt)) {
1941 ClearFlag(kLeftCanBeMinInt);
1942 }
1943
1944 if (!a->CanBeNegative()) {
1945 ClearFlag(HValue::kLeftCanBeNegative);
1946 }
1947
1948 if (!a->CanBePositive()) {
1949 ClearFlag(HValue::kLeftCanBePositive);
1950 }
1951
1952 if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1953 ClearFlag(kCanOverflow);
1954 }
1955
1956 if (!b->CanBeZero()) {
1957 ClearFlag(kCanBeDivByZero);
1958 }
1959 return result;
1960 } else {
1961 return HValue::InferRange(zone);
1962 }
1963 }
1964
1965
InferRange(Zone * zone)1966 Range* HMod::InferRange(Zone* zone) {
1967 if (representation().IsInteger32()) {
1968 Range* a = left()->range();
1969 Range* b = right()->range();
1970
1971 // The magnitude of the modulus is bounded by the right operand. Note that
1972 // apart for the cases involving kMinInt, the calculation below is the same
1973 // as Max(Abs(b->lower()), Abs(b->upper())) - 1.
1974 int32_t positive_bound = -(Min(NegAbs(b->lower()), NegAbs(b->upper())) + 1);
1975
1976 // The result of the modulo operation has the sign of its left operand.
1977 bool left_can_be_negative = a->CanBeMinusZero() || a->CanBeNegative();
1978 Range* result = new(zone) Range(left_can_be_negative ? -positive_bound : 0,
1979 a->CanBePositive() ? positive_bound : 0);
1980
1981 result->set_can_be_minus_zero(!CheckFlag(kAllUsesTruncatingToInt32) &&
1982 left_can_be_negative);
1983
1984 if (!a->CanBeNegative()) {
1985 ClearFlag(HValue::kLeftCanBeNegative);
1986 }
1987
1988 if (!a->Includes(kMinInt) || !b->Includes(-1)) {
1989 ClearFlag(HValue::kCanOverflow);
1990 }
1991
1992 if (!b->CanBeZero()) {
1993 ClearFlag(HValue::kCanBeDivByZero);
1994 }
1995 return result;
1996 } else {
1997 return HValue::InferRange(zone);
1998 }
1999 }
2000
2001
ExaminePhi(HPhi * phi)2002 InductionVariableData* InductionVariableData::ExaminePhi(HPhi* phi) {
2003 if (phi->block()->loop_information() == NULL) return NULL;
2004 if (phi->OperandCount() != 2) return NULL;
2005 int32_t candidate_increment;
2006
2007 candidate_increment = ComputeIncrement(phi, phi->OperandAt(0));
2008 if (candidate_increment != 0) {
2009 return new(phi->block()->graph()->zone())
2010 InductionVariableData(phi, phi->OperandAt(1), candidate_increment);
2011 }
2012
2013 candidate_increment = ComputeIncrement(phi, phi->OperandAt(1));
2014 if (candidate_increment != 0) {
2015 return new(phi->block()->graph()->zone())
2016 InductionVariableData(phi, phi->OperandAt(0), candidate_increment);
2017 }
2018
2019 return NULL;
2020 }
2021
2022
2023 /*
2024 * This function tries to match the following patterns (and all the relevant
2025 * variants related to |, & and + being commutative):
2026 * base | constant_or_mask
2027 * base & constant_and_mask
2028 * (base + constant_offset) & constant_and_mask
2029 * (base - constant_offset) & constant_and_mask
2030 */
DecomposeBitwise(HValue * value,BitwiseDecompositionResult * result)2031 void InductionVariableData::DecomposeBitwise(
2032 HValue* value,
2033 BitwiseDecompositionResult* result) {
2034 HValue* base = IgnoreOsrValue(value);
2035 result->base = value;
2036
2037 if (!base->representation().IsInteger32()) return;
2038
2039 if (base->IsBitwise()) {
2040 bool allow_offset = false;
2041 int32_t mask = 0;
2042
2043 HBitwise* bitwise = HBitwise::cast(base);
2044 if (bitwise->right()->IsInteger32Constant()) {
2045 mask = bitwise->right()->GetInteger32Constant();
2046 base = bitwise->left();
2047 } else if (bitwise->left()->IsInteger32Constant()) {
2048 mask = bitwise->left()->GetInteger32Constant();
2049 base = bitwise->right();
2050 } else {
2051 return;
2052 }
2053 if (bitwise->op() == Token::BIT_AND) {
2054 result->and_mask = mask;
2055 allow_offset = true;
2056 } else if (bitwise->op() == Token::BIT_OR) {
2057 result->or_mask = mask;
2058 } else {
2059 return;
2060 }
2061
2062 result->context = bitwise->context();
2063
2064 if (allow_offset) {
2065 if (base->IsAdd()) {
2066 HAdd* add = HAdd::cast(base);
2067 if (add->right()->IsInteger32Constant()) {
2068 base = add->left();
2069 } else if (add->left()->IsInteger32Constant()) {
2070 base = add->right();
2071 }
2072 } else if (base->IsSub()) {
2073 HSub* sub = HSub::cast(base);
2074 if (sub->right()->IsInteger32Constant()) {
2075 base = sub->left();
2076 }
2077 }
2078 }
2079
2080 result->base = base;
2081 }
2082 }
2083
2084
AddCheck(HBoundsCheck * check,int32_t upper_limit)2085 void InductionVariableData::AddCheck(HBoundsCheck* check,
2086 int32_t upper_limit) {
2087 ASSERT(limit_validity() != NULL);
2088 if (limit_validity() != check->block() &&
2089 !limit_validity()->Dominates(check->block())) return;
2090 if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2091 check->block()->current_loop())) return;
2092
2093 ChecksRelatedToLength* length_checks = checks();
2094 while (length_checks != NULL) {
2095 if (length_checks->length() == check->length()) break;
2096 length_checks = length_checks->next();
2097 }
2098 if (length_checks == NULL) {
2099 length_checks = new(check->block()->zone())
2100 ChecksRelatedToLength(check->length(), checks());
2101 checks_ = length_checks;
2102 }
2103
2104 length_checks->AddCheck(check, upper_limit);
2105 }
2106
2107
CloseCurrentBlock()2108 void InductionVariableData::ChecksRelatedToLength::CloseCurrentBlock() {
2109 if (checks() != NULL) {
2110 InductionVariableCheck* c = checks();
2111 HBasicBlock* current_block = c->check()->block();
2112 while (c != NULL && c->check()->block() == current_block) {
2113 c->set_upper_limit(current_upper_limit_);
2114 c = c->next();
2115 }
2116 }
2117 }
2118
2119
UseNewIndexInCurrentBlock(Token::Value token,int32_t mask,HValue * index_base,HValue * context)2120 void InductionVariableData::ChecksRelatedToLength::UseNewIndexInCurrentBlock(
2121 Token::Value token,
2122 int32_t mask,
2123 HValue* index_base,
2124 HValue* context) {
2125 ASSERT(first_check_in_block() != NULL);
2126 HValue* previous_index = first_check_in_block()->index();
2127 ASSERT(context != NULL);
2128
2129 Zone* zone = index_base->block()->graph()->zone();
2130 set_added_constant(HConstant::New(zone, context, mask));
2131 if (added_index() != NULL) {
2132 added_constant()->InsertBefore(added_index());
2133 } else {
2134 added_constant()->InsertBefore(first_check_in_block());
2135 }
2136
2137 if (added_index() == NULL) {
2138 first_check_in_block()->ReplaceAllUsesWith(first_check_in_block()->index());
2139 HInstruction* new_index = HBitwise::New(zone, context, token, index_base,
2140 added_constant());
2141 ASSERT(new_index->IsBitwise());
2142 new_index->ClearAllSideEffects();
2143 new_index->AssumeRepresentation(Representation::Integer32());
2144 set_added_index(HBitwise::cast(new_index));
2145 added_index()->InsertBefore(first_check_in_block());
2146 }
2147 ASSERT(added_index()->op() == token);
2148
2149 added_index()->SetOperandAt(1, index_base);
2150 added_index()->SetOperandAt(2, added_constant());
2151 first_check_in_block()->SetOperandAt(0, added_index());
2152 if (previous_index->UseCount() == 0) {
2153 previous_index->DeleteAndReplaceWith(NULL);
2154 }
2155 }
2156
AddCheck(HBoundsCheck * check,int32_t upper_limit)2157 void InductionVariableData::ChecksRelatedToLength::AddCheck(
2158 HBoundsCheck* check,
2159 int32_t upper_limit) {
2160 BitwiseDecompositionResult decomposition;
2161 InductionVariableData::DecomposeBitwise(check->index(), &decomposition);
2162
2163 if (first_check_in_block() == NULL ||
2164 first_check_in_block()->block() != check->block()) {
2165 CloseCurrentBlock();
2166
2167 first_check_in_block_ = check;
2168 set_added_index(NULL);
2169 set_added_constant(NULL);
2170 current_and_mask_in_block_ = decomposition.and_mask;
2171 current_or_mask_in_block_ = decomposition.or_mask;
2172 current_upper_limit_ = upper_limit;
2173
2174 InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2175 InductionVariableCheck(check, checks_, upper_limit);
2176 checks_ = new_check;
2177 return;
2178 }
2179
2180 if (upper_limit > current_upper_limit()) {
2181 current_upper_limit_ = upper_limit;
2182 }
2183
2184 if (decomposition.and_mask != 0 &&
2185 current_or_mask_in_block() == 0) {
2186 if (current_and_mask_in_block() == 0 ||
2187 decomposition.and_mask > current_and_mask_in_block()) {
2188 UseNewIndexInCurrentBlock(Token::BIT_AND,
2189 decomposition.and_mask,
2190 decomposition.base,
2191 decomposition.context);
2192 current_and_mask_in_block_ = decomposition.and_mask;
2193 }
2194 check->set_skip_check();
2195 }
2196 if (current_and_mask_in_block() == 0) {
2197 if (decomposition.or_mask > current_or_mask_in_block()) {
2198 UseNewIndexInCurrentBlock(Token::BIT_OR,
2199 decomposition.or_mask,
2200 decomposition.base,
2201 decomposition.context);
2202 current_or_mask_in_block_ = decomposition.or_mask;
2203 }
2204 check->set_skip_check();
2205 }
2206
2207 if (!check->skip_check()) {
2208 InductionVariableCheck* new_check = new(check->block()->graph()->zone())
2209 InductionVariableCheck(check, checks_, upper_limit);
2210 checks_ = new_check;
2211 }
2212 }
2213
2214
2215 /*
2216 * This method detects if phi is an induction variable, with phi_operand as
2217 * its "incremented" value (the other operand would be the "base" value).
2218 *
2219 * It cheks is phi_operand has the form "phi + constant".
2220 * If yes, the constant is the increment that the induction variable gets at
2221 * every loop iteration.
2222 * Otherwise it returns 0.
2223 */
ComputeIncrement(HPhi * phi,HValue * phi_operand)2224 int32_t InductionVariableData::ComputeIncrement(HPhi* phi,
2225 HValue* phi_operand) {
2226 if (!phi_operand->representation().IsInteger32()) return 0;
2227
2228 if (phi_operand->IsAdd()) {
2229 HAdd* operation = HAdd::cast(phi_operand);
2230 if (operation->left() == phi &&
2231 operation->right()->IsInteger32Constant()) {
2232 return operation->right()->GetInteger32Constant();
2233 } else if (operation->right() == phi &&
2234 operation->left()->IsInteger32Constant()) {
2235 return operation->left()->GetInteger32Constant();
2236 }
2237 } else if (phi_operand->IsSub()) {
2238 HSub* operation = HSub::cast(phi_operand);
2239 if (operation->left() == phi &&
2240 operation->right()->IsInteger32Constant()) {
2241 return -operation->right()->GetInteger32Constant();
2242 }
2243 }
2244
2245 return 0;
2246 }
2247
2248
2249 /*
2250 * Swaps the information in "update" with the one contained in "this".
2251 * The swapping is important because this method is used while doing a
2252 * dominator tree traversal, and "update" will retain the old data that
2253 * will be restored while backtracking.
2254 */
UpdateAdditionalLimit(InductionVariableLimitUpdate * update)2255 void InductionVariableData::UpdateAdditionalLimit(
2256 InductionVariableLimitUpdate* update) {
2257 ASSERT(update->updated_variable == this);
2258 if (update->limit_is_upper) {
2259 swap(&additional_upper_limit_, &update->limit);
2260 swap(&additional_upper_limit_is_included_, &update->limit_is_included);
2261 } else {
2262 swap(&additional_lower_limit_, &update->limit);
2263 swap(&additional_lower_limit_is_included_, &update->limit_is_included);
2264 }
2265 }
2266
2267
ComputeUpperLimit(int32_t and_mask,int32_t or_mask)2268 int32_t InductionVariableData::ComputeUpperLimit(int32_t and_mask,
2269 int32_t or_mask) {
2270 // Should be Smi::kMaxValue but it must fit 32 bits; lower is safe anyway.
2271 const int32_t MAX_LIMIT = 1 << 30;
2272
2273 int32_t result = MAX_LIMIT;
2274
2275 if (limit() != NULL &&
2276 limit()->IsInteger32Constant()) {
2277 int32_t limit_value = limit()->GetInteger32Constant();
2278 if (!limit_included()) {
2279 limit_value--;
2280 }
2281 if (limit_value < result) result = limit_value;
2282 }
2283
2284 if (additional_upper_limit() != NULL &&
2285 additional_upper_limit()->IsInteger32Constant()) {
2286 int32_t limit_value = additional_upper_limit()->GetInteger32Constant();
2287 if (!additional_upper_limit_is_included()) {
2288 limit_value--;
2289 }
2290 if (limit_value < result) result = limit_value;
2291 }
2292
2293 if (and_mask > 0 && and_mask < MAX_LIMIT) {
2294 if (and_mask < result) result = and_mask;
2295 return result;
2296 }
2297
2298 // Add the effect of the or_mask.
2299 result |= or_mask;
2300
2301 return result >= MAX_LIMIT ? kNoLimit : result;
2302 }
2303
2304
IgnoreOsrValue(HValue * v)2305 HValue* InductionVariableData::IgnoreOsrValue(HValue* v) {
2306 if (!v->IsPhi()) return v;
2307 HPhi* phi = HPhi::cast(v);
2308 if (phi->OperandCount() != 2) return v;
2309 if (phi->OperandAt(0)->block()->is_osr_entry()) {
2310 return phi->OperandAt(1);
2311 } else if (phi->OperandAt(1)->block()->is_osr_entry()) {
2312 return phi->OperandAt(0);
2313 } else {
2314 return v;
2315 }
2316 }
2317
2318
GetInductionVariableData(HValue * v)2319 InductionVariableData* InductionVariableData::GetInductionVariableData(
2320 HValue* v) {
2321 v = IgnoreOsrValue(v);
2322 if (v->IsPhi()) {
2323 return HPhi::cast(v)->induction_variable_data();
2324 }
2325 return NULL;
2326 }
2327
2328
2329 /*
2330 * Check if a conditional branch to "current_branch" with token "token" is
2331 * the branch that keeps the induction loop running (and, conversely, will
2332 * terminate it if the "other_branch" is taken).
2333 *
2334 * Three conditions must be met:
2335 * - "current_branch" must be in the induction loop.
2336 * - "other_branch" must be out of the induction loop.
2337 * - "token" and the induction increment must be "compatible": the token should
2338 * be a condition that keeps the execution inside the loop until the limit is
2339 * reached.
2340 */
CheckIfBranchIsLoopGuard(Token::Value token,HBasicBlock * current_branch,HBasicBlock * other_branch)2341 bool InductionVariableData::CheckIfBranchIsLoopGuard(
2342 Token::Value token,
2343 HBasicBlock* current_branch,
2344 HBasicBlock* other_branch) {
2345 if (!phi()->block()->current_loop()->IsNestedInThisLoop(
2346 current_branch->current_loop())) {
2347 return false;
2348 }
2349
2350 if (phi()->block()->current_loop()->IsNestedInThisLoop(
2351 other_branch->current_loop())) {
2352 return false;
2353 }
2354
2355 if (increment() > 0 && (token == Token::LT || token == Token::LTE)) {
2356 return true;
2357 }
2358 if (increment() < 0 && (token == Token::GT || token == Token::GTE)) {
2359 return true;
2360 }
2361 if (Token::IsInequalityOp(token) && (increment() == 1 || increment() == -1)) {
2362 return true;
2363 }
2364
2365 return false;
2366 }
2367
2368
ComputeLimitFromPredecessorBlock(HBasicBlock * block,LimitFromPredecessorBlock * result)2369 void InductionVariableData::ComputeLimitFromPredecessorBlock(
2370 HBasicBlock* block,
2371 LimitFromPredecessorBlock* result) {
2372 if (block->predecessors()->length() != 1) return;
2373 HBasicBlock* predecessor = block->predecessors()->at(0);
2374 HInstruction* end = predecessor->last();
2375
2376 if (!end->IsCompareNumericAndBranch()) return;
2377 HCompareNumericAndBranch* branch = HCompareNumericAndBranch::cast(end);
2378
2379 Token::Value token = branch->token();
2380 if (!Token::IsArithmeticCompareOp(token)) return;
2381
2382 HBasicBlock* other_target;
2383 if (block == branch->SuccessorAt(0)) {
2384 other_target = branch->SuccessorAt(1);
2385 } else {
2386 other_target = branch->SuccessorAt(0);
2387 token = Token::NegateCompareOp(token);
2388 ASSERT(block == branch->SuccessorAt(1));
2389 }
2390
2391 InductionVariableData* data;
2392
2393 data = GetInductionVariableData(branch->left());
2394 HValue* limit = branch->right();
2395 if (data == NULL) {
2396 data = GetInductionVariableData(branch->right());
2397 token = Token::ReverseCompareOp(token);
2398 limit = branch->left();
2399 }
2400
2401 if (data != NULL) {
2402 result->variable = data;
2403 result->token = token;
2404 result->limit = limit;
2405 result->other_target = other_target;
2406 }
2407 }
2408
2409
2410 /*
2411 * Compute the limit that is imposed on an induction variable when entering
2412 * "block" (if any).
2413 * If the limit is the "proper" induction limit (the one that makes the loop
2414 * terminate when the induction variable reaches it) it is stored directly in
2415 * the induction variable data.
2416 * Otherwise the limit is written in "additional_limit" and the method
2417 * returns true.
2418 */
ComputeInductionVariableLimit(HBasicBlock * block,InductionVariableLimitUpdate * additional_limit)2419 bool InductionVariableData::ComputeInductionVariableLimit(
2420 HBasicBlock* block,
2421 InductionVariableLimitUpdate* additional_limit) {
2422 LimitFromPredecessorBlock limit;
2423 ComputeLimitFromPredecessorBlock(block, &limit);
2424 if (!limit.LimitIsValid()) return false;
2425
2426 if (limit.variable->CheckIfBranchIsLoopGuard(limit.token,
2427 block,
2428 limit.other_target)) {
2429 limit.variable->limit_ = limit.limit;
2430 limit.variable->limit_included_ = limit.LimitIsIncluded();
2431 limit.variable->limit_validity_ = block;
2432 limit.variable->induction_exit_block_ = block->predecessors()->at(0);
2433 limit.variable->induction_exit_target_ = limit.other_target;
2434 return false;
2435 } else {
2436 additional_limit->updated_variable = limit.variable;
2437 additional_limit->limit = limit.limit;
2438 additional_limit->limit_is_upper = limit.LimitIsUpper();
2439 additional_limit->limit_is_included = limit.LimitIsIncluded();
2440 return true;
2441 }
2442 }
2443
2444
InferRange(Zone * zone)2445 Range* HMathMinMax::InferRange(Zone* zone) {
2446 if (representation().IsSmiOrInteger32()) {
2447 Range* a = left()->range();
2448 Range* b = right()->range();
2449 Range* res = a->Copy(zone);
2450 if (operation_ == kMathMax) {
2451 res->CombinedMax(b);
2452 } else {
2453 ASSERT(operation_ == kMathMin);
2454 res->CombinedMin(b);
2455 }
2456 return res;
2457 } else {
2458 return HValue::InferRange(zone);
2459 }
2460 }
2461
2462
AddInput(HValue * value)2463 void HPushArguments::AddInput(HValue* value) {
2464 inputs_.Add(NULL, value->block()->zone());
2465 SetOperandAt(OperandCount() - 1, value);
2466 }
2467
2468
PrintTo(StringStream * stream)2469 void HPhi::PrintTo(StringStream* stream) {
2470 stream->Add("[");
2471 for (int i = 0; i < OperandCount(); ++i) {
2472 HValue* value = OperandAt(i);
2473 stream->Add(" ");
2474 value->PrintNameTo(stream);
2475 stream->Add(" ");
2476 }
2477 stream->Add(" uses:%d_%ds_%di_%dd_%dt",
2478 UseCount(),
2479 smi_non_phi_uses() + smi_indirect_uses(),
2480 int32_non_phi_uses() + int32_indirect_uses(),
2481 double_non_phi_uses() + double_indirect_uses(),
2482 tagged_non_phi_uses() + tagged_indirect_uses());
2483 PrintTypeTo(stream);
2484 stream->Add("]");
2485 }
2486
2487
AddInput(HValue * value)2488 void HPhi::AddInput(HValue* value) {
2489 inputs_.Add(NULL, value->block()->zone());
2490 SetOperandAt(OperandCount() - 1, value);
2491 // Mark phis that may have 'arguments' directly or indirectly as an operand.
2492 if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
2493 SetFlag(kIsArguments);
2494 }
2495 }
2496
2497
HasRealUses()2498 bool HPhi::HasRealUses() {
2499 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2500 if (!it.value()->IsPhi()) return true;
2501 }
2502 return false;
2503 }
2504
2505
GetRedundantReplacement()2506 HValue* HPhi::GetRedundantReplacement() {
2507 HValue* candidate = NULL;
2508 int count = OperandCount();
2509 int position = 0;
2510 while (position < count && candidate == NULL) {
2511 HValue* current = OperandAt(position++);
2512 if (current != this) candidate = current;
2513 }
2514 while (position < count) {
2515 HValue* current = OperandAt(position++);
2516 if (current != this && current != candidate) return NULL;
2517 }
2518 ASSERT(candidate != this);
2519 return candidate;
2520 }
2521
2522
DeleteFromGraph()2523 void HPhi::DeleteFromGraph() {
2524 ASSERT(block() != NULL);
2525 block()->RemovePhi(this);
2526 ASSERT(block() == NULL);
2527 }
2528
2529
InitRealUses(int phi_id)2530 void HPhi::InitRealUses(int phi_id) {
2531 // Initialize real uses.
2532 phi_id_ = phi_id;
2533 // Compute a conservative approximation of truncating uses before inferring
2534 // representations. The proper, exact computation will be done later, when
2535 // inserting representation changes.
2536 SetFlag(kTruncatingToSmi);
2537 SetFlag(kTruncatingToInt32);
2538 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
2539 HValue* value = it.value();
2540 if (!value->IsPhi()) {
2541 Representation rep = value->observed_input_representation(it.index());
2542 non_phi_uses_[rep.kind()] += 1;
2543 if (FLAG_trace_representation) {
2544 PrintF("#%d Phi is used by real #%d %s as %s\n",
2545 id(), value->id(), value->Mnemonic(), rep.Mnemonic());
2546 }
2547 if (!value->IsSimulate()) {
2548 if (!value->CheckFlag(kTruncatingToSmi)) {
2549 ClearFlag(kTruncatingToSmi);
2550 }
2551 if (!value->CheckFlag(kTruncatingToInt32)) {
2552 ClearFlag(kTruncatingToInt32);
2553 }
2554 }
2555 }
2556 }
2557 }
2558
2559
AddNonPhiUsesFrom(HPhi * other)2560 void HPhi::AddNonPhiUsesFrom(HPhi* other) {
2561 if (FLAG_trace_representation) {
2562 PrintF("adding to #%d Phi uses of #%d Phi: s%d i%d d%d t%d\n",
2563 id(), other->id(),
2564 other->non_phi_uses_[Representation::kSmi],
2565 other->non_phi_uses_[Representation::kInteger32],
2566 other->non_phi_uses_[Representation::kDouble],
2567 other->non_phi_uses_[Representation::kTagged]);
2568 }
2569
2570 for (int i = 0; i < Representation::kNumRepresentations; i++) {
2571 indirect_uses_[i] += other->non_phi_uses_[i];
2572 }
2573 }
2574
2575
AddIndirectUsesTo(int * dest)2576 void HPhi::AddIndirectUsesTo(int* dest) {
2577 for (int i = 0; i < Representation::kNumRepresentations; i++) {
2578 dest[i] += indirect_uses_[i];
2579 }
2580 }
2581
2582
MergeWith(ZoneList<HSimulate * > * list)2583 void HSimulate::MergeWith(ZoneList<HSimulate*>* list) {
2584 while (!list->is_empty()) {
2585 HSimulate* from = list->RemoveLast();
2586 ZoneList<HValue*>* from_values = &from->values_;
2587 for (int i = 0; i < from_values->length(); ++i) {
2588 if (from->HasAssignedIndexAt(i)) {
2589 int index = from->GetAssignedIndexAt(i);
2590 if (HasValueForIndex(index)) continue;
2591 AddAssignedValue(index, from_values->at(i));
2592 } else {
2593 if (pop_count_ > 0) {
2594 pop_count_--;
2595 } else {
2596 AddPushedValue(from_values->at(i));
2597 }
2598 }
2599 }
2600 pop_count_ += from->pop_count_;
2601 from->DeleteAndReplaceWith(NULL);
2602 }
2603 }
2604
2605
PrintDataTo(StringStream * stream)2606 void HSimulate::PrintDataTo(StringStream* stream) {
2607 stream->Add("id=%d", ast_id().ToInt());
2608 if (pop_count_ > 0) stream->Add(" pop %d", pop_count_);
2609 if (values_.length() > 0) {
2610 if (pop_count_ > 0) stream->Add(" /");
2611 for (int i = values_.length() - 1; i >= 0; --i) {
2612 if (HasAssignedIndexAt(i)) {
2613 stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
2614 } else {
2615 stream->Add(" push ");
2616 }
2617 values_[i]->PrintNameTo(stream);
2618 if (i > 0) stream->Add(",");
2619 }
2620 }
2621 }
2622
2623
ReplayEnvironment(HEnvironment * env)2624 void HSimulate::ReplayEnvironment(HEnvironment* env) {
2625 if (done_with_replay_) return;
2626 ASSERT(env != NULL);
2627 env->set_ast_id(ast_id());
2628 env->Drop(pop_count());
2629 for (int i = values()->length() - 1; i >= 0; --i) {
2630 HValue* value = values()->at(i);
2631 if (HasAssignedIndexAt(i)) {
2632 env->Bind(GetAssignedIndexAt(i), value);
2633 } else {
2634 env->Push(value);
2635 }
2636 }
2637 done_with_replay_ = true;
2638 }
2639
2640
ReplayEnvironmentNested(const ZoneList<HValue * > * values,HCapturedObject * other)2641 static void ReplayEnvironmentNested(const ZoneList<HValue*>* values,
2642 HCapturedObject* other) {
2643 for (int i = 0; i < values->length(); ++i) {
2644 HValue* value = values->at(i);
2645 if (value->IsCapturedObject()) {
2646 if (HCapturedObject::cast(value)->capture_id() == other->capture_id()) {
2647 values->at(i) = other;
2648 } else {
2649 ReplayEnvironmentNested(HCapturedObject::cast(value)->values(), other);
2650 }
2651 }
2652 }
2653 }
2654
2655
2656 // Replay captured objects by replacing all captured objects with the
2657 // same capture id in the current and all outer environments.
ReplayEnvironment(HEnvironment * env)2658 void HCapturedObject::ReplayEnvironment(HEnvironment* env) {
2659 ASSERT(env != NULL);
2660 while (env != NULL) {
2661 ReplayEnvironmentNested(env->values(), this);
2662 env = env->outer();
2663 }
2664 }
2665
2666
PrintDataTo(StringStream * stream)2667 void HCapturedObject::PrintDataTo(StringStream* stream) {
2668 stream->Add("#%d ", capture_id());
2669 HDematerializedObject::PrintDataTo(stream);
2670 }
2671
2672
RegisterReturnTarget(HBasicBlock * return_target,Zone * zone)2673 void HEnterInlined::RegisterReturnTarget(HBasicBlock* return_target,
2674 Zone* zone) {
2675 ASSERT(return_target->IsInlineReturnTarget());
2676 return_targets_.Add(return_target, zone);
2677 }
2678
2679
PrintDataTo(StringStream * stream)2680 void HEnterInlined::PrintDataTo(StringStream* stream) {
2681 SmartArrayPointer<char> name = function()->debug_name()->ToCString();
2682 stream->Add("%s, id=%d", name.get(), function()->id().ToInt());
2683 }
2684
2685
IsInteger32(double value)2686 static bool IsInteger32(double value) {
2687 double roundtrip_value = static_cast<double>(static_cast<int32_t>(value));
2688 return BitCast<int64_t>(roundtrip_value) == BitCast<int64_t>(value);
2689 }
2690
2691
HConstant(Handle<Object> object,Representation r)2692 HConstant::HConstant(Handle<Object> object, Representation r)
2693 : HTemplateInstruction<0>(HType::FromValue(object)),
2694 object_(Unique<Object>::CreateUninitialized(object)),
2695 object_map_(Handle<Map>::null()),
2696 has_stable_map_value_(false),
2697 has_smi_value_(false),
2698 has_int32_value_(false),
2699 has_double_value_(false),
2700 has_external_reference_value_(false),
2701 is_not_in_new_space_(true),
2702 boolean_value_(object->BooleanValue()),
2703 is_undetectable_(false),
2704 instance_type_(kUnknownInstanceType) {
2705 if (object->IsHeapObject()) {
2706 Handle<HeapObject> heap_object = Handle<HeapObject>::cast(object);
2707 Isolate* isolate = heap_object->GetIsolate();
2708 Handle<Map> map(heap_object->map(), isolate);
2709 is_not_in_new_space_ = !isolate->heap()->InNewSpace(*object);
2710 instance_type_ = map->instance_type();
2711 is_undetectable_ = map->is_undetectable();
2712 if (map->is_stable()) object_map_ = Unique<Map>::CreateImmovable(map);
2713 has_stable_map_value_ = (instance_type_ == MAP_TYPE &&
2714 Handle<Map>::cast(heap_object)->is_stable());
2715 }
2716 if (object->IsNumber()) {
2717 double n = object->Number();
2718 has_int32_value_ = IsInteger32(n);
2719 int32_value_ = DoubleToInt32(n);
2720 has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
2721 double_value_ = n;
2722 has_double_value_ = true;
2723 // TODO(titzer): if this heap number is new space, tenure a new one.
2724 }
2725
2726 Initialize(r);
2727 }
2728
2729
HConstant(Unique<Object> object,Unique<Map> object_map,bool has_stable_map_value,Representation r,HType type,bool is_not_in_new_space,bool boolean_value,bool is_undetectable,InstanceType instance_type)2730 HConstant::HConstant(Unique<Object> object,
2731 Unique<Map> object_map,
2732 bool has_stable_map_value,
2733 Representation r,
2734 HType type,
2735 bool is_not_in_new_space,
2736 bool boolean_value,
2737 bool is_undetectable,
2738 InstanceType instance_type)
2739 : HTemplateInstruction<0>(type),
2740 object_(object),
2741 object_map_(object_map),
2742 has_stable_map_value_(has_stable_map_value),
2743 has_smi_value_(false),
2744 has_int32_value_(false),
2745 has_double_value_(false),
2746 has_external_reference_value_(false),
2747 is_not_in_new_space_(is_not_in_new_space),
2748 boolean_value_(boolean_value),
2749 is_undetectable_(is_undetectable),
2750 instance_type_(instance_type) {
2751 ASSERT(!object.handle().is_null());
2752 ASSERT(!type.IsTaggedNumber() || type.IsNone());
2753 Initialize(r);
2754 }
2755
2756
HConstant(int32_t integer_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2757 HConstant::HConstant(int32_t integer_value,
2758 Representation r,
2759 bool is_not_in_new_space,
2760 Unique<Object> object)
2761 : object_(object),
2762 object_map_(Handle<Map>::null()),
2763 has_stable_map_value_(false),
2764 has_smi_value_(Smi::IsValid(integer_value)),
2765 has_int32_value_(true),
2766 has_double_value_(true),
2767 has_external_reference_value_(false),
2768 is_not_in_new_space_(is_not_in_new_space),
2769 boolean_value_(integer_value != 0),
2770 is_undetectable_(false),
2771 int32_value_(integer_value),
2772 double_value_(FastI2D(integer_value)),
2773 instance_type_(kUnknownInstanceType) {
2774 // It's possible to create a constant with a value in Smi-range but stored
2775 // in a (pre-existing) HeapNumber. See crbug.com/349878.
2776 bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2777 bool is_smi = has_smi_value_ && !could_be_heapobject;
2778 set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2779 Initialize(r);
2780 }
2781
2782
HConstant(double double_value,Representation r,bool is_not_in_new_space,Unique<Object> object)2783 HConstant::HConstant(double double_value,
2784 Representation r,
2785 bool is_not_in_new_space,
2786 Unique<Object> object)
2787 : object_(object),
2788 object_map_(Handle<Map>::null()),
2789 has_stable_map_value_(false),
2790 has_int32_value_(IsInteger32(double_value)),
2791 has_double_value_(true),
2792 has_external_reference_value_(false),
2793 is_not_in_new_space_(is_not_in_new_space),
2794 boolean_value_(double_value != 0 && !std::isnan(double_value)),
2795 is_undetectable_(false),
2796 int32_value_(DoubleToInt32(double_value)),
2797 double_value_(double_value),
2798 instance_type_(kUnknownInstanceType) {
2799 has_smi_value_ = has_int32_value_ && Smi::IsValid(int32_value_);
2800 // It's possible to create a constant with a value in Smi-range but stored
2801 // in a (pre-existing) HeapNumber. See crbug.com/349878.
2802 bool could_be_heapobject = r.IsTagged() && !object.handle().is_null();
2803 bool is_smi = has_smi_value_ && !could_be_heapobject;
2804 set_type(is_smi ? HType::Smi() : HType::TaggedNumber());
2805 Initialize(r);
2806 }
2807
2808
HConstant(ExternalReference reference)2809 HConstant::HConstant(ExternalReference reference)
2810 : HTemplateInstruction<0>(HType::Any()),
2811 object_(Unique<Object>(Handle<Object>::null())),
2812 object_map_(Handle<Map>::null()),
2813 has_stable_map_value_(false),
2814 has_smi_value_(false),
2815 has_int32_value_(false),
2816 has_double_value_(false),
2817 has_external_reference_value_(true),
2818 is_not_in_new_space_(true),
2819 boolean_value_(true),
2820 is_undetectable_(false),
2821 external_reference_value_(reference),
2822 instance_type_(kUnknownInstanceType) {
2823 Initialize(Representation::External());
2824 }
2825
2826
Initialize(Representation r)2827 void HConstant::Initialize(Representation r) {
2828 if (r.IsNone()) {
2829 if (has_smi_value_ && SmiValuesAre31Bits()) {
2830 r = Representation::Smi();
2831 } else if (has_int32_value_) {
2832 r = Representation::Integer32();
2833 } else if (has_double_value_) {
2834 r = Representation::Double();
2835 } else if (has_external_reference_value_) {
2836 r = Representation::External();
2837 } else {
2838 Handle<Object> object = object_.handle();
2839 if (object->IsJSObject()) {
2840 // Try to eagerly migrate JSObjects that have deprecated maps.
2841 Handle<JSObject> js_object = Handle<JSObject>::cast(object);
2842 if (js_object->map()->is_deprecated()) {
2843 JSObject::TryMigrateInstance(js_object);
2844 }
2845 }
2846 r = Representation::Tagged();
2847 }
2848 }
2849 set_representation(r);
2850 SetFlag(kUseGVN);
2851 }
2852
2853
ImmortalImmovable() const2854 bool HConstant::ImmortalImmovable() const {
2855 if (has_int32_value_) {
2856 return false;
2857 }
2858 if (has_double_value_) {
2859 if (IsSpecialDouble()) {
2860 return true;
2861 }
2862 return false;
2863 }
2864 if (has_external_reference_value_) {
2865 return false;
2866 }
2867
2868 ASSERT(!object_.handle().is_null());
2869 Heap* heap = isolate()->heap();
2870 ASSERT(!object_.IsKnownGlobal(heap->minus_zero_value()));
2871 ASSERT(!object_.IsKnownGlobal(heap->nan_value()));
2872 return
2873 #define IMMORTAL_IMMOVABLE_ROOT(name) \
2874 object_.IsKnownGlobal(heap->name()) ||
2875 IMMORTAL_IMMOVABLE_ROOT_LIST(IMMORTAL_IMMOVABLE_ROOT)
2876 #undef IMMORTAL_IMMOVABLE_ROOT
2877 #define INTERNALIZED_STRING(name, value) \
2878 object_.IsKnownGlobal(heap->name()) ||
2879 INTERNALIZED_STRING_LIST(INTERNALIZED_STRING)
2880 #undef INTERNALIZED_STRING
2881 #define STRING_TYPE(NAME, size, name, Name) \
2882 object_.IsKnownGlobal(heap->name##_map()) ||
2883 STRING_TYPE_LIST(STRING_TYPE)
2884 #undef STRING_TYPE
2885 false;
2886 }
2887
2888
EmitAtUses()2889 bool HConstant::EmitAtUses() {
2890 ASSERT(IsLinked());
2891 if (block()->graph()->has_osr() &&
2892 block()->graph()->IsStandardConstant(this)) {
2893 // TODO(titzer): this seems like a hack that should be fixed by custom OSR.
2894 return true;
2895 }
2896 if (UseCount() == 0) return true;
2897 if (IsCell()) return false;
2898 if (representation().IsDouble()) return false;
2899 if (representation().IsExternal()) return false;
2900 return true;
2901 }
2902
2903
CopyToRepresentation(Representation r,Zone * zone) const2904 HConstant* HConstant::CopyToRepresentation(Representation r, Zone* zone) const {
2905 if (r.IsSmi() && !has_smi_value_) return NULL;
2906 if (r.IsInteger32() && !has_int32_value_) return NULL;
2907 if (r.IsDouble() && !has_double_value_) return NULL;
2908 if (r.IsExternal() && !has_external_reference_value_) return NULL;
2909 if (has_int32_value_) {
2910 return new(zone) HConstant(int32_value_, r, is_not_in_new_space_, object_);
2911 }
2912 if (has_double_value_) {
2913 return new(zone) HConstant(double_value_, r, is_not_in_new_space_, object_);
2914 }
2915 if (has_external_reference_value_) {
2916 return new(zone) HConstant(external_reference_value_);
2917 }
2918 ASSERT(!object_.handle().is_null());
2919 return new(zone) HConstant(object_,
2920 object_map_,
2921 has_stable_map_value_,
2922 r,
2923 type_,
2924 is_not_in_new_space_,
2925 boolean_value_,
2926 is_undetectable_,
2927 instance_type_);
2928 }
2929
2930
CopyToTruncatedInt32(Zone * zone)2931 Maybe<HConstant*> HConstant::CopyToTruncatedInt32(Zone* zone) {
2932 HConstant* res = NULL;
2933 if (has_int32_value_) {
2934 res = new(zone) HConstant(int32_value_,
2935 Representation::Integer32(),
2936 is_not_in_new_space_,
2937 object_);
2938 } else if (has_double_value_) {
2939 res = new(zone) HConstant(DoubleToInt32(double_value_),
2940 Representation::Integer32(),
2941 is_not_in_new_space_,
2942 object_);
2943 }
2944 return Maybe<HConstant*>(res != NULL, res);
2945 }
2946
2947
CopyToTruncatedNumber(Zone * zone)2948 Maybe<HConstant*> HConstant::CopyToTruncatedNumber(Zone* zone) {
2949 HConstant* res = NULL;
2950 Handle<Object> handle = this->handle(zone->isolate());
2951 if (handle->IsBoolean()) {
2952 res = handle->BooleanValue() ?
2953 new(zone) HConstant(1) : new(zone) HConstant(0);
2954 } else if (handle->IsUndefined()) {
2955 res = new(zone) HConstant(OS::nan_value());
2956 } else if (handle->IsNull()) {
2957 res = new(zone) HConstant(0);
2958 }
2959 return Maybe<HConstant*>(res != NULL, res);
2960 }
2961
2962
PrintDataTo(StringStream * stream)2963 void HConstant::PrintDataTo(StringStream* stream) {
2964 if (has_int32_value_) {
2965 stream->Add("%d ", int32_value_);
2966 } else if (has_double_value_) {
2967 stream->Add("%f ", FmtElm(double_value_));
2968 } else if (has_external_reference_value_) {
2969 stream->Add("%p ", reinterpret_cast<void*>(
2970 external_reference_value_.address()));
2971 } else {
2972 handle(Isolate::Current())->ShortPrint(stream);
2973 stream->Add(" ");
2974 if (HasStableMapValue()) {
2975 stream->Add("[stable-map] ");
2976 }
2977 if (HasObjectMap()) {
2978 stream->Add("[map %p] ", *ObjectMap().handle());
2979 }
2980 }
2981 if (!is_not_in_new_space_) {
2982 stream->Add("[new space] ");
2983 }
2984 }
2985
2986
PrintDataTo(StringStream * stream)2987 void HBinaryOperation::PrintDataTo(StringStream* stream) {
2988 left()->PrintNameTo(stream);
2989 stream->Add(" ");
2990 right()->PrintNameTo(stream);
2991 if (CheckFlag(kCanOverflow)) stream->Add(" !");
2992 if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
2993 }
2994
2995
InferRepresentation(HInferRepresentationPhase * h_infer)2996 void HBinaryOperation::InferRepresentation(HInferRepresentationPhase* h_infer) {
2997 ASSERT(CheckFlag(kFlexibleRepresentation));
2998 Representation new_rep = RepresentationFromInputs();
2999 UpdateRepresentation(new_rep, h_infer, "inputs");
3000
3001 if (representation().IsSmi() && HasNonSmiUse()) {
3002 UpdateRepresentation(
3003 Representation::Integer32(), h_infer, "use requirements");
3004 }
3005
3006 if (observed_output_representation_.IsNone()) {
3007 new_rep = RepresentationFromUses();
3008 UpdateRepresentation(new_rep, h_infer, "uses");
3009 } else {
3010 new_rep = RepresentationFromOutput();
3011 UpdateRepresentation(new_rep, h_infer, "output");
3012 }
3013 }
3014
3015
RepresentationFromInputs()3016 Representation HBinaryOperation::RepresentationFromInputs() {
3017 // Determine the worst case of observed input representations and
3018 // the currently assumed output representation.
3019 Representation rep = representation();
3020 for (int i = 1; i <= 2; ++i) {
3021 rep = rep.generalize(observed_input_representation(i));
3022 }
3023 // If any of the actual input representation is more general than what we
3024 // have so far but not Tagged, use that representation instead.
3025 Representation left_rep = left()->representation();
3026 Representation right_rep = right()->representation();
3027 if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
3028 if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
3029
3030 return rep;
3031 }
3032
3033
IgnoreObservedOutputRepresentation(Representation current_rep)3034 bool HBinaryOperation::IgnoreObservedOutputRepresentation(
3035 Representation current_rep) {
3036 return ((current_rep.IsInteger32() && CheckUsesForFlag(kTruncatingToInt32)) ||
3037 (current_rep.IsSmi() && CheckUsesForFlag(kTruncatingToSmi))) &&
3038 // Mul in Integer32 mode would be too precise.
3039 (!this->IsMul() || HMul::cast(this)->MulMinusOne());
3040 }
3041
3042
RepresentationFromOutput()3043 Representation HBinaryOperation::RepresentationFromOutput() {
3044 Representation rep = representation();
3045 // Consider observed output representation, but ignore it if it's Double,
3046 // this instruction is not a division, and all its uses are truncating
3047 // to Integer32.
3048 if (observed_output_representation_.is_more_general_than(rep) &&
3049 !IgnoreObservedOutputRepresentation(rep)) {
3050 return observed_output_representation_;
3051 }
3052 return Representation::None();
3053 }
3054
3055
AssumeRepresentation(Representation r)3056 void HBinaryOperation::AssumeRepresentation(Representation r) {
3057 set_observed_input_representation(1, r);
3058 set_observed_input_representation(2, r);
3059 HValue::AssumeRepresentation(r);
3060 }
3061
3062
InferRepresentation(HInferRepresentationPhase * h_infer)3063 void HMathMinMax::InferRepresentation(HInferRepresentationPhase* h_infer) {
3064 ASSERT(CheckFlag(kFlexibleRepresentation));
3065 Representation new_rep = RepresentationFromInputs();
3066 UpdateRepresentation(new_rep, h_infer, "inputs");
3067 // Do not care about uses.
3068 }
3069
3070
InferRange(Zone * zone)3071 Range* HBitwise::InferRange(Zone* zone) {
3072 if (op() == Token::BIT_XOR) {
3073 if (left()->HasRange() && right()->HasRange()) {
3074 // The maximum value has the high bit, and all bits below, set:
3075 // (1 << high) - 1.
3076 // If the range can be negative, the minimum int is a negative number with
3077 // the high bit, and all bits below, unset:
3078 // -(1 << high).
3079 // If it cannot be negative, conservatively choose 0 as minimum int.
3080 int64_t left_upper = left()->range()->upper();
3081 int64_t left_lower = left()->range()->lower();
3082 int64_t right_upper = right()->range()->upper();
3083 int64_t right_lower = right()->range()->lower();
3084
3085 if (left_upper < 0) left_upper = ~left_upper;
3086 if (left_lower < 0) left_lower = ~left_lower;
3087 if (right_upper < 0) right_upper = ~right_upper;
3088 if (right_lower < 0) right_lower = ~right_lower;
3089
3090 int high = MostSignificantBit(
3091 static_cast<uint32_t>(
3092 left_upper | left_lower | right_upper | right_lower));
3093
3094 int64_t limit = 1;
3095 limit <<= high;
3096 int32_t min = (left()->range()->CanBeNegative() ||
3097 right()->range()->CanBeNegative())
3098 ? static_cast<int32_t>(-limit) : 0;
3099 return new(zone) Range(min, static_cast<int32_t>(limit - 1));
3100 }
3101 Range* result = HValue::InferRange(zone);
3102 result->set_can_be_minus_zero(false);
3103 return result;
3104 }
3105 const int32_t kDefaultMask = static_cast<int32_t>(0xffffffff);
3106 int32_t left_mask = (left()->range() != NULL)
3107 ? left()->range()->Mask()
3108 : kDefaultMask;
3109 int32_t right_mask = (right()->range() != NULL)
3110 ? right()->range()->Mask()
3111 : kDefaultMask;
3112 int32_t result_mask = (op() == Token::BIT_AND)
3113 ? left_mask & right_mask
3114 : left_mask | right_mask;
3115 if (result_mask >= 0) return new(zone) Range(0, result_mask);
3116
3117 Range* result = HValue::InferRange(zone);
3118 result->set_can_be_minus_zero(false);
3119 return result;
3120 }
3121
3122
InferRange(Zone * zone)3123 Range* HSar::InferRange(Zone* zone) {
3124 if (right()->IsConstant()) {
3125 HConstant* c = HConstant::cast(right());
3126 if (c->HasInteger32Value()) {
3127 Range* result = (left()->range() != NULL)
3128 ? left()->range()->Copy(zone)
3129 : new(zone) Range();
3130 result->Sar(c->Integer32Value());
3131 return result;
3132 }
3133 }
3134 return HValue::InferRange(zone);
3135 }
3136
3137
InferRange(Zone * zone)3138 Range* HShr::InferRange(Zone* zone) {
3139 if (right()->IsConstant()) {
3140 HConstant* c = HConstant::cast(right());
3141 if (c->HasInteger32Value()) {
3142 int shift_count = c->Integer32Value() & 0x1f;
3143 if (left()->range()->CanBeNegative()) {
3144 // Only compute bounds if the result always fits into an int32.
3145 return (shift_count >= 1)
3146 ? new(zone) Range(0,
3147 static_cast<uint32_t>(0xffffffff) >> shift_count)
3148 : new(zone) Range();
3149 } else {
3150 // For positive inputs we can use the >> operator.
3151 Range* result = (left()->range() != NULL)
3152 ? left()->range()->Copy(zone)
3153 : new(zone) Range();
3154 result->Sar(c->Integer32Value());
3155 return result;
3156 }
3157 }
3158 }
3159 return HValue::InferRange(zone);
3160 }
3161
3162
InferRange(Zone * zone)3163 Range* HShl::InferRange(Zone* zone) {
3164 if (right()->IsConstant()) {
3165 HConstant* c = HConstant::cast(right());
3166 if (c->HasInteger32Value()) {
3167 Range* result = (left()->range() != NULL)
3168 ? left()->range()->Copy(zone)
3169 : new(zone) Range();
3170 result->Shl(c->Integer32Value());
3171 return result;
3172 }
3173 }
3174 return HValue::InferRange(zone);
3175 }
3176
3177
InferRange(Zone * zone)3178 Range* HLoadNamedField::InferRange(Zone* zone) {
3179 if (access().representation().IsInteger8()) {
3180 return new(zone) Range(kMinInt8, kMaxInt8);
3181 }
3182 if (access().representation().IsUInteger8()) {
3183 return new(zone) Range(kMinUInt8, kMaxUInt8);
3184 }
3185 if (access().representation().IsInteger16()) {
3186 return new(zone) Range(kMinInt16, kMaxInt16);
3187 }
3188 if (access().representation().IsUInteger16()) {
3189 return new(zone) Range(kMinUInt16, kMaxUInt16);
3190 }
3191 if (access().IsStringLength()) {
3192 return new(zone) Range(0, String::kMaxLength);
3193 }
3194 return HValue::InferRange(zone);
3195 }
3196
3197
InferRange(Zone * zone)3198 Range* HLoadKeyed::InferRange(Zone* zone) {
3199 switch (elements_kind()) {
3200 case EXTERNAL_INT8_ELEMENTS:
3201 return new(zone) Range(kMinInt8, kMaxInt8);
3202 case EXTERNAL_UINT8_ELEMENTS:
3203 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3204 return new(zone) Range(kMinUInt8, kMaxUInt8);
3205 case EXTERNAL_INT16_ELEMENTS:
3206 return new(zone) Range(kMinInt16, kMaxInt16);
3207 case EXTERNAL_UINT16_ELEMENTS:
3208 return new(zone) Range(kMinUInt16, kMaxUInt16);
3209 default:
3210 return HValue::InferRange(zone);
3211 }
3212 }
3213
3214
PrintDataTo(StringStream * stream)3215 void HCompareGeneric::PrintDataTo(StringStream* stream) {
3216 stream->Add(Token::Name(token()));
3217 stream->Add(" ");
3218 HBinaryOperation::PrintDataTo(stream);
3219 }
3220
3221
PrintDataTo(StringStream * stream)3222 void HStringCompareAndBranch::PrintDataTo(StringStream* stream) {
3223 stream->Add(Token::Name(token()));
3224 stream->Add(" ");
3225 HControlInstruction::PrintDataTo(stream);
3226 }
3227
3228
PrintDataTo(StringStream * stream)3229 void HCompareNumericAndBranch::PrintDataTo(StringStream* stream) {
3230 stream->Add(Token::Name(token()));
3231 stream->Add(" ");
3232 left()->PrintNameTo(stream);
3233 stream->Add(" ");
3234 right()->PrintNameTo(stream);
3235 HControlInstruction::PrintDataTo(stream);
3236 }
3237
3238
PrintDataTo(StringStream * stream)3239 void HCompareObjectEqAndBranch::PrintDataTo(StringStream* stream) {
3240 left()->PrintNameTo(stream);
3241 stream->Add(" ");
3242 right()->PrintNameTo(stream);
3243 HControlInstruction::PrintDataTo(stream);
3244 }
3245
3246
KnownSuccessorBlock(HBasicBlock ** block)3247 bool HCompareObjectEqAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3248 if (known_successor_index() != kNoKnownSuccessorIndex) {
3249 *block = SuccessorAt(known_successor_index());
3250 return true;
3251 }
3252 if (FLAG_fold_constants && left()->IsConstant() && right()->IsConstant()) {
3253 *block = HConstant::cast(left())->DataEquals(HConstant::cast(right()))
3254 ? FirstSuccessor() : SecondSuccessor();
3255 return true;
3256 }
3257 *block = NULL;
3258 return false;
3259 }
3260
3261
ConstantIsObject(HConstant * constant,Isolate * isolate)3262 bool ConstantIsObject(HConstant* constant, Isolate* isolate) {
3263 if (constant->HasNumberValue()) return false;
3264 if (constant->GetUnique().IsKnownGlobal(isolate->heap()->null_value())) {
3265 return true;
3266 }
3267 if (constant->IsUndetectable()) return false;
3268 InstanceType type = constant->GetInstanceType();
3269 return (FIRST_NONCALLABLE_SPEC_OBJECT_TYPE <= type) &&
3270 (type <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
3271 }
3272
3273
KnownSuccessorBlock(HBasicBlock ** block)3274 bool HIsObjectAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3275 if (FLAG_fold_constants && value()->IsConstant()) {
3276 *block = ConstantIsObject(HConstant::cast(value()), isolate())
3277 ? FirstSuccessor() : SecondSuccessor();
3278 return true;
3279 }
3280 *block = NULL;
3281 return false;
3282 }
3283
3284
KnownSuccessorBlock(HBasicBlock ** block)3285 bool HIsStringAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3286 if (known_successor_index() != kNoKnownSuccessorIndex) {
3287 *block = SuccessorAt(known_successor_index());
3288 return true;
3289 }
3290 if (FLAG_fold_constants && value()->IsConstant()) {
3291 *block = HConstant::cast(value())->HasStringValue()
3292 ? FirstSuccessor() : SecondSuccessor();
3293 return true;
3294 }
3295 if (value()->type().IsString()) {
3296 *block = FirstSuccessor();
3297 return true;
3298 }
3299 if (value()->type().IsSmi() ||
3300 value()->type().IsNull() ||
3301 value()->type().IsBoolean() ||
3302 value()->type().IsUndefined() ||
3303 value()->type().IsJSObject()) {
3304 *block = SecondSuccessor();
3305 return true;
3306 }
3307 *block = NULL;
3308 return false;
3309 }
3310
3311
KnownSuccessorBlock(HBasicBlock ** block)3312 bool HIsUndetectableAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3313 if (FLAG_fold_constants && value()->IsConstant()) {
3314 *block = HConstant::cast(value())->IsUndetectable()
3315 ? FirstSuccessor() : SecondSuccessor();
3316 return true;
3317 }
3318 *block = NULL;
3319 return false;
3320 }
3321
3322
KnownSuccessorBlock(HBasicBlock ** block)3323 bool HHasInstanceTypeAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3324 if (FLAG_fold_constants && value()->IsConstant()) {
3325 InstanceType type = HConstant::cast(value())->GetInstanceType();
3326 *block = (from_ <= type) && (type <= to_)
3327 ? FirstSuccessor() : SecondSuccessor();
3328 return true;
3329 }
3330 *block = NULL;
3331 return false;
3332 }
3333
3334
InferRepresentation(HInferRepresentationPhase * h_infer)3335 void HCompareHoleAndBranch::InferRepresentation(
3336 HInferRepresentationPhase* h_infer) {
3337 ChangeRepresentation(value()->representation());
3338 }
3339
3340
KnownSuccessorBlock(HBasicBlock ** block)3341 bool HCompareNumericAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3342 if (left() == right() &&
3343 left()->representation().IsSmiOrInteger32()) {
3344 *block = (token() == Token::EQ ||
3345 token() == Token::EQ_STRICT ||
3346 token() == Token::LTE ||
3347 token() == Token::GTE)
3348 ? FirstSuccessor() : SecondSuccessor();
3349 return true;
3350 }
3351 *block = NULL;
3352 return false;
3353 }
3354
3355
KnownSuccessorBlock(HBasicBlock ** block)3356 bool HCompareMinusZeroAndBranch::KnownSuccessorBlock(HBasicBlock** block) {
3357 if (FLAG_fold_constants && value()->IsConstant()) {
3358 HConstant* constant = HConstant::cast(value());
3359 if (constant->HasDoubleValue()) {
3360 *block = IsMinusZero(constant->DoubleValue())
3361 ? FirstSuccessor() : SecondSuccessor();
3362 return true;
3363 }
3364 }
3365 if (value()->representation().IsSmiOrInteger32()) {
3366 // A Smi or Integer32 cannot contain minus zero.
3367 *block = SecondSuccessor();
3368 return true;
3369 }
3370 *block = NULL;
3371 return false;
3372 }
3373
3374
InferRepresentation(HInferRepresentationPhase * h_infer)3375 void HCompareMinusZeroAndBranch::InferRepresentation(
3376 HInferRepresentationPhase* h_infer) {
3377 ChangeRepresentation(value()->representation());
3378 }
3379
3380
3381
PrintDataTo(StringStream * stream)3382 void HGoto::PrintDataTo(StringStream* stream) {
3383 stream->Add("B%d", SuccessorAt(0)->block_id());
3384 }
3385
3386
InferRepresentation(HInferRepresentationPhase * h_infer)3387 void HCompareNumericAndBranch::InferRepresentation(
3388 HInferRepresentationPhase* h_infer) {
3389 Representation left_rep = left()->representation();
3390 Representation right_rep = right()->representation();
3391 Representation observed_left = observed_input_representation(0);
3392 Representation observed_right = observed_input_representation(1);
3393
3394 Representation rep = Representation::None();
3395 rep = rep.generalize(observed_left);
3396 rep = rep.generalize(observed_right);
3397 if (rep.IsNone() || rep.IsSmiOrInteger32()) {
3398 if (!left_rep.IsTagged()) rep = rep.generalize(left_rep);
3399 if (!right_rep.IsTagged()) rep = rep.generalize(right_rep);
3400 } else {
3401 rep = Representation::Double();
3402 }
3403
3404 if (rep.IsDouble()) {
3405 // According to the ES5 spec (11.9.3, 11.8.5), Equality comparisons (==, ===
3406 // and !=) have special handling of undefined, e.g. undefined == undefined
3407 // is 'true'. Relational comparisons have a different semantic, first
3408 // calling ToPrimitive() on their arguments. The standard Crankshaft
3409 // tagged-to-double conversion to ensure the HCompareNumericAndBranch's
3410 // inputs are doubles caused 'undefined' to be converted to NaN. That's
3411 // compatible out-of-the box with ordered relational comparisons (<, >, <=,
3412 // >=). However, for equality comparisons (and for 'in' and 'instanceof'),
3413 // it is not consistent with the spec. For example, it would cause undefined
3414 // == undefined (should be true) to be evaluated as NaN == NaN
3415 // (false). Therefore, any comparisons other than ordered relational
3416 // comparisons must cause a deopt when one of their arguments is undefined.
3417 // See also v8:1434
3418 if (Token::IsOrderedRelationalCompareOp(token_)) {
3419 SetFlag(kAllowUndefinedAsNaN);
3420 }
3421 }
3422 ChangeRepresentation(rep);
3423 }
3424
3425
PrintDataTo(StringStream * stream)3426 void HParameter::PrintDataTo(StringStream* stream) {
3427 stream->Add("%u", index());
3428 }
3429
3430
PrintDataTo(StringStream * stream)3431 void HLoadNamedField::PrintDataTo(StringStream* stream) {
3432 object()->PrintNameTo(stream);
3433 access_.PrintTo(stream);
3434
3435 if (maps() != NULL) {
3436 stream->Add(" [%p", *maps()->at(0).handle());
3437 for (int i = 1; i < maps()->size(); ++i) {
3438 stream->Add(",%p", *maps()->at(i).handle());
3439 }
3440 stream->Add("]");
3441 }
3442
3443 if (HasDependency()) {
3444 stream->Add(" ");
3445 dependency()->PrintNameTo(stream);
3446 }
3447 }
3448
3449
PrintDataTo(StringStream * stream)3450 void HLoadNamedGeneric::PrintDataTo(StringStream* stream) {
3451 object()->PrintNameTo(stream);
3452 stream->Add(".");
3453 stream->Add(String::cast(*name())->ToCString().get());
3454 }
3455
3456
PrintDataTo(StringStream * stream)3457 void HLoadKeyed::PrintDataTo(StringStream* stream) {
3458 if (!is_external()) {
3459 elements()->PrintNameTo(stream);
3460 } else {
3461 ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
3462 elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
3463 elements()->PrintNameTo(stream);
3464 stream->Add(".");
3465 stream->Add(ElementsKindToString(elements_kind()));
3466 }
3467
3468 stream->Add("[");
3469 key()->PrintNameTo(stream);
3470 if (IsDehoisted()) {
3471 stream->Add(" + %d]", base_offset());
3472 } else {
3473 stream->Add("]");
3474 }
3475
3476 if (HasDependency()) {
3477 stream->Add(" ");
3478 dependency()->PrintNameTo(stream);
3479 }
3480
3481 if (RequiresHoleCheck()) {
3482 stream->Add(" check_hole");
3483 }
3484 }
3485
3486
UsesMustHandleHole() const3487 bool HLoadKeyed::UsesMustHandleHole() const {
3488 if (IsFastPackedElementsKind(elements_kind())) {
3489 return false;
3490 }
3491
3492 if (IsExternalArrayElementsKind(elements_kind())) {
3493 return false;
3494 }
3495
3496 if (hole_mode() == ALLOW_RETURN_HOLE) {
3497 if (IsFastDoubleElementsKind(elements_kind())) {
3498 return AllUsesCanTreatHoleAsNaN();
3499 }
3500 return true;
3501 }
3502
3503 if (IsFastDoubleElementsKind(elements_kind())) {
3504 return false;
3505 }
3506
3507 // Holes are only returned as tagged values.
3508 if (!representation().IsTagged()) {
3509 return false;
3510 }
3511
3512 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3513 HValue* use = it.value();
3514 if (!use->IsChange()) return false;
3515 }
3516
3517 return true;
3518 }
3519
3520
AllUsesCanTreatHoleAsNaN() const3521 bool HLoadKeyed::AllUsesCanTreatHoleAsNaN() const {
3522 return IsFastDoubleElementsKind(elements_kind()) &&
3523 CheckUsesForFlag(HValue::kAllowUndefinedAsNaN);
3524 }
3525
3526
RequiresHoleCheck() const3527 bool HLoadKeyed::RequiresHoleCheck() const {
3528 if (IsFastPackedElementsKind(elements_kind())) {
3529 return false;
3530 }
3531
3532 if (IsExternalArrayElementsKind(elements_kind())) {
3533 return false;
3534 }
3535
3536 return !UsesMustHandleHole();
3537 }
3538
3539
PrintDataTo(StringStream * stream)3540 void HLoadKeyedGeneric::PrintDataTo(StringStream* stream) {
3541 object()->PrintNameTo(stream);
3542 stream->Add("[");
3543 key()->PrintNameTo(stream);
3544 stream->Add("]");
3545 }
3546
3547
Canonicalize()3548 HValue* HLoadKeyedGeneric::Canonicalize() {
3549 // Recognize generic keyed loads that use property name generated
3550 // by for-in statement as a key and rewrite them into fast property load
3551 // by index.
3552 if (key()->IsLoadKeyed()) {
3553 HLoadKeyed* key_load = HLoadKeyed::cast(key());
3554 if (key_load->elements()->IsForInCacheArray()) {
3555 HForInCacheArray* names_cache =
3556 HForInCacheArray::cast(key_load->elements());
3557
3558 if (names_cache->enumerable() == object()) {
3559 HForInCacheArray* index_cache =
3560 names_cache->index_cache();
3561 HCheckMapValue* map_check =
3562 HCheckMapValue::New(block()->graph()->zone(),
3563 block()->graph()->GetInvalidContext(),
3564 object(),
3565 names_cache->map());
3566 HInstruction* index = HLoadKeyed::New(
3567 block()->graph()->zone(),
3568 block()->graph()->GetInvalidContext(),
3569 index_cache,
3570 key_load->key(),
3571 key_load->key(),
3572 key_load->elements_kind());
3573 map_check->InsertBefore(this);
3574 index->InsertBefore(this);
3575 return Prepend(new(block()->zone()) HLoadFieldByIndex(
3576 object(), index));
3577 }
3578 }
3579 }
3580
3581 return this;
3582 }
3583
3584
PrintDataTo(StringStream * stream)3585 void HStoreNamedGeneric::PrintDataTo(StringStream* stream) {
3586 object()->PrintNameTo(stream);
3587 stream->Add(".");
3588 ASSERT(name()->IsString());
3589 stream->Add(String::cast(*name())->ToCString().get());
3590 stream->Add(" = ");
3591 value()->PrintNameTo(stream);
3592 }
3593
3594
PrintDataTo(StringStream * stream)3595 void HStoreNamedField::PrintDataTo(StringStream* stream) {
3596 object()->PrintNameTo(stream);
3597 access_.PrintTo(stream);
3598 stream->Add(" = ");
3599 value()->PrintNameTo(stream);
3600 if (NeedsWriteBarrier()) {
3601 stream->Add(" (write-barrier)");
3602 }
3603 if (has_transition()) {
3604 stream->Add(" (transition map %p)", *transition_map());
3605 }
3606 }
3607
3608
PrintDataTo(StringStream * stream)3609 void HStoreKeyed::PrintDataTo(StringStream* stream) {
3610 if (!is_external()) {
3611 elements()->PrintNameTo(stream);
3612 } else {
3613 elements()->PrintNameTo(stream);
3614 stream->Add(".");
3615 stream->Add(ElementsKindToString(elements_kind()));
3616 ASSERT(elements_kind() >= FIRST_EXTERNAL_ARRAY_ELEMENTS_KIND &&
3617 elements_kind() <= LAST_EXTERNAL_ARRAY_ELEMENTS_KIND);
3618 }
3619
3620 stream->Add("[");
3621 key()->PrintNameTo(stream);
3622 if (IsDehoisted()) {
3623 stream->Add(" + %d] = ", base_offset());
3624 } else {
3625 stream->Add("] = ");
3626 }
3627
3628 value()->PrintNameTo(stream);
3629 }
3630
3631
PrintDataTo(StringStream * stream)3632 void HStoreKeyedGeneric::PrintDataTo(StringStream* stream) {
3633 object()->PrintNameTo(stream);
3634 stream->Add("[");
3635 key()->PrintNameTo(stream);
3636 stream->Add("] = ");
3637 value()->PrintNameTo(stream);
3638 }
3639
3640
PrintDataTo(StringStream * stream)3641 void HTransitionElementsKind::PrintDataTo(StringStream* stream) {
3642 object()->PrintNameTo(stream);
3643 ElementsKind from_kind = original_map().handle()->elements_kind();
3644 ElementsKind to_kind = transitioned_map().handle()->elements_kind();
3645 stream->Add(" %p [%s] -> %p [%s]",
3646 *original_map().handle(),
3647 ElementsAccessor::ForKind(from_kind)->name(),
3648 *transitioned_map().handle(),
3649 ElementsAccessor::ForKind(to_kind)->name());
3650 if (IsSimpleMapChangeTransition(from_kind, to_kind)) stream->Add(" (simple)");
3651 }
3652
3653
PrintDataTo(StringStream * stream)3654 void HLoadGlobalCell::PrintDataTo(StringStream* stream) {
3655 stream->Add("[%p]", *cell().handle());
3656 if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
3657 if (details_.IsReadOnly()) stream->Add(" (read-only)");
3658 }
3659
3660
RequiresHoleCheck() const3661 bool HLoadGlobalCell::RequiresHoleCheck() const {
3662 if (details_.IsDontDelete() && !details_.IsReadOnly()) return false;
3663 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
3664 HValue* use = it.value();
3665 if (!use->IsChange()) return true;
3666 }
3667 return false;
3668 }
3669
3670
PrintDataTo(StringStream * stream)3671 void HLoadGlobalGeneric::PrintDataTo(StringStream* stream) {
3672 stream->Add("%o ", *name());
3673 }
3674
3675
PrintDataTo(StringStream * stream)3676 void HInnerAllocatedObject::PrintDataTo(StringStream* stream) {
3677 base_object()->PrintNameTo(stream);
3678 stream->Add(" offset ");
3679 offset()->PrintTo(stream);
3680 }
3681
3682
PrintDataTo(StringStream * stream)3683 void HStoreGlobalCell::PrintDataTo(StringStream* stream) {
3684 stream->Add("[%p] = ", *cell().handle());
3685 value()->PrintNameTo(stream);
3686 if (!details_.IsDontDelete()) stream->Add(" (deleteable)");
3687 if (details_.IsReadOnly()) stream->Add(" (read-only)");
3688 }
3689
3690
PrintDataTo(StringStream * stream)3691 void HLoadContextSlot::PrintDataTo(StringStream* stream) {
3692 value()->PrintNameTo(stream);
3693 stream->Add("[%d]", slot_index());
3694 }
3695
3696
PrintDataTo(StringStream * stream)3697 void HStoreContextSlot::PrintDataTo(StringStream* stream) {
3698 context()->PrintNameTo(stream);
3699 stream->Add("[%d] = ", slot_index());
3700 value()->PrintNameTo(stream);
3701 }
3702
3703
3704 // Implementation of type inference and type conversions. Calculates
3705 // the inferred type of this instruction based on the input operands.
3706
CalculateInferredType()3707 HType HValue::CalculateInferredType() {
3708 return type_;
3709 }
3710
3711
CalculateInferredType()3712 HType HPhi::CalculateInferredType() {
3713 if (OperandCount() == 0) return HType::Tagged();
3714 HType result = OperandAt(0)->type();
3715 for (int i = 1; i < OperandCount(); ++i) {
3716 HType current = OperandAt(i)->type();
3717 result = result.Combine(current);
3718 }
3719 return result;
3720 }
3721
3722
CalculateInferredType()3723 HType HChange::CalculateInferredType() {
3724 if (from().IsDouble() && to().IsTagged()) return HType::HeapNumber();
3725 return type();
3726 }
3727
3728
RepresentationFromInputs()3729 Representation HUnaryMathOperation::RepresentationFromInputs() {
3730 if (SupportsFlexibleFloorAndRound() &&
3731 (op_ == kMathFloor || op_ == kMathRound)) {
3732 // Floor and Round always take a double input. The integral result can be
3733 // used as an integer or a double. Infer the representation from the uses.
3734 return Representation::None();
3735 }
3736 Representation rep = representation();
3737 // If any of the actual input representation is more general than what we
3738 // have so far but not Tagged, use that representation instead.
3739 Representation input_rep = value()->representation();
3740 if (!input_rep.IsTagged()) {
3741 rep = rep.generalize(input_rep);
3742 }
3743 return rep;
3744 }
3745
3746
HandleSideEffectDominator(GVNFlag side_effect,HValue * dominator)3747 bool HAllocate::HandleSideEffectDominator(GVNFlag side_effect,
3748 HValue* dominator) {
3749 ASSERT(side_effect == kNewSpacePromotion);
3750 Zone* zone = block()->zone();
3751 if (!FLAG_use_allocation_folding) return false;
3752
3753 // Try to fold allocations together with their dominating allocations.
3754 if (!dominator->IsAllocate()) {
3755 if (FLAG_trace_allocation_folding) {
3756 PrintF("#%d (%s) cannot fold into #%d (%s)\n",
3757 id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3758 }
3759 return false;
3760 }
3761
3762 // Check whether we are folding within the same block for local folding.
3763 if (FLAG_use_local_allocation_folding && dominator->block() != block()) {
3764 if (FLAG_trace_allocation_folding) {
3765 PrintF("#%d (%s) cannot fold into #%d (%s), crosses basic blocks\n",
3766 id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3767 }
3768 return false;
3769 }
3770
3771 HAllocate* dominator_allocate = HAllocate::cast(dominator);
3772 HValue* dominator_size = dominator_allocate->size();
3773 HValue* current_size = size();
3774
3775 // TODO(hpayer): Add support for non-constant allocation in dominator.
3776 if (!dominator_size->IsInteger32Constant()) {
3777 if (FLAG_trace_allocation_folding) {
3778 PrintF("#%d (%s) cannot fold into #%d (%s), "
3779 "dynamic allocation size in dominator\n",
3780 id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3781 }
3782 return false;
3783 }
3784
3785 dominator_allocate = GetFoldableDominator(dominator_allocate);
3786 if (dominator_allocate == NULL) {
3787 return false;
3788 }
3789
3790 if (!has_size_upper_bound()) {
3791 if (FLAG_trace_allocation_folding) {
3792 PrintF("#%d (%s) cannot fold into #%d (%s), "
3793 "can't estimate total allocation size\n",
3794 id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3795 }
3796 return false;
3797 }
3798
3799 if (!current_size->IsInteger32Constant()) {
3800 // If it's not constant then it is a size_in_bytes calculation graph
3801 // like this: (const_header_size + const_element_size * size).
3802 ASSERT(current_size->IsInstruction());
3803
3804 HInstruction* current_instr = HInstruction::cast(current_size);
3805 if (!current_instr->Dominates(dominator_allocate)) {
3806 if (FLAG_trace_allocation_folding) {
3807 PrintF("#%d (%s) cannot fold into #%d (%s), dynamic size "
3808 "value does not dominate target allocation\n",
3809 id(), Mnemonic(), dominator_allocate->id(),
3810 dominator_allocate->Mnemonic());
3811 }
3812 return false;
3813 }
3814 }
3815
3816 ASSERT((IsNewSpaceAllocation() &&
3817 dominator_allocate->IsNewSpaceAllocation()) ||
3818 (IsOldDataSpaceAllocation() &&
3819 dominator_allocate->IsOldDataSpaceAllocation()) ||
3820 (IsOldPointerSpaceAllocation() &&
3821 dominator_allocate->IsOldPointerSpaceAllocation()));
3822
3823 // First update the size of the dominator allocate instruction.
3824 dominator_size = dominator_allocate->size();
3825 int32_t original_object_size =
3826 HConstant::cast(dominator_size)->GetInteger32Constant();
3827 int32_t dominator_size_constant = original_object_size;
3828
3829 if (MustAllocateDoubleAligned()) {
3830 if ((dominator_size_constant & kDoubleAlignmentMask) != 0) {
3831 dominator_size_constant += kDoubleSize / 2;
3832 }
3833 }
3834
3835 int32_t current_size_max_value = size_upper_bound()->GetInteger32Constant();
3836 int32_t new_dominator_size = dominator_size_constant + current_size_max_value;
3837
3838 // Since we clear the first word after folded memory, we cannot use the
3839 // whole Page::kMaxRegularHeapObjectSize memory.
3840 if (new_dominator_size > Page::kMaxRegularHeapObjectSize - kPointerSize) {
3841 if (FLAG_trace_allocation_folding) {
3842 PrintF("#%d (%s) cannot fold into #%d (%s) due to size: %d\n",
3843 id(), Mnemonic(), dominator_allocate->id(),
3844 dominator_allocate->Mnemonic(), new_dominator_size);
3845 }
3846 return false;
3847 }
3848
3849 HInstruction* new_dominator_size_value;
3850
3851 if (current_size->IsInteger32Constant()) {
3852 new_dominator_size_value =
3853 HConstant::CreateAndInsertBefore(zone,
3854 context(),
3855 new_dominator_size,
3856 Representation::None(),
3857 dominator_allocate);
3858 } else {
3859 HValue* new_dominator_size_constant =
3860 HConstant::CreateAndInsertBefore(zone,
3861 context(),
3862 dominator_size_constant,
3863 Representation::Integer32(),
3864 dominator_allocate);
3865
3866 // Add old and new size together and insert.
3867 current_size->ChangeRepresentation(Representation::Integer32());
3868
3869 new_dominator_size_value = HAdd::New(zone, context(),
3870 new_dominator_size_constant, current_size);
3871 new_dominator_size_value->ClearFlag(HValue::kCanOverflow);
3872 new_dominator_size_value->ChangeRepresentation(Representation::Integer32());
3873
3874 new_dominator_size_value->InsertBefore(dominator_allocate);
3875 }
3876
3877 dominator_allocate->UpdateSize(new_dominator_size_value);
3878
3879 if (MustAllocateDoubleAligned()) {
3880 if (!dominator_allocate->MustAllocateDoubleAligned()) {
3881 dominator_allocate->MakeDoubleAligned();
3882 }
3883 }
3884
3885 bool keep_new_space_iterable = FLAG_log_gc || FLAG_heap_stats;
3886 #ifdef VERIFY_HEAP
3887 keep_new_space_iterable = keep_new_space_iterable || FLAG_verify_heap;
3888 #endif
3889
3890 if (keep_new_space_iterable && dominator_allocate->IsNewSpaceAllocation()) {
3891 dominator_allocate->MakePrefillWithFiller();
3892 } else {
3893 // TODO(hpayer): This is a short-term hack to make allocation mementos
3894 // work again in new space.
3895 dominator_allocate->ClearNextMapWord(original_object_size);
3896 }
3897
3898 dominator_allocate->UpdateClearNextMapWord(MustClearNextMapWord());
3899
3900 // After that replace the dominated allocate instruction.
3901 HInstruction* inner_offset = HConstant::CreateAndInsertBefore(
3902 zone,
3903 context(),
3904 dominator_size_constant,
3905 Representation::None(),
3906 this);
3907
3908 HInstruction* dominated_allocate_instr =
3909 HInnerAllocatedObject::New(zone,
3910 context(),
3911 dominator_allocate,
3912 inner_offset,
3913 type());
3914 dominated_allocate_instr->InsertBefore(this);
3915 DeleteAndReplaceWith(dominated_allocate_instr);
3916 if (FLAG_trace_allocation_folding) {
3917 PrintF("#%d (%s) folded into #%d (%s)\n",
3918 id(), Mnemonic(), dominator_allocate->id(),
3919 dominator_allocate->Mnemonic());
3920 }
3921 return true;
3922 }
3923
3924
GetFoldableDominator(HAllocate * dominator)3925 HAllocate* HAllocate::GetFoldableDominator(HAllocate* dominator) {
3926 if (!IsFoldable(dominator)) {
3927 // We cannot hoist old space allocations over new space allocations.
3928 if (IsNewSpaceAllocation() || dominator->IsNewSpaceAllocation()) {
3929 if (FLAG_trace_allocation_folding) {
3930 PrintF("#%d (%s) cannot fold into #%d (%s), new space hoisting\n",
3931 id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3932 }
3933 return NULL;
3934 }
3935
3936 HAllocate* dominator_dominator = dominator->dominating_allocate_;
3937
3938 // We can hoist old data space allocations over an old pointer space
3939 // allocation and vice versa. For that we have to check the dominator
3940 // of the dominator allocate instruction.
3941 if (dominator_dominator == NULL) {
3942 dominating_allocate_ = dominator;
3943 if (FLAG_trace_allocation_folding) {
3944 PrintF("#%d (%s) cannot fold into #%d (%s), different spaces\n",
3945 id(), Mnemonic(), dominator->id(), dominator->Mnemonic());
3946 }
3947 return NULL;
3948 }
3949
3950 // We can just fold old space allocations that are in the same basic block,
3951 // since it is not guaranteed that we fill up the whole allocated old
3952 // space memory.
3953 // TODO(hpayer): Remove this limitation and add filler maps for each each
3954 // allocation as soon as we have store elimination.
3955 if (block()->block_id() != dominator_dominator->block()->block_id()) {
3956 if (FLAG_trace_allocation_folding) {
3957 PrintF("#%d (%s) cannot fold into #%d (%s), different basic blocks\n",
3958 id(), Mnemonic(), dominator_dominator->id(),
3959 dominator_dominator->Mnemonic());
3960 }
3961 return NULL;
3962 }
3963
3964 ASSERT((IsOldDataSpaceAllocation() &&
3965 dominator_dominator->IsOldDataSpaceAllocation()) ||
3966 (IsOldPointerSpaceAllocation() &&
3967 dominator_dominator->IsOldPointerSpaceAllocation()));
3968
3969 int32_t current_size = HConstant::cast(size())->GetInteger32Constant();
3970 HStoreNamedField* dominator_free_space_size =
3971 dominator->filler_free_space_size_;
3972 if (dominator_free_space_size != NULL) {
3973 // We already hoisted one old space allocation, i.e., we already installed
3974 // a filler map. Hence, we just have to update the free space size.
3975 dominator->UpdateFreeSpaceFiller(current_size);
3976 } else {
3977 // This is the first old space allocation that gets hoisted. We have to
3978 // install a filler map since the follwing allocation may cause a GC.
3979 dominator->CreateFreeSpaceFiller(current_size);
3980 }
3981
3982 // We can hoist the old space allocation over the actual dominator.
3983 return dominator_dominator;
3984 }
3985 return dominator;
3986 }
3987
3988
UpdateFreeSpaceFiller(int32_t free_space_size)3989 void HAllocate::UpdateFreeSpaceFiller(int32_t free_space_size) {
3990 ASSERT(filler_free_space_size_ != NULL);
3991 Zone* zone = block()->zone();
3992 // We must explicitly force Smi representation here because on x64 we
3993 // would otherwise automatically choose int32, but the actual store
3994 // requires a Smi-tagged value.
3995 HConstant* new_free_space_size = HConstant::CreateAndInsertBefore(
3996 zone,
3997 context(),
3998 filler_free_space_size_->value()->GetInteger32Constant() +
3999 free_space_size,
4000 Representation::Smi(),
4001 filler_free_space_size_);
4002 filler_free_space_size_->UpdateValue(new_free_space_size);
4003 }
4004
4005
CreateFreeSpaceFiller(int32_t free_space_size)4006 void HAllocate::CreateFreeSpaceFiller(int32_t free_space_size) {
4007 ASSERT(filler_free_space_size_ == NULL);
4008 Zone* zone = block()->zone();
4009 HInstruction* free_space_instr =
4010 HInnerAllocatedObject::New(zone, context(), dominating_allocate_,
4011 dominating_allocate_->size(), type());
4012 free_space_instr->InsertBefore(this);
4013 HConstant* filler_map = HConstant::CreateAndInsertAfter(
4014 zone, Unique<Map>::CreateImmovable(
4015 isolate()->factory()->free_space_map()), true, free_space_instr);
4016 HInstruction* store_map = HStoreNamedField::New(zone, context(),
4017 free_space_instr, HObjectAccess::ForMap(), filler_map);
4018 store_map->SetFlag(HValue::kHasNoObservableSideEffects);
4019 store_map->InsertAfter(filler_map);
4020
4021 // We must explicitly force Smi representation here because on x64 we
4022 // would otherwise automatically choose int32, but the actual store
4023 // requires a Smi-tagged value.
4024 HConstant* filler_size = HConstant::CreateAndInsertAfter(
4025 zone, context(), free_space_size, Representation::Smi(), store_map);
4026 // Must force Smi representation for x64 (see comment above).
4027 HObjectAccess access =
4028 HObjectAccess::ForMapAndOffset(isolate()->factory()->free_space_map(),
4029 FreeSpace::kSizeOffset,
4030 Representation::Smi());
4031 HStoreNamedField* store_size = HStoreNamedField::New(zone, context(),
4032 free_space_instr, access, filler_size);
4033 store_size->SetFlag(HValue::kHasNoObservableSideEffects);
4034 store_size->InsertAfter(filler_size);
4035 filler_free_space_size_ = store_size;
4036 }
4037
4038
ClearNextMapWord(int offset)4039 void HAllocate::ClearNextMapWord(int offset) {
4040 if (MustClearNextMapWord()) {
4041 Zone* zone = block()->zone();
4042 HObjectAccess access =
4043 HObjectAccess::ForObservableJSObjectOffset(offset);
4044 HStoreNamedField* clear_next_map =
4045 HStoreNamedField::New(zone, context(), this, access,
4046 block()->graph()->GetConstant0());
4047 clear_next_map->ClearAllSideEffects();
4048 clear_next_map->InsertAfter(this);
4049 }
4050 }
4051
4052
PrintDataTo(StringStream * stream)4053 void HAllocate::PrintDataTo(StringStream* stream) {
4054 size()->PrintNameTo(stream);
4055 stream->Add(" (");
4056 if (IsNewSpaceAllocation()) stream->Add("N");
4057 if (IsOldPointerSpaceAllocation()) stream->Add("P");
4058 if (IsOldDataSpaceAllocation()) stream->Add("D");
4059 if (MustAllocateDoubleAligned()) stream->Add("A");
4060 if (MustPrefillWithFiller()) stream->Add("F");
4061 stream->Add(")");
4062 }
4063
4064
NeedsCanonicalization()4065 bool HStoreKeyed::NeedsCanonicalization() {
4066 // If value is an integer or smi or comes from the result of a keyed load or
4067 // constant then it is either be a non-hole value or in the case of a constant
4068 // the hole is only being stored explicitly: no need for canonicalization.
4069 //
4070 // The exception to that is keyed loads from external float or double arrays:
4071 // these can load arbitrary representation of NaN.
4072
4073 if (value()->IsConstant()) {
4074 return false;
4075 }
4076
4077 if (value()->IsLoadKeyed()) {
4078 return IsExternalFloatOrDoubleElementsKind(
4079 HLoadKeyed::cast(value())->elements_kind());
4080 }
4081
4082 if (value()->IsChange()) {
4083 if (HChange::cast(value())->from().IsSmiOrInteger32()) {
4084 return false;
4085 }
4086 if (HChange::cast(value())->value()->type().IsSmi()) {
4087 return false;
4088 }
4089 }
4090 return true;
4091 }
4092
4093
4094 #define H_CONSTANT_INT(val) \
4095 HConstant::New(zone, context, static_cast<int32_t>(val))
4096 #define H_CONSTANT_DOUBLE(val) \
4097 HConstant::New(zone, context, static_cast<double>(val))
4098
4099 #define DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HInstr, op) \
4100 HInstruction* HInstr::New( \
4101 Zone* zone, HValue* context, HValue* left, HValue* right) { \
4102 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
4103 HConstant* c_left = HConstant::cast(left); \
4104 HConstant* c_right = HConstant::cast(right); \
4105 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
4106 double double_res = c_left->DoubleValue() op c_right->DoubleValue(); \
4107 if (IsInt32Double(double_res)) { \
4108 return H_CONSTANT_INT(double_res); \
4109 } \
4110 return H_CONSTANT_DOUBLE(double_res); \
4111 } \
4112 } \
4113 return new(zone) HInstr(context, left, right); \
4114 }
4115
4116
4117 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HAdd, +)
4118 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HMul, *)
4119 DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR(HSub, -)
4120
4121 #undef DEFINE_NEW_H_SIMPLE_ARITHMETIC_INSTR
4122
4123
New(Zone * zone,HValue * context,HValue * left,HValue * right,PretenureFlag pretenure_flag,StringAddFlags flags,Handle<AllocationSite> allocation_site)4124 HInstruction* HStringAdd::New(Zone* zone,
4125 HValue* context,
4126 HValue* left,
4127 HValue* right,
4128 PretenureFlag pretenure_flag,
4129 StringAddFlags flags,
4130 Handle<AllocationSite> allocation_site) {
4131 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4132 HConstant* c_right = HConstant::cast(right);
4133 HConstant* c_left = HConstant::cast(left);
4134 if (c_left->HasStringValue() && c_right->HasStringValue()) {
4135 Handle<String> left_string = c_left->StringValue();
4136 Handle<String> right_string = c_right->StringValue();
4137 // Prevent possible exception by invalid string length.
4138 if (left_string->length() + right_string->length() < String::kMaxLength) {
4139 Handle<String> concat = zone->isolate()->factory()->NewFlatConcatString(
4140 c_left->StringValue(), c_right->StringValue());
4141 ASSERT(!concat.is_null());
4142 return HConstant::New(zone, context, concat);
4143 }
4144 }
4145 }
4146 return new(zone) HStringAdd(
4147 context, left, right, pretenure_flag, flags, allocation_site);
4148 }
4149
4150
PrintDataTo(StringStream * stream)4151 void HStringAdd::PrintDataTo(StringStream* stream) {
4152 if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_BOTH) {
4153 stream->Add("_CheckBoth");
4154 } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_LEFT) {
4155 stream->Add("_CheckLeft");
4156 } else if ((flags() & STRING_ADD_CHECK_BOTH) == STRING_ADD_CHECK_RIGHT) {
4157 stream->Add("_CheckRight");
4158 }
4159 HBinaryOperation::PrintDataTo(stream);
4160 stream->Add(" (");
4161 if (pretenure_flag() == NOT_TENURED) stream->Add("N");
4162 else if (pretenure_flag() == TENURED) stream->Add("D");
4163 stream->Add(")");
4164 }
4165
4166
New(Zone * zone,HValue * context,HValue * char_code)4167 HInstruction* HStringCharFromCode::New(
4168 Zone* zone, HValue* context, HValue* char_code) {
4169 if (FLAG_fold_constants && char_code->IsConstant()) {
4170 HConstant* c_code = HConstant::cast(char_code);
4171 Isolate* isolate = zone->isolate();
4172 if (c_code->HasNumberValue()) {
4173 if (std::isfinite(c_code->DoubleValue())) {
4174 uint32_t code = c_code->NumberValueAsInteger32() & 0xffff;
4175 return HConstant::New(zone, context,
4176 isolate->factory()->LookupSingleCharacterStringFromCode(code));
4177 }
4178 return HConstant::New(zone, context, isolate->factory()->empty_string());
4179 }
4180 }
4181 return new(zone) HStringCharFromCode(context, char_code);
4182 }
4183
4184
New(Zone * zone,HValue * context,HValue * value,BuiltinFunctionId op)4185 HInstruction* HUnaryMathOperation::New(
4186 Zone* zone, HValue* context, HValue* value, BuiltinFunctionId op) {
4187 do {
4188 if (!FLAG_fold_constants) break;
4189 if (!value->IsConstant()) break;
4190 HConstant* constant = HConstant::cast(value);
4191 if (!constant->HasNumberValue()) break;
4192 double d = constant->DoubleValue();
4193 if (std::isnan(d)) { // NaN poisons everything.
4194 return H_CONSTANT_DOUBLE(OS::nan_value());
4195 }
4196 if (std::isinf(d)) { // +Infinity and -Infinity.
4197 switch (op) {
4198 case kMathExp:
4199 return H_CONSTANT_DOUBLE((d > 0.0) ? d : 0.0);
4200 case kMathLog:
4201 case kMathSqrt:
4202 return H_CONSTANT_DOUBLE((d > 0.0) ? d : OS::nan_value());
4203 case kMathPowHalf:
4204 case kMathAbs:
4205 return H_CONSTANT_DOUBLE((d > 0.0) ? d : -d);
4206 case kMathRound:
4207 case kMathFloor:
4208 return H_CONSTANT_DOUBLE(d);
4209 case kMathClz32:
4210 return H_CONSTANT_INT(32);
4211 default:
4212 UNREACHABLE();
4213 break;
4214 }
4215 }
4216 switch (op) {
4217 case kMathExp:
4218 return H_CONSTANT_DOUBLE(fast_exp(d));
4219 case kMathLog:
4220 return H_CONSTANT_DOUBLE(std::log(d));
4221 case kMathSqrt:
4222 return H_CONSTANT_DOUBLE(fast_sqrt(d));
4223 case kMathPowHalf:
4224 return H_CONSTANT_DOUBLE(power_double_double(d, 0.5));
4225 case kMathAbs:
4226 return H_CONSTANT_DOUBLE((d >= 0.0) ? d + 0.0 : -d);
4227 case kMathRound:
4228 // -0.5 .. -0.0 round to -0.0.
4229 if ((d >= -0.5 && Double(d).Sign() < 0)) return H_CONSTANT_DOUBLE(-0.0);
4230 // Doubles are represented as Significant * 2 ^ Exponent. If the
4231 // Exponent is not negative, the double value is already an integer.
4232 if (Double(d).Exponent() >= 0) return H_CONSTANT_DOUBLE(d);
4233 return H_CONSTANT_DOUBLE(std::floor(d + 0.5));
4234 case kMathFloor:
4235 return H_CONSTANT_DOUBLE(std::floor(d));
4236 case kMathClz32: {
4237 uint32_t i = DoubleToUint32(d);
4238 return H_CONSTANT_INT(
4239 (i == 0) ? 32 : CompilerIntrinsics::CountLeadingZeros(i));
4240 }
4241 default:
4242 UNREACHABLE();
4243 break;
4244 }
4245 } while (false);
4246 return new(zone) HUnaryMathOperation(context, value, op);
4247 }
4248
4249
RepresentationFromUses()4250 Representation HUnaryMathOperation::RepresentationFromUses() {
4251 if (op_ != kMathFloor && op_ != kMathRound) {
4252 return HValue::RepresentationFromUses();
4253 }
4254
4255 // The instruction can have an int32 or double output. Prefer a double
4256 // representation if there are double uses.
4257 bool use_double = false;
4258
4259 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4260 HValue* use = it.value();
4261 int use_index = it.index();
4262 Representation rep_observed = use->observed_input_representation(use_index);
4263 Representation rep_required = use->RequiredInputRepresentation(use_index);
4264 use_double |= (rep_observed.IsDouble() || rep_required.IsDouble());
4265 if (use_double && !FLAG_trace_representation) {
4266 // Having seen one double is enough.
4267 break;
4268 }
4269 if (FLAG_trace_representation) {
4270 if (!rep_required.IsDouble() || rep_observed.IsDouble()) {
4271 PrintF("#%d %s is used by #%d %s as %s%s\n",
4272 id(), Mnemonic(), use->id(),
4273 use->Mnemonic(), rep_observed.Mnemonic(),
4274 (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4275 } else {
4276 PrintF("#%d %s is required by #%d %s as %s%s\n",
4277 id(), Mnemonic(), use->id(),
4278 use->Mnemonic(), rep_required.Mnemonic(),
4279 (use->CheckFlag(kTruncatingToInt32) ? "-trunc" : ""));
4280 }
4281 }
4282 }
4283 return use_double ? Representation::Double() : Representation::Integer32();
4284 }
4285
4286
New(Zone * zone,HValue * context,HValue * left,HValue * right)4287 HInstruction* HPower::New(Zone* zone,
4288 HValue* context,
4289 HValue* left,
4290 HValue* right) {
4291 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4292 HConstant* c_left = HConstant::cast(left);
4293 HConstant* c_right = HConstant::cast(right);
4294 if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4295 double result = power_helper(c_left->DoubleValue(),
4296 c_right->DoubleValue());
4297 return H_CONSTANT_DOUBLE(std::isnan(result) ? OS::nan_value() : result);
4298 }
4299 }
4300 return new(zone) HPower(left, right);
4301 }
4302
4303
New(Zone * zone,HValue * context,HValue * left,HValue * right,Operation op)4304 HInstruction* HMathMinMax::New(
4305 Zone* zone, HValue* context, HValue* left, HValue* right, Operation op) {
4306 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4307 HConstant* c_left = HConstant::cast(left);
4308 HConstant* c_right = HConstant::cast(right);
4309 if (c_left->HasNumberValue() && c_right->HasNumberValue()) {
4310 double d_left = c_left->DoubleValue();
4311 double d_right = c_right->DoubleValue();
4312 if (op == kMathMin) {
4313 if (d_left > d_right) return H_CONSTANT_DOUBLE(d_right);
4314 if (d_left < d_right) return H_CONSTANT_DOUBLE(d_left);
4315 if (d_left == d_right) {
4316 // Handle +0 and -0.
4317 return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_left
4318 : d_right);
4319 }
4320 } else {
4321 if (d_left < d_right) return H_CONSTANT_DOUBLE(d_right);
4322 if (d_left > d_right) return H_CONSTANT_DOUBLE(d_left);
4323 if (d_left == d_right) {
4324 // Handle +0 and -0.
4325 return H_CONSTANT_DOUBLE((Double(d_left).Sign() == -1) ? d_right
4326 : d_left);
4327 }
4328 }
4329 // All comparisons failed, must be NaN.
4330 return H_CONSTANT_DOUBLE(OS::nan_value());
4331 }
4332 }
4333 return new(zone) HMathMinMax(context, left, right, op);
4334 }
4335
4336
New(Zone * zone,HValue * context,HValue * left,HValue * right)4337 HInstruction* HMod::New(Zone* zone,
4338 HValue* context,
4339 HValue* left,
4340 HValue* right) {
4341 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4342 HConstant* c_left = HConstant::cast(left);
4343 HConstant* c_right = HConstant::cast(right);
4344 if (c_left->HasInteger32Value() && c_right->HasInteger32Value()) {
4345 int32_t dividend = c_left->Integer32Value();
4346 int32_t divisor = c_right->Integer32Value();
4347 if (dividend == kMinInt && divisor == -1) {
4348 return H_CONSTANT_DOUBLE(-0.0);
4349 }
4350 if (divisor != 0) {
4351 int32_t res = dividend % divisor;
4352 if ((res == 0) && (dividend < 0)) {
4353 return H_CONSTANT_DOUBLE(-0.0);
4354 }
4355 return H_CONSTANT_INT(res);
4356 }
4357 }
4358 }
4359 return new(zone) HMod(context, left, right);
4360 }
4361
4362
New(Zone * zone,HValue * context,HValue * left,HValue * right)4363 HInstruction* HDiv::New(
4364 Zone* zone, HValue* context, HValue* left, HValue* right) {
4365 // If left and right are constant values, try to return a constant value.
4366 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4367 HConstant* c_left = HConstant::cast(left);
4368 HConstant* c_right = HConstant::cast(right);
4369 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4370 if (c_right->DoubleValue() != 0) {
4371 double double_res = c_left->DoubleValue() / c_right->DoubleValue();
4372 if (IsInt32Double(double_res)) {
4373 return H_CONSTANT_INT(double_res);
4374 }
4375 return H_CONSTANT_DOUBLE(double_res);
4376 } else {
4377 int sign = Double(c_left->DoubleValue()).Sign() *
4378 Double(c_right->DoubleValue()).Sign(); // Right could be -0.
4379 return H_CONSTANT_DOUBLE(sign * V8_INFINITY);
4380 }
4381 }
4382 }
4383 return new(zone) HDiv(context, left, right);
4384 }
4385
4386
New(Zone * zone,HValue * context,Token::Value op,HValue * left,HValue * right)4387 HInstruction* HBitwise::New(
4388 Zone* zone, HValue* context, Token::Value op, HValue* left, HValue* right) {
4389 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4390 HConstant* c_left = HConstant::cast(left);
4391 HConstant* c_right = HConstant::cast(right);
4392 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4393 int32_t result;
4394 int32_t v_left = c_left->NumberValueAsInteger32();
4395 int32_t v_right = c_right->NumberValueAsInteger32();
4396 switch (op) {
4397 case Token::BIT_XOR:
4398 result = v_left ^ v_right;
4399 break;
4400 case Token::BIT_AND:
4401 result = v_left & v_right;
4402 break;
4403 case Token::BIT_OR:
4404 result = v_left | v_right;
4405 break;
4406 default:
4407 result = 0; // Please the compiler.
4408 UNREACHABLE();
4409 }
4410 return H_CONSTANT_INT(result);
4411 }
4412 }
4413 return new(zone) HBitwise(context, op, left, right);
4414 }
4415
4416
4417 #define DEFINE_NEW_H_BITWISE_INSTR(HInstr, result) \
4418 HInstruction* HInstr::New( \
4419 Zone* zone, HValue* context, HValue* left, HValue* right) { \
4420 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) { \
4421 HConstant* c_left = HConstant::cast(left); \
4422 HConstant* c_right = HConstant::cast(right); \
4423 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) { \
4424 return H_CONSTANT_INT(result); \
4425 } \
4426 } \
4427 return new(zone) HInstr(context, left, right); \
4428 }
4429
4430
4431 DEFINE_NEW_H_BITWISE_INSTR(HSar,
4432 c_left->NumberValueAsInteger32() >> (c_right->NumberValueAsInteger32() & 0x1f))
4433 DEFINE_NEW_H_BITWISE_INSTR(HShl,
4434 c_left->NumberValueAsInteger32() << (c_right->NumberValueAsInteger32() & 0x1f))
4435
4436 #undef DEFINE_NEW_H_BITWISE_INSTR
4437
4438
New(Zone * zone,HValue * context,HValue * left,HValue * right)4439 HInstruction* HShr::New(
4440 Zone* zone, HValue* context, HValue* left, HValue* right) {
4441 if (FLAG_fold_constants && left->IsConstant() && right->IsConstant()) {
4442 HConstant* c_left = HConstant::cast(left);
4443 HConstant* c_right = HConstant::cast(right);
4444 if ((c_left->HasNumberValue() && c_right->HasNumberValue())) {
4445 int32_t left_val = c_left->NumberValueAsInteger32();
4446 int32_t right_val = c_right->NumberValueAsInteger32() & 0x1f;
4447 if ((right_val == 0) && (left_val < 0)) {
4448 return H_CONSTANT_DOUBLE(static_cast<uint32_t>(left_val));
4449 }
4450 return H_CONSTANT_INT(static_cast<uint32_t>(left_val) >> right_val);
4451 }
4452 }
4453 return new(zone) HShr(context, left, right);
4454 }
4455
4456
New(Zone * zone,HValue * context,String::Encoding encoding,HValue * string,HValue * index)4457 HInstruction* HSeqStringGetChar::New(Zone* zone,
4458 HValue* context,
4459 String::Encoding encoding,
4460 HValue* string,
4461 HValue* index) {
4462 if (FLAG_fold_constants && string->IsConstant() && index->IsConstant()) {
4463 HConstant* c_string = HConstant::cast(string);
4464 HConstant* c_index = HConstant::cast(index);
4465 if (c_string->HasStringValue() && c_index->HasInteger32Value()) {
4466 Handle<String> s = c_string->StringValue();
4467 int32_t i = c_index->Integer32Value();
4468 ASSERT_LE(0, i);
4469 ASSERT_LT(i, s->length());
4470 return H_CONSTANT_INT(s->Get(i));
4471 }
4472 }
4473 return new(zone) HSeqStringGetChar(encoding, string, index);
4474 }
4475
4476
4477 #undef H_CONSTANT_INT
4478 #undef H_CONSTANT_DOUBLE
4479
4480
PrintDataTo(StringStream * stream)4481 void HBitwise::PrintDataTo(StringStream* stream) {
4482 stream->Add(Token::Name(op_));
4483 stream->Add(" ");
4484 HBitwiseBinaryOperation::PrintDataTo(stream);
4485 }
4486
4487
SimplifyConstantInputs()4488 void HPhi::SimplifyConstantInputs() {
4489 // Convert constant inputs to integers when all uses are truncating.
4490 // This must happen before representation inference takes place.
4491 if (!CheckUsesForFlag(kTruncatingToInt32)) return;
4492 for (int i = 0; i < OperandCount(); ++i) {
4493 if (!OperandAt(i)->IsConstant()) return;
4494 }
4495 HGraph* graph = block()->graph();
4496 for (int i = 0; i < OperandCount(); ++i) {
4497 HConstant* operand = HConstant::cast(OperandAt(i));
4498 if (operand->HasInteger32Value()) {
4499 continue;
4500 } else if (operand->HasDoubleValue()) {
4501 HConstant* integer_input =
4502 HConstant::New(graph->zone(), graph->GetInvalidContext(),
4503 DoubleToInt32(operand->DoubleValue()));
4504 integer_input->InsertAfter(operand);
4505 SetOperandAt(i, integer_input);
4506 } else if (operand->HasBooleanValue()) {
4507 SetOperandAt(i, operand->BooleanValue() ? graph->GetConstant1()
4508 : graph->GetConstant0());
4509 } else if (operand->ImmortalImmovable()) {
4510 SetOperandAt(i, graph->GetConstant0());
4511 }
4512 }
4513 // Overwrite observed input representations because they are likely Tagged.
4514 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4515 HValue* use = it.value();
4516 if (use->IsBinaryOperation()) {
4517 HBinaryOperation::cast(use)->set_observed_input_representation(
4518 it.index(), Representation::Smi());
4519 }
4520 }
4521 }
4522
4523
InferRepresentation(HInferRepresentationPhase * h_infer)4524 void HPhi::InferRepresentation(HInferRepresentationPhase* h_infer) {
4525 ASSERT(CheckFlag(kFlexibleRepresentation));
4526 Representation new_rep = RepresentationFromInputs();
4527 UpdateRepresentation(new_rep, h_infer, "inputs");
4528 new_rep = RepresentationFromUses();
4529 UpdateRepresentation(new_rep, h_infer, "uses");
4530 new_rep = RepresentationFromUseRequirements();
4531 UpdateRepresentation(new_rep, h_infer, "use requirements");
4532 }
4533
4534
RepresentationFromInputs()4535 Representation HPhi::RepresentationFromInputs() {
4536 Representation r = Representation::None();
4537 for (int i = 0; i < OperandCount(); ++i) {
4538 r = r.generalize(OperandAt(i)->KnownOptimalRepresentation());
4539 }
4540 return r;
4541 }
4542
4543
4544 // Returns a representation if all uses agree on the same representation.
4545 // Integer32 is also returned when some uses are Smi but others are Integer32.
RepresentationFromUseRequirements()4546 Representation HValue::RepresentationFromUseRequirements() {
4547 Representation rep = Representation::None();
4548 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4549 // Ignore the use requirement from never run code
4550 if (it.value()->block()->IsUnreachable()) continue;
4551
4552 // We check for observed_input_representation elsewhere.
4553 Representation use_rep =
4554 it.value()->RequiredInputRepresentation(it.index());
4555 if (rep.IsNone()) {
4556 rep = use_rep;
4557 continue;
4558 }
4559 if (use_rep.IsNone() || rep.Equals(use_rep)) continue;
4560 if (rep.generalize(use_rep).IsInteger32()) {
4561 rep = Representation::Integer32();
4562 continue;
4563 }
4564 return Representation::None();
4565 }
4566 return rep;
4567 }
4568
4569
HasNonSmiUse()4570 bool HValue::HasNonSmiUse() {
4571 for (HUseIterator it(uses()); !it.Done(); it.Advance()) {
4572 // We check for observed_input_representation elsewhere.
4573 Representation use_rep =
4574 it.value()->RequiredInputRepresentation(it.index());
4575 if (!use_rep.IsNone() &&
4576 !use_rep.IsSmi() &&
4577 !use_rep.IsTagged()) {
4578 return true;
4579 }
4580 }
4581 return false;
4582 }
4583
4584
4585 // Node-specific verification code is only included in debug mode.
4586 #ifdef DEBUG
4587
Verify()4588 void HPhi::Verify() {
4589 ASSERT(OperandCount() == block()->predecessors()->length());
4590 for (int i = 0; i < OperandCount(); ++i) {
4591 HValue* value = OperandAt(i);
4592 HBasicBlock* defining_block = value->block();
4593 HBasicBlock* predecessor_block = block()->predecessors()->at(i);
4594 ASSERT(defining_block == predecessor_block ||
4595 defining_block->Dominates(predecessor_block));
4596 }
4597 }
4598
4599
Verify()4600 void HSimulate::Verify() {
4601 HInstruction::Verify();
4602 ASSERT(HasAstId() || next()->IsEnterInlined());
4603 }
4604
4605
Verify()4606 void HCheckHeapObject::Verify() {
4607 HInstruction::Verify();
4608 ASSERT(HasNoUses());
4609 }
4610
4611
Verify()4612 void HCheckValue::Verify() {
4613 HInstruction::Verify();
4614 ASSERT(HasNoUses());
4615 }
4616
4617 #endif
4618
4619
ForFixedArrayHeader(int offset)4620 HObjectAccess HObjectAccess::ForFixedArrayHeader(int offset) {
4621 ASSERT(offset >= 0);
4622 ASSERT(offset < FixedArray::kHeaderSize);
4623 if (offset == FixedArray::kLengthOffset) return ForFixedArrayLength();
4624 return HObjectAccess(kInobject, offset);
4625 }
4626
4627
ForMapAndOffset(Handle<Map> map,int offset,Representation representation)4628 HObjectAccess HObjectAccess::ForMapAndOffset(Handle<Map> map, int offset,
4629 Representation representation) {
4630 ASSERT(offset >= 0);
4631 Portion portion = kInobject;
4632
4633 if (offset == JSObject::kElementsOffset) {
4634 portion = kElementsPointer;
4635 } else if (offset == JSObject::kMapOffset) {
4636 portion = kMaps;
4637 }
4638 bool existing_inobject_property = true;
4639 if (!map.is_null()) {
4640 existing_inobject_property = (offset <
4641 map->instance_size() - map->unused_property_fields() * kPointerSize);
4642 }
4643 return HObjectAccess(portion, offset, representation, Handle<String>::null(),
4644 false, existing_inobject_property);
4645 }
4646
4647
ForAllocationSiteOffset(int offset)4648 HObjectAccess HObjectAccess::ForAllocationSiteOffset(int offset) {
4649 switch (offset) {
4650 case AllocationSite::kTransitionInfoOffset:
4651 return HObjectAccess(kInobject, offset, Representation::Tagged());
4652 case AllocationSite::kNestedSiteOffset:
4653 return HObjectAccess(kInobject, offset, Representation::Tagged());
4654 case AllocationSite::kPretenureDataOffset:
4655 return HObjectAccess(kInobject, offset, Representation::Smi());
4656 case AllocationSite::kPretenureCreateCountOffset:
4657 return HObjectAccess(kInobject, offset, Representation::Smi());
4658 case AllocationSite::kDependentCodeOffset:
4659 return HObjectAccess(kInobject, offset, Representation::Tagged());
4660 case AllocationSite::kWeakNextOffset:
4661 return HObjectAccess(kInobject, offset, Representation::Tagged());
4662 default:
4663 UNREACHABLE();
4664 }
4665 return HObjectAccess(kInobject, offset);
4666 }
4667
4668
ForContextSlot(int index)4669 HObjectAccess HObjectAccess::ForContextSlot(int index) {
4670 ASSERT(index >= 0);
4671 Portion portion = kInobject;
4672 int offset = Context::kHeaderSize + index * kPointerSize;
4673 ASSERT_EQ(offset, Context::SlotOffset(index) + kHeapObjectTag);
4674 return HObjectAccess(portion, offset, Representation::Tagged());
4675 }
4676
4677
ForJSArrayOffset(int offset)4678 HObjectAccess HObjectAccess::ForJSArrayOffset(int offset) {
4679 ASSERT(offset >= 0);
4680 Portion portion = kInobject;
4681
4682 if (offset == JSObject::kElementsOffset) {
4683 portion = kElementsPointer;
4684 } else if (offset == JSArray::kLengthOffset) {
4685 portion = kArrayLengths;
4686 } else if (offset == JSObject::kMapOffset) {
4687 portion = kMaps;
4688 }
4689 return HObjectAccess(portion, offset);
4690 }
4691
4692
ForBackingStoreOffset(int offset,Representation representation)4693 HObjectAccess HObjectAccess::ForBackingStoreOffset(int offset,
4694 Representation representation) {
4695 ASSERT(offset >= 0);
4696 return HObjectAccess(kBackingStore, offset, representation,
4697 Handle<String>::null(), false, false);
4698 }
4699
4700
ForField(Handle<Map> map,LookupResult * lookup,Handle<String> name)4701 HObjectAccess HObjectAccess::ForField(Handle<Map> map,
4702 LookupResult* lookup,
4703 Handle<String> name) {
4704 ASSERT(lookup->IsField() || lookup->IsTransitionToField());
4705 int index;
4706 Representation representation;
4707 if (lookup->IsField()) {
4708 index = lookup->GetLocalFieldIndexFromMap(*map);
4709 representation = lookup->representation();
4710 } else {
4711 Map* transition = lookup->GetTransitionTarget();
4712 int descriptor = transition->LastAdded();
4713 index = transition->instance_descriptors()->GetFieldIndex(descriptor) -
4714 map->inobject_properties();
4715 PropertyDetails details =
4716 transition->instance_descriptors()->GetDetails(descriptor);
4717 representation = details.representation();
4718 }
4719 if (index < 0) {
4720 // Negative property indices are in-object properties, indexed
4721 // from the end of the fixed part of the object.
4722 int offset = (index * kPointerSize) + map->instance_size();
4723 return HObjectAccess(kInobject, offset, representation, name, false, true);
4724 } else {
4725 // Non-negative property indices are in the properties array.
4726 int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
4727 return HObjectAccess(kBackingStore, offset, representation, name,
4728 false, false);
4729 }
4730 }
4731
4732
ForCellPayload(Isolate * isolate)4733 HObjectAccess HObjectAccess::ForCellPayload(Isolate* isolate) {
4734 return HObjectAccess(
4735 kInobject, Cell::kValueOffset, Representation::Tagged(),
4736 Handle<String>(isolate->heap()->cell_value_string()));
4737 }
4738
4739
SetGVNFlags(HValue * instr,PropertyAccessType access_type)4740 void HObjectAccess::SetGVNFlags(HValue *instr, PropertyAccessType access_type) {
4741 // set the appropriate GVN flags for a given load or store instruction
4742 if (access_type == STORE) {
4743 // track dominating allocations in order to eliminate write barriers
4744 instr->SetDependsOnFlag(::v8::internal::kNewSpacePromotion);
4745 instr->SetFlag(HValue::kTrackSideEffectDominators);
4746 } else {
4747 // try to GVN loads, but don't hoist above map changes
4748 instr->SetFlag(HValue::kUseGVN);
4749 instr->SetDependsOnFlag(::v8::internal::kMaps);
4750 }
4751
4752 switch (portion()) {
4753 case kArrayLengths:
4754 if (access_type == STORE) {
4755 instr->SetChangesFlag(::v8::internal::kArrayLengths);
4756 } else {
4757 instr->SetDependsOnFlag(::v8::internal::kArrayLengths);
4758 }
4759 break;
4760 case kStringLengths:
4761 if (access_type == STORE) {
4762 instr->SetChangesFlag(::v8::internal::kStringLengths);
4763 } else {
4764 instr->SetDependsOnFlag(::v8::internal::kStringLengths);
4765 }
4766 break;
4767 case kInobject:
4768 if (access_type == STORE) {
4769 instr->SetChangesFlag(::v8::internal::kInobjectFields);
4770 } else {
4771 instr->SetDependsOnFlag(::v8::internal::kInobjectFields);
4772 }
4773 break;
4774 case kDouble:
4775 if (access_type == STORE) {
4776 instr->SetChangesFlag(::v8::internal::kDoubleFields);
4777 } else {
4778 instr->SetDependsOnFlag(::v8::internal::kDoubleFields);
4779 }
4780 break;
4781 case kBackingStore:
4782 if (access_type == STORE) {
4783 instr->SetChangesFlag(::v8::internal::kBackingStoreFields);
4784 } else {
4785 instr->SetDependsOnFlag(::v8::internal::kBackingStoreFields);
4786 }
4787 break;
4788 case kElementsPointer:
4789 if (access_type == STORE) {
4790 instr->SetChangesFlag(::v8::internal::kElementsPointer);
4791 } else {
4792 instr->SetDependsOnFlag(::v8::internal::kElementsPointer);
4793 }
4794 break;
4795 case kMaps:
4796 if (access_type == STORE) {
4797 instr->SetChangesFlag(::v8::internal::kMaps);
4798 } else {
4799 instr->SetDependsOnFlag(::v8::internal::kMaps);
4800 }
4801 break;
4802 case kExternalMemory:
4803 if (access_type == STORE) {
4804 instr->SetChangesFlag(::v8::internal::kExternalMemory);
4805 } else {
4806 instr->SetDependsOnFlag(::v8::internal::kExternalMemory);
4807 }
4808 break;
4809 }
4810 }
4811
4812
PrintTo(StringStream * stream) const4813 void HObjectAccess::PrintTo(StringStream* stream) const {
4814 stream->Add(".");
4815
4816 switch (portion()) {
4817 case kArrayLengths:
4818 case kStringLengths:
4819 stream->Add("%length");
4820 break;
4821 case kElementsPointer:
4822 stream->Add("%elements");
4823 break;
4824 case kMaps:
4825 stream->Add("%map");
4826 break;
4827 case kDouble: // fall through
4828 case kInobject:
4829 if (!name_.is_null()) {
4830 stream->Add(String::cast(*name_)->ToCString().get());
4831 }
4832 stream->Add("[in-object]");
4833 break;
4834 case kBackingStore:
4835 if (!name_.is_null()) {
4836 stream->Add(String::cast(*name_)->ToCString().get());
4837 }
4838 stream->Add("[backing-store]");
4839 break;
4840 case kExternalMemory:
4841 stream->Add("[external-memory]");
4842 break;
4843 }
4844
4845 stream->Add("@%d", offset());
4846 }
4847
4848 } } // namespace v8::internal
4849