• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains code to lower X86 MachineInstrs to their corresponding
11 // MCInst records.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "X86AsmPrinter.h"
16 #include "X86RegisterInfo.h"
17 #include "InstPrinter/X86ATTInstPrinter.h"
18 #include "MCTargetDesc/X86BaseInfo.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Mangler.h"
26 #include "llvm/MC/MCAsmInfo.h"
27 #include "llvm/MC/MCContext.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/MC/MCInst.h"
30 #include "llvm/MC/MCInstBuilder.h"
31 #include "llvm/MC/MCStreamer.h"
32 #include "llvm/MC/MCSymbol.h"
33 using namespace llvm;
34 
35 namespace {
36 
37 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
38 class X86MCInstLower {
39   MCContext &Ctx;
40   const MachineFunction &MF;
41   const TargetMachine &TM;
42   const MCAsmInfo &MAI;
43   X86AsmPrinter &AsmPrinter;
44 public:
45   X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
46 
47   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
48 
49   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
50   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
51 
52 private:
53   MachineModuleInfoMachO &getMachOMMI() const;
getMang() const54   Mangler *getMang() const {
55     return AsmPrinter.Mang;
56   }
57 };
58 
59 } // end anonymous namespace
60 
X86MCInstLower(const MachineFunction & mf,X86AsmPrinter & asmprinter)61 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
62                                X86AsmPrinter &asmprinter)
63 : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()),
64   MAI(*TM.getMCAsmInfo()), AsmPrinter(asmprinter) {}
65 
getMachOMMI() const66 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
67   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
68 }
69 
70 
71 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
72 /// operand to an MCSymbol.
73 MCSymbol *X86MCInstLower::
GetSymbolFromOperand(const MachineOperand & MO) const74 GetSymbolFromOperand(const MachineOperand &MO) const {
75   const DataLayout *DL = TM.getDataLayout();
76   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
77 
78   SmallString<128> Name;
79   StringRef Suffix;
80 
81   switch (MO.getTargetFlags()) {
82   case X86II::MO_DLLIMPORT:
83     // Handle dllimport linkage.
84     Name += "__imp_";
85     break;
86   case X86II::MO_DARWIN_STUB:
87     Suffix = "$stub";
88     break;
89   case X86II::MO_DARWIN_NONLAZY:
90   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
91   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
92     Suffix = "$non_lazy_ptr";
93     break;
94   }
95 
96   if (!Suffix.empty())
97     Name += DL->getPrivateGlobalPrefix();
98 
99   unsigned PrefixLen = Name.size();
100 
101   if (MO.isGlobal()) {
102     const GlobalValue *GV = MO.getGlobal();
103     AsmPrinter.getNameWithPrefix(Name, GV);
104   } else if (MO.isSymbol()) {
105     getMang()->getNameWithPrefix(Name, MO.getSymbolName());
106   } else if (MO.isMBB()) {
107     Name += MO.getMBB()->getSymbol()->getName();
108   }
109   unsigned OrigLen = Name.size() - PrefixLen;
110 
111   Name += Suffix;
112   MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);
113 
114   StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);
115 
116   // If the target flags on the operand changes the name of the symbol, do that
117   // before we return the symbol.
118   switch (MO.getTargetFlags()) {
119   default: break;
120   case X86II::MO_DARWIN_NONLAZY:
121   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
122     MachineModuleInfoImpl::StubValueTy &StubSym =
123       getMachOMMI().getGVStubEntry(Sym);
124     if (!StubSym.getPointer()) {
125       assert(MO.isGlobal() && "Extern symbol not handled yet");
126       StubSym =
127         MachineModuleInfoImpl::
128         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
129                     !MO.getGlobal()->hasInternalLinkage());
130     }
131     break;
132   }
133   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
134     MachineModuleInfoImpl::StubValueTy &StubSym =
135       getMachOMMI().getHiddenGVStubEntry(Sym);
136     if (!StubSym.getPointer()) {
137       assert(MO.isGlobal() && "Extern symbol not handled yet");
138       StubSym =
139         MachineModuleInfoImpl::
140         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
141                     !MO.getGlobal()->hasInternalLinkage());
142     }
143     break;
144   }
145   case X86II::MO_DARWIN_STUB: {
146     MachineModuleInfoImpl::StubValueTy &StubSym =
147       getMachOMMI().getFnStubEntry(Sym);
148     if (StubSym.getPointer())
149       return Sym;
150 
151     if (MO.isGlobal()) {
152       StubSym =
153         MachineModuleInfoImpl::
154         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
155                     !MO.getGlobal()->hasInternalLinkage());
156     } else {
157       StubSym =
158         MachineModuleInfoImpl::
159         StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false);
160     }
161     break;
162   }
163   }
164 
165   return Sym;
166 }
167 
LowerSymbolOperand(const MachineOperand & MO,MCSymbol * Sym) const168 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
169                                              MCSymbol *Sym) const {
170   // FIXME: We would like an efficient form for this, so we don't have to do a
171   // lot of extra uniquing.
172   const MCExpr *Expr = nullptr;
173   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
174 
175   switch (MO.getTargetFlags()) {
176   default: llvm_unreachable("Unknown target flag on GV operand");
177   case X86II::MO_NO_FLAG:    // No flag.
178   // These affect the name of the symbol, not any suffix.
179   case X86II::MO_DARWIN_NONLAZY:
180   case X86II::MO_DLLIMPORT:
181   case X86II::MO_DARWIN_STUB:
182     break;
183 
184   case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
185   case X86II::MO_TLVP_PIC_BASE:
186     Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
187     // Subtract the pic base.
188     Expr = MCBinaryExpr::CreateSub(Expr,
189                                   MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
190                                                            Ctx),
191                                    Ctx);
192     break;
193   case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
194   case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
195   case X86II::MO_TLSLD:     RefKind = MCSymbolRefExpr::VK_TLSLD; break;
196   case X86II::MO_TLSLDM:    RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
197   case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
198   case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
199   case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
200   case X86II::MO_DTPOFF:    RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
201   case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
202   case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
203   case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
204   case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
205   case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
206   case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
207   case X86II::MO_PIC_BASE_OFFSET:
208   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
209   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
210     Expr = MCSymbolRefExpr::Create(Sym, Ctx);
211     // Subtract the pic base.
212     Expr = MCBinaryExpr::CreateSub(Expr,
213                             MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
214                                    Ctx);
215     if (MO.isJTI() && MAI.hasSetDirective()) {
216       // If .set directive is supported, use it to reduce the number of
217       // relocations the assembler will generate for differences between
218       // local labels. This is only safe when the symbols are in the same
219       // section so we are restricting it to jumptable references.
220       MCSymbol *Label = Ctx.CreateTempSymbol();
221       AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
222       Expr = MCSymbolRefExpr::Create(Label, Ctx);
223     }
224     break;
225   }
226 
227   if (!Expr)
228     Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
229 
230   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
231     Expr = MCBinaryExpr::CreateAdd(Expr,
232                                    MCConstantExpr::Create(MO.getOffset(), Ctx),
233                                    Ctx);
234   return MCOperand::CreateExpr(Expr);
235 }
236 
237 
238 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
239 /// a short fixed-register form.
SimplifyShortImmForm(MCInst & Inst,unsigned Opcode)240 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
241   unsigned ImmOp = Inst.getNumOperands() - 1;
242   assert(Inst.getOperand(0).isReg() &&
243          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
244          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
245            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
246           Inst.getNumOperands() == 2) && "Unexpected instruction!");
247 
248   // Check whether the destination register can be fixed.
249   unsigned Reg = Inst.getOperand(0).getReg();
250   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
251     return;
252 
253   // If so, rewrite the instruction.
254   MCOperand Saved = Inst.getOperand(ImmOp);
255   Inst = MCInst();
256   Inst.setOpcode(Opcode);
257   Inst.addOperand(Saved);
258 }
259 
260 /// \brief If a movsx instruction has a shorter encoding for the used register
261 /// simplify the instruction to use it instead.
SimplifyMOVSX(MCInst & Inst)262 static void SimplifyMOVSX(MCInst &Inst) {
263   unsigned NewOpcode = 0;
264   unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
265   switch (Inst.getOpcode()) {
266   default:
267     llvm_unreachable("Unexpected instruction!");
268   case X86::MOVSX16rr8:  // movsbw %al, %ax   --> cbtw
269     if (Op0 == X86::AX && Op1 == X86::AL)
270       NewOpcode = X86::CBW;
271     break;
272   case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl
273     if (Op0 == X86::EAX && Op1 == X86::AX)
274       NewOpcode = X86::CWDE;
275     break;
276   case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
277     if (Op0 == X86::RAX && Op1 == X86::EAX)
278       NewOpcode = X86::CDQE;
279     break;
280   }
281 
282   if (NewOpcode != 0) {
283     Inst = MCInst();
284     Inst.setOpcode(NewOpcode);
285   }
286 }
287 
288 /// \brief Simplify things like MOV32rm to MOV32o32a.
SimplifyShortMoveForm(X86AsmPrinter & Printer,MCInst & Inst,unsigned Opcode)289 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
290                                   unsigned Opcode) {
291   // Don't make these simplifications in 64-bit mode; other assemblers don't
292   // perform them because they make the code larger.
293   if (Printer.getSubtarget().is64Bit())
294     return;
295 
296   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
297   unsigned AddrBase = IsStore;
298   unsigned RegOp = IsStore ? 0 : 5;
299   unsigned AddrOp = AddrBase + 3;
300   assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
301          Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
302          Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
303          Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
304          Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
305          (Inst.getOperand(AddrOp).isExpr() ||
306           Inst.getOperand(AddrOp).isImm()) &&
307          "Unexpected instruction!");
308 
309   // Check whether the destination register can be fixed.
310   unsigned Reg = Inst.getOperand(RegOp).getReg();
311   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
312     return;
313 
314   // Check whether this is an absolute address.
315   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
316   // to do this here.
317   bool Absolute = true;
318   if (Inst.getOperand(AddrOp).isExpr()) {
319     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
320     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
321       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
322         Absolute = false;
323   }
324 
325   if (Absolute &&
326       (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
327        Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
328        Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
329     return;
330 
331   // If so, rewrite the instruction.
332   MCOperand Saved = Inst.getOperand(AddrOp);
333   MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
334   Inst = MCInst();
335   Inst.setOpcode(Opcode);
336   Inst.addOperand(Saved);
337   Inst.addOperand(Seg);
338 }
339 
getRetOpcode(const X86Subtarget & Subtarget)340 static unsigned getRetOpcode(const X86Subtarget &Subtarget)
341 {
342 	return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
343 }
344 
Lower(const MachineInstr * MI,MCInst & OutMI) const345 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
346   OutMI.setOpcode(MI->getOpcode());
347 
348   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
349     const MachineOperand &MO = MI->getOperand(i);
350 
351     MCOperand MCOp;
352     switch (MO.getType()) {
353     default:
354       MI->dump();
355       llvm_unreachable("unknown operand type");
356     case MachineOperand::MO_Register:
357       // Ignore all implicit register operands.
358       if (MO.isImplicit()) continue;
359       MCOp = MCOperand::CreateReg(MO.getReg());
360       break;
361     case MachineOperand::MO_Immediate:
362       MCOp = MCOperand::CreateImm(MO.getImm());
363       break;
364     case MachineOperand::MO_MachineBasicBlock:
365     case MachineOperand::MO_GlobalAddress:
366     case MachineOperand::MO_ExternalSymbol:
367       MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
368       break;
369     case MachineOperand::MO_JumpTableIndex:
370       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
371       break;
372     case MachineOperand::MO_ConstantPoolIndex:
373       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
374       break;
375     case MachineOperand::MO_BlockAddress:
376       MCOp = LowerSymbolOperand(MO,
377                      AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
378       break;
379     case MachineOperand::MO_RegisterMask:
380       // Ignore call clobbers.
381       continue;
382     }
383 
384     OutMI.addOperand(MCOp);
385   }
386 
387   // Handle a few special cases to eliminate operand modifiers.
388 ReSimplify:
389   switch (OutMI.getOpcode()) {
390   case X86::LEA64_32r:
391   case X86::LEA64r:
392   case X86::LEA16r:
393   case X86::LEA32r:
394     // LEA should have a segment register, but it must be empty.
395     assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
396            "Unexpected # of LEA operands");
397     assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
398            "LEA has segment specified!");
399     break;
400 
401   case X86::MOV32ri64:
402     OutMI.setOpcode(X86::MOV32ri);
403     break;
404 
405   // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
406   // if one of the registers is extended, but other isn't.
407   case X86::VMOVAPDrr:
408   case X86::VMOVAPDYrr:
409   case X86::VMOVAPSrr:
410   case X86::VMOVAPSYrr:
411   case X86::VMOVDQArr:
412   case X86::VMOVDQAYrr:
413   case X86::VMOVDQUrr:
414   case X86::VMOVDQUYrr:
415   case X86::VMOVUPDrr:
416   case X86::VMOVUPDYrr:
417   case X86::VMOVUPSrr:
418   case X86::VMOVUPSYrr: {
419     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
420         X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
421       unsigned NewOpc;
422       switch (OutMI.getOpcode()) {
423       default: llvm_unreachable("Invalid opcode");
424       case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
425       case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
426       case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
427       case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
428       case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
429       case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
430       case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
431       case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
432       case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
433       case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
434       case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
435       case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
436       }
437       OutMI.setOpcode(NewOpc);
438     }
439     break;
440   }
441   case X86::VMOVSDrr:
442   case X86::VMOVSSrr: {
443     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
444         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
445       unsigned NewOpc;
446       switch (OutMI.getOpcode()) {
447       default: llvm_unreachable("Invalid opcode");
448       case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
449       case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
450       }
451       OutMI.setOpcode(NewOpc);
452     }
453     break;
454   }
455 
456   // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
457   // inputs modeled as normal uses instead of implicit uses.  As such, truncate
458   // off all but the first operand (the callee).  FIXME: Change isel.
459   case X86::TAILJMPr64:
460   case X86::CALL64r:
461   case X86::CALL64pcrel32: {
462     unsigned Opcode = OutMI.getOpcode();
463     MCOperand Saved = OutMI.getOperand(0);
464     OutMI = MCInst();
465     OutMI.setOpcode(Opcode);
466     OutMI.addOperand(Saved);
467     break;
468   }
469 
470   case X86::EH_RETURN:
471   case X86::EH_RETURN64: {
472     OutMI = MCInst();
473     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
474     break;
475   }
476 
477   // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
478   case X86::TAILJMPr:
479   case X86::TAILJMPd:
480   case X86::TAILJMPd64: {
481     unsigned Opcode;
482     switch (OutMI.getOpcode()) {
483     default: llvm_unreachable("Invalid opcode");
484     case X86::TAILJMPr: Opcode = X86::JMP32r; break;
485     case X86::TAILJMPd:
486     case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
487     }
488 
489     MCOperand Saved = OutMI.getOperand(0);
490     OutMI = MCInst();
491     OutMI.setOpcode(Opcode);
492     OutMI.addOperand(Saved);
493     break;
494   }
495 
496   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
497   // this with an ugly goto in case the resultant OR uses EAX and needs the
498   // short form.
499   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
500   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
501   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
502   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
503   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
504   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
505   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
506   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
507   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
508 
509   // The assembler backend wants to see branches in their small form and relax
510   // them to their large form.  The JIT can only handle the large form because
511   // it does not do relaxation.  For now, translate the large form to the
512   // small one here.
513   case X86::JMP_4: OutMI.setOpcode(X86::JMP_1); break;
514   case X86::JO_4:  OutMI.setOpcode(X86::JO_1); break;
515   case X86::JNO_4: OutMI.setOpcode(X86::JNO_1); break;
516   case X86::JB_4:  OutMI.setOpcode(X86::JB_1); break;
517   case X86::JAE_4: OutMI.setOpcode(X86::JAE_1); break;
518   case X86::JE_4:  OutMI.setOpcode(X86::JE_1); break;
519   case X86::JNE_4: OutMI.setOpcode(X86::JNE_1); break;
520   case X86::JBE_4: OutMI.setOpcode(X86::JBE_1); break;
521   case X86::JA_4:  OutMI.setOpcode(X86::JA_1); break;
522   case X86::JS_4:  OutMI.setOpcode(X86::JS_1); break;
523   case X86::JNS_4: OutMI.setOpcode(X86::JNS_1); break;
524   case X86::JP_4:  OutMI.setOpcode(X86::JP_1); break;
525   case X86::JNP_4: OutMI.setOpcode(X86::JNP_1); break;
526   case X86::JL_4:  OutMI.setOpcode(X86::JL_1); break;
527   case X86::JGE_4: OutMI.setOpcode(X86::JGE_1); break;
528   case X86::JLE_4: OutMI.setOpcode(X86::JLE_1); break;
529   case X86::JG_4:  OutMI.setOpcode(X86::JG_1); break;
530 
531   // Atomic load and store require a separate pseudo-inst because Acquire
532   // implies mayStore and Release implies mayLoad; fix these to regular MOV
533   // instructions here
534   case X86::ACQUIRE_MOV8rm:  OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
535   case X86::ACQUIRE_MOV16rm: OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
536   case X86::ACQUIRE_MOV32rm: OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
537   case X86::ACQUIRE_MOV64rm: OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
538   case X86::RELEASE_MOV8mr:  OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
539   case X86::RELEASE_MOV16mr: OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
540   case X86::RELEASE_MOV32mr: OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
541   case X86::RELEASE_MOV64mr: OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
542 
543   // We don't currently select the correct instruction form for instructions
544   // which have a short %eax, etc. form. Handle this by custom lowering, for
545   // now.
546   //
547   // Note, we are currently not handling the following instructions:
548   // MOV64ao8, MOV64o8a
549   // XCHG16ar, XCHG32ar, XCHG64ar
550   case X86::MOV8mr_NOREX:
551   case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao8); break;
552   case X86::MOV8rm_NOREX:
553   case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o8a); break;
554   case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao16); break;
555   case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o16a); break;
556   case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
557   case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
558 
559   case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
560   case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
561   case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
562   case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
563   case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
564   case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
565   case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
566   case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
567   case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
568   case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
569   case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
570   case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
571   case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
572   case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
573   case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
574   case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
575   case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
576   case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
577   case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
578   case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
579   case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
580   case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
581   case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
582   case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
583   case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
584   case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
585   case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
586   case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
587   case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
588   case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
589   case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
590   case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
591   case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
592   case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
593   case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
594   case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
595 
596   // Try to shrink some forms of movsx.
597   case X86::MOVSX16rr8:
598   case X86::MOVSX32rr16:
599   case X86::MOVSX64rr32:
600     SimplifyMOVSX(OutMI);
601     break;
602   }
603 }
604 
LowerTlsAddr(MCStreamer & OutStreamer,X86MCInstLower & MCInstLowering,const MachineInstr & MI,const MCSubtargetInfo & STI)605 static void LowerTlsAddr(MCStreamer &OutStreamer,
606                          X86MCInstLower &MCInstLowering,
607                          const MachineInstr &MI,
608                          const MCSubtargetInfo& STI) {
609 
610   bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
611                   MI.getOpcode() == X86::TLS_base_addr64;
612 
613   bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
614 
615   MCContext &context = OutStreamer.getContext();
616 
617   if (needsPadding)
618     OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
619 
620   MCSymbolRefExpr::VariantKind SRVK;
621   switch (MI.getOpcode()) {
622     case X86::TLS_addr32:
623     case X86::TLS_addr64:
624       SRVK = MCSymbolRefExpr::VK_TLSGD;
625       break;
626     case X86::TLS_base_addr32:
627       SRVK = MCSymbolRefExpr::VK_TLSLDM;
628       break;
629     case X86::TLS_base_addr64:
630       SRVK = MCSymbolRefExpr::VK_TLSLD;
631       break;
632     default:
633       llvm_unreachable("unexpected opcode");
634   }
635 
636   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
637   const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context);
638 
639   MCInst LEA;
640   if (is64Bits) {
641     LEA.setOpcode(X86::LEA64r);
642     LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
643     LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
644     LEA.addOperand(MCOperand::CreateImm(1));        // scale
645     LEA.addOperand(MCOperand::CreateReg(0));        // index
646     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
647     LEA.addOperand(MCOperand::CreateReg(0));        // seg
648   } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
649     LEA.setOpcode(X86::LEA32r);
650     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
651     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base
652     LEA.addOperand(MCOperand::CreateImm(1));        // scale
653     LEA.addOperand(MCOperand::CreateReg(0));        // index
654     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
655     LEA.addOperand(MCOperand::CreateReg(0));        // seg
656   } else {
657     LEA.setOpcode(X86::LEA32r);
658     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
659     LEA.addOperand(MCOperand::CreateReg(0));        // base
660     LEA.addOperand(MCOperand::CreateImm(1));        // scale
661     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
662     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
663     LEA.addOperand(MCOperand::CreateReg(0));        // seg
664   }
665   OutStreamer.EmitInstruction(LEA, STI);
666 
667   if (needsPadding) {
668     OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
669     OutStreamer.EmitInstruction(MCInstBuilder(X86::DATA16_PREFIX), STI);
670     OutStreamer.EmitInstruction(MCInstBuilder(X86::REX64_PREFIX), STI);
671   }
672 
673   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
674   MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
675   const MCSymbolRefExpr *tlsRef =
676     MCSymbolRefExpr::Create(tlsGetAddr,
677                             MCSymbolRefExpr::VK_PLT,
678                             context);
679 
680   OutStreamer.EmitInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
681                                                      : X86::CALLpcrel32)
682     .addExpr(tlsRef), STI);
683 }
684 
685 /// \brief Emit the optimal amount of multi-byte nops on X86.
EmitNops(MCStreamer & OS,unsigned NumBytes,bool Is64Bit,const MCSubtargetInfo & STI)686 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSubtargetInfo &STI) {
687   // This works only for 64bit. For 32bit we have to do additional checking if
688   // the CPU supports multi-byte nops.
689   assert(Is64Bit && "EmitNops only supports X86-64");
690   while (NumBytes) {
691     unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
692     Opc = IndexReg = Displacement = SegmentReg = 0;
693     BaseReg = X86::RAX; ScaleVal = 1;
694     switch (NumBytes) {
695     case  0: llvm_unreachable("Zero nops?"); break;
696     case  1: NumBytes -=  1; Opc = X86::NOOP; break;
697     case  2: NumBytes -=  2; Opc = X86::XCHG16ar; break;
698     case  3: NumBytes -=  3; Opc = X86::NOOPL; break;
699     case  4: NumBytes -=  4; Opc = X86::NOOPL; Displacement = 8; break;
700     case  5: NumBytes -=  5; Opc = X86::NOOPL; Displacement = 8;
701              IndexReg = X86::RAX; break;
702     case  6: NumBytes -=  6; Opc = X86::NOOPW; Displacement = 8;
703              IndexReg = X86::RAX; break;
704     case  7: NumBytes -=  7; Opc = X86::NOOPL; Displacement = 512; break;
705     case  8: NumBytes -=  8; Opc = X86::NOOPL; Displacement = 512;
706              IndexReg = X86::RAX; break;
707     case  9: NumBytes -=  9; Opc = X86::NOOPW; Displacement = 512;
708              IndexReg = X86::RAX; break;
709     default: NumBytes -= 10; Opc = X86::NOOPW; Displacement = 512;
710              IndexReg = X86::RAX; SegmentReg = X86::CS; break;
711     }
712 
713     unsigned NumPrefixes = std::min(NumBytes, 5U);
714     NumBytes -= NumPrefixes;
715     for (unsigned i = 0; i != NumPrefixes; ++i)
716       OS.EmitBytes("\x66");
717 
718     switch (Opc) {
719     default: llvm_unreachable("Unexpected opcode"); break;
720     case X86::NOOP:
721       OS.EmitInstruction(MCInstBuilder(Opc), STI);
722       break;
723     case X86::XCHG16ar:
724       OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI);
725       break;
726     case X86::NOOPL:
727     case X86::NOOPW:
728       OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg).addImm(ScaleVal)
729                                            .addReg(IndexReg)
730                                            .addImm(Displacement)
731                                            .addReg(SegmentReg), STI);
732       break;
733     }
734   } // while (NumBytes)
735 }
736 
737 // Lower a stackmap of the form:
738 // <id>, <shadowBytes>, ...
LowerSTACKMAP(MCStreamer & OS,StackMaps & SM,const MachineInstr & MI,bool Is64Bit,const MCSubtargetInfo & STI)739 static void LowerSTACKMAP(MCStreamer &OS, StackMaps &SM,
740                           const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) {
741   unsigned NumBytes = MI.getOperand(1).getImm();
742   SM.recordStackMap(MI);
743   // Emit padding.
744   // FIXME: These nops ensure that the stackmap's shadow is covered by
745   // instructions from the same basic block, but the nops should not be
746   // necessary if instructions from the same block follow the stackmap.
747   EmitNops(OS, NumBytes, Is64Bit, STI);
748 }
749 
750 // Lower a patchpoint of the form:
751 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
LowerPATCHPOINT(MCStreamer & OS,StackMaps & SM,const MachineInstr & MI,bool Is64Bit,const MCSubtargetInfo & STI)752 static void LowerPATCHPOINT(MCStreamer &OS, StackMaps &SM,
753                             const MachineInstr &MI, bool Is64Bit, const MCSubtargetInfo& STI) {
754   assert(Is64Bit && "Patchpoint currently only supports X86-64");
755   SM.recordPatchPoint(MI);
756 
757   PatchPointOpers opers(&MI);
758   unsigned ScratchIdx = opers.getNextScratchIdx();
759   unsigned EncodedBytes = 0;
760   int64_t CallTarget = opers.getMetaOper(PatchPointOpers::TargetPos).getImm();
761   if (CallTarget) {
762     // Emit MOV to materialize the target address and the CALL to target.
763     // This is encoded with 12-13 bytes, depending on which register is used.
764     unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
765     if (X86II::isX86_64ExtendedReg(ScratchReg))
766       EncodedBytes = 13;
767     else
768       EncodedBytes = 12;
769     OS.EmitInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg)
770                                                   .addImm(CallTarget), STI);
771     OS.EmitInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg), STI);
772   }
773   // Emit padding.
774   unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
775   assert(NumBytes >= EncodedBytes &&
776          "Patchpoint can't request size less than the length of a call.");
777 
778   EmitNops(OS, NumBytes - EncodedBytes, Is64Bit, STI);
779 }
780 
EmitInstruction(const MachineInstr * MI)781 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
782   X86MCInstLower MCInstLowering(*MF, *this);
783   const X86RegisterInfo *RI =
784       static_cast<const X86RegisterInfo *>(TM.getRegisterInfo());
785 
786   switch (MI->getOpcode()) {
787   case TargetOpcode::DBG_VALUE:
788     llvm_unreachable("Should be handled target independently");
789 
790   // Emit nothing here but a comment if we can.
791   case X86::Int_MemBarrier:
792     OutStreamer.emitRawComment("MEMBARRIER");
793     return;
794 
795 
796   case X86::EH_RETURN:
797   case X86::EH_RETURN64: {
798     // Lower these as normal, but add some comments.
799     unsigned Reg = MI->getOperand(0).getReg();
800     OutStreamer.AddComment(StringRef("eh_return, addr: %") +
801                            X86ATTInstPrinter::getRegisterName(Reg));
802     break;
803   }
804   case X86::TAILJMPr:
805   case X86::TAILJMPd:
806   case X86::TAILJMPd64:
807     // Lower these as normal, but add some comments.
808     OutStreamer.AddComment("TAILCALL");
809     break;
810 
811   case X86::TLS_addr32:
812   case X86::TLS_addr64:
813   case X86::TLS_base_addr32:
814   case X86::TLS_base_addr64:
815     return LowerTlsAddr(OutStreamer, MCInstLowering, *MI, getSubtargetInfo());
816 
817   case X86::MOVPC32r: {
818     // This is a pseudo op for a two instruction sequence with a label, which
819     // looks like:
820     //     call "L1$pb"
821     // "L1$pb":
822     //     popl %esi
823 
824     // Emit the call.
825     MCSymbol *PICBase = MF->getPICBaseSymbol();
826     // FIXME: We would like an efficient form for this, so we don't have to do a
827     // lot of extra uniquing.
828     EmitToStreamer(OutStreamer, MCInstBuilder(X86::CALLpcrel32)
829       .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
830 
831     // Emit the label.
832     OutStreamer.EmitLabel(PICBase);
833 
834     // popl $reg
835     EmitToStreamer(OutStreamer, MCInstBuilder(X86::POP32r)
836       .addReg(MI->getOperand(0).getReg()));
837     return;
838   }
839 
840   case X86::ADD32ri: {
841     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
842     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
843       break;
844 
845     // Okay, we have something like:
846     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
847 
848     // For this, we want to print something like:
849     //   MYGLOBAL + (. - PICBASE)
850     // However, we can't generate a ".", so just emit a new label here and refer
851     // to it.
852     MCSymbol *DotSym = OutContext.CreateTempSymbol();
853     OutStreamer.EmitLabel(DotSym);
854 
855     // Now that we have emitted the label, lower the complex operand expression.
856     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
857 
858     const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
859     const MCExpr *PICBase =
860       MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
861     DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
862 
863     DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
864                                       DotExpr, OutContext);
865 
866     EmitToStreamer(OutStreamer, MCInstBuilder(X86::ADD32ri)
867       .addReg(MI->getOperand(0).getReg())
868       .addReg(MI->getOperand(1).getReg())
869       .addExpr(DotExpr));
870     return;
871   }
872 
873   case TargetOpcode::STACKMAP:
874     return LowerSTACKMAP(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo());
875 
876   case TargetOpcode::PATCHPOINT:
877     return LowerPATCHPOINT(OutStreamer, SM, *MI, Subtarget->is64Bit(), getSubtargetInfo());
878 
879   case X86::MORESTACK_RET:
880     EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget)));
881     return;
882 
883   case X86::MORESTACK_RET_RESTORE_R10:
884     // Return, then restore R10.
885     EmitToStreamer(OutStreamer, MCInstBuilder(getRetOpcode(*Subtarget)));
886     EmitToStreamer(OutStreamer, MCInstBuilder(X86::MOV64rr)
887       .addReg(X86::R10)
888       .addReg(X86::RAX));
889     return;
890 
891   case X86::SEH_PushReg:
892     OutStreamer.EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm()));
893     return;
894 
895   case X86::SEH_SaveReg:
896     OutStreamer.EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
897                                   MI->getOperand(1).getImm());
898     return;
899 
900   case X86::SEH_SaveXMM:
901     OutStreamer.EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
902                                   MI->getOperand(1).getImm());
903     return;
904 
905   case X86::SEH_StackAlloc:
906     OutStreamer.EmitWinCFIAllocStack(MI->getOperand(0).getImm());
907     return;
908 
909   case X86::SEH_SetFrame:
910     OutStreamer.EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()),
911                                    MI->getOperand(1).getImm());
912     return;
913 
914   case X86::SEH_PushFrame:
915     OutStreamer.EmitWinCFIPushFrame(MI->getOperand(0).getImm());
916     return;
917 
918   case X86::SEH_EndPrologue:
919     OutStreamer.EmitWinCFIEndProlog();
920     return;
921   }
922 
923   MCInst TmpInst;
924   MCInstLowering.Lower(MI, TmpInst);
925   EmitToStreamer(OutStreamer, TmpInst);
926 }
927