• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
6 #define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
7 
8 #include <vector>
9 
10 #include "src/globals.h"
11 
12 #include "src/arm64/assembler-arm64-inl.h"
13 
14 namespace v8 {
15 namespace internal {
16 
17 #define LS_MACRO_LIST(V)                                      \
18   V(Ldrb, Register&, rt, LDRB_w)                              \
19   V(Strb, Register&, rt, STRB_w)                              \
20   V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w)  \
21   V(Ldrh, Register&, rt, LDRH_w)                              \
22   V(Strh, Register&, rt, STRH_w)                              \
23   V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w)  \
24   V(Ldr, CPURegister&, rt, LoadOpFor(rt))                     \
25   V(Str, CPURegister&, rt, StoreOpFor(rt))                    \
26   V(Ldrsw, Register&, rt, LDRSW_x)
27 
28 
29 // ----------------------------------------------------------------------------
30 // Static helper functions
31 
32 // Generate a MemOperand for loading a field from an object.
33 inline MemOperand FieldMemOperand(Register object, int offset);
34 inline MemOperand UntagSmiFieldMemOperand(Register object, int offset);
35 
36 // Generate a MemOperand for loading a SMI from memory.
37 inline MemOperand UntagSmiMemOperand(Register object, int offset);
38 
39 
40 // ----------------------------------------------------------------------------
41 // MacroAssembler
42 
43 enum BranchType {
44   // Copies of architectural conditions.
45   // The associated conditions can be used in place of those, the code will
46   // take care of reinterpreting them with the correct type.
47   integer_eq = eq,
48   integer_ne = ne,
49   integer_hs = hs,
50   integer_lo = lo,
51   integer_mi = mi,
52   integer_pl = pl,
53   integer_vs = vs,
54   integer_vc = vc,
55   integer_hi = hi,
56   integer_ls = ls,
57   integer_ge = ge,
58   integer_lt = lt,
59   integer_gt = gt,
60   integer_le = le,
61   integer_al = al,
62   integer_nv = nv,
63 
64   // These two are *different* from the architectural codes al and nv.
65   // 'always' is used to generate unconditional branches.
66   // 'never' is used to not generate a branch (generally as the inverse
67   // branch type of 'always).
68   always, never,
69   // cbz and cbnz
70   reg_zero, reg_not_zero,
71   // tbz and tbnz
72   reg_bit_clear, reg_bit_set,
73 
74   // Aliases.
75   kBranchTypeFirstCondition = eq,
76   kBranchTypeLastCondition = nv,
77   kBranchTypeFirstUsingReg = reg_zero,
78   kBranchTypeFirstUsingBit = reg_bit_clear
79 };
80 
InvertBranchType(BranchType type)81 inline BranchType InvertBranchType(BranchType type) {
82   if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
83     return static_cast<BranchType>(
84         NegateCondition(static_cast<Condition>(type)));
85   } else {
86     return static_cast<BranchType>(type ^ 1);
87   }
88 }
89 
90 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
91 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
92 enum PointersToHereCheck {
93   kPointersToHereMaybeInteresting,
94   kPointersToHereAreAlwaysInteresting
95 };
96 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved };
97 enum TargetAddressStorageMode {
98   CAN_INLINE_TARGET_ADDRESS,
99   NEVER_INLINE_TARGET_ADDRESS
100 };
101 enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag };
102 enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles };
103 enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong };
104 enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg };
105 enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 };
106 
107 class MacroAssembler : public Assembler {
108  public:
109   MacroAssembler(Isolate* isolate, byte * buffer, unsigned buffer_size);
110 
111   inline Handle<Object> CodeObject();
112 
113   // Instruction set functions ------------------------------------------------
114   // Logical macros.
115   inline void And(const Register& rd,
116                   const Register& rn,
117                   const Operand& operand);
118   inline void Ands(const Register& rd,
119                    const Register& rn,
120                    const Operand& operand);
121   inline void Bic(const Register& rd,
122                   const Register& rn,
123                   const Operand& operand);
124   inline void Bics(const Register& rd,
125                    const Register& rn,
126                    const Operand& operand);
127   inline void Orr(const Register& rd,
128                   const Register& rn,
129                   const Operand& operand);
130   inline void Orn(const Register& rd,
131                   const Register& rn,
132                   const Operand& operand);
133   inline void Eor(const Register& rd,
134                   const Register& rn,
135                   const Operand& operand);
136   inline void Eon(const Register& rd,
137                   const Register& rn,
138                   const Operand& operand);
139   inline void Tst(const Register& rn, const Operand& operand);
140   void LogicalMacro(const Register& rd,
141                     const Register& rn,
142                     const Operand& operand,
143                     LogicalOp op);
144 
145   // Add and sub macros.
146   inline void Add(const Register& rd,
147                   const Register& rn,
148                   const Operand& operand);
149   inline void Adds(const Register& rd,
150                    const Register& rn,
151                    const Operand& operand);
152   inline void Sub(const Register& rd,
153                   const Register& rn,
154                   const Operand& operand);
155   inline void Subs(const Register& rd,
156                    const Register& rn,
157                    const Operand& operand);
158   inline void Cmn(const Register& rn, const Operand& operand);
159   inline void Cmp(const Register& rn, const Operand& operand);
160   inline void Neg(const Register& rd,
161                   const Operand& operand);
162   inline void Negs(const Register& rd,
163                    const Operand& operand);
164 
165   void AddSubMacro(const Register& rd,
166                    const Register& rn,
167                    const Operand& operand,
168                    FlagsUpdate S,
169                    AddSubOp op);
170 
171   // Add/sub with carry macros.
172   inline void Adc(const Register& rd,
173                   const Register& rn,
174                   const Operand& operand);
175   inline void Adcs(const Register& rd,
176                    const Register& rn,
177                    const Operand& operand);
178   inline void Sbc(const Register& rd,
179                   const Register& rn,
180                   const Operand& operand);
181   inline void Sbcs(const Register& rd,
182                    const Register& rn,
183                    const Operand& operand);
184   inline void Ngc(const Register& rd,
185                   const Operand& operand);
186   inline void Ngcs(const Register& rd,
187                    const Operand& operand);
188   void AddSubWithCarryMacro(const Register& rd,
189                             const Register& rn,
190                             const Operand& operand,
191                             FlagsUpdate S,
192                             AddSubWithCarryOp op);
193 
194   // Move macros.
195   void Mov(const Register& rd,
196            const Operand& operand,
197            DiscardMoveMode discard_mode = kDontDiscardForSameWReg);
198   void Mov(const Register& rd, uint64_t imm);
199   inline void Mvn(const Register& rd, uint64_t imm);
200   void Mvn(const Register& rd, const Operand& operand);
201   static bool IsImmMovn(uint64_t imm, unsigned reg_size);
202   static bool IsImmMovz(uint64_t imm, unsigned reg_size);
203   static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size);
204 
205   // Conditional macros.
206   inline void Ccmp(const Register& rn,
207                    const Operand& operand,
208                    StatusFlags nzcv,
209                    Condition cond);
210   inline void Ccmn(const Register& rn,
211                    const Operand& operand,
212                    StatusFlags nzcv,
213                    Condition cond);
214   void ConditionalCompareMacro(const Register& rn,
215                                const Operand& operand,
216                                StatusFlags nzcv,
217                                Condition cond,
218                                ConditionalCompareOp op);
219   void Csel(const Register& rd,
220             const Register& rn,
221             const Operand& operand,
222             Condition cond);
223 
224   // Load/store macros.
225 #define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \
226   inline void FN(const REGTYPE REG, const MemOperand& addr);
227   LS_MACRO_LIST(DECLARE_FUNCTION)
228 #undef DECLARE_FUNCTION
229 
230   void LoadStoreMacro(const CPURegister& rt,
231                       const MemOperand& addr,
232                       LoadStoreOp op);
233 
234   // V8-specific load/store helpers.
235   void Load(const Register& rt, const MemOperand& addr, Representation r);
236   void Store(const Register& rt, const MemOperand& addr, Representation r);
237 
238   enum AdrHint {
239     // The target must be within the immediate range of adr.
240     kAdrNear,
241     // The target may be outside of the immediate range of adr. Additional
242     // instructions may be emitted.
243     kAdrFar
244   };
245   void Adr(const Register& rd, Label* label, AdrHint = kAdrNear);
246 
247   // Remaining instructions are simple pass-through calls to the assembler.
248   inline void Asr(const Register& rd, const Register& rn, unsigned shift);
249   inline void Asr(const Register& rd, const Register& rn, const Register& rm);
250 
251   // Branch type inversion relies on these relations.
252   STATIC_ASSERT((reg_zero      == (reg_not_zero ^ 1)) &&
253                 (reg_bit_clear == (reg_bit_set ^ 1)) &&
254                 (always        == (never ^ 1)));
255 
256   void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1);
257 
258   inline void B(Label* label);
259   inline void B(Condition cond, Label* label);
260   void B(Label* label, Condition cond);
261   inline void Bfi(const Register& rd,
262                   const Register& rn,
263                   unsigned lsb,
264                   unsigned width);
265   inline void Bfxil(const Register& rd,
266                     const Register& rn,
267                     unsigned lsb,
268                     unsigned width);
269   inline void Bind(Label* label);
270   inline void Bl(Label* label);
271   inline void Blr(const Register& xn);
272   inline void Br(const Register& xn);
273   inline void Brk(int code);
274   void Cbnz(const Register& rt, Label* label);
275   void Cbz(const Register& rt, Label* label);
276   inline void Cinc(const Register& rd, const Register& rn, Condition cond);
277   inline void Cinv(const Register& rd, const Register& rn, Condition cond);
278   inline void Cls(const Register& rd, const Register& rn);
279   inline void Clz(const Register& rd, const Register& rn);
280   inline void Cneg(const Register& rd, const Register& rn, Condition cond);
281   inline void CzeroX(const Register& rd, Condition cond);
282   inline void CmovX(const Register& rd, const Register& rn, Condition cond);
283   inline void Cset(const Register& rd, Condition cond);
284   inline void Csetm(const Register& rd, Condition cond);
285   inline void Csinc(const Register& rd,
286                     const Register& rn,
287                     const Register& rm,
288                     Condition cond);
289   inline void Csinv(const Register& rd,
290                     const Register& rn,
291                     const Register& rm,
292                     Condition cond);
293   inline void Csneg(const Register& rd,
294                     const Register& rn,
295                     const Register& rm,
296                     Condition cond);
297   inline void Dmb(BarrierDomain domain, BarrierType type);
298   inline void Dsb(BarrierDomain domain, BarrierType type);
299   inline void Debug(const char* message, uint32_t code, Instr params = BREAK);
300   inline void Extr(const Register& rd,
301                    const Register& rn,
302                    const Register& rm,
303                    unsigned lsb);
304   inline void Fabs(const FPRegister& fd, const FPRegister& fn);
305   inline void Fadd(const FPRegister& fd,
306                    const FPRegister& fn,
307                    const FPRegister& fm);
308   inline void Fccmp(const FPRegister& fn,
309                     const FPRegister& fm,
310                     StatusFlags nzcv,
311                     Condition cond);
312   inline void Fcmp(const FPRegister& fn, const FPRegister& fm);
313   inline void Fcmp(const FPRegister& fn, double value);
314   inline void Fcsel(const FPRegister& fd,
315                     const FPRegister& fn,
316                     const FPRegister& fm,
317                     Condition cond);
318   inline void Fcvt(const FPRegister& fd, const FPRegister& fn);
319   inline void Fcvtas(const Register& rd, const FPRegister& fn);
320   inline void Fcvtau(const Register& rd, const FPRegister& fn);
321   inline void Fcvtms(const Register& rd, const FPRegister& fn);
322   inline void Fcvtmu(const Register& rd, const FPRegister& fn);
323   inline void Fcvtns(const Register& rd, const FPRegister& fn);
324   inline void Fcvtnu(const Register& rd, const FPRegister& fn);
325   inline void Fcvtzs(const Register& rd, const FPRegister& fn);
326   inline void Fcvtzu(const Register& rd, const FPRegister& fn);
327   inline void Fdiv(const FPRegister& fd,
328                    const FPRegister& fn,
329                    const FPRegister& fm);
330   inline void Fmadd(const FPRegister& fd,
331                     const FPRegister& fn,
332                     const FPRegister& fm,
333                     const FPRegister& fa);
334   inline void Fmax(const FPRegister& fd,
335                    const FPRegister& fn,
336                    const FPRegister& fm);
337   inline void Fmaxnm(const FPRegister& fd,
338                      const FPRegister& fn,
339                      const FPRegister& fm);
340   inline void Fmin(const FPRegister& fd,
341                    const FPRegister& fn,
342                    const FPRegister& fm);
343   inline void Fminnm(const FPRegister& fd,
344                      const FPRegister& fn,
345                      const FPRegister& fm);
346   inline void Fmov(FPRegister fd, FPRegister fn);
347   inline void Fmov(FPRegister fd, Register rn);
348   // Provide explicit double and float interfaces for FP immediate moves, rather
349   // than relying on implicit C++ casts. This allows signalling NaNs to be
350   // preserved when the immediate matches the format of fd. Most systems convert
351   // signalling NaNs to quiet NaNs when converting between float and double.
352   inline void Fmov(FPRegister fd, double imm);
353   inline void Fmov(FPRegister fd, float imm);
354   // Provide a template to allow other types to be converted automatically.
355   template<typename T>
Fmov(FPRegister fd,T imm)356   void Fmov(FPRegister fd, T imm) {
357     ASSERT(allow_macro_instructions_);
358     Fmov(fd, static_cast<double>(imm));
359   }
360   inline void Fmov(Register rd, FPRegister fn);
361   inline void Fmsub(const FPRegister& fd,
362                     const FPRegister& fn,
363                     const FPRegister& fm,
364                     const FPRegister& fa);
365   inline void Fmul(const FPRegister& fd,
366                    const FPRegister& fn,
367                    const FPRegister& fm);
368   inline void Fneg(const FPRegister& fd, const FPRegister& fn);
369   inline void Fnmadd(const FPRegister& fd,
370                      const FPRegister& fn,
371                      const FPRegister& fm,
372                      const FPRegister& fa);
373   inline void Fnmsub(const FPRegister& fd,
374                      const FPRegister& fn,
375                      const FPRegister& fm,
376                      const FPRegister& fa);
377   inline void Frinta(const FPRegister& fd, const FPRegister& fn);
378   inline void Frintm(const FPRegister& fd, const FPRegister& fn);
379   inline void Frintn(const FPRegister& fd, const FPRegister& fn);
380   inline void Frintz(const FPRegister& fd, const FPRegister& fn);
381   inline void Fsqrt(const FPRegister& fd, const FPRegister& fn);
382   inline void Fsub(const FPRegister& fd,
383                    const FPRegister& fn,
384                    const FPRegister& fm);
385   inline void Hint(SystemHint code);
386   inline void Hlt(int code);
387   inline void Isb();
388   inline void Ldnp(const CPURegister& rt,
389                    const CPURegister& rt2,
390                    const MemOperand& src);
391   inline void Ldp(const CPURegister& rt,
392                   const CPURegister& rt2,
393                   const MemOperand& src);
394   inline void Ldpsw(const Register& rt,
395                     const Register& rt2,
396                     const MemOperand& src);
397   // Load a literal from the inline constant pool.
398   inline void Ldr(const CPURegister& rt, const Immediate& imm);
399   // Helper function for double immediate.
400   inline void Ldr(const CPURegister& rt, double imm);
401   inline void Lsl(const Register& rd, const Register& rn, unsigned shift);
402   inline void Lsl(const Register& rd, const Register& rn, const Register& rm);
403   inline void Lsr(const Register& rd, const Register& rn, unsigned shift);
404   inline void Lsr(const Register& rd, const Register& rn, const Register& rm);
405   inline void Madd(const Register& rd,
406                    const Register& rn,
407                    const Register& rm,
408                    const Register& ra);
409   inline void Mneg(const Register& rd, const Register& rn, const Register& rm);
410   inline void Mov(const Register& rd, const Register& rm);
411   inline void Movk(const Register& rd, uint64_t imm, int shift = -1);
412   inline void Mrs(const Register& rt, SystemRegister sysreg);
413   inline void Msr(SystemRegister sysreg, const Register& rt);
414   inline void Msub(const Register& rd,
415                    const Register& rn,
416                    const Register& rm,
417                    const Register& ra);
418   inline void Mul(const Register& rd, const Register& rn, const Register& rm);
Nop()419   inline void Nop() { nop(); }
420   inline void Rbit(const Register& rd, const Register& rn);
421   inline void Ret(const Register& xn = lr);
422   inline void Rev(const Register& rd, const Register& rn);
423   inline void Rev16(const Register& rd, const Register& rn);
424   inline void Rev32(const Register& rd, const Register& rn);
425   inline void Ror(const Register& rd, const Register& rs, unsigned shift);
426   inline void Ror(const Register& rd, const Register& rn, const Register& rm);
427   inline void Sbfiz(const Register& rd,
428                     const Register& rn,
429                     unsigned lsb,
430                     unsigned width);
431   inline void Sbfx(const Register& rd,
432                    const Register& rn,
433                    unsigned lsb,
434                    unsigned width);
435   inline void Scvtf(const FPRegister& fd,
436                     const Register& rn,
437                     unsigned fbits = 0);
438   inline void Sdiv(const Register& rd, const Register& rn, const Register& rm);
439   inline void Smaddl(const Register& rd,
440                      const Register& rn,
441                      const Register& rm,
442                      const Register& ra);
443   inline void Smsubl(const Register& rd,
444                      const Register& rn,
445                      const Register& rm,
446                      const Register& ra);
447   inline void Smull(const Register& rd,
448                     const Register& rn,
449                     const Register& rm);
450   inline void Smulh(const Register& rd,
451                     const Register& rn,
452                     const Register& rm);
453   inline void Stnp(const CPURegister& rt,
454                    const CPURegister& rt2,
455                    const MemOperand& dst);
456   inline void Stp(const CPURegister& rt,
457                   const CPURegister& rt2,
458                   const MemOperand& dst);
459   inline void Sxtb(const Register& rd, const Register& rn);
460   inline void Sxth(const Register& rd, const Register& rn);
461   inline void Sxtw(const Register& rd, const Register& rn);
462   void Tbnz(const Register& rt, unsigned bit_pos, Label* label);
463   void Tbz(const Register& rt, unsigned bit_pos, Label* label);
464   inline void Ubfiz(const Register& rd,
465                     const Register& rn,
466                     unsigned lsb,
467                     unsigned width);
468   inline void Ubfx(const Register& rd,
469                    const Register& rn,
470                    unsigned lsb,
471                    unsigned width);
472   inline void Ucvtf(const FPRegister& fd,
473                     const Register& rn,
474                     unsigned fbits = 0);
475   inline void Udiv(const Register& rd, const Register& rn, const Register& rm);
476   inline void Umaddl(const Register& rd,
477                      const Register& rn,
478                      const Register& rm,
479                      const Register& ra);
480   inline void Umsubl(const Register& rd,
481                      const Register& rn,
482                      const Register& rm,
483                      const Register& ra);
484   inline void Uxtb(const Register& rd, const Register& rn);
485   inline void Uxth(const Register& rd, const Register& rn);
486   inline void Uxtw(const Register& rd, const Register& rn);
487 
488   // Pseudo-instructions ------------------------------------------------------
489 
490   // Compute rd = abs(rm).
491   // This function clobbers the condition flags. On output the overflow flag is
492   // set iff the negation overflowed.
493   //
494   // If rm is the minimum representable value, the result is not representable.
495   // Handlers for each case can be specified using the relevant labels.
496   void Abs(const Register& rd, const Register& rm,
497            Label * is_not_representable = NULL,
498            Label * is_representable = NULL);
499 
500   // Push or pop up to 4 registers of the same width to or from the stack,
501   // using the current stack pointer as set by SetStackPointer.
502   //
503   // If an argument register is 'NoReg', all further arguments are also assumed
504   // to be 'NoReg', and are thus not pushed or popped.
505   //
506   // Arguments are ordered such that "Push(a, b);" is functionally equivalent
507   // to "Push(a); Push(b);".
508   //
509   // It is valid to push the same register more than once, and there is no
510   // restriction on the order in which registers are specified.
511   //
512   // It is not valid to pop into the same register more than once in one
513   // operation, not even into the zero register.
514   //
515   // If the current stack pointer (as set by SetStackPointer) is csp, then it
516   // must be aligned to 16 bytes on entry and the total size of the specified
517   // registers must also be a multiple of 16 bytes.
518   //
519   // Even if the current stack pointer is not the system stack pointer (csp),
520   // Push (and derived methods) will still modify the system stack pointer in
521   // order to comply with ABI rules about accessing memory below the system
522   // stack pointer.
523   //
524   // Other than the registers passed into Pop, the stack pointer and (possibly)
525   // the system stack pointer, these methods do not modify any other registers.
526   void Push(const CPURegister& src0, const CPURegister& src1 = NoReg,
527             const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg);
528   void Push(const CPURegister& src0, const CPURegister& src1,
529             const CPURegister& src2, const CPURegister& src3,
530             const CPURegister& src4, const CPURegister& src5 = NoReg,
531             const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg);
532   void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg,
533            const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg);
534 
535   // Alternative forms of Push and Pop, taking a RegList or CPURegList that
536   // specifies the registers that are to be pushed or popped. Higher-numbered
537   // registers are associated with higher memory addresses (as in the A32 push
538   // and pop instructions).
539   //
540   // (Push|Pop)SizeRegList allow you to specify the register size as a
541   // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and
542   // kSRegSizeInBits are supported.
543   //
544   // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred.
545   void PushCPURegList(CPURegList registers);
546   void PopCPURegList(CPURegList registers);
547 
548   inline void PushSizeRegList(RegList registers, unsigned reg_size,
549       CPURegister::RegisterType type = CPURegister::kRegister) {
550     PushCPURegList(CPURegList(type, reg_size, registers));
551   }
552   inline void PopSizeRegList(RegList registers, unsigned reg_size,
553       CPURegister::RegisterType type = CPURegister::kRegister) {
554     PopCPURegList(CPURegList(type, reg_size, registers));
555   }
PushXRegList(RegList regs)556   inline void PushXRegList(RegList regs) {
557     PushSizeRegList(regs, kXRegSizeInBits);
558   }
PopXRegList(RegList regs)559   inline void PopXRegList(RegList regs) {
560     PopSizeRegList(regs, kXRegSizeInBits);
561   }
PushWRegList(RegList regs)562   inline void PushWRegList(RegList regs) {
563     PushSizeRegList(regs, kWRegSizeInBits);
564   }
PopWRegList(RegList regs)565   inline void PopWRegList(RegList regs) {
566     PopSizeRegList(regs, kWRegSizeInBits);
567   }
PushDRegList(RegList regs)568   inline void PushDRegList(RegList regs) {
569     PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
570   }
PopDRegList(RegList regs)571   inline void PopDRegList(RegList regs) {
572     PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister);
573   }
PushSRegList(RegList regs)574   inline void PushSRegList(RegList regs) {
575     PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
576   }
PopSRegList(RegList regs)577   inline void PopSRegList(RegList regs) {
578     PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister);
579   }
580 
581   // Push the specified register 'count' times.
582   void PushMultipleTimes(CPURegister src, Register count);
583   void PushMultipleTimes(CPURegister src, int count);
584 
585   // This is a convenience method for pushing a single Handle<Object>.
586   inline void Push(Handle<Object> handle);
Push(Smi * smi)587   void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); }
588 
589   // Aliases of Push and Pop, required for V8 compatibility.
push(Register src)590   inline void push(Register src) {
591     Push(src);
592   }
pop(Register dst)593   inline void pop(Register dst) {
594     Pop(dst);
595   }
596 
597   // Sometimes callers need to push or pop multiple registers in a way that is
598   // difficult to structure efficiently for fixed Push or Pop calls. This scope
599   // allows push requests to be queued up, then flushed at once. The
600   // MacroAssembler will try to generate the most efficient sequence required.
601   //
602   // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of
603   // register sizes and types.
604   class PushPopQueue {
605    public:
PushPopQueue(MacroAssembler * masm)606     explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { }
607 
~PushPopQueue()608     ~PushPopQueue() {
609       ASSERT(queued_.empty());
610     }
611 
Queue(const CPURegister & rt)612     void Queue(const CPURegister& rt) {
613       size_ += rt.SizeInBytes();
614       queued_.push_back(rt);
615     }
616 
617     enum PreambleDirective {
618       WITH_PREAMBLE,
619       SKIP_PREAMBLE
620     };
621     void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE);
622     void PopQueued();
623 
624    private:
625     MacroAssembler* masm_;
626     int size_;
627     std::vector<CPURegister> queued_;
628   };
629 
630   // Poke 'src' onto the stack. The offset is in bytes.
631   //
632   // If the current stack pointer (according to StackPointer()) is csp, then
633   // csp must be aligned to 16 bytes.
634   void Poke(const CPURegister& src, const Operand& offset);
635 
636   // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes.
637   //
638   // If the current stack pointer (according to StackPointer()) is csp, then
639   // csp must be aligned to 16 bytes.
640   void Peek(const CPURegister& dst, const Operand& offset);
641 
642   // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent
643   // with 'src2' at a higher address than 'src1'. The offset is in bytes.
644   //
645   // If the current stack pointer (according to StackPointer()) is csp, then
646   // csp must be aligned to 16 bytes.
647   void PokePair(const CPURegister& src1, const CPURegister& src2, int offset);
648 
649   // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The
650   // values peeked will be adjacent, with the value in 'dst2' being from a
651   // higher address than 'dst1'. The offset is in bytes.
652   //
653   // If the current stack pointer (according to StackPointer()) is csp, then
654   // csp must be aligned to 16 bytes.
655   void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset);
656 
657   // Claim or drop stack space without actually accessing memory.
658   //
659   // In debug mode, both of these will write invalid data into the claimed or
660   // dropped space.
661   //
662   // If the current stack pointer (according to StackPointer()) is csp, then it
663   // must be aligned to 16 bytes and the size claimed or dropped must be a
664   // multiple of 16 bytes.
665   //
666   // Note that unit_size must be specified in bytes. For variants which take a
667   // Register count, the unit size must be a power of two.
668   inline void Claim(uint64_t count, uint64_t unit_size = kXRegSize);
669   inline void Claim(const Register& count,
670                     uint64_t unit_size = kXRegSize);
671   inline void Drop(uint64_t count, uint64_t unit_size = kXRegSize);
672   inline void Drop(const Register& count,
673                    uint64_t unit_size = kXRegSize);
674 
675   // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a
676   // register.
677   inline void ClaimBySMI(const Register& count_smi,
678                          uint64_t unit_size = kXRegSize);
679   inline void DropBySMI(const Register& count_smi,
680                         uint64_t unit_size = kXRegSize);
681 
682   // Compare a register with an operand, and branch to label depending on the
683   // condition. May corrupt the status flags.
684   inline void CompareAndBranch(const Register& lhs,
685                                const Operand& rhs,
686                                Condition cond,
687                                Label* label);
688 
689   // Test the bits of register defined by bit_pattern, and branch if ANY of
690   // those bits are set. May corrupt the status flags.
691   inline void TestAndBranchIfAnySet(const Register& reg,
692                                     const uint64_t bit_pattern,
693                                     Label* label);
694 
695   // Test the bits of register defined by bit_pattern, and branch if ALL of
696   // those bits are clear (ie. not set.) May corrupt the status flags.
697   inline void TestAndBranchIfAllClear(const Register& reg,
698                                       const uint64_t bit_pattern,
699                                       Label* label);
700 
701   // Insert one or more instructions into the instruction stream that encode
702   // some caller-defined data. The instructions used will be executable with no
703   // side effects.
704   inline void InlineData(uint64_t data);
705 
706   // Insert an instrumentation enable marker into the instruction stream.
707   inline void EnableInstrumentation();
708 
709   // Insert an instrumentation disable marker into the instruction stream.
710   inline void DisableInstrumentation();
711 
712   // Insert an instrumentation event marker into the instruction stream. These
713   // will be picked up by the instrumentation system to annotate an instruction
714   // profile. The argument marker_name must be a printable two character string;
715   // it will be encoded in the event marker.
716   inline void AnnotateInstrumentation(const char* marker_name);
717 
718   // If emit_debug_code() is true, emit a run-time check to ensure that
719   // StackPointer() does not point below the system stack pointer.
720   //
721   // Whilst it is architecturally legal for StackPointer() to point below csp,
722   // it can be evidence of a potential bug because the ABI forbids accesses
723   // below csp.
724   //
725   // If StackPointer() is the system stack pointer (csp) or ALWAYS_ALIGN_CSP is
726   // enabled, then csp will be dereferenced to  cause the processor
727   // (or simulator) to abort if it is not properly aligned.
728   //
729   // If emit_debug_code() is false, this emits no code.
730   void AssertStackConsistency();
731 
732   // Preserve the callee-saved registers (as defined by AAPCS64).
733   //
734   // Higher-numbered registers are pushed before lower-numbered registers, and
735   // thus get higher addresses.
736   // Floating-point registers are pushed before general-purpose registers, and
737   // thus get higher addresses.
738   //
739   // Note that registers are not checked for invalid values. Use this method
740   // only if you know that the GC won't try to examine the values on the stack.
741   //
742   // This method must not be called unless the current stack pointer (as set by
743   // SetStackPointer) is the system stack pointer (csp), and is aligned to
744   // ActivationFrameAlignment().
745   void PushCalleeSavedRegisters();
746 
747   // Restore the callee-saved registers (as defined by AAPCS64).
748   //
749   // Higher-numbered registers are popped after lower-numbered registers, and
750   // thus come from higher addresses.
751   // Floating-point registers are popped after general-purpose registers, and
752   // thus come from higher addresses.
753   //
754   // This method must not be called unless the current stack pointer (as set by
755   // SetStackPointer) is the system stack pointer (csp), and is aligned to
756   // ActivationFrameAlignment().
757   void PopCalleeSavedRegisters();
758 
759   // Set the current stack pointer, but don't generate any code.
SetStackPointer(const Register & stack_pointer)760   inline void SetStackPointer(const Register& stack_pointer) {
761     ASSERT(!TmpList()->IncludesAliasOf(stack_pointer));
762     sp_ = stack_pointer;
763   }
764 
765   // Return the current stack pointer, as set by SetStackPointer.
StackPointer()766   inline const Register& StackPointer() const {
767     return sp_;
768   }
769 
770   // Align csp for a frame, as per ActivationFrameAlignment, and make it the
771   // current stack pointer.
AlignAndSetCSPForFrame()772   inline void AlignAndSetCSPForFrame() {
773     int sp_alignment = ActivationFrameAlignment();
774     // AAPCS64 mandates at least 16-byte alignment.
775     ASSERT(sp_alignment >= 16);
776     ASSERT(IsPowerOf2(sp_alignment));
777     Bic(csp, StackPointer(), sp_alignment - 1);
778     SetStackPointer(csp);
779   }
780 
781   // Push the system stack pointer (csp) down to allow the same to be done to
782   // the current stack pointer (according to StackPointer()). This must be
783   // called _before_ accessing the memory.
784   //
785   // This is necessary when pushing or otherwise adding things to the stack, to
786   // satisfy the AAPCS64 constraint that the memory below the system stack
787   // pointer is not accessed.  The amount pushed will be increased as necessary
788   // to ensure csp remains aligned to 16 bytes.
789   //
790   // This method asserts that StackPointer() is not csp, since the call does
791   // not make sense in that context.
792   inline void BumpSystemStackPointer(const Operand& space);
793 
794   // Re-synchronizes the system stack pointer (csp) with the current stack
795   // pointer (according to StackPointer()).  This function will ensure the
796   // new value of the system stack pointer is remains aligned to 16 bytes, and
797   // is lower than or equal to the value of the current stack pointer.
798   //
799   // This method asserts that StackPointer() is not csp, since the call does
800   // not make sense in that context.
801   inline void SyncSystemStackPointer();
802 
803   // Helpers ------------------------------------------------------------------
804   // Root register.
805   inline void InitializeRootRegister();
806 
807   void AssertFPCRState(Register fpcr = NoReg);
808   void ConfigureFPCR();
809   void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src);
CanonicalizeNaN(const FPRegister & reg)810   void CanonicalizeNaN(const FPRegister& reg) {
811     CanonicalizeNaN(reg, reg);
812   }
813 
814   // Load an object from the root table.
815   void LoadRoot(CPURegister destination,
816                 Heap::RootListIndex index);
817   // Store an object to the root table.
818   void StoreRoot(Register source,
819                  Heap::RootListIndex index);
820 
821   // Load both TrueValue and FalseValue roots.
822   void LoadTrueFalseRoots(Register true_root, Register false_root);
823 
824   void LoadHeapObject(Register dst, Handle<HeapObject> object);
825 
LoadObject(Register result,Handle<Object> object)826   void LoadObject(Register result, Handle<Object> object) {
827     AllowDeferredHandleDereference heap_object_check;
828     if (object->IsHeapObject()) {
829       LoadHeapObject(result, Handle<HeapObject>::cast(object));
830     } else {
831       ASSERT(object->IsSmi());
832       Mov(result, Operand(object));
833     }
834   }
835 
836   static int SafepointRegisterStackIndex(int reg_code);
837 
838   // This is required for compatibility with architecture independant code.
839   // Remove if not needed.
Move(Register dst,Register src)840   inline void Move(Register dst, Register src) { Mov(dst, src); }
841 
842   void LoadInstanceDescriptors(Register map,
843                                Register descriptors);
844   void EnumLengthUntagged(Register dst, Register map);
845   void EnumLengthSmi(Register dst, Register map);
846   void NumberOfOwnDescriptors(Register dst, Register map);
847 
848   template<typename Field>
DecodeField(Register dst,Register src)849   void DecodeField(Register dst, Register src) {
850     static const uint64_t shift = Field::kShift;
851     static const uint64_t setbits = CountSetBits(Field::kMask, 32);
852     Ubfx(dst, src, shift, setbits);
853   }
854 
855   template<typename Field>
DecodeField(Register reg)856   void DecodeField(Register reg) {
857     DecodeField<Field>(reg, reg);
858   }
859 
860   // ---- SMI and Number Utilities ----
861 
862   inline void SmiTag(Register dst, Register src);
863   inline void SmiTag(Register smi);
864   inline void SmiUntag(Register dst, Register src);
865   inline void SmiUntag(Register smi);
866   inline void SmiUntagToDouble(FPRegister dst,
867                                Register src,
868                                UntagMode mode = kNotSpeculativeUntag);
869   inline void SmiUntagToFloat(FPRegister dst,
870                               Register src,
871                               UntagMode mode = kNotSpeculativeUntag);
872 
873   // Tag and push in one step.
874   inline void SmiTagAndPush(Register src);
875   inline void SmiTagAndPush(Register src1, Register src2);
876 
877   // Compute the absolute value of 'smi' and leave the result in 'smi'
878   // register. If 'smi' is the most negative SMI, the absolute value cannot
879   // be represented as a SMI and a jump to 'slow' is done.
880   void SmiAbs(const Register& smi, Label* slow);
881 
882   inline void JumpIfSmi(Register value,
883                         Label* smi_label,
884                         Label* not_smi_label = NULL);
885   inline void JumpIfNotSmi(Register value, Label* not_smi_label);
886   inline void JumpIfBothSmi(Register value1,
887                             Register value2,
888                             Label* both_smi_label,
889                             Label* not_smi_label = NULL);
890   inline void JumpIfEitherSmi(Register value1,
891                               Register value2,
892                               Label* either_smi_label,
893                               Label* not_smi_label = NULL);
894   inline void JumpIfEitherNotSmi(Register value1,
895                                  Register value2,
896                                  Label* not_smi_label);
897   inline void JumpIfBothNotSmi(Register value1,
898                                Register value2,
899                                Label* not_smi_label);
900 
901   // Abort execution if argument is a smi, enabled via --debug-code.
902   void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi);
903   void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi);
904 
905   inline void ObjectTag(Register tagged_obj, Register obj);
906   inline void ObjectUntag(Register untagged_obj, Register obj);
907 
908   // Abort execution if argument is not a name, enabled via --debug-code.
909   void AssertName(Register object);
910 
911   // Abort execution if argument is not undefined or an AllocationSite, enabled
912   // via --debug-code.
913   void AssertUndefinedOrAllocationSite(Register object, Register scratch);
914 
915   // Abort execution if argument is not a string, enabled via --debug-code.
916   void AssertString(Register object);
917 
918   void JumpForHeapNumber(Register object,
919                          Register heap_number_map,
920                          Label* on_heap_number,
921                          Label* on_not_heap_number = NULL);
922   void JumpIfHeapNumber(Register object,
923                         Label* on_heap_number,
924                         Register heap_number_map = NoReg);
925   void JumpIfNotHeapNumber(Register object,
926                            Label* on_not_heap_number,
927                            Register heap_number_map = NoReg);
928 
929   // Sets the vs flag if the input is -0.0.
930   void TestForMinusZero(DoubleRegister input);
931 
932   // Jump to label if the input double register contains -0.0.
933   void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero);
934 
935   // Jump to label if the input integer register contains the double precision
936   // floating point representation of -0.0.
937   void JumpIfMinusZero(Register input, Label* on_negative_zero);
938 
939   // Generate code to do a lookup in the number string cache. If the number in
940   // the register object is found in the cache the generated code falls through
941   // with the result in the result register. The object and the result register
942   // can be the same. If the number is not found in the cache the code jumps to
943   // the label not_found with only the content of register object unchanged.
944   void LookupNumberStringCache(Register object,
945                                Register result,
946                                Register scratch1,
947                                Register scratch2,
948                                Register scratch3,
949                                Label* not_found);
950 
951   // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in
952   // output.
953   void ClampInt32ToUint8(Register in_out);
954   void ClampInt32ToUint8(Register output, Register input);
955 
956   // Saturate a double in input to an unsigned 8-bit integer in output.
957   void ClampDoubleToUint8(Register output,
958                           DoubleRegister input,
959                           DoubleRegister dbl_scratch);
960 
961   // Try to represent a double as a signed 32-bit int.
962   // This succeeds if the result compares equal to the input, so inputs of -0.0
963   // are represented as 0 and handled as a success.
964   //
965   // On output the Z flag is set if the operation was successful.
966   void TryRepresentDoubleAsInt32(Register as_int,
967                                  FPRegister value,
968                                  FPRegister scratch_d,
969                                  Label* on_successful_conversion = NULL,
970                                  Label* on_failed_conversion = NULL) {
971     ASSERT(as_int.Is32Bits());
972     TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
973                             on_failed_conversion);
974   }
975 
976   // Try to represent a double as a signed 64-bit int.
977   // This succeeds if the result compares equal to the input, so inputs of -0.0
978   // are represented as 0 and handled as a success.
979   //
980   // On output the Z flag is set if the operation was successful.
981   void TryRepresentDoubleAsInt64(Register as_int,
982                                  FPRegister value,
983                                  FPRegister scratch_d,
984                                  Label* on_successful_conversion = NULL,
985                                  Label* on_failed_conversion = NULL) {
986     ASSERT(as_int.Is64Bits());
987     TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion,
988                             on_failed_conversion);
989   }
990 
991   // ---- Object Utilities ----
992 
993   // Copy fields from 'src' to 'dst', where both are tagged objects.
994   // The 'temps' list is a list of X registers which can be used for scratch
995   // values. The temps list must include at least one register.
996   //
997   // Currently, CopyFields cannot make use of more than three registers from
998   // the 'temps' list.
999   //
1000   // CopyFields expects to be able to take at least two registers from
1001   // MacroAssembler::TmpList().
1002   void CopyFields(Register dst, Register src, CPURegList temps, unsigned count);
1003 
1004   // Starting at address in dst, initialize field_count 64-bit fields with
1005   // 64-bit value in register filler. Register dst is corrupted.
1006   void FillFields(Register dst,
1007                   Register field_count,
1008                   Register filler);
1009 
1010   // Copies a number of bytes from src to dst. All passed registers are
1011   // clobbered. On exit src and dst will point to the place just after where the
1012   // last byte was read or written and length will be zero. Hint may be used to
1013   // determine which is the most efficient algorithm to use for copying.
1014   void CopyBytes(Register dst,
1015                  Register src,
1016                  Register length,
1017                  Register scratch,
1018                  CopyHint hint = kCopyUnknown);
1019 
1020   // ---- String Utilities ----
1021 
1022 
1023   // Jump to label if either object is not a sequential ASCII string.
1024   // Optionally perform a smi check on the objects first.
1025   void JumpIfEitherIsNotSequentialAsciiStrings(
1026       Register first,
1027       Register second,
1028       Register scratch1,
1029       Register scratch2,
1030       Label* failure,
1031       SmiCheckType smi_check = DO_SMI_CHECK);
1032 
1033   // Check if instance type is sequential ASCII string and jump to label if
1034   // it is not.
1035   void JumpIfInstanceTypeIsNotSequentialAscii(Register type,
1036                                               Register scratch,
1037                                               Label* failure);
1038 
1039   // Checks if both instance types are sequential ASCII strings and jumps to
1040   // label if either is not.
1041   void JumpIfEitherInstanceTypeIsNotSequentialAscii(
1042       Register first_object_instance_type,
1043       Register second_object_instance_type,
1044       Register scratch1,
1045       Register scratch2,
1046       Label* failure);
1047 
1048   // Checks if both instance types are sequential ASCII strings and jumps to
1049   // label if either is not.
1050   void JumpIfBothInstanceTypesAreNotSequentialAscii(
1051       Register first_object_instance_type,
1052       Register second_object_instance_type,
1053       Register scratch1,
1054       Register scratch2,
1055       Label* failure);
1056 
1057   void JumpIfNotUniqueName(Register type, Label* not_unique_name);
1058 
1059   // ---- Calling / Jumping helpers ----
1060 
1061   // This is required for compatibility in architecture indepenedant code.
jmp(Label * L)1062   inline void jmp(Label* L) { B(L); }
1063 
1064   // Passes thrown value to the handler of top of the try handler chain.
1065   // Register value must be x0.
1066   void Throw(Register value,
1067              Register scratch1,
1068              Register scratch2,
1069              Register scratch3,
1070              Register scratch4);
1071 
1072   // Propagates an uncatchable exception to the top of the current JS stack's
1073   // handler chain. Register value must be x0.
1074   void ThrowUncatchable(Register value,
1075                         Register scratch1,
1076                         Register scratch2,
1077                         Register scratch3,
1078                         Register scratch4);
1079 
1080   void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1081   void TailCallStub(CodeStub* stub);
1082 
1083   void CallRuntime(const Runtime::Function* f,
1084                    int num_arguments,
1085                    SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1086 
1087   void CallRuntime(Runtime::FunctionId id,
1088                    int num_arguments,
1089                    SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1090     CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1091   }
1092 
CallRuntimeSaveDoubles(Runtime::FunctionId id)1093   void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1094     const Runtime::Function* function = Runtime::FunctionForId(id);
1095     CallRuntime(function, function->nargs, kSaveFPRegs);
1096   }
1097 
1098   void TailCallRuntime(Runtime::FunctionId fid,
1099                        int num_arguments,
1100                        int result_size);
1101 
1102   int ActivationFrameAlignment();
1103 
1104   // Calls a C function.
1105   // The called function is not allowed to trigger a
1106   // garbage collection, since that might move the code and invalidate the
1107   // return address (unless this is somehow accounted for by the called
1108   // function).
1109   void CallCFunction(ExternalReference function,
1110                      int num_reg_arguments);
1111   void CallCFunction(ExternalReference function,
1112                      int num_reg_arguments,
1113                      int num_double_arguments);
1114   void CallCFunction(Register function,
1115                      int num_reg_arguments,
1116                      int num_double_arguments);
1117 
1118   // Calls an API function. Allocates HandleScope, extracts returned value
1119   // from handle and propagates exceptions.
1120   // 'stack_space' is the space to be unwound on exit (includes the call JS
1121   // arguments space and the additional space allocated for the fast call).
1122   // 'spill_offset' is the offset from the stack pointer where
1123   // CallApiFunctionAndReturn can spill registers.
1124   void CallApiFunctionAndReturn(Register function_address,
1125                                 ExternalReference thunk_ref,
1126                                 int stack_space,
1127                                 int spill_offset,
1128                                 MemOperand return_value_operand,
1129                                 MemOperand* context_restore_operand);
1130 
1131   // The number of register that CallApiFunctionAndReturn will need to save on
1132   // the stack. The space for these registers need to be allocated in the
1133   // ExitFrame before calling CallApiFunctionAndReturn.
1134   static const int kCallApiFunctionSpillSpace = 4;
1135 
1136   // Jump to a runtime routine.
1137   void JumpToExternalReference(const ExternalReference& builtin);
1138   // Tail call of a runtime routine (jump).
1139   // Like JumpToExternalReference, but also takes care of passing the number
1140   // of parameters.
1141   void TailCallExternalReference(const ExternalReference& ext,
1142                                  int num_arguments,
1143                                  int result_size);
1144   void CallExternalReference(const ExternalReference& ext,
1145                              int num_arguments);
1146 
1147 
1148   // Invoke specified builtin JavaScript function. Adds an entry to
1149   // the unresolved list if the name does not resolve.
1150   void InvokeBuiltin(Builtins::JavaScript id,
1151                      InvokeFlag flag,
1152                      const CallWrapper& call_wrapper = NullCallWrapper());
1153 
1154   // Store the code object for the given builtin in the target register and
1155   // setup the function in the function register.
1156   void GetBuiltinEntry(Register target,
1157                        Register function,
1158                        Builtins::JavaScript id);
1159 
1160   // Store the function for the given builtin in the target register.
1161   void GetBuiltinFunction(Register target, Builtins::JavaScript id);
1162 
1163   void Jump(Register target);
1164   void Jump(Address target, RelocInfo::Mode rmode);
1165   void Jump(Handle<Code> code, RelocInfo::Mode rmode);
1166   void Jump(intptr_t target, RelocInfo::Mode rmode);
1167 
1168   void Call(Register target);
1169   void Call(Label* target);
1170   void Call(Address target, RelocInfo::Mode rmode);
1171   void Call(Handle<Code> code,
1172             RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1173             TypeFeedbackId ast_id = TypeFeedbackId::None());
1174 
1175   // For every Call variant, there is a matching CallSize function that returns
1176   // the size (in bytes) of the call sequence.
1177   static int CallSize(Register target);
1178   static int CallSize(Label* target);
1179   static int CallSize(Address target, RelocInfo::Mode rmode);
1180   static int CallSize(Handle<Code> code,
1181                       RelocInfo::Mode rmode = RelocInfo::CODE_TARGET,
1182                       TypeFeedbackId ast_id = TypeFeedbackId::None());
1183 
1184   // Registers used through the invocation chain are hard-coded.
1185   // We force passing the parameters to ensure the contracts are correctly
1186   // honoured by the caller.
1187   // 'function' must be x1.
1188   // 'actual' must use an immediate or x0.
1189   // 'expected' must use an immediate or x2.
1190   // 'call_kind' must be x5.
1191   void InvokePrologue(const ParameterCount& expected,
1192                       const ParameterCount& actual,
1193                       Handle<Code> code_constant,
1194                       Register code_reg,
1195                       Label* done,
1196                       InvokeFlag flag,
1197                       bool* definitely_mismatches,
1198                       const CallWrapper& call_wrapper);
1199   void InvokeCode(Register code,
1200                   const ParameterCount& expected,
1201                   const ParameterCount& actual,
1202                   InvokeFlag flag,
1203                   const CallWrapper& call_wrapper);
1204   // Invoke the JavaScript function in the given register.
1205   // Changes the current context to the context in the function before invoking.
1206   void InvokeFunction(Register function,
1207                       const ParameterCount& actual,
1208                       InvokeFlag flag,
1209                       const CallWrapper& call_wrapper);
1210   void InvokeFunction(Register function,
1211                       const ParameterCount& expected,
1212                       const ParameterCount& actual,
1213                       InvokeFlag flag,
1214                       const CallWrapper& call_wrapper);
1215   void InvokeFunction(Handle<JSFunction> function,
1216                       const ParameterCount& expected,
1217                       const ParameterCount& actual,
1218                       InvokeFlag flag,
1219                       const CallWrapper& call_wrapper);
1220 
1221 
1222   // ---- Floating point helpers ----
1223 
1224   // Perform a conversion from a double to a signed int64. If the input fits in
1225   // range of the 64-bit result, execution branches to done. Otherwise,
1226   // execution falls through, and the sign of the result can be used to
1227   // determine if overflow was towards positive or negative infinity.
1228   //
1229   // On successful conversion, the least significant 32 bits of the result are
1230   // equivalent to the ECMA-262 operation "ToInt32".
1231   //
1232   // Only public for the test code in test-code-stubs-arm64.cc.
1233   void TryConvertDoubleToInt64(Register result,
1234                                DoubleRegister input,
1235                                Label* done);
1236 
1237   // Performs a truncating conversion of a floating point number as used by
1238   // the JS bitwise operations. See ECMA-262 9.5: ToInt32.
1239   // Exits with 'result' holding the answer.
1240   void TruncateDoubleToI(Register result, DoubleRegister double_input);
1241 
1242   // Performs a truncating conversion of a heap number as used by
1243   // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input'
1244   // must be different registers.  Exits with 'result' holding the answer.
1245   void TruncateHeapNumberToI(Register result, Register object);
1246 
1247   // Converts the smi or heap number in object to an int32 using the rules
1248   // for ToInt32 as described in ECMAScript 9.5.: the value is truncated
1249   // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be
1250   // different registers.
1251   void TruncateNumberToI(Register object,
1252                          Register result,
1253                          Register heap_number_map,
1254                          Label* not_int32);
1255 
1256   // ---- Code generation helpers ----
1257 
set_generating_stub(bool value)1258   void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1259   bool generating_stub() const { return generating_stub_; }
1260 #if DEBUG
set_allow_macro_instructions(bool value)1261   void set_allow_macro_instructions(bool value) {
1262     allow_macro_instructions_ = value;
1263   }
allow_macro_instructions()1264   bool allow_macro_instructions() const { return allow_macro_instructions_; }
1265 #endif
use_real_aborts()1266   bool use_real_aborts() const { return use_real_aborts_; }
set_has_frame(bool value)1267   void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1268   bool has_frame() const { return has_frame_; }
1269   bool AllowThisStubCall(CodeStub* stub);
1270 
1271   class NoUseRealAbortsScope {
1272    public:
NoUseRealAbortsScope(MacroAssembler * masm)1273     explicit NoUseRealAbortsScope(MacroAssembler* masm) :
1274         saved_(masm->use_real_aborts_), masm_(masm) {
1275       masm_->use_real_aborts_ = false;
1276     }
~NoUseRealAbortsScope()1277     ~NoUseRealAbortsScope() {
1278       masm_->use_real_aborts_ = saved_;
1279     }
1280    private:
1281     bool saved_;
1282     MacroAssembler* masm_;
1283   };
1284 
1285   // ---------------------------------------------------------------------------
1286   // Debugger Support
1287 
1288   void DebugBreak();
1289 
1290   // ---------------------------------------------------------------------------
1291   // Exception handling
1292 
1293   // Push a new try handler and link into try handler chain.
1294   void PushTryHandler(StackHandler::Kind kind, int handler_index);
1295 
1296   // Unlink the stack handler on top of the stack from the try handler chain.
1297   // Must preserve the result register.
1298   void PopTryHandler();
1299 
1300 
1301   // ---------------------------------------------------------------------------
1302   // Allocation support
1303 
1304   // Allocate an object in new space or old pointer space. The object_size is
1305   // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS
1306   // is passed. The allocated object is returned in result.
1307   //
1308   // If the new space is exhausted control continues at the gc_required label.
1309   // In this case, the result and scratch registers may still be clobbered.
1310   // If flags includes TAG_OBJECT, the result is tagged as as a heap object.
1311   void Allocate(Register object_size,
1312                 Register result,
1313                 Register scratch1,
1314                 Register scratch2,
1315                 Label* gc_required,
1316                 AllocationFlags flags);
1317 
1318   void Allocate(int object_size,
1319                 Register result,
1320                 Register scratch1,
1321                 Register scratch2,
1322                 Label* gc_required,
1323                 AllocationFlags flags);
1324 
1325   // Undo allocation in new space. The object passed and objects allocated after
1326   // it will no longer be allocated. The caller must make sure that no pointers
1327   // are left to the object(s) no longer allocated as they would be invalid when
1328   // allocation is undone.
1329   void UndoAllocationInNewSpace(Register object, Register scratch);
1330 
1331   void AllocateTwoByteString(Register result,
1332                              Register length,
1333                              Register scratch1,
1334                              Register scratch2,
1335                              Register scratch3,
1336                              Label* gc_required);
1337   void AllocateAsciiString(Register result,
1338                            Register length,
1339                            Register scratch1,
1340                            Register scratch2,
1341                            Register scratch3,
1342                            Label* gc_required);
1343   void AllocateTwoByteConsString(Register result,
1344                                  Register length,
1345                                  Register scratch1,
1346                                  Register scratch2,
1347                                  Label* gc_required);
1348   void AllocateAsciiConsString(Register result,
1349                                Register length,
1350                                Register scratch1,
1351                                Register scratch2,
1352                                Label* gc_required);
1353   void AllocateTwoByteSlicedString(Register result,
1354                                    Register length,
1355                                    Register scratch1,
1356                                    Register scratch2,
1357                                    Label* gc_required);
1358   void AllocateAsciiSlicedString(Register result,
1359                                  Register length,
1360                                  Register scratch1,
1361                                  Register scratch2,
1362                                  Label* gc_required);
1363 
1364   // Allocates a heap number or jumps to the gc_required label if the young
1365   // space is full and a scavenge is needed.
1366   // All registers are clobbered.
1367   // If no heap_number_map register is provided, the function will take care of
1368   // loading it.
1369   void AllocateHeapNumber(Register result,
1370                           Label* gc_required,
1371                           Register scratch1,
1372                           Register scratch2,
1373                           CPURegister value = NoFPReg,
1374                           CPURegister heap_number_map = NoReg);
1375 
1376   // ---------------------------------------------------------------------------
1377   // Support functions.
1378 
1379   // Try to get function prototype of a function and puts the value in the
1380   // result register. Checks that the function really is a function and jumps
1381   // to the miss label if the fast checks fail. The function register will be
1382   // untouched; the other registers may be clobbered.
1383   enum BoundFunctionAction {
1384     kMissOnBoundFunction,
1385     kDontMissOnBoundFunction
1386   };
1387 
1388   void TryGetFunctionPrototype(Register function,
1389                                Register result,
1390                                Register scratch,
1391                                Label* miss,
1392                                BoundFunctionAction action =
1393                                  kDontMissOnBoundFunction);
1394 
1395   // Compare object type for heap object.  heap_object contains a non-Smi
1396   // whose object type should be compared with the given type.  This both
1397   // sets the flags and leaves the object type in the type_reg register.
1398   // It leaves the map in the map register (unless the type_reg and map register
1399   // are the same register).  It leaves the heap object in the heap_object
1400   // register unless the heap_object register is the same register as one of the
1401   // other registers.
1402   void CompareObjectType(Register heap_object,
1403                          Register map,
1404                          Register type_reg,
1405                          InstanceType type);
1406 
1407 
1408   // Compare object type for heap object, and branch if equal (or not.)
1409   // heap_object contains a non-Smi whose object type should be compared with
1410   // the given type.  This both sets the flags and leaves the object type in
1411   // the type_reg register. It leaves the map in the map register (unless the
1412   // type_reg and map register are the same register).  It leaves the heap
1413   // object in the heap_object register unless the heap_object register is the
1414   // same register as one of the other registers.
1415   void JumpIfObjectType(Register object,
1416                         Register map,
1417                         Register type_reg,
1418                         InstanceType type,
1419                         Label* if_cond_pass,
1420                         Condition cond = eq);
1421 
1422   void JumpIfNotObjectType(Register object,
1423                            Register map,
1424                            Register type_reg,
1425                            InstanceType type,
1426                            Label* if_not_object);
1427 
1428   // Compare instance type in a map.  map contains a valid map object whose
1429   // object type should be compared with the given type.  This both
1430   // sets the flags and leaves the object type in the type_reg register.
1431   void CompareInstanceType(Register map,
1432                            Register type_reg,
1433                            InstanceType type);
1434 
1435   // Compare an object's map with the specified map. Condition flags are set
1436   // with result of map compare.
1437   void CompareMap(Register obj,
1438                   Register scratch,
1439                   Handle<Map> map);
1440 
1441   // As above, but the map of the object is already loaded into the register
1442   // which is preserved by the code generated.
1443   void CompareMap(Register obj_map,
1444                   Handle<Map> map);
1445 
1446   // Check if the map of an object is equal to a specified map and branch to
1447   // label if not. Skip the smi check if not required (object is known to be a
1448   // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
1449   // against maps that are ElementsKind transition maps of the specified map.
1450   void CheckMap(Register obj,
1451                 Register scratch,
1452                 Handle<Map> map,
1453                 Label* fail,
1454                 SmiCheckType smi_check_type);
1455 
1456 
1457   void CheckMap(Register obj,
1458                 Register scratch,
1459                 Heap::RootListIndex index,
1460                 Label* fail,
1461                 SmiCheckType smi_check_type);
1462 
1463   // As above, but the map of the object is already loaded into obj_map, and is
1464   // preserved.
1465   void CheckMap(Register obj_map,
1466                 Handle<Map> map,
1467                 Label* fail,
1468                 SmiCheckType smi_check_type);
1469 
1470   // Check if the map of an object is equal to a specified map and branch to a
1471   // specified target if equal. Skip the smi check if not required (object is
1472   // known to be a heap object)
1473   void DispatchMap(Register obj,
1474                    Register scratch,
1475                    Handle<Map> map,
1476                    Handle<Code> success,
1477                    SmiCheckType smi_check_type);
1478 
1479   // Test the bitfield of the heap object map with mask and set the condition
1480   // flags. The object register is preserved.
1481   void TestMapBitfield(Register object, uint64_t mask);
1482 
1483   // Load the elements kind field from a map, and return it in the result
1484   // register.
1485   void LoadElementsKindFromMap(Register result, Register map);
1486 
1487   // Compare the object in a register to a value from the root list.
1488   void CompareRoot(const Register& obj, Heap::RootListIndex index);
1489 
1490   // Compare the object in a register to a value and jump if they are equal.
1491   void JumpIfRoot(const Register& obj,
1492                   Heap::RootListIndex index,
1493                   Label* if_equal);
1494 
1495   // Compare the object in a register to a value and jump if they are not equal.
1496   void JumpIfNotRoot(const Register& obj,
1497                      Heap::RootListIndex index,
1498                      Label* if_not_equal);
1499 
1500   // Load and check the instance type of an object for being a unique name.
1501   // Loads the type into the second argument register.
1502   // The object and type arguments can be the same register; in that case it
1503   // will be overwritten with the type.
1504   // Fall-through if the object was a string and jump on fail otherwise.
1505   inline void IsObjectNameType(Register object, Register type, Label* fail);
1506 
1507   inline void IsObjectJSObjectType(Register heap_object,
1508                                    Register map,
1509                                    Register scratch,
1510                                    Label* fail);
1511 
1512   // Check the instance type in the given map to see if it corresponds to a
1513   // JS object type. Jump to the fail label if this is not the case and fall
1514   // through otherwise. However if fail label is NULL, no branch will be
1515   // performed and the flag will be updated. You can test the flag for "le"
1516   // condition to test if it is a valid JS object type.
1517   inline void IsInstanceJSObjectType(Register map,
1518                                      Register scratch,
1519                                      Label* fail);
1520 
1521   // Load and check the instance type of an object for being a string.
1522   // Loads the type into the second argument register.
1523   // The object and type arguments can be the same register; in that case it
1524   // will be overwritten with the type.
1525   // Jumps to not_string or string appropriate. If the appropriate label is
1526   // NULL, fall through.
1527   inline void IsObjectJSStringType(Register object, Register type,
1528                                    Label* not_string, Label* string = NULL);
1529 
1530   // Compare the contents of a register with an operand, and branch to true,
1531   // false or fall through, depending on condition.
1532   void CompareAndSplit(const Register& lhs,
1533                        const Operand& rhs,
1534                        Condition cond,
1535                        Label* if_true,
1536                        Label* if_false,
1537                        Label* fall_through);
1538 
1539   // Test the bits of register defined by bit_pattern, and branch to
1540   // if_any_set, if_all_clear or fall_through accordingly.
1541   void TestAndSplit(const Register& reg,
1542                     uint64_t bit_pattern,
1543                     Label* if_all_clear,
1544                     Label* if_any_set,
1545                     Label* fall_through);
1546 
1547   // Check if a map for a JSObject indicates that the object has fast elements.
1548   // Jump to the specified label if it does not.
1549   void CheckFastElements(Register map, Register scratch, Label* fail);
1550 
1551   // Check if a map for a JSObject indicates that the object can have both smi
1552   // and HeapObject elements.  Jump to the specified label if it does not.
1553   void CheckFastObjectElements(Register map, Register scratch, Label* fail);
1554 
1555   // Check to see if number can be stored as a double in FastDoubleElements.
1556   // If it can, store it at the index specified by key_reg in the array,
1557   // otherwise jump to fail.
1558   void StoreNumberToDoubleElements(Register value_reg,
1559                                    Register key_reg,
1560                                    Register elements_reg,
1561                                    Register scratch1,
1562                                    FPRegister fpscratch1,
1563                                    Label* fail,
1564                                    int elements_offset = 0);
1565 
1566   // Picks out an array index from the hash field.
1567   // Register use:
1568   //   hash - holds the index's hash. Clobbered.
1569   //   index - holds the overwritten index on exit.
1570   void IndexFromHash(Register hash, Register index);
1571 
1572   // ---------------------------------------------------------------------------
1573   // Inline caching support.
1574 
1575   void EmitSeqStringSetCharCheck(Register string,
1576                                  Register index,
1577                                  SeqStringSetCharCheckIndexType index_type,
1578                                  Register scratch,
1579                                  uint32_t encoding_mask);
1580 
1581   // Generate code for checking access rights - used for security checks
1582   // on access to global objects across environments. The holder register
1583   // is left untouched, whereas both scratch registers are clobbered.
1584   void CheckAccessGlobalProxy(Register holder_reg,
1585                               Register scratch1,
1586                               Register scratch2,
1587                               Label* miss);
1588 
1589   // Hash the interger value in 'key' register.
1590   // It uses the same algorithm as ComputeIntegerHash in utils.h.
1591   void GetNumberHash(Register key, Register scratch);
1592 
1593   // Load value from the dictionary.
1594   //
1595   // elements - holds the slow-case elements of the receiver on entry.
1596   //            Unchanged unless 'result' is the same register.
1597   //
1598   // key      - holds the smi key on entry.
1599   //            Unchanged unless 'result' is the same register.
1600   //
1601   // result   - holds the result on exit if the load succeeded.
1602   //            Allowed to be the same as 'key' or 'result'.
1603   //            Unchanged on bailout so 'key' or 'result' can be used
1604   //            in further computation.
1605   void LoadFromNumberDictionary(Label* miss,
1606                                 Register elements,
1607                                 Register key,
1608                                 Register result,
1609                                 Register scratch0,
1610                                 Register scratch1,
1611                                 Register scratch2,
1612                                 Register scratch3);
1613 
1614   // ---------------------------------------------------------------------------
1615   // Frames.
1616 
1617   // Activation support.
1618   void EnterFrame(StackFrame::Type type);
1619   void LeaveFrame(StackFrame::Type type);
1620 
1621   // Returns map with validated enum cache in object register.
1622   void CheckEnumCache(Register object,
1623                       Register null_value,
1624                       Register scratch0,
1625                       Register scratch1,
1626                       Register scratch2,
1627                       Register scratch3,
1628                       Label* call_runtime);
1629 
1630   // AllocationMemento support. Arrays may have an associated
1631   // AllocationMemento object that can be checked for in order to pretransition
1632   // to another type.
1633   // On entry, receiver should point to the array object.
1634   // If allocation info is present, the Z flag is set (so that the eq
1635   // condition will pass).
1636   void TestJSArrayForAllocationMemento(Register receiver,
1637                                        Register scratch1,
1638                                        Register scratch2,
1639                                        Label* no_memento_found);
1640 
JumpIfJSArrayHasAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * memento_found)1641   void JumpIfJSArrayHasAllocationMemento(Register receiver,
1642                                          Register scratch1,
1643                                          Register scratch2,
1644                                          Label* memento_found) {
1645     Label no_memento_found;
1646     TestJSArrayForAllocationMemento(receiver, scratch1, scratch2,
1647                                     &no_memento_found);
1648     B(eq, memento_found);
1649     Bind(&no_memento_found);
1650   }
1651 
1652   // The stack pointer has to switch between csp and jssp when setting up and
1653   // destroying the exit frame. Hence preserving/restoring the registers is
1654   // slightly more complicated than simple push/pop operations.
1655   void ExitFramePreserveFPRegs();
1656   void ExitFrameRestoreFPRegs();
1657 
1658   // Generates function and stub prologue code.
1659   void StubPrologue();
1660   void Prologue(bool code_pre_aging);
1661 
1662   // Enter exit frame. Exit frames are used when calling C code from generated
1663   // (JavaScript) code.
1664   //
1665   // The stack pointer must be jssp on entry, and will be set to csp by this
1666   // function. The frame pointer is also configured, but the only other
1667   // registers modified by this function are the provided scratch register, and
1668   // jssp.
1669   //
1670   // The 'extra_space' argument can be used to allocate some space in the exit
1671   // frame that will be ignored by the GC. This space will be reserved in the
1672   // bottom of the frame immediately above the return address slot.
1673   //
1674   // Set up a stack frame and registers as follows:
1675   //         fp[8]: CallerPC (lr)
1676   //   fp -> fp[0]: CallerFP (old fp)
1677   //         fp[-8]: SPOffset (new csp)
1678   //         fp[-16]: CodeObject()
1679   //         fp[-16 - fp-size]: Saved doubles, if saved_doubles is true.
1680   //         csp[8]: Memory reserved for the caller if extra_space != 0.
1681   //                 Alignment padding, if necessary.
1682   //  csp -> csp[0]: Space reserved for the return address.
1683   //
1684   // This function also stores the new frame information in the top frame, so
1685   // that the new frame becomes the current frame.
1686   void EnterExitFrame(bool save_doubles,
1687                       const Register& scratch,
1688                       int extra_space = 0);
1689 
1690   // Leave the current exit frame, after a C function has returned to generated
1691   // (JavaScript) code.
1692   //
1693   // This effectively unwinds the operation of EnterExitFrame:
1694   //  * Preserved doubles are restored (if restore_doubles is true).
1695   //  * The frame information is removed from the top frame.
1696   //  * The exit frame is dropped.
1697   //  * The stack pointer is reset to jssp.
1698   //
1699   // The stack pointer must be csp on entry.
1700   void LeaveExitFrame(bool save_doubles,
1701                       const Register& scratch,
1702                       bool restore_context);
1703 
1704   void LoadContext(Register dst, int context_chain_length);
1705 
1706   // Emit code for a truncating division by a constant. The dividend register is
1707   // unchanged. Dividend and result must be different.
1708   void TruncatingDiv(Register result, Register dividend, int32_t divisor);
1709 
1710   // ---------------------------------------------------------------------------
1711   // StatsCounter support
1712 
1713   void SetCounter(StatsCounter* counter, int value, Register scratch1,
1714                   Register scratch2);
1715   void IncrementCounter(StatsCounter* counter, int value, Register scratch1,
1716                         Register scratch2);
1717   void DecrementCounter(StatsCounter* counter, int value, Register scratch1,
1718                         Register scratch2);
1719 
1720   // ---------------------------------------------------------------------------
1721   // Garbage collector support (GC).
1722 
1723   enum RememberedSetFinalAction {
1724     kReturnAtEnd,
1725     kFallThroughAtEnd
1726   };
1727 
1728   // Record in the remembered set the fact that we have a pointer to new space
1729   // at the address pointed to by the addr register. Only works if addr is not
1730   // in new space.
1731   void RememberedSetHelper(Register object,  // Used for debug code.
1732                            Register addr,
1733                            Register scratch1,
1734                            SaveFPRegsMode save_fp,
1735                            RememberedSetFinalAction and_then);
1736 
1737   // Push and pop the registers that can hold pointers, as defined by the
1738   // RegList constant kSafepointSavedRegisters.
1739   void PushSafepointRegisters();
1740   void PopSafepointRegisters();
1741 
1742   void PushSafepointRegistersAndDoubles();
1743   void PopSafepointRegistersAndDoubles();
1744 
1745   // Store value in register src in the safepoint stack slot for register dst.
StoreToSafepointRegisterSlot(Register src,Register dst)1746   void StoreToSafepointRegisterSlot(Register src, Register dst) {
1747     Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1748   }
1749 
1750   // Load the value of the src register from its safepoint stack slot
1751   // into register dst.
LoadFromSafepointRegisterSlot(Register dst,Register src)1752   void LoadFromSafepointRegisterSlot(Register dst, Register src) {
1753     Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize);
1754   }
1755 
1756   void CheckPageFlagSet(const Register& object,
1757                         const Register& scratch,
1758                         int mask,
1759                         Label* if_any_set);
1760 
1761   void CheckPageFlagClear(const Register& object,
1762                           const Register& scratch,
1763                           int mask,
1764                           Label* if_all_clear);
1765 
1766   void CheckMapDeprecated(Handle<Map> map,
1767                           Register scratch,
1768                           Label* if_deprecated);
1769 
1770   // Check if object is in new space and jump accordingly.
1771   // Register 'object' is preserved.
JumpIfNotInNewSpace(Register object,Label * branch)1772   void JumpIfNotInNewSpace(Register object,
1773                            Label* branch) {
1774     InNewSpace(object, ne, branch);
1775   }
1776 
JumpIfInNewSpace(Register object,Label * branch)1777   void JumpIfInNewSpace(Register object,
1778                         Label* branch) {
1779     InNewSpace(object, eq, branch);
1780   }
1781 
1782   // Notify the garbage collector that we wrote a pointer into an object.
1783   // |object| is the object being stored into, |value| is the object being
1784   // stored.  value and scratch registers are clobbered by the operation.
1785   // The offset is the offset from the start of the object, not the offset from
1786   // the tagged HeapObject pointer.  For use with FieldOperand(reg, off).
1787   void RecordWriteField(
1788       Register object,
1789       int offset,
1790       Register value,
1791       Register scratch,
1792       LinkRegisterStatus lr_status,
1793       SaveFPRegsMode save_fp,
1794       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1795       SmiCheck smi_check = INLINE_SMI_CHECK,
1796       PointersToHereCheck pointers_to_here_check_for_value =
1797           kPointersToHereMaybeInteresting);
1798 
1799   // As above, but the offset has the tag presubtracted. For use with
1800   // MemOperand(reg, off).
1801   inline void RecordWriteContextSlot(
1802       Register context,
1803       int offset,
1804       Register value,
1805       Register scratch,
1806       LinkRegisterStatus lr_status,
1807       SaveFPRegsMode save_fp,
1808       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1809       SmiCheck smi_check = INLINE_SMI_CHECK,
1810       PointersToHereCheck pointers_to_here_check_for_value =
1811           kPointersToHereMaybeInteresting) {
1812     RecordWriteField(context,
1813                      offset + kHeapObjectTag,
1814                      value,
1815                      scratch,
1816                      lr_status,
1817                      save_fp,
1818                      remembered_set_action,
1819                      smi_check,
1820                      pointers_to_here_check_for_value);
1821   }
1822 
1823   void RecordWriteForMap(
1824       Register object,
1825       Register map,
1826       Register dst,
1827       LinkRegisterStatus lr_status,
1828       SaveFPRegsMode save_fp);
1829 
1830   // For a given |object| notify the garbage collector that the slot |address|
1831   // has been written.  |value| is the object being stored. The value and
1832   // address registers are clobbered by the operation.
1833   void RecordWrite(
1834       Register object,
1835       Register address,
1836       Register value,
1837       LinkRegisterStatus lr_status,
1838       SaveFPRegsMode save_fp,
1839       RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
1840       SmiCheck smi_check = INLINE_SMI_CHECK,
1841       PointersToHereCheck pointers_to_here_check_for_value =
1842           kPointersToHereMaybeInteresting);
1843 
1844   // Checks the color of an object. If the object is already grey or black
1845   // then we just fall through, since it is already live. If it is white and
1846   // we can determine that it doesn't need to be scanned, then we just mark it
1847   // black and fall through. For the rest we jump to the label so the
1848   // incremental marker can fix its assumptions.
1849   void EnsureNotWhite(Register object,
1850                       Register scratch1,
1851                       Register scratch2,
1852                       Register scratch3,
1853                       Register scratch4,
1854                       Label* object_is_white_and_not_data);
1855 
1856   // Detects conservatively whether an object is data-only, i.e. it does need to
1857   // be scanned by the garbage collector.
1858   void JumpIfDataObject(Register value,
1859                         Register scratch,
1860                         Label* not_data_object);
1861 
1862   // Helper for finding the mark bits for an address.
1863   // Note that the behaviour slightly differs from other architectures.
1864   // On exit:
1865   //  - addr_reg is unchanged.
1866   //  - The bitmap register points at the word with the mark bits.
1867   //  - The shift register contains the index of the first color bit for this
1868   //    object in the bitmap.
1869   inline void GetMarkBits(Register addr_reg,
1870                           Register bitmap_reg,
1871                           Register shift_reg);
1872 
1873   // Check if an object has a given incremental marking color.
1874   void HasColor(Register object,
1875                 Register scratch0,
1876                 Register scratch1,
1877                 Label* has_color,
1878                 int first_bit,
1879                 int second_bit);
1880 
1881   void JumpIfBlack(Register object,
1882                    Register scratch0,
1883                    Register scratch1,
1884                    Label* on_black);
1885 
1886 
1887   // Get the location of a relocated constant (its address in the constant pool)
1888   // from its load site.
1889   void GetRelocatedValueLocation(Register ldr_location,
1890                                  Register result);
1891 
1892 
1893   // ---------------------------------------------------------------------------
1894   // Debugging.
1895 
1896   // Calls Abort(msg) if the condition cond is not satisfied.
1897   // Use --debug_code to enable.
1898   void Assert(Condition cond, BailoutReason reason);
1899   void AssertRegisterIsClear(Register reg, BailoutReason reason);
1900   void AssertRegisterIsRoot(
1901       Register reg,
1902       Heap::RootListIndex index,
1903       BailoutReason reason = kRegisterDidNotMatchExpectedRoot);
1904   void AssertFastElements(Register elements);
1905 
1906   // Abort if the specified register contains the invalid color bit pattern.
1907   // The pattern must be in bits [1:0] of 'reg' register.
1908   //
1909   // If emit_debug_code() is false, this emits no code.
1910   void AssertHasValidColor(const Register& reg);
1911 
1912   // Abort if 'object' register doesn't point to a string object.
1913   //
1914   // If emit_debug_code() is false, this emits no code.
1915   void AssertIsString(const Register& object);
1916 
1917   // Like Assert(), but always enabled.
1918   void Check(Condition cond, BailoutReason reason);
1919   void CheckRegisterIsClear(Register reg, BailoutReason reason);
1920 
1921   // Print a message to stderr and abort execution.
1922   void Abort(BailoutReason reason);
1923 
1924   // Conditionally load the cached Array transitioned map of type
1925   // transitioned_kind from the native context if the map in register
1926   // map_in_out is the cached Array map in the native context of
1927   // expected_kind.
1928   void LoadTransitionedArrayMapConditional(
1929       ElementsKind expected_kind,
1930       ElementsKind transitioned_kind,
1931       Register map_in_out,
1932       Register scratch1,
1933       Register scratch2,
1934       Label* no_map_match);
1935 
1936   void LoadGlobalFunction(int index, Register function);
1937 
1938   // Load the initial map from the global function. The registers function and
1939   // map can be the same, function is then overwritten.
1940   void LoadGlobalFunctionInitialMap(Register function,
1941                                     Register map,
1942                                     Register scratch);
1943 
TmpList()1944   CPURegList* TmpList() { return &tmp_list_; }
FPTmpList()1945   CPURegList* FPTmpList() { return &fptmp_list_; }
1946 
1947   static CPURegList DefaultTmpList();
1948   static CPURegList DefaultFPTmpList();
1949 
1950   // Like printf, but print at run-time from generated code.
1951   //
1952   // The caller must ensure that arguments for floating-point placeholders
1953   // (such as %e, %f or %g) are FPRegisters, and that arguments for integer
1954   // placeholders are Registers.
1955   //
1956   // At the moment it is only possible to print the value of csp if it is the
1957   // current stack pointer. Otherwise, the MacroAssembler will automatically
1958   // update csp on every push (using BumpSystemStackPointer), so determining its
1959   // value is difficult.
1960   //
1961   // Format placeholders that refer to more than one argument, or to a specific
1962   // argument, are not supported. This includes formats like "%1$d" or "%.*d".
1963   //
1964   // This function automatically preserves caller-saved registers so that
1965   // calling code can use Printf at any point without having to worry about
1966   // corruption. The preservation mechanism generates a lot of code. If this is
1967   // a problem, preserve the important registers manually and then call
1968   // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are
1969   // implicitly preserved.
1970   void Printf(const char * format,
1971               CPURegister arg0 = NoCPUReg,
1972               CPURegister arg1 = NoCPUReg,
1973               CPURegister arg2 = NoCPUReg,
1974               CPURegister arg3 = NoCPUReg);
1975 
1976   // Like Printf, but don't preserve any caller-saved registers, not even 'lr'.
1977   //
1978   // The return code from the system printf call will be returned in x0.
1979   void PrintfNoPreserve(const char * format,
1980                         const CPURegister& arg0 = NoCPUReg,
1981                         const CPURegister& arg1 = NoCPUReg,
1982                         const CPURegister& arg2 = NoCPUReg,
1983                         const CPURegister& arg3 = NoCPUReg);
1984 
1985   // Code ageing support functions.
1986 
1987   // Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a
1988   // function as old, it replaces some of the function prologue (generated by
1989   // FullCodeGenerator::Generate) with a call to a special stub (ultimately
1990   // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the
1991   // function prologue to its initial young state (indicating that it has been
1992   // recently run) and continues. A young function is therefore one which has a
1993   // normal frame setup sequence, and an old function has a code age sequence
1994   // which calls a code ageing stub.
1995 
1996   // Set up a basic stack frame for young code (or code exempt from ageing) with
1997   // type FUNCTION. It may be patched later for code ageing support. This is
1998   // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence.
1999   //
2000   // This function takes an Assembler so it can be called from either a
2001   // MacroAssembler or a PatchingAssembler context.
2002   static void EmitFrameSetupForCodeAgePatching(Assembler* assm);
2003 
2004   // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context.
2005   void EmitFrameSetupForCodeAgePatching();
2006 
2007   // Emit a code age sequence that calls the relevant code age stub. The code
2008   // generated by this sequence is expected to replace the code generated by
2009   // EmitFrameSetupForCodeAgePatching, and represents an old function.
2010   //
2011   // If stub is NULL, this function generates the code age sequence but omits
2012   // the stub address that is normally embedded in the instruction stream. This
2013   // can be used by debug code to verify code age sequences.
2014   static void EmitCodeAgeSequence(Assembler* assm, Code* stub);
2015 
2016   // Call EmitCodeAgeSequence from a MacroAssembler context.
2017   void EmitCodeAgeSequence(Code* stub);
2018 
2019   // Return true if the sequence is a young sequence geneated by
2020   // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the
2021   // sequence is a code age sequence (emitted by EmitCodeAgeSequence).
2022   static bool IsYoungSequence(Isolate* isolate, byte* sequence);
2023 
2024   // Jumps to found label if a prototype map has dictionary elements.
2025   void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
2026                                         Register scratch1, Label* found);
2027 
2028   // Perform necessary maintenance operations before a push or after a pop.
2029   //
2030   // Note that size is specified in bytes.
2031   void PushPreamble(Operand total_size);
2032   void PopPostamble(Operand total_size);
2033 
PushPreamble(int count,int size)2034   void PushPreamble(int count, int size) { PushPreamble(count * size); }
PopPostamble(int count,int size)2035   void PopPostamble(int count, int size) { PopPostamble(count * size); }
2036 
2037  private:
2038   // Helpers for CopyFields.
2039   // These each implement CopyFields in a different way.
2040   void CopyFieldsLoopPairsHelper(Register dst, Register src, unsigned count,
2041                                  Register scratch1, Register scratch2,
2042                                  Register scratch3, Register scratch4,
2043                                  Register scratch5);
2044   void CopyFieldsUnrolledPairsHelper(Register dst, Register src, unsigned count,
2045                                      Register scratch1, Register scratch2,
2046                                      Register scratch3, Register scratch4);
2047   void CopyFieldsUnrolledHelper(Register dst, Register src, unsigned count,
2048                                 Register scratch1, Register scratch2,
2049                                 Register scratch3);
2050 
2051   // The actual Push and Pop implementations. These don't generate any code
2052   // other than that required for the push or pop. This allows
2053   // (Push|Pop)CPURegList to bundle together run-time assertions for a large
2054   // block of registers.
2055   //
2056   // Note that size is per register, and is specified in bytes.
2057   void PushHelper(int count, int size,
2058                   const CPURegister& src0, const CPURegister& src1,
2059                   const CPURegister& src2, const CPURegister& src3);
2060   void PopHelper(int count, int size,
2061                  const CPURegister& dst0, const CPURegister& dst1,
2062                  const CPURegister& dst2, const CPURegister& dst3);
2063 
2064   // Call Printf. On a native build, a simple call will be generated, but if the
2065   // simulator is being used then a suitable pseudo-instruction is used. The
2066   // arguments and stack (csp) must be prepared by the caller as for a normal
2067   // AAPCS64 call to 'printf'.
2068   //
2069   // The 'args' argument should point to an array of variable arguments in their
2070   // proper PCS registers (and in calling order). The argument registers can
2071   // have mixed types. The format string (x0) should not be included.
2072   void CallPrintf(int arg_count = 0, const CPURegister * args = NULL);
2073 
2074   // Helper for throwing exceptions.  Compute a handler address and jump to
2075   // it.  See the implementation for register usage.
2076   void JumpToHandlerEntry(Register exception,
2077                           Register object,
2078                           Register state,
2079                           Register scratch1,
2080                           Register scratch2);
2081 
2082   // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
2083   void InNewSpace(Register object,
2084                   Condition cond,  // eq for new space, ne otherwise.
2085                   Label* branch);
2086 
2087   // Try to represent a double as an int so that integer fast-paths may be
2088   // used. Not every valid integer value is guaranteed to be caught.
2089   // It supports both 32-bit and 64-bit integers depending whether 'as_int'
2090   // is a W or X register.
2091   //
2092   // This does not distinguish between +0 and -0, so if this distinction is
2093   // important it must be checked separately.
2094   //
2095   // On output the Z flag is set if the operation was successful.
2096   void TryRepresentDoubleAsInt(Register as_int,
2097                                FPRegister value,
2098                                FPRegister scratch_d,
2099                                Label* on_successful_conversion = NULL,
2100                                Label* on_failed_conversion = NULL);
2101 
2102   bool generating_stub_;
2103 #if DEBUG
2104   // Tell whether any of the macro instruction can be used. When false the
2105   // MacroAssembler will assert if a method which can emit a variable number
2106   // of instructions is called.
2107   bool allow_macro_instructions_;
2108 #endif
2109   bool has_frame_;
2110 
2111   // The Abort method should call a V8 runtime function, but the CallRuntime
2112   // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will
2113   // use a simpler abort mechanism that doesn't depend on CEntryStub.
2114   //
2115   // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is
2116   // being generated.
2117   bool use_real_aborts_;
2118 
2119   // This handle will be patched with the code object on installation.
2120   Handle<Object> code_object_;
2121 
2122   // The register to use as a stack pointer for stack operations.
2123   Register sp_;
2124 
2125   // Scratch registers available for use by the MacroAssembler.
2126   CPURegList tmp_list_;
2127   CPURegList fptmp_list_;
2128 
2129   void InitializeNewString(Register string,
2130                            Register length,
2131                            Heap::RootListIndex map_index,
2132                            Register scratch1,
2133                            Register scratch2);
2134 
2135  public:
2136   // Far branches resolving.
2137   //
2138   // The various classes of branch instructions with immediate offsets have
2139   // different ranges. While the Assembler will fail to assemble a branch
2140   // exceeding its range, the MacroAssembler offers a mechanism to resolve
2141   // branches to too distant targets, either by tweaking the generated code to
2142   // use branch instructions with wider ranges or generating veneers.
2143   //
2144   // Currently branches to distant targets are resolved using unconditional
2145   // branch isntructions with a range of +-128MB. If that becomes too little
2146   // (!), the mechanism can be extended to generate special veneers for really
2147   // far targets.
2148 
2149   // Helps resolve branching to labels potentially out of range.
2150   // If the label is not bound, it registers the information necessary to later
2151   // be able to emit a veneer for this branch if necessary.
2152   // If the label is bound, it returns true if the label (or the previous link
2153   // in the label chain) is out of range. In that case the caller is responsible
2154   // for generating appropriate code.
2155   // Otherwise it returns false.
2156   // This function also checks wether veneers need to be emitted.
2157   bool NeedExtraInstructionsOrRegisterBranch(Label *label,
2158                                              ImmBranchType branch_type);
2159 };
2160 
2161 
2162 // Use this scope when you need a one-to-one mapping bewteen methods and
2163 // instructions. This scope prevents the MacroAssembler from being called and
2164 // literal pools from being emitted. It also asserts the number of instructions
2165 // emitted is what you specified when creating the scope.
2166 class InstructionAccurateScope BASE_EMBEDDED {
2167  public:
2168   InstructionAccurateScope(MacroAssembler* masm, size_t count = 0)
masm_(masm)2169       : masm_(masm)
2170 #ifdef DEBUG
2171         ,
2172         size_(count * kInstructionSize)
2173 #endif
2174   {
2175     // Before blocking the const pool, see if it needs to be emitted.
2176     masm_->CheckConstPool(false, true);
2177     masm_->CheckVeneerPool(false, true);
2178 
2179     masm_->StartBlockPools();
2180 #ifdef DEBUG
2181     if (count != 0) {
2182       masm_->bind(&start_);
2183     }
2184     previous_allow_macro_instructions_ = masm_->allow_macro_instructions();
2185     masm_->set_allow_macro_instructions(false);
2186 #endif
2187   }
2188 
~InstructionAccurateScope()2189   ~InstructionAccurateScope() {
2190     masm_->EndBlockPools();
2191 #ifdef DEBUG
2192     if (start_.is_bound()) {
2193       ASSERT(masm_->SizeOfCodeGeneratedSince(&start_) == size_);
2194     }
2195     masm_->set_allow_macro_instructions(previous_allow_macro_instructions_);
2196 #endif
2197   }
2198 
2199  private:
2200   MacroAssembler* masm_;
2201 #ifdef DEBUG
2202   size_t size_;
2203   Label start_;
2204   bool previous_allow_macro_instructions_;
2205 #endif
2206 };
2207 
2208 
2209 // This scope utility allows scratch registers to be managed safely. The
2210 // MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch
2211 // registers. These registers can be allocated on demand, and will be returned
2212 // at the end of the scope.
2213 //
2214 // When the scope ends, the MacroAssembler's lists will be restored to their
2215 // original state, even if the lists were modified by some other means.
2216 class UseScratchRegisterScope {
2217  public:
UseScratchRegisterScope(MacroAssembler * masm)2218   explicit UseScratchRegisterScope(MacroAssembler* masm)
2219       : available_(masm->TmpList()),
2220         availablefp_(masm->FPTmpList()),
2221         old_available_(available_->list()),
2222         old_availablefp_(availablefp_->list()) {
2223     ASSERT(available_->type() == CPURegister::kRegister);
2224     ASSERT(availablefp_->type() == CPURegister::kFPRegister);
2225   }
2226 
2227   ~UseScratchRegisterScope();
2228 
2229   // Take a register from the appropriate temps list. It will be returned
2230   // automatically when the scope ends.
AcquireW()2231   Register AcquireW() { return AcquireNextAvailable(available_).W(); }
AcquireX()2232   Register AcquireX() { return AcquireNextAvailable(available_).X(); }
AcquireS()2233   FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); }
AcquireD()2234   FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); }
2235 
UnsafeAcquire(const Register & reg)2236   Register UnsafeAcquire(const Register& reg) {
2237     return Register(UnsafeAcquire(available_, reg));
2238   }
2239 
2240   Register AcquireSameSizeAs(const Register& reg);
2241   FPRegister AcquireSameSizeAs(const FPRegister& reg);
2242 
2243  private:
2244   static CPURegister AcquireNextAvailable(CPURegList* available);
2245   static CPURegister UnsafeAcquire(CPURegList* available,
2246                                    const CPURegister& reg);
2247 
2248   // Available scratch registers.
2249   CPURegList* available_;     // kRegister
2250   CPURegList* availablefp_;   // kFPRegister
2251 
2252   // The state of the available lists at the start of this scope.
2253   RegList old_available_;     // kRegister
2254   RegList old_availablefp_;   // kFPRegister
2255 };
2256 
2257 
ContextMemOperand(Register context,int index)2258 inline MemOperand ContextMemOperand(Register context, int index) {
2259   return MemOperand(context, Context::SlotOffset(index));
2260 }
2261 
GlobalObjectMemOperand()2262 inline MemOperand GlobalObjectMemOperand() {
2263   return ContextMemOperand(cp, Context::GLOBAL_OBJECT_INDEX);
2264 }
2265 
2266 
2267 // Encode and decode information about patchable inline SMI checks.
2268 class InlineSmiCheckInfo {
2269  public:
2270   explicit InlineSmiCheckInfo(Address info);
2271 
HasSmiCheck()2272   bool HasSmiCheck() const {
2273     return smi_check_ != NULL;
2274   }
2275 
SmiRegister()2276   const Register& SmiRegister() const {
2277     return reg_;
2278   }
2279 
SmiCheck()2280   Instruction* SmiCheck() const {
2281     return smi_check_;
2282   }
2283 
2284   // Use MacroAssembler::InlineData to emit information about patchable inline
2285   // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to
2286   // indicate that there is no inline SMI check. Note that 'reg' cannot be csp.
2287   //
2288   // The generated patch information can be read using the InlineSMICheckInfo
2289   // class.
2290   static void Emit(MacroAssembler* masm, const Register& reg,
2291                    const Label* smi_check);
2292 
2293   // Emit information to indicate that there is no inline SMI check.
EmitNotInlined(MacroAssembler * masm)2294   static void EmitNotInlined(MacroAssembler* masm) {
2295     Label unbound;
2296     Emit(masm, NoReg, &unbound);
2297   }
2298 
2299  private:
2300   Register reg_;
2301   Instruction* smi_check_;
2302 
2303   // Fields in the data encoded by InlineData.
2304 
2305   // A width of 5 (Rd_width) for the SMI register preclues the use of csp,
2306   // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be
2307   // used in a patchable check. The Emit() method checks this.
2308   //
2309   // Note that the total size of the fields is restricted by the underlying
2310   // storage size handled by the BitField class, which is a uint32_t.
2311   class RegisterBits : public BitField<unsigned, 0, 5> {};
2312   class DeltaBits : public BitField<uint32_t, 5, 32-5> {};
2313 };
2314 
2315 } }  // namespace v8::internal
2316 
2317 #ifdef GENERATED_CODE_COVERAGE
2318 #error "Unsupported option"
2319 #define CODE_COVERAGE_STRINGIFY(x) #x
2320 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
2321 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
2322 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
2323 #else
2324 #define ACCESS_MASM(masm) masm->
2325 #endif
2326 
2327 #endif  // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_
2328