1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6 #include "src/lithium-allocator-inl.h"
7
8 #include "src/hydrogen.h"
9 #include "src/string-stream.h"
10
11 #if V8_TARGET_ARCH_IA32
12 #include "src/ia32/lithium-ia32.h"
13 #elif V8_TARGET_ARCH_X64
14 #include "src/x64/lithium-x64.h"
15 #elif V8_TARGET_ARCH_ARM64
16 #include "src/arm64/lithium-arm64.h"
17 #elif V8_TARGET_ARCH_ARM
18 #include "src/arm/lithium-arm.h"
19 #elif V8_TARGET_ARCH_MIPS
20 #include "src/mips/lithium-mips.h"
21 #elif V8_TARGET_ARCH_X87
22 #include "src/x87/lithium-x87.h"
23 #else
24 #error "Unknown architecture."
25 #endif
26
27 namespace v8 {
28 namespace internal {
29
Min(LifetimePosition a,LifetimePosition b)30 static inline LifetimePosition Min(LifetimePosition a, LifetimePosition b) {
31 return a.Value() < b.Value() ? a : b;
32 }
33
34
Max(LifetimePosition a,LifetimePosition b)35 static inline LifetimePosition Max(LifetimePosition a, LifetimePosition b) {
36 return a.Value() > b.Value() ? a : b;
37 }
38
39
UsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint)40 UsePosition::UsePosition(LifetimePosition pos,
41 LOperand* operand,
42 LOperand* hint)
43 : operand_(operand),
44 hint_(hint),
45 pos_(pos),
46 next_(NULL),
47 requires_reg_(false),
48 register_beneficial_(true) {
49 if (operand_ != NULL && operand_->IsUnallocated()) {
50 LUnallocated* unalloc = LUnallocated::cast(operand_);
51 requires_reg_ = unalloc->HasRegisterPolicy() ||
52 unalloc->HasDoubleRegisterPolicy();
53 register_beneficial_ = !unalloc->HasAnyPolicy();
54 }
55 ASSERT(pos_.IsValid());
56 }
57
58
HasHint() const59 bool UsePosition::HasHint() const {
60 return hint_ != NULL && !hint_->IsUnallocated();
61 }
62
63
RequiresRegister() const64 bool UsePosition::RequiresRegister() const {
65 return requires_reg_;
66 }
67
68
RegisterIsBeneficial() const69 bool UsePosition::RegisterIsBeneficial() const {
70 return register_beneficial_;
71 }
72
73
SplitAt(LifetimePosition pos,Zone * zone)74 void UseInterval::SplitAt(LifetimePosition pos, Zone* zone) {
75 ASSERT(Contains(pos) && pos.Value() != start().Value());
76 UseInterval* after = new(zone) UseInterval(pos, end_);
77 after->next_ = next_;
78 next_ = after;
79 end_ = pos;
80 }
81
82
83 #ifdef DEBUG
84
85
Verify() const86 void LiveRange::Verify() const {
87 UsePosition* cur = first_pos_;
88 while (cur != NULL) {
89 ASSERT(Start().Value() <= cur->pos().Value() &&
90 cur->pos().Value() <= End().Value());
91 cur = cur->next();
92 }
93 }
94
95
HasOverlap(UseInterval * target) const96 bool LiveRange::HasOverlap(UseInterval* target) const {
97 UseInterval* current_interval = first_interval_;
98 while (current_interval != NULL) {
99 // Intervals overlap if the start of one is contained in the other.
100 if (current_interval->Contains(target->start()) ||
101 target->Contains(current_interval->start())) {
102 return true;
103 }
104 current_interval = current_interval->next();
105 }
106 return false;
107 }
108
109
110 #endif
111
112
LiveRange(int id,Zone * zone)113 LiveRange::LiveRange(int id, Zone* zone)
114 : id_(id),
115 spilled_(false),
116 kind_(UNALLOCATED_REGISTERS),
117 assigned_register_(kInvalidAssignment),
118 last_interval_(NULL),
119 first_interval_(NULL),
120 first_pos_(NULL),
121 parent_(NULL),
122 next_(NULL),
123 current_interval_(NULL),
124 last_processed_use_(NULL),
125 current_hint_operand_(NULL),
126 spill_operand_(new(zone) LOperand()),
127 spill_start_index_(kMaxInt) { }
128
129
set_assigned_register(int reg,Zone * zone)130 void LiveRange::set_assigned_register(int reg, Zone* zone) {
131 ASSERT(!HasRegisterAssigned() && !IsSpilled());
132 assigned_register_ = reg;
133 ConvertOperands(zone);
134 }
135
136
MakeSpilled(Zone * zone)137 void LiveRange::MakeSpilled(Zone* zone) {
138 ASSERT(!IsSpilled());
139 ASSERT(TopLevel()->HasAllocatedSpillOperand());
140 spilled_ = true;
141 assigned_register_ = kInvalidAssignment;
142 ConvertOperands(zone);
143 }
144
145
HasAllocatedSpillOperand() const146 bool LiveRange::HasAllocatedSpillOperand() const {
147 ASSERT(spill_operand_ != NULL);
148 return !spill_operand_->IsIgnored();
149 }
150
151
SetSpillOperand(LOperand * operand)152 void LiveRange::SetSpillOperand(LOperand* operand) {
153 ASSERT(!operand->IsUnallocated());
154 ASSERT(spill_operand_ != NULL);
155 ASSERT(spill_operand_->IsIgnored());
156 spill_operand_->ConvertTo(operand->kind(), operand->index());
157 }
158
159
NextUsePosition(LifetimePosition start)160 UsePosition* LiveRange::NextUsePosition(LifetimePosition start) {
161 UsePosition* use_pos = last_processed_use_;
162 if (use_pos == NULL) use_pos = first_pos();
163 while (use_pos != NULL && use_pos->pos().Value() < start.Value()) {
164 use_pos = use_pos->next();
165 }
166 last_processed_use_ = use_pos;
167 return use_pos;
168 }
169
170
NextUsePositionRegisterIsBeneficial(LifetimePosition start)171 UsePosition* LiveRange::NextUsePositionRegisterIsBeneficial(
172 LifetimePosition start) {
173 UsePosition* pos = NextUsePosition(start);
174 while (pos != NULL && !pos->RegisterIsBeneficial()) {
175 pos = pos->next();
176 }
177 return pos;
178 }
179
180
PreviousUsePositionRegisterIsBeneficial(LifetimePosition start)181 UsePosition* LiveRange::PreviousUsePositionRegisterIsBeneficial(
182 LifetimePosition start) {
183 UsePosition* pos = first_pos();
184 UsePosition* prev = NULL;
185 while (pos != NULL && pos->pos().Value() < start.Value()) {
186 if (pos->RegisterIsBeneficial()) prev = pos;
187 pos = pos->next();
188 }
189 return prev;
190 }
191
192
NextRegisterPosition(LifetimePosition start)193 UsePosition* LiveRange::NextRegisterPosition(LifetimePosition start) {
194 UsePosition* pos = NextUsePosition(start);
195 while (pos != NULL && !pos->RequiresRegister()) {
196 pos = pos->next();
197 }
198 return pos;
199 }
200
201
CanBeSpilled(LifetimePosition pos)202 bool LiveRange::CanBeSpilled(LifetimePosition pos) {
203 // We cannot spill a live range that has a use requiring a register
204 // at the current or the immediate next position.
205 UsePosition* use_pos = NextRegisterPosition(pos);
206 if (use_pos == NULL) return true;
207 return
208 use_pos->pos().Value() > pos.NextInstruction().InstructionEnd().Value();
209 }
210
211
CreateAssignedOperand(Zone * zone)212 LOperand* LiveRange::CreateAssignedOperand(Zone* zone) {
213 LOperand* op = NULL;
214 if (HasRegisterAssigned()) {
215 ASSERT(!IsSpilled());
216 switch (Kind()) {
217 case GENERAL_REGISTERS:
218 op = LRegister::Create(assigned_register(), zone);
219 break;
220 case DOUBLE_REGISTERS:
221 op = LDoubleRegister::Create(assigned_register(), zone);
222 break;
223 default:
224 UNREACHABLE();
225 }
226 } else if (IsSpilled()) {
227 ASSERT(!HasRegisterAssigned());
228 op = TopLevel()->GetSpillOperand();
229 ASSERT(!op->IsUnallocated());
230 } else {
231 LUnallocated* unalloc = new(zone) LUnallocated(LUnallocated::NONE);
232 unalloc->set_virtual_register(id_);
233 op = unalloc;
234 }
235 return op;
236 }
237
238
FirstSearchIntervalForPosition(LifetimePosition position) const239 UseInterval* LiveRange::FirstSearchIntervalForPosition(
240 LifetimePosition position) const {
241 if (current_interval_ == NULL) return first_interval_;
242 if (current_interval_->start().Value() > position.Value()) {
243 current_interval_ = NULL;
244 return first_interval_;
245 }
246 return current_interval_;
247 }
248
249
AdvanceLastProcessedMarker(UseInterval * to_start_of,LifetimePosition but_not_past) const250 void LiveRange::AdvanceLastProcessedMarker(
251 UseInterval* to_start_of, LifetimePosition but_not_past) const {
252 if (to_start_of == NULL) return;
253 if (to_start_of->start().Value() > but_not_past.Value()) return;
254 LifetimePosition start =
255 current_interval_ == NULL ? LifetimePosition::Invalid()
256 : current_interval_->start();
257 if (to_start_of->start().Value() > start.Value()) {
258 current_interval_ = to_start_of;
259 }
260 }
261
262
SplitAt(LifetimePosition position,LiveRange * result,Zone * zone)263 void LiveRange::SplitAt(LifetimePosition position,
264 LiveRange* result,
265 Zone* zone) {
266 ASSERT(Start().Value() < position.Value());
267 ASSERT(result->IsEmpty());
268 // Find the last interval that ends before the position. If the
269 // position is contained in one of the intervals in the chain, we
270 // split that interval and use the first part.
271 UseInterval* current = FirstSearchIntervalForPosition(position);
272
273 // If the split position coincides with the beginning of a use interval
274 // we need to split use positons in a special way.
275 bool split_at_start = false;
276
277 if (current->start().Value() == position.Value()) {
278 // When splitting at start we need to locate the previous use interval.
279 current = first_interval_;
280 }
281
282 while (current != NULL) {
283 if (current->Contains(position)) {
284 current->SplitAt(position, zone);
285 break;
286 }
287 UseInterval* next = current->next();
288 if (next->start().Value() >= position.Value()) {
289 split_at_start = (next->start().Value() == position.Value());
290 break;
291 }
292 current = next;
293 }
294
295 // Partition original use intervals to the two live ranges.
296 UseInterval* before = current;
297 UseInterval* after = before->next();
298 result->last_interval_ = (last_interval_ == before)
299 ? after // Only interval in the range after split.
300 : last_interval_; // Last interval of the original range.
301 result->first_interval_ = after;
302 last_interval_ = before;
303
304 // Find the last use position before the split and the first use
305 // position after it.
306 UsePosition* use_after = first_pos_;
307 UsePosition* use_before = NULL;
308 if (split_at_start) {
309 // The split position coincides with the beginning of a use interval (the
310 // end of a lifetime hole). Use at this position should be attributed to
311 // the split child because split child owns use interval covering it.
312 while (use_after != NULL && use_after->pos().Value() < position.Value()) {
313 use_before = use_after;
314 use_after = use_after->next();
315 }
316 } else {
317 while (use_after != NULL && use_after->pos().Value() <= position.Value()) {
318 use_before = use_after;
319 use_after = use_after->next();
320 }
321 }
322
323 // Partition original use positions to the two live ranges.
324 if (use_before != NULL) {
325 use_before->next_ = NULL;
326 } else {
327 first_pos_ = NULL;
328 }
329 result->first_pos_ = use_after;
330
331 // Discard cached iteration state. It might be pointing
332 // to the use that no longer belongs to this live range.
333 last_processed_use_ = NULL;
334 current_interval_ = NULL;
335
336 // Link the new live range in the chain before any of the other
337 // ranges linked from the range before the split.
338 result->parent_ = (parent_ == NULL) ? this : parent_;
339 result->kind_ = result->parent_->kind_;
340 result->next_ = next_;
341 next_ = result;
342
343 #ifdef DEBUG
344 Verify();
345 result->Verify();
346 #endif
347 }
348
349
350 // This implements an ordering on live ranges so that they are ordered by their
351 // start positions. This is needed for the correctness of the register
352 // allocation algorithm. If two live ranges start at the same offset then there
353 // is a tie breaker based on where the value is first used. This part of the
354 // ordering is merely a heuristic.
ShouldBeAllocatedBefore(const LiveRange * other) const355 bool LiveRange::ShouldBeAllocatedBefore(const LiveRange* other) const {
356 LifetimePosition start = Start();
357 LifetimePosition other_start = other->Start();
358 if (start.Value() == other_start.Value()) {
359 UsePosition* pos = first_pos();
360 if (pos == NULL) return false;
361 UsePosition* other_pos = other->first_pos();
362 if (other_pos == NULL) return true;
363 return pos->pos().Value() < other_pos->pos().Value();
364 }
365 return start.Value() < other_start.Value();
366 }
367
368
ShortenTo(LifetimePosition start)369 void LiveRange::ShortenTo(LifetimePosition start) {
370 LAllocator::TraceAlloc("Shorten live range %d to [%d\n", id_, start.Value());
371 ASSERT(first_interval_ != NULL);
372 ASSERT(first_interval_->start().Value() <= start.Value());
373 ASSERT(start.Value() < first_interval_->end().Value());
374 first_interval_->set_start(start);
375 }
376
377
EnsureInterval(LifetimePosition start,LifetimePosition end,Zone * zone)378 void LiveRange::EnsureInterval(LifetimePosition start,
379 LifetimePosition end,
380 Zone* zone) {
381 LAllocator::TraceAlloc("Ensure live range %d in interval [%d %d[\n",
382 id_,
383 start.Value(),
384 end.Value());
385 LifetimePosition new_end = end;
386 while (first_interval_ != NULL &&
387 first_interval_->start().Value() <= end.Value()) {
388 if (first_interval_->end().Value() > end.Value()) {
389 new_end = first_interval_->end();
390 }
391 first_interval_ = first_interval_->next();
392 }
393
394 UseInterval* new_interval = new(zone) UseInterval(start, new_end);
395 new_interval->next_ = first_interval_;
396 first_interval_ = new_interval;
397 if (new_interval->next() == NULL) {
398 last_interval_ = new_interval;
399 }
400 }
401
402
AddUseInterval(LifetimePosition start,LifetimePosition end,Zone * zone)403 void LiveRange::AddUseInterval(LifetimePosition start,
404 LifetimePosition end,
405 Zone* zone) {
406 LAllocator::TraceAlloc("Add to live range %d interval [%d %d[\n",
407 id_,
408 start.Value(),
409 end.Value());
410 if (first_interval_ == NULL) {
411 UseInterval* interval = new(zone) UseInterval(start, end);
412 first_interval_ = interval;
413 last_interval_ = interval;
414 } else {
415 if (end.Value() == first_interval_->start().Value()) {
416 first_interval_->set_start(start);
417 } else if (end.Value() < first_interval_->start().Value()) {
418 UseInterval* interval = new(zone) UseInterval(start, end);
419 interval->set_next(first_interval_);
420 first_interval_ = interval;
421 } else {
422 // Order of instruction's processing (see ProcessInstructions) guarantees
423 // that each new use interval either precedes or intersects with
424 // last added interval.
425 ASSERT(start.Value() < first_interval_->end().Value());
426 first_interval_->start_ = Min(start, first_interval_->start_);
427 first_interval_->end_ = Max(end, first_interval_->end_);
428 }
429 }
430 }
431
432
AddUsePosition(LifetimePosition pos,LOperand * operand,LOperand * hint,Zone * zone)433 void LiveRange::AddUsePosition(LifetimePosition pos,
434 LOperand* operand,
435 LOperand* hint,
436 Zone* zone) {
437 LAllocator::TraceAlloc("Add to live range %d use position %d\n",
438 id_,
439 pos.Value());
440 UsePosition* use_pos = new(zone) UsePosition(pos, operand, hint);
441 UsePosition* prev_hint = NULL;
442 UsePosition* prev = NULL;
443 UsePosition* current = first_pos_;
444 while (current != NULL && current->pos().Value() < pos.Value()) {
445 prev_hint = current->HasHint() ? current : prev_hint;
446 prev = current;
447 current = current->next();
448 }
449
450 if (prev == NULL) {
451 use_pos->set_next(first_pos_);
452 first_pos_ = use_pos;
453 } else {
454 use_pos->next_ = prev->next_;
455 prev->next_ = use_pos;
456 }
457
458 if (prev_hint == NULL && use_pos->HasHint()) {
459 current_hint_operand_ = hint;
460 }
461 }
462
463
ConvertOperands(Zone * zone)464 void LiveRange::ConvertOperands(Zone* zone) {
465 LOperand* op = CreateAssignedOperand(zone);
466 UsePosition* use_pos = first_pos();
467 while (use_pos != NULL) {
468 ASSERT(Start().Value() <= use_pos->pos().Value() &&
469 use_pos->pos().Value() <= End().Value());
470
471 if (use_pos->HasOperand()) {
472 ASSERT(op->IsRegister() || op->IsDoubleRegister() ||
473 !use_pos->RequiresRegister());
474 use_pos->operand()->ConvertTo(op->kind(), op->index());
475 }
476 use_pos = use_pos->next();
477 }
478 }
479
480
CanCover(LifetimePosition position) const481 bool LiveRange::CanCover(LifetimePosition position) const {
482 if (IsEmpty()) return false;
483 return Start().Value() <= position.Value() &&
484 position.Value() < End().Value();
485 }
486
487
Covers(LifetimePosition position)488 bool LiveRange::Covers(LifetimePosition position) {
489 if (!CanCover(position)) return false;
490 UseInterval* start_search = FirstSearchIntervalForPosition(position);
491 for (UseInterval* interval = start_search;
492 interval != NULL;
493 interval = interval->next()) {
494 ASSERT(interval->next() == NULL ||
495 interval->next()->start().Value() >= interval->start().Value());
496 AdvanceLastProcessedMarker(interval, position);
497 if (interval->Contains(position)) return true;
498 if (interval->start().Value() > position.Value()) return false;
499 }
500 return false;
501 }
502
503
FirstIntersection(LiveRange * other)504 LifetimePosition LiveRange::FirstIntersection(LiveRange* other) {
505 UseInterval* b = other->first_interval();
506 if (b == NULL) return LifetimePosition::Invalid();
507 LifetimePosition advance_last_processed_up_to = b->start();
508 UseInterval* a = FirstSearchIntervalForPosition(b->start());
509 while (a != NULL && b != NULL) {
510 if (a->start().Value() > other->End().Value()) break;
511 if (b->start().Value() > End().Value()) break;
512 LifetimePosition cur_intersection = a->Intersect(b);
513 if (cur_intersection.IsValid()) {
514 return cur_intersection;
515 }
516 if (a->start().Value() < b->start().Value()) {
517 a = a->next();
518 if (a == NULL || a->start().Value() > other->End().Value()) break;
519 AdvanceLastProcessedMarker(a, advance_last_processed_up_to);
520 } else {
521 b = b->next();
522 }
523 }
524 return LifetimePosition::Invalid();
525 }
526
527
LAllocator(int num_values,HGraph * graph)528 LAllocator::LAllocator(int num_values, HGraph* graph)
529 : zone_(graph->isolate()),
530 chunk_(NULL),
531 live_in_sets_(graph->blocks()->length(), zone()),
532 live_ranges_(num_values * 2, zone()),
533 fixed_live_ranges_(NULL),
534 fixed_double_live_ranges_(NULL),
535 unhandled_live_ranges_(num_values * 2, zone()),
536 active_live_ranges_(8, zone()),
537 inactive_live_ranges_(8, zone()),
538 reusable_slots_(8, zone()),
539 next_virtual_register_(num_values),
540 first_artificial_register_(num_values),
541 mode_(UNALLOCATED_REGISTERS),
542 num_registers_(-1),
543 graph_(graph),
544 has_osr_entry_(false),
545 allocation_ok_(true) { }
546
547
InitializeLivenessAnalysis()548 void LAllocator::InitializeLivenessAnalysis() {
549 // Initialize the live_in sets for each block to NULL.
550 int block_count = graph_->blocks()->length();
551 live_in_sets_.Initialize(block_count, zone());
552 live_in_sets_.AddBlock(NULL, block_count, zone());
553 }
554
555
ComputeLiveOut(HBasicBlock * block)556 BitVector* LAllocator::ComputeLiveOut(HBasicBlock* block) {
557 // Compute live out for the given block, except not including backward
558 // successor edges.
559 BitVector* live_out = new(zone()) BitVector(next_virtual_register_, zone());
560
561 // Process all successor blocks.
562 for (HSuccessorIterator it(block->end()); !it.Done(); it.Advance()) {
563 // Add values live on entry to the successor. Note the successor's
564 // live_in will not be computed yet for backwards edges.
565 HBasicBlock* successor = it.Current();
566 BitVector* live_in = live_in_sets_[successor->block_id()];
567 if (live_in != NULL) live_out->Union(*live_in);
568
569 // All phi input operands corresponding to this successor edge are live
570 // out from this block.
571 int index = successor->PredecessorIndexOf(block);
572 const ZoneList<HPhi*>* phis = successor->phis();
573 for (int i = 0; i < phis->length(); ++i) {
574 HPhi* phi = phis->at(i);
575 if (!phi->OperandAt(index)->IsConstant()) {
576 live_out->Add(phi->OperandAt(index)->id());
577 }
578 }
579 }
580
581 return live_out;
582 }
583
584
AddInitialIntervals(HBasicBlock * block,BitVector * live_out)585 void LAllocator::AddInitialIntervals(HBasicBlock* block,
586 BitVector* live_out) {
587 // Add an interval that includes the entire block to the live range for
588 // each live_out value.
589 LifetimePosition start = LifetimePosition::FromInstructionIndex(
590 block->first_instruction_index());
591 LifetimePosition end = LifetimePosition::FromInstructionIndex(
592 block->last_instruction_index()).NextInstruction();
593 BitVector::Iterator iterator(live_out);
594 while (!iterator.Done()) {
595 int operand_index = iterator.Current();
596 LiveRange* range = LiveRangeFor(operand_index);
597 range->AddUseInterval(start, end, zone());
598 iterator.Advance();
599 }
600 }
601
602
FixedDoubleLiveRangeID(int index)603 int LAllocator::FixedDoubleLiveRangeID(int index) {
604 return -index - 1 - Register::kMaxNumAllocatableRegisters;
605 }
606
607
AllocateFixed(LUnallocated * operand,int pos,bool is_tagged)608 LOperand* LAllocator::AllocateFixed(LUnallocated* operand,
609 int pos,
610 bool is_tagged) {
611 TraceAlloc("Allocating fixed reg for op %d\n", operand->virtual_register());
612 ASSERT(operand->HasFixedPolicy());
613 if (operand->HasFixedSlotPolicy()) {
614 operand->ConvertTo(LOperand::STACK_SLOT, operand->fixed_slot_index());
615 } else if (operand->HasFixedRegisterPolicy()) {
616 int reg_index = operand->fixed_register_index();
617 operand->ConvertTo(LOperand::REGISTER, reg_index);
618 } else if (operand->HasFixedDoubleRegisterPolicy()) {
619 int reg_index = operand->fixed_register_index();
620 operand->ConvertTo(LOperand::DOUBLE_REGISTER, reg_index);
621 } else {
622 UNREACHABLE();
623 }
624 if (is_tagged) {
625 TraceAlloc("Fixed reg is tagged at %d\n", pos);
626 LInstruction* instr = InstructionAt(pos);
627 if (instr->HasPointerMap()) {
628 instr->pointer_map()->RecordPointer(operand, chunk()->zone());
629 }
630 }
631 return operand;
632 }
633
634
FixedLiveRangeFor(int index)635 LiveRange* LAllocator::FixedLiveRangeFor(int index) {
636 ASSERT(index < Register::kMaxNumAllocatableRegisters);
637 LiveRange* result = fixed_live_ranges_[index];
638 if (result == NULL) {
639 result = new(zone()) LiveRange(FixedLiveRangeID(index), chunk()->zone());
640 ASSERT(result->IsFixed());
641 result->kind_ = GENERAL_REGISTERS;
642 SetLiveRangeAssignedRegister(result, index);
643 fixed_live_ranges_[index] = result;
644 }
645 return result;
646 }
647
648
FixedDoubleLiveRangeFor(int index)649 LiveRange* LAllocator::FixedDoubleLiveRangeFor(int index) {
650 ASSERT(index < DoubleRegister::NumAllocatableRegisters());
651 LiveRange* result = fixed_double_live_ranges_[index];
652 if (result == NULL) {
653 result = new(zone()) LiveRange(FixedDoubleLiveRangeID(index),
654 chunk()->zone());
655 ASSERT(result->IsFixed());
656 result->kind_ = DOUBLE_REGISTERS;
657 SetLiveRangeAssignedRegister(result, index);
658 fixed_double_live_ranges_[index] = result;
659 }
660 return result;
661 }
662
663
LiveRangeFor(int index)664 LiveRange* LAllocator::LiveRangeFor(int index) {
665 if (index >= live_ranges_.length()) {
666 live_ranges_.AddBlock(NULL, index - live_ranges_.length() + 1, zone());
667 }
668 LiveRange* result = live_ranges_[index];
669 if (result == NULL) {
670 result = new(zone()) LiveRange(index, chunk()->zone());
671 live_ranges_[index] = result;
672 }
673 return result;
674 }
675
676
GetLastGap(HBasicBlock * block)677 LGap* LAllocator::GetLastGap(HBasicBlock* block) {
678 int last_instruction = block->last_instruction_index();
679 int index = chunk_->NearestGapPos(last_instruction);
680 return GapAt(index);
681 }
682
683
LookupPhi(LOperand * operand) const684 HPhi* LAllocator::LookupPhi(LOperand* operand) const {
685 if (!operand->IsUnallocated()) return NULL;
686 int index = LUnallocated::cast(operand)->virtual_register();
687 HValue* instr = graph_->LookupValue(index);
688 if (instr != NULL && instr->IsPhi()) {
689 return HPhi::cast(instr);
690 }
691 return NULL;
692 }
693
694
LiveRangeFor(LOperand * operand)695 LiveRange* LAllocator::LiveRangeFor(LOperand* operand) {
696 if (operand->IsUnallocated()) {
697 return LiveRangeFor(LUnallocated::cast(operand)->virtual_register());
698 } else if (operand->IsRegister()) {
699 return FixedLiveRangeFor(operand->index());
700 } else if (operand->IsDoubleRegister()) {
701 return FixedDoubleLiveRangeFor(operand->index());
702 } else {
703 return NULL;
704 }
705 }
706
707
Define(LifetimePosition position,LOperand * operand,LOperand * hint)708 void LAllocator::Define(LifetimePosition position,
709 LOperand* operand,
710 LOperand* hint) {
711 LiveRange* range = LiveRangeFor(operand);
712 if (range == NULL) return;
713
714 if (range->IsEmpty() || range->Start().Value() > position.Value()) {
715 // Can happen if there is a definition without use.
716 range->AddUseInterval(position, position.NextInstruction(), zone());
717 range->AddUsePosition(position.NextInstruction(), NULL, NULL, zone());
718 } else {
719 range->ShortenTo(position);
720 }
721
722 if (operand->IsUnallocated()) {
723 LUnallocated* unalloc_operand = LUnallocated::cast(operand);
724 range->AddUsePosition(position, unalloc_operand, hint, zone());
725 }
726 }
727
728
Use(LifetimePosition block_start,LifetimePosition position,LOperand * operand,LOperand * hint)729 void LAllocator::Use(LifetimePosition block_start,
730 LifetimePosition position,
731 LOperand* operand,
732 LOperand* hint) {
733 LiveRange* range = LiveRangeFor(operand);
734 if (range == NULL) return;
735 if (operand->IsUnallocated()) {
736 LUnallocated* unalloc_operand = LUnallocated::cast(operand);
737 range->AddUsePosition(position, unalloc_operand, hint, zone());
738 }
739 range->AddUseInterval(block_start, position, zone());
740 }
741
742
AddConstraintsGapMove(int index,LOperand * from,LOperand * to)743 void LAllocator::AddConstraintsGapMove(int index,
744 LOperand* from,
745 LOperand* to) {
746 LGap* gap = GapAt(index);
747 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
748 chunk()->zone());
749 if (from->IsUnallocated()) {
750 const ZoneList<LMoveOperands>* move_operands = move->move_operands();
751 for (int i = 0; i < move_operands->length(); ++i) {
752 LMoveOperands cur = move_operands->at(i);
753 LOperand* cur_to = cur.destination();
754 if (cur_to->IsUnallocated()) {
755 if (LUnallocated::cast(cur_to)->virtual_register() ==
756 LUnallocated::cast(from)->virtual_register()) {
757 move->AddMove(cur.source(), to, chunk()->zone());
758 return;
759 }
760 }
761 }
762 }
763 move->AddMove(from, to, chunk()->zone());
764 }
765
766
MeetRegisterConstraints(HBasicBlock * block)767 void LAllocator::MeetRegisterConstraints(HBasicBlock* block) {
768 int start = block->first_instruction_index();
769 int end = block->last_instruction_index();
770 if (start == -1) return;
771 for (int i = start; i <= end; ++i) {
772 if (IsGapAt(i)) {
773 LInstruction* instr = NULL;
774 LInstruction* prev_instr = NULL;
775 if (i < end) instr = InstructionAt(i + 1);
776 if (i > start) prev_instr = InstructionAt(i - 1);
777 MeetConstraintsBetween(prev_instr, instr, i);
778 if (!AllocationOk()) return;
779 }
780 }
781 }
782
783
MeetConstraintsBetween(LInstruction * first,LInstruction * second,int gap_index)784 void LAllocator::MeetConstraintsBetween(LInstruction* first,
785 LInstruction* second,
786 int gap_index) {
787 // Handle fixed temporaries.
788 if (first != NULL) {
789 for (TempIterator it(first); !it.Done(); it.Advance()) {
790 LUnallocated* temp = LUnallocated::cast(it.Current());
791 if (temp->HasFixedPolicy()) {
792 AllocateFixed(temp, gap_index - 1, false);
793 }
794 }
795 }
796
797 // Handle fixed output operand.
798 if (first != NULL && first->Output() != NULL) {
799 LUnallocated* first_output = LUnallocated::cast(first->Output());
800 LiveRange* range = LiveRangeFor(first_output->virtual_register());
801 bool assigned = false;
802 if (first_output->HasFixedPolicy()) {
803 LUnallocated* output_copy = first_output->CopyUnconstrained(
804 chunk()->zone());
805 bool is_tagged = HasTaggedValue(first_output->virtual_register());
806 AllocateFixed(first_output, gap_index, is_tagged);
807
808 // This value is produced on the stack, we never need to spill it.
809 if (first_output->IsStackSlot()) {
810 range->SetSpillOperand(first_output);
811 range->SetSpillStartIndex(gap_index - 1);
812 assigned = true;
813 }
814 chunk_->AddGapMove(gap_index, first_output, output_copy);
815 }
816
817 if (!assigned) {
818 range->SetSpillStartIndex(gap_index);
819
820 // This move to spill operand is not a real use. Liveness analysis
821 // and splitting of live ranges do not account for it.
822 // Thus it should be inserted to a lifetime position corresponding to
823 // the instruction end.
824 LGap* gap = GapAt(gap_index);
825 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::BEFORE,
826 chunk()->zone());
827 move->AddMove(first_output, range->GetSpillOperand(),
828 chunk()->zone());
829 }
830 }
831
832 // Handle fixed input operands of second instruction.
833 if (second != NULL) {
834 for (UseIterator it(second); !it.Done(); it.Advance()) {
835 LUnallocated* cur_input = LUnallocated::cast(it.Current());
836 if (cur_input->HasFixedPolicy()) {
837 LUnallocated* input_copy = cur_input->CopyUnconstrained(
838 chunk()->zone());
839 bool is_tagged = HasTaggedValue(cur_input->virtual_register());
840 AllocateFixed(cur_input, gap_index + 1, is_tagged);
841 AddConstraintsGapMove(gap_index, input_copy, cur_input);
842 } else if (cur_input->HasWritableRegisterPolicy()) {
843 // The live range of writable input registers always goes until the end
844 // of the instruction.
845 ASSERT(!cur_input->IsUsedAtStart());
846
847 LUnallocated* input_copy = cur_input->CopyUnconstrained(
848 chunk()->zone());
849 int vreg = GetVirtualRegister();
850 if (!AllocationOk()) return;
851 cur_input->set_virtual_register(vreg);
852
853 if (RequiredRegisterKind(input_copy->virtual_register()) ==
854 DOUBLE_REGISTERS) {
855 double_artificial_registers_.Add(
856 cur_input->virtual_register() - first_artificial_register_,
857 zone());
858 }
859
860 AddConstraintsGapMove(gap_index, input_copy, cur_input);
861 }
862 }
863 }
864
865 // Handle "output same as input" for second instruction.
866 if (second != NULL && second->Output() != NULL) {
867 LUnallocated* second_output = LUnallocated::cast(second->Output());
868 if (second_output->HasSameAsInputPolicy()) {
869 LUnallocated* cur_input = LUnallocated::cast(second->FirstInput());
870 int output_vreg = second_output->virtual_register();
871 int input_vreg = cur_input->virtual_register();
872
873 LUnallocated* input_copy = cur_input->CopyUnconstrained(
874 chunk()->zone());
875 cur_input->set_virtual_register(second_output->virtual_register());
876 AddConstraintsGapMove(gap_index, input_copy, cur_input);
877
878 if (HasTaggedValue(input_vreg) && !HasTaggedValue(output_vreg)) {
879 int index = gap_index + 1;
880 LInstruction* instr = InstructionAt(index);
881 if (instr->HasPointerMap()) {
882 instr->pointer_map()->RecordPointer(input_copy, chunk()->zone());
883 }
884 } else if (!HasTaggedValue(input_vreg) && HasTaggedValue(output_vreg)) {
885 // The input is assumed to immediately have a tagged representation,
886 // before the pointer map can be used. I.e. the pointer map at the
887 // instruction will include the output operand (whose value at the
888 // beginning of the instruction is equal to the input operand). If
889 // this is not desired, then the pointer map at this instruction needs
890 // to be adjusted manually.
891 }
892 }
893 }
894 }
895
896
ProcessInstructions(HBasicBlock * block,BitVector * live)897 void LAllocator::ProcessInstructions(HBasicBlock* block, BitVector* live) {
898 int block_start = block->first_instruction_index();
899 int index = block->last_instruction_index();
900
901 LifetimePosition block_start_position =
902 LifetimePosition::FromInstructionIndex(block_start);
903
904 while (index >= block_start) {
905 LifetimePosition curr_position =
906 LifetimePosition::FromInstructionIndex(index);
907
908 if (IsGapAt(index)) {
909 // We have a gap at this position.
910 LGap* gap = GapAt(index);
911 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
912 chunk()->zone());
913 const ZoneList<LMoveOperands>* move_operands = move->move_operands();
914 for (int i = 0; i < move_operands->length(); ++i) {
915 LMoveOperands* cur = &move_operands->at(i);
916 if (cur->IsIgnored()) continue;
917 LOperand* from = cur->source();
918 LOperand* to = cur->destination();
919 HPhi* phi = LookupPhi(to);
920 LOperand* hint = to;
921 if (phi != NULL) {
922 // This is a phi resolving move.
923 if (!phi->block()->IsLoopHeader()) {
924 hint = LiveRangeFor(phi->id())->current_hint_operand();
925 }
926 } else {
927 if (to->IsUnallocated()) {
928 if (live->Contains(LUnallocated::cast(to)->virtual_register())) {
929 Define(curr_position, to, from);
930 live->Remove(LUnallocated::cast(to)->virtual_register());
931 } else {
932 cur->Eliminate();
933 continue;
934 }
935 } else {
936 Define(curr_position, to, from);
937 }
938 }
939 Use(block_start_position, curr_position, from, hint);
940 if (from->IsUnallocated()) {
941 live->Add(LUnallocated::cast(from)->virtual_register());
942 }
943 }
944 } else {
945 ASSERT(!IsGapAt(index));
946 LInstruction* instr = InstructionAt(index);
947
948 if (instr != NULL) {
949 LOperand* output = instr->Output();
950 if (output != NULL) {
951 if (output->IsUnallocated()) {
952 live->Remove(LUnallocated::cast(output)->virtual_register());
953 }
954 Define(curr_position, output, NULL);
955 }
956
957 if (instr->ClobbersRegisters()) {
958 for (int i = 0; i < Register::kMaxNumAllocatableRegisters; ++i) {
959 if (output == NULL || !output->IsRegister() ||
960 output->index() != i) {
961 LiveRange* range = FixedLiveRangeFor(i);
962 range->AddUseInterval(curr_position,
963 curr_position.InstructionEnd(),
964 zone());
965 }
966 }
967 }
968
969 if (instr->ClobbersDoubleRegisters(isolate())) {
970 for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
971 if (output == NULL || !output->IsDoubleRegister() ||
972 output->index() != i) {
973 LiveRange* range = FixedDoubleLiveRangeFor(i);
974 range->AddUseInterval(curr_position,
975 curr_position.InstructionEnd(),
976 zone());
977 }
978 }
979 }
980
981 for (UseIterator it(instr); !it.Done(); it.Advance()) {
982 LOperand* input = it.Current();
983
984 LifetimePosition use_pos;
985 if (input->IsUnallocated() &&
986 LUnallocated::cast(input)->IsUsedAtStart()) {
987 use_pos = curr_position;
988 } else {
989 use_pos = curr_position.InstructionEnd();
990 }
991
992 Use(block_start_position, use_pos, input, NULL);
993 if (input->IsUnallocated()) {
994 live->Add(LUnallocated::cast(input)->virtual_register());
995 }
996 }
997
998 for (TempIterator it(instr); !it.Done(); it.Advance()) {
999 LOperand* temp = it.Current();
1000 if (instr->ClobbersTemps()) {
1001 if (temp->IsRegister()) continue;
1002 if (temp->IsUnallocated()) {
1003 LUnallocated* temp_unalloc = LUnallocated::cast(temp);
1004 if (temp_unalloc->HasFixedPolicy()) {
1005 continue;
1006 }
1007 }
1008 }
1009 Use(block_start_position, curr_position.InstructionEnd(), temp, NULL);
1010 Define(curr_position, temp, NULL);
1011
1012 if (temp->IsUnallocated()) {
1013 LUnallocated* temp_unalloc = LUnallocated::cast(temp);
1014 if (temp_unalloc->HasDoubleRegisterPolicy()) {
1015 double_artificial_registers_.Add(
1016 temp_unalloc->virtual_register() - first_artificial_register_,
1017 zone());
1018 }
1019 }
1020 }
1021 }
1022 }
1023
1024 index = index - 1;
1025 }
1026 }
1027
1028
ResolvePhis(HBasicBlock * block)1029 void LAllocator::ResolvePhis(HBasicBlock* block) {
1030 const ZoneList<HPhi*>* phis = block->phis();
1031 for (int i = 0; i < phis->length(); ++i) {
1032 HPhi* phi = phis->at(i);
1033 LUnallocated* phi_operand =
1034 new(chunk()->zone()) LUnallocated(LUnallocated::NONE);
1035 phi_operand->set_virtual_register(phi->id());
1036 for (int j = 0; j < phi->OperandCount(); ++j) {
1037 HValue* op = phi->OperandAt(j);
1038 LOperand* operand = NULL;
1039 if (op->IsConstant() && op->EmitAtUses()) {
1040 HConstant* constant = HConstant::cast(op);
1041 operand = chunk_->DefineConstantOperand(constant);
1042 } else {
1043 ASSERT(!op->EmitAtUses());
1044 LUnallocated* unalloc =
1045 new(chunk()->zone()) LUnallocated(LUnallocated::ANY);
1046 unalloc->set_virtual_register(op->id());
1047 operand = unalloc;
1048 }
1049 HBasicBlock* cur_block = block->predecessors()->at(j);
1050 // The gap move must be added without any special processing as in
1051 // the AddConstraintsGapMove.
1052 chunk_->AddGapMove(cur_block->last_instruction_index() - 1,
1053 operand,
1054 phi_operand);
1055
1056 // We are going to insert a move before the branch instruction.
1057 // Some branch instructions (e.g. loops' back edges)
1058 // can potentially cause a GC so they have a pointer map.
1059 // By inserting a move we essentially create a copy of a
1060 // value which is invisible to PopulatePointerMaps(), because we store
1061 // it into a location different from the operand of a live range
1062 // covering a branch instruction.
1063 // Thus we need to manually record a pointer.
1064 LInstruction* branch =
1065 InstructionAt(cur_block->last_instruction_index());
1066 if (branch->HasPointerMap()) {
1067 if (phi->representation().IsTagged() && !phi->type().IsSmi()) {
1068 branch->pointer_map()->RecordPointer(phi_operand, chunk()->zone());
1069 } else if (!phi->representation().IsDouble()) {
1070 branch->pointer_map()->RecordUntagged(phi_operand, chunk()->zone());
1071 }
1072 }
1073 }
1074
1075 LiveRange* live_range = LiveRangeFor(phi->id());
1076 LLabel* label = chunk_->GetLabel(phi->block()->block_id());
1077 label->GetOrCreateParallelMove(LGap::START, chunk()->zone())->
1078 AddMove(phi_operand, live_range->GetSpillOperand(), chunk()->zone());
1079 live_range->SetSpillStartIndex(phi->block()->first_instruction_index());
1080 }
1081 }
1082
1083
Allocate(LChunk * chunk)1084 bool LAllocator::Allocate(LChunk* chunk) {
1085 ASSERT(chunk_ == NULL);
1086 chunk_ = static_cast<LPlatformChunk*>(chunk);
1087 assigned_registers_ =
1088 new(chunk->zone()) BitVector(Register::NumAllocatableRegisters(),
1089 chunk->zone());
1090 assigned_double_registers_ =
1091 new(chunk->zone()) BitVector(DoubleRegister::NumAllocatableRegisters(),
1092 chunk->zone());
1093 MeetRegisterConstraints();
1094 if (!AllocationOk()) return false;
1095 ResolvePhis();
1096 BuildLiveRanges();
1097 AllocateGeneralRegisters();
1098 if (!AllocationOk()) return false;
1099 AllocateDoubleRegisters();
1100 if (!AllocationOk()) return false;
1101 PopulatePointerMaps();
1102 ConnectRanges();
1103 ResolveControlFlow();
1104 return true;
1105 }
1106
1107
MeetRegisterConstraints()1108 void LAllocator::MeetRegisterConstraints() {
1109 LAllocatorPhase phase("L_Register constraints", this);
1110 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1111 for (int i = 0; i < blocks->length(); ++i) {
1112 HBasicBlock* block = blocks->at(i);
1113 MeetRegisterConstraints(block);
1114 if (!AllocationOk()) return;
1115 }
1116 }
1117
1118
ResolvePhis()1119 void LAllocator::ResolvePhis() {
1120 LAllocatorPhase phase("L_Resolve phis", this);
1121
1122 // Process the blocks in reverse order.
1123 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1124 for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1125 HBasicBlock* block = blocks->at(block_id);
1126 ResolvePhis(block);
1127 }
1128 }
1129
1130
ResolveControlFlow(LiveRange * range,HBasicBlock * block,HBasicBlock * pred)1131 void LAllocator::ResolveControlFlow(LiveRange* range,
1132 HBasicBlock* block,
1133 HBasicBlock* pred) {
1134 LifetimePosition pred_end =
1135 LifetimePosition::FromInstructionIndex(pred->last_instruction_index());
1136 LifetimePosition cur_start =
1137 LifetimePosition::FromInstructionIndex(block->first_instruction_index());
1138 LiveRange* pred_cover = NULL;
1139 LiveRange* cur_cover = NULL;
1140 LiveRange* cur_range = range;
1141 while (cur_range != NULL && (cur_cover == NULL || pred_cover == NULL)) {
1142 if (cur_range->CanCover(cur_start)) {
1143 ASSERT(cur_cover == NULL);
1144 cur_cover = cur_range;
1145 }
1146 if (cur_range->CanCover(pred_end)) {
1147 ASSERT(pred_cover == NULL);
1148 pred_cover = cur_range;
1149 }
1150 cur_range = cur_range->next();
1151 }
1152
1153 if (cur_cover->IsSpilled()) return;
1154 ASSERT(pred_cover != NULL && cur_cover != NULL);
1155 if (pred_cover != cur_cover) {
1156 LOperand* pred_op = pred_cover->CreateAssignedOperand(chunk()->zone());
1157 LOperand* cur_op = cur_cover->CreateAssignedOperand(chunk()->zone());
1158 if (!pred_op->Equals(cur_op)) {
1159 LGap* gap = NULL;
1160 if (block->predecessors()->length() == 1) {
1161 gap = GapAt(block->first_instruction_index());
1162 } else {
1163 ASSERT(pred->end()->SecondSuccessor() == NULL);
1164 gap = GetLastGap(pred);
1165
1166 // We are going to insert a move before the branch instruction.
1167 // Some branch instructions (e.g. loops' back edges)
1168 // can potentially cause a GC so they have a pointer map.
1169 // By inserting a move we essentially create a copy of a
1170 // value which is invisible to PopulatePointerMaps(), because we store
1171 // it into a location different from the operand of a live range
1172 // covering a branch instruction.
1173 // Thus we need to manually record a pointer.
1174 LInstruction* branch = InstructionAt(pred->last_instruction_index());
1175 if (branch->HasPointerMap()) {
1176 if (HasTaggedValue(range->id())) {
1177 branch->pointer_map()->RecordPointer(cur_op, chunk()->zone());
1178 } else if (!cur_op->IsDoubleStackSlot() &&
1179 !cur_op->IsDoubleRegister()) {
1180 branch->pointer_map()->RemovePointer(cur_op);
1181 }
1182 }
1183 }
1184 gap->GetOrCreateParallelMove(
1185 LGap::START, chunk()->zone())->AddMove(pred_op, cur_op,
1186 chunk()->zone());
1187 }
1188 }
1189 }
1190
1191
GetConnectingParallelMove(LifetimePosition pos)1192 LParallelMove* LAllocator::GetConnectingParallelMove(LifetimePosition pos) {
1193 int index = pos.InstructionIndex();
1194 if (IsGapAt(index)) {
1195 LGap* gap = GapAt(index);
1196 return gap->GetOrCreateParallelMove(
1197 pos.IsInstructionStart() ? LGap::START : LGap::END, chunk()->zone());
1198 }
1199 int gap_pos = pos.IsInstructionStart() ? (index - 1) : (index + 1);
1200 return GapAt(gap_pos)->GetOrCreateParallelMove(
1201 (gap_pos < index) ? LGap::AFTER : LGap::BEFORE, chunk()->zone());
1202 }
1203
1204
GetBlock(LifetimePosition pos)1205 HBasicBlock* LAllocator::GetBlock(LifetimePosition pos) {
1206 LGap* gap = GapAt(chunk_->NearestGapPos(pos.InstructionIndex()));
1207 return gap->block();
1208 }
1209
1210
ConnectRanges()1211 void LAllocator::ConnectRanges() {
1212 LAllocatorPhase phase("L_Connect ranges", this);
1213 for (int i = 0; i < live_ranges()->length(); ++i) {
1214 LiveRange* first_range = live_ranges()->at(i);
1215 if (first_range == NULL || first_range->parent() != NULL) continue;
1216
1217 LiveRange* second_range = first_range->next();
1218 while (second_range != NULL) {
1219 LifetimePosition pos = second_range->Start();
1220
1221 if (!second_range->IsSpilled()) {
1222 // Add gap move if the two live ranges touch and there is no block
1223 // boundary.
1224 if (first_range->End().Value() == pos.Value()) {
1225 bool should_insert = true;
1226 if (IsBlockBoundary(pos)) {
1227 should_insert = CanEagerlyResolveControlFlow(GetBlock(pos));
1228 }
1229 if (should_insert) {
1230 LParallelMove* move = GetConnectingParallelMove(pos);
1231 LOperand* prev_operand = first_range->CreateAssignedOperand(
1232 chunk()->zone());
1233 LOperand* cur_operand = second_range->CreateAssignedOperand(
1234 chunk()->zone());
1235 move->AddMove(prev_operand, cur_operand,
1236 chunk()->zone());
1237 }
1238 }
1239 }
1240
1241 first_range = second_range;
1242 second_range = second_range->next();
1243 }
1244 }
1245 }
1246
1247
CanEagerlyResolveControlFlow(HBasicBlock * block) const1248 bool LAllocator::CanEagerlyResolveControlFlow(HBasicBlock* block) const {
1249 if (block->predecessors()->length() != 1) return false;
1250 return block->predecessors()->first()->block_id() == block->block_id() - 1;
1251 }
1252
1253
ResolveControlFlow()1254 void LAllocator::ResolveControlFlow() {
1255 LAllocatorPhase phase("L_Resolve control flow", this);
1256 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1257 for (int block_id = 1; block_id < blocks->length(); ++block_id) {
1258 HBasicBlock* block = blocks->at(block_id);
1259 if (CanEagerlyResolveControlFlow(block)) continue;
1260 BitVector* live = live_in_sets_[block->block_id()];
1261 BitVector::Iterator iterator(live);
1262 while (!iterator.Done()) {
1263 int operand_index = iterator.Current();
1264 for (int i = 0; i < block->predecessors()->length(); ++i) {
1265 HBasicBlock* cur = block->predecessors()->at(i);
1266 LiveRange* cur_range = LiveRangeFor(operand_index);
1267 ResolveControlFlow(cur_range, block, cur);
1268 }
1269 iterator.Advance();
1270 }
1271 }
1272 }
1273
1274
BuildLiveRanges()1275 void LAllocator::BuildLiveRanges() {
1276 LAllocatorPhase phase("L_Build live ranges", this);
1277 InitializeLivenessAnalysis();
1278 // Process the blocks in reverse order.
1279 const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
1280 for (int block_id = blocks->length() - 1; block_id >= 0; --block_id) {
1281 HBasicBlock* block = blocks->at(block_id);
1282 BitVector* live = ComputeLiveOut(block);
1283 // Initially consider all live_out values live for the entire block. We
1284 // will shorten these intervals if necessary.
1285 AddInitialIntervals(block, live);
1286
1287 // Process the instructions in reverse order, generating and killing
1288 // live values.
1289 ProcessInstructions(block, live);
1290 // All phi output operands are killed by this block.
1291 const ZoneList<HPhi*>* phis = block->phis();
1292 for (int i = 0; i < phis->length(); ++i) {
1293 // The live range interval already ends at the first instruction of the
1294 // block.
1295 HPhi* phi = phis->at(i);
1296 live->Remove(phi->id());
1297
1298 LOperand* hint = NULL;
1299 LOperand* phi_operand = NULL;
1300 LGap* gap = GetLastGap(phi->block()->predecessors()->at(0));
1301 LParallelMove* move = gap->GetOrCreateParallelMove(LGap::START,
1302 chunk()->zone());
1303 for (int j = 0; j < move->move_operands()->length(); ++j) {
1304 LOperand* to = move->move_operands()->at(j).destination();
1305 if (to->IsUnallocated() &&
1306 LUnallocated::cast(to)->virtual_register() == phi->id()) {
1307 hint = move->move_operands()->at(j).source();
1308 phi_operand = to;
1309 break;
1310 }
1311 }
1312 ASSERT(hint != NULL);
1313
1314 LifetimePosition block_start = LifetimePosition::FromInstructionIndex(
1315 block->first_instruction_index());
1316 Define(block_start, phi_operand, hint);
1317 }
1318
1319 // Now live is live_in for this block except not including values live
1320 // out on backward successor edges.
1321 live_in_sets_[block_id] = live;
1322
1323 // If this block is a loop header go back and patch up the necessary
1324 // predecessor blocks.
1325 if (block->IsLoopHeader()) {
1326 // TODO(kmillikin): Need to be able to get the last block of the loop
1327 // in the loop information. Add a live range stretching from the first
1328 // loop instruction to the last for each value live on entry to the
1329 // header.
1330 HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
1331 BitVector::Iterator iterator(live);
1332 LifetimePosition start = LifetimePosition::FromInstructionIndex(
1333 block->first_instruction_index());
1334 LifetimePosition end = LifetimePosition::FromInstructionIndex(
1335 back_edge->last_instruction_index()).NextInstruction();
1336 while (!iterator.Done()) {
1337 int operand_index = iterator.Current();
1338 LiveRange* range = LiveRangeFor(operand_index);
1339 range->EnsureInterval(start, end, zone());
1340 iterator.Advance();
1341 }
1342
1343 for (int i = block->block_id() + 1; i <= back_edge->block_id(); ++i) {
1344 live_in_sets_[i]->Union(*live);
1345 }
1346 }
1347
1348 #ifdef DEBUG
1349 if (block_id == 0) {
1350 BitVector::Iterator iterator(live);
1351 bool found = false;
1352 while (!iterator.Done()) {
1353 found = true;
1354 int operand_index = iterator.Current();
1355 if (chunk_->info()->IsStub()) {
1356 CodeStub::Major major_key = chunk_->info()->code_stub()->MajorKey();
1357 PrintF("Function: %s\n", CodeStub::MajorName(major_key, false));
1358 } else {
1359 ASSERT(chunk_->info()->IsOptimizing());
1360 AllowHandleDereference allow_deref;
1361 PrintF("Function: %s\n",
1362 chunk_->info()->function()->debug_name()->ToCString().get());
1363 }
1364 PrintF("Value %d used before first definition!\n", operand_index);
1365 LiveRange* range = LiveRangeFor(operand_index);
1366 PrintF("First use is at %d\n", range->first_pos()->pos().Value());
1367 iterator.Advance();
1368 }
1369 ASSERT(!found);
1370 }
1371 #endif
1372 }
1373
1374 for (int i = 0; i < live_ranges_.length(); ++i) {
1375 if (live_ranges_[i] != NULL) {
1376 live_ranges_[i]->kind_ = RequiredRegisterKind(live_ranges_[i]->id());
1377 }
1378 }
1379 }
1380
1381
SafePointsAreInOrder() const1382 bool LAllocator::SafePointsAreInOrder() const {
1383 const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1384 int safe_point = 0;
1385 for (int i = 0; i < pointer_maps->length(); ++i) {
1386 LPointerMap* map = pointer_maps->at(i);
1387 if (safe_point > map->lithium_position()) return false;
1388 safe_point = map->lithium_position();
1389 }
1390 return true;
1391 }
1392
1393
PopulatePointerMaps()1394 void LAllocator::PopulatePointerMaps() {
1395 LAllocatorPhase phase("L_Populate pointer maps", this);
1396 const ZoneList<LPointerMap*>* pointer_maps = chunk_->pointer_maps();
1397
1398 ASSERT(SafePointsAreInOrder());
1399
1400 // Iterate over all safe point positions and record a pointer
1401 // for all spilled live ranges at this point.
1402 int first_safe_point_index = 0;
1403 int last_range_start = 0;
1404 for (int range_idx = 0; range_idx < live_ranges()->length(); ++range_idx) {
1405 LiveRange* range = live_ranges()->at(range_idx);
1406 if (range == NULL) continue;
1407 // Iterate over the first parts of multi-part live ranges.
1408 if (range->parent() != NULL) continue;
1409 // Skip non-pointer values.
1410 if (!HasTaggedValue(range->id())) continue;
1411 // Skip empty live ranges.
1412 if (range->IsEmpty()) continue;
1413
1414 // Find the extent of the range and its children.
1415 int start = range->Start().InstructionIndex();
1416 int end = 0;
1417 for (LiveRange* cur = range; cur != NULL; cur = cur->next()) {
1418 LifetimePosition this_end = cur->End();
1419 if (this_end.InstructionIndex() > end) end = this_end.InstructionIndex();
1420 ASSERT(cur->Start().InstructionIndex() >= start);
1421 }
1422
1423 // Most of the ranges are in order, but not all. Keep an eye on when
1424 // they step backwards and reset the first_safe_point_index so we don't
1425 // miss any safe points.
1426 if (start < last_range_start) {
1427 first_safe_point_index = 0;
1428 }
1429 last_range_start = start;
1430
1431 // Step across all the safe points that are before the start of this range,
1432 // recording how far we step in order to save doing this for the next range.
1433 while (first_safe_point_index < pointer_maps->length()) {
1434 LPointerMap* map = pointer_maps->at(first_safe_point_index);
1435 int safe_point = map->lithium_position();
1436 if (safe_point >= start) break;
1437 first_safe_point_index++;
1438 }
1439
1440 // Step through the safe points to see whether they are in the range.
1441 for (int safe_point_index = first_safe_point_index;
1442 safe_point_index < pointer_maps->length();
1443 ++safe_point_index) {
1444 LPointerMap* map = pointer_maps->at(safe_point_index);
1445 int safe_point = map->lithium_position();
1446
1447 // The safe points are sorted so we can stop searching here.
1448 if (safe_point - 1 > end) break;
1449
1450 // Advance to the next active range that covers the current
1451 // safe point position.
1452 LifetimePosition safe_point_pos =
1453 LifetimePosition::FromInstructionIndex(safe_point);
1454 LiveRange* cur = range;
1455 while (cur != NULL && !cur->Covers(safe_point_pos)) {
1456 cur = cur->next();
1457 }
1458 if (cur == NULL) continue;
1459
1460 // Check if the live range is spilled and the safe point is after
1461 // the spill position.
1462 if (range->HasAllocatedSpillOperand() &&
1463 safe_point >= range->spill_start_index()) {
1464 TraceAlloc("Pointer for range %d (spilled at %d) at safe point %d\n",
1465 range->id(), range->spill_start_index(), safe_point);
1466 map->RecordPointer(range->GetSpillOperand(), chunk()->zone());
1467 }
1468
1469 if (!cur->IsSpilled()) {
1470 TraceAlloc("Pointer in register for range %d (start at %d) "
1471 "at safe point %d\n",
1472 cur->id(), cur->Start().Value(), safe_point);
1473 LOperand* operand = cur->CreateAssignedOperand(chunk()->zone());
1474 ASSERT(!operand->IsStackSlot());
1475 map->RecordPointer(operand, chunk()->zone());
1476 }
1477 }
1478 }
1479 }
1480
1481
AllocateGeneralRegisters()1482 void LAllocator::AllocateGeneralRegisters() {
1483 LAllocatorPhase phase("L_Allocate general registers", this);
1484 num_registers_ = Register::NumAllocatableRegisters();
1485 mode_ = GENERAL_REGISTERS;
1486 AllocateRegisters();
1487 }
1488
1489
AllocateDoubleRegisters()1490 void LAllocator::AllocateDoubleRegisters() {
1491 LAllocatorPhase phase("L_Allocate double registers", this);
1492 num_registers_ = DoubleRegister::NumAllocatableRegisters();
1493 mode_ = DOUBLE_REGISTERS;
1494 AllocateRegisters();
1495 }
1496
1497
AllocateRegisters()1498 void LAllocator::AllocateRegisters() {
1499 ASSERT(unhandled_live_ranges_.is_empty());
1500
1501 for (int i = 0; i < live_ranges_.length(); ++i) {
1502 if (live_ranges_[i] != NULL) {
1503 if (live_ranges_[i]->Kind() == mode_) {
1504 AddToUnhandledUnsorted(live_ranges_[i]);
1505 }
1506 }
1507 }
1508 SortUnhandled();
1509 ASSERT(UnhandledIsSorted());
1510
1511 ASSERT(reusable_slots_.is_empty());
1512 ASSERT(active_live_ranges_.is_empty());
1513 ASSERT(inactive_live_ranges_.is_empty());
1514
1515 if (mode_ == DOUBLE_REGISTERS) {
1516 for (int i = 0; i < DoubleRegister::NumAllocatableRegisters(); ++i) {
1517 LiveRange* current = fixed_double_live_ranges_.at(i);
1518 if (current != NULL) {
1519 AddToInactive(current);
1520 }
1521 }
1522 } else {
1523 ASSERT(mode_ == GENERAL_REGISTERS);
1524 for (int i = 0; i < fixed_live_ranges_.length(); ++i) {
1525 LiveRange* current = fixed_live_ranges_.at(i);
1526 if (current != NULL) {
1527 AddToInactive(current);
1528 }
1529 }
1530 }
1531
1532 while (!unhandled_live_ranges_.is_empty()) {
1533 ASSERT(UnhandledIsSorted());
1534 LiveRange* current = unhandled_live_ranges_.RemoveLast();
1535 ASSERT(UnhandledIsSorted());
1536 LifetimePosition position = current->Start();
1537 #ifdef DEBUG
1538 allocation_finger_ = position;
1539 #endif
1540 TraceAlloc("Processing interval %d start=%d\n",
1541 current->id(),
1542 position.Value());
1543
1544 if (current->HasAllocatedSpillOperand()) {
1545 TraceAlloc("Live range %d already has a spill operand\n", current->id());
1546 LifetimePosition next_pos = position;
1547 if (IsGapAt(next_pos.InstructionIndex())) {
1548 next_pos = next_pos.NextInstruction();
1549 }
1550 UsePosition* pos = current->NextUsePositionRegisterIsBeneficial(next_pos);
1551 // If the range already has a spill operand and it doesn't need a
1552 // register immediately, split it and spill the first part of the range.
1553 if (pos == NULL) {
1554 Spill(current);
1555 continue;
1556 } else if (pos->pos().Value() >
1557 current->Start().NextInstruction().Value()) {
1558 // Do not spill live range eagerly if use position that can benefit from
1559 // the register is too close to the start of live range.
1560 SpillBetween(current, current->Start(), pos->pos());
1561 if (!AllocationOk()) return;
1562 ASSERT(UnhandledIsSorted());
1563 continue;
1564 }
1565 }
1566
1567 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1568 LiveRange* cur_active = active_live_ranges_.at(i);
1569 if (cur_active->End().Value() <= position.Value()) {
1570 ActiveToHandled(cur_active);
1571 --i; // The live range was removed from the list of active live ranges.
1572 } else if (!cur_active->Covers(position)) {
1573 ActiveToInactive(cur_active);
1574 --i; // The live range was removed from the list of active live ranges.
1575 }
1576 }
1577
1578 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1579 LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1580 if (cur_inactive->End().Value() <= position.Value()) {
1581 InactiveToHandled(cur_inactive);
1582 --i; // Live range was removed from the list of inactive live ranges.
1583 } else if (cur_inactive->Covers(position)) {
1584 InactiveToActive(cur_inactive);
1585 --i; // Live range was removed from the list of inactive live ranges.
1586 }
1587 }
1588
1589 ASSERT(!current->HasRegisterAssigned() && !current->IsSpilled());
1590
1591 bool result = TryAllocateFreeReg(current);
1592 if (!AllocationOk()) return;
1593
1594 if (!result) AllocateBlockedReg(current);
1595 if (!AllocationOk()) return;
1596
1597 if (current->HasRegisterAssigned()) {
1598 AddToActive(current);
1599 }
1600 }
1601
1602 reusable_slots_.Rewind(0);
1603 active_live_ranges_.Rewind(0);
1604 inactive_live_ranges_.Rewind(0);
1605 }
1606
1607
RegisterName(int allocation_index)1608 const char* LAllocator::RegisterName(int allocation_index) {
1609 if (mode_ == GENERAL_REGISTERS) {
1610 return Register::AllocationIndexToString(allocation_index);
1611 } else {
1612 return DoubleRegister::AllocationIndexToString(allocation_index);
1613 }
1614 }
1615
1616
TraceAlloc(const char * msg,...)1617 void LAllocator::TraceAlloc(const char* msg, ...) {
1618 if (FLAG_trace_alloc) {
1619 va_list arguments;
1620 va_start(arguments, msg);
1621 OS::VPrint(msg, arguments);
1622 va_end(arguments);
1623 }
1624 }
1625
1626
HasTaggedValue(int virtual_register) const1627 bool LAllocator::HasTaggedValue(int virtual_register) const {
1628 HValue* value = graph_->LookupValue(virtual_register);
1629 if (value == NULL) return false;
1630 return value->representation().IsTagged() && !value->type().IsSmi();
1631 }
1632
1633
RequiredRegisterKind(int virtual_register) const1634 RegisterKind LAllocator::RequiredRegisterKind(int virtual_register) const {
1635 if (virtual_register < first_artificial_register_) {
1636 HValue* value = graph_->LookupValue(virtual_register);
1637 if (value != NULL && value->representation().IsDouble()) {
1638 return DOUBLE_REGISTERS;
1639 }
1640 } else if (double_artificial_registers_.Contains(
1641 virtual_register - first_artificial_register_)) {
1642 return DOUBLE_REGISTERS;
1643 }
1644
1645 return GENERAL_REGISTERS;
1646 }
1647
1648
AddToActive(LiveRange * range)1649 void LAllocator::AddToActive(LiveRange* range) {
1650 TraceAlloc("Add live range %d to active\n", range->id());
1651 active_live_ranges_.Add(range, zone());
1652 }
1653
1654
AddToInactive(LiveRange * range)1655 void LAllocator::AddToInactive(LiveRange* range) {
1656 TraceAlloc("Add live range %d to inactive\n", range->id());
1657 inactive_live_ranges_.Add(range, zone());
1658 }
1659
1660
AddToUnhandledSorted(LiveRange * range)1661 void LAllocator::AddToUnhandledSorted(LiveRange* range) {
1662 if (range == NULL || range->IsEmpty()) return;
1663 ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
1664 ASSERT(allocation_finger_.Value() <= range->Start().Value());
1665 for (int i = unhandled_live_ranges_.length() - 1; i >= 0; --i) {
1666 LiveRange* cur_range = unhandled_live_ranges_.at(i);
1667 if (range->ShouldBeAllocatedBefore(cur_range)) {
1668 TraceAlloc("Add live range %d to unhandled at %d\n", range->id(), i + 1);
1669 unhandled_live_ranges_.InsertAt(i + 1, range, zone());
1670 ASSERT(UnhandledIsSorted());
1671 return;
1672 }
1673 }
1674 TraceAlloc("Add live range %d to unhandled at start\n", range->id());
1675 unhandled_live_ranges_.InsertAt(0, range, zone());
1676 ASSERT(UnhandledIsSorted());
1677 }
1678
1679
AddToUnhandledUnsorted(LiveRange * range)1680 void LAllocator::AddToUnhandledUnsorted(LiveRange* range) {
1681 if (range == NULL || range->IsEmpty()) return;
1682 ASSERT(!range->HasRegisterAssigned() && !range->IsSpilled());
1683 TraceAlloc("Add live range %d to unhandled unsorted at end\n", range->id());
1684 unhandled_live_ranges_.Add(range, zone());
1685 }
1686
1687
UnhandledSortHelper(LiveRange * const * a,LiveRange * const * b)1688 static int UnhandledSortHelper(LiveRange* const* a, LiveRange* const* b) {
1689 ASSERT(!(*a)->ShouldBeAllocatedBefore(*b) ||
1690 !(*b)->ShouldBeAllocatedBefore(*a));
1691 if ((*a)->ShouldBeAllocatedBefore(*b)) return 1;
1692 if ((*b)->ShouldBeAllocatedBefore(*a)) return -1;
1693 return (*a)->id() - (*b)->id();
1694 }
1695
1696
1697 // Sort the unhandled live ranges so that the ranges to be processed first are
1698 // at the end of the array list. This is convenient for the register allocation
1699 // algorithm because it is efficient to remove elements from the end.
SortUnhandled()1700 void LAllocator::SortUnhandled() {
1701 TraceAlloc("Sort unhandled\n");
1702 unhandled_live_ranges_.Sort(&UnhandledSortHelper);
1703 }
1704
1705
UnhandledIsSorted()1706 bool LAllocator::UnhandledIsSorted() {
1707 int len = unhandled_live_ranges_.length();
1708 for (int i = 1; i < len; i++) {
1709 LiveRange* a = unhandled_live_ranges_.at(i - 1);
1710 LiveRange* b = unhandled_live_ranges_.at(i);
1711 if (a->Start().Value() < b->Start().Value()) return false;
1712 }
1713 return true;
1714 }
1715
1716
FreeSpillSlot(LiveRange * range)1717 void LAllocator::FreeSpillSlot(LiveRange* range) {
1718 // Check that we are the last range.
1719 if (range->next() != NULL) return;
1720
1721 if (!range->TopLevel()->HasAllocatedSpillOperand()) return;
1722
1723 int index = range->TopLevel()->GetSpillOperand()->index();
1724 if (index >= 0) {
1725 reusable_slots_.Add(range, zone());
1726 }
1727 }
1728
1729
TryReuseSpillSlot(LiveRange * range)1730 LOperand* LAllocator::TryReuseSpillSlot(LiveRange* range) {
1731 if (reusable_slots_.is_empty()) return NULL;
1732 if (reusable_slots_.first()->End().Value() >
1733 range->TopLevel()->Start().Value()) {
1734 return NULL;
1735 }
1736 LOperand* result = reusable_slots_.first()->TopLevel()->GetSpillOperand();
1737 reusable_slots_.Remove(0);
1738 return result;
1739 }
1740
1741
ActiveToHandled(LiveRange * range)1742 void LAllocator::ActiveToHandled(LiveRange* range) {
1743 ASSERT(active_live_ranges_.Contains(range));
1744 active_live_ranges_.RemoveElement(range);
1745 TraceAlloc("Moving live range %d from active to handled\n", range->id());
1746 FreeSpillSlot(range);
1747 }
1748
1749
ActiveToInactive(LiveRange * range)1750 void LAllocator::ActiveToInactive(LiveRange* range) {
1751 ASSERT(active_live_ranges_.Contains(range));
1752 active_live_ranges_.RemoveElement(range);
1753 inactive_live_ranges_.Add(range, zone());
1754 TraceAlloc("Moving live range %d from active to inactive\n", range->id());
1755 }
1756
1757
InactiveToHandled(LiveRange * range)1758 void LAllocator::InactiveToHandled(LiveRange* range) {
1759 ASSERT(inactive_live_ranges_.Contains(range));
1760 inactive_live_ranges_.RemoveElement(range);
1761 TraceAlloc("Moving live range %d from inactive to handled\n", range->id());
1762 FreeSpillSlot(range);
1763 }
1764
1765
InactiveToActive(LiveRange * range)1766 void LAllocator::InactiveToActive(LiveRange* range) {
1767 ASSERT(inactive_live_ranges_.Contains(range));
1768 inactive_live_ranges_.RemoveElement(range);
1769 active_live_ranges_.Add(range, zone());
1770 TraceAlloc("Moving live range %d from inactive to active\n", range->id());
1771 }
1772
1773
1774 // TryAllocateFreeReg and AllocateBlockedReg assume this
1775 // when allocating local arrays.
1776 STATIC_ASSERT(DoubleRegister::kMaxNumAllocatableRegisters >=
1777 Register::kMaxNumAllocatableRegisters);
1778
1779
TryAllocateFreeReg(LiveRange * current)1780 bool LAllocator::TryAllocateFreeReg(LiveRange* current) {
1781 LifetimePosition free_until_pos[DoubleRegister::kMaxNumAllocatableRegisters];
1782
1783 for (int i = 0; i < num_registers_; i++) {
1784 free_until_pos[i] = LifetimePosition::MaxPosition();
1785 }
1786
1787 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1788 LiveRange* cur_active = active_live_ranges_.at(i);
1789 free_until_pos[cur_active->assigned_register()] =
1790 LifetimePosition::FromInstructionIndex(0);
1791 }
1792
1793 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1794 LiveRange* cur_inactive = inactive_live_ranges_.at(i);
1795 ASSERT(cur_inactive->End().Value() > current->Start().Value());
1796 LifetimePosition next_intersection =
1797 cur_inactive->FirstIntersection(current);
1798 if (!next_intersection.IsValid()) continue;
1799 int cur_reg = cur_inactive->assigned_register();
1800 free_until_pos[cur_reg] = Min(free_until_pos[cur_reg], next_intersection);
1801 }
1802
1803 LOperand* hint = current->FirstHint();
1804 if (hint != NULL && (hint->IsRegister() || hint->IsDoubleRegister())) {
1805 int register_index = hint->index();
1806 TraceAlloc(
1807 "Found reg hint %s (free until [%d) for live range %d (end %d[).\n",
1808 RegisterName(register_index),
1809 free_until_pos[register_index].Value(),
1810 current->id(),
1811 current->End().Value());
1812
1813 // The desired register is free until the end of the current live range.
1814 if (free_until_pos[register_index].Value() >= current->End().Value()) {
1815 TraceAlloc("Assigning preferred reg %s to live range %d\n",
1816 RegisterName(register_index),
1817 current->id());
1818 SetLiveRangeAssignedRegister(current, register_index);
1819 return true;
1820 }
1821 }
1822
1823 // Find the register which stays free for the longest time.
1824 int reg = 0;
1825 for (int i = 1; i < RegisterCount(); ++i) {
1826 if (free_until_pos[i].Value() > free_until_pos[reg].Value()) {
1827 reg = i;
1828 }
1829 }
1830
1831 LifetimePosition pos = free_until_pos[reg];
1832
1833 if (pos.Value() <= current->Start().Value()) {
1834 // All registers are blocked.
1835 return false;
1836 }
1837
1838 if (pos.Value() < current->End().Value()) {
1839 // Register reg is available at the range start but becomes blocked before
1840 // the range end. Split current at position where it becomes blocked.
1841 LiveRange* tail = SplitRangeAt(current, pos);
1842 if (!AllocationOk()) return false;
1843 AddToUnhandledSorted(tail);
1844 }
1845
1846
1847 // Register reg is available at the range start and is free until
1848 // the range end.
1849 ASSERT(pos.Value() >= current->End().Value());
1850 TraceAlloc("Assigning free reg %s to live range %d\n",
1851 RegisterName(reg),
1852 current->id());
1853 SetLiveRangeAssignedRegister(current, reg);
1854
1855 return true;
1856 }
1857
1858
AllocateBlockedReg(LiveRange * current)1859 void LAllocator::AllocateBlockedReg(LiveRange* current) {
1860 UsePosition* register_use = current->NextRegisterPosition(current->Start());
1861 if (register_use == NULL) {
1862 // There is no use in the current live range that requires a register.
1863 // We can just spill it.
1864 Spill(current);
1865 return;
1866 }
1867
1868
1869 LifetimePosition use_pos[DoubleRegister::kMaxNumAllocatableRegisters];
1870 LifetimePosition block_pos[DoubleRegister::kMaxNumAllocatableRegisters];
1871
1872 for (int i = 0; i < num_registers_; i++) {
1873 use_pos[i] = block_pos[i] = LifetimePosition::MaxPosition();
1874 }
1875
1876 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1877 LiveRange* range = active_live_ranges_[i];
1878 int cur_reg = range->assigned_register();
1879 if (range->IsFixed() || !range->CanBeSpilled(current->Start())) {
1880 block_pos[cur_reg] = use_pos[cur_reg] =
1881 LifetimePosition::FromInstructionIndex(0);
1882 } else {
1883 UsePosition* next_use = range->NextUsePositionRegisterIsBeneficial(
1884 current->Start());
1885 if (next_use == NULL) {
1886 use_pos[cur_reg] = range->End();
1887 } else {
1888 use_pos[cur_reg] = next_use->pos();
1889 }
1890 }
1891 }
1892
1893 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
1894 LiveRange* range = inactive_live_ranges_.at(i);
1895 ASSERT(range->End().Value() > current->Start().Value());
1896 LifetimePosition next_intersection = range->FirstIntersection(current);
1897 if (!next_intersection.IsValid()) continue;
1898 int cur_reg = range->assigned_register();
1899 if (range->IsFixed()) {
1900 block_pos[cur_reg] = Min(block_pos[cur_reg], next_intersection);
1901 use_pos[cur_reg] = Min(block_pos[cur_reg], use_pos[cur_reg]);
1902 } else {
1903 use_pos[cur_reg] = Min(use_pos[cur_reg], next_intersection);
1904 }
1905 }
1906
1907 int reg = 0;
1908 for (int i = 1; i < RegisterCount(); ++i) {
1909 if (use_pos[i].Value() > use_pos[reg].Value()) {
1910 reg = i;
1911 }
1912 }
1913
1914 LifetimePosition pos = use_pos[reg];
1915
1916 if (pos.Value() < register_use->pos().Value()) {
1917 // All registers are blocked before the first use that requires a register.
1918 // Spill starting part of live range up to that use.
1919 SpillBetween(current, current->Start(), register_use->pos());
1920 return;
1921 }
1922
1923 if (block_pos[reg].Value() < current->End().Value()) {
1924 // Register becomes blocked before the current range end. Split before that
1925 // position.
1926 LiveRange* tail = SplitBetween(current,
1927 current->Start(),
1928 block_pos[reg].InstructionStart());
1929 if (!AllocationOk()) return;
1930 AddToUnhandledSorted(tail);
1931 }
1932
1933 // Register reg is not blocked for the whole range.
1934 ASSERT(block_pos[reg].Value() >= current->End().Value());
1935 TraceAlloc("Assigning blocked reg %s to live range %d\n",
1936 RegisterName(reg),
1937 current->id());
1938 SetLiveRangeAssignedRegister(current, reg);
1939
1940 // This register was not free. Thus we need to find and spill
1941 // parts of active and inactive live regions that use the same register
1942 // at the same lifetime positions as current.
1943 SplitAndSpillIntersecting(current);
1944 }
1945
1946
FindOptimalSpillingPos(LiveRange * range,LifetimePosition pos)1947 LifetimePosition LAllocator::FindOptimalSpillingPos(LiveRange* range,
1948 LifetimePosition pos) {
1949 HBasicBlock* block = GetBlock(pos.InstructionStart());
1950 HBasicBlock* loop_header =
1951 block->IsLoopHeader() ? block : block->parent_loop_header();
1952
1953 if (loop_header == NULL) return pos;
1954
1955 UsePosition* prev_use =
1956 range->PreviousUsePositionRegisterIsBeneficial(pos);
1957
1958 while (loop_header != NULL) {
1959 // We are going to spill live range inside the loop.
1960 // If possible try to move spilling position backwards to loop header.
1961 // This will reduce number of memory moves on the back edge.
1962 LifetimePosition loop_start = LifetimePosition::FromInstructionIndex(
1963 loop_header->first_instruction_index());
1964
1965 if (range->Covers(loop_start)) {
1966 if (prev_use == NULL || prev_use->pos().Value() < loop_start.Value()) {
1967 // No register beneficial use inside the loop before the pos.
1968 pos = loop_start;
1969 }
1970 }
1971
1972 // Try hoisting out to an outer loop.
1973 loop_header = loop_header->parent_loop_header();
1974 }
1975
1976 return pos;
1977 }
1978
1979
SplitAndSpillIntersecting(LiveRange * current)1980 void LAllocator::SplitAndSpillIntersecting(LiveRange* current) {
1981 ASSERT(current->HasRegisterAssigned());
1982 int reg = current->assigned_register();
1983 LifetimePosition split_pos = current->Start();
1984 for (int i = 0; i < active_live_ranges_.length(); ++i) {
1985 LiveRange* range = active_live_ranges_[i];
1986 if (range->assigned_register() == reg) {
1987 UsePosition* next_pos = range->NextRegisterPosition(current->Start());
1988 LifetimePosition spill_pos = FindOptimalSpillingPos(range, split_pos);
1989 if (next_pos == NULL) {
1990 SpillAfter(range, spill_pos);
1991 } else {
1992 // When spilling between spill_pos and next_pos ensure that the range
1993 // remains spilled at least until the start of the current live range.
1994 // This guarantees that we will not introduce new unhandled ranges that
1995 // start before the current range as this violates allocation invariant
1996 // and will lead to an inconsistent state of active and inactive
1997 // live-ranges: ranges are allocated in order of their start positions,
1998 // ranges are retired from active/inactive when the start of the
1999 // current live-range is larger than their end.
2000 SpillBetweenUntil(range, spill_pos, current->Start(), next_pos->pos());
2001 }
2002 if (!AllocationOk()) return;
2003 ActiveToHandled(range);
2004 --i;
2005 }
2006 }
2007
2008 for (int i = 0; i < inactive_live_ranges_.length(); ++i) {
2009 LiveRange* range = inactive_live_ranges_[i];
2010 ASSERT(range->End().Value() > current->Start().Value());
2011 if (range->assigned_register() == reg && !range->IsFixed()) {
2012 LifetimePosition next_intersection = range->FirstIntersection(current);
2013 if (next_intersection.IsValid()) {
2014 UsePosition* next_pos = range->NextRegisterPosition(current->Start());
2015 if (next_pos == NULL) {
2016 SpillAfter(range, split_pos);
2017 } else {
2018 next_intersection = Min(next_intersection, next_pos->pos());
2019 SpillBetween(range, split_pos, next_intersection);
2020 }
2021 if (!AllocationOk()) return;
2022 InactiveToHandled(range);
2023 --i;
2024 }
2025 }
2026 }
2027 }
2028
2029
IsBlockBoundary(LifetimePosition pos)2030 bool LAllocator::IsBlockBoundary(LifetimePosition pos) {
2031 return pos.IsInstructionStart() &&
2032 InstructionAt(pos.InstructionIndex())->IsLabel();
2033 }
2034
2035
SplitRangeAt(LiveRange * range,LifetimePosition pos)2036 LiveRange* LAllocator::SplitRangeAt(LiveRange* range, LifetimePosition pos) {
2037 ASSERT(!range->IsFixed());
2038 TraceAlloc("Splitting live range %d at %d\n", range->id(), pos.Value());
2039
2040 if (pos.Value() <= range->Start().Value()) return range;
2041
2042 // We can't properly connect liveranges if split occured at the end
2043 // of control instruction.
2044 ASSERT(pos.IsInstructionStart() ||
2045 !chunk_->instructions()->at(pos.InstructionIndex())->IsControl());
2046
2047 int vreg = GetVirtualRegister();
2048 if (!AllocationOk()) return NULL;
2049 LiveRange* result = LiveRangeFor(vreg);
2050 range->SplitAt(pos, result, zone());
2051 return result;
2052 }
2053
2054
SplitBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2055 LiveRange* LAllocator::SplitBetween(LiveRange* range,
2056 LifetimePosition start,
2057 LifetimePosition end) {
2058 ASSERT(!range->IsFixed());
2059 TraceAlloc("Splitting live range %d in position between [%d, %d]\n",
2060 range->id(),
2061 start.Value(),
2062 end.Value());
2063
2064 LifetimePosition split_pos = FindOptimalSplitPos(start, end);
2065 ASSERT(split_pos.Value() >= start.Value());
2066 return SplitRangeAt(range, split_pos);
2067 }
2068
2069
FindOptimalSplitPos(LifetimePosition start,LifetimePosition end)2070 LifetimePosition LAllocator::FindOptimalSplitPos(LifetimePosition start,
2071 LifetimePosition end) {
2072 int start_instr = start.InstructionIndex();
2073 int end_instr = end.InstructionIndex();
2074 ASSERT(start_instr <= end_instr);
2075
2076 // We have no choice
2077 if (start_instr == end_instr) return end;
2078
2079 HBasicBlock* start_block = GetBlock(start);
2080 HBasicBlock* end_block = GetBlock(end);
2081
2082 if (end_block == start_block) {
2083 // The interval is split in the same basic block. Split at the latest
2084 // possible position.
2085 return end;
2086 }
2087
2088 HBasicBlock* block = end_block;
2089 // Find header of outermost loop.
2090 while (block->parent_loop_header() != NULL &&
2091 block->parent_loop_header()->block_id() > start_block->block_id()) {
2092 block = block->parent_loop_header();
2093 }
2094
2095 // We did not find any suitable outer loop. Split at the latest possible
2096 // position unless end_block is a loop header itself.
2097 if (block == end_block && !end_block->IsLoopHeader()) return end;
2098
2099 return LifetimePosition::FromInstructionIndex(
2100 block->first_instruction_index());
2101 }
2102
2103
SpillAfter(LiveRange * range,LifetimePosition pos)2104 void LAllocator::SpillAfter(LiveRange* range, LifetimePosition pos) {
2105 LiveRange* second_part = SplitRangeAt(range, pos);
2106 if (!AllocationOk()) return;
2107 Spill(second_part);
2108 }
2109
2110
SpillBetween(LiveRange * range,LifetimePosition start,LifetimePosition end)2111 void LAllocator::SpillBetween(LiveRange* range,
2112 LifetimePosition start,
2113 LifetimePosition end) {
2114 SpillBetweenUntil(range, start, start, end);
2115 }
2116
2117
SpillBetweenUntil(LiveRange * range,LifetimePosition start,LifetimePosition until,LifetimePosition end)2118 void LAllocator::SpillBetweenUntil(LiveRange* range,
2119 LifetimePosition start,
2120 LifetimePosition until,
2121 LifetimePosition end) {
2122 CHECK(start.Value() < end.Value());
2123 LiveRange* second_part = SplitRangeAt(range, start);
2124 if (!AllocationOk()) return;
2125
2126 if (second_part->Start().Value() < end.Value()) {
2127 // The split result intersects with [start, end[.
2128 // Split it at position between ]start+1, end[, spill the middle part
2129 // and put the rest to unhandled.
2130 LiveRange* third_part = SplitBetween(
2131 second_part,
2132 Max(second_part->Start().InstructionEnd(), until),
2133 end.PrevInstruction().InstructionEnd());
2134 if (!AllocationOk()) return;
2135
2136 ASSERT(third_part != second_part);
2137
2138 Spill(second_part);
2139 AddToUnhandledSorted(third_part);
2140 } else {
2141 // The split result does not intersect with [start, end[.
2142 // Nothing to spill. Just put it to unhandled as whole.
2143 AddToUnhandledSorted(second_part);
2144 }
2145 }
2146
2147
Spill(LiveRange * range)2148 void LAllocator::Spill(LiveRange* range) {
2149 ASSERT(!range->IsSpilled());
2150 TraceAlloc("Spilling live range %d\n", range->id());
2151 LiveRange* first = range->TopLevel();
2152
2153 if (!first->HasAllocatedSpillOperand()) {
2154 LOperand* op = TryReuseSpillSlot(range);
2155 if (op == NULL) op = chunk_->GetNextSpillSlot(range->Kind());
2156 first->SetSpillOperand(op);
2157 }
2158 range->MakeSpilled(chunk()->zone());
2159 }
2160
2161
RegisterCount() const2162 int LAllocator::RegisterCount() const {
2163 return num_registers_;
2164 }
2165
2166
2167 #ifdef DEBUG
2168
2169
Verify() const2170 void LAllocator::Verify() const {
2171 for (int i = 0; i < live_ranges()->length(); ++i) {
2172 LiveRange* current = live_ranges()->at(i);
2173 if (current != NULL) current->Verify();
2174 }
2175 }
2176
2177
2178 #endif
2179
2180
LAllocatorPhase(const char * name,LAllocator * allocator)2181 LAllocatorPhase::LAllocatorPhase(const char* name, LAllocator* allocator)
2182 : CompilationPhase(name, allocator->graph()->info()),
2183 allocator_(allocator) {
2184 if (FLAG_hydrogen_stats) {
2185 allocator_zone_start_allocation_size_ =
2186 allocator->zone()->allocation_size();
2187 }
2188 }
2189
2190
~LAllocatorPhase()2191 LAllocatorPhase::~LAllocatorPhase() {
2192 if (FLAG_hydrogen_stats) {
2193 unsigned size = allocator_->zone()->allocation_size() -
2194 allocator_zone_start_allocation_size_;
2195 isolate()->GetHStatistics()->SaveTiming(name(), TimeDelta(), size);
2196 }
2197
2198 if (ShouldProduceTraceOutput()) {
2199 isolate()->GetHTracer()->TraceLithium(name(), allocator_->chunk());
2200 isolate()->GetHTracer()->TraceLiveRanges(name(), allocator_);
2201 }
2202
2203 #ifdef DEBUG
2204 if (allocator_ != NULL) allocator_->Verify();
2205 #endif
2206 }
2207
2208
2209 } } // namespace v8::internal
2210