• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #ifndef ART_RUNTIME_BASE_MUTEX_H_
18 #define ART_RUNTIME_BASE_MUTEX_H_
19 
20 #include <pthread.h>
21 #include <stdint.h>
22 
23 #include <iosfwd>
24 #include <string>
25 
26 #include "atomic.h"
27 #include "base/logging.h"
28 #include "base/macros.h"
29 #include "globals.h"
30 
31 #if defined(__APPLE__)
32 #define ART_USE_FUTEXES 0
33 #else
34 #define ART_USE_FUTEXES 1
35 #endif
36 
37 // Currently Darwin doesn't support locks with timeouts.
38 #if !defined(__APPLE__)
39 #define HAVE_TIMED_RWLOCK 1
40 #else
41 #define HAVE_TIMED_RWLOCK 0
42 #endif
43 
44 namespace art {
45 
46 class LOCKABLE ReaderWriterMutex;
47 class ScopedContentionRecorder;
48 class Thread;
49 
50 // LockLevel is used to impose a lock hierarchy [1] where acquisition of a Mutex at a higher or
51 // equal level to a lock a thread holds is invalid. The lock hierarchy achieves a cycle free
52 // partial ordering and thereby cause deadlock situations to fail checks.
53 //
54 // [1] http://www.drdobbs.com/parallel/use-lock-hierarchies-to-avoid-deadlock/204801163
55 enum LockLevel {
56   kLoggingLock = 0,
57   kMemMapsLock,
58   kSwapMutexesLock,
59   kUnexpectedSignalLock,
60   kThreadSuspendCountLock,
61   kAbortLock,
62   kJdwpSocketLock,
63   kReferenceQueueSoftReferencesLock,
64   kReferenceQueuePhantomReferencesLock,
65   kReferenceQueueFinalizerReferencesLock,
66   kReferenceQueueWeakReferencesLock,
67   kReferenceQueueClearedReferencesLock,
68   kReferenceProcessorLock,
69   kRosAllocGlobalLock,
70   kRosAllocBracketLock,
71   kRosAllocBulkFreeLock,
72   kAllocSpaceLock,
73   kDexFileMethodInlinerLock,
74   kDexFileToMethodInlinerMapLock,
75   kMarkSweepMarkStackLock,
76   kTransactionLogLock,
77   kInternTableLock,
78   kOatFileSecondaryLookupLock,
79   kDefaultMutexLevel,
80   kMarkSweepLargeObjectLock,
81   kPinTableLock,
82   kLoadLibraryLock,
83   kJdwpObjectRegistryLock,
84   kModifyLdtLock,
85   kAllocatedThreadIdsLock,
86   kMonitorPoolLock,
87   kClassLinkerClassesLock,
88   kBreakpointLock,
89   kMonitorLock,
90   kMonitorListLock,
91   kThreadListLock,
92   kBreakpointInvokeLock,
93   kAllocTrackerLock,
94   kDeoptimizationLock,
95   kProfilerLock,
96   kJdwpEventListLock,
97   kJdwpAttachLock,
98   kJdwpStartLock,
99   kRuntimeShutdownLock,
100   kTraceLock,
101   kHeapBitmapLock,
102   kMutatorLock,
103   kInstrumentEntrypointsLock,
104   kThreadListSuspendThreadLock,
105   kZygoteCreationLock,
106 
107   kLockLevelCount  // Must come last.
108 };
109 std::ostream& operator<<(std::ostream& os, const LockLevel& rhs);
110 
111 const bool kDebugLocking = kIsDebugBuild;
112 
113 // Record Log contention information, dumpable via SIGQUIT.
114 #ifdef ART_USE_FUTEXES
115 // To enable lock contention logging, set this to true.
116 const bool kLogLockContentions = false;
117 #else
118 // Keep this false as lock contention logging is supported only with
119 // futex.
120 const bool kLogLockContentions = false;
121 #endif
122 const size_t kContentionLogSize = 4;
123 const size_t kContentionLogDataSize = kLogLockContentions ? 1 : 0;
124 const size_t kAllMutexDataSize = kLogLockContentions ? 1 : 0;
125 
126 // Base class for all Mutex implementations
127 class BaseMutex {
128  public:
GetName()129   const char* GetName() const {
130     return name_;
131   }
132 
IsMutex()133   virtual bool IsMutex() const { return false; }
IsReaderWriterMutex()134   virtual bool IsReaderWriterMutex() const { return false; }
135 
136   virtual void Dump(std::ostream& os) const = 0;
137 
138   static void DumpAll(std::ostream& os);
139 
140  protected:
141   friend class ConditionVariable;
142 
143   BaseMutex(const char* name, LockLevel level);
144   virtual ~BaseMutex();
145   void RegisterAsLocked(Thread* self);
146   void RegisterAsUnlocked(Thread* self);
147   void CheckSafeToWait(Thread* self);
148 
149   friend class ScopedContentionRecorder;
150 
151   void RecordContention(uint64_t blocked_tid, uint64_t owner_tid, uint64_t nano_time_blocked);
152   void DumpContention(std::ostream& os) const;
153 
154   const LockLevel level_;  // Support for lock hierarchy.
155   const char* const name_;
156 
157   // A log entry that records contention but makes no guarantee that either tid will be held live.
158   struct ContentionLogEntry {
ContentionLogEntryContentionLogEntry159     ContentionLogEntry() : blocked_tid(0), owner_tid(0) {}
160     uint64_t blocked_tid;
161     uint64_t owner_tid;
162     AtomicInteger count;
163   };
164   struct ContentionLogData {
165     ContentionLogEntry contention_log[kContentionLogSize];
166     // The next entry in the contention log to be updated. Value ranges from 0 to
167     // kContentionLogSize - 1.
168     AtomicInteger cur_content_log_entry;
169     // Number of times the Mutex has been contended.
170     AtomicInteger contention_count;
171     // Sum of time waited by all contenders in ns.
172     Atomic<uint64_t> wait_time;
173     void AddToWaitTime(uint64_t value);
ContentionLogDataContentionLogData174     ContentionLogData() : wait_time(0) {}
175   };
176   ContentionLogData contention_log_data_[kContentionLogDataSize];
177 
178  public:
HasEverContended()179   bool HasEverContended() const {
180     if (kLogLockContentions) {
181       return contention_log_data_->contention_count.LoadSequentiallyConsistent() > 0;
182     }
183     return false;
184   }
185 };
186 
187 // A Mutex is used to achieve mutual exclusion between threads. A Mutex can be used to gain
188 // exclusive access to what it guards. A Mutex can be in one of two states:
189 // - Free - not owned by any thread,
190 // - Exclusive - owned by a single thread.
191 //
192 // The effect of locking and unlocking operations on the state is:
193 // State     | ExclusiveLock | ExclusiveUnlock
194 // -------------------------------------------
195 // Free      | Exclusive     | error
196 // Exclusive | Block*        | Free
197 // * Mutex is not reentrant and so an attempt to ExclusiveLock on the same thread will result in
198 //   an error. Being non-reentrant simplifies Waiting on ConditionVariables.
199 std::ostream& operator<<(std::ostream& os, const Mutex& mu);
200 class LOCKABLE Mutex : public BaseMutex {
201  public:
202   explicit Mutex(const char* name, LockLevel level = kDefaultMutexLevel, bool recursive = false);
203   ~Mutex();
204 
IsMutex()205   virtual bool IsMutex() const { return true; }
206 
207   // Block until mutex is free then acquire exclusive access.
208   void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
Lock(Thread * self)209   void Lock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
210 
211   // Returns true if acquires exclusive access, false otherwise.
212   bool ExclusiveTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
TryLock(Thread * self)213   bool TryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true) { return ExclusiveTryLock(self); }
214 
215   // Release exclusive access.
216   void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
Unlock(Thread * self)217   void Unlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
218 
219   // Is the current thread the exclusive holder of the Mutex.
220   bool IsExclusiveHeld(const Thread* self) const;
221 
222   // Assert that the Mutex is exclusively held by the current thread.
AssertExclusiveHeld(const Thread * self)223   void AssertExclusiveHeld(const Thread* self) {
224     if (kDebugLocking && (gAborting == 0)) {
225       CHECK(IsExclusiveHeld(self)) << *this;
226     }
227   }
AssertHeld(const Thread * self)228   void AssertHeld(const Thread* self) { AssertExclusiveHeld(self); }
229 
230   // Assert that the Mutex is not held by the current thread.
AssertNotHeldExclusive(const Thread * self)231   void AssertNotHeldExclusive(const Thread* self) {
232     if (kDebugLocking && (gAborting == 0)) {
233       CHECK(!IsExclusiveHeld(self)) << *this;
234     }
235   }
AssertNotHeld(const Thread * self)236   void AssertNotHeld(const Thread* self) { AssertNotHeldExclusive(self); }
237 
238   // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
239   // than the owner.
240   uint64_t GetExclusiveOwnerTid() const;
241 
242   // Returns how many times this Mutex has been locked, it is better to use AssertHeld/NotHeld.
GetDepth()243   unsigned int GetDepth() const {
244     return recursion_count_;
245   }
246 
247   virtual void Dump(std::ostream& os) const;
248 
249  private:
250 #if ART_USE_FUTEXES
251   // 0 is unheld, 1 is held.
252   AtomicInteger state_;
253   // Exclusive owner.
254   volatile uint64_t exclusive_owner_;
255   // Number of waiting contenders.
256   AtomicInteger num_contenders_;
257 #else
258   pthread_mutex_t mutex_;
259   volatile uint64_t exclusive_owner_;  // Guarded by mutex_.
260 #endif
261   const bool recursive_;  // Can the lock be recursively held?
262   unsigned int recursion_count_;
263   friend class ConditionVariable;
264   DISALLOW_COPY_AND_ASSIGN(Mutex);
265 };
266 
267 // A ReaderWriterMutex is used to achieve mutual exclusion between threads, similar to a Mutex.
268 // Unlike a Mutex a ReaderWriterMutex can be used to gain exclusive (writer) or shared (reader)
269 // access to what it guards. A flaw in relation to a Mutex is that it cannot be used with a
270 // condition variable. A ReaderWriterMutex can be in one of three states:
271 // - Free - not owned by any thread,
272 // - Exclusive - owned by a single thread,
273 // - Shared(n) - shared amongst n threads.
274 //
275 // The effect of locking and unlocking operations on the state is:
276 //
277 // State     | ExclusiveLock | ExclusiveUnlock | SharedLock       | SharedUnlock
278 // ----------------------------------------------------------------------------
279 // Free      | Exclusive     | error           | SharedLock(1)    | error
280 // Exclusive | Block         | Free            | Block            | error
281 // Shared(n) | Block         | error           | SharedLock(n+1)* | Shared(n-1) or Free
282 // * for large values of n the SharedLock may block.
283 std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu);
284 class LOCKABLE ReaderWriterMutex : public BaseMutex {
285  public:
286   explicit ReaderWriterMutex(const char* name, LockLevel level = kDefaultMutexLevel);
287   ~ReaderWriterMutex();
288 
IsReaderWriterMutex()289   virtual bool IsReaderWriterMutex() const { return true; }
290 
291   // Block until ReaderWriterMutex is free then acquire exclusive access.
292   void ExclusiveLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION();
WriterLock(Thread * self)293   void WriterLock(Thread* self) EXCLUSIVE_LOCK_FUNCTION() {  ExclusiveLock(self); }
294 
295   // Release exclusive access.
296   void ExclusiveUnlock(Thread* self) UNLOCK_FUNCTION();
WriterUnlock(Thread * self)297   void WriterUnlock(Thread* self) UNLOCK_FUNCTION() {  ExclusiveUnlock(self); }
298 
299   // Block until ReaderWriterMutex is free and acquire exclusive access. Returns true on success
300   // or false if timeout is reached.
301 #if HAVE_TIMED_RWLOCK
302   bool ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns)
303       EXCLUSIVE_TRYLOCK_FUNCTION(true);
304 #endif
305 
306   // Block until ReaderWriterMutex is shared or free then acquire a share on the access.
307   void SharedLock(Thread* self) SHARED_LOCK_FUNCTION() ALWAYS_INLINE;
ReaderLock(Thread * self)308   void ReaderLock(Thread* self) SHARED_LOCK_FUNCTION() { SharedLock(self); }
309 
310   // Try to acquire share of ReaderWriterMutex.
311   bool SharedTryLock(Thread* self) EXCLUSIVE_TRYLOCK_FUNCTION(true);
312 
313   // Release a share of the access.
314   void SharedUnlock(Thread* self) UNLOCK_FUNCTION() ALWAYS_INLINE;
ReaderUnlock(Thread * self)315   void ReaderUnlock(Thread* self) UNLOCK_FUNCTION() { SharedUnlock(self); }
316 
317   // Is the current thread the exclusive holder of the ReaderWriterMutex.
318   bool IsExclusiveHeld(const Thread* self) const;
319 
320   // Assert the current thread has exclusive access to the ReaderWriterMutex.
AssertExclusiveHeld(const Thread * self)321   void AssertExclusiveHeld(const Thread* self) {
322     if (kDebugLocking && (gAborting == 0)) {
323       CHECK(IsExclusiveHeld(self)) << *this;
324     }
325   }
AssertWriterHeld(const Thread * self)326   void AssertWriterHeld(const Thread* self) { AssertExclusiveHeld(self); }
327 
328   // Assert the current thread doesn't have exclusive access to the ReaderWriterMutex.
AssertNotExclusiveHeld(const Thread * self)329   void AssertNotExclusiveHeld(const Thread* self) {
330     if (kDebugLocking && (gAborting == 0)) {
331       CHECK(!IsExclusiveHeld(self)) << *this;
332     }
333   }
AssertNotWriterHeld(const Thread * self)334   void AssertNotWriterHeld(const Thread* self) { AssertNotExclusiveHeld(self); }
335 
336   // Is the current thread a shared holder of the ReaderWriterMutex.
337   bool IsSharedHeld(const Thread* self) const;
338 
339   // Assert the current thread has shared access to the ReaderWriterMutex.
AssertSharedHeld(const Thread * self)340   void AssertSharedHeld(const Thread* self) {
341     if (kDebugLocking && (gAborting == 0)) {
342       // TODO: we can only assert this well when self != NULL.
343       CHECK(IsSharedHeld(self) || self == NULL) << *this;
344     }
345   }
AssertReaderHeld(const Thread * self)346   void AssertReaderHeld(const Thread* self) { AssertSharedHeld(self); }
347 
348   // Assert the current thread doesn't hold this ReaderWriterMutex either in shared or exclusive
349   // mode.
AssertNotHeld(const Thread * self)350   void AssertNotHeld(const Thread* self) {
351     if (kDebugLocking && (gAborting == 0)) {
352       CHECK(!IsSharedHeld(self)) << *this;
353     }
354   }
355 
356   // Id associated with exclusive owner. No memory ordering semantics if called from a thread other
357   // than the owner.
358   uint64_t GetExclusiveOwnerTid() const;
359 
360   virtual void Dump(std::ostream& os) const;
361 
362  private:
363 #if ART_USE_FUTEXES
364   // -1 implies held exclusive, +ve shared held by state_ many owners.
365   AtomicInteger state_;
366   // Exclusive owner. Modification guarded by this mutex.
367   volatile uint64_t exclusive_owner_;
368   // Number of contenders waiting for a reader share.
369   AtomicInteger num_pending_readers_;
370   // Number of contenders waiting to be the writer.
371   AtomicInteger num_pending_writers_;
372 #else
373   pthread_rwlock_t rwlock_;
374   volatile uint64_t exclusive_owner_;  // Guarded by rwlock_.
375 #endif
376   DISALLOW_COPY_AND_ASSIGN(ReaderWriterMutex);
377 };
378 
379 // ConditionVariables allow threads to queue and sleep. Threads may then be resumed individually
380 // (Signal) or all at once (Broadcast).
381 class ConditionVariable {
382  public:
383   explicit ConditionVariable(const char* name, Mutex& mutex);
384   ~ConditionVariable();
385 
386   void Broadcast(Thread* self);
387   void Signal(Thread* self);
388   // TODO: No thread safety analysis on Wait and TimedWait as they call mutex operations via their
389   //       pointer copy, thereby defeating annotalysis.
390   void Wait(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
391   void TimedWait(Thread* self, int64_t ms, int32_t ns) NO_THREAD_SAFETY_ANALYSIS;
392   // Variant of Wait that should be used with caution. Doesn't validate that no mutexes are held
393   // when waiting.
394   // TODO: remove this.
395   void WaitHoldingLocks(Thread* self) NO_THREAD_SAFETY_ANALYSIS;
396 
397  private:
398   const char* const name_;
399   // The Mutex being used by waiters. It is an error to mix condition variables between different
400   // Mutexes.
401   Mutex& guard_;
402 #if ART_USE_FUTEXES
403   // A counter that is modified by signals and broadcasts. This ensures that when a waiter gives up
404   // their Mutex and another thread takes it and signals, the waiting thread observes that sequence_
405   // changed and doesn't enter the wait. Modified while holding guard_, but is read by futex wait
406   // without guard_ held.
407   AtomicInteger sequence_;
408   // Number of threads that have come into to wait, not the length of the waiters on the futex as
409   // waiters may have been requeued onto guard_. Guarded by guard_.
410   volatile int32_t num_waiters_;
411 #else
412   pthread_cond_t cond_;
413 #endif
414   DISALLOW_COPY_AND_ASSIGN(ConditionVariable);
415 };
416 
417 // Scoped locker/unlocker for a regular Mutex that acquires mu upon construction and releases it
418 // upon destruction.
419 class SCOPED_LOCKABLE MutexLock {
420  public:
MutexLock(Thread * self,Mutex & mu)421   explicit MutexLock(Thread* self, Mutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) : self_(self), mu_(mu) {
422     mu_.ExclusiveLock(self_);
423   }
424 
UNLOCK_FUNCTION()425   ~MutexLock() UNLOCK_FUNCTION() {
426     mu_.ExclusiveUnlock(self_);
427   }
428 
429  private:
430   Thread* const self_;
431   Mutex& mu_;
432   DISALLOW_COPY_AND_ASSIGN(MutexLock);
433 };
434 // Catch bug where variable name is omitted. "MutexLock (lock);" instead of "MutexLock mu(lock)".
435 #define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_declaration_missing_variable_name)
436 
437 // Scoped locker/unlocker for a ReaderWriterMutex that acquires read access to mu upon
438 // construction and releases it upon destruction.
439 class SCOPED_LOCKABLE ReaderMutexLock {
440  public:
ReaderMutexLock(Thread * self,ReaderWriterMutex & mu)441   explicit ReaderMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
442       self_(self), mu_(mu) {
443     mu_.SharedLock(self_);
444   }
445 
UNLOCK_FUNCTION()446   ~ReaderMutexLock() UNLOCK_FUNCTION() {
447     mu_.SharedUnlock(self_);
448   }
449 
450  private:
451   Thread* const self_;
452   ReaderWriterMutex& mu_;
453   DISALLOW_COPY_AND_ASSIGN(ReaderMutexLock);
454 };
455 // Catch bug where variable name is omitted. "ReaderMutexLock (lock);" instead of
456 // "ReaderMutexLock mu(lock)".
457 #define ReaderMutexLock(x) COMPILE_ASSERT(0, reader_mutex_lock_declaration_missing_variable_name)
458 
459 // Scoped locker/unlocker for a ReaderWriterMutex that acquires write access to mu upon
460 // construction and releases it upon destruction.
461 class SCOPED_LOCKABLE WriterMutexLock {
462  public:
WriterMutexLock(Thread * self,ReaderWriterMutex & mu)463   explicit WriterMutexLock(Thread* self, ReaderWriterMutex& mu) EXCLUSIVE_LOCK_FUNCTION(mu) :
464       self_(self), mu_(mu) {
465     mu_.ExclusiveLock(self_);
466   }
467 
UNLOCK_FUNCTION()468   ~WriterMutexLock() UNLOCK_FUNCTION() {
469     mu_.ExclusiveUnlock(self_);
470   }
471 
472  private:
473   Thread* const self_;
474   ReaderWriterMutex& mu_;
475   DISALLOW_COPY_AND_ASSIGN(WriterMutexLock);
476 };
477 // Catch bug where variable name is omitted. "WriterMutexLock (lock);" instead of
478 // "WriterMutexLock mu(lock)".
479 #define WriterMutexLock(x) COMPILE_ASSERT(0, writer_mutex_lock_declaration_missing_variable_name)
480 
481 // Global mutexes corresponding to the levels above.
482 class Locks {
483  public:
484   static void Init();
485 
486   // There's a potential race for two threads to try to suspend each other and for both of them
487   // to succeed and get blocked becoming runnable. This lock ensures that only one thread is
488   // requesting suspension of another at any time. As the the thread list suspend thread logic
489   // transitions to runnable, if the current thread were tried to be suspended then this thread
490   // would block holding this lock until it could safely request thread suspension of the other
491   // thread without that thread having a suspension request against this thread. This avoids a
492   // potential deadlock cycle.
493   static Mutex* thread_list_suspend_thread_lock_;
494 
495   // Guards allocation entrypoint instrumenting.
496   static Mutex* instrument_entrypoints_lock_ ACQUIRED_AFTER(thread_list_suspend_thread_lock_);
497 
498   // The mutator_lock_ is used to allow mutators to execute in a shared (reader) mode or to block
499   // mutators by having an exclusive (writer) owner. In normal execution each mutator thread holds
500   // a share on the mutator_lock_. The garbage collector may also execute with shared access but
501   // at times requires exclusive access to the heap (not to be confused with the heap meta-data
502   // guarded by the heap_lock_ below). When the garbage collector requires exclusive access it asks
503   // the mutators to suspend themselves which also involves usage of the thread_suspend_count_lock_
504   // to cover weaknesses in using ReaderWriterMutexes with ConditionVariables. We use a condition
505   // variable to wait upon in the suspension logic as releasing and then re-acquiring a share on
506   // the mutator lock doesn't necessarily allow the exclusive user (e.g the garbage collector)
507   // chance to acquire the lock.
508   //
509   // Thread suspension:
510   // Shared users                                  | Exclusive user
511   // (holding mutator lock and in kRunnable state) |   .. running ..
512   //   .. running ..                               | Request thread suspension by:
513   //   .. running ..                               |   - acquiring thread_suspend_count_lock_
514   //   .. running ..                               |   - incrementing Thread::suspend_count_ on
515   //   .. running ..                               |     all mutator threads
516   //   .. running ..                               |   - releasing thread_suspend_count_lock_
517   //   .. running ..                               | Block trying to acquire exclusive mutator lock
518   // Poll Thread::suspend_count_ and enter full    |   .. blocked ..
519   // suspend code.                                 |   .. blocked ..
520   // Change state to kSuspended                    |   .. blocked ..
521   // x: Release share on mutator_lock_             | Carry out exclusive access
522   // Acquire thread_suspend_count_lock_            |   .. exclusive ..
523   // while Thread::suspend_count_ > 0              |   .. exclusive ..
524   //   - wait on Thread::resume_cond_              |   .. exclusive ..
525   //     (releases thread_suspend_count_lock_)     |   .. exclusive ..
526   //   .. waiting ..                               | Release mutator_lock_
527   //   .. waiting ..                               | Request thread resumption by:
528   //   .. waiting ..                               |   - acquiring thread_suspend_count_lock_
529   //   .. waiting ..                               |   - decrementing Thread::suspend_count_ on
530   //   .. waiting ..                               |     all mutator threads
531   //   .. waiting ..                               |   - notifying on Thread::resume_cond_
532   //    - re-acquire thread_suspend_count_lock_    |   - releasing thread_suspend_count_lock_
533   // Release thread_suspend_count_lock_            |  .. running ..
534   // Acquire share on mutator_lock_                |  .. running ..
535   //  - This could block but the thread still      |  .. running ..
536   //    has a state of kSuspended and so this      |  .. running ..
537   //    isn't an issue.                            |  .. running ..
538   // Acquire thread_suspend_count_lock_            |  .. running ..
539   //  - we poll here as we're transitioning into   |  .. running ..
540   //    kRunnable and an individual thread suspend |  .. running ..
541   //    request (e.g for debugging) won't try      |  .. running ..
542   //    to acquire the mutator lock (which would   |  .. running ..
543   //    block as we hold the mutator lock). This   |  .. running ..
544   //    poll ensures that if the suspender thought |  .. running ..
545   //    we were suspended by incrementing our      |  .. running ..
546   //    Thread::suspend_count_ and then reading    |  .. running ..
547   //    our state we go back to waiting on         |  .. running ..
548   //    Thread::resume_cond_.                      |  .. running ..
549   // can_go_runnable = Thread::suspend_count_ == 0 |  .. running ..
550   // Release thread_suspend_count_lock_            |  .. running ..
551   // if can_go_runnable                            |  .. running ..
552   //   Change state to kRunnable                   |  .. running ..
553   // else                                          |  .. running ..
554   //   Goto x                                      |  .. running ..
555   //  .. running ..                                |  .. running ..
556   static ReaderWriterMutex* mutator_lock_ ACQUIRED_AFTER(instrument_entrypoints_lock_);
557 
558   // Allow reader-writer mutual exclusion on the mark and live bitmaps of the heap.
559   static ReaderWriterMutex* heap_bitmap_lock_ ACQUIRED_AFTER(mutator_lock_);
560 
561   // Guards shutdown of the runtime.
562   static Mutex* runtime_shutdown_lock_ ACQUIRED_AFTER(heap_bitmap_lock_);
563 
564   // Guards background profiler global state.
565   static Mutex* profiler_lock_ ACQUIRED_AFTER(runtime_shutdown_lock_);
566 
567   // Guards trace (ie traceview) requests.
568   static Mutex* trace_lock_ ACQUIRED_AFTER(profiler_lock_);
569 
570   // Guards debugger recent allocation records.
571   static Mutex* alloc_tracker_lock_ ACQUIRED_AFTER(trace_lock_);
572 
573   // Guards updates to instrumentation to ensure mutual exclusion of
574   // events like deoptimization requests.
575   // TODO: improve name, perhaps instrumentation_update_lock_.
576   static Mutex* deoptimization_lock_ ACQUIRED_AFTER(alloc_tracker_lock_);
577 
578   // The thread_list_lock_ guards ThreadList::list_. It is also commonly held to stop threads
579   // attaching and detaching.
580   static Mutex* thread_list_lock_ ACQUIRED_AFTER(deoptimization_lock_);
581 
582   // Guards breakpoints.
583   static ReaderWriterMutex* breakpoint_lock_ ACQUIRED_AFTER(trace_lock_);
584 
585   // Guards lists of classes within the class linker.
586   static ReaderWriterMutex* classlinker_classes_lock_ ACQUIRED_AFTER(breakpoint_lock_);
587 
588   // When declaring any Mutex add DEFAULT_MUTEX_ACQUIRED_AFTER to use annotalysis to check the code
589   // doesn't try to hold a higher level Mutex.
590   #define DEFAULT_MUTEX_ACQUIRED_AFTER ACQUIRED_AFTER(Locks::classlinker_classes_lock_)
591 
592   static Mutex* allocated_monitor_ids_lock_ ACQUIRED_AFTER(classlinker_classes_lock_);
593 
594   // Guard the allocation/deallocation of thread ids.
595   static Mutex* allocated_thread_ids_lock_ ACQUIRED_AFTER(allocated_monitor_ids_lock_);
596 
597   // Guards modification of the LDT on x86.
598   static Mutex* modify_ldt_lock_ ACQUIRED_AFTER(allocated_thread_ids_lock_);
599 
600   // Guards intern table.
601   static Mutex* intern_table_lock_ ACQUIRED_AFTER(modify_ldt_lock_);
602 
603   // Guards reference processor.
604   static Mutex* reference_processor_lock_ ACQUIRED_AFTER(intern_table_lock_);
605 
606   // Guards cleared references queue.
607   static Mutex* reference_queue_cleared_references_lock_ ACQUIRED_AFTER(reference_processor_lock_);
608 
609   // Guards weak references queue.
610   static Mutex* reference_queue_weak_references_lock_ ACQUIRED_AFTER(reference_queue_cleared_references_lock_);
611 
612   // Guards finalizer references queue.
613   static Mutex* reference_queue_finalizer_references_lock_ ACQUIRED_AFTER(reference_queue_weak_references_lock_);
614 
615   // Guards phantom references queue.
616   static Mutex* reference_queue_phantom_references_lock_ ACQUIRED_AFTER(reference_queue_finalizer_references_lock_);
617 
618   // Guards soft references queue.
619   static Mutex* reference_queue_soft_references_lock_ ACQUIRED_AFTER(reference_queue_phantom_references_lock_);
620 
621   // Have an exclusive aborting thread.
622   static Mutex* abort_lock_ ACQUIRED_AFTER(reference_queue_soft_references_lock_);
623 
624   // Allow mutual exclusion when manipulating Thread::suspend_count_.
625   // TODO: Does the trade-off of a per-thread lock make sense?
626   static Mutex* thread_suspend_count_lock_ ACQUIRED_AFTER(abort_lock_);
627 
628   // One unexpected signal at a time lock.
629   static Mutex* unexpected_signal_lock_ ACQUIRED_AFTER(thread_suspend_count_lock_);
630 
631   // Guards the maps in mem_map.
632   static Mutex* mem_maps_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
633 
634   // Have an exclusive logging thread.
635   static Mutex* logging_lock_ ACQUIRED_AFTER(unexpected_signal_lock_);
636 };
637 
638 }  // namespace art
639 
640 #endif  // ART_RUNTIME_BASE_MUTEX_H_
641