1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
6 #define V8_X64_MACRO_ASSEMBLER_X64_H_
7
8 #include "src/assembler.h"
9 #include "src/frames.h"
10 #include "src/globals.h"
11
12 namespace v8 {
13 namespace internal {
14
15 // Default scratch register used by MacroAssembler (and other code that needs
16 // a spare register). The register isn't callee save, and not used by the
17 // function calling convention.
18 const Register kScratchRegister = { 10 }; // r10.
19 const Register kSmiConstantRegister = { 12 }; // r12 (callee save).
20 const Register kRootRegister = { 13 }; // r13 (callee save).
21 // Value of smi in kSmiConstantRegister.
22 const int kSmiConstantRegisterValue = 1;
23 // Actual value of root register is offset from the root array's start
24 // to take advantage of negitive 8-bit displacement values.
25 const int kRootRegisterBias = 128;
26
27 // Convenience for platform-independent signatures.
28 typedef Operand MemOperand;
29
30 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET };
31 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK };
32 enum PointersToHereCheck {
33 kPointersToHereMaybeInteresting,
34 kPointersToHereAreAlwaysInteresting
35 };
36
37 enum SmiOperationConstraint {
38 PRESERVE_SOURCE_REGISTER,
39 BAILOUT_ON_NO_OVERFLOW,
40 BAILOUT_ON_OVERFLOW,
41 NUMBER_OF_CONSTRAINTS
42 };
43
44 STATIC_ASSERT(NUMBER_OF_CONSTRAINTS <= 8);
45
46 class SmiOperationExecutionMode : public EnumSet<SmiOperationConstraint, byte> {
47 public:
SmiOperationExecutionMode()48 SmiOperationExecutionMode() : EnumSet<SmiOperationConstraint, byte>(0) { }
SmiOperationExecutionMode(byte bits)49 explicit SmiOperationExecutionMode(byte bits)
50 : EnumSet<SmiOperationConstraint, byte>(bits) { }
51 };
52
53 bool AreAliased(Register r1, Register r2, Register r3, Register r4);
54
55 // Forward declaration.
56 class JumpTarget;
57
58 struct SmiIndex {
SmiIndexSmiIndex59 SmiIndex(Register index_register, ScaleFactor scale)
60 : reg(index_register),
61 scale(scale) {}
62 Register reg;
63 ScaleFactor scale;
64 };
65
66
67 // MacroAssembler implements a collection of frequently used macros.
68 class MacroAssembler: public Assembler {
69 public:
70 // The isolate parameter can be NULL if the macro assembler should
71 // not use isolate-dependent functionality. In this case, it's the
72 // responsibility of the caller to never invoke such function on the
73 // macro assembler.
74 MacroAssembler(Isolate* isolate, void* buffer, int size);
75
76 // Prevent the use of the RootArray during the lifetime of this
77 // scope object.
78 class NoRootArrayScope BASE_EMBEDDED {
79 public:
NoRootArrayScope(MacroAssembler * assembler)80 explicit NoRootArrayScope(MacroAssembler* assembler)
81 : variable_(&assembler->root_array_available_),
82 old_value_(assembler->root_array_available_) {
83 assembler->root_array_available_ = false;
84 }
~NoRootArrayScope()85 ~NoRootArrayScope() {
86 *variable_ = old_value_;
87 }
88 private:
89 bool* variable_;
90 bool old_value_;
91 };
92
93 // Operand pointing to an external reference.
94 // May emit code to set up the scratch register. The operand is
95 // only guaranteed to be correct as long as the scratch register
96 // isn't changed.
97 // If the operand is used more than once, use a scratch register
98 // that is guaranteed not to be clobbered.
99 Operand ExternalOperand(ExternalReference reference,
100 Register scratch = kScratchRegister);
101 // Loads and stores the value of an external reference.
102 // Special case code for load and store to take advantage of
103 // load_rax/store_rax if possible/necessary.
104 // For other operations, just use:
105 // Operand operand = ExternalOperand(extref);
106 // operation(operand, ..);
107 void Load(Register destination, ExternalReference source);
108 void Store(ExternalReference destination, Register source);
109 // Loads the address of the external reference into the destination
110 // register.
111 void LoadAddress(Register destination, ExternalReference source);
112 // Returns the size of the code generated by LoadAddress.
113 // Used by CallSize(ExternalReference) to find the size of a call.
114 int LoadAddressSize(ExternalReference source);
115 // Pushes the address of the external reference onto the stack.
116 void PushAddress(ExternalReference source);
117
118 // Operations on roots in the root-array.
119 void LoadRoot(Register destination, Heap::RootListIndex index);
120 void StoreRoot(Register source, Heap::RootListIndex index);
121 // Load a root value where the index (or part of it) is variable.
122 // The variable_offset register is added to the fixed_offset value
123 // to get the index into the root-array.
124 void LoadRootIndexed(Register destination,
125 Register variable_offset,
126 int fixed_offset);
127 void CompareRoot(Register with, Heap::RootListIndex index);
128 void CompareRoot(const Operand& with, Heap::RootListIndex index);
129 void PushRoot(Heap::RootListIndex index);
130
131 // These functions do not arrange the registers in any particular order so
132 // they are not useful for calls that can cause a GC. The caller can
133 // exclude up to 3 registers that do not need to be saved and restored.
134 void PushCallerSaved(SaveFPRegsMode fp_mode,
135 Register exclusion1 = no_reg,
136 Register exclusion2 = no_reg,
137 Register exclusion3 = no_reg);
138 void PopCallerSaved(SaveFPRegsMode fp_mode,
139 Register exclusion1 = no_reg,
140 Register exclusion2 = no_reg,
141 Register exclusion3 = no_reg);
142
143 // ---------------------------------------------------------------------------
144 // GC Support
145
146
147 enum RememberedSetFinalAction {
148 kReturnAtEnd,
149 kFallThroughAtEnd
150 };
151
152 // Record in the remembered set the fact that we have a pointer to new space
153 // at the address pointed to by the addr register. Only works if addr is not
154 // in new space.
155 void RememberedSetHelper(Register object, // Used for debug code.
156 Register addr,
157 Register scratch,
158 SaveFPRegsMode save_fp,
159 RememberedSetFinalAction and_then);
160
161 void CheckPageFlag(Register object,
162 Register scratch,
163 int mask,
164 Condition cc,
165 Label* condition_met,
166 Label::Distance condition_met_distance = Label::kFar);
167
168 void CheckMapDeprecated(Handle<Map> map,
169 Register scratch,
170 Label* if_deprecated);
171
172 // Check if object is in new space. Jumps if the object is not in new space.
173 // The register scratch can be object itself, but scratch will be clobbered.
174 void JumpIfNotInNewSpace(Register object,
175 Register scratch,
176 Label* branch,
177 Label::Distance distance = Label::kFar) {
178 InNewSpace(object, scratch, not_equal, branch, distance);
179 }
180
181 // Check if object is in new space. Jumps if the object is in new space.
182 // The register scratch can be object itself, but it will be clobbered.
183 void JumpIfInNewSpace(Register object,
184 Register scratch,
185 Label* branch,
186 Label::Distance distance = Label::kFar) {
187 InNewSpace(object, scratch, equal, branch, distance);
188 }
189
190 // Check if an object has the black incremental marking color. Also uses rcx!
191 void JumpIfBlack(Register object,
192 Register scratch0,
193 Register scratch1,
194 Label* on_black,
195 Label::Distance on_black_distance = Label::kFar);
196
197 // Detects conservatively whether an object is data-only, i.e. it does need to
198 // be scanned by the garbage collector.
199 void JumpIfDataObject(Register value,
200 Register scratch,
201 Label* not_data_object,
202 Label::Distance not_data_object_distance);
203
204 // Checks the color of an object. If the object is already grey or black
205 // then we just fall through, since it is already live. If it is white and
206 // we can determine that it doesn't need to be scanned, then we just mark it
207 // black and fall through. For the rest we jump to the label so the
208 // incremental marker can fix its assumptions.
209 void EnsureNotWhite(Register object,
210 Register scratch1,
211 Register scratch2,
212 Label* object_is_white_and_not_data,
213 Label::Distance distance);
214
215 // Notify the garbage collector that we wrote a pointer into an object.
216 // |object| is the object being stored into, |value| is the object being
217 // stored. value and scratch registers are clobbered by the operation.
218 // The offset is the offset from the start of the object, not the offset from
219 // the tagged HeapObject pointer. For use with FieldOperand(reg, off).
220 void RecordWriteField(
221 Register object,
222 int offset,
223 Register value,
224 Register scratch,
225 SaveFPRegsMode save_fp,
226 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
227 SmiCheck smi_check = INLINE_SMI_CHECK,
228 PointersToHereCheck pointers_to_here_check_for_value =
229 kPointersToHereMaybeInteresting);
230
231 // As above, but the offset has the tag presubtracted. For use with
232 // Operand(reg, off).
233 void RecordWriteContextSlot(
234 Register context,
235 int offset,
236 Register value,
237 Register scratch,
238 SaveFPRegsMode save_fp,
239 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
240 SmiCheck smi_check = INLINE_SMI_CHECK,
241 PointersToHereCheck pointers_to_here_check_for_value =
242 kPointersToHereMaybeInteresting) {
243 RecordWriteField(context,
244 offset + kHeapObjectTag,
245 value,
246 scratch,
247 save_fp,
248 remembered_set_action,
249 smi_check,
250 pointers_to_here_check_for_value);
251 }
252
253 // Notify the garbage collector that we wrote a pointer into a fixed array.
254 // |array| is the array being stored into, |value| is the
255 // object being stored. |index| is the array index represented as a non-smi.
256 // All registers are clobbered by the operation RecordWriteArray
257 // filters out smis so it does not update the write barrier if the
258 // value is a smi.
259 void RecordWriteArray(
260 Register array,
261 Register value,
262 Register index,
263 SaveFPRegsMode save_fp,
264 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
265 SmiCheck smi_check = INLINE_SMI_CHECK,
266 PointersToHereCheck pointers_to_here_check_for_value =
267 kPointersToHereMaybeInteresting);
268
269 void RecordWriteForMap(
270 Register object,
271 Register map,
272 Register dst,
273 SaveFPRegsMode save_fp);
274
275 // For page containing |object| mark region covering |address|
276 // dirty. |object| is the object being stored into, |value| is the
277 // object being stored. The address and value registers are clobbered by the
278 // operation. RecordWrite filters out smis so it does not update
279 // the write barrier if the value is a smi.
280 void RecordWrite(
281 Register object,
282 Register address,
283 Register value,
284 SaveFPRegsMode save_fp,
285 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET,
286 SmiCheck smi_check = INLINE_SMI_CHECK,
287 PointersToHereCheck pointers_to_here_check_for_value =
288 kPointersToHereMaybeInteresting);
289
290 // ---------------------------------------------------------------------------
291 // Debugger Support
292
293 void DebugBreak();
294
295 // Generates function and stub prologue code.
296 void StubPrologue();
297 void Prologue(bool code_pre_aging);
298
299 // Enter specific kind of exit frame; either in normal or
300 // debug mode. Expects the number of arguments in register rax and
301 // sets up the number of arguments in register rdi and the pointer
302 // to the first argument in register rsi.
303 //
304 // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
305 // accessible via StackSpaceOperand.
306 void EnterExitFrame(int arg_stack_space = 0, bool save_doubles = false);
307
308 // Enter specific kind of exit frame. Allocates arg_stack_space * kPointerSize
309 // memory (not GCed) on the stack accessible via StackSpaceOperand.
310 void EnterApiExitFrame(int arg_stack_space);
311
312 // Leave the current exit frame. Expects/provides the return value in
313 // register rax:rdx (untouched) and the pointer to the first
314 // argument in register rsi.
315 void LeaveExitFrame(bool save_doubles = false);
316
317 // Leave the current exit frame. Expects/provides the return value in
318 // register rax (untouched).
319 void LeaveApiExitFrame(bool restore_context);
320
321 // Push and pop the registers that can hold pointers.
PushSafepointRegisters()322 void PushSafepointRegisters() { Pushad(); }
PopSafepointRegisters()323 void PopSafepointRegisters() { Popad(); }
324 // Store the value in register src in the safepoint register stack
325 // slot for register dst.
326 void StoreToSafepointRegisterSlot(Register dst, const Immediate& imm);
327 void StoreToSafepointRegisterSlot(Register dst, Register src);
328 void LoadFromSafepointRegisterSlot(Register dst, Register src);
329
InitializeRootRegister()330 void InitializeRootRegister() {
331 ExternalReference roots_array_start =
332 ExternalReference::roots_array_start(isolate());
333 Move(kRootRegister, roots_array_start);
334 addp(kRootRegister, Immediate(kRootRegisterBias));
335 }
336
337 // ---------------------------------------------------------------------------
338 // JavaScript invokes
339
340 // Invoke the JavaScript function code by either calling or jumping.
341 void InvokeCode(Register code,
342 const ParameterCount& expected,
343 const ParameterCount& actual,
344 InvokeFlag flag,
345 const CallWrapper& call_wrapper);
346
347 // Invoke the JavaScript function in the given register. Changes the
348 // current context to the context in the function before invoking.
349 void InvokeFunction(Register function,
350 const ParameterCount& actual,
351 InvokeFlag flag,
352 const CallWrapper& call_wrapper);
353
354 void InvokeFunction(Register function,
355 const ParameterCount& expected,
356 const ParameterCount& actual,
357 InvokeFlag flag,
358 const CallWrapper& call_wrapper);
359
360 void InvokeFunction(Handle<JSFunction> function,
361 const ParameterCount& expected,
362 const ParameterCount& actual,
363 InvokeFlag flag,
364 const CallWrapper& call_wrapper);
365
366 // Invoke specified builtin JavaScript function. Adds an entry to
367 // the unresolved list if the name does not resolve.
368 void InvokeBuiltin(Builtins::JavaScript id,
369 InvokeFlag flag,
370 const CallWrapper& call_wrapper = NullCallWrapper());
371
372 // Store the function for the given builtin in the target register.
373 void GetBuiltinFunction(Register target, Builtins::JavaScript id);
374
375 // Store the code object for the given builtin in the target register.
376 void GetBuiltinEntry(Register target, Builtins::JavaScript id);
377
378
379 // ---------------------------------------------------------------------------
380 // Smi tagging, untagging and operations on tagged smis.
381
382 // Support for constant splitting.
383 bool IsUnsafeInt(const int32_t x);
384 void SafeMove(Register dst, Smi* src);
385 void SafePush(Smi* src);
386
InitializeSmiConstantRegister()387 void InitializeSmiConstantRegister() {
388 Move(kSmiConstantRegister, Smi::FromInt(kSmiConstantRegisterValue),
389 Assembler::RelocInfoNone());
390 }
391
392 // Conversions between tagged smi values and non-tagged integer values.
393
394 // Tag an integer value. The result must be known to be a valid smi value.
395 // Only uses the low 32 bits of the src register. Sets the N and Z flags
396 // based on the value of the resulting smi.
397 void Integer32ToSmi(Register dst, Register src);
398
399 // Stores an integer32 value into a memory field that already holds a smi.
400 void Integer32ToSmiField(const Operand& dst, Register src);
401
402 // Adds constant to src and tags the result as a smi.
403 // Result must be a valid smi.
404 void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
405
406 // Convert smi to 32-bit integer. I.e., not sign extended into
407 // high 32 bits of destination.
408 void SmiToInteger32(Register dst, Register src);
409 void SmiToInteger32(Register dst, const Operand& src);
410
411 // Convert smi to 64-bit integer (sign extended if necessary).
412 void SmiToInteger64(Register dst, Register src);
413 void SmiToInteger64(Register dst, const Operand& src);
414
415 // Multiply a positive smi's integer value by a power of two.
416 // Provides result as 64-bit integer value.
417 void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
418 Register src,
419 int power);
420
421 // Divide a positive smi's integer value by a power of two.
422 // Provides result as 32-bit integer value.
423 void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
424 Register src,
425 int power);
426
427 // Perform the logical or of two smi values and return a smi value.
428 // If either argument is not a smi, jump to on_not_smis and retain
429 // the original values of source registers. The destination register
430 // may be changed if it's not one of the source registers.
431 void SmiOrIfSmis(Register dst,
432 Register src1,
433 Register src2,
434 Label* on_not_smis,
435 Label::Distance near_jump = Label::kFar);
436
437
438 // Simple comparison of smis. Both sides must be known smis to use these,
439 // otherwise use Cmp.
440 void SmiCompare(Register smi1, Register smi2);
441 void SmiCompare(Register dst, Smi* src);
442 void SmiCompare(Register dst, const Operand& src);
443 void SmiCompare(const Operand& dst, Register src);
444 void SmiCompare(const Operand& dst, Smi* src);
445 // Compare the int32 in src register to the value of the smi stored at dst.
446 void SmiCompareInteger32(const Operand& dst, Register src);
447 // Sets sign and zero flags depending on value of smi in register.
448 void SmiTest(Register src);
449
450 // Functions performing a check on a known or potential smi. Returns
451 // a condition that is satisfied if the check is successful.
452
453 // Is the value a tagged smi.
454 Condition CheckSmi(Register src);
455 Condition CheckSmi(const Operand& src);
456
457 // Is the value a non-negative tagged smi.
458 Condition CheckNonNegativeSmi(Register src);
459
460 // Are both values tagged smis.
461 Condition CheckBothSmi(Register first, Register second);
462
463 // Are both values non-negative tagged smis.
464 Condition CheckBothNonNegativeSmi(Register first, Register second);
465
466 // Are either value a tagged smi.
467 Condition CheckEitherSmi(Register first,
468 Register second,
469 Register scratch = kScratchRegister);
470
471 // Is the value the minimum smi value (since we are using
472 // two's complement numbers, negating the value is known to yield
473 // a non-smi value).
474 Condition CheckIsMinSmi(Register src);
475
476 // Checks whether an 32-bit integer value is a valid for conversion
477 // to a smi.
478 Condition CheckInteger32ValidSmiValue(Register src);
479
480 // Checks whether an 32-bit unsigned integer value is a valid for
481 // conversion to a smi.
482 Condition CheckUInteger32ValidSmiValue(Register src);
483
484 // Check whether src is a Smi, and set dst to zero if it is a smi,
485 // and to one if it isn't.
486 void CheckSmiToIndicator(Register dst, Register src);
487 void CheckSmiToIndicator(Register dst, const Operand& src);
488
489 // Test-and-jump functions. Typically combines a check function
490 // above with a conditional jump.
491
492 // Jump if the value can be represented by a smi.
493 void JumpIfValidSmiValue(Register src, Label* on_valid,
494 Label::Distance near_jump = Label::kFar);
495
496 // Jump if the value cannot be represented by a smi.
497 void JumpIfNotValidSmiValue(Register src, Label* on_invalid,
498 Label::Distance near_jump = Label::kFar);
499
500 // Jump if the unsigned integer value can be represented by a smi.
501 void JumpIfUIntValidSmiValue(Register src, Label* on_valid,
502 Label::Distance near_jump = Label::kFar);
503
504 // Jump if the unsigned integer value cannot be represented by a smi.
505 void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid,
506 Label::Distance near_jump = Label::kFar);
507
508 // Jump to label if the value is a tagged smi.
509 void JumpIfSmi(Register src,
510 Label* on_smi,
511 Label::Distance near_jump = Label::kFar);
512
513 // Jump to label if the value is not a tagged smi.
514 void JumpIfNotSmi(Register src,
515 Label* on_not_smi,
516 Label::Distance near_jump = Label::kFar);
517
518 // Jump to label if the value is not a non-negative tagged smi.
519 void JumpUnlessNonNegativeSmi(Register src,
520 Label* on_not_smi,
521 Label::Distance near_jump = Label::kFar);
522
523 // Jump to label if the value, which must be a tagged smi, has value equal
524 // to the constant.
525 void JumpIfSmiEqualsConstant(Register src,
526 Smi* constant,
527 Label* on_equals,
528 Label::Distance near_jump = Label::kFar);
529
530 // Jump if either or both register are not smi values.
531 void JumpIfNotBothSmi(Register src1,
532 Register src2,
533 Label* on_not_both_smi,
534 Label::Distance near_jump = Label::kFar);
535
536 // Jump if either or both register are not non-negative smi values.
537 void JumpUnlessBothNonNegativeSmi(Register src1, Register src2,
538 Label* on_not_both_smi,
539 Label::Distance near_jump = Label::kFar);
540
541 // Operations on tagged smi values.
542
543 // Smis represent a subset of integers. The subset is always equivalent to
544 // a two's complement interpretation of a fixed number of bits.
545
546 // Add an integer constant to a tagged smi, giving a tagged smi as result.
547 // No overflow testing on the result is done.
548 void SmiAddConstant(Register dst, Register src, Smi* constant);
549
550 // Add an integer constant to a tagged smi, giving a tagged smi as result.
551 // No overflow testing on the result is done.
552 void SmiAddConstant(const Operand& dst, Smi* constant);
553
554 // Add an integer constant to a tagged smi, giving a tagged smi as result,
555 // or jumping to a label if the result cannot be represented by a smi.
556 void SmiAddConstant(Register dst,
557 Register src,
558 Smi* constant,
559 SmiOperationExecutionMode mode,
560 Label* bailout_label,
561 Label::Distance near_jump = Label::kFar);
562
563 // Subtract an integer constant from a tagged smi, giving a tagged smi as
564 // result. No testing on the result is done. Sets the N and Z flags
565 // based on the value of the resulting integer.
566 void SmiSubConstant(Register dst, Register src, Smi* constant);
567
568 // Subtract an integer constant from a tagged smi, giving a tagged smi as
569 // result, or jumping to a label if the result cannot be represented by a smi.
570 void SmiSubConstant(Register dst,
571 Register src,
572 Smi* constant,
573 SmiOperationExecutionMode mode,
574 Label* bailout_label,
575 Label::Distance near_jump = Label::kFar);
576
577 // Negating a smi can give a negative zero or too large positive value.
578 // NOTICE: This operation jumps on success, not failure!
579 void SmiNeg(Register dst,
580 Register src,
581 Label* on_smi_result,
582 Label::Distance near_jump = Label::kFar);
583
584 // Adds smi values and return the result as a smi.
585 // If dst is src1, then src1 will be destroyed if the operation is
586 // successful, otherwise kept intact.
587 void SmiAdd(Register dst,
588 Register src1,
589 Register src2,
590 Label* on_not_smi_result,
591 Label::Distance near_jump = Label::kFar);
592 void SmiAdd(Register dst,
593 Register src1,
594 const Operand& src2,
595 Label* on_not_smi_result,
596 Label::Distance near_jump = Label::kFar);
597
598 void SmiAdd(Register dst,
599 Register src1,
600 Register src2);
601
602 // Subtracts smi values and return the result as a smi.
603 // If dst is src1, then src1 will be destroyed if the operation is
604 // successful, otherwise kept intact.
605 void SmiSub(Register dst,
606 Register src1,
607 Register src2,
608 Label* on_not_smi_result,
609 Label::Distance near_jump = Label::kFar);
610 void SmiSub(Register dst,
611 Register src1,
612 const Operand& src2,
613 Label* on_not_smi_result,
614 Label::Distance near_jump = Label::kFar);
615
616 void SmiSub(Register dst,
617 Register src1,
618 Register src2);
619
620 void SmiSub(Register dst,
621 Register src1,
622 const Operand& src2);
623
624 // Multiplies smi values and return the result as a smi,
625 // if possible.
626 // If dst is src1, then src1 will be destroyed, even if
627 // the operation is unsuccessful.
628 void SmiMul(Register dst,
629 Register src1,
630 Register src2,
631 Label* on_not_smi_result,
632 Label::Distance near_jump = Label::kFar);
633
634 // Divides one smi by another and returns the quotient.
635 // Clobbers rax and rdx registers.
636 void SmiDiv(Register dst,
637 Register src1,
638 Register src2,
639 Label* on_not_smi_result,
640 Label::Distance near_jump = Label::kFar);
641
642 // Divides one smi by another and returns the remainder.
643 // Clobbers rax and rdx registers.
644 void SmiMod(Register dst,
645 Register src1,
646 Register src2,
647 Label* on_not_smi_result,
648 Label::Distance near_jump = Label::kFar);
649
650 // Bitwise operations.
651 void SmiNot(Register dst, Register src);
652 void SmiAnd(Register dst, Register src1, Register src2);
653 void SmiOr(Register dst, Register src1, Register src2);
654 void SmiXor(Register dst, Register src1, Register src2);
655 void SmiAndConstant(Register dst, Register src1, Smi* constant);
656 void SmiOrConstant(Register dst, Register src1, Smi* constant);
657 void SmiXorConstant(Register dst, Register src1, Smi* constant);
658
659 void SmiShiftLeftConstant(Register dst,
660 Register src,
661 int shift_value,
662 Label* on_not_smi_result = NULL,
663 Label::Distance near_jump = Label::kFar);
664 void SmiShiftLogicalRightConstant(Register dst,
665 Register src,
666 int shift_value,
667 Label* on_not_smi_result,
668 Label::Distance near_jump = Label::kFar);
669 void SmiShiftArithmeticRightConstant(Register dst,
670 Register src,
671 int shift_value);
672
673 // Shifts a smi value to the left, and returns the result if that is a smi.
674 // Uses and clobbers rcx, so dst may not be rcx.
675 void SmiShiftLeft(Register dst,
676 Register src1,
677 Register src2,
678 Label* on_not_smi_result = NULL,
679 Label::Distance near_jump = Label::kFar);
680 // Shifts a smi value to the right, shifting in zero bits at the top, and
681 // returns the unsigned intepretation of the result if that is a smi.
682 // Uses and clobbers rcx, so dst may not be rcx.
683 void SmiShiftLogicalRight(Register dst,
684 Register src1,
685 Register src2,
686 Label* on_not_smi_result,
687 Label::Distance near_jump = Label::kFar);
688 // Shifts a smi value to the right, sign extending the top, and
689 // returns the signed intepretation of the result. That will always
690 // be a valid smi value, since it's numerically smaller than the
691 // original.
692 // Uses and clobbers rcx, so dst may not be rcx.
693 void SmiShiftArithmeticRight(Register dst,
694 Register src1,
695 Register src2);
696
697 // Specialized operations
698
699 // Select the non-smi register of two registers where exactly one is a
700 // smi. If neither are smis, jump to the failure label.
701 void SelectNonSmi(Register dst,
702 Register src1,
703 Register src2,
704 Label* on_not_smis,
705 Label::Distance near_jump = Label::kFar);
706
707 // Converts, if necessary, a smi to a combination of number and
708 // multiplier to be used as a scaled index.
709 // The src register contains a *positive* smi value. The shift is the
710 // power of two to multiply the index value by (e.g.
711 // to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
712 // The returned index register may be either src or dst, depending
713 // on what is most efficient. If src and dst are different registers,
714 // src is always unchanged.
715 SmiIndex SmiToIndex(Register dst, Register src, int shift);
716
717 // Converts a positive smi to a negative index.
718 SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
719
720 // Add the value of a smi in memory to an int32 register.
721 // Sets flags as a normal add.
722 void AddSmiField(Register dst, const Operand& src);
723
724 // Basic Smi operations.
Move(Register dst,Smi * source)725 void Move(Register dst, Smi* source) {
726 LoadSmiConstant(dst, source);
727 }
728
Move(const Operand & dst,Smi * source)729 void Move(const Operand& dst, Smi* source) {
730 Register constant = GetSmiConstant(source);
731 movp(dst, constant);
732 }
733
734 void Push(Smi* smi);
735
736 // Save away a raw integer with pointer size on the stack as two integers
737 // masquerading as smis so that the garbage collector skips visiting them.
738 void PushRegisterAsTwoSmis(Register src, Register scratch = kScratchRegister);
739 // Reconstruct a raw integer with pointer size from two integers masquerading
740 // as smis on the top of stack.
741 void PopRegisterAsTwoSmis(Register dst, Register scratch = kScratchRegister);
742
743 void Test(const Operand& dst, Smi* source);
744
745
746 // ---------------------------------------------------------------------------
747 // String macros.
748
749 // Generate code to do a lookup in the number string cache. If the number in
750 // the register object is found in the cache the generated code falls through
751 // with the result in the result register. The object and the result register
752 // can be the same. If the number is not found in the cache the code jumps to
753 // the label not_found with only the content of register object unchanged.
754 void LookupNumberStringCache(Register object,
755 Register result,
756 Register scratch1,
757 Register scratch2,
758 Label* not_found);
759
760 // If object is a string, its map is loaded into object_map.
761 void JumpIfNotString(Register object,
762 Register object_map,
763 Label* not_string,
764 Label::Distance near_jump = Label::kFar);
765
766
767 void JumpIfNotBothSequentialAsciiStrings(
768 Register first_object,
769 Register second_object,
770 Register scratch1,
771 Register scratch2,
772 Label* on_not_both_flat_ascii,
773 Label::Distance near_jump = Label::kFar);
774
775 // Check whether the instance type represents a flat ASCII string. Jump to the
776 // label if not. If the instance type can be scratched specify same register
777 // for both instance type and scratch.
778 void JumpIfInstanceTypeIsNotSequentialAscii(
779 Register instance_type,
780 Register scratch,
781 Label*on_not_flat_ascii_string,
782 Label::Distance near_jump = Label::kFar);
783
784 void JumpIfBothInstanceTypesAreNotSequentialAscii(
785 Register first_object_instance_type,
786 Register second_object_instance_type,
787 Register scratch1,
788 Register scratch2,
789 Label* on_fail,
790 Label::Distance near_jump = Label::kFar);
791
792 void EmitSeqStringSetCharCheck(Register string,
793 Register index,
794 Register value,
795 uint32_t encoding_mask);
796
797 // Checks if the given register or operand is a unique name
798 void JumpIfNotUniqueName(Register reg, Label* not_unique_name,
799 Label::Distance distance = Label::kFar);
800 void JumpIfNotUniqueName(Operand operand, Label* not_unique_name,
801 Label::Distance distance = Label::kFar);
802
803 // ---------------------------------------------------------------------------
804 // Macro instructions.
805
806 // Load/store with specific representation.
807 void Load(Register dst, const Operand& src, Representation r);
808 void Store(const Operand& dst, Register src, Representation r);
809
810 // Load a register with a long value as efficiently as possible.
811 void Set(Register dst, int64_t x);
812 void Set(const Operand& dst, intptr_t x);
813
814 // cvtsi2sd instruction only writes to the low 64-bit of dst register, which
815 // hinders register renaming and makes dependence chains longer. So we use
816 // xorps to clear the dst register before cvtsi2sd to solve this issue.
817 void Cvtlsi2sd(XMMRegister dst, Register src);
818 void Cvtlsi2sd(XMMRegister dst, const Operand& src);
819
820 // Move if the registers are not identical.
821 void Move(Register target, Register source);
822
823 // TestBit and Load SharedFunctionInfo special field.
824 void TestBitSharedFunctionInfoSpecialField(Register base,
825 int offset,
826 int bit_index);
827 void LoadSharedFunctionInfoSpecialField(Register dst,
828 Register base,
829 int offset);
830
831 // Handle support
832 void Move(Register dst, Handle<Object> source);
833 void Move(const Operand& dst, Handle<Object> source);
834 void Cmp(Register dst, Handle<Object> source);
835 void Cmp(const Operand& dst, Handle<Object> source);
836 void Cmp(Register dst, Smi* src);
837 void Cmp(const Operand& dst, Smi* src);
838 void Push(Handle<Object> source);
839
840 // Load a heap object and handle the case of new-space objects by
841 // indirecting via a global cell.
842 void MoveHeapObject(Register result, Handle<Object> object);
843
844 // Load a global cell into a register.
845 void LoadGlobalCell(Register dst, Handle<Cell> cell);
846
847 // Emit code to discard a non-negative number of pointer-sized elements
848 // from the stack, clobbering only the rsp register.
849 void Drop(int stack_elements);
850 // Emit code to discard a positive number of pointer-sized elements
851 // from the stack under the return address which remains on the top,
852 // clobbering the rsp register.
853 void DropUnderReturnAddress(int stack_elements,
854 Register scratch = kScratchRegister);
855
Call(Label * target)856 void Call(Label* target) { call(target); }
857 void Push(Register src);
858 void Push(const Operand& src);
859 void PushQuad(const Operand& src);
860 void Push(Immediate value);
861 void PushImm32(int32_t imm32);
862 void Pop(Register dst);
863 void Pop(const Operand& dst);
864 void PopQuad(const Operand& dst);
PushReturnAddressFrom(Register src)865 void PushReturnAddressFrom(Register src) { pushq(src); }
PopReturnAddressTo(Register dst)866 void PopReturnAddressTo(Register dst) { popq(dst); }
Move(Register dst,ExternalReference ext)867 void Move(Register dst, ExternalReference ext) {
868 movp(dst, reinterpret_cast<void*>(ext.address()),
869 RelocInfo::EXTERNAL_REFERENCE);
870 }
871
872 // Loads a pointer into a register with a relocation mode.
Move(Register dst,void * ptr,RelocInfo::Mode rmode)873 void Move(Register dst, void* ptr, RelocInfo::Mode rmode) {
874 // This method must not be used with heap object references. The stored
875 // address is not GC safe. Use the handle version instead.
876 ASSERT(rmode > RelocInfo::LAST_GCED_ENUM);
877 movp(dst, ptr, rmode);
878 }
879
Move(Register dst,Handle<Object> value,RelocInfo::Mode rmode)880 void Move(Register dst, Handle<Object> value, RelocInfo::Mode rmode) {
881 AllowDeferredHandleDereference using_raw_address;
882 ASSERT(!RelocInfo::IsNone(rmode));
883 ASSERT(value->IsHeapObject());
884 ASSERT(!isolate()->heap()->InNewSpace(*value));
885 movp(dst, reinterpret_cast<void*>(value.location()), rmode);
886 }
887
888 // Control Flow
889 void Jump(Address destination, RelocInfo::Mode rmode);
890 void Jump(ExternalReference ext);
891 void Jump(const Operand& op);
892 void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
893
894 void Call(Address destination, RelocInfo::Mode rmode);
895 void Call(ExternalReference ext);
896 void Call(const Operand& op);
897 void Call(Handle<Code> code_object,
898 RelocInfo::Mode rmode,
899 TypeFeedbackId ast_id = TypeFeedbackId::None());
900
901 // The size of the code generated for different call instructions.
CallSize(Address destination)902 int CallSize(Address destination) {
903 return kCallSequenceLength;
904 }
905 int CallSize(ExternalReference ext);
CallSize(Handle<Code> code_object)906 int CallSize(Handle<Code> code_object) {
907 // Code calls use 32-bit relative addressing.
908 return kShortCallInstructionLength;
909 }
CallSize(Register target)910 int CallSize(Register target) {
911 // Opcode: REX_opt FF /2 m64
912 return (target.high_bit() != 0) ? 3 : 2;
913 }
CallSize(const Operand & target)914 int CallSize(const Operand& target) {
915 // Opcode: REX_opt FF /2 m64
916 return (target.requires_rex() ? 2 : 1) + target.operand_size();
917 }
918
919 // Emit call to the code we are currently generating.
CallSelf()920 void CallSelf() {
921 Handle<Code> self(reinterpret_cast<Code**>(CodeObject().location()));
922 Call(self, RelocInfo::CODE_TARGET);
923 }
924
925 // Non-x64 instructions.
926 // Push/pop all general purpose registers.
927 // Does not push rsp/rbp nor any of the assembler's special purpose registers
928 // (kScratchRegister, kSmiConstantRegister, kRootRegister).
929 void Pushad();
930 void Popad();
931 // Sets the stack as after performing Popad, without actually loading the
932 // registers.
933 void Dropad();
934
935 // Compare object type for heap object.
936 // Always use unsigned comparisons: above and below, not less and greater.
937 // Incoming register is heap_object and outgoing register is map.
938 // They may be the same register, and may be kScratchRegister.
939 void CmpObjectType(Register heap_object, InstanceType type, Register map);
940
941 // Compare instance type for map.
942 // Always use unsigned comparisons: above and below, not less and greater.
943 void CmpInstanceType(Register map, InstanceType type);
944
945 // Check if a map for a JSObject indicates that the object has fast elements.
946 // Jump to the specified label if it does not.
947 void CheckFastElements(Register map,
948 Label* fail,
949 Label::Distance distance = Label::kFar);
950
951 // Check if a map for a JSObject indicates that the object can have both smi
952 // and HeapObject elements. Jump to the specified label if it does not.
953 void CheckFastObjectElements(Register map,
954 Label* fail,
955 Label::Distance distance = Label::kFar);
956
957 // Check if a map for a JSObject indicates that the object has fast smi only
958 // elements. Jump to the specified label if it does not.
959 void CheckFastSmiElements(Register map,
960 Label* fail,
961 Label::Distance distance = Label::kFar);
962
963 // Check to see if maybe_number can be stored as a double in
964 // FastDoubleElements. If it can, store it at the index specified by index in
965 // the FastDoubleElements array elements, otherwise jump to fail. Note that
966 // index must not be smi-tagged.
967 void StoreNumberToDoubleElements(Register maybe_number,
968 Register elements,
969 Register index,
970 XMMRegister xmm_scratch,
971 Label* fail,
972 int elements_offset = 0);
973
974 // Compare an object's map with the specified map.
975 void CompareMap(Register obj, Handle<Map> map);
976
977 // Check if the map of an object is equal to a specified map and branch to
978 // label if not. Skip the smi check if not required (object is known to be a
979 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match
980 // against maps that are ElementsKind transition maps of the specified map.
981 void CheckMap(Register obj,
982 Handle<Map> map,
983 Label* fail,
984 SmiCheckType smi_check_type);
985
986 // Check if the map of an object is equal to a specified map and branch to a
987 // specified target if equal. Skip the smi check if not required (object is
988 // known to be a heap object)
989 void DispatchMap(Register obj,
990 Register unused,
991 Handle<Map> map,
992 Handle<Code> success,
993 SmiCheckType smi_check_type);
994
995 // Check if the object in register heap_object is a string. Afterwards the
996 // register map contains the object map and the register instance_type
997 // contains the instance_type. The registers map and instance_type can be the
998 // same in which case it contains the instance type afterwards. Either of the
999 // registers map and instance_type can be the same as heap_object.
1000 Condition IsObjectStringType(Register heap_object,
1001 Register map,
1002 Register instance_type);
1003
1004 // Check if the object in register heap_object is a name. Afterwards the
1005 // register map contains the object map and the register instance_type
1006 // contains the instance_type. The registers map and instance_type can be the
1007 // same in which case it contains the instance type afterwards. Either of the
1008 // registers map and instance_type can be the same as heap_object.
1009 Condition IsObjectNameType(Register heap_object,
1010 Register map,
1011 Register instance_type);
1012
1013 // FCmp compares and pops the two values on top of the FPU stack.
1014 // The flag results are similar to integer cmp, but requires unsigned
1015 // jcc instructions (je, ja, jae, jb, jbe, je, and jz).
1016 void FCmp();
1017
1018 void ClampUint8(Register reg);
1019
1020 void ClampDoubleToUint8(XMMRegister input_reg,
1021 XMMRegister temp_xmm_reg,
1022 Register result_reg);
1023
1024 void SlowTruncateToI(Register result_reg, Register input_reg,
1025 int offset = HeapNumber::kValueOffset - kHeapObjectTag);
1026
1027 void TruncateHeapNumberToI(Register result_reg, Register input_reg);
1028 void TruncateDoubleToI(Register result_reg, XMMRegister input_reg);
1029
1030 void DoubleToI(Register result_reg, XMMRegister input_reg,
1031 XMMRegister scratch, MinusZeroMode minus_zero_mode,
1032 Label* conversion_failed, Label::Distance dst = Label::kFar);
1033
1034 void TaggedToI(Register result_reg, Register input_reg, XMMRegister temp,
1035 MinusZeroMode minus_zero_mode, Label* lost_precision,
1036 Label::Distance dst = Label::kFar);
1037
1038 void LoadUint32(XMMRegister dst, Register src);
1039
1040 void LoadInstanceDescriptors(Register map, Register descriptors);
1041 void EnumLength(Register dst, Register map);
1042 void NumberOfOwnDescriptors(Register dst, Register map);
1043
1044 template<typename Field>
DecodeField(Register reg)1045 void DecodeField(Register reg) {
1046 static const int shift = Field::kShift;
1047 static const int mask = Field::kMask >> Field::kShift;
1048 if (shift != 0) {
1049 shrp(reg, Immediate(shift));
1050 }
1051 andp(reg, Immediate(mask));
1052 }
1053
1054 template<typename Field>
DecodeFieldToSmi(Register reg)1055 void DecodeFieldToSmi(Register reg) {
1056 if (SmiValuesAre32Bits()) {
1057 andp(reg, Immediate(Field::kMask));
1058 shlp(reg, Immediate(kSmiShift - Field::kShift));
1059 } else {
1060 static const int shift = Field::kShift;
1061 static const int mask = (Field::kMask >> Field::kShift) << kSmiTagSize;
1062 ASSERT(SmiValuesAre31Bits());
1063 ASSERT(kSmiShift == kSmiTagSize);
1064 ASSERT((mask & 0x80000000u) == 0);
1065 if (shift < kSmiShift) {
1066 shlp(reg, Immediate(kSmiShift - shift));
1067 } else if (shift > kSmiShift) {
1068 sarp(reg, Immediate(shift - kSmiShift));
1069 }
1070 andp(reg, Immediate(mask));
1071 }
1072 }
1073
1074 // Abort execution if argument is not a number, enabled via --debug-code.
1075 void AssertNumber(Register object);
1076
1077 // Abort execution if argument is a smi, enabled via --debug-code.
1078 void AssertNotSmi(Register object);
1079
1080 // Abort execution if argument is not a smi, enabled via --debug-code.
1081 void AssertSmi(Register object);
1082 void AssertSmi(const Operand& object);
1083
1084 // Abort execution if a 64 bit register containing a 32 bit payload does not
1085 // have zeros in the top 32 bits, enabled via --debug-code.
1086 void AssertZeroExtended(Register reg);
1087
1088 // Abort execution if argument is not a string, enabled via --debug-code.
1089 void AssertString(Register object);
1090
1091 // Abort execution if argument is not a name, enabled via --debug-code.
1092 void AssertName(Register object);
1093
1094 // Abort execution if argument is not undefined or an AllocationSite, enabled
1095 // via --debug-code.
1096 void AssertUndefinedOrAllocationSite(Register object);
1097
1098 // Abort execution if argument is not the root value with the given index,
1099 // enabled via --debug-code.
1100 void AssertRootValue(Register src,
1101 Heap::RootListIndex root_value_index,
1102 BailoutReason reason);
1103
1104 // ---------------------------------------------------------------------------
1105 // Exception handling
1106
1107 // Push a new try handler and link it into try handler chain.
1108 void PushTryHandler(StackHandler::Kind kind, int handler_index);
1109
1110 // Unlink the stack handler on top of the stack from the try handler chain.
1111 void PopTryHandler();
1112
1113 // Activate the top handler in the try hander chain and pass the
1114 // thrown value.
1115 void Throw(Register value);
1116
1117 // Propagate an uncatchable exception out of the current JS stack.
1118 void ThrowUncatchable(Register value);
1119
1120 // ---------------------------------------------------------------------------
1121 // Inline caching support
1122
1123 // Generate code for checking access rights - used for security checks
1124 // on access to global objects across environments. The holder register
1125 // is left untouched, but the scratch register and kScratchRegister,
1126 // which must be different, are clobbered.
1127 void CheckAccessGlobalProxy(Register holder_reg,
1128 Register scratch,
1129 Label* miss);
1130
1131 void GetNumberHash(Register r0, Register scratch);
1132
1133 void LoadFromNumberDictionary(Label* miss,
1134 Register elements,
1135 Register key,
1136 Register r0,
1137 Register r1,
1138 Register r2,
1139 Register result);
1140
1141
1142 // ---------------------------------------------------------------------------
1143 // Allocation support
1144
1145 // Allocate an object in new space or old pointer space. If the given space
1146 // is exhausted control continues at the gc_required label. The allocated
1147 // object is returned in result and end of the new object is returned in
1148 // result_end. The register scratch can be passed as no_reg in which case
1149 // an additional object reference will be added to the reloc info. The
1150 // returned pointers in result and result_end have not yet been tagged as
1151 // heap objects. If result_contains_top_on_entry is true the content of
1152 // result is known to be the allocation top on entry (could be result_end
1153 // from a previous call). If result_contains_top_on_entry is true scratch
1154 // should be no_reg as it is never used.
1155 void Allocate(int object_size,
1156 Register result,
1157 Register result_end,
1158 Register scratch,
1159 Label* gc_required,
1160 AllocationFlags flags);
1161
1162 void Allocate(int header_size,
1163 ScaleFactor element_size,
1164 Register element_count,
1165 Register result,
1166 Register result_end,
1167 Register scratch,
1168 Label* gc_required,
1169 AllocationFlags flags);
1170
1171 void Allocate(Register object_size,
1172 Register result,
1173 Register result_end,
1174 Register scratch,
1175 Label* gc_required,
1176 AllocationFlags flags);
1177
1178 // Undo allocation in new space. The object passed and objects allocated after
1179 // it will no longer be allocated. Make sure that no pointers are left to the
1180 // object(s) no longer allocated as they would be invalid when allocation is
1181 // un-done.
1182 void UndoAllocationInNewSpace(Register object);
1183
1184 // Allocate a heap number in new space with undefined value. Returns
1185 // tagged pointer in result register, or jumps to gc_required if new
1186 // space is full.
1187 void AllocateHeapNumber(Register result,
1188 Register scratch,
1189 Label* gc_required);
1190
1191 // Allocate a sequential string. All the header fields of the string object
1192 // are initialized.
1193 void AllocateTwoByteString(Register result,
1194 Register length,
1195 Register scratch1,
1196 Register scratch2,
1197 Register scratch3,
1198 Label* gc_required);
1199 void AllocateAsciiString(Register result,
1200 Register length,
1201 Register scratch1,
1202 Register scratch2,
1203 Register scratch3,
1204 Label* gc_required);
1205
1206 // Allocate a raw cons string object. Only the map field of the result is
1207 // initialized.
1208 void AllocateTwoByteConsString(Register result,
1209 Register scratch1,
1210 Register scratch2,
1211 Label* gc_required);
1212 void AllocateAsciiConsString(Register result,
1213 Register scratch1,
1214 Register scratch2,
1215 Label* gc_required);
1216
1217 // Allocate a raw sliced string object. Only the map field of the result is
1218 // initialized.
1219 void AllocateTwoByteSlicedString(Register result,
1220 Register scratch1,
1221 Register scratch2,
1222 Label* gc_required);
1223 void AllocateAsciiSlicedString(Register result,
1224 Register scratch1,
1225 Register scratch2,
1226 Label* gc_required);
1227
1228 // ---------------------------------------------------------------------------
1229 // Support functions.
1230
1231 // Check if result is zero and op is negative.
1232 void NegativeZeroTest(Register result, Register op, Label* then_label);
1233
1234 // Check if result is zero and op is negative in code using jump targets.
1235 void NegativeZeroTest(CodeGenerator* cgen,
1236 Register result,
1237 Register op,
1238 JumpTarget* then_target);
1239
1240 // Check if result is zero and any of op1 and op2 are negative.
1241 // Register scratch is destroyed, and it must be different from op2.
1242 void NegativeZeroTest(Register result, Register op1, Register op2,
1243 Register scratch, Label* then_label);
1244
1245 // Try to get function prototype of a function and puts the value in
1246 // the result register. Checks that the function really is a
1247 // function and jumps to the miss label if the fast checks fail. The
1248 // function register will be untouched; the other register may be
1249 // clobbered.
1250 void TryGetFunctionPrototype(Register function,
1251 Register result,
1252 Label* miss,
1253 bool miss_on_bound_function = false);
1254
1255 // Picks out an array index from the hash field.
1256 // Register use:
1257 // hash - holds the index's hash. Clobbered.
1258 // index - holds the overwritten index on exit.
1259 void IndexFromHash(Register hash, Register index);
1260
1261 // Find the function context up the context chain.
1262 void LoadContext(Register dst, int context_chain_length);
1263
1264 // Conditionally load the cached Array transitioned map of type
1265 // transitioned_kind from the native context if the map in register
1266 // map_in_out is the cached Array map in the native context of
1267 // expected_kind.
1268 void LoadTransitionedArrayMapConditional(
1269 ElementsKind expected_kind,
1270 ElementsKind transitioned_kind,
1271 Register map_in_out,
1272 Register scratch,
1273 Label* no_map_match);
1274
1275 // Load the global function with the given index.
1276 void LoadGlobalFunction(int index, Register function);
1277
1278 // Load the initial map from the global function. The registers
1279 // function and map can be the same.
1280 void LoadGlobalFunctionInitialMap(Register function, Register map);
1281
1282 // ---------------------------------------------------------------------------
1283 // Runtime calls
1284
1285 // Call a code stub.
1286 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None());
1287
1288 // Tail call a code stub (jump).
1289 void TailCallStub(CodeStub* stub);
1290
1291 // Return from a code stub after popping its arguments.
1292 void StubReturn(int argc);
1293
1294 // Call a runtime routine.
1295 void CallRuntime(const Runtime::Function* f,
1296 int num_arguments,
1297 SaveFPRegsMode save_doubles = kDontSaveFPRegs);
1298
1299 // Call a runtime function and save the value of XMM registers.
CallRuntimeSaveDoubles(Runtime::FunctionId id)1300 void CallRuntimeSaveDoubles(Runtime::FunctionId id) {
1301 const Runtime::Function* function = Runtime::FunctionForId(id);
1302 CallRuntime(function, function->nargs, kSaveFPRegs);
1303 }
1304
1305 // Convenience function: Same as above, but takes the fid instead.
1306 void CallRuntime(Runtime::FunctionId id,
1307 int num_arguments,
1308 SaveFPRegsMode save_doubles = kDontSaveFPRegs) {
1309 CallRuntime(Runtime::FunctionForId(id), num_arguments, save_doubles);
1310 }
1311
1312 // Convenience function: call an external reference.
1313 void CallExternalReference(const ExternalReference& ext,
1314 int num_arguments);
1315
1316 // Tail call of a runtime routine (jump).
1317 // Like JumpToExternalReference, but also takes care of passing the number
1318 // of parameters.
1319 void TailCallExternalReference(const ExternalReference& ext,
1320 int num_arguments,
1321 int result_size);
1322
1323 // Convenience function: tail call a runtime routine (jump).
1324 void TailCallRuntime(Runtime::FunctionId fid,
1325 int num_arguments,
1326 int result_size);
1327
1328 // Jump to a runtime routine.
1329 void JumpToExternalReference(const ExternalReference& ext, int result_size);
1330
1331 // Prepares stack to put arguments (aligns and so on). WIN64 calling
1332 // convention requires to put the pointer to the return value slot into
1333 // rcx (rcx must be preserverd until CallApiFunctionAndReturn). Saves
1334 // context (rsi). Clobbers rax. Allocates arg_stack_space * kPointerSize
1335 // inside the exit frame (not GCed) accessible via StackSpaceOperand.
1336 void PrepareCallApiFunction(int arg_stack_space);
1337
1338 // Calls an API function. Allocates HandleScope, extracts returned value
1339 // from handle and propagates exceptions. Clobbers r14, r15, rbx and
1340 // caller-save registers. Restores context. On return removes
1341 // stack_space * kPointerSize (GCed).
1342 void CallApiFunctionAndReturn(Register function_address,
1343 ExternalReference thunk_ref,
1344 Register thunk_last_arg,
1345 int stack_space,
1346 Operand return_value_operand,
1347 Operand* context_restore_operand);
1348
1349 // Before calling a C-function from generated code, align arguments on stack.
1350 // After aligning the frame, arguments must be stored in rsp[0], rsp[8],
1351 // etc., not pushed. The argument count assumes all arguments are word sized.
1352 // The number of slots reserved for arguments depends on platform. On Windows
1353 // stack slots are reserved for the arguments passed in registers. On other
1354 // platforms stack slots are only reserved for the arguments actually passed
1355 // on the stack.
1356 void PrepareCallCFunction(int num_arguments);
1357
1358 // Calls a C function and cleans up the space for arguments allocated
1359 // by PrepareCallCFunction. The called function is not allowed to trigger a
1360 // garbage collection, since that might move the code and invalidate the
1361 // return address (unless this is somehow accounted for by the called
1362 // function).
1363 void CallCFunction(ExternalReference function, int num_arguments);
1364 void CallCFunction(Register function, int num_arguments);
1365
1366 // Calculate the number of stack slots to reserve for arguments when calling a
1367 // C function.
1368 int ArgumentStackSlotsForCFunctionCall(int num_arguments);
1369
1370 // ---------------------------------------------------------------------------
1371 // Utilities
1372
1373 void Ret();
1374
1375 // Return and drop arguments from stack, where the number of arguments
1376 // may be bigger than 2^16 - 1. Requires a scratch register.
1377 void Ret(int bytes_dropped, Register scratch);
1378
CodeObject()1379 Handle<Object> CodeObject() {
1380 ASSERT(!code_object_.is_null());
1381 return code_object_;
1382 }
1383
1384 // Copy length bytes from source to destination.
1385 // Uses scratch register internally (if you have a low-eight register
1386 // free, do use it, otherwise kScratchRegister will be used).
1387 // The min_length is a minimum limit on the value that length will have.
1388 // The algorithm has some special cases that might be omitted if the string
1389 // is known to always be long.
1390 void CopyBytes(Register destination,
1391 Register source,
1392 Register length,
1393 int min_length = 0,
1394 Register scratch = kScratchRegister);
1395
1396 // Initialize fields with filler values. Fields starting at |start_offset|
1397 // not including end_offset are overwritten with the value in |filler|. At
1398 // the end the loop, |start_offset| takes the value of |end_offset|.
1399 void InitializeFieldsWithFiller(Register start_offset,
1400 Register end_offset,
1401 Register filler);
1402
1403
1404 // Emit code for a truncating division by a constant. The dividend register is
1405 // unchanged, the result is in rdx, and rax gets clobbered.
1406 void TruncatingDiv(Register dividend, int32_t divisor);
1407
1408 // ---------------------------------------------------------------------------
1409 // StatsCounter support
1410
1411 void SetCounter(StatsCounter* counter, int value);
1412 void IncrementCounter(StatsCounter* counter, int value);
1413 void DecrementCounter(StatsCounter* counter, int value);
1414
1415
1416 // ---------------------------------------------------------------------------
1417 // Debugging
1418
1419 // Calls Abort(msg) if the condition cc is not satisfied.
1420 // Use --debug_code to enable.
1421 void Assert(Condition cc, BailoutReason reason);
1422
1423 void AssertFastElements(Register elements);
1424
1425 // Like Assert(), but always enabled.
1426 void Check(Condition cc, BailoutReason reason);
1427
1428 // Print a message to stdout and abort execution.
1429 void Abort(BailoutReason msg);
1430
1431 // Check that the stack is aligned.
1432 void CheckStackAlignment();
1433
1434 // Verify restrictions about code generated in stubs.
set_generating_stub(bool value)1435 void set_generating_stub(bool value) { generating_stub_ = value; }
generating_stub()1436 bool generating_stub() { return generating_stub_; }
set_has_frame(bool value)1437 void set_has_frame(bool value) { has_frame_ = value; }
has_frame()1438 bool has_frame() { return has_frame_; }
1439 inline bool AllowThisStubCall(CodeStub* stub);
1440
SafepointRegisterStackIndex(Register reg)1441 static int SafepointRegisterStackIndex(Register reg) {
1442 return SafepointRegisterStackIndex(reg.code());
1443 }
1444
1445 // Activation support.
1446 void EnterFrame(StackFrame::Type type);
1447 void LeaveFrame(StackFrame::Type type);
1448
1449 // Expects object in rax and returns map with validated enum cache
1450 // in rax. Assumes that any other register can be used as a scratch.
1451 void CheckEnumCache(Register null_value,
1452 Label* call_runtime);
1453
1454 // AllocationMemento support. Arrays may have an associated
1455 // AllocationMemento object that can be checked for in order to pretransition
1456 // to another type.
1457 // On entry, receiver_reg should point to the array object.
1458 // scratch_reg gets clobbered.
1459 // If allocation info is present, condition flags are set to equal.
1460 void TestJSArrayForAllocationMemento(Register receiver_reg,
1461 Register scratch_reg,
1462 Label* no_memento_found);
1463
JumpIfJSArrayHasAllocationMemento(Register receiver_reg,Register scratch_reg,Label * memento_found)1464 void JumpIfJSArrayHasAllocationMemento(Register receiver_reg,
1465 Register scratch_reg,
1466 Label* memento_found) {
1467 Label no_memento_found;
1468 TestJSArrayForAllocationMemento(receiver_reg, scratch_reg,
1469 &no_memento_found);
1470 j(equal, memento_found);
1471 bind(&no_memento_found);
1472 }
1473
1474 // Jumps to found label if a prototype map has dictionary elements.
1475 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0,
1476 Register scratch1, Label* found);
1477
1478 private:
1479 // Order general registers are pushed by Pushad.
1480 // rax, rcx, rdx, rbx, rsi, rdi, r8, r9, r11, r14, r15.
1481 static const int kSafepointPushRegisterIndices[Register::kNumRegisters];
1482 static const int kNumSafepointSavedRegisters = 11;
1483 static const int kSmiShift = kSmiTagSize + kSmiShiftSize;
1484
1485 bool generating_stub_;
1486 bool has_frame_;
1487 bool root_array_available_;
1488
1489 // Returns a register holding the smi value. The register MUST NOT be
1490 // modified. It may be the "smi 1 constant" register.
1491 Register GetSmiConstant(Smi* value);
1492
1493 int64_t RootRegisterDelta(ExternalReference other);
1494
1495 // Moves the smi value to the destination register.
1496 void LoadSmiConstant(Register dst, Smi* value);
1497
1498 // This handle will be patched with the code object on installation.
1499 Handle<Object> code_object_;
1500
1501 // Helper functions for generating invokes.
1502 void InvokePrologue(const ParameterCount& expected,
1503 const ParameterCount& actual,
1504 Handle<Code> code_constant,
1505 Register code_register,
1506 Label* done,
1507 bool* definitely_mismatches,
1508 InvokeFlag flag,
1509 Label::Distance near_jump = Label::kFar,
1510 const CallWrapper& call_wrapper = NullCallWrapper());
1511
1512 void EnterExitFramePrologue(bool save_rax);
1513
1514 // Allocates arg_stack_space * kPointerSize memory (not GCed) on the stack
1515 // accessible via StackSpaceOperand.
1516 void EnterExitFrameEpilogue(int arg_stack_space, bool save_doubles);
1517
1518 void LeaveExitFrameEpilogue(bool restore_context);
1519
1520 // Allocation support helpers.
1521 // Loads the top of new-space into the result register.
1522 // Otherwise the address of the new-space top is loaded into scratch (if
1523 // scratch is valid), and the new-space top is loaded into result.
1524 void LoadAllocationTopHelper(Register result,
1525 Register scratch,
1526 AllocationFlags flags);
1527
1528 void MakeSureDoubleAlignedHelper(Register result,
1529 Register scratch,
1530 Label* gc_required,
1531 AllocationFlags flags);
1532
1533 // Update allocation top with value in result_end register.
1534 // If scratch is valid, it contains the address of the allocation top.
1535 void UpdateAllocationTopHelper(Register result_end,
1536 Register scratch,
1537 AllocationFlags flags);
1538
1539 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace.
1540 void InNewSpace(Register object,
1541 Register scratch,
1542 Condition cc,
1543 Label* branch,
1544 Label::Distance distance = Label::kFar);
1545
1546 // Helper for finding the mark bits for an address. Afterwards, the
1547 // bitmap register points at the word with the mark bits and the mask
1548 // the position of the first bit. Uses rcx as scratch and leaves addr_reg
1549 // unchanged.
1550 inline void GetMarkBits(Register addr_reg,
1551 Register bitmap_reg,
1552 Register mask_reg);
1553
1554 // Helper for throwing exceptions. Compute a handler address and jump to
1555 // it. See the implementation for register usage.
1556 void JumpToHandlerEntry();
1557
1558 // Compute memory operands for safepoint stack slots.
1559 Operand SafepointRegisterSlot(Register reg);
SafepointRegisterStackIndex(int reg_code)1560 static int SafepointRegisterStackIndex(int reg_code) {
1561 return kNumSafepointRegisters - kSafepointPushRegisterIndices[reg_code] - 1;
1562 }
1563
1564 // Needs access to SafepointRegisterStackIndex for compiled frame
1565 // traversal.
1566 friend class StandardFrame;
1567 };
1568
1569
1570 // The code patcher is used to patch (typically) small parts of code e.g. for
1571 // debugging and other types of instrumentation. When using the code patcher
1572 // the exact number of bytes specified must be emitted. Is not legal to emit
1573 // relocation information. If any of these constraints are violated it causes
1574 // an assertion.
1575 class CodePatcher {
1576 public:
1577 CodePatcher(byte* address, int size);
1578 virtual ~CodePatcher();
1579
1580 // Macro assembler to emit code.
masm()1581 MacroAssembler* masm() { return &masm_; }
1582
1583 private:
1584 byte* address_; // The address of the code being patched.
1585 int size_; // Number of bytes of the expected patch size.
1586 MacroAssembler masm_; // Macro assembler used to generate the code.
1587 };
1588
1589
1590 // -----------------------------------------------------------------------------
1591 // Static helper functions.
1592
1593 // Generate an Operand for loading a field from an object.
FieldOperand(Register object,int offset)1594 inline Operand FieldOperand(Register object, int offset) {
1595 return Operand(object, offset - kHeapObjectTag);
1596 }
1597
1598
1599 // Generate an Operand for loading an indexed field from an object.
FieldOperand(Register object,Register index,ScaleFactor scale,int offset)1600 inline Operand FieldOperand(Register object,
1601 Register index,
1602 ScaleFactor scale,
1603 int offset) {
1604 return Operand(object, index, scale, offset - kHeapObjectTag);
1605 }
1606
1607
ContextOperand(Register context,int index)1608 inline Operand ContextOperand(Register context, int index) {
1609 return Operand(context, Context::SlotOffset(index));
1610 }
1611
1612
GlobalObjectOperand()1613 inline Operand GlobalObjectOperand() {
1614 return ContextOperand(rsi, Context::GLOBAL_OBJECT_INDEX);
1615 }
1616
1617
1618 // Provides access to exit frame stack space (not GCed).
StackSpaceOperand(int index)1619 inline Operand StackSpaceOperand(int index) {
1620 #ifdef _WIN64
1621 const int kShaddowSpace = 4;
1622 return Operand(rsp, (index + kShaddowSpace) * kPointerSize);
1623 #else
1624 return Operand(rsp, index * kPointerSize);
1625 #endif
1626 }
1627
1628
StackOperandForReturnAddress(int32_t disp)1629 inline Operand StackOperandForReturnAddress(int32_t disp) {
1630 return Operand(rsp, disp);
1631 }
1632
1633
1634 #ifdef GENERATED_CODE_COVERAGE
1635 extern void LogGeneratedCodeCoverage(const char* file_line);
1636 #define CODE_COVERAGE_STRINGIFY(x) #x
1637 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
1638 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
1639 #define ACCESS_MASM(masm) { \
1640 Address x64_coverage_function = FUNCTION_ADDR(LogGeneratedCodeCoverage); \
1641 masm->pushfq(); \
1642 masm->Pushad(); \
1643 masm->Push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
1644 masm->Call(x64_coverage_function, RelocInfo::EXTERNAL_REFERENCE); \
1645 masm->Pop(rax); \
1646 masm->Popad(); \
1647 masm->popfq(); \
1648 } \
1649 masm->
1650 #else
1651 #define ACCESS_MASM(masm) masm->
1652 #endif
1653
1654 } } // namespace v8::internal
1655
1656 #endif // V8_X64_MACRO_ASSEMBLER_X64_H_
1657