1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #ifndef V8_JSREGEXP_H_
6 #define V8_JSREGEXP_H_
7
8 #include "src/allocation.h"
9 #include "src/assembler.h"
10 #include "src/zone-inl.h"
11
12 namespace v8 {
13 namespace internal {
14
15 class NodeVisitor;
16 class RegExpCompiler;
17 class RegExpMacroAssembler;
18 class RegExpNode;
19 class RegExpTree;
20 class BoyerMooreLookahead;
21
22 class RegExpImpl {
23 public:
24 // Whether V8 is compiled with native regexp support or not.
UsesNativeRegExp()25 static bool UsesNativeRegExp() {
26 #ifdef V8_INTERPRETED_REGEXP
27 return false;
28 #else
29 return true;
30 #endif
31 }
32
33 // Creates a regular expression literal in the old space.
34 // This function calls the garbage collector if necessary.
35 MUST_USE_RESULT static MaybeHandle<Object> CreateRegExpLiteral(
36 Handle<JSFunction> constructor,
37 Handle<String> pattern,
38 Handle<String> flags);
39
40 // Returns a string representation of a regular expression.
41 // Implements RegExp.prototype.toString, see ECMA-262 section 15.10.6.4.
42 // This function calls the garbage collector if necessary.
43 static Handle<String> ToString(Handle<Object> value);
44
45 // Parses the RegExp pattern and prepares the JSRegExp object with
46 // generic data and choice of implementation - as well as what
47 // the implementation wants to store in the data field.
48 // Returns false if compilation fails.
49 MUST_USE_RESULT static MaybeHandle<Object> Compile(
50 Handle<JSRegExp> re,
51 Handle<String> pattern,
52 Handle<String> flags);
53
54 // See ECMA-262 section 15.10.6.2.
55 // This function calls the garbage collector if necessary.
56 MUST_USE_RESULT static MaybeHandle<Object> Exec(
57 Handle<JSRegExp> regexp,
58 Handle<String> subject,
59 int index,
60 Handle<JSArray> lastMatchInfo);
61
62 // Prepares a JSRegExp object with Irregexp-specific data.
63 static void IrregexpInitialize(Handle<JSRegExp> re,
64 Handle<String> pattern,
65 JSRegExp::Flags flags,
66 int capture_register_count);
67
68
69 static void AtomCompile(Handle<JSRegExp> re,
70 Handle<String> pattern,
71 JSRegExp::Flags flags,
72 Handle<String> match_pattern);
73
74
75 static int AtomExecRaw(Handle<JSRegExp> regexp,
76 Handle<String> subject,
77 int index,
78 int32_t* output,
79 int output_size);
80
81
82 static Handle<Object> AtomExec(Handle<JSRegExp> regexp,
83 Handle<String> subject,
84 int index,
85 Handle<JSArray> lastMatchInfo);
86
87 enum IrregexpResult { RE_FAILURE = 0, RE_SUCCESS = 1, RE_EXCEPTION = -1 };
88
89 // Prepare a RegExp for being executed one or more times (using
90 // IrregexpExecOnce) on the subject.
91 // This ensures that the regexp is compiled for the subject, and that
92 // the subject is flat.
93 // Returns the number of integer spaces required by IrregexpExecOnce
94 // as its "registers" argument. If the regexp cannot be compiled,
95 // an exception is set as pending, and this function returns negative.
96 static int IrregexpPrepare(Handle<JSRegExp> regexp,
97 Handle<String> subject);
98
99 // Execute a regular expression on the subject, starting from index.
100 // If matching succeeds, return the number of matches. This can be larger
101 // than one in the case of global regular expressions.
102 // The captures and subcaptures are stored into the registers vector.
103 // If matching fails, returns RE_FAILURE.
104 // If execution fails, sets a pending exception and returns RE_EXCEPTION.
105 static int IrregexpExecRaw(Handle<JSRegExp> regexp,
106 Handle<String> subject,
107 int index,
108 int32_t* output,
109 int output_size);
110
111 // Execute an Irregexp bytecode pattern.
112 // On a successful match, the result is a JSArray containing
113 // captured positions. On a failure, the result is the null value.
114 // Returns an empty handle in case of an exception.
115 MUST_USE_RESULT static MaybeHandle<Object> IrregexpExec(
116 Handle<JSRegExp> regexp,
117 Handle<String> subject,
118 int index,
119 Handle<JSArray> lastMatchInfo);
120
121 // Set last match info. If match is NULL, then setting captures is omitted.
122 static Handle<JSArray> SetLastMatchInfo(Handle<JSArray> last_match_info,
123 Handle<String> subject,
124 int capture_count,
125 int32_t* match);
126
127
128 class GlobalCache {
129 public:
130 GlobalCache(Handle<JSRegExp> regexp,
131 Handle<String> subject,
132 bool is_global,
133 Isolate* isolate);
134
135 INLINE(~GlobalCache());
136
137 // Fetch the next entry in the cache for global regexp match results.
138 // This does not set the last match info. Upon failure, NULL is returned.
139 // The cause can be checked with Result(). The previous
140 // result is still in available in memory when a failure happens.
141 INLINE(int32_t* FetchNext());
142
143 INLINE(int32_t* LastSuccessfulMatch());
144
INLINE(bool HasException ())145 INLINE(bool HasException()) { return num_matches_ < 0; }
146
147 private:
148 int num_matches_;
149 int max_matches_;
150 int current_match_index_;
151 int registers_per_match_;
152 // Pointer to the last set of captures.
153 int32_t* register_array_;
154 int register_array_size_;
155 Handle<JSRegExp> regexp_;
156 Handle<String> subject_;
157 };
158
159
160 // Array index in the lastMatchInfo array.
161 static const int kLastCaptureCount = 0;
162 static const int kLastSubject = 1;
163 static const int kLastInput = 2;
164 static const int kFirstCapture = 3;
165 static const int kLastMatchOverhead = 3;
166
167 // Direct offset into the lastMatchInfo array.
168 static const int kLastCaptureCountOffset =
169 FixedArray::kHeaderSize + kLastCaptureCount * kPointerSize;
170 static const int kLastSubjectOffset =
171 FixedArray::kHeaderSize + kLastSubject * kPointerSize;
172 static const int kLastInputOffset =
173 FixedArray::kHeaderSize + kLastInput * kPointerSize;
174 static const int kFirstCaptureOffset =
175 FixedArray::kHeaderSize + kFirstCapture * kPointerSize;
176
177 // Used to access the lastMatchInfo array.
GetCapture(FixedArray * array,int index)178 static int GetCapture(FixedArray* array, int index) {
179 return Smi::cast(array->get(index + kFirstCapture))->value();
180 }
181
SetLastCaptureCount(FixedArray * array,int to)182 static void SetLastCaptureCount(FixedArray* array, int to) {
183 array->set(kLastCaptureCount, Smi::FromInt(to));
184 }
185
SetLastSubject(FixedArray * array,String * to)186 static void SetLastSubject(FixedArray* array, String* to) {
187 array->set(kLastSubject, to);
188 }
189
SetLastInput(FixedArray * array,String * to)190 static void SetLastInput(FixedArray* array, String* to) {
191 array->set(kLastInput, to);
192 }
193
SetCapture(FixedArray * array,int index,int to)194 static void SetCapture(FixedArray* array, int index, int to) {
195 array->set(index + kFirstCapture, Smi::FromInt(to));
196 }
197
GetLastCaptureCount(FixedArray * array)198 static int GetLastCaptureCount(FixedArray* array) {
199 return Smi::cast(array->get(kLastCaptureCount))->value();
200 }
201
202 // For acting on the JSRegExp data FixedArray.
203 static int IrregexpMaxRegisterCount(FixedArray* re);
204 static void SetIrregexpMaxRegisterCount(FixedArray* re, int value);
205 static int IrregexpNumberOfCaptures(FixedArray* re);
206 static int IrregexpNumberOfRegisters(FixedArray* re);
207 static ByteArray* IrregexpByteCode(FixedArray* re, bool is_ascii);
208 static Code* IrregexpNativeCode(FixedArray* re, bool is_ascii);
209
210 // Limit the space regexps take up on the heap. In order to limit this we
211 // would like to keep track of the amount of regexp code on the heap. This
212 // is not tracked, however. As a conservative approximation we track the
213 // total regexp code compiled including code that has subsequently been freed
214 // and the total executable memory at any point.
215 static const int kRegExpExecutableMemoryLimit = 16 * MB;
216 static const int kRegWxpCompiledLimit = 1 * MB;
217
218 private:
219 static bool CompileIrregexp(
220 Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii);
221 static inline bool EnsureCompiledIrregexp(
222 Handle<JSRegExp> re, Handle<String> sample_subject, bool is_ascii);
223 };
224
225
226 // Represents the location of one element relative to the intersection of
227 // two sets. Corresponds to the four areas of a Venn diagram.
228 enum ElementInSetsRelation {
229 kInsideNone = 0,
230 kInsideFirst = 1,
231 kInsideSecond = 2,
232 kInsideBoth = 3
233 };
234
235
236 // Represents code units in the range from from_ to to_, both ends are
237 // inclusive.
238 class CharacterRange {
239 public:
CharacterRange()240 CharacterRange() : from_(0), to_(0) { }
241 // For compatibility with the CHECK_OK macro
CharacterRange(void * null)242 CharacterRange(void* null) { ASSERT_EQ(NULL, null); } //NOLINT
CharacterRange(uc16 from,uc16 to)243 CharacterRange(uc16 from, uc16 to) : from_(from), to_(to) { }
244 static void AddClassEscape(uc16 type, ZoneList<CharacterRange>* ranges,
245 Zone* zone);
246 static Vector<const int> GetWordBounds();
Singleton(uc16 value)247 static inline CharacterRange Singleton(uc16 value) {
248 return CharacterRange(value, value);
249 }
Range(uc16 from,uc16 to)250 static inline CharacterRange Range(uc16 from, uc16 to) {
251 ASSERT(from <= to);
252 return CharacterRange(from, to);
253 }
Everything()254 static inline CharacterRange Everything() {
255 return CharacterRange(0, 0xFFFF);
256 }
Contains(uc16 i)257 bool Contains(uc16 i) { return from_ <= i && i <= to_; }
from()258 uc16 from() const { return from_; }
set_from(uc16 value)259 void set_from(uc16 value) { from_ = value; }
to()260 uc16 to() const { return to_; }
set_to(uc16 value)261 void set_to(uc16 value) { to_ = value; }
is_valid()262 bool is_valid() { return from_ <= to_; }
IsEverything(uc16 max)263 bool IsEverything(uc16 max) { return from_ == 0 && to_ >= max; }
IsSingleton()264 bool IsSingleton() { return (from_ == to_); }
265 void AddCaseEquivalents(ZoneList<CharacterRange>* ranges, bool is_ascii,
266 Zone* zone);
267 static void Split(ZoneList<CharacterRange>* base,
268 Vector<const int> overlay,
269 ZoneList<CharacterRange>** included,
270 ZoneList<CharacterRange>** excluded,
271 Zone* zone);
272 // Whether a range list is in canonical form: Ranges ordered by from value,
273 // and ranges non-overlapping and non-adjacent.
274 static bool IsCanonical(ZoneList<CharacterRange>* ranges);
275 // Convert range list to canonical form. The characters covered by the ranges
276 // will still be the same, but no character is in more than one range, and
277 // adjacent ranges are merged. The resulting list may be shorter than the
278 // original, but cannot be longer.
279 static void Canonicalize(ZoneList<CharacterRange>* ranges);
280 // Negate the contents of a character range in canonical form.
281 static void Negate(ZoneList<CharacterRange>* src,
282 ZoneList<CharacterRange>* dst,
283 Zone* zone);
284 static const int kStartMarker = (1 << 24);
285 static const int kPayloadMask = (1 << 24) - 1;
286
287 private:
288 uc16 from_;
289 uc16 to_;
290 };
291
292
293 // A set of unsigned integers that behaves especially well on small
294 // integers (< 32). May do zone-allocation.
295 class OutSet: public ZoneObject {
296 public:
OutSet()297 OutSet() : first_(0), remaining_(NULL), successors_(NULL) { }
298 OutSet* Extend(unsigned value, Zone* zone);
299 bool Get(unsigned value) const;
300 static const unsigned kFirstLimit = 32;
301
302 private:
303 // Destructively set a value in this set. In most cases you want
304 // to use Extend instead to ensure that only one instance exists
305 // that contains the same values.
306 void Set(unsigned value, Zone* zone);
307
308 // The successors are a list of sets that contain the same values
309 // as this set and the one more value that is not present in this
310 // set.
successors(Zone * zone)311 ZoneList<OutSet*>* successors(Zone* zone) { return successors_; }
312
OutSet(uint32_t first,ZoneList<unsigned> * remaining)313 OutSet(uint32_t first, ZoneList<unsigned>* remaining)
314 : first_(first), remaining_(remaining), successors_(NULL) { }
315 uint32_t first_;
316 ZoneList<unsigned>* remaining_;
317 ZoneList<OutSet*>* successors_;
318 friend class Trace;
319 };
320
321
322 // A mapping from integers, specified as ranges, to a set of integers.
323 // Used for mapping character ranges to choices.
324 class DispatchTable : public ZoneObject {
325 public:
DispatchTable(Zone * zone)326 explicit DispatchTable(Zone* zone) : tree_(zone) { }
327
328 class Entry {
329 public:
Entry()330 Entry() : from_(0), to_(0), out_set_(NULL) { }
Entry(uc16 from,uc16 to,OutSet * out_set)331 Entry(uc16 from, uc16 to, OutSet* out_set)
332 : from_(from), to_(to), out_set_(out_set) { }
from()333 uc16 from() { return from_; }
to()334 uc16 to() { return to_; }
set_to(uc16 value)335 void set_to(uc16 value) { to_ = value; }
AddValue(int value,Zone * zone)336 void AddValue(int value, Zone* zone) {
337 out_set_ = out_set_->Extend(value, zone);
338 }
out_set()339 OutSet* out_set() { return out_set_; }
340 private:
341 uc16 from_;
342 uc16 to_;
343 OutSet* out_set_;
344 };
345
346 class Config {
347 public:
348 typedef uc16 Key;
349 typedef Entry Value;
350 static const uc16 kNoKey;
NoValue()351 static const Entry NoValue() { return Value(); }
Compare(uc16 a,uc16 b)352 static inline int Compare(uc16 a, uc16 b) {
353 if (a == b)
354 return 0;
355 else if (a < b)
356 return -1;
357 else
358 return 1;
359 }
360 };
361
362 void AddRange(CharacterRange range, int value, Zone* zone);
363 OutSet* Get(uc16 value);
364 void Dump();
365
366 template <typename Callback>
ForEach(Callback * callback)367 void ForEach(Callback* callback) {
368 return tree()->ForEach(callback);
369 }
370
371 private:
372 // There can't be a static empty set since it allocates its
373 // successors in a zone and caches them.
empty()374 OutSet* empty() { return &empty_; }
375 OutSet empty_;
tree()376 ZoneSplayTree<Config>* tree() { return &tree_; }
377 ZoneSplayTree<Config> tree_;
378 };
379
380
381 #define FOR_EACH_NODE_TYPE(VISIT) \
382 VISIT(End) \
383 VISIT(Action) \
384 VISIT(Choice) \
385 VISIT(BackReference) \
386 VISIT(Assertion) \
387 VISIT(Text)
388
389
390 #define FOR_EACH_REG_EXP_TREE_TYPE(VISIT) \
391 VISIT(Disjunction) \
392 VISIT(Alternative) \
393 VISIT(Assertion) \
394 VISIT(CharacterClass) \
395 VISIT(Atom) \
396 VISIT(Quantifier) \
397 VISIT(Capture) \
398 VISIT(Lookahead) \
399 VISIT(BackReference) \
400 VISIT(Empty) \
401 VISIT(Text)
402
403
404 #define FORWARD_DECLARE(Name) class RegExp##Name;
FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)405 FOR_EACH_REG_EXP_TREE_TYPE(FORWARD_DECLARE)
406 #undef FORWARD_DECLARE
407
408
409 class TextElement V8_FINAL BASE_EMBEDDED {
410 public:
411 enum TextType {
412 ATOM,
413 CHAR_CLASS
414 };
415
416 static TextElement Atom(RegExpAtom* atom);
417 static TextElement CharClass(RegExpCharacterClass* char_class);
418
419 int cp_offset() const { return cp_offset_; }
420 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
421 int length() const;
422
423 TextType text_type() const { return text_type_; }
424
425 RegExpTree* tree() const { return tree_; }
426
427 RegExpAtom* atom() const {
428 ASSERT(text_type() == ATOM);
429 return reinterpret_cast<RegExpAtom*>(tree());
430 }
431
432 RegExpCharacterClass* char_class() const {
433 ASSERT(text_type() == CHAR_CLASS);
434 return reinterpret_cast<RegExpCharacterClass*>(tree());
435 }
436
437 private:
438 TextElement(TextType text_type, RegExpTree* tree)
439 : cp_offset_(-1), text_type_(text_type), tree_(tree) {}
440
441 int cp_offset_;
442 TextType text_type_;
443 RegExpTree* tree_;
444 };
445
446
447 class Trace;
448
449
450 struct NodeInfo {
NodeInfoNodeInfo451 NodeInfo()
452 : being_analyzed(false),
453 been_analyzed(false),
454 follows_word_interest(false),
455 follows_newline_interest(false),
456 follows_start_interest(false),
457 at_end(false),
458 visited(false),
459 replacement_calculated(false) { }
460
461 // Returns true if the interests and assumptions of this node
462 // matches the given one.
MatchesNodeInfo463 bool Matches(NodeInfo* that) {
464 return (at_end == that->at_end) &&
465 (follows_word_interest == that->follows_word_interest) &&
466 (follows_newline_interest == that->follows_newline_interest) &&
467 (follows_start_interest == that->follows_start_interest);
468 }
469
470 // Updates the interests of this node given the interests of the
471 // node preceding it.
AddFromPrecedingNodeInfo472 void AddFromPreceding(NodeInfo* that) {
473 at_end |= that->at_end;
474 follows_word_interest |= that->follows_word_interest;
475 follows_newline_interest |= that->follows_newline_interest;
476 follows_start_interest |= that->follows_start_interest;
477 }
478
HasLookbehindNodeInfo479 bool HasLookbehind() {
480 return follows_word_interest ||
481 follows_newline_interest ||
482 follows_start_interest;
483 }
484
485 // Sets the interests of this node to include the interests of the
486 // following node.
AddFromFollowingNodeInfo487 void AddFromFollowing(NodeInfo* that) {
488 follows_word_interest |= that->follows_word_interest;
489 follows_newline_interest |= that->follows_newline_interest;
490 follows_start_interest |= that->follows_start_interest;
491 }
492
ResetCompilationStateNodeInfo493 void ResetCompilationState() {
494 being_analyzed = false;
495 been_analyzed = false;
496 }
497
498 bool being_analyzed: 1;
499 bool been_analyzed: 1;
500
501 // These bits are set of this node has to know what the preceding
502 // character was.
503 bool follows_word_interest: 1;
504 bool follows_newline_interest: 1;
505 bool follows_start_interest: 1;
506
507 bool at_end: 1;
508 bool visited: 1;
509 bool replacement_calculated: 1;
510 };
511
512
513 // Details of a quick mask-compare check that can look ahead in the
514 // input stream.
515 class QuickCheckDetails {
516 public:
QuickCheckDetails()517 QuickCheckDetails()
518 : characters_(0),
519 mask_(0),
520 value_(0),
521 cannot_match_(false) { }
QuickCheckDetails(int characters)522 explicit QuickCheckDetails(int characters)
523 : characters_(characters),
524 mask_(0),
525 value_(0),
526 cannot_match_(false) { }
527 bool Rationalize(bool ascii);
528 // Merge in the information from another branch of an alternation.
529 void Merge(QuickCheckDetails* other, int from_index);
530 // Advance the current position by some amount.
531 void Advance(int by, bool ascii);
532 void Clear();
cannot_match()533 bool cannot_match() { return cannot_match_; }
set_cannot_match()534 void set_cannot_match() { cannot_match_ = true; }
535 struct Position {
PositionPosition536 Position() : mask(0), value(0), determines_perfectly(false) { }
537 uc16 mask;
538 uc16 value;
539 bool determines_perfectly;
540 };
characters()541 int characters() { return characters_; }
set_characters(int characters)542 void set_characters(int characters) { characters_ = characters; }
positions(int index)543 Position* positions(int index) {
544 ASSERT(index >= 0);
545 ASSERT(index < characters_);
546 return positions_ + index;
547 }
mask()548 uint32_t mask() { return mask_; }
value()549 uint32_t value() { return value_; }
550
551 private:
552 // How many characters do we have quick check information from. This is
553 // the same for all branches of a choice node.
554 int characters_;
555 Position positions_[4];
556 // These values are the condensate of the above array after Rationalize().
557 uint32_t mask_;
558 uint32_t value_;
559 // If set to true, there is no way this quick check can match at all.
560 // E.g., if it requires to be at the start of the input, and isn't.
561 bool cannot_match_;
562 };
563
564
565 extern int kUninitializedRegExpNodePlaceHolder;
566
567
568 class RegExpNode: public ZoneObject {
569 public:
RegExpNode(Zone * zone)570 explicit RegExpNode(Zone* zone)
571 : replacement_(NULL), trace_count_(0), zone_(zone) {
572 bm_info_[0] = bm_info_[1] = NULL;
573 }
574 virtual ~RegExpNode();
575 virtual void Accept(NodeVisitor* visitor) = 0;
576 // Generates a goto to this node or actually generates the code at this point.
577 virtual void Emit(RegExpCompiler* compiler, Trace* trace) = 0;
578 // How many characters must this node consume at a minimum in order to
579 // succeed. If we have found at least 'still_to_find' characters that
580 // must be consumed there is no need to ask any following nodes whether
581 // they are sure to eat any more characters. The not_at_start argument is
582 // used to indicate that we know we are not at the start of the input. In
583 // this case anchored branches will always fail and can be ignored when
584 // determining how many characters are consumed on success.
585 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start) = 0;
586 // Emits some quick code that checks whether the preloaded characters match.
587 // Falls through on certain failure, jumps to the label on possible success.
588 // If the node cannot make a quick check it does nothing and returns false.
589 bool EmitQuickCheck(RegExpCompiler* compiler,
590 Trace* trace,
591 bool preload_has_checked_bounds,
592 Label* on_possible_success,
593 QuickCheckDetails* details_return,
594 bool fall_through_on_failure);
595 // For a given number of characters this returns a mask and a value. The
596 // next n characters are anded with the mask and compared with the value.
597 // A comparison failure indicates the node cannot match the next n characters.
598 // A comparison success indicates the node may match.
599 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
600 RegExpCompiler* compiler,
601 int characters_filled_in,
602 bool not_at_start) = 0;
603 static const int kNodeIsTooComplexForGreedyLoops = -1;
GreedyLoopTextLength()604 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
605 // Only returns the successor for a text node of length 1 that matches any
606 // character and that has no guards on it.
GetSuccessorOfOmnivorousTextNode(RegExpCompiler * compiler)607 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
608 RegExpCompiler* compiler) {
609 return NULL;
610 }
611
612 // Collects information on the possible code units (mod 128) that can match if
613 // we look forward. This is used for a Boyer-Moore-like string searching
614 // implementation. TODO(erikcorry): This should share more code with
615 // EatsAtLeast, GetQuickCheckDetails. The budget argument is used to limit
616 // the number of nodes we are willing to look at in order to create this data.
617 static const int kRecursionBudget = 200;
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)618 virtual void FillInBMInfo(int offset,
619 int budget,
620 BoyerMooreLookahead* bm,
621 bool not_at_start) {
622 UNREACHABLE();
623 }
624
625 // If we know that the input is ASCII then there are some nodes that can
626 // never match. This method returns a node that can be substituted for
627 // itself, or NULL if the node can never match.
FilterASCII(int depth,bool ignore_case)628 virtual RegExpNode* FilterASCII(int depth, bool ignore_case) { return this; }
629 // Helper for FilterASCII.
replacement()630 RegExpNode* replacement() {
631 ASSERT(info()->replacement_calculated);
632 return replacement_;
633 }
set_replacement(RegExpNode * replacement)634 RegExpNode* set_replacement(RegExpNode* replacement) {
635 info()->replacement_calculated = true;
636 replacement_ = replacement;
637 return replacement; // For convenience.
638 }
639
640 // We want to avoid recalculating the lookahead info, so we store it on the
641 // node. Only info that is for this node is stored. We can tell that the
642 // info is for this node when offset == 0, so the information is calculated
643 // relative to this node.
SaveBMInfo(BoyerMooreLookahead * bm,bool not_at_start,int offset)644 void SaveBMInfo(BoyerMooreLookahead* bm, bool not_at_start, int offset) {
645 if (offset == 0) set_bm_info(not_at_start, bm);
646 }
647
label()648 Label* label() { return &label_; }
649 // If non-generic code is generated for a node (i.e. the node is not at the
650 // start of the trace) then it cannot be reused. This variable sets a limit
651 // on how often we allow that to happen before we insist on starting a new
652 // trace and generating generic code for a node that can be reused by flushing
653 // the deferred actions in the current trace and generating a goto.
654 static const int kMaxCopiesCodeGenerated = 10;
655
info()656 NodeInfo* info() { return &info_; }
657
bm_info(bool not_at_start)658 BoyerMooreLookahead* bm_info(bool not_at_start) {
659 return bm_info_[not_at_start ? 1 : 0];
660 }
661
zone()662 Zone* zone() const { return zone_; }
663
664 protected:
665 enum LimitResult { DONE, CONTINUE };
666 RegExpNode* replacement_;
667
668 LimitResult LimitVersions(RegExpCompiler* compiler, Trace* trace);
669
set_bm_info(bool not_at_start,BoyerMooreLookahead * bm)670 void set_bm_info(bool not_at_start, BoyerMooreLookahead* bm) {
671 bm_info_[not_at_start ? 1 : 0] = bm;
672 }
673
674 private:
675 static const int kFirstCharBudget = 10;
676 Label label_;
677 NodeInfo info_;
678 // This variable keeps track of how many times code has been generated for
679 // this node (in different traces). We don't keep track of where the
680 // generated code is located unless the code is generated at the start of
681 // a trace, in which case it is generic and can be reused by flushing the
682 // deferred operations in the current trace and generating a goto.
683 int trace_count_;
684 BoyerMooreLookahead* bm_info_[2];
685
686 Zone* zone_;
687 };
688
689
690 // A simple closed interval.
691 class Interval {
692 public:
Interval()693 Interval() : from_(kNone), to_(kNone) { }
Interval(int from,int to)694 Interval(int from, int to) : from_(from), to_(to) { }
Union(Interval that)695 Interval Union(Interval that) {
696 if (that.from_ == kNone)
697 return *this;
698 else if (from_ == kNone)
699 return that;
700 else
701 return Interval(Min(from_, that.from_), Max(to_, that.to_));
702 }
Contains(int value)703 bool Contains(int value) {
704 return (from_ <= value) && (value <= to_);
705 }
is_empty()706 bool is_empty() { return from_ == kNone; }
from()707 int from() const { return from_; }
to()708 int to() const { return to_; }
Empty()709 static Interval Empty() { return Interval(); }
710 static const int kNone = -1;
711 private:
712 int from_;
713 int to_;
714 };
715
716
717 class SeqRegExpNode: public RegExpNode {
718 public:
SeqRegExpNode(RegExpNode * on_success)719 explicit SeqRegExpNode(RegExpNode* on_success)
720 : RegExpNode(on_success->zone()), on_success_(on_success) { }
on_success()721 RegExpNode* on_success() { return on_success_; }
set_on_success(RegExpNode * node)722 void set_on_success(RegExpNode* node) { on_success_ = node; }
723 virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)724 virtual void FillInBMInfo(int offset,
725 int budget,
726 BoyerMooreLookahead* bm,
727 bool not_at_start) {
728 on_success_->FillInBMInfo(offset, budget - 1, bm, not_at_start);
729 if (offset == 0) set_bm_info(not_at_start, bm);
730 }
731
732 protected:
733 RegExpNode* FilterSuccessor(int depth, bool ignore_case);
734
735 private:
736 RegExpNode* on_success_;
737 };
738
739
740 class ActionNode: public SeqRegExpNode {
741 public:
742 enum ActionType {
743 SET_REGISTER,
744 INCREMENT_REGISTER,
745 STORE_POSITION,
746 BEGIN_SUBMATCH,
747 POSITIVE_SUBMATCH_SUCCESS,
748 EMPTY_MATCH_CHECK,
749 CLEAR_CAPTURES
750 };
751 static ActionNode* SetRegister(int reg, int val, RegExpNode* on_success);
752 static ActionNode* IncrementRegister(int reg, RegExpNode* on_success);
753 static ActionNode* StorePosition(int reg,
754 bool is_capture,
755 RegExpNode* on_success);
756 static ActionNode* ClearCaptures(Interval range, RegExpNode* on_success);
757 static ActionNode* BeginSubmatch(int stack_pointer_reg,
758 int position_reg,
759 RegExpNode* on_success);
760 static ActionNode* PositiveSubmatchSuccess(int stack_pointer_reg,
761 int restore_reg,
762 int clear_capture_count,
763 int clear_capture_from,
764 RegExpNode* on_success);
765 static ActionNode* EmptyMatchCheck(int start_register,
766 int repetition_register,
767 int repetition_limit,
768 RegExpNode* on_success);
769 virtual void Accept(NodeVisitor* visitor);
770 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
771 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int filled_in,bool not_at_start)772 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
773 RegExpCompiler* compiler,
774 int filled_in,
775 bool not_at_start) {
776 return on_success()->GetQuickCheckDetails(
777 details, compiler, filled_in, not_at_start);
778 }
779 virtual void FillInBMInfo(int offset,
780 int budget,
781 BoyerMooreLookahead* bm,
782 bool not_at_start);
action_type()783 ActionType action_type() { return action_type_; }
784 // TODO(erikcorry): We should allow some action nodes in greedy loops.
GreedyLoopTextLength()785 virtual int GreedyLoopTextLength() { return kNodeIsTooComplexForGreedyLoops; }
786
787 private:
788 union {
789 struct {
790 int reg;
791 int value;
792 } u_store_register;
793 struct {
794 int reg;
795 } u_increment_register;
796 struct {
797 int reg;
798 bool is_capture;
799 } u_position_register;
800 struct {
801 int stack_pointer_register;
802 int current_position_register;
803 int clear_register_count;
804 int clear_register_from;
805 } u_submatch;
806 struct {
807 int start_register;
808 int repetition_register;
809 int repetition_limit;
810 } u_empty_match_check;
811 struct {
812 int range_from;
813 int range_to;
814 } u_clear_captures;
815 } data_;
ActionNode(ActionType action_type,RegExpNode * on_success)816 ActionNode(ActionType action_type, RegExpNode* on_success)
817 : SeqRegExpNode(on_success),
818 action_type_(action_type) { }
819 ActionType action_type_;
820 friend class DotPrinter;
821 };
822
823
824 class TextNode: public SeqRegExpNode {
825 public:
TextNode(ZoneList<TextElement> * elms,RegExpNode * on_success)826 TextNode(ZoneList<TextElement>* elms,
827 RegExpNode* on_success)
828 : SeqRegExpNode(on_success),
829 elms_(elms) { }
TextNode(RegExpCharacterClass * that,RegExpNode * on_success)830 TextNode(RegExpCharacterClass* that,
831 RegExpNode* on_success)
832 : SeqRegExpNode(on_success),
833 elms_(new(zone()) ZoneList<TextElement>(1, zone())) {
834 elms_->Add(TextElement::CharClass(that), zone());
835 }
836 virtual void Accept(NodeVisitor* visitor);
837 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
838 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
839 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
840 RegExpCompiler* compiler,
841 int characters_filled_in,
842 bool not_at_start);
elements()843 ZoneList<TextElement>* elements() { return elms_; }
844 void MakeCaseIndependent(bool is_ascii);
845 virtual int GreedyLoopTextLength();
846 virtual RegExpNode* GetSuccessorOfOmnivorousTextNode(
847 RegExpCompiler* compiler);
848 virtual void FillInBMInfo(int offset,
849 int budget,
850 BoyerMooreLookahead* bm,
851 bool not_at_start);
852 void CalculateOffsets();
853 virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
854
855 private:
856 enum TextEmitPassType {
857 NON_ASCII_MATCH, // Check for characters that can't match.
858 SIMPLE_CHARACTER_MATCH, // Case-dependent single character check.
859 NON_LETTER_CHARACTER_MATCH, // Check characters that have no case equivs.
860 CASE_CHARACTER_MATCH, // Case-independent single character check.
861 CHARACTER_CLASS_MATCH // Character class.
862 };
863 static bool SkipPass(int pass, bool ignore_case);
864 static const int kFirstRealPass = SIMPLE_CHARACTER_MATCH;
865 static const int kLastPass = CHARACTER_CLASS_MATCH;
866 void TextEmitPass(RegExpCompiler* compiler,
867 TextEmitPassType pass,
868 bool preloaded,
869 Trace* trace,
870 bool first_element_checked,
871 int* checked_up_to);
872 int Length();
873 ZoneList<TextElement>* elms_;
874 };
875
876
877 class AssertionNode: public SeqRegExpNode {
878 public:
879 enum AssertionType {
880 AT_END,
881 AT_START,
882 AT_BOUNDARY,
883 AT_NON_BOUNDARY,
884 AFTER_NEWLINE
885 };
AtEnd(RegExpNode * on_success)886 static AssertionNode* AtEnd(RegExpNode* on_success) {
887 return new(on_success->zone()) AssertionNode(AT_END, on_success);
888 }
AtStart(RegExpNode * on_success)889 static AssertionNode* AtStart(RegExpNode* on_success) {
890 return new(on_success->zone()) AssertionNode(AT_START, on_success);
891 }
AtBoundary(RegExpNode * on_success)892 static AssertionNode* AtBoundary(RegExpNode* on_success) {
893 return new(on_success->zone()) AssertionNode(AT_BOUNDARY, on_success);
894 }
AtNonBoundary(RegExpNode * on_success)895 static AssertionNode* AtNonBoundary(RegExpNode* on_success) {
896 return new(on_success->zone()) AssertionNode(AT_NON_BOUNDARY, on_success);
897 }
AfterNewline(RegExpNode * on_success)898 static AssertionNode* AfterNewline(RegExpNode* on_success) {
899 return new(on_success->zone()) AssertionNode(AFTER_NEWLINE, on_success);
900 }
901 virtual void Accept(NodeVisitor* visitor);
902 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
903 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
904 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
905 RegExpCompiler* compiler,
906 int filled_in,
907 bool not_at_start);
908 virtual void FillInBMInfo(int offset,
909 int budget,
910 BoyerMooreLookahead* bm,
911 bool not_at_start);
assertion_type()912 AssertionType assertion_type() { return assertion_type_; }
913
914 private:
915 void EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace);
916 enum IfPrevious { kIsNonWord, kIsWord };
917 void BacktrackIfPrevious(RegExpCompiler* compiler,
918 Trace* trace,
919 IfPrevious backtrack_if_previous);
AssertionNode(AssertionType t,RegExpNode * on_success)920 AssertionNode(AssertionType t, RegExpNode* on_success)
921 : SeqRegExpNode(on_success), assertion_type_(t) { }
922 AssertionType assertion_type_;
923 };
924
925
926 class BackReferenceNode: public SeqRegExpNode {
927 public:
BackReferenceNode(int start_reg,int end_reg,RegExpNode * on_success)928 BackReferenceNode(int start_reg,
929 int end_reg,
930 RegExpNode* on_success)
931 : SeqRegExpNode(on_success),
932 start_reg_(start_reg),
933 end_reg_(end_reg) { }
934 virtual void Accept(NodeVisitor* visitor);
start_register()935 int start_register() { return start_reg_; }
end_register()936 int end_register() { return end_reg_; }
937 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
938 virtual int EatsAtLeast(int still_to_find,
939 int recursion_depth,
940 bool not_at_start);
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)941 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
942 RegExpCompiler* compiler,
943 int characters_filled_in,
944 bool not_at_start) {
945 return;
946 }
947 virtual void FillInBMInfo(int offset,
948 int budget,
949 BoyerMooreLookahead* bm,
950 bool not_at_start);
951
952 private:
953 int start_reg_;
954 int end_reg_;
955 };
956
957
958 class EndNode: public RegExpNode {
959 public:
960 enum Action { ACCEPT, BACKTRACK, NEGATIVE_SUBMATCH_SUCCESS };
EndNode(Action action,Zone * zone)961 explicit EndNode(Action action, Zone* zone)
962 : RegExpNode(zone), action_(action) { }
963 virtual void Accept(NodeVisitor* visitor);
964 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
EatsAtLeast(int still_to_find,int recursion_depth,bool not_at_start)965 virtual int EatsAtLeast(int still_to_find,
966 int recursion_depth,
967 bool not_at_start) { return 0; }
GetQuickCheckDetails(QuickCheckDetails * details,RegExpCompiler * compiler,int characters_filled_in,bool not_at_start)968 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
969 RegExpCompiler* compiler,
970 int characters_filled_in,
971 bool not_at_start) {
972 // Returning 0 from EatsAtLeast should ensure we never get here.
973 UNREACHABLE();
974 }
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)975 virtual void FillInBMInfo(int offset,
976 int budget,
977 BoyerMooreLookahead* bm,
978 bool not_at_start) {
979 // Returning 0 from EatsAtLeast should ensure we never get here.
980 UNREACHABLE();
981 }
982
983 private:
984 Action action_;
985 };
986
987
988 class NegativeSubmatchSuccess: public EndNode {
989 public:
NegativeSubmatchSuccess(int stack_pointer_reg,int position_reg,int clear_capture_count,int clear_capture_start,Zone * zone)990 NegativeSubmatchSuccess(int stack_pointer_reg,
991 int position_reg,
992 int clear_capture_count,
993 int clear_capture_start,
994 Zone* zone)
995 : EndNode(NEGATIVE_SUBMATCH_SUCCESS, zone),
996 stack_pointer_register_(stack_pointer_reg),
997 current_position_register_(position_reg),
998 clear_capture_count_(clear_capture_count),
999 clear_capture_start_(clear_capture_start) { }
1000 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1001
1002 private:
1003 int stack_pointer_register_;
1004 int current_position_register_;
1005 int clear_capture_count_;
1006 int clear_capture_start_;
1007 };
1008
1009
1010 class Guard: public ZoneObject {
1011 public:
1012 enum Relation { LT, GEQ };
Guard(int reg,Relation op,int value)1013 Guard(int reg, Relation op, int value)
1014 : reg_(reg),
1015 op_(op),
1016 value_(value) { }
reg()1017 int reg() { return reg_; }
op()1018 Relation op() { return op_; }
value()1019 int value() { return value_; }
1020
1021 private:
1022 int reg_;
1023 Relation op_;
1024 int value_;
1025 };
1026
1027
1028 class GuardedAlternative {
1029 public:
GuardedAlternative(RegExpNode * node)1030 explicit GuardedAlternative(RegExpNode* node) : node_(node), guards_(NULL) { }
1031 void AddGuard(Guard* guard, Zone* zone);
node()1032 RegExpNode* node() { return node_; }
set_node(RegExpNode * node)1033 void set_node(RegExpNode* node) { node_ = node; }
guards()1034 ZoneList<Guard*>* guards() { return guards_; }
1035
1036 private:
1037 RegExpNode* node_;
1038 ZoneList<Guard*>* guards_;
1039 };
1040
1041
1042 class AlternativeGeneration;
1043
1044
1045 class ChoiceNode: public RegExpNode {
1046 public:
ChoiceNode(int expected_size,Zone * zone)1047 explicit ChoiceNode(int expected_size, Zone* zone)
1048 : RegExpNode(zone),
1049 alternatives_(new(zone)
1050 ZoneList<GuardedAlternative>(expected_size, zone)),
1051 table_(NULL),
1052 not_at_start_(false),
1053 being_calculated_(false) { }
1054 virtual void Accept(NodeVisitor* visitor);
AddAlternative(GuardedAlternative node)1055 void AddAlternative(GuardedAlternative node) {
1056 alternatives()->Add(node, zone());
1057 }
alternatives()1058 ZoneList<GuardedAlternative>* alternatives() { return alternatives_; }
1059 DispatchTable* GetTable(bool ignore_case);
1060 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1061 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1062 int EatsAtLeastHelper(int still_to_find,
1063 int budget,
1064 RegExpNode* ignore_this_node,
1065 bool not_at_start);
1066 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1067 RegExpCompiler* compiler,
1068 int characters_filled_in,
1069 bool not_at_start);
1070 virtual void FillInBMInfo(int offset,
1071 int budget,
1072 BoyerMooreLookahead* bm,
1073 bool not_at_start);
1074
being_calculated()1075 bool being_calculated() { return being_calculated_; }
not_at_start()1076 bool not_at_start() { return not_at_start_; }
set_not_at_start()1077 void set_not_at_start() { not_at_start_ = true; }
set_being_calculated(bool b)1078 void set_being_calculated(bool b) { being_calculated_ = b; }
try_to_emit_quick_check_for_alternative(int i)1079 virtual bool try_to_emit_quick_check_for_alternative(int i) { return true; }
1080 virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
1081
1082 protected:
1083 int GreedyLoopTextLengthForAlternative(GuardedAlternative* alternative);
1084 ZoneList<GuardedAlternative>* alternatives_;
1085
1086 private:
1087 friend class DispatchTableConstructor;
1088 friend class Analysis;
1089 void GenerateGuard(RegExpMacroAssembler* macro_assembler,
1090 Guard* guard,
1091 Trace* trace);
1092 int CalculatePreloadCharacters(RegExpCompiler* compiler, int eats_at_least);
1093 void EmitOutOfLineContinuation(RegExpCompiler* compiler,
1094 Trace* trace,
1095 GuardedAlternative alternative,
1096 AlternativeGeneration* alt_gen,
1097 int preload_characters,
1098 bool next_expects_preload);
1099 DispatchTable* table_;
1100 // If true, this node is never checked at the start of the input.
1101 // Allows a new trace to start with at_start() set to false.
1102 bool not_at_start_;
1103 bool being_calculated_;
1104 };
1105
1106
1107 class NegativeLookaheadChoiceNode: public ChoiceNode {
1108 public:
NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,GuardedAlternative then_do_this,Zone * zone)1109 explicit NegativeLookaheadChoiceNode(GuardedAlternative this_must_fail,
1110 GuardedAlternative then_do_this,
1111 Zone* zone)
1112 : ChoiceNode(2, zone) {
1113 AddAlternative(this_must_fail);
1114 AddAlternative(then_do_this);
1115 }
1116 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1117 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1118 RegExpCompiler* compiler,
1119 int characters_filled_in,
1120 bool not_at_start);
FillInBMInfo(int offset,int budget,BoyerMooreLookahead * bm,bool not_at_start)1121 virtual void FillInBMInfo(int offset,
1122 int budget,
1123 BoyerMooreLookahead* bm,
1124 bool not_at_start) {
1125 alternatives_->at(1).node()->FillInBMInfo(
1126 offset, budget - 1, bm, not_at_start);
1127 if (offset == 0) set_bm_info(not_at_start, bm);
1128 }
1129 // For a negative lookahead we don't emit the quick check for the
1130 // alternative that is expected to fail. This is because quick check code
1131 // starts by loading enough characters for the alternative that takes fewest
1132 // characters, but on a negative lookahead the negative branch did not take
1133 // part in that calculation (EatsAtLeast) so the assumptions don't hold.
try_to_emit_quick_check_for_alternative(int i)1134 virtual bool try_to_emit_quick_check_for_alternative(int i) { return i != 0; }
1135 virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
1136 };
1137
1138
1139 class LoopChoiceNode: public ChoiceNode {
1140 public:
LoopChoiceNode(bool body_can_be_zero_length,Zone * zone)1141 explicit LoopChoiceNode(bool body_can_be_zero_length, Zone* zone)
1142 : ChoiceNode(2, zone),
1143 loop_node_(NULL),
1144 continue_node_(NULL),
1145 body_can_be_zero_length_(body_can_be_zero_length) { }
1146 void AddLoopAlternative(GuardedAlternative alt);
1147 void AddContinueAlternative(GuardedAlternative alt);
1148 virtual void Emit(RegExpCompiler* compiler, Trace* trace);
1149 virtual int EatsAtLeast(int still_to_find, int budget, bool not_at_start);
1150 virtual void GetQuickCheckDetails(QuickCheckDetails* details,
1151 RegExpCompiler* compiler,
1152 int characters_filled_in,
1153 bool not_at_start);
1154 virtual void FillInBMInfo(int offset,
1155 int budget,
1156 BoyerMooreLookahead* bm,
1157 bool not_at_start);
loop_node()1158 RegExpNode* loop_node() { return loop_node_; }
continue_node()1159 RegExpNode* continue_node() { return continue_node_; }
body_can_be_zero_length()1160 bool body_can_be_zero_length() { return body_can_be_zero_length_; }
1161 virtual void Accept(NodeVisitor* visitor);
1162 virtual RegExpNode* FilterASCII(int depth, bool ignore_case);
1163
1164 private:
1165 // AddAlternative is made private for loop nodes because alternatives
1166 // should not be added freely, we need to keep track of which node
1167 // goes back to the node itself.
AddAlternative(GuardedAlternative node)1168 void AddAlternative(GuardedAlternative node) {
1169 ChoiceNode::AddAlternative(node);
1170 }
1171
1172 RegExpNode* loop_node_;
1173 RegExpNode* continue_node_;
1174 bool body_can_be_zero_length_;
1175 };
1176
1177
1178 // Improve the speed that we scan for an initial point where a non-anchored
1179 // regexp can match by using a Boyer-Moore-like table. This is done by
1180 // identifying non-greedy non-capturing loops in the nodes that eat any
1181 // character one at a time. For example in the middle of the regexp
1182 // /foo[\s\S]*?bar/ we find such a loop. There is also such a loop implicitly
1183 // inserted at the start of any non-anchored regexp.
1184 //
1185 // When we have found such a loop we look ahead in the nodes to find the set of
1186 // characters that can come at given distances. For example for the regexp
1187 // /.?foo/ we know that there are at least 3 characters ahead of us, and the
1188 // sets of characters that can occur are [any, [f, o], [o]]. We find a range in
1189 // the lookahead info where the set of characters is reasonably constrained. In
1190 // our example this is from index 1 to 2 (0 is not constrained). We can now
1191 // look 3 characters ahead and if we don't find one of [f, o] (the union of
1192 // [f, o] and [o]) then we can skip forwards by the range size (in this case 2).
1193 //
1194 // For Unicode input strings we do the same, but modulo 128.
1195 //
1196 // We also look at the first string fed to the regexp and use that to get a hint
1197 // of the character frequencies in the inputs. This affects the assessment of
1198 // whether the set of characters is 'reasonably constrained'.
1199 //
1200 // We also have another lookahead mechanism (called quick check in the code),
1201 // which uses a wide load of multiple characters followed by a mask and compare
1202 // to determine whether a match is possible at this point.
1203 enum ContainedInLattice {
1204 kNotYet = 0,
1205 kLatticeIn = 1,
1206 kLatticeOut = 2,
1207 kLatticeUnknown = 3 // Can also mean both in and out.
1208 };
1209
1210
Combine(ContainedInLattice a,ContainedInLattice b)1211 inline ContainedInLattice Combine(ContainedInLattice a, ContainedInLattice b) {
1212 return static_cast<ContainedInLattice>(a | b);
1213 }
1214
1215
1216 ContainedInLattice AddRange(ContainedInLattice a,
1217 const int* ranges,
1218 int ranges_size,
1219 Interval new_range);
1220
1221
1222 class BoyerMoorePositionInfo : public ZoneObject {
1223 public:
BoyerMoorePositionInfo(Zone * zone)1224 explicit BoyerMoorePositionInfo(Zone* zone)
1225 : map_(new(zone) ZoneList<bool>(kMapSize, zone)),
1226 map_count_(0),
1227 w_(kNotYet),
1228 s_(kNotYet),
1229 d_(kNotYet),
1230 surrogate_(kNotYet) {
1231 for (int i = 0; i < kMapSize; i++) {
1232 map_->Add(false, zone);
1233 }
1234 }
1235
at(int i)1236 bool& at(int i) { return map_->at(i); }
1237
1238 static const int kMapSize = 128;
1239 static const int kMask = kMapSize - 1;
1240
map_count()1241 int map_count() const { return map_count_; }
1242
1243 void Set(int character);
1244 void SetInterval(const Interval& interval);
1245 void SetAll();
is_non_word()1246 bool is_non_word() { return w_ == kLatticeOut; }
is_word()1247 bool is_word() { return w_ == kLatticeIn; }
1248
1249 private:
1250 ZoneList<bool>* map_;
1251 int map_count_; // Number of set bits in the map.
1252 ContainedInLattice w_; // The \w character class.
1253 ContainedInLattice s_; // The \s character class.
1254 ContainedInLattice d_; // The \d character class.
1255 ContainedInLattice surrogate_; // Surrogate UTF-16 code units.
1256 };
1257
1258
1259 class BoyerMooreLookahead : public ZoneObject {
1260 public:
1261 BoyerMooreLookahead(int length, RegExpCompiler* compiler, Zone* zone);
1262
length()1263 int length() { return length_; }
max_char()1264 int max_char() { return max_char_; }
compiler()1265 RegExpCompiler* compiler() { return compiler_; }
1266
Count(int map_number)1267 int Count(int map_number) {
1268 return bitmaps_->at(map_number)->map_count();
1269 }
1270
at(int i)1271 BoyerMoorePositionInfo* at(int i) { return bitmaps_->at(i); }
1272
Set(int map_number,int character)1273 void Set(int map_number, int character) {
1274 if (character > max_char_) return;
1275 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1276 info->Set(character);
1277 }
1278
SetInterval(int map_number,const Interval & interval)1279 void SetInterval(int map_number, const Interval& interval) {
1280 if (interval.from() > max_char_) return;
1281 BoyerMoorePositionInfo* info = bitmaps_->at(map_number);
1282 if (interval.to() > max_char_) {
1283 info->SetInterval(Interval(interval.from(), max_char_));
1284 } else {
1285 info->SetInterval(interval);
1286 }
1287 }
1288
SetAll(int map_number)1289 void SetAll(int map_number) {
1290 bitmaps_->at(map_number)->SetAll();
1291 }
1292
SetRest(int from_map)1293 void SetRest(int from_map) {
1294 for (int i = from_map; i < length_; i++) SetAll(i);
1295 }
1296 bool EmitSkipInstructions(RegExpMacroAssembler* masm);
1297
1298 private:
1299 // This is the value obtained by EatsAtLeast. If we do not have at least this
1300 // many characters left in the sample string then the match is bound to fail.
1301 // Therefore it is OK to read a character this far ahead of the current match
1302 // point.
1303 int length_;
1304 RegExpCompiler* compiler_;
1305 // 0x7f for ASCII, 0xffff for UTF-16.
1306 int max_char_;
1307 ZoneList<BoyerMoorePositionInfo*>* bitmaps_;
1308
1309 int GetSkipTable(int min_lookahead,
1310 int max_lookahead,
1311 Handle<ByteArray> boolean_skip_table);
1312 bool FindWorthwhileInterval(int* from, int* to);
1313 int FindBestInterval(
1314 int max_number_of_chars, int old_biggest_points, int* from, int* to);
1315 };
1316
1317
1318 // There are many ways to generate code for a node. This class encapsulates
1319 // the current way we should be generating. In other words it encapsulates
1320 // the current state of the code generator. The effect of this is that we
1321 // generate code for paths that the matcher can take through the regular
1322 // expression. A given node in the regexp can be code-generated several times
1323 // as it can be part of several traces. For example for the regexp:
1324 // /foo(bar|ip)baz/ the code to match baz will be generated twice, once as part
1325 // of the foo-bar-baz trace and once as part of the foo-ip-baz trace. The code
1326 // to match foo is generated only once (the traces have a common prefix). The
1327 // code to store the capture is deferred and generated (twice) after the places
1328 // where baz has been matched.
1329 class Trace {
1330 public:
1331 // A value for a property that is either known to be true, know to be false,
1332 // or not known.
1333 enum TriBool {
1334 UNKNOWN = -1, FALSE_VALUE = 0, TRUE_VALUE = 1
1335 };
1336
1337 class DeferredAction {
1338 public:
DeferredAction(ActionNode::ActionType action_type,int reg)1339 DeferredAction(ActionNode::ActionType action_type, int reg)
1340 : action_type_(action_type), reg_(reg), next_(NULL) { }
next()1341 DeferredAction* next() { return next_; }
1342 bool Mentions(int reg);
reg()1343 int reg() { return reg_; }
action_type()1344 ActionNode::ActionType action_type() { return action_type_; }
1345 private:
1346 ActionNode::ActionType action_type_;
1347 int reg_;
1348 DeferredAction* next_;
1349 friend class Trace;
1350 };
1351
1352 class DeferredCapture : public DeferredAction {
1353 public:
DeferredCapture(int reg,bool is_capture,Trace * trace)1354 DeferredCapture(int reg, bool is_capture, Trace* trace)
1355 : DeferredAction(ActionNode::STORE_POSITION, reg),
1356 cp_offset_(trace->cp_offset()),
1357 is_capture_(is_capture) { }
cp_offset()1358 int cp_offset() { return cp_offset_; }
is_capture()1359 bool is_capture() { return is_capture_; }
1360 private:
1361 int cp_offset_;
1362 bool is_capture_;
set_cp_offset(int cp_offset)1363 void set_cp_offset(int cp_offset) { cp_offset_ = cp_offset; }
1364 };
1365
1366 class DeferredSetRegister : public DeferredAction {
1367 public:
DeferredSetRegister(int reg,int value)1368 DeferredSetRegister(int reg, int value)
1369 : DeferredAction(ActionNode::SET_REGISTER, reg),
1370 value_(value) { }
value()1371 int value() { return value_; }
1372 private:
1373 int value_;
1374 };
1375
1376 class DeferredClearCaptures : public DeferredAction {
1377 public:
DeferredClearCaptures(Interval range)1378 explicit DeferredClearCaptures(Interval range)
1379 : DeferredAction(ActionNode::CLEAR_CAPTURES, -1),
1380 range_(range) { }
range()1381 Interval range() { return range_; }
1382 private:
1383 Interval range_;
1384 };
1385
1386 class DeferredIncrementRegister : public DeferredAction {
1387 public:
DeferredIncrementRegister(int reg)1388 explicit DeferredIncrementRegister(int reg)
1389 : DeferredAction(ActionNode::INCREMENT_REGISTER, reg) { }
1390 };
1391
Trace()1392 Trace()
1393 : cp_offset_(0),
1394 actions_(NULL),
1395 backtrack_(NULL),
1396 stop_node_(NULL),
1397 loop_label_(NULL),
1398 characters_preloaded_(0),
1399 bound_checked_up_to_(0),
1400 flush_budget_(100),
1401 at_start_(UNKNOWN) { }
1402
1403 // End the trace. This involves flushing the deferred actions in the trace
1404 // and pushing a backtrack location onto the backtrack stack. Once this is
1405 // done we can start a new trace or go to one that has already been
1406 // generated.
1407 void Flush(RegExpCompiler* compiler, RegExpNode* successor);
cp_offset()1408 int cp_offset() { return cp_offset_; }
actions()1409 DeferredAction* actions() { return actions_; }
1410 // A trivial trace is one that has no deferred actions or other state that
1411 // affects the assumptions used when generating code. There is no recorded
1412 // backtrack location in a trivial trace, so with a trivial trace we will
1413 // generate code that, on a failure to match, gets the backtrack location
1414 // from the backtrack stack rather than using a direct jump instruction. We
1415 // always start code generation with a trivial trace and non-trivial traces
1416 // are created as we emit code for nodes or add to the list of deferred
1417 // actions in the trace. The location of the code generated for a node using
1418 // a trivial trace is recorded in a label in the node so that gotos can be
1419 // generated to that code.
is_trivial()1420 bool is_trivial() {
1421 return backtrack_ == NULL &&
1422 actions_ == NULL &&
1423 cp_offset_ == 0 &&
1424 characters_preloaded_ == 0 &&
1425 bound_checked_up_to_ == 0 &&
1426 quick_check_performed_.characters() == 0 &&
1427 at_start_ == UNKNOWN;
1428 }
at_start()1429 TriBool at_start() { return at_start_; }
set_at_start(bool at_start)1430 void set_at_start(bool at_start) {
1431 at_start_ = at_start ? TRUE_VALUE : FALSE_VALUE;
1432 }
backtrack()1433 Label* backtrack() { return backtrack_; }
loop_label()1434 Label* loop_label() { return loop_label_; }
stop_node()1435 RegExpNode* stop_node() { return stop_node_; }
characters_preloaded()1436 int characters_preloaded() { return characters_preloaded_; }
bound_checked_up_to()1437 int bound_checked_up_to() { return bound_checked_up_to_; }
flush_budget()1438 int flush_budget() { return flush_budget_; }
quick_check_performed()1439 QuickCheckDetails* quick_check_performed() { return &quick_check_performed_; }
1440 bool mentions_reg(int reg);
1441 // Returns true if a deferred position store exists to the specified
1442 // register and stores the offset in the out-parameter. Otherwise
1443 // returns false.
1444 bool GetStoredPosition(int reg, int* cp_offset);
1445 // These set methods and AdvanceCurrentPositionInTrace should be used only on
1446 // new traces - the intention is that traces are immutable after creation.
add_action(DeferredAction * new_action)1447 void add_action(DeferredAction* new_action) {
1448 ASSERT(new_action->next_ == NULL);
1449 new_action->next_ = actions_;
1450 actions_ = new_action;
1451 }
set_backtrack(Label * backtrack)1452 void set_backtrack(Label* backtrack) { backtrack_ = backtrack; }
set_stop_node(RegExpNode * node)1453 void set_stop_node(RegExpNode* node) { stop_node_ = node; }
set_loop_label(Label * label)1454 void set_loop_label(Label* label) { loop_label_ = label; }
set_characters_preloaded(int count)1455 void set_characters_preloaded(int count) { characters_preloaded_ = count; }
set_bound_checked_up_to(int to)1456 void set_bound_checked_up_to(int to) { bound_checked_up_to_ = to; }
set_flush_budget(int to)1457 void set_flush_budget(int to) { flush_budget_ = to; }
set_quick_check_performed(QuickCheckDetails * d)1458 void set_quick_check_performed(QuickCheckDetails* d) {
1459 quick_check_performed_ = *d;
1460 }
1461 void InvalidateCurrentCharacter();
1462 void AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler);
1463
1464 private:
1465 int FindAffectedRegisters(OutSet* affected_registers, Zone* zone);
1466 void PerformDeferredActions(RegExpMacroAssembler* macro,
1467 int max_register,
1468 const OutSet& affected_registers,
1469 OutSet* registers_to_pop,
1470 OutSet* registers_to_clear,
1471 Zone* zone);
1472 void RestoreAffectedRegisters(RegExpMacroAssembler* macro,
1473 int max_register,
1474 const OutSet& registers_to_pop,
1475 const OutSet& registers_to_clear);
1476 int cp_offset_;
1477 DeferredAction* actions_;
1478 Label* backtrack_;
1479 RegExpNode* stop_node_;
1480 Label* loop_label_;
1481 int characters_preloaded_;
1482 int bound_checked_up_to_;
1483 QuickCheckDetails quick_check_performed_;
1484 int flush_budget_;
1485 TriBool at_start_;
1486 };
1487
1488
1489 class NodeVisitor {
1490 public:
~NodeVisitor()1491 virtual ~NodeVisitor() { }
1492 #define DECLARE_VISIT(Type) \
1493 virtual void Visit##Type(Type##Node* that) = 0;
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1494 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1495 #undef DECLARE_VISIT
1496 virtual void VisitLoopChoice(LoopChoiceNode* that) { VisitChoice(that); }
1497 };
1498
1499
1500 // Node visitor used to add the start set of the alternatives to the
1501 // dispatch table of a choice node.
1502 class DispatchTableConstructor: public NodeVisitor {
1503 public:
DispatchTableConstructor(DispatchTable * table,bool ignore_case,Zone * zone)1504 DispatchTableConstructor(DispatchTable* table, bool ignore_case,
1505 Zone* zone)
1506 : table_(table),
1507 choice_index_(-1),
1508 ignore_case_(ignore_case),
1509 zone_(zone) { }
1510
1511 void BuildTable(ChoiceNode* node);
1512
AddRange(CharacterRange range)1513 void AddRange(CharacterRange range) {
1514 table()->AddRange(range, choice_index_, zone_);
1515 }
1516
1517 void AddInverse(ZoneList<CharacterRange>* ranges);
1518
1519 #define DECLARE_VISIT(Type) \
1520 virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)1521 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1522 #undef DECLARE_VISIT
1523
1524 DispatchTable* table() { return table_; }
set_choice_index(int value)1525 void set_choice_index(int value) { choice_index_ = value; }
1526
1527 protected:
1528 DispatchTable* table_;
1529 int choice_index_;
1530 bool ignore_case_;
1531 Zone* zone_;
1532 };
1533
1534
1535 // Assertion propagation moves information about assertions such as
1536 // \b to the affected nodes. For instance, in /.\b./ information must
1537 // be propagated to the first '.' that whatever follows needs to know
1538 // if it matched a word or a non-word, and to the second '.' that it
1539 // has to check if it succeeds a word or non-word. In this case the
1540 // result will be something like:
1541 //
1542 // +-------+ +------------+
1543 // | . | | . |
1544 // +-------+ ---> +------------+
1545 // | word? | | check word |
1546 // +-------+ +------------+
1547 class Analysis: public NodeVisitor {
1548 public:
Analysis(bool ignore_case,bool is_ascii)1549 Analysis(bool ignore_case, bool is_ascii)
1550 : ignore_case_(ignore_case),
1551 is_ascii_(is_ascii),
1552 error_message_(NULL) { }
1553 void EnsureAnalyzed(RegExpNode* node);
1554
1555 #define DECLARE_VISIT(Type) \
1556 virtual void Visit##Type(Type##Node* that);
1557 FOR_EACH_NODE_TYPE(DECLARE_VISIT)
1558 #undef DECLARE_VISIT
1559 virtual void VisitLoopChoice(LoopChoiceNode* that);
1560
has_failed()1561 bool has_failed() { return error_message_ != NULL; }
error_message()1562 const char* error_message() {
1563 ASSERT(error_message_ != NULL);
1564 return error_message_;
1565 }
fail(const char * error_message)1566 void fail(const char* error_message) {
1567 error_message_ = error_message;
1568 }
1569
1570 private:
1571 bool ignore_case_;
1572 bool is_ascii_;
1573 const char* error_message_;
1574
1575 DISALLOW_IMPLICIT_CONSTRUCTORS(Analysis);
1576 };
1577
1578
1579 struct RegExpCompileData {
RegExpCompileDataRegExpCompileData1580 RegExpCompileData()
1581 : tree(NULL),
1582 node(NULL),
1583 simple(true),
1584 contains_anchor(false),
1585 capture_count(0) { }
1586 RegExpTree* tree;
1587 RegExpNode* node;
1588 bool simple;
1589 bool contains_anchor;
1590 Handle<String> error;
1591 int capture_count;
1592 };
1593
1594
1595 class RegExpEngine: public AllStatic {
1596 public:
1597 struct CompilationResult {
CompilationResultCompilationResult1598 CompilationResult(Isolate* isolate, const char* error_message)
1599 : error_message(error_message),
1600 code(isolate->heap()->the_hole_value()),
1601 num_registers(0) {}
CompilationResultCompilationResult1602 CompilationResult(Object* code, int registers)
1603 : error_message(NULL),
1604 code(code),
1605 num_registers(registers) {}
1606 const char* error_message;
1607 Object* code;
1608 int num_registers;
1609 };
1610
1611 static CompilationResult Compile(RegExpCompileData* input,
1612 bool ignore_case,
1613 bool global,
1614 bool multiline,
1615 Handle<String> pattern,
1616 Handle<String> sample_subject,
1617 bool is_ascii, Zone* zone);
1618
1619 static void DotPrint(const char* label, RegExpNode* node, bool ignore_case);
1620 };
1621
1622
1623 } } // namespace v8::internal
1624
1625 #endif // V8_JSREGEXP_H_
1626