• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "compiler_internals.h"
18 #include "global_value_numbering.h"
19 #include "local_value_numbering.h"
20 #include "dataflow_iterator-inl.h"
21 #include "dex/global_value_numbering.h"
22 #include "dex/quick/dex_file_method_inliner.h"
23 #include "dex/quick/dex_file_to_method_inliner_map.h"
24 #include "utils/scoped_arena_containers.h"
25 
26 namespace art {
27 
Predecessors(BasicBlock * bb)28 static unsigned int Predecessors(BasicBlock* bb) {
29   return bb->predecessors->Size();
30 }
31 
32 /* Setup a constant value for opcodes thare have the DF_SETS_CONST attribute */
SetConstant(int32_t ssa_reg,int value)33 void MIRGraph::SetConstant(int32_t ssa_reg, int value) {
34   is_constant_v_->SetBit(ssa_reg);
35   constant_values_[ssa_reg] = value;
36 }
37 
SetConstantWide(int ssa_reg,int64_t value)38 void MIRGraph::SetConstantWide(int ssa_reg, int64_t value) {
39   is_constant_v_->SetBit(ssa_reg);
40   is_constant_v_->SetBit(ssa_reg + 1);
41   constant_values_[ssa_reg] = Low32Bits(value);
42   constant_values_[ssa_reg + 1] = High32Bits(value);
43 }
44 
DoConstantPropagation(BasicBlock * bb)45 void MIRGraph::DoConstantPropagation(BasicBlock* bb) {
46   MIR* mir;
47 
48   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
49     // Skip pass if BB has MIR without SSA representation.
50     if (mir->ssa_rep == nullptr) {
51        return;
52     }
53 
54     uint64_t df_attributes = GetDataFlowAttributes(mir);
55 
56     MIR::DecodedInstruction* d_insn = &mir->dalvikInsn;
57 
58     if (!(df_attributes & DF_HAS_DEFS)) continue;
59 
60     /* Handle instructions that set up constants directly */
61     if (df_attributes & DF_SETS_CONST) {
62       if (df_attributes & DF_DA) {
63         int32_t vB = static_cast<int32_t>(d_insn->vB);
64         switch (d_insn->opcode) {
65           case Instruction::CONST_4:
66           case Instruction::CONST_16:
67           case Instruction::CONST:
68             SetConstant(mir->ssa_rep->defs[0], vB);
69             break;
70           case Instruction::CONST_HIGH16:
71             SetConstant(mir->ssa_rep->defs[0], vB << 16);
72             break;
73           case Instruction::CONST_WIDE_16:
74           case Instruction::CONST_WIDE_32:
75             SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB));
76             break;
77           case Instruction::CONST_WIDE:
78             SetConstantWide(mir->ssa_rep->defs[0], d_insn->vB_wide);
79             break;
80           case Instruction::CONST_WIDE_HIGH16:
81             SetConstantWide(mir->ssa_rep->defs[0], static_cast<int64_t>(vB) << 48);
82             break;
83           default:
84             break;
85         }
86       }
87       /* Handle instructions that set up constants directly */
88     } else if (df_attributes & DF_IS_MOVE) {
89       int i;
90 
91       for (i = 0; i < mir->ssa_rep->num_uses; i++) {
92         if (!is_constant_v_->IsBitSet(mir->ssa_rep->uses[i])) break;
93       }
94       /* Move a register holding a constant to another register */
95       if (i == mir->ssa_rep->num_uses) {
96         SetConstant(mir->ssa_rep->defs[0], constant_values_[mir->ssa_rep->uses[0]]);
97         if (df_attributes & DF_A_WIDE) {
98           SetConstant(mir->ssa_rep->defs[1], constant_values_[mir->ssa_rep->uses[1]]);
99         }
100       }
101     }
102   }
103   /* TODO: implement code to handle arithmetic operations */
104 }
105 
106 /* Advance to next strictly dominated MIR node in an extended basic block */
AdvanceMIR(BasicBlock ** p_bb,MIR * mir)107 MIR* MIRGraph::AdvanceMIR(BasicBlock** p_bb, MIR* mir) {
108   BasicBlock* bb = *p_bb;
109   if (mir != NULL) {
110     mir = mir->next;
111     if (mir == NULL) {
112       bb = GetBasicBlock(bb->fall_through);
113       if ((bb == NULL) || Predecessors(bb) != 1) {
114         mir = NULL;
115       } else {
116       *p_bb = bb;
117       mir = bb->first_mir_insn;
118       }
119     }
120   }
121   return mir;
122 }
123 
124 /*
125  * To be used at an invoke mir.  If the logically next mir node represents
126  * a move-result, return it.  Else, return NULL.  If a move-result exists,
127  * it is required to immediately follow the invoke with no intervening
128  * opcodes or incoming arcs.  However, if the result of the invoke is not
129  * used, a move-result may not be present.
130  */
FindMoveResult(BasicBlock * bb,MIR * mir)131 MIR* MIRGraph::FindMoveResult(BasicBlock* bb, MIR* mir) {
132   BasicBlock* tbb = bb;
133   mir = AdvanceMIR(&tbb, mir);
134   while (mir != NULL) {
135     if ((mir->dalvikInsn.opcode == Instruction::MOVE_RESULT) ||
136         (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) ||
137         (mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_WIDE)) {
138       break;
139     }
140     // Keep going if pseudo op, otherwise terminate
141     if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
142       mir = AdvanceMIR(&tbb, mir);
143     } else {
144       mir = NULL;
145     }
146   }
147   return mir;
148 }
149 
NextDominatedBlock(BasicBlock * bb)150 BasicBlock* MIRGraph::NextDominatedBlock(BasicBlock* bb) {
151   if (bb->block_type == kDead) {
152     return NULL;
153   }
154   DCHECK((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
155       || (bb->block_type == kExitBlock));
156   BasicBlock* bb_taken = GetBasicBlock(bb->taken);
157   BasicBlock* bb_fall_through = GetBasicBlock(bb->fall_through);
158   if (((bb_fall_through == NULL) && (bb_taken != NULL)) &&
159       ((bb_taken->block_type == kDalvikByteCode) || (bb_taken->block_type == kExitBlock))) {
160     // Follow simple unconditional branches.
161     bb = bb_taken;
162   } else {
163     // Follow simple fallthrough
164     bb = (bb_taken != NULL) ? NULL : bb_fall_through;
165   }
166   if (bb == NULL || (Predecessors(bb) != 1)) {
167     return NULL;
168   }
169   DCHECK((bb->block_type == kDalvikByteCode) || (bb->block_type == kExitBlock));
170   return bb;
171 }
172 
FindPhi(BasicBlock * bb,int ssa_name)173 static MIR* FindPhi(BasicBlock* bb, int ssa_name) {
174   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
175     if (static_cast<int>(mir->dalvikInsn.opcode) == kMirOpPhi) {
176       for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
177         if (mir->ssa_rep->uses[i] == ssa_name) {
178           return mir;
179         }
180       }
181     }
182   }
183   return NULL;
184 }
185 
SelectKind(MIR * mir)186 static SelectInstructionKind SelectKind(MIR* mir) {
187   switch (mir->dalvikInsn.opcode) {
188     case Instruction::MOVE:
189     case Instruction::MOVE_OBJECT:
190     case Instruction::MOVE_16:
191     case Instruction::MOVE_OBJECT_16:
192     case Instruction::MOVE_FROM16:
193     case Instruction::MOVE_OBJECT_FROM16:
194       return kSelectMove;
195     case Instruction::CONST:
196     case Instruction::CONST_4:
197     case Instruction::CONST_16:
198       return kSelectConst;
199     case Instruction::GOTO:
200     case Instruction::GOTO_16:
201     case Instruction::GOTO_32:
202       return kSelectGoto;
203     default:
204       return kSelectNone;
205   }
206 }
207 
208 static constexpr ConditionCode kIfCcZConditionCodes[] = {
209     kCondEq, kCondNe, kCondLt, kCondGe, kCondGt, kCondLe
210 };
211 
212 COMPILE_ASSERT(arraysize(kIfCcZConditionCodes) == Instruction::IF_LEZ - Instruction::IF_EQZ + 1,
213                if_ccz_ccodes_size1);
214 
IsInstructionIfCcZ(Instruction::Code opcode)215 static constexpr bool IsInstructionIfCcZ(Instruction::Code opcode) {
216   return Instruction::IF_EQZ <= opcode && opcode <= Instruction::IF_LEZ;
217 }
218 
ConditionCodeForIfCcZ(Instruction::Code opcode)219 static constexpr ConditionCode ConditionCodeForIfCcZ(Instruction::Code opcode) {
220   return kIfCcZConditionCodes[opcode - Instruction::IF_EQZ];
221 }
222 
223 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_EQZ) == kCondEq, check_if_eqz_ccode);
224 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_NEZ) == kCondNe, check_if_nez_ccode);
225 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LTZ) == kCondLt, check_if_ltz_ccode);
226 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GEZ) == kCondGe, check_if_gez_ccode);
227 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_GTZ) == kCondGt, check_if_gtz_ccode);
228 COMPILE_ASSERT(ConditionCodeForIfCcZ(Instruction::IF_LEZ) == kCondLe, check_if_lez_ccode);
229 
GetSSAUseCount(int s_reg)230 int MIRGraph::GetSSAUseCount(int s_reg) {
231   return raw_use_counts_.Get(s_reg);
232 }
233 
GetNumAvailableNonSpecialCompilerTemps()234 size_t MIRGraph::GetNumAvailableNonSpecialCompilerTemps() {
235   if (num_non_special_compiler_temps_ >= max_available_non_special_compiler_temps_) {
236     return 0;
237   } else {
238     return max_available_non_special_compiler_temps_ - num_non_special_compiler_temps_;
239   }
240 }
241 
242 
243 // FIXME - will probably need to revisit all uses of this, as type not defined.
244 static const RegLocation temp_loc = {kLocCompilerTemp,
245                                      0, 1 /*defined*/, 0, 0, 0, 0, 0, 1 /*home*/,
246                                      RegStorage(), INVALID_SREG, INVALID_SREG};
247 
GetNewCompilerTemp(CompilerTempType ct_type,bool wide)248 CompilerTemp* MIRGraph::GetNewCompilerTemp(CompilerTempType ct_type, bool wide) {
249   // There is a limit to the number of non-special temps so check to make sure it wasn't exceeded.
250   if (ct_type == kCompilerTempVR) {
251     size_t available_temps = GetNumAvailableNonSpecialCompilerTemps();
252     if (available_temps <= 0 || (available_temps <= 1 && wide)) {
253       return 0;
254     }
255   }
256 
257   CompilerTemp *compiler_temp = static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp),
258                                                             kArenaAllocRegAlloc));
259 
260   // Create the type of temp requested. Special temps need special handling because
261   // they have a specific virtual register assignment.
262   if (ct_type == kCompilerTempSpecialMethodPtr) {
263     DCHECK_EQ(wide, false);
264     compiler_temp->v_reg = static_cast<int>(kVRegMethodPtrBaseReg);
265     compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
266 
267     // The MIR graph keeps track of the sreg for method pointer specially, so record that now.
268     method_sreg_ = compiler_temp->s_reg_low;
269   } else {
270     DCHECK_EQ(ct_type, kCompilerTempVR);
271 
272     // The new non-special compiler temp must receive a unique v_reg with a negative value.
273     compiler_temp->v_reg = static_cast<int>(kVRegNonSpecialTempBaseReg) -
274         num_non_special_compiler_temps_;
275     compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
276     num_non_special_compiler_temps_++;
277 
278     if (wide) {
279       // Create a new CompilerTemp for the high part.
280       CompilerTemp *compiler_temp_high =
281           static_cast<CompilerTemp *>(arena_->Alloc(sizeof(CompilerTemp), kArenaAllocRegAlloc));
282       compiler_temp_high->v_reg = compiler_temp->v_reg;
283       compiler_temp_high->s_reg_low = compiler_temp->s_reg_low;
284       compiler_temps_.Insert(compiler_temp_high);
285 
286       // Ensure that the two registers are consecutive. Since the virtual registers used for temps
287       // grow in a negative fashion, we need the smaller to refer to the low part. Thus, we
288       // redefine the v_reg and s_reg_low.
289       compiler_temp->v_reg--;
290       int ssa_reg_high = compiler_temp->s_reg_low;
291       compiler_temp->s_reg_low = AddNewSReg(compiler_temp->v_reg);
292       int ssa_reg_low = compiler_temp->s_reg_low;
293 
294       // If needed initialize the register location for the high part.
295       // The low part is handled later in this method on a common path.
296       if (reg_location_ != nullptr) {
297         reg_location_[ssa_reg_high] = temp_loc;
298         reg_location_[ssa_reg_high].high_word = 1;
299         reg_location_[ssa_reg_high].s_reg_low = ssa_reg_low;
300         reg_location_[ssa_reg_high].wide = true;
301       }
302 
303       num_non_special_compiler_temps_++;
304     }
305   }
306 
307   // Have we already allocated the register locations?
308   if (reg_location_ != nullptr) {
309     int ssa_reg_low = compiler_temp->s_reg_low;
310     reg_location_[ssa_reg_low] = temp_loc;
311     reg_location_[ssa_reg_low].s_reg_low = ssa_reg_low;
312     reg_location_[ssa_reg_low].wide = wide;
313   }
314 
315   compiler_temps_.Insert(compiler_temp);
316   return compiler_temp;
317 }
318 
319 /* Do some MIR-level extended basic block optimizations */
BasicBlockOpt(BasicBlock * bb)320 bool MIRGraph::BasicBlockOpt(BasicBlock* bb) {
321   if (bb->block_type == kDead) {
322     return true;
323   }
324   // Don't do a separate LVN if we did the GVN.
325   bool use_lvn = bb->use_lvn && (cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u;
326   std::unique_ptr<ScopedArenaAllocator> allocator;
327   std::unique_ptr<GlobalValueNumbering> global_valnum;
328   std::unique_ptr<LocalValueNumbering> local_valnum;
329   if (use_lvn) {
330     allocator.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
331     global_valnum.reset(new (allocator.get()) GlobalValueNumbering(cu_, allocator.get()));
332     local_valnum.reset(new (allocator.get()) LocalValueNumbering(global_valnum.get(), bb->id,
333                                                                  allocator.get()));
334   }
335   while (bb != NULL) {
336     for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
337       // TUNING: use the returned value number for CSE.
338       if (use_lvn) {
339         local_valnum->GetValueNumber(mir);
340       }
341       // Look for interesting opcodes, skip otherwise
342       Instruction::Code opcode = mir->dalvikInsn.opcode;
343       switch (opcode) {
344         case Instruction::CMPL_FLOAT:
345         case Instruction::CMPL_DOUBLE:
346         case Instruction::CMPG_FLOAT:
347         case Instruction::CMPG_DOUBLE:
348         case Instruction::CMP_LONG:
349           if ((cu_->disable_opt & (1 << kBranchFusing)) != 0) {
350             // Bitcode doesn't allow this optimization.
351             break;
352           }
353           if (mir->next != NULL) {
354             MIR* mir_next = mir->next;
355             // Make sure result of cmp is used by next insn and nowhere else
356             if (IsInstructionIfCcZ(mir_next->dalvikInsn.opcode) &&
357                 (mir->ssa_rep->defs[0] == mir_next->ssa_rep->uses[0]) &&
358                 (GetSSAUseCount(mir->ssa_rep->defs[0]) == 1)) {
359               mir_next->meta.ccode = ConditionCodeForIfCcZ(mir_next->dalvikInsn.opcode);
360               switch (opcode) {
361                 case Instruction::CMPL_FLOAT:
362                   mir_next->dalvikInsn.opcode =
363                       static_cast<Instruction::Code>(kMirOpFusedCmplFloat);
364                   break;
365                 case Instruction::CMPL_DOUBLE:
366                   mir_next->dalvikInsn.opcode =
367                       static_cast<Instruction::Code>(kMirOpFusedCmplDouble);
368                   break;
369                 case Instruction::CMPG_FLOAT:
370                   mir_next->dalvikInsn.opcode =
371                       static_cast<Instruction::Code>(kMirOpFusedCmpgFloat);
372                   break;
373                 case Instruction::CMPG_DOUBLE:
374                   mir_next->dalvikInsn.opcode =
375                       static_cast<Instruction::Code>(kMirOpFusedCmpgDouble);
376                   break;
377                 case Instruction::CMP_LONG:
378                   mir_next->dalvikInsn.opcode =
379                       static_cast<Instruction::Code>(kMirOpFusedCmpLong);
380                   break;
381                 default: LOG(ERROR) << "Unexpected opcode: " << opcode;
382               }
383               mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
384               // Copy the SSA information that is relevant.
385               mir_next->ssa_rep->num_uses = mir->ssa_rep->num_uses;
386               mir_next->ssa_rep->uses = mir->ssa_rep->uses;
387               mir_next->ssa_rep->fp_use = mir->ssa_rep->fp_use;
388               mir_next->ssa_rep->num_defs = 0;
389               mir->ssa_rep->num_uses = 0;
390               mir->ssa_rep->num_defs = 0;
391               // Copy in the decoded instruction information for potential SSA re-creation.
392               mir_next->dalvikInsn.vA = mir->dalvikInsn.vB;
393               mir_next->dalvikInsn.vB = mir->dalvikInsn.vC;
394             }
395           }
396           break;
397         case Instruction::GOTO:
398         case Instruction::GOTO_16:
399         case Instruction::GOTO_32:
400         case Instruction::IF_EQ:
401         case Instruction::IF_NE:
402         case Instruction::IF_LT:
403         case Instruction::IF_GE:
404         case Instruction::IF_GT:
405         case Instruction::IF_LE:
406         case Instruction::IF_EQZ:
407         case Instruction::IF_NEZ:
408         case Instruction::IF_LTZ:
409         case Instruction::IF_GEZ:
410         case Instruction::IF_GTZ:
411         case Instruction::IF_LEZ:
412           // If we've got a backwards branch to return, no need to suspend check.
413           if ((IsBackedge(bb, bb->taken) && GetBasicBlock(bb->taken)->dominates_return) ||
414               (IsBackedge(bb, bb->fall_through) &&
415                           GetBasicBlock(bb->fall_through)->dominates_return)) {
416             mir->optimization_flags |= MIR_IGNORE_SUSPEND_CHECK;
417             if (cu_->verbose) {
418               LOG(INFO) << "Suppressed suspend check on branch to return at 0x" << std::hex
419                         << mir->offset;
420             }
421           }
422           break;
423         default:
424           break;
425       }
426       // Is this the select pattern?
427       // TODO: flesh out support for Mips.  NOTE: llvm's select op doesn't quite work here.
428       // TUNING: expand to support IF_xx compare & branches
429       if (!cu_->compiler->IsPortable() &&
430           (cu_->instruction_set == kArm64 || cu_->instruction_set == kThumb2 ||
431            cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) &&
432           IsInstructionIfCcZ(mir->dalvikInsn.opcode)) {
433         BasicBlock* ft = GetBasicBlock(bb->fall_through);
434         DCHECK(ft != NULL);
435         BasicBlock* ft_ft = GetBasicBlock(ft->fall_through);
436         BasicBlock* ft_tk = GetBasicBlock(ft->taken);
437 
438         BasicBlock* tk = GetBasicBlock(bb->taken);
439         DCHECK(tk != NULL);
440         BasicBlock* tk_ft = GetBasicBlock(tk->fall_through);
441         BasicBlock* tk_tk = GetBasicBlock(tk->taken);
442 
443         /*
444          * In the select pattern, the taken edge goes to a block that unconditionally
445          * transfers to the rejoin block and the fall_though edge goes to a block that
446          * unconditionally falls through to the rejoin block.
447          */
448         if ((tk_ft == NULL) && (ft_tk == NULL) && (tk_tk == ft_ft) &&
449             (Predecessors(tk) == 1) && (Predecessors(ft) == 1)) {
450           /*
451            * Okay - we have the basic diamond shape.  At the very least, we can eliminate the
452            * suspend check on the taken-taken branch back to the join point.
453            */
454           if (SelectKind(tk->last_mir_insn) == kSelectGoto) {
455               tk->last_mir_insn->optimization_flags |= (MIR_IGNORE_SUSPEND_CHECK);
456           }
457 
458           // TODO: Add logic for LONG.
459           // Are the block bodies something we can handle?
460           if ((ft->first_mir_insn == ft->last_mir_insn) &&
461               (tk->first_mir_insn != tk->last_mir_insn) &&
462               (tk->first_mir_insn->next == tk->last_mir_insn) &&
463               ((SelectKind(ft->first_mir_insn) == kSelectMove) ||
464               (SelectKind(ft->first_mir_insn) == kSelectConst)) &&
465               (SelectKind(ft->first_mir_insn) == SelectKind(tk->first_mir_insn)) &&
466               (SelectKind(tk->last_mir_insn) == kSelectGoto)) {
467             // Almost there.  Are the instructions targeting the same vreg?
468             MIR* if_true = tk->first_mir_insn;
469             MIR* if_false = ft->first_mir_insn;
470             // It's possible that the target of the select isn't used - skip those (rare) cases.
471             MIR* phi = FindPhi(tk_tk, if_true->ssa_rep->defs[0]);
472             if ((phi != NULL) && (if_true->dalvikInsn.vA == if_false->dalvikInsn.vA)) {
473               /*
474                * We'll convert the IF_EQZ/IF_NEZ to a SELECT.  We need to find the
475                * Phi node in the merge block and delete it (while using the SSA name
476                * of the merge as the target of the SELECT.  Delete both taken and
477                * fallthrough blocks, and set fallthrough to merge block.
478                * NOTE: not updating other dataflow info (no longer used at this point).
479                * If this changes, need to update i_dom, etc. here (and in CombineBlocks).
480                */
481               mir->meta.ccode = ConditionCodeForIfCcZ(mir->dalvikInsn.opcode);
482               mir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpSelect);
483               bool const_form = (SelectKind(if_true) == kSelectConst);
484               if ((SelectKind(if_true) == kSelectMove)) {
485                 if (IsConst(if_true->ssa_rep->uses[0]) &&
486                     IsConst(if_false->ssa_rep->uses[0])) {
487                     const_form = true;
488                     if_true->dalvikInsn.vB = ConstantValue(if_true->ssa_rep->uses[0]);
489                     if_false->dalvikInsn.vB = ConstantValue(if_false->ssa_rep->uses[0]);
490                 }
491               }
492               if (const_form) {
493                 /*
494                  * TODO: If both constants are the same value, then instead of generating
495                  * a select, we should simply generate a const bytecode. This should be
496                  * considered after inlining which can lead to CFG of this form.
497                  */
498                 // "true" set val in vB
499                 mir->dalvikInsn.vB = if_true->dalvikInsn.vB;
500                 // "false" set val in vC
501                 mir->dalvikInsn.vC = if_false->dalvikInsn.vB;
502               } else {
503                 DCHECK_EQ(SelectKind(if_true), kSelectMove);
504                 DCHECK_EQ(SelectKind(if_false), kSelectMove);
505                 int* src_ssa =
506                     static_cast<int*>(arena_->Alloc(sizeof(int) * 3, kArenaAllocDFInfo));
507                 src_ssa[0] = mir->ssa_rep->uses[0];
508                 src_ssa[1] = if_true->ssa_rep->uses[0];
509                 src_ssa[2] = if_false->ssa_rep->uses[0];
510                 mir->ssa_rep->uses = src_ssa;
511                 mir->ssa_rep->num_uses = 3;
512               }
513               mir->ssa_rep->num_defs = 1;
514               mir->ssa_rep->defs =
515                   static_cast<int*>(arena_->Alloc(sizeof(int) * 1, kArenaAllocDFInfo));
516               mir->ssa_rep->fp_def =
517                   static_cast<bool*>(arena_->Alloc(sizeof(bool) * 1, kArenaAllocDFInfo));
518               mir->ssa_rep->fp_def[0] = if_true->ssa_rep->fp_def[0];
519               // Match type of uses to def.
520               mir->ssa_rep->fp_use =
521                   static_cast<bool*>(arena_->Alloc(sizeof(bool) * mir->ssa_rep->num_uses,
522                                                    kArenaAllocDFInfo));
523               for (int i = 0; i < mir->ssa_rep->num_uses; i++) {
524                 mir->ssa_rep->fp_use[i] = mir->ssa_rep->fp_def[0];
525               }
526               /*
527                * There is usually a Phi node in the join block for our two cases.  If the
528                * Phi node only contains our two cases as input, we will use the result
529                * SSA name of the Phi node as our select result and delete the Phi.  If
530                * the Phi node has more than two operands, we will arbitrarily use the SSA
531                * name of the "true" path, delete the SSA name of the "false" path from the
532                * Phi node (and fix up the incoming arc list).
533                */
534               if (phi->ssa_rep->num_uses == 2) {
535                 mir->ssa_rep->defs[0] = phi->ssa_rep->defs[0];
536                 phi->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
537               } else {
538                 int dead_def = if_false->ssa_rep->defs[0];
539                 int live_def = if_true->ssa_rep->defs[0];
540                 mir->ssa_rep->defs[0] = live_def;
541                 BasicBlockId* incoming = phi->meta.phi_incoming;
542                 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
543                   if (phi->ssa_rep->uses[i] == live_def) {
544                     incoming[i] = bb->id;
545                   }
546                 }
547                 for (int i = 0; i < phi->ssa_rep->num_uses; i++) {
548                   if (phi->ssa_rep->uses[i] == dead_def) {
549                     int last_slot = phi->ssa_rep->num_uses - 1;
550                     phi->ssa_rep->uses[i] = phi->ssa_rep->uses[last_slot];
551                     incoming[i] = incoming[last_slot];
552                   }
553                 }
554               }
555               phi->ssa_rep->num_uses--;
556               bb->taken = NullBasicBlockId;
557               tk->block_type = kDead;
558               for (MIR* tmir = ft->first_mir_insn; tmir != NULL; tmir = tmir->next) {
559                 tmir->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpNop);
560               }
561             }
562           }
563         }
564       }
565     }
566     bb = ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) ? NextDominatedBlock(bb) : NULL;
567   }
568   if (use_lvn && UNLIKELY(!global_valnum->Good())) {
569     LOG(WARNING) << "LVN overflow in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
570   }
571 
572   return true;
573 }
574 
575 /* Collect stats on number of checks removed */
CountChecks(struct BasicBlock * bb)576 void MIRGraph::CountChecks(struct BasicBlock* bb) {
577   if (bb->data_flow_info != NULL) {
578     for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
579       if (mir->ssa_rep == NULL) {
580         continue;
581       }
582       uint64_t df_attributes = GetDataFlowAttributes(mir);
583       if (df_attributes & DF_HAS_NULL_CHKS) {
584         checkstats_->null_checks++;
585         if (mir->optimization_flags & MIR_IGNORE_NULL_CHECK) {
586           checkstats_->null_checks_eliminated++;
587         }
588       }
589       if (df_attributes & DF_HAS_RANGE_CHKS) {
590         checkstats_->range_checks++;
591         if (mir->optimization_flags & MIR_IGNORE_RANGE_CHECK) {
592           checkstats_->range_checks_eliminated++;
593         }
594       }
595     }
596   }
597 }
598 
599 /* Try to make common case the fallthrough path */
LayoutBlocks(BasicBlock * bb)600 bool MIRGraph::LayoutBlocks(BasicBlock* bb) {
601   // TODO: For now, just looking for direct throws.  Consider generalizing for profile feedback
602   if (!bb->explicit_throw) {
603     return false;
604   }
605   BasicBlock* walker = bb;
606   while (true) {
607     // Check termination conditions
608     if ((walker->block_type == kEntryBlock) || (Predecessors(walker) != 1)) {
609       break;
610     }
611     BasicBlock* prev = GetBasicBlock(walker->predecessors->Get(0));
612     if (prev->conditional_branch) {
613       if (GetBasicBlock(prev->fall_through) == walker) {
614         // Already done - return
615         break;
616       }
617       DCHECK_EQ(walker, GetBasicBlock(prev->taken));
618       // Got one.  Flip it and exit
619       Instruction::Code opcode = prev->last_mir_insn->dalvikInsn.opcode;
620       switch (opcode) {
621         case Instruction::IF_EQ: opcode = Instruction::IF_NE; break;
622         case Instruction::IF_NE: opcode = Instruction::IF_EQ; break;
623         case Instruction::IF_LT: opcode = Instruction::IF_GE; break;
624         case Instruction::IF_GE: opcode = Instruction::IF_LT; break;
625         case Instruction::IF_GT: opcode = Instruction::IF_LE; break;
626         case Instruction::IF_LE: opcode = Instruction::IF_GT; break;
627         case Instruction::IF_EQZ: opcode = Instruction::IF_NEZ; break;
628         case Instruction::IF_NEZ: opcode = Instruction::IF_EQZ; break;
629         case Instruction::IF_LTZ: opcode = Instruction::IF_GEZ; break;
630         case Instruction::IF_GEZ: opcode = Instruction::IF_LTZ; break;
631         case Instruction::IF_GTZ: opcode = Instruction::IF_LEZ; break;
632         case Instruction::IF_LEZ: opcode = Instruction::IF_GTZ; break;
633         default: LOG(FATAL) << "Unexpected opcode " << opcode;
634       }
635       prev->last_mir_insn->dalvikInsn.opcode = opcode;
636       BasicBlockId t_bb = prev->taken;
637       prev->taken = prev->fall_through;
638       prev->fall_through = t_bb;
639       break;
640     }
641     walker = prev;
642   }
643   return false;
644 }
645 
646 /* Combine any basic blocks terminated by instructions that we now know can't throw */
CombineBlocks(struct BasicBlock * bb)647 void MIRGraph::CombineBlocks(struct BasicBlock* bb) {
648   // Loop here to allow combining a sequence of blocks
649   while (true) {
650     // Check termination conditions
651     if ((bb->first_mir_insn == NULL)
652         || (bb->data_flow_info == NULL)
653         || (bb->block_type == kExceptionHandling)
654         || (bb->block_type == kExitBlock)
655         || (bb->block_type == kDead)
656         || (bb->taken == NullBasicBlockId)
657         || (GetBasicBlock(bb->taken)->block_type != kExceptionHandling)
658         || (bb->successor_block_list_type != kNotUsed)
659         || (static_cast<int>(bb->last_mir_insn->dalvikInsn.opcode) != kMirOpCheck)) {
660       break;
661     }
662 
663     // Test the kMirOpCheck instruction
664     MIR* mir = bb->last_mir_insn;
665     // Grab the attributes from the paired opcode
666     MIR* throw_insn = mir->meta.throw_insn;
667     uint64_t df_attributes = GetDataFlowAttributes(throw_insn);
668     bool can_combine = true;
669     if (df_attributes & DF_HAS_NULL_CHKS) {
670       can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_NULL_CHECK) != 0);
671     }
672     if (df_attributes & DF_HAS_RANGE_CHKS) {
673       can_combine &= ((throw_insn->optimization_flags & MIR_IGNORE_RANGE_CHECK) != 0);
674     }
675     if (!can_combine) {
676       break;
677     }
678     // OK - got one.  Combine
679     BasicBlock* bb_next = GetBasicBlock(bb->fall_through);
680     DCHECK(!bb_next->catch_entry);
681     DCHECK_EQ(Predecessors(bb_next), 1U);
682     // Overwrite the kOpCheck insn with the paired opcode
683     DCHECK_EQ(bb_next->first_mir_insn, throw_insn);
684     *bb->last_mir_insn = *throw_insn;
685     // Use the successor info from the next block
686     bb->successor_block_list_type = bb_next->successor_block_list_type;
687     bb->successor_blocks = bb_next->successor_blocks;
688     // Use the ending block linkage from the next block
689     bb->fall_through = bb_next->fall_through;
690     GetBasicBlock(bb->taken)->block_type = kDead;  // Kill the unused exception block
691     bb->taken = bb_next->taken;
692     // Include the rest of the instructions
693     bb->last_mir_insn = bb_next->last_mir_insn;
694     /*
695      * If lower-half of pair of blocks to combine contained a return, move the flag
696      * to the newly combined block.
697      */
698     bb->terminated_by_return = bb_next->terminated_by_return;
699 
700     /*
701      * NOTE: we aren't updating all dataflow info here.  Should either make sure this pass
702      * happens after uses of i_dominated, dom_frontier or update the dataflow info here.
703      */
704 
705     // Kill bb_next and remap now-dead id to parent
706     bb_next->block_type = kDead;
707     block_id_map_.Overwrite(bb_next->id, bb->id);
708 
709     // Now, loop back and see if we can keep going
710   }
711 }
712 
EliminateNullChecksAndInferTypesStart()713 void MIRGraph::EliminateNullChecksAndInferTypesStart() {
714   if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
715     if (kIsDebugBuild) {
716       AllNodesIterator iter(this);
717       for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
718         CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
719       }
720     }
721 
722     DCHECK(temp_scoped_alloc_.get() == nullptr);
723     temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
724     temp_bit_vector_size_ = GetNumSSARegs();
725     temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
726         temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapTempSSARegisterV);
727   }
728 }
729 
730 /*
731  * Eliminate unnecessary null checks for a basic block.   Also, while we're doing
732  * an iterative walk go ahead and perform type and size inference.
733  */
EliminateNullChecksAndInferTypes(BasicBlock * bb)734 bool MIRGraph::EliminateNullChecksAndInferTypes(BasicBlock* bb) {
735   if (bb->data_flow_info == NULL) return false;
736   bool infer_changed = false;
737   bool do_nce = ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0);
738 
739   ArenaBitVector* ssa_regs_to_check = temp_bit_vector_;
740   if (do_nce) {
741     /*
742      * Set initial state. Catch blocks don't need any special treatment.
743      */
744     if (bb->block_type == kEntryBlock) {
745       ssa_regs_to_check->ClearAllBits();
746       // Assume all ins are objects.
747       for (uint16_t in_reg = cu_->num_dalvik_registers - cu_->num_ins;
748            in_reg < cu_->num_dalvik_registers; in_reg++) {
749         ssa_regs_to_check->SetBit(in_reg);
750       }
751       if ((cu_->access_flags & kAccStatic) == 0) {
752         // If non-static method, mark "this" as non-null
753         int this_reg = cu_->num_dalvik_registers - cu_->num_ins;
754         ssa_regs_to_check->ClearBit(this_reg);
755       }
756     } else if (bb->predecessors->Size() == 1) {
757       BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
758       // pred_bb must have already been processed at least once.
759       DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
760       ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
761       if (pred_bb->block_type == kDalvikByteCode) {
762         // Check to see if predecessor had an explicit null-check.
763         MIR* last_insn = pred_bb->last_mir_insn;
764         if (last_insn != nullptr) {
765           Instruction::Code last_opcode = last_insn->dalvikInsn.opcode;
766           if (last_opcode == Instruction::IF_EQZ) {
767             if (pred_bb->fall_through == bb->id) {
768               // The fall-through of a block following a IF_EQZ, set the vA of the IF_EQZ to show that
769               // it can't be null.
770               ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
771             }
772           } else if (last_opcode == Instruction::IF_NEZ) {
773             if (pred_bb->taken == bb->id) {
774               // The taken block following a IF_NEZ, set the vA of the IF_NEZ to show that it can't be
775               // null.
776               ssa_regs_to_check->ClearBit(last_insn->ssa_rep->uses[0]);
777             }
778           }
779         }
780       }
781     } else {
782       // Starting state is union of all incoming arcs
783       GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
784       BasicBlock* pred_bb = GetBasicBlock(iter.Next());
785       CHECK(pred_bb != NULL);
786       while (pred_bb->data_flow_info->ending_check_v == nullptr) {
787         pred_bb = GetBasicBlock(iter.Next());
788         // At least one predecessor must have been processed before this bb.
789         DCHECK(pred_bb != nullptr);
790         DCHECK(pred_bb->data_flow_info != nullptr);
791       }
792       ssa_regs_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
793       while (true) {
794         pred_bb = GetBasicBlock(iter.Next());
795         if (!pred_bb) break;
796         DCHECK(pred_bb->data_flow_info != nullptr);
797         if (pred_bb->data_flow_info->ending_check_v == nullptr) {
798           continue;
799         }
800         ssa_regs_to_check->Union(pred_bb->data_flow_info->ending_check_v);
801       }
802     }
803     // At this point, ssa_regs_to_check shows which sregs have an object definition with
804     // no intervening uses.
805   }
806 
807   // Walk through the instruction in the block, updating as necessary
808   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
809     if (mir->ssa_rep == NULL) {
810         continue;
811     }
812 
813     // Propagate type info.
814     infer_changed = InferTypeAndSize(bb, mir, infer_changed);
815     if (!do_nce) {
816       continue;
817     }
818 
819     uint64_t df_attributes = GetDataFlowAttributes(mir);
820 
821     // Might need a null check?
822     if (df_attributes & DF_HAS_NULL_CHKS) {
823       int src_idx;
824       if (df_attributes & DF_NULL_CHK_1) {
825         src_idx = 1;
826       } else if (df_attributes & DF_NULL_CHK_2) {
827         src_idx = 2;
828       } else {
829         src_idx = 0;
830       }
831       int src_sreg = mir->ssa_rep->uses[src_idx];
832       if (!ssa_regs_to_check->IsBitSet(src_sreg)) {
833         // Eliminate the null check.
834         mir->optimization_flags |= MIR_IGNORE_NULL_CHECK;
835       } else {
836         // Do the null check.
837         mir->optimization_flags &= ~MIR_IGNORE_NULL_CHECK;
838         // Mark s_reg as null-checked
839         ssa_regs_to_check->ClearBit(src_sreg);
840       }
841     }
842 
843     if ((df_attributes & DF_A_WIDE) ||
844         (df_attributes & (DF_REF_A | DF_SETS_CONST | DF_NULL_TRANSFER)) == 0) {
845       continue;
846     }
847 
848     /*
849      * First, mark all object definitions as requiring null check.
850      * Note: we can't tell if a CONST definition might be used as an object, so treat
851      * them all as object definitions.
852      */
853     if (((df_attributes & (DF_DA | DF_REF_A)) == (DF_DA | DF_REF_A)) ||
854         (df_attributes & DF_SETS_CONST))  {
855       ssa_regs_to_check->SetBit(mir->ssa_rep->defs[0]);
856     }
857 
858     // Now, remove mark from all object definitions we know are non-null.
859     if (df_attributes & DF_NON_NULL_DST) {
860       // Mark target of NEW* as non-null
861       ssa_regs_to_check->ClearBit(mir->ssa_rep->defs[0]);
862     }
863 
864     // Mark non-null returns from invoke-style NEW*
865     if (df_attributes & DF_NON_NULL_RET) {
866       MIR* next_mir = mir->next;
867       // Next should be an MOVE_RESULT_OBJECT
868       if (next_mir &&
869           next_mir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
870         // Mark as null checked
871         ssa_regs_to_check->ClearBit(next_mir->ssa_rep->defs[0]);
872       } else {
873         if (next_mir) {
874           LOG(WARNING) << "Unexpected opcode following new: " << next_mir->dalvikInsn.opcode;
875         } else if (bb->fall_through != NullBasicBlockId) {
876           // Look in next basic block
877           struct BasicBlock* next_bb = GetBasicBlock(bb->fall_through);
878           for (MIR* tmir = next_bb->first_mir_insn; tmir != NULL;
879             tmir =tmir->next) {
880             if (MIR::DecodedInstruction::IsPseudoMirOp(tmir->dalvikInsn.opcode)) {
881               continue;
882             }
883             // First non-pseudo should be MOVE_RESULT_OBJECT
884             if (tmir->dalvikInsn.opcode == Instruction::MOVE_RESULT_OBJECT) {
885               // Mark as null checked
886               ssa_regs_to_check->ClearBit(tmir->ssa_rep->defs[0]);
887             } else {
888               LOG(WARNING) << "Unexpected op after new: " << tmir->dalvikInsn.opcode;
889             }
890             break;
891           }
892         }
893       }
894     }
895 
896     /*
897      * Propagate nullcheck state on register copies (including
898      * Phi pseudo copies.  For the latter, nullcheck state is
899      * the "or" of all the Phi's operands.
900      */
901     if (df_attributes & (DF_NULL_TRANSFER_0 | DF_NULL_TRANSFER_N)) {
902       int tgt_sreg = mir->ssa_rep->defs[0];
903       int operands = (df_attributes & DF_NULL_TRANSFER_0) ? 1 :
904           mir->ssa_rep->num_uses;
905       bool needs_null_check = false;
906       for (int i = 0; i < operands; i++) {
907         needs_null_check |= ssa_regs_to_check->IsBitSet(mir->ssa_rep->uses[i]);
908       }
909       if (needs_null_check) {
910         ssa_regs_to_check->SetBit(tgt_sreg);
911       } else {
912         ssa_regs_to_check->ClearBit(tgt_sreg);
913       }
914     }
915   }
916 
917   // Did anything change?
918   bool nce_changed = false;
919   if (do_nce) {
920     if (bb->data_flow_info->ending_check_v == nullptr) {
921       DCHECK(temp_scoped_alloc_.get() != nullptr);
922       bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
923           temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapNullCheck);
924       nce_changed = ssa_regs_to_check->GetHighestBitSet() != -1;
925       bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
926     } else if (!ssa_regs_to_check->SameBitsSet(bb->data_flow_info->ending_check_v)) {
927       nce_changed = true;
928       bb->data_flow_info->ending_check_v->Copy(ssa_regs_to_check);
929     }
930   }
931   return infer_changed | nce_changed;
932 }
933 
EliminateNullChecksAndInferTypesEnd()934 void MIRGraph::EliminateNullChecksAndInferTypesEnd() {
935   if ((cu_->disable_opt & (1 << kNullCheckElimination)) == 0) {
936     // Clean up temporaries.
937     temp_bit_vector_size_ = 0u;
938     temp_bit_vector_ = nullptr;
939     AllNodesIterator iter(this);
940     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
941       if (bb->data_flow_info != nullptr) {
942         bb->data_flow_info->ending_check_v = nullptr;
943       }
944     }
945     DCHECK(temp_scoped_alloc_.get() != nullptr);
946     temp_scoped_alloc_.reset();
947   }
948 }
949 
EliminateClassInitChecksGate()950 bool MIRGraph::EliminateClassInitChecksGate() {
951   if ((cu_->disable_opt & (1 << kClassInitCheckElimination)) != 0 ||
952       !cu_->mir_graph->HasStaticFieldAccess()) {
953     return false;
954   }
955 
956   if (kIsDebugBuild) {
957     AllNodesIterator iter(this);
958     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
959       CHECK(bb->data_flow_info == nullptr || bb->data_flow_info->ending_check_v == nullptr);
960     }
961   }
962 
963   DCHECK(temp_scoped_alloc_.get() == nullptr);
964   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
965 
966   // Each insn we use here has at least 2 code units, offset/2 will be a unique index.
967   const size_t end = (cu_->code_item->insns_size_in_code_units_ + 1u) / 2u;
968   temp_insn_data_ = static_cast<uint16_t*>(
969       temp_scoped_alloc_->Alloc(end * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
970 
971   uint32_t unique_class_count = 0u;
972   {
973     // Get unique_class_count and store indexes in temp_insn_data_ using a map on a nested
974     // ScopedArenaAllocator.
975 
976     // Embed the map value in the entry to save space.
977     struct MapEntry {
978       // Map key: the class identified by the declaring dex file and type index.
979       const DexFile* declaring_dex_file;
980       uint16_t declaring_class_idx;
981       // Map value: index into bit vectors of classes requiring initialization checks.
982       uint16_t index;
983     };
984     struct MapEntryComparator {
985       bool operator()(const MapEntry& lhs, const MapEntry& rhs) const {
986         if (lhs.declaring_class_idx != rhs.declaring_class_idx) {
987           return lhs.declaring_class_idx < rhs.declaring_class_idx;
988         }
989         return lhs.declaring_dex_file < rhs.declaring_dex_file;
990       }
991     };
992 
993     ScopedArenaAllocator allocator(&cu_->arena_stack);
994     ScopedArenaSet<MapEntry, MapEntryComparator> class_to_index_map(MapEntryComparator(),
995                                                                     allocator.Adapter());
996 
997     // First, find all SGET/SPUTs that may need class initialization checks, record INVOKE_STATICs.
998     AllNodesIterator iter(this);
999     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1000       for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1001         DCHECK(bb->data_flow_info != nullptr);
1002         if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1003             mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1004           const MirSFieldLoweringInfo& field_info = GetSFieldLoweringInfo(mir);
1005           uint16_t index = 0xffffu;
1006           if (!field_info.IsInitialized()) {
1007             DCHECK_LT(class_to_index_map.size(), 0xffffu);
1008             MapEntry entry = {
1009                 // Treat unresolved fields as if each had its own class.
1010                 field_info.IsResolved() ? field_info.DeclaringDexFile()
1011                                         : nullptr,
1012                 field_info.IsResolved() ? field_info.DeclaringClassIndex()
1013                                         : field_info.FieldIndex(),
1014                 static_cast<uint16_t>(class_to_index_map.size())
1015             };
1016             index = class_to_index_map.insert(entry).first->index;
1017           }
1018           // Using offset/2 for index into temp_insn_data_.
1019           temp_insn_data_[mir->offset / 2u] = index;
1020         }
1021       }
1022     }
1023     unique_class_count = static_cast<uint32_t>(class_to_index_map.size());
1024   }
1025 
1026   if (unique_class_count == 0u) {
1027     // All SGET/SPUTs refer to initialized classes. Nothing to do.
1028     temp_insn_data_ = nullptr;
1029     temp_scoped_alloc_.reset();
1030     return false;
1031   }
1032 
1033   temp_bit_vector_size_ = unique_class_count;
1034   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1035       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1036   DCHECK_GT(temp_bit_vector_size_, 0u);
1037   return true;
1038 }
1039 
1040 /*
1041  * Eliminate unnecessary class initialization checks for a basic block.
1042  */
EliminateClassInitChecks(BasicBlock * bb)1043 bool MIRGraph::EliminateClassInitChecks(BasicBlock* bb) {
1044   DCHECK_EQ((cu_->disable_opt & (1 << kClassInitCheckElimination)), 0u);
1045   if (bb->data_flow_info == NULL) {
1046     return false;
1047   }
1048 
1049   /*
1050    * Set initial state.  Catch blocks don't need any special treatment.
1051    */
1052   ArenaBitVector* classes_to_check = temp_bit_vector_;
1053   DCHECK(classes_to_check != nullptr);
1054   if (bb->block_type == kEntryBlock) {
1055     classes_to_check->SetInitialBits(temp_bit_vector_size_);
1056   } else if (bb->predecessors->Size() == 1) {
1057     BasicBlock* pred_bb = GetBasicBlock(bb->predecessors->Get(0));
1058     // pred_bb must have already been processed at least once.
1059     DCHECK(pred_bb != nullptr);
1060     DCHECK(pred_bb->data_flow_info != nullptr);
1061     DCHECK(pred_bb->data_flow_info->ending_check_v != nullptr);
1062     classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1063   } else {
1064     // Starting state is union of all incoming arcs
1065     GrowableArray<BasicBlockId>::Iterator iter(bb->predecessors);
1066     BasicBlock* pred_bb = GetBasicBlock(iter.Next());
1067     DCHECK(pred_bb != NULL);
1068     DCHECK(pred_bb->data_flow_info != NULL);
1069     while (pred_bb->data_flow_info->ending_check_v == nullptr) {
1070       pred_bb = GetBasicBlock(iter.Next());
1071       // At least one predecessor must have been processed before this bb.
1072       DCHECK(pred_bb != nullptr);
1073       DCHECK(pred_bb->data_flow_info != nullptr);
1074     }
1075     classes_to_check->Copy(pred_bb->data_flow_info->ending_check_v);
1076     while (true) {
1077       pred_bb = GetBasicBlock(iter.Next());
1078       if (!pred_bb) break;
1079       DCHECK(pred_bb->data_flow_info != nullptr);
1080       if (pred_bb->data_flow_info->ending_check_v == nullptr) {
1081         continue;
1082       }
1083       classes_to_check->Union(pred_bb->data_flow_info->ending_check_v);
1084     }
1085   }
1086   // At this point, classes_to_check shows which classes need clinit checks.
1087 
1088   // Walk through the instruction in the block, updating as necessary
1089   for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1090     if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1091         mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1092       uint16_t index = temp_insn_data_[mir->offset / 2u];
1093       if (index != 0xffffu) {
1094         if (mir->dalvikInsn.opcode >= Instruction::SGET &&
1095             mir->dalvikInsn.opcode <= Instruction::SPUT_SHORT) {
1096           if (!classes_to_check->IsBitSet(index)) {
1097             // Eliminate the class init check.
1098             mir->optimization_flags |= MIR_IGNORE_CLINIT_CHECK;
1099           } else {
1100             // Do the class init check.
1101             mir->optimization_flags &= ~MIR_IGNORE_CLINIT_CHECK;
1102           }
1103         }
1104         // Mark the class as initialized.
1105         classes_to_check->ClearBit(index);
1106       }
1107     }
1108   }
1109 
1110   // Did anything change?
1111   bool changed = false;
1112   if (bb->data_flow_info->ending_check_v == nullptr) {
1113     DCHECK(temp_scoped_alloc_.get() != nullptr);
1114     DCHECK(bb->data_flow_info != nullptr);
1115     bb->data_flow_info->ending_check_v = new (temp_scoped_alloc_.get()) ArenaBitVector(
1116         temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapClInitCheck);
1117     changed = classes_to_check->GetHighestBitSet() != -1;
1118     bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1119   } else if (!classes_to_check->Equal(bb->data_flow_info->ending_check_v)) {
1120     changed = true;
1121     bb->data_flow_info->ending_check_v->Copy(classes_to_check);
1122   }
1123   return changed;
1124 }
1125 
EliminateClassInitChecksEnd()1126 void MIRGraph::EliminateClassInitChecksEnd() {
1127   // Clean up temporaries.
1128   temp_bit_vector_size_ = 0u;
1129   temp_bit_vector_ = nullptr;
1130   AllNodesIterator iter(this);
1131   for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1132     if (bb->data_flow_info != nullptr) {
1133       bb->data_flow_info->ending_check_v = nullptr;
1134     }
1135   }
1136 
1137   DCHECK(temp_insn_data_ != nullptr);
1138   temp_insn_data_ = nullptr;
1139   DCHECK(temp_scoped_alloc_.get() != nullptr);
1140   temp_scoped_alloc_.reset();
1141 }
1142 
ApplyGlobalValueNumberingGate()1143 bool MIRGraph::ApplyGlobalValueNumberingGate() {
1144   if ((cu_->disable_opt & (1u << kGlobalValueNumbering)) != 0u) {
1145     return false;
1146   }
1147 
1148   DCHECK(temp_scoped_alloc_ == nullptr);
1149   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1150   DCHECK(temp_gvn_ == nullptr);
1151   temp_gvn_.reset(
1152       new (temp_scoped_alloc_.get()) GlobalValueNumbering(cu_, temp_scoped_alloc_.get()));
1153   return true;
1154 }
1155 
ApplyGlobalValueNumbering(BasicBlock * bb)1156 bool MIRGraph::ApplyGlobalValueNumbering(BasicBlock* bb) {
1157   DCHECK(temp_gvn_ != nullptr);
1158   LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb);
1159   if (lvn != nullptr) {
1160     for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1161       lvn->GetValueNumber(mir);
1162     }
1163   }
1164   bool change = (lvn != nullptr) && temp_gvn_->FinishBasicBlock(bb);
1165   return change;
1166 }
1167 
ApplyGlobalValueNumberingEnd()1168 void MIRGraph::ApplyGlobalValueNumberingEnd() {
1169   // Perform modifications.
1170   if (temp_gvn_->Good()) {
1171     temp_gvn_->AllowModifications();
1172     PreOrderDfsIterator iter(this);
1173     for (BasicBlock* bb = iter.Next(); bb != nullptr; bb = iter.Next()) {
1174       ScopedArenaAllocator allocator(&cu_->arena_stack);  // Reclaim memory after each LVN.
1175       LocalValueNumbering* lvn = temp_gvn_->PrepareBasicBlock(bb, &allocator);
1176       if (lvn != nullptr) {
1177         for (MIR* mir = bb->first_mir_insn; mir != nullptr; mir = mir->next) {
1178           lvn->GetValueNumber(mir);
1179         }
1180         bool change = temp_gvn_->FinishBasicBlock(bb);
1181         DCHECK(!change) << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1182       }
1183     }
1184   } else {
1185     LOG(WARNING) << "GVN failed for " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
1186   }
1187 
1188   DCHECK(temp_gvn_ != nullptr);
1189   temp_gvn_.reset();
1190   DCHECK(temp_scoped_alloc_ != nullptr);
1191   temp_scoped_alloc_.reset();
1192 }
1193 
ComputeInlineIFieldLoweringInfo(uint16_t field_idx,MIR * invoke,MIR * iget_or_iput)1194 void MIRGraph::ComputeInlineIFieldLoweringInfo(uint16_t field_idx, MIR* invoke, MIR* iget_or_iput) {
1195   uint32_t method_index = invoke->meta.method_lowering_info;
1196   if (temp_bit_vector_->IsBitSet(method_index)) {
1197     iget_or_iput->meta.ifield_lowering_info = temp_insn_data_[method_index];
1198     DCHECK_EQ(field_idx, GetIFieldLoweringInfo(iget_or_iput).FieldIndex());
1199     return;
1200   }
1201 
1202   const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(invoke);
1203   MethodReference target = method_info.GetTargetMethod();
1204   DexCompilationUnit inlined_unit(
1205       cu_, cu_->class_loader, cu_->class_linker, *target.dex_file,
1206       nullptr /* code_item not used */, 0u /* class_def_idx not used */, target.dex_method_index,
1207       0u /* access_flags not used */, nullptr /* verified_method not used */);
1208   MirIFieldLoweringInfo inlined_field_info(field_idx);
1209   MirIFieldLoweringInfo::Resolve(cu_->compiler_driver, &inlined_unit, &inlined_field_info, 1u);
1210   DCHECK(inlined_field_info.IsResolved());
1211 
1212   uint32_t field_info_index = ifield_lowering_infos_.Size();
1213   ifield_lowering_infos_.Insert(inlined_field_info);
1214   temp_bit_vector_->SetBit(method_index);
1215   temp_insn_data_[method_index] = field_info_index;
1216   iget_or_iput->meta.ifield_lowering_info = field_info_index;
1217 }
1218 
InlineSpecialMethodsGate()1219 bool MIRGraph::InlineSpecialMethodsGate() {
1220   if ((cu_->disable_opt & (1 << kSuppressMethodInlining)) != 0 ||
1221       method_lowering_infos_.Size() == 0u) {
1222     return false;
1223   }
1224   if (cu_->compiler_driver->GetMethodInlinerMap() == nullptr) {
1225     // This isn't the Quick compiler.
1226     return false;
1227   }
1228   return true;
1229 }
1230 
InlineSpecialMethodsStart()1231 void MIRGraph::InlineSpecialMethodsStart() {
1232   // Prepare for inlining getters/setters. Since we're inlining at most 1 IGET/IPUT from
1233   // each INVOKE, we can index the data by the MIR::meta::method_lowering_info index.
1234 
1235   DCHECK(temp_scoped_alloc_.get() == nullptr);
1236   temp_scoped_alloc_.reset(ScopedArenaAllocator::Create(&cu_->arena_stack));
1237   temp_bit_vector_size_ = method_lowering_infos_.Size();
1238   temp_bit_vector_ = new (temp_scoped_alloc_.get()) ArenaBitVector(
1239       temp_scoped_alloc_.get(), temp_bit_vector_size_, false, kBitMapMisc);
1240   temp_bit_vector_->ClearAllBits();
1241   temp_insn_data_ = static_cast<uint16_t*>(temp_scoped_alloc_->Alloc(
1242       temp_bit_vector_size_ * sizeof(*temp_insn_data_), kArenaAllocGrowableArray));
1243 }
1244 
InlineSpecialMethods(BasicBlock * bb)1245 void MIRGraph::InlineSpecialMethods(BasicBlock* bb) {
1246   if (bb->block_type != kDalvikByteCode) {
1247     return;
1248   }
1249   for (MIR* mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
1250     if (MIR::DecodedInstruction::IsPseudoMirOp(mir->dalvikInsn.opcode)) {
1251       continue;
1252     }
1253     if (!(Instruction::FlagsOf(mir->dalvikInsn.opcode) & Instruction::kInvoke)) {
1254       continue;
1255     }
1256     const MirMethodLoweringInfo& method_info = GetMethodLoweringInfo(mir);
1257     if (!method_info.FastPath()) {
1258       continue;
1259     }
1260     InvokeType sharp_type = method_info.GetSharpType();
1261     if ((sharp_type != kDirect) &&
1262         (sharp_type != kStatic || method_info.NeedsClassInitialization())) {
1263       continue;
1264     }
1265     DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1266     MethodReference target = method_info.GetTargetMethod();
1267     if (cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(target.dex_file)
1268             ->GenInline(this, bb, mir, target.dex_method_index)) {
1269       if (cu_->verbose || cu_->print_pass) {
1270         LOG(INFO) << "SpecialMethodInliner: Inlined " << method_info.GetInvokeType() << " ("
1271             << sharp_type << ") call to \"" << PrettyMethod(target.dex_method_index, *target.dex_file)
1272             << "\" from \"" << PrettyMethod(cu_->method_idx, *cu_->dex_file)
1273             << "\" @0x" << std::hex << mir->offset;
1274       }
1275     }
1276   }
1277 }
1278 
InlineSpecialMethodsEnd()1279 void MIRGraph::InlineSpecialMethodsEnd() {
1280   DCHECK(temp_insn_data_ != nullptr);
1281   temp_insn_data_ = nullptr;
1282   DCHECK(temp_bit_vector_ != nullptr);
1283   temp_bit_vector_ = nullptr;
1284   DCHECK(temp_scoped_alloc_.get() != nullptr);
1285   temp_scoped_alloc_.reset();
1286 }
1287 
DumpCheckStats()1288 void MIRGraph::DumpCheckStats() {
1289   Checkstats* stats =
1290       static_cast<Checkstats*>(arena_->Alloc(sizeof(Checkstats), kArenaAllocDFInfo));
1291   checkstats_ = stats;
1292   AllNodesIterator iter(this);
1293   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1294     CountChecks(bb);
1295   }
1296   if (stats->null_checks > 0) {
1297     float eliminated = static_cast<float>(stats->null_checks_eliminated);
1298     float checks = static_cast<float>(stats->null_checks);
1299     LOG(INFO) << "Null Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1300               << stats->null_checks_eliminated << " of " << stats->null_checks << " -> "
1301               << (eliminated/checks) * 100.0 << "%";
1302     }
1303   if (stats->range_checks > 0) {
1304     float eliminated = static_cast<float>(stats->range_checks_eliminated);
1305     float checks = static_cast<float>(stats->range_checks);
1306     LOG(INFO) << "Range Checks: " << PrettyMethod(cu_->method_idx, *cu_->dex_file) << " "
1307               << stats->range_checks_eliminated << " of " << stats->range_checks << " -> "
1308               << (eliminated/checks) * 100.0 << "%";
1309   }
1310 }
1311 
BuildExtendedBBList(struct BasicBlock * bb)1312 bool MIRGraph::BuildExtendedBBList(struct BasicBlock* bb) {
1313   if (bb->visited) return false;
1314   if (!((bb->block_type == kEntryBlock) || (bb->block_type == kDalvikByteCode)
1315       || (bb->block_type == kExitBlock))) {
1316     // Ignore special blocks
1317     bb->visited = true;
1318     return false;
1319   }
1320   // Must be head of extended basic block.
1321   BasicBlock* start_bb = bb;
1322   extended_basic_blocks_.push_back(bb->id);
1323   bool terminated_by_return = false;
1324   bool do_local_value_numbering = false;
1325   // Visit blocks strictly dominated by this head.
1326   while (bb != NULL) {
1327     bb->visited = true;
1328     terminated_by_return |= bb->terminated_by_return;
1329     do_local_value_numbering |= bb->use_lvn;
1330     bb = NextDominatedBlock(bb);
1331   }
1332   if (terminated_by_return || do_local_value_numbering) {
1333     // Do lvn for all blocks in this extended set.
1334     bb = start_bb;
1335     while (bb != NULL) {
1336       bb->use_lvn = do_local_value_numbering;
1337       bb->dominates_return = terminated_by_return;
1338       bb = NextDominatedBlock(bb);
1339     }
1340   }
1341   return false;  // Not iterative - return value will be ignored
1342 }
1343 
BasicBlockOptimization()1344 void MIRGraph::BasicBlockOptimization() {
1345   if ((cu_->disable_opt & (1 << kSuppressExceptionEdges)) != 0) {
1346     ClearAllVisitedFlags();
1347     PreOrderDfsIterator iter2(this);
1348     for (BasicBlock* bb = iter2.Next(); bb != NULL; bb = iter2.Next()) {
1349       BuildExtendedBBList(bb);
1350     }
1351     // Perform extended basic block optimizations.
1352     for (unsigned int i = 0; i < extended_basic_blocks_.size(); i++) {
1353       BasicBlockOpt(GetBasicBlock(extended_basic_blocks_[i]));
1354     }
1355   } else {
1356     PreOrderDfsIterator iter(this);
1357     for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
1358       BasicBlockOpt(bb);
1359     }
1360   }
1361 }
1362 
1363 }  // namespace art
1364