• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for initializers.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Sema/Initialization.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/DeclObjC.h"
17 #include "clang/AST/ExprCXX.h"
18 #include "clang/AST/ExprObjC.h"
19 #include "clang/AST/TypeLoc.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Sema/Designator.h"
22 #include "clang/Sema/Lookup.h"
23 #include "clang/Sema/SemaInternal.h"
24 #include "llvm/ADT/APInt.h"
25 #include "llvm/ADT/SmallString.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include <map>
29 using namespace clang;
30 
31 //===----------------------------------------------------------------------===//
32 // Sema Initialization Checking
33 //===----------------------------------------------------------------------===//
34 
35 /// \brief Check whether T is compatible with a wide character type (wchar_t,
36 /// char16_t or char32_t).
IsWideCharCompatible(QualType T,ASTContext & Context)37 static bool IsWideCharCompatible(QualType T, ASTContext &Context) {
38   if (Context.typesAreCompatible(Context.getWideCharType(), T))
39     return true;
40   if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) {
41     return Context.typesAreCompatible(Context.Char16Ty, T) ||
42            Context.typesAreCompatible(Context.Char32Ty, T);
43   }
44   return false;
45 }
46 
47 enum StringInitFailureKind {
48   SIF_None,
49   SIF_NarrowStringIntoWideChar,
50   SIF_WideStringIntoChar,
51   SIF_IncompatWideStringIntoWideChar,
52   SIF_Other
53 };
54 
55 /// \brief Check whether the array of type AT can be initialized by the Init
56 /// expression by means of string initialization. Returns SIF_None if so,
57 /// otherwise returns a StringInitFailureKind that describes why the
58 /// initialization would not work.
IsStringInit(Expr * Init,const ArrayType * AT,ASTContext & Context)59 static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT,
60                                           ASTContext &Context) {
61   if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT))
62     return SIF_Other;
63 
64   // See if this is a string literal or @encode.
65   Init = Init->IgnoreParens();
66 
67   // Handle @encode, which is a narrow string.
68   if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType())
69     return SIF_None;
70 
71   // Otherwise we can only handle string literals.
72   StringLiteral *SL = dyn_cast<StringLiteral>(Init);
73   if (!SL)
74     return SIF_Other;
75 
76   const QualType ElemTy =
77       Context.getCanonicalType(AT->getElementType()).getUnqualifiedType();
78 
79   switch (SL->getKind()) {
80   case StringLiteral::Ascii:
81   case StringLiteral::UTF8:
82     // char array can be initialized with a narrow string.
83     // Only allow char x[] = "foo";  not char x[] = L"foo";
84     if (ElemTy->isCharType())
85       return SIF_None;
86     if (IsWideCharCompatible(ElemTy, Context))
87       return SIF_NarrowStringIntoWideChar;
88     return SIF_Other;
89   // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15:
90   // "An array with element type compatible with a qualified or unqualified
91   // version of wchar_t, char16_t, or char32_t may be initialized by a wide
92   // string literal with the corresponding encoding prefix (L, u, or U,
93   // respectively), optionally enclosed in braces.
94   case StringLiteral::UTF16:
95     if (Context.typesAreCompatible(Context.Char16Ty, ElemTy))
96       return SIF_None;
97     if (ElemTy->isCharType())
98       return SIF_WideStringIntoChar;
99     if (IsWideCharCompatible(ElemTy, Context))
100       return SIF_IncompatWideStringIntoWideChar;
101     return SIF_Other;
102   case StringLiteral::UTF32:
103     if (Context.typesAreCompatible(Context.Char32Ty, ElemTy))
104       return SIF_None;
105     if (ElemTy->isCharType())
106       return SIF_WideStringIntoChar;
107     if (IsWideCharCompatible(ElemTy, Context))
108       return SIF_IncompatWideStringIntoWideChar;
109     return SIF_Other;
110   case StringLiteral::Wide:
111     if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy))
112       return SIF_None;
113     if (ElemTy->isCharType())
114       return SIF_WideStringIntoChar;
115     if (IsWideCharCompatible(ElemTy, Context))
116       return SIF_IncompatWideStringIntoWideChar;
117     return SIF_Other;
118   }
119 
120   llvm_unreachable("missed a StringLiteral kind?");
121 }
122 
IsStringInit(Expr * init,QualType declType,ASTContext & Context)123 static StringInitFailureKind IsStringInit(Expr *init, QualType declType,
124                                           ASTContext &Context) {
125   const ArrayType *arrayType = Context.getAsArrayType(declType);
126   if (!arrayType)
127     return SIF_Other;
128   return IsStringInit(init, arrayType, Context);
129 }
130 
131 /// Update the type of a string literal, including any surrounding parentheses,
132 /// to match the type of the object which it is initializing.
updateStringLiteralType(Expr * E,QualType Ty)133 static void updateStringLiteralType(Expr *E, QualType Ty) {
134   while (true) {
135     E->setType(Ty);
136     if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E))
137       break;
138     else if (ParenExpr *PE = dyn_cast<ParenExpr>(E))
139       E = PE->getSubExpr();
140     else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E))
141       E = UO->getSubExpr();
142     else if (GenericSelectionExpr *GSE = dyn_cast<GenericSelectionExpr>(E))
143       E = GSE->getResultExpr();
144     else
145       llvm_unreachable("unexpected expr in string literal init");
146   }
147 }
148 
CheckStringInit(Expr * Str,QualType & DeclT,const ArrayType * AT,Sema & S)149 static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT,
150                             Sema &S) {
151   // Get the length of the string as parsed.
152   uint64_t StrLength =
153     cast<ConstantArrayType>(Str->getType())->getSize().getZExtValue();
154 
155 
156   if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
157     // C99 6.7.8p14. We have an array of character type with unknown size
158     // being initialized to a string literal.
159     llvm::APInt ConstVal(32, StrLength);
160     // Return a new array type (C99 6.7.8p22).
161     DeclT = S.Context.getConstantArrayType(IAT->getElementType(),
162                                            ConstVal,
163                                            ArrayType::Normal, 0);
164     updateStringLiteralType(Str, DeclT);
165     return;
166   }
167 
168   const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
169 
170   // We have an array of character type with known size.  However,
171   // the size may be smaller or larger than the string we are initializing.
172   // FIXME: Avoid truncation for 64-bit length strings.
173   if (S.getLangOpts().CPlusPlus) {
174     if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) {
175       // For Pascal strings it's OK to strip off the terminating null character,
176       // so the example below is valid:
177       //
178       // unsigned char a[2] = "\pa";
179       if (SL->isPascal())
180         StrLength--;
181     }
182 
183     // [dcl.init.string]p2
184     if (StrLength > CAT->getSize().getZExtValue())
185       S.Diag(Str->getLocStart(),
186              diag::err_initializer_string_for_char_array_too_long)
187         << Str->getSourceRange();
188   } else {
189     // C99 6.7.8p14.
190     if (StrLength-1 > CAT->getSize().getZExtValue())
191       S.Diag(Str->getLocStart(),
192              diag::warn_initializer_string_for_char_array_too_long)
193         << Str->getSourceRange();
194   }
195 
196   // Set the type to the actual size that we are initializing.  If we have
197   // something like:
198   //   char x[1] = "foo";
199   // then this will set the string literal's type to char[1].
200   updateStringLiteralType(Str, DeclT);
201 }
202 
203 //===----------------------------------------------------------------------===//
204 // Semantic checking for initializer lists.
205 //===----------------------------------------------------------------------===//
206 
207 /// @brief Semantic checking for initializer lists.
208 ///
209 /// The InitListChecker class contains a set of routines that each
210 /// handle the initialization of a certain kind of entity, e.g.,
211 /// arrays, vectors, struct/union types, scalars, etc. The
212 /// InitListChecker itself performs a recursive walk of the subobject
213 /// structure of the type to be initialized, while stepping through
214 /// the initializer list one element at a time. The IList and Index
215 /// parameters to each of the Check* routines contain the active
216 /// (syntactic) initializer list and the index into that initializer
217 /// list that represents the current initializer. Each routine is
218 /// responsible for moving that Index forward as it consumes elements.
219 ///
220 /// Each Check* routine also has a StructuredList/StructuredIndex
221 /// arguments, which contains the current "structured" (semantic)
222 /// initializer list and the index into that initializer list where we
223 /// are copying initializers as we map them over to the semantic
224 /// list. Once we have completed our recursive walk of the subobject
225 /// structure, we will have constructed a full semantic initializer
226 /// list.
227 ///
228 /// C99 designators cause changes in the initializer list traversal,
229 /// because they make the initialization "jump" into a specific
230 /// subobject and then continue the initialization from that
231 /// point. CheckDesignatedInitializer() recursively steps into the
232 /// designated subobject and manages backing out the recursion to
233 /// initialize the subobjects after the one designated.
234 namespace {
235 class InitListChecker {
236   Sema &SemaRef;
237   bool hadError;
238   bool VerifyOnly; // no diagnostics, no structure building
239   llvm::DenseMap<InitListExpr *, InitListExpr *> SyntacticToSemantic;
240   InitListExpr *FullyStructuredList;
241 
242   void CheckImplicitInitList(const InitializedEntity &Entity,
243                              InitListExpr *ParentIList, QualType T,
244                              unsigned &Index, InitListExpr *StructuredList,
245                              unsigned &StructuredIndex);
246   void CheckExplicitInitList(const InitializedEntity &Entity,
247                              InitListExpr *IList, QualType &T,
248                              InitListExpr *StructuredList,
249                              bool TopLevelObject = false);
250   void CheckListElementTypes(const InitializedEntity &Entity,
251                              InitListExpr *IList, QualType &DeclType,
252                              bool SubobjectIsDesignatorContext,
253                              unsigned &Index,
254                              InitListExpr *StructuredList,
255                              unsigned &StructuredIndex,
256                              bool TopLevelObject = false);
257   void CheckSubElementType(const InitializedEntity &Entity,
258                            InitListExpr *IList, QualType ElemType,
259                            unsigned &Index,
260                            InitListExpr *StructuredList,
261                            unsigned &StructuredIndex);
262   void CheckComplexType(const InitializedEntity &Entity,
263                         InitListExpr *IList, QualType DeclType,
264                         unsigned &Index,
265                         InitListExpr *StructuredList,
266                         unsigned &StructuredIndex);
267   void CheckScalarType(const InitializedEntity &Entity,
268                        InitListExpr *IList, QualType DeclType,
269                        unsigned &Index,
270                        InitListExpr *StructuredList,
271                        unsigned &StructuredIndex);
272   void CheckReferenceType(const InitializedEntity &Entity,
273                           InitListExpr *IList, QualType DeclType,
274                           unsigned &Index,
275                           InitListExpr *StructuredList,
276                           unsigned &StructuredIndex);
277   void CheckVectorType(const InitializedEntity &Entity,
278                        InitListExpr *IList, QualType DeclType, unsigned &Index,
279                        InitListExpr *StructuredList,
280                        unsigned &StructuredIndex);
281   void CheckStructUnionTypes(const InitializedEntity &Entity,
282                              InitListExpr *IList, QualType DeclType,
283                              RecordDecl::field_iterator Field,
284                              bool SubobjectIsDesignatorContext, unsigned &Index,
285                              InitListExpr *StructuredList,
286                              unsigned &StructuredIndex,
287                              bool TopLevelObject = false);
288   void CheckArrayType(const InitializedEntity &Entity,
289                       InitListExpr *IList, QualType &DeclType,
290                       llvm::APSInt elementIndex,
291                       bool SubobjectIsDesignatorContext, unsigned &Index,
292                       InitListExpr *StructuredList,
293                       unsigned &StructuredIndex);
294   bool CheckDesignatedInitializer(const InitializedEntity &Entity,
295                                   InitListExpr *IList, DesignatedInitExpr *DIE,
296                                   unsigned DesigIdx,
297                                   QualType &CurrentObjectType,
298                                   RecordDecl::field_iterator *NextField,
299                                   llvm::APSInt *NextElementIndex,
300                                   unsigned &Index,
301                                   InitListExpr *StructuredList,
302                                   unsigned &StructuredIndex,
303                                   bool FinishSubobjectInit,
304                                   bool TopLevelObject);
305   InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
306                                            QualType CurrentObjectType,
307                                            InitListExpr *StructuredList,
308                                            unsigned StructuredIndex,
309                                            SourceRange InitRange);
310   void UpdateStructuredListElement(InitListExpr *StructuredList,
311                                    unsigned &StructuredIndex,
312                                    Expr *expr);
313   int numArrayElements(QualType DeclType);
314   int numStructUnionElements(QualType DeclType);
315 
316   static ExprResult PerformEmptyInit(Sema &SemaRef,
317                                      SourceLocation Loc,
318                                      const InitializedEntity &Entity,
319                                      bool VerifyOnly);
320   void FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
321                                const InitializedEntity &ParentEntity,
322                                InitListExpr *ILE, bool &RequiresSecondPass);
323   void FillInEmptyInitializations(const InitializedEntity &Entity,
324                                   InitListExpr *ILE, bool &RequiresSecondPass);
325   bool CheckFlexibleArrayInit(const InitializedEntity &Entity,
326                               Expr *InitExpr, FieldDecl *Field,
327                               bool TopLevelObject);
328   void CheckEmptyInitializable(const InitializedEntity &Entity,
329                                SourceLocation Loc);
330 
331 public:
332   InitListChecker(Sema &S, const InitializedEntity &Entity,
333                   InitListExpr *IL, QualType &T, bool VerifyOnly);
HadError()334   bool HadError() { return hadError; }
335 
336   // @brief Retrieves the fully-structured initializer list used for
337   // semantic analysis and code generation.
getFullyStructuredList() const338   InitListExpr *getFullyStructuredList() const { return FullyStructuredList; }
339 };
340 } // end anonymous namespace
341 
PerformEmptyInit(Sema & SemaRef,SourceLocation Loc,const InitializedEntity & Entity,bool VerifyOnly)342 ExprResult InitListChecker::PerformEmptyInit(Sema &SemaRef,
343                                              SourceLocation Loc,
344                                              const InitializedEntity &Entity,
345                                              bool VerifyOnly) {
346   InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc,
347                                                             true);
348   MultiExprArg SubInit;
349   Expr *InitExpr;
350   InitListExpr DummyInitList(SemaRef.Context, Loc, None, Loc);
351 
352   // C++ [dcl.init.aggr]p7:
353   //   If there are fewer initializer-clauses in the list than there are
354   //   members in the aggregate, then each member not explicitly initialized
355   //   ...
356   bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 &&
357       Entity.getType()->getBaseElementTypeUnsafe()->isRecordType();
358   if (EmptyInitList) {
359     // C++1y / DR1070:
360     //   shall be initialized [...] from an empty initializer list.
361     //
362     // We apply the resolution of this DR to C++11 but not C++98, since C++98
363     // does not have useful semantics for initialization from an init list.
364     // We treat this as copy-initialization, because aggregate initialization
365     // always performs copy-initialization on its elements.
366     //
367     // Only do this if we're initializing a class type, to avoid filling in
368     // the initializer list where possible.
369     InitExpr = VerifyOnly ? &DummyInitList : new (SemaRef.Context)
370                    InitListExpr(SemaRef.Context, Loc, None, Loc);
371     InitExpr->setType(SemaRef.Context.VoidTy);
372     SubInit = InitExpr;
373     Kind = InitializationKind::CreateCopy(Loc, Loc);
374   } else {
375     // C++03:
376     //   shall be value-initialized.
377   }
378 
379   InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit);
380   // libstdc++4.6 marks the vector default constructor as explicit in
381   // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case.
382   // stlport does so too. Look for std::__debug for libstdc++, and for
383   // std:: for stlport.  This is effectively a compiler-side implementation of
384   // LWG2193.
385   if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() ==
386           InitializationSequence::FK_ExplicitConstructor) {
387     OverloadCandidateSet::iterator Best;
388     OverloadingResult O =
389         InitSeq.getFailedCandidateSet()
390             .BestViableFunction(SemaRef, Kind.getLocation(), Best);
391     (void)O;
392     assert(O == OR_Success && "Inconsistent overload resolution");
393     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
394     CXXRecordDecl *R = CtorDecl->getParent();
395 
396     if (CtorDecl->getMinRequiredArguments() == 0 &&
397         CtorDecl->isExplicit() && R->getDeclName() &&
398         SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) {
399 
400 
401       bool IsInStd = false;
402       for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext());
403            ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) {
404         if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND))
405           IsInStd = true;
406       }
407 
408       if (IsInStd && llvm::StringSwitch<bool>(R->getName())
409               .Cases("basic_string", "deque", "forward_list", true)
410               .Cases("list", "map", "multimap", "multiset", true)
411               .Cases("priority_queue", "queue", "set", "stack", true)
412               .Cases("unordered_map", "unordered_set", "vector", true)
413               .Default(false)) {
414         InitSeq.InitializeFrom(
415             SemaRef, Entity,
416             InitializationKind::CreateValue(Loc, Loc, Loc, true),
417             MultiExprArg(), /*TopLevelOfInitList=*/false);
418         // Emit a warning for this.  System header warnings aren't shown
419         // by default, but people working on system headers should see it.
420         if (!VerifyOnly) {
421           SemaRef.Diag(CtorDecl->getLocation(),
422                        diag::warn_invalid_initializer_from_system_header);
423           SemaRef.Diag(Entity.getDecl()->getLocation(),
424                        diag::note_used_in_initialization_here);
425         }
426       }
427     }
428   }
429   if (!InitSeq) {
430     if (!VerifyOnly) {
431       InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit);
432       if (Entity.getKind() == InitializedEntity::EK_Member)
433         SemaRef.Diag(Entity.getDecl()->getLocation(),
434                      diag::note_in_omitted_aggregate_initializer)
435           << /*field*/1 << Entity.getDecl();
436       else if (Entity.getKind() == InitializedEntity::EK_ArrayElement)
437         SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer)
438           << /*array element*/0 << Entity.getElementIndex();
439     }
440     return ExprError();
441   }
442 
443   return VerifyOnly ? ExprResult(static_cast<Expr *>(nullptr))
444                     : InitSeq.Perform(SemaRef, Entity, Kind, SubInit);
445 }
446 
CheckEmptyInitializable(const InitializedEntity & Entity,SourceLocation Loc)447 void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity,
448                                               SourceLocation Loc) {
449   assert(VerifyOnly &&
450          "CheckEmptyInitializable is only inteded for verification mode.");
451   if (PerformEmptyInit(SemaRef, Loc, Entity, /*VerifyOnly*/true).isInvalid())
452     hadError = true;
453 }
454 
FillInEmptyInitForField(unsigned Init,FieldDecl * Field,const InitializedEntity & ParentEntity,InitListExpr * ILE,bool & RequiresSecondPass)455 void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field,
456                                         const InitializedEntity &ParentEntity,
457                                               InitListExpr *ILE,
458                                               bool &RequiresSecondPass) {
459   SourceLocation Loc = ILE->getLocEnd();
460   unsigned NumInits = ILE->getNumInits();
461   InitializedEntity MemberEntity
462     = InitializedEntity::InitializeMember(Field, &ParentEntity);
463   if (Init >= NumInits || !ILE->getInit(Init)) {
464     // C++1y [dcl.init.aggr]p7:
465     //   If there are fewer initializer-clauses in the list than there are
466     //   members in the aggregate, then each member not explicitly initialized
467     //   shall be initialized from its brace-or-equal-initializer [...]
468     if (Field->hasInClassInitializer()) {
469       Expr *DIE = CXXDefaultInitExpr::Create(SemaRef.Context, Loc, Field);
470       if (Init < NumInits)
471         ILE->setInit(Init, DIE);
472       else {
473         ILE->updateInit(SemaRef.Context, Init, DIE);
474         RequiresSecondPass = true;
475       }
476       return;
477     }
478 
479     if (Field->getType()->isReferenceType()) {
480       // C++ [dcl.init.aggr]p9:
481       //   If an incomplete or empty initializer-list leaves a
482       //   member of reference type uninitialized, the program is
483       //   ill-formed.
484       SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized)
485         << Field->getType()
486         << ILE->getSyntacticForm()->getSourceRange();
487       SemaRef.Diag(Field->getLocation(),
488                    diag::note_uninit_reference_member);
489       hadError = true;
490       return;
491     }
492 
493     ExprResult MemberInit = PerformEmptyInit(SemaRef, Loc, MemberEntity,
494                                              /*VerifyOnly*/false);
495     if (MemberInit.isInvalid()) {
496       hadError = true;
497       return;
498     }
499 
500     if (hadError) {
501       // Do nothing
502     } else if (Init < NumInits) {
503       ILE->setInit(Init, MemberInit.getAs<Expr>());
504     } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) {
505       // Empty initialization requires a constructor call, so
506       // extend the initializer list to include the constructor
507       // call and make a note that we'll need to take another pass
508       // through the initializer list.
509       ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>());
510       RequiresSecondPass = true;
511     }
512   } else if (InitListExpr *InnerILE
513                = dyn_cast<InitListExpr>(ILE->getInit(Init)))
514     FillInEmptyInitializations(MemberEntity, InnerILE,
515                                RequiresSecondPass);
516 }
517 
518 /// Recursively replaces NULL values within the given initializer list
519 /// with expressions that perform value-initialization of the
520 /// appropriate type.
521 void
FillInEmptyInitializations(const InitializedEntity & Entity,InitListExpr * ILE,bool & RequiresSecondPass)522 InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity,
523                                             InitListExpr *ILE,
524                                             bool &RequiresSecondPass) {
525   assert((ILE->getType() != SemaRef.Context.VoidTy) &&
526          "Should not have void type");
527 
528   if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
529     const RecordDecl *RDecl = RType->getDecl();
530     if (RDecl->isUnion() && ILE->getInitializedFieldInUnion())
531       FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(),
532                               Entity, ILE, RequiresSecondPass);
533     else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) &&
534              cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) {
535       for (auto *Field : RDecl->fields()) {
536         if (Field->hasInClassInitializer()) {
537           FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass);
538           break;
539         }
540       }
541     } else {
542       unsigned Init = 0;
543       for (auto *Field : RDecl->fields()) {
544         if (Field->isUnnamedBitfield())
545           continue;
546 
547         if (hadError)
548           return;
549 
550         FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass);
551         if (hadError)
552           return;
553 
554         ++Init;
555 
556         // Only look at the first initialization of a union.
557         if (RDecl->isUnion())
558           break;
559       }
560     }
561 
562     return;
563   }
564 
565   QualType ElementType;
566 
567   InitializedEntity ElementEntity = Entity;
568   unsigned NumInits = ILE->getNumInits();
569   unsigned NumElements = NumInits;
570   if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) {
571     ElementType = AType->getElementType();
572     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType))
573       NumElements = CAType->getSize().getZExtValue();
574     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
575                                                          0, Entity);
576   } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) {
577     ElementType = VType->getElementType();
578     NumElements = VType->getNumElements();
579     ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context,
580                                                          0, Entity);
581   } else
582     ElementType = ILE->getType();
583 
584   for (unsigned Init = 0; Init != NumElements; ++Init) {
585     if (hadError)
586       return;
587 
588     if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement ||
589         ElementEntity.getKind() == InitializedEntity::EK_VectorElement)
590       ElementEntity.setElementIndex(Init);
591 
592     Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr);
593     if (!InitExpr && !ILE->hasArrayFiller()) {
594       ExprResult ElementInit = PerformEmptyInit(SemaRef, ILE->getLocEnd(),
595                                                 ElementEntity,
596                                                 /*VerifyOnly*/false);
597       if (ElementInit.isInvalid()) {
598         hadError = true;
599         return;
600       }
601 
602       if (hadError) {
603         // Do nothing
604       } else if (Init < NumInits) {
605         // For arrays, just set the expression used for value-initialization
606         // of the "holes" in the array.
607         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement)
608           ILE->setArrayFiller(ElementInit.getAs<Expr>());
609         else
610           ILE->setInit(Init, ElementInit.getAs<Expr>());
611       } else {
612         // For arrays, just set the expression used for value-initialization
613         // of the rest of elements and exit.
614         if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) {
615           ILE->setArrayFiller(ElementInit.getAs<Expr>());
616           return;
617         }
618 
619         if (!isa<ImplicitValueInitExpr>(ElementInit.get())) {
620           // Empty initialization requires a constructor call, so
621           // extend the initializer list to include the constructor
622           // call and make a note that we'll need to take another pass
623           // through the initializer list.
624           ILE->updateInit(SemaRef.Context, Init, ElementInit.getAs<Expr>());
625           RequiresSecondPass = true;
626         }
627       }
628     } else if (InitListExpr *InnerILE
629                  = dyn_cast_or_null<InitListExpr>(InitExpr))
630       FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass);
631   }
632 }
633 
634 
InitListChecker(Sema & S,const InitializedEntity & Entity,InitListExpr * IL,QualType & T,bool VerifyOnly)635 InitListChecker::InitListChecker(Sema &S, const InitializedEntity &Entity,
636                                  InitListExpr *IL, QualType &T,
637                                  bool VerifyOnly)
638   : SemaRef(S), VerifyOnly(VerifyOnly) {
639   hadError = false;
640 
641   FullyStructuredList =
642       getStructuredSubobjectInit(IL, 0, T, nullptr, 0, IL->getSourceRange());
643   CheckExplicitInitList(Entity, IL, T, FullyStructuredList,
644                         /*TopLevelObject=*/true);
645 
646   if (!hadError && !VerifyOnly) {
647     bool RequiresSecondPass = false;
648     FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass);
649     if (RequiresSecondPass && !hadError)
650       FillInEmptyInitializations(Entity, FullyStructuredList,
651                                  RequiresSecondPass);
652   }
653 }
654 
numArrayElements(QualType DeclType)655 int InitListChecker::numArrayElements(QualType DeclType) {
656   // FIXME: use a proper constant
657   int maxElements = 0x7FFFFFFF;
658   if (const ConstantArrayType *CAT =
659         SemaRef.Context.getAsConstantArrayType(DeclType)) {
660     maxElements = static_cast<int>(CAT->getSize().getZExtValue());
661   }
662   return maxElements;
663 }
664 
numStructUnionElements(QualType DeclType)665 int InitListChecker::numStructUnionElements(QualType DeclType) {
666   RecordDecl *structDecl = DeclType->getAs<RecordType>()->getDecl();
667   int InitializableMembers = 0;
668   for (const auto *Field : structDecl->fields())
669     if (!Field->isUnnamedBitfield())
670       ++InitializableMembers;
671 
672   if (structDecl->isUnion())
673     return std::min(InitializableMembers, 1);
674   return InitializableMembers - structDecl->hasFlexibleArrayMember();
675 }
676 
677 /// Check whether the range of the initializer \p ParentIList from element
678 /// \p Index onwards can be used to initialize an object of type \p T. Update
679 /// \p Index to indicate how many elements of the list were consumed.
680 ///
681 /// This also fills in \p StructuredList, from element \p StructuredIndex
682 /// onwards, with the fully-braced, desugared form of the initialization.
CheckImplicitInitList(const InitializedEntity & Entity,InitListExpr * ParentIList,QualType T,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)683 void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity,
684                                             InitListExpr *ParentIList,
685                                             QualType T, unsigned &Index,
686                                             InitListExpr *StructuredList,
687                                             unsigned &StructuredIndex) {
688   int maxElements = 0;
689 
690   if (T->isArrayType())
691     maxElements = numArrayElements(T);
692   else if (T->isRecordType())
693     maxElements = numStructUnionElements(T);
694   else if (T->isVectorType())
695     maxElements = T->getAs<VectorType>()->getNumElements();
696   else
697     llvm_unreachable("CheckImplicitInitList(): Illegal type");
698 
699   if (maxElements == 0) {
700     if (!VerifyOnly)
701       SemaRef.Diag(ParentIList->getInit(Index)->getLocStart(),
702                    diag::err_implicit_empty_initializer);
703     ++Index;
704     hadError = true;
705     return;
706   }
707 
708   // Build a structured initializer list corresponding to this subobject.
709   InitListExpr *StructuredSubobjectInitList
710     = getStructuredSubobjectInit(ParentIList, Index, T, StructuredList,
711                                  StructuredIndex,
712           SourceRange(ParentIList->getInit(Index)->getLocStart(),
713                       ParentIList->getSourceRange().getEnd()));
714   unsigned StructuredSubobjectInitIndex = 0;
715 
716   // Check the element types and build the structural subobject.
717   unsigned StartIndex = Index;
718   CheckListElementTypes(Entity, ParentIList, T,
719                         /*SubobjectIsDesignatorContext=*/false, Index,
720                         StructuredSubobjectInitList,
721                         StructuredSubobjectInitIndex);
722 
723   if (!VerifyOnly) {
724     StructuredSubobjectInitList->setType(T);
725 
726     unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1);
727     // Update the structured sub-object initializer so that it's ending
728     // range corresponds with the end of the last initializer it used.
729     if (EndIndex < ParentIList->getNumInits()) {
730       SourceLocation EndLoc
731         = ParentIList->getInit(EndIndex)->getSourceRange().getEnd();
732       StructuredSubobjectInitList->setRBraceLoc(EndLoc);
733     }
734 
735     // Complain about missing braces.
736     if (T->isArrayType() || T->isRecordType()) {
737       SemaRef.Diag(StructuredSubobjectInitList->getLocStart(),
738                    diag::warn_missing_braces)
739           << StructuredSubobjectInitList->getSourceRange()
740           << FixItHint::CreateInsertion(
741                  StructuredSubobjectInitList->getLocStart(), "{")
742           << FixItHint::CreateInsertion(
743                  SemaRef.getLocForEndOfToken(
744                      StructuredSubobjectInitList->getLocEnd()),
745                  "}");
746     }
747   }
748 }
749 
750 /// Check whether the initializer \p IList (that was written with explicit
751 /// braces) can be used to initialize an object of type \p T.
752 ///
753 /// This also fills in \p StructuredList with the fully-braced, desugared
754 /// form of the initialization.
CheckExplicitInitList(const InitializedEntity & Entity,InitListExpr * IList,QualType & T,InitListExpr * StructuredList,bool TopLevelObject)755 void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity,
756                                             InitListExpr *IList, QualType &T,
757                                             InitListExpr *StructuredList,
758                                             bool TopLevelObject) {
759   if (!VerifyOnly) {
760     SyntacticToSemantic[IList] = StructuredList;
761     StructuredList->setSyntacticForm(IList);
762   }
763 
764   unsigned Index = 0, StructuredIndex = 0;
765   CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true,
766                         Index, StructuredList, StructuredIndex, TopLevelObject);
767   if (!VerifyOnly) {
768     QualType ExprTy = T;
769     if (!ExprTy->isArrayType())
770       ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context);
771     IList->setType(ExprTy);
772     StructuredList->setType(ExprTy);
773   }
774   if (hadError)
775     return;
776 
777   if (Index < IList->getNumInits()) {
778     // We have leftover initializers
779     if (VerifyOnly) {
780       if (SemaRef.getLangOpts().CPlusPlus ||
781           (SemaRef.getLangOpts().OpenCL &&
782            IList->getType()->isVectorType())) {
783         hadError = true;
784       }
785       return;
786     }
787 
788     if (StructuredIndex == 1 &&
789         IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) ==
790             SIF_None) {
791       unsigned DK = diag::warn_excess_initializers_in_char_array_initializer;
792       if (SemaRef.getLangOpts().CPlusPlus) {
793         DK = diag::err_excess_initializers_in_char_array_initializer;
794         hadError = true;
795       }
796       // Special-case
797       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
798         << IList->getInit(Index)->getSourceRange();
799     } else if (!T->isIncompleteType()) {
800       // Don't complain for incomplete types, since we'll get an error
801       // elsewhere
802       QualType CurrentObjectType = StructuredList->getType();
803       int initKind =
804         CurrentObjectType->isArrayType()? 0 :
805         CurrentObjectType->isVectorType()? 1 :
806         CurrentObjectType->isScalarType()? 2 :
807         CurrentObjectType->isUnionType()? 3 :
808         4;
809 
810       unsigned DK = diag::warn_excess_initializers;
811       if (SemaRef.getLangOpts().CPlusPlus) {
812         DK = diag::err_excess_initializers;
813         hadError = true;
814       }
815       if (SemaRef.getLangOpts().OpenCL && initKind == 1) {
816         DK = diag::err_excess_initializers;
817         hadError = true;
818       }
819 
820       SemaRef.Diag(IList->getInit(Index)->getLocStart(), DK)
821         << initKind << IList->getInit(Index)->getSourceRange();
822     }
823   }
824 
825   if (!VerifyOnly && T->isScalarType() && IList->getNumInits() == 1 &&
826       !TopLevelObject)
827     SemaRef.Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init)
828       << IList->getSourceRange()
829       << FixItHint::CreateRemoval(IList->getLocStart())
830       << FixItHint::CreateRemoval(IList->getLocEnd());
831 }
832 
CheckListElementTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)833 void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity,
834                                             InitListExpr *IList,
835                                             QualType &DeclType,
836                                             bool SubobjectIsDesignatorContext,
837                                             unsigned &Index,
838                                             InitListExpr *StructuredList,
839                                             unsigned &StructuredIndex,
840                                             bool TopLevelObject) {
841   if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) {
842     // Explicitly braced initializer for complex type can be real+imaginary
843     // parts.
844     CheckComplexType(Entity, IList, DeclType, Index,
845                      StructuredList, StructuredIndex);
846   } else if (DeclType->isScalarType()) {
847     CheckScalarType(Entity, IList, DeclType, Index,
848                     StructuredList, StructuredIndex);
849   } else if (DeclType->isVectorType()) {
850     CheckVectorType(Entity, IList, DeclType, Index,
851                     StructuredList, StructuredIndex);
852   } else if (DeclType->isRecordType()) {
853     assert(DeclType->isAggregateType() &&
854            "non-aggregate records should be handed in CheckSubElementType");
855     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
856     CheckStructUnionTypes(Entity, IList, DeclType, RD->field_begin(),
857                           SubobjectIsDesignatorContext, Index,
858                           StructuredList, StructuredIndex,
859                           TopLevelObject);
860   } else if (DeclType->isArrayType()) {
861     llvm::APSInt Zero(
862                     SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()),
863                     false);
864     CheckArrayType(Entity, IList, DeclType, Zero,
865                    SubobjectIsDesignatorContext, Index,
866                    StructuredList, StructuredIndex);
867   } else if (DeclType->isVoidType() || DeclType->isFunctionType()) {
868     // This type is invalid, issue a diagnostic.
869     ++Index;
870     if (!VerifyOnly)
871       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
872         << DeclType;
873     hadError = true;
874   } else if (DeclType->isReferenceType()) {
875     CheckReferenceType(Entity, IList, DeclType, Index,
876                        StructuredList, StructuredIndex);
877   } else if (DeclType->isObjCObjectType()) {
878     if (!VerifyOnly)
879       SemaRef.Diag(IList->getLocStart(), diag::err_init_objc_class)
880         << DeclType;
881     hadError = true;
882   } else {
883     if (!VerifyOnly)
884       SemaRef.Diag(IList->getLocStart(), diag::err_illegal_initializer_type)
885         << DeclType;
886     hadError = true;
887   }
888 }
889 
CheckSubElementType(const InitializedEntity & Entity,InitListExpr * IList,QualType ElemType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)890 void InitListChecker::CheckSubElementType(const InitializedEntity &Entity,
891                                           InitListExpr *IList,
892                                           QualType ElemType,
893                                           unsigned &Index,
894                                           InitListExpr *StructuredList,
895                                           unsigned &StructuredIndex) {
896   Expr *expr = IList->getInit(Index);
897 
898   if (ElemType->isReferenceType())
899     return CheckReferenceType(Entity, IList, ElemType, Index,
900                               StructuredList, StructuredIndex);
901 
902   if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
903     if (!ElemType->isRecordType() || ElemType->isAggregateType()) {
904       InitListExpr *InnerStructuredList
905         = getStructuredSubobjectInit(IList, Index, ElemType,
906                                      StructuredList, StructuredIndex,
907                                      SubInitList->getSourceRange());
908       CheckExplicitInitList(Entity, SubInitList, ElemType,
909                             InnerStructuredList);
910       ++StructuredIndex;
911       ++Index;
912       return;
913     }
914     assert(SemaRef.getLangOpts().CPlusPlus &&
915            "non-aggregate records are only possible in C++");
916     // C++ initialization is handled later.
917   }
918 
919   // FIXME: Need to handle atomic aggregate types with implicit init lists.
920   if (ElemType->isScalarType() || ElemType->isAtomicType())
921     return CheckScalarType(Entity, IList, ElemType, Index,
922                            StructuredList, StructuredIndex);
923 
924   assert((ElemType->isRecordType() || ElemType->isVectorType() ||
925           ElemType->isArrayType()) && "Unexpected type");
926 
927   if (const ArrayType *arrayType = SemaRef.Context.getAsArrayType(ElemType)) {
928     // arrayType can be incomplete if we're initializing a flexible
929     // array member.  There's nothing we can do with the completed
930     // type here, though.
931 
932     if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) {
933       if (!VerifyOnly) {
934         CheckStringInit(expr, ElemType, arrayType, SemaRef);
935         UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
936       }
937       ++Index;
938       return;
939     }
940 
941     // Fall through for subaggregate initialization.
942 
943   } else if (SemaRef.getLangOpts().CPlusPlus) {
944     // C++ [dcl.init.aggr]p12:
945     //   All implicit type conversions (clause 4) are considered when
946     //   initializing the aggregate member with an initializer from
947     //   an initializer-list. If the initializer can initialize a
948     //   member, the member is initialized. [...]
949 
950     // FIXME: Better EqualLoc?
951     InitializationKind Kind =
952       InitializationKind::CreateCopy(expr->getLocStart(), SourceLocation());
953     InitializationSequence Seq(SemaRef, Entity, Kind, expr);
954 
955     if (Seq) {
956       if (!VerifyOnly) {
957         ExprResult Result =
958           Seq.Perform(SemaRef, Entity, Kind, expr);
959         if (Result.isInvalid())
960           hadError = true;
961 
962         UpdateStructuredListElement(StructuredList, StructuredIndex,
963                                     Result.getAs<Expr>());
964       }
965       ++Index;
966       return;
967     }
968 
969     // Fall through for subaggregate initialization
970   } else {
971     // C99 6.7.8p13:
972     //
973     //   The initializer for a structure or union object that has
974     //   automatic storage duration shall be either an initializer
975     //   list as described below, or a single expression that has
976     //   compatible structure or union type. In the latter case, the
977     //   initial value of the object, including unnamed members, is
978     //   that of the expression.
979     ExprResult ExprRes = expr;
980     if ((ElemType->isRecordType() || ElemType->isVectorType()) &&
981         SemaRef.CheckSingleAssignmentConstraints(ElemType, ExprRes,
982                                                  !VerifyOnly)
983           != Sema::Incompatible) {
984       if (ExprRes.isInvalid())
985         hadError = true;
986       else {
987         ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get());
988           if (ExprRes.isInvalid())
989             hadError = true;
990       }
991       UpdateStructuredListElement(StructuredList, StructuredIndex,
992                                   ExprRes.getAs<Expr>());
993       ++Index;
994       return;
995     }
996     ExprRes.get();
997     // Fall through for subaggregate initialization
998   }
999 
1000   // C++ [dcl.init.aggr]p12:
1001   //
1002   //   [...] Otherwise, if the member is itself a non-empty
1003   //   subaggregate, brace elision is assumed and the initializer is
1004   //   considered for the initialization of the first member of
1005   //   the subaggregate.
1006   if (!SemaRef.getLangOpts().OpenCL &&
1007       (ElemType->isAggregateType() || ElemType->isVectorType())) {
1008     CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList,
1009                           StructuredIndex);
1010     ++StructuredIndex;
1011   } else {
1012     if (!VerifyOnly) {
1013       // We cannot initialize this element, so let
1014       // PerformCopyInitialization produce the appropriate diagnostic.
1015       SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr,
1016                                         /*TopLevelOfInitList=*/true);
1017     }
1018     hadError = true;
1019     ++Index;
1020     ++StructuredIndex;
1021   }
1022 }
1023 
CheckComplexType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1024 void InitListChecker::CheckComplexType(const InitializedEntity &Entity,
1025                                        InitListExpr *IList, QualType DeclType,
1026                                        unsigned &Index,
1027                                        InitListExpr *StructuredList,
1028                                        unsigned &StructuredIndex) {
1029   assert(Index == 0 && "Index in explicit init list must be zero");
1030 
1031   // As an extension, clang supports complex initializers, which initialize
1032   // a complex number component-wise.  When an explicit initializer list for
1033   // a complex number contains two two initializers, this extension kicks in:
1034   // it exepcts the initializer list to contain two elements convertible to
1035   // the element type of the complex type. The first element initializes
1036   // the real part, and the second element intitializes the imaginary part.
1037 
1038   if (IList->getNumInits() != 2)
1039     return CheckScalarType(Entity, IList, DeclType, Index, StructuredList,
1040                            StructuredIndex);
1041 
1042   // This is an extension in C.  (The builtin _Complex type does not exist
1043   // in the C++ standard.)
1044   if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly)
1045     SemaRef.Diag(IList->getLocStart(), diag::ext_complex_component_init)
1046       << IList->getSourceRange();
1047 
1048   // Initialize the complex number.
1049   QualType elementType = DeclType->getAs<ComplexType>()->getElementType();
1050   InitializedEntity ElementEntity =
1051     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1052 
1053   for (unsigned i = 0; i < 2; ++i) {
1054     ElementEntity.setElementIndex(Index);
1055     CheckSubElementType(ElementEntity, IList, elementType, Index,
1056                         StructuredList, StructuredIndex);
1057   }
1058 }
1059 
1060 
CheckScalarType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1061 void InitListChecker::CheckScalarType(const InitializedEntity &Entity,
1062                                       InitListExpr *IList, QualType DeclType,
1063                                       unsigned &Index,
1064                                       InitListExpr *StructuredList,
1065                                       unsigned &StructuredIndex) {
1066   if (Index >= IList->getNumInits()) {
1067     if (!VerifyOnly)
1068       SemaRef.Diag(IList->getLocStart(),
1069                    SemaRef.getLangOpts().CPlusPlus11 ?
1070                      diag::warn_cxx98_compat_empty_scalar_initializer :
1071                      diag::err_empty_scalar_initializer)
1072         << IList->getSourceRange();
1073     hadError = !SemaRef.getLangOpts().CPlusPlus11;
1074     ++Index;
1075     ++StructuredIndex;
1076     return;
1077   }
1078 
1079   Expr *expr = IList->getInit(Index);
1080   if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) {
1081     // FIXME: This is invalid, and accepting it causes overload resolution
1082     // to pick the wrong overload in some corner cases.
1083     if (!VerifyOnly)
1084       SemaRef.Diag(SubIList->getLocStart(),
1085                    diag::ext_many_braces_around_scalar_init)
1086         << SubIList->getSourceRange();
1087 
1088     CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList,
1089                     StructuredIndex);
1090     return;
1091   } else if (isa<DesignatedInitExpr>(expr)) {
1092     if (!VerifyOnly)
1093       SemaRef.Diag(expr->getLocStart(),
1094                    diag::err_designator_for_scalar_init)
1095         << DeclType << expr->getSourceRange();
1096     hadError = true;
1097     ++Index;
1098     ++StructuredIndex;
1099     return;
1100   }
1101 
1102   if (VerifyOnly) {
1103     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1104       hadError = true;
1105     ++Index;
1106     return;
1107   }
1108 
1109   ExprResult Result =
1110     SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1111                                       /*TopLevelOfInitList=*/true);
1112 
1113   Expr *ResultExpr = nullptr;
1114 
1115   if (Result.isInvalid())
1116     hadError = true; // types weren't compatible.
1117   else {
1118     ResultExpr = Result.getAs<Expr>();
1119 
1120     if (ResultExpr != expr) {
1121       // The type was promoted, update initializer list.
1122       IList->setInit(Index, ResultExpr);
1123     }
1124   }
1125   if (hadError)
1126     ++StructuredIndex;
1127   else
1128     UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr);
1129   ++Index;
1130 }
1131 
CheckReferenceType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1132 void InitListChecker::CheckReferenceType(const InitializedEntity &Entity,
1133                                          InitListExpr *IList, QualType DeclType,
1134                                          unsigned &Index,
1135                                          InitListExpr *StructuredList,
1136                                          unsigned &StructuredIndex) {
1137   if (Index >= IList->getNumInits()) {
1138     // FIXME: It would be wonderful if we could point at the actual member. In
1139     // general, it would be useful to pass location information down the stack,
1140     // so that we know the location (or decl) of the "current object" being
1141     // initialized.
1142     if (!VerifyOnly)
1143       SemaRef.Diag(IList->getLocStart(),
1144                     diag::err_init_reference_member_uninitialized)
1145         << DeclType
1146         << IList->getSourceRange();
1147     hadError = true;
1148     ++Index;
1149     ++StructuredIndex;
1150     return;
1151   }
1152 
1153   Expr *expr = IList->getInit(Index);
1154   if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) {
1155     if (!VerifyOnly)
1156       SemaRef.Diag(IList->getLocStart(), diag::err_init_non_aggr_init_list)
1157         << DeclType << IList->getSourceRange();
1158     hadError = true;
1159     ++Index;
1160     ++StructuredIndex;
1161     return;
1162   }
1163 
1164   if (VerifyOnly) {
1165     if (!SemaRef.CanPerformCopyInitialization(Entity,expr))
1166       hadError = true;
1167     ++Index;
1168     return;
1169   }
1170 
1171   ExprResult Result =
1172       SemaRef.PerformCopyInitialization(Entity, expr->getLocStart(), expr,
1173                                         /*TopLevelOfInitList=*/true);
1174 
1175   if (Result.isInvalid())
1176     hadError = true;
1177 
1178   expr = Result.getAs<Expr>();
1179   IList->setInit(Index, expr);
1180 
1181   if (hadError)
1182     ++StructuredIndex;
1183   else
1184     UpdateStructuredListElement(StructuredList, StructuredIndex, expr);
1185   ++Index;
1186 }
1187 
CheckVectorType(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1188 void InitListChecker::CheckVectorType(const InitializedEntity &Entity,
1189                                       InitListExpr *IList, QualType DeclType,
1190                                       unsigned &Index,
1191                                       InitListExpr *StructuredList,
1192                                       unsigned &StructuredIndex) {
1193   const VectorType *VT = DeclType->getAs<VectorType>();
1194   unsigned maxElements = VT->getNumElements();
1195   unsigned numEltsInit = 0;
1196   QualType elementType = VT->getElementType();
1197 
1198   if (Index >= IList->getNumInits()) {
1199     // Make sure the element type can be value-initialized.
1200     if (VerifyOnly)
1201       CheckEmptyInitializable(
1202           InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity),
1203           IList->getLocEnd());
1204     return;
1205   }
1206 
1207   if (!SemaRef.getLangOpts().OpenCL) {
1208     // If the initializing element is a vector, try to copy-initialize
1209     // instead of breaking it apart (which is doomed to failure anyway).
1210     Expr *Init = IList->getInit(Index);
1211     if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) {
1212       if (VerifyOnly) {
1213         if (!SemaRef.CanPerformCopyInitialization(Entity, Init))
1214           hadError = true;
1215         ++Index;
1216         return;
1217       }
1218 
1219   ExprResult Result =
1220       SemaRef.PerformCopyInitialization(Entity, Init->getLocStart(), Init,
1221                                         /*TopLevelOfInitList=*/true);
1222 
1223       Expr *ResultExpr = nullptr;
1224       if (Result.isInvalid())
1225         hadError = true; // types weren't compatible.
1226       else {
1227         ResultExpr = Result.getAs<Expr>();
1228 
1229         if (ResultExpr != Init) {
1230           // The type was promoted, update initializer list.
1231           IList->setInit(Index, ResultExpr);
1232         }
1233       }
1234       if (hadError)
1235         ++StructuredIndex;
1236       else
1237         UpdateStructuredListElement(StructuredList, StructuredIndex,
1238                                     ResultExpr);
1239       ++Index;
1240       return;
1241     }
1242 
1243     InitializedEntity ElementEntity =
1244       InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1245 
1246     for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) {
1247       // Don't attempt to go past the end of the init list
1248       if (Index >= IList->getNumInits()) {
1249         if (VerifyOnly)
1250           CheckEmptyInitializable(ElementEntity, IList->getLocEnd());
1251         break;
1252       }
1253 
1254       ElementEntity.setElementIndex(Index);
1255       CheckSubElementType(ElementEntity, IList, elementType, Index,
1256                           StructuredList, StructuredIndex);
1257     }
1258 
1259     if (VerifyOnly)
1260       return;
1261 
1262     bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian();
1263     const VectorType *T = Entity.getType()->getAs<VectorType>();
1264     if (isBigEndian && (T->getVectorKind() == VectorType::NeonVector ||
1265                         T->getVectorKind() == VectorType::NeonPolyVector)) {
1266       // The ability to use vector initializer lists is a GNU vector extension
1267       // and is unrelated to the NEON intrinsics in arm_neon.h. On little
1268       // endian machines it works fine, however on big endian machines it
1269       // exhibits surprising behaviour:
1270       //
1271       //   uint32x2_t x = {42, 64};
1272       //   return vget_lane_u32(x, 0); // Will return 64.
1273       //
1274       // Because of this, explicitly call out that it is non-portable.
1275       //
1276       SemaRef.Diag(IList->getLocStart(),
1277                    diag::warn_neon_vector_initializer_non_portable);
1278 
1279       const char *typeCode;
1280       unsigned typeSize = SemaRef.Context.getTypeSize(elementType);
1281 
1282       if (elementType->isFloatingType())
1283         typeCode = "f";
1284       else if (elementType->isSignedIntegerType())
1285         typeCode = "s";
1286       else if (elementType->isUnsignedIntegerType())
1287         typeCode = "u";
1288       else
1289         llvm_unreachable("Invalid element type!");
1290 
1291       SemaRef.Diag(IList->getLocStart(),
1292                    SemaRef.Context.getTypeSize(VT) > 64 ?
1293                    diag::note_neon_vector_initializer_non_portable_q :
1294                    diag::note_neon_vector_initializer_non_portable)
1295         << typeCode << typeSize;
1296     }
1297 
1298     return;
1299   }
1300 
1301   InitializedEntity ElementEntity =
1302     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
1303 
1304   // OpenCL initializers allows vectors to be constructed from vectors.
1305   for (unsigned i = 0; i < maxElements; ++i) {
1306     // Don't attempt to go past the end of the init list
1307     if (Index >= IList->getNumInits())
1308       break;
1309 
1310     ElementEntity.setElementIndex(Index);
1311 
1312     QualType IType = IList->getInit(Index)->getType();
1313     if (!IType->isVectorType()) {
1314       CheckSubElementType(ElementEntity, IList, elementType, Index,
1315                           StructuredList, StructuredIndex);
1316       ++numEltsInit;
1317     } else {
1318       QualType VecType;
1319       const VectorType *IVT = IType->getAs<VectorType>();
1320       unsigned numIElts = IVT->getNumElements();
1321 
1322       if (IType->isExtVectorType())
1323         VecType = SemaRef.Context.getExtVectorType(elementType, numIElts);
1324       else
1325         VecType = SemaRef.Context.getVectorType(elementType, numIElts,
1326                                                 IVT->getVectorKind());
1327       CheckSubElementType(ElementEntity, IList, VecType, Index,
1328                           StructuredList, StructuredIndex);
1329       numEltsInit += numIElts;
1330     }
1331   }
1332 
1333   // OpenCL requires all elements to be initialized.
1334   if (numEltsInit != maxElements) {
1335     if (!VerifyOnly)
1336       SemaRef.Diag(IList->getLocStart(),
1337                    diag::err_vector_incorrect_num_initializers)
1338         << (numEltsInit < maxElements) << maxElements << numEltsInit;
1339     hadError = true;
1340   }
1341 }
1342 
CheckArrayType(const InitializedEntity & Entity,InitListExpr * IList,QualType & DeclType,llvm::APSInt elementIndex,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex)1343 void InitListChecker::CheckArrayType(const InitializedEntity &Entity,
1344                                      InitListExpr *IList, QualType &DeclType,
1345                                      llvm::APSInt elementIndex,
1346                                      bool SubobjectIsDesignatorContext,
1347                                      unsigned &Index,
1348                                      InitListExpr *StructuredList,
1349                                      unsigned &StructuredIndex) {
1350   const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType);
1351 
1352   // Check for the special-case of initializing an array with a string.
1353   if (Index < IList->getNumInits()) {
1354     if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) ==
1355         SIF_None) {
1356       // We place the string literal directly into the resulting
1357       // initializer list. This is the only place where the structure
1358       // of the structured initializer list doesn't match exactly,
1359       // because doing so would involve allocating one character
1360       // constant for each string.
1361       if (!VerifyOnly) {
1362         CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef);
1363         UpdateStructuredListElement(StructuredList, StructuredIndex,
1364                                     IList->getInit(Index));
1365         StructuredList->resizeInits(SemaRef.Context, StructuredIndex);
1366       }
1367       ++Index;
1368       return;
1369     }
1370   }
1371   if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) {
1372     // Check for VLAs; in standard C it would be possible to check this
1373     // earlier, but I don't know where clang accepts VLAs (gcc accepts
1374     // them in all sorts of strange places).
1375     if (!VerifyOnly)
1376       SemaRef.Diag(VAT->getSizeExpr()->getLocStart(),
1377                     diag::err_variable_object_no_init)
1378         << VAT->getSizeExpr()->getSourceRange();
1379     hadError = true;
1380     ++Index;
1381     ++StructuredIndex;
1382     return;
1383   }
1384 
1385   // We might know the maximum number of elements in advance.
1386   llvm::APSInt maxElements(elementIndex.getBitWidth(),
1387                            elementIndex.isUnsigned());
1388   bool maxElementsKnown = false;
1389   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) {
1390     maxElements = CAT->getSize();
1391     elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth());
1392     elementIndex.setIsUnsigned(maxElements.isUnsigned());
1393     maxElementsKnown = true;
1394   }
1395 
1396   QualType elementType = arrayType->getElementType();
1397   while (Index < IList->getNumInits()) {
1398     Expr *Init = IList->getInit(Index);
1399     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1400       // If we're not the subobject that matches up with the '{' for
1401       // the designator, we shouldn't be handling the
1402       // designator. Return immediately.
1403       if (!SubobjectIsDesignatorContext)
1404         return;
1405 
1406       // Handle this designated initializer. elementIndex will be
1407       // updated to be the next array element we'll initialize.
1408       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1409                                      DeclType, nullptr, &elementIndex, Index,
1410                                      StructuredList, StructuredIndex, true,
1411                                      false)) {
1412         hadError = true;
1413         continue;
1414       }
1415 
1416       if (elementIndex.getBitWidth() > maxElements.getBitWidth())
1417         maxElements = maxElements.extend(elementIndex.getBitWidth());
1418       else if (elementIndex.getBitWidth() < maxElements.getBitWidth())
1419         elementIndex = elementIndex.extend(maxElements.getBitWidth());
1420       elementIndex.setIsUnsigned(maxElements.isUnsigned());
1421 
1422       // If the array is of incomplete type, keep track of the number of
1423       // elements in the initializer.
1424       if (!maxElementsKnown && elementIndex > maxElements)
1425         maxElements = elementIndex;
1426 
1427       continue;
1428     }
1429 
1430     // If we know the maximum number of elements, and we've already
1431     // hit it, stop consuming elements in the initializer list.
1432     if (maxElementsKnown && elementIndex == maxElements)
1433       break;
1434 
1435     InitializedEntity ElementEntity =
1436       InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex,
1437                                            Entity);
1438     // Check this element.
1439     CheckSubElementType(ElementEntity, IList, elementType, Index,
1440                         StructuredList, StructuredIndex);
1441     ++elementIndex;
1442 
1443     // If the array is of incomplete type, keep track of the number of
1444     // elements in the initializer.
1445     if (!maxElementsKnown && elementIndex > maxElements)
1446       maxElements = elementIndex;
1447   }
1448   if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) {
1449     // If this is an incomplete array type, the actual type needs to
1450     // be calculated here.
1451     llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned());
1452     if (maxElements == Zero) {
1453       // Sizing an array implicitly to zero is not allowed by ISO C,
1454       // but is supported by GNU.
1455       SemaRef.Diag(IList->getLocStart(),
1456                     diag::ext_typecheck_zero_array_size);
1457     }
1458 
1459     DeclType = SemaRef.Context.getConstantArrayType(elementType, maxElements,
1460                                                      ArrayType::Normal, 0);
1461   }
1462   if (!hadError && VerifyOnly) {
1463     // Check if there are any members of the array that get value-initialized.
1464     // If so, check if doing that is possible.
1465     // FIXME: This needs to detect holes left by designated initializers too.
1466     if (maxElementsKnown && elementIndex < maxElements)
1467       CheckEmptyInitializable(InitializedEntity::InitializeElement(
1468                                                   SemaRef.Context, 0, Entity),
1469                               IList->getLocEnd());
1470   }
1471 }
1472 
CheckFlexibleArrayInit(const InitializedEntity & Entity,Expr * InitExpr,FieldDecl * Field,bool TopLevelObject)1473 bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity,
1474                                              Expr *InitExpr,
1475                                              FieldDecl *Field,
1476                                              bool TopLevelObject) {
1477   // Handle GNU flexible array initializers.
1478   unsigned FlexArrayDiag;
1479   if (isa<InitListExpr>(InitExpr) &&
1480       cast<InitListExpr>(InitExpr)->getNumInits() == 0) {
1481     // Empty flexible array init always allowed as an extension
1482     FlexArrayDiag = diag::ext_flexible_array_init;
1483   } else if (SemaRef.getLangOpts().CPlusPlus) {
1484     // Disallow flexible array init in C++; it is not required for gcc
1485     // compatibility, and it needs work to IRGen correctly in general.
1486     FlexArrayDiag = diag::err_flexible_array_init;
1487   } else if (!TopLevelObject) {
1488     // Disallow flexible array init on non-top-level object
1489     FlexArrayDiag = diag::err_flexible_array_init;
1490   } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
1491     // Disallow flexible array init on anything which is not a variable.
1492     FlexArrayDiag = diag::err_flexible_array_init;
1493   } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) {
1494     // Disallow flexible array init on local variables.
1495     FlexArrayDiag = diag::err_flexible_array_init;
1496   } else {
1497     // Allow other cases.
1498     FlexArrayDiag = diag::ext_flexible_array_init;
1499   }
1500 
1501   if (!VerifyOnly) {
1502     SemaRef.Diag(InitExpr->getLocStart(),
1503                  FlexArrayDiag)
1504       << InitExpr->getLocStart();
1505     SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
1506       << Field;
1507   }
1508 
1509   return FlexArrayDiag != diag::ext_flexible_array_init;
1510 }
1511 
CheckStructUnionTypes(const InitializedEntity & Entity,InitListExpr * IList,QualType DeclType,RecordDecl::field_iterator Field,bool SubobjectIsDesignatorContext,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool TopLevelObject)1512 void InitListChecker::CheckStructUnionTypes(const InitializedEntity &Entity,
1513                                             InitListExpr *IList,
1514                                             QualType DeclType,
1515                                             RecordDecl::field_iterator Field,
1516                                             bool SubobjectIsDesignatorContext,
1517                                             unsigned &Index,
1518                                             InitListExpr *StructuredList,
1519                                             unsigned &StructuredIndex,
1520                                             bool TopLevelObject) {
1521   RecordDecl* structDecl = DeclType->getAs<RecordType>()->getDecl();
1522 
1523   // If the record is invalid, some of it's members are invalid. To avoid
1524   // confusion, we forgo checking the intializer for the entire record.
1525   if (structDecl->isInvalidDecl()) {
1526     // Assume it was supposed to consume a single initializer.
1527     ++Index;
1528     hadError = true;
1529     return;
1530   }
1531 
1532   if (DeclType->isUnionType() && IList->getNumInits() == 0) {
1533     RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1534 
1535     // If there's a default initializer, use it.
1536     if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->hasInClassInitializer()) {
1537       if (VerifyOnly)
1538         return;
1539       for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1540            Field != FieldEnd; ++Field) {
1541         if (Field->hasInClassInitializer()) {
1542           StructuredList->setInitializedFieldInUnion(*Field);
1543           // FIXME: Actually build a CXXDefaultInitExpr?
1544           return;
1545         }
1546       }
1547     }
1548 
1549     // Value-initialize the first named member of the union.
1550     for (RecordDecl::field_iterator FieldEnd = RD->field_end();
1551          Field != FieldEnd; ++Field) {
1552       if (Field->getDeclName()) {
1553         if (VerifyOnly)
1554           CheckEmptyInitializable(
1555               InitializedEntity::InitializeMember(*Field, &Entity),
1556               IList->getLocEnd());
1557         else
1558           StructuredList->setInitializedFieldInUnion(*Field);
1559         break;
1560       }
1561     }
1562     return;
1563   }
1564 
1565   // If structDecl is a forward declaration, this loop won't do
1566   // anything except look at designated initializers; That's okay,
1567   // because an error should get printed out elsewhere. It might be
1568   // worthwhile to skip over the rest of the initializer, though.
1569   RecordDecl *RD = DeclType->getAs<RecordType>()->getDecl();
1570   RecordDecl::field_iterator FieldEnd = RD->field_end();
1571   bool InitializedSomething = false;
1572   bool CheckForMissingFields = true;
1573   while (Index < IList->getNumInits()) {
1574     Expr *Init = IList->getInit(Index);
1575 
1576     if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) {
1577       // If we're not the subobject that matches up with the '{' for
1578       // the designator, we shouldn't be handling the
1579       // designator. Return immediately.
1580       if (!SubobjectIsDesignatorContext)
1581         return;
1582 
1583       // Handle this designated initializer. Field will be updated to
1584       // the next field that we'll be initializing.
1585       if (CheckDesignatedInitializer(Entity, IList, DIE, 0,
1586                                      DeclType, &Field, nullptr, Index,
1587                                      StructuredList, StructuredIndex,
1588                                      true, TopLevelObject))
1589         hadError = true;
1590 
1591       InitializedSomething = true;
1592 
1593       // Disable check for missing fields when designators are used.
1594       // This matches gcc behaviour.
1595       CheckForMissingFields = false;
1596       continue;
1597     }
1598 
1599     if (Field == FieldEnd) {
1600       // We've run out of fields. We're done.
1601       break;
1602     }
1603 
1604     // We've already initialized a member of a union. We're done.
1605     if (InitializedSomething && DeclType->isUnionType())
1606       break;
1607 
1608     // If we've hit the flexible array member at the end, we're done.
1609     if (Field->getType()->isIncompleteArrayType())
1610       break;
1611 
1612     if (Field->isUnnamedBitfield()) {
1613       // Don't initialize unnamed bitfields, e.g. "int : 20;"
1614       ++Field;
1615       continue;
1616     }
1617 
1618     // Make sure we can use this declaration.
1619     bool InvalidUse;
1620     if (VerifyOnly)
1621       InvalidUse = !SemaRef.CanUseDecl(*Field);
1622     else
1623       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field,
1624                                           IList->getInit(Index)->getLocStart());
1625     if (InvalidUse) {
1626       ++Index;
1627       ++Field;
1628       hadError = true;
1629       continue;
1630     }
1631 
1632     InitializedEntity MemberEntity =
1633       InitializedEntity::InitializeMember(*Field, &Entity);
1634     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1635                         StructuredList, StructuredIndex);
1636     InitializedSomething = true;
1637 
1638     if (DeclType->isUnionType() && !VerifyOnly) {
1639       // Initialize the first field within the union.
1640       StructuredList->setInitializedFieldInUnion(*Field);
1641     }
1642 
1643     ++Field;
1644   }
1645 
1646   // Emit warnings for missing struct field initializers.
1647   if (!VerifyOnly && InitializedSomething && CheckForMissingFields &&
1648       Field != FieldEnd && !Field->getType()->isIncompleteArrayType() &&
1649       !DeclType->isUnionType()) {
1650     // It is possible we have one or more unnamed bitfields remaining.
1651     // Find first (if any) named field and emit warning.
1652     for (RecordDecl::field_iterator it = Field, end = RD->field_end();
1653          it != end; ++it) {
1654       if (!it->isUnnamedBitfield() && !it->hasInClassInitializer()) {
1655         SemaRef.Diag(IList->getSourceRange().getEnd(),
1656                      diag::warn_missing_field_initializers) << *it;
1657         break;
1658       }
1659     }
1660   }
1661 
1662   // Check that any remaining fields can be value-initialized.
1663   if (VerifyOnly && Field != FieldEnd && !DeclType->isUnionType() &&
1664       !Field->getType()->isIncompleteArrayType()) {
1665     // FIXME: Should check for holes left by designated initializers too.
1666     for (; Field != FieldEnd && !hadError; ++Field) {
1667       if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer())
1668         CheckEmptyInitializable(
1669             InitializedEntity::InitializeMember(*Field, &Entity),
1670             IList->getLocEnd());
1671     }
1672   }
1673 
1674   if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() ||
1675       Index >= IList->getNumInits())
1676     return;
1677 
1678   if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field,
1679                              TopLevelObject)) {
1680     hadError = true;
1681     ++Index;
1682     return;
1683   }
1684 
1685   InitializedEntity MemberEntity =
1686     InitializedEntity::InitializeMember(*Field, &Entity);
1687 
1688   if (isa<InitListExpr>(IList->getInit(Index)))
1689     CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
1690                         StructuredList, StructuredIndex);
1691   else
1692     CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index,
1693                           StructuredList, StructuredIndex);
1694 }
1695 
1696 /// \brief Expand a field designator that refers to a member of an
1697 /// anonymous struct or union into a series of field designators that
1698 /// refers to the field within the appropriate subobject.
1699 ///
ExpandAnonymousFieldDesignator(Sema & SemaRef,DesignatedInitExpr * DIE,unsigned DesigIdx,IndirectFieldDecl * IndirectField)1700 static void ExpandAnonymousFieldDesignator(Sema &SemaRef,
1701                                            DesignatedInitExpr *DIE,
1702                                            unsigned DesigIdx,
1703                                            IndirectFieldDecl *IndirectField) {
1704   typedef DesignatedInitExpr::Designator Designator;
1705 
1706   // Build the replacement designators.
1707   SmallVector<Designator, 4> Replacements;
1708   for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(),
1709        PE = IndirectField->chain_end(); PI != PE; ++PI) {
1710     if (PI + 1 == PE)
1711       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1712                                     DIE->getDesignator(DesigIdx)->getDotLoc(),
1713                                 DIE->getDesignator(DesigIdx)->getFieldLoc()));
1714     else
1715       Replacements.push_back(Designator((IdentifierInfo *)nullptr,
1716                                         SourceLocation(), SourceLocation()));
1717     assert(isa<FieldDecl>(*PI));
1718     Replacements.back().setField(cast<FieldDecl>(*PI));
1719   }
1720 
1721   // Expand the current designator into the set of replacement
1722   // designators, so we have a full subobject path down to where the
1723   // member of the anonymous struct/union is actually stored.
1724   DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0],
1725                         &Replacements[0] + Replacements.size());
1726 }
1727 
1728 /// \brief Given an implicit anonymous field, search the IndirectField that
1729 ///  corresponds to FieldName.
FindIndirectFieldDesignator(FieldDecl * AnonField,IdentifierInfo * FieldName)1730 static IndirectFieldDecl *FindIndirectFieldDesignator(FieldDecl *AnonField,
1731                                                  IdentifierInfo *FieldName) {
1732   if (!FieldName)
1733     return nullptr;
1734 
1735   assert(AnonField->isAnonymousStructOrUnion());
1736   Decl *NextDecl = AnonField->getNextDeclInContext();
1737   while (IndirectFieldDecl *IF =
1738           dyn_cast_or_null<IndirectFieldDecl>(NextDecl)) {
1739     if (FieldName == IF->getAnonField()->getIdentifier())
1740       return IF;
1741     NextDecl = NextDecl->getNextDeclInContext();
1742   }
1743   return nullptr;
1744 }
1745 
CloneDesignatedInitExpr(Sema & SemaRef,DesignatedInitExpr * DIE)1746 static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef,
1747                                                    DesignatedInitExpr *DIE) {
1748   unsigned NumIndexExprs = DIE->getNumSubExprs() - 1;
1749   SmallVector<Expr*, 4> IndexExprs(NumIndexExprs);
1750   for (unsigned I = 0; I < NumIndexExprs; ++I)
1751     IndexExprs[I] = DIE->getSubExpr(I + 1);
1752   return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators_begin(),
1753                                     DIE->size(), IndexExprs,
1754                                     DIE->getEqualOrColonLoc(),
1755                                     DIE->usesGNUSyntax(), DIE->getInit());
1756 }
1757 
1758 namespace {
1759 
1760 // Callback to only accept typo corrections that are for field members of
1761 // the given struct or union.
1762 class FieldInitializerValidatorCCC : public CorrectionCandidateCallback {
1763  public:
FieldInitializerValidatorCCC(RecordDecl * RD)1764   explicit FieldInitializerValidatorCCC(RecordDecl *RD)
1765       : Record(RD) {}
1766 
ValidateCandidate(const TypoCorrection & candidate)1767   bool ValidateCandidate(const TypoCorrection &candidate) override {
1768     FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>();
1769     return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record);
1770   }
1771 
1772  private:
1773   RecordDecl *Record;
1774 };
1775 
1776 }
1777 
1778 /// @brief Check the well-formedness of a C99 designated initializer.
1779 ///
1780 /// Determines whether the designated initializer @p DIE, which
1781 /// resides at the given @p Index within the initializer list @p
1782 /// IList, is well-formed for a current object of type @p DeclType
1783 /// (C99 6.7.8). The actual subobject that this designator refers to
1784 /// within the current subobject is returned in either
1785 /// @p NextField or @p NextElementIndex (whichever is appropriate).
1786 ///
1787 /// @param IList  The initializer list in which this designated
1788 /// initializer occurs.
1789 ///
1790 /// @param DIE The designated initializer expression.
1791 ///
1792 /// @param DesigIdx  The index of the current designator.
1793 ///
1794 /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17),
1795 /// into which the designation in @p DIE should refer.
1796 ///
1797 /// @param NextField  If non-NULL and the first designator in @p DIE is
1798 /// a field, this will be set to the field declaration corresponding
1799 /// to the field named by the designator.
1800 ///
1801 /// @param NextElementIndex  If non-NULL and the first designator in @p
1802 /// DIE is an array designator or GNU array-range designator, this
1803 /// will be set to the last index initialized by this designator.
1804 ///
1805 /// @param Index  Index into @p IList where the designated initializer
1806 /// @p DIE occurs.
1807 ///
1808 /// @param StructuredList  The initializer list expression that
1809 /// describes all of the subobject initializers in the order they'll
1810 /// actually be initialized.
1811 ///
1812 /// @returns true if there was an error, false otherwise.
1813 bool
CheckDesignatedInitializer(const InitializedEntity & Entity,InitListExpr * IList,DesignatedInitExpr * DIE,unsigned DesigIdx,QualType & CurrentObjectType,RecordDecl::field_iterator * NextField,llvm::APSInt * NextElementIndex,unsigned & Index,InitListExpr * StructuredList,unsigned & StructuredIndex,bool FinishSubobjectInit,bool TopLevelObject)1814 InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity,
1815                                             InitListExpr *IList,
1816                                             DesignatedInitExpr *DIE,
1817                                             unsigned DesigIdx,
1818                                             QualType &CurrentObjectType,
1819                                           RecordDecl::field_iterator *NextField,
1820                                             llvm::APSInt *NextElementIndex,
1821                                             unsigned &Index,
1822                                             InitListExpr *StructuredList,
1823                                             unsigned &StructuredIndex,
1824                                             bool FinishSubobjectInit,
1825                                             bool TopLevelObject) {
1826   if (DesigIdx == DIE->size()) {
1827     // Check the actual initialization for the designated object type.
1828     bool prevHadError = hadError;
1829 
1830     // Temporarily remove the designator expression from the
1831     // initializer list that the child calls see, so that we don't try
1832     // to re-process the designator.
1833     unsigned OldIndex = Index;
1834     IList->setInit(OldIndex, DIE->getInit());
1835 
1836     CheckSubElementType(Entity, IList, CurrentObjectType, Index,
1837                         StructuredList, StructuredIndex);
1838 
1839     // Restore the designated initializer expression in the syntactic
1840     // form of the initializer list.
1841     if (IList->getInit(OldIndex) != DIE->getInit())
1842       DIE->setInit(IList->getInit(OldIndex));
1843     IList->setInit(OldIndex, DIE);
1844 
1845     return hadError && !prevHadError;
1846   }
1847 
1848   DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx);
1849   bool IsFirstDesignator = (DesigIdx == 0);
1850   if (!VerifyOnly) {
1851     assert((IsFirstDesignator || StructuredList) &&
1852            "Need a non-designated initializer list to start from");
1853 
1854     // Determine the structural initializer list that corresponds to the
1855     // current subobject.
1856     StructuredList = IsFirstDesignator? SyntacticToSemantic.lookup(IList)
1857       : getStructuredSubobjectInit(IList, Index, CurrentObjectType,
1858                                    StructuredList, StructuredIndex,
1859                                    SourceRange(D->getLocStart(),
1860                                                DIE->getLocEnd()));
1861     assert(StructuredList && "Expected a structured initializer list");
1862   }
1863 
1864   if (D->isFieldDesignator()) {
1865     // C99 6.7.8p7:
1866     //
1867     //   If a designator has the form
1868     //
1869     //      . identifier
1870     //
1871     //   then the current object (defined below) shall have
1872     //   structure or union type and the identifier shall be the
1873     //   name of a member of that type.
1874     const RecordType *RT = CurrentObjectType->getAs<RecordType>();
1875     if (!RT) {
1876       SourceLocation Loc = D->getDotLoc();
1877       if (Loc.isInvalid())
1878         Loc = D->getFieldLoc();
1879       if (!VerifyOnly)
1880         SemaRef.Diag(Loc, diag::err_field_designator_non_aggr)
1881           << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType;
1882       ++Index;
1883       return true;
1884     }
1885 
1886     // Note: we perform a linear search of the fields here, despite
1887     // the fact that we have a faster lookup method, because we always
1888     // need to compute the field's index.
1889     FieldDecl *KnownField = D->getField();
1890     IdentifierInfo *FieldName = D->getFieldName();
1891     unsigned FieldIndex = 0;
1892     RecordDecl::field_iterator
1893       Field = RT->getDecl()->field_begin(),
1894       FieldEnd = RT->getDecl()->field_end();
1895     for (; Field != FieldEnd; ++Field) {
1896       if (Field->isUnnamedBitfield())
1897         continue;
1898 
1899       // If we find a field representing an anonymous field, look in the
1900       // IndirectFieldDecl that follow for the designated initializer.
1901       if (!KnownField && Field->isAnonymousStructOrUnion()) {
1902         if (IndirectFieldDecl *IF =
1903             FindIndirectFieldDesignator(*Field, FieldName)) {
1904           // In verify mode, don't modify the original.
1905           if (VerifyOnly)
1906             DIE = CloneDesignatedInitExpr(SemaRef, DIE);
1907           ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IF);
1908           D = DIE->getDesignator(DesigIdx);
1909           break;
1910         }
1911       }
1912       if (KnownField && KnownField == *Field)
1913         break;
1914       if (FieldName && FieldName == Field->getIdentifier())
1915         break;
1916 
1917       ++FieldIndex;
1918     }
1919 
1920     if (Field == FieldEnd) {
1921       if (VerifyOnly) {
1922         ++Index;
1923         return true; // No typo correction when just trying this out.
1924       }
1925 
1926       // There was no normal field in the struct with the designated
1927       // name. Perform another lookup for this name, which may find
1928       // something that we can't designate (e.g., a member function),
1929       // may find nothing, or may find a member of an anonymous
1930       // struct/union.
1931       DeclContext::lookup_result Lookup = RT->getDecl()->lookup(FieldName);
1932       FieldDecl *ReplacementField = nullptr;
1933       if (Lookup.empty()) {
1934         // Name lookup didn't find anything. Determine whether this
1935         // was a typo for another field name.
1936         FieldInitializerValidatorCCC Validator(RT->getDecl());
1937         if (TypoCorrection Corrected = SemaRef.CorrectTypo(
1938                 DeclarationNameInfo(FieldName, D->getFieldLoc()),
1939                 Sema::LookupMemberName, /*Scope=*/ nullptr, /*SS=*/ nullptr,
1940                 Validator, Sema::CTK_ErrorRecovery, RT->getDecl())) {
1941           SemaRef.diagnoseTypo(
1942               Corrected,
1943               SemaRef.PDiag(diag::err_field_designator_unknown_suggest)
1944                   << FieldName << CurrentObjectType);
1945           ReplacementField = Corrected.getCorrectionDeclAs<FieldDecl>();
1946           hadError = true;
1947         } else {
1948           SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_unknown)
1949             << FieldName << CurrentObjectType;
1950           ++Index;
1951           return true;
1952         }
1953       }
1954 
1955       if (!ReplacementField) {
1956         // Name lookup found something, but it wasn't a field.
1957         SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield)
1958           << FieldName;
1959         SemaRef.Diag(Lookup.front()->getLocation(),
1960                       diag::note_field_designator_found);
1961         ++Index;
1962         return true;
1963       }
1964 
1965       if (!KnownField) {
1966         // The replacement field comes from typo correction; find it
1967         // in the list of fields.
1968         FieldIndex = 0;
1969         Field = RT->getDecl()->field_begin();
1970         for (; Field != FieldEnd; ++Field) {
1971           if (Field->isUnnamedBitfield())
1972             continue;
1973 
1974           if (ReplacementField == *Field ||
1975               Field->getIdentifier() == ReplacementField->getIdentifier())
1976             break;
1977 
1978           ++FieldIndex;
1979         }
1980       }
1981     }
1982 
1983     // All of the fields of a union are located at the same place in
1984     // the initializer list.
1985     if (RT->getDecl()->isUnion()) {
1986       FieldIndex = 0;
1987       if (!VerifyOnly) {
1988         FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion();
1989         if (CurrentField && CurrentField != *Field) {
1990           assert(StructuredList->getNumInits() == 1
1991                  && "A union should never have more than one initializer!");
1992 
1993           // we're about to throw away an initializer, emit warning
1994           SemaRef.Diag(D->getFieldLoc(),
1995                        diag::warn_initializer_overrides)
1996             << D->getSourceRange();
1997           Expr *ExistingInit = StructuredList->getInit(0);
1998           SemaRef.Diag(ExistingInit->getLocStart(),
1999                        diag::note_previous_initializer)
2000             << /*FIXME:has side effects=*/0
2001             << ExistingInit->getSourceRange();
2002 
2003           // remove existing initializer
2004           StructuredList->resizeInits(SemaRef.Context, 0);
2005           StructuredList->setInitializedFieldInUnion(nullptr);
2006         }
2007 
2008         StructuredList->setInitializedFieldInUnion(*Field);
2009       }
2010     }
2011 
2012     // Make sure we can use this declaration.
2013     bool InvalidUse;
2014     if (VerifyOnly)
2015       InvalidUse = !SemaRef.CanUseDecl(*Field);
2016     else
2017       InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc());
2018     if (InvalidUse) {
2019       ++Index;
2020       return true;
2021     }
2022 
2023     if (!VerifyOnly) {
2024       // Update the designator with the field declaration.
2025       D->setField(*Field);
2026 
2027       // Make sure that our non-designated initializer list has space
2028       // for a subobject corresponding to this field.
2029       if (FieldIndex >= StructuredList->getNumInits())
2030         StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1);
2031     }
2032 
2033     // This designator names a flexible array member.
2034     if (Field->getType()->isIncompleteArrayType()) {
2035       bool Invalid = false;
2036       if ((DesigIdx + 1) != DIE->size()) {
2037         // We can't designate an object within the flexible array
2038         // member (because GCC doesn't allow it).
2039         if (!VerifyOnly) {
2040           DesignatedInitExpr::Designator *NextD
2041             = DIE->getDesignator(DesigIdx + 1);
2042           SemaRef.Diag(NextD->getLocStart(),
2043                         diag::err_designator_into_flexible_array_member)
2044             << SourceRange(NextD->getLocStart(),
2045                            DIE->getLocEnd());
2046           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2047             << *Field;
2048         }
2049         Invalid = true;
2050       }
2051 
2052       if (!hadError && !isa<InitListExpr>(DIE->getInit()) &&
2053           !isa<StringLiteral>(DIE->getInit())) {
2054         // The initializer is not an initializer list.
2055         if (!VerifyOnly) {
2056           SemaRef.Diag(DIE->getInit()->getLocStart(),
2057                         diag::err_flexible_array_init_needs_braces)
2058             << DIE->getInit()->getSourceRange();
2059           SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member)
2060             << *Field;
2061         }
2062         Invalid = true;
2063       }
2064 
2065       // Check GNU flexible array initializer.
2066       if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field,
2067                                              TopLevelObject))
2068         Invalid = true;
2069 
2070       if (Invalid) {
2071         ++Index;
2072         return true;
2073       }
2074 
2075       // Initialize the array.
2076       bool prevHadError = hadError;
2077       unsigned newStructuredIndex = FieldIndex;
2078       unsigned OldIndex = Index;
2079       IList->setInit(Index, DIE->getInit());
2080 
2081       InitializedEntity MemberEntity =
2082         InitializedEntity::InitializeMember(*Field, &Entity);
2083       CheckSubElementType(MemberEntity, IList, Field->getType(), Index,
2084                           StructuredList, newStructuredIndex);
2085 
2086       IList->setInit(OldIndex, DIE);
2087       if (hadError && !prevHadError) {
2088         ++Field;
2089         ++FieldIndex;
2090         if (NextField)
2091           *NextField = Field;
2092         StructuredIndex = FieldIndex;
2093         return true;
2094       }
2095     } else {
2096       // Recurse to check later designated subobjects.
2097       QualType FieldType = Field->getType();
2098       unsigned newStructuredIndex = FieldIndex;
2099 
2100       InitializedEntity MemberEntity =
2101         InitializedEntity::InitializeMember(*Field, &Entity);
2102       if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1,
2103                                      FieldType, nullptr, nullptr, Index,
2104                                      StructuredList, newStructuredIndex,
2105                                      true, false))
2106         return true;
2107     }
2108 
2109     // Find the position of the next field to be initialized in this
2110     // subobject.
2111     ++Field;
2112     ++FieldIndex;
2113 
2114     // If this the first designator, our caller will continue checking
2115     // the rest of this struct/class/union subobject.
2116     if (IsFirstDesignator) {
2117       if (NextField)
2118         *NextField = Field;
2119       StructuredIndex = FieldIndex;
2120       return false;
2121     }
2122 
2123     if (!FinishSubobjectInit)
2124       return false;
2125 
2126     // We've already initialized something in the union; we're done.
2127     if (RT->getDecl()->isUnion())
2128       return hadError;
2129 
2130     // Check the remaining fields within this class/struct/union subobject.
2131     bool prevHadError = hadError;
2132 
2133     CheckStructUnionTypes(Entity, IList, CurrentObjectType, Field, false, Index,
2134                           StructuredList, FieldIndex);
2135     return hadError && !prevHadError;
2136   }
2137 
2138   // C99 6.7.8p6:
2139   //
2140   //   If a designator has the form
2141   //
2142   //      [ constant-expression ]
2143   //
2144   //   then the current object (defined below) shall have array
2145   //   type and the expression shall be an integer constant
2146   //   expression. If the array is of unknown size, any
2147   //   nonnegative value is valid.
2148   //
2149   // Additionally, cope with the GNU extension that permits
2150   // designators of the form
2151   //
2152   //      [ constant-expression ... constant-expression ]
2153   const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType);
2154   if (!AT) {
2155     if (!VerifyOnly)
2156       SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array)
2157         << CurrentObjectType;
2158     ++Index;
2159     return true;
2160   }
2161 
2162   Expr *IndexExpr = nullptr;
2163   llvm::APSInt DesignatedStartIndex, DesignatedEndIndex;
2164   if (D->isArrayDesignator()) {
2165     IndexExpr = DIE->getArrayIndex(*D);
2166     DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context);
2167     DesignatedEndIndex = DesignatedStartIndex;
2168   } else {
2169     assert(D->isArrayRangeDesignator() && "Need array-range designator");
2170 
2171     DesignatedStartIndex =
2172       DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context);
2173     DesignatedEndIndex =
2174       DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context);
2175     IndexExpr = DIE->getArrayRangeEnd(*D);
2176 
2177     // Codegen can't handle evaluating array range designators that have side
2178     // effects, because we replicate the AST value for each initialized element.
2179     // As such, set the sawArrayRangeDesignator() bit if we initialize multiple
2180     // elements with something that has a side effect, so codegen can emit an
2181     // "error unsupported" error instead of miscompiling the app.
2182     if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&&
2183         DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly)
2184       FullyStructuredList->sawArrayRangeDesignator();
2185   }
2186 
2187   if (isa<ConstantArrayType>(AT)) {
2188     llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false);
2189     DesignatedStartIndex
2190       = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth());
2191     DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned());
2192     DesignatedEndIndex
2193       = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth());
2194     DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned());
2195     if (DesignatedEndIndex >= MaxElements) {
2196       if (!VerifyOnly)
2197         SemaRef.Diag(IndexExpr->getLocStart(),
2198                       diag::err_array_designator_too_large)
2199           << DesignatedEndIndex.toString(10) << MaxElements.toString(10)
2200           << IndexExpr->getSourceRange();
2201       ++Index;
2202       return true;
2203     }
2204   } else {
2205     // Make sure the bit-widths and signedness match.
2206     if (DesignatedStartIndex.getBitWidth() > DesignatedEndIndex.getBitWidth())
2207       DesignatedEndIndex
2208         = DesignatedEndIndex.extend(DesignatedStartIndex.getBitWidth());
2209     else if (DesignatedStartIndex.getBitWidth() <
2210              DesignatedEndIndex.getBitWidth())
2211       DesignatedStartIndex
2212         = DesignatedStartIndex.extend(DesignatedEndIndex.getBitWidth());
2213     DesignatedStartIndex.setIsUnsigned(true);
2214     DesignatedEndIndex.setIsUnsigned(true);
2215   }
2216 
2217   if (!VerifyOnly && StructuredList->isStringLiteralInit()) {
2218     // We're modifying a string literal init; we have to decompose the string
2219     // so we can modify the individual characters.
2220     ASTContext &Context = SemaRef.Context;
2221     Expr *SubExpr = StructuredList->getInit(0)->IgnoreParens();
2222 
2223     // Compute the character type
2224     QualType CharTy = AT->getElementType();
2225 
2226     // Compute the type of the integer literals.
2227     QualType PromotedCharTy = CharTy;
2228     if (CharTy->isPromotableIntegerType())
2229       PromotedCharTy = Context.getPromotedIntegerType(CharTy);
2230     unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy);
2231 
2232     if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) {
2233       // Get the length of the string.
2234       uint64_t StrLen = SL->getLength();
2235       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2236         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2237       StructuredList->resizeInits(Context, StrLen);
2238 
2239       // Build a literal for each character in the string, and put them into
2240       // the init list.
2241       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2242         llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i));
2243         Expr *Init = new (Context) IntegerLiteral(
2244             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2245         if (CharTy != PromotedCharTy)
2246           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2247                                           Init, nullptr, VK_RValue);
2248         StructuredList->updateInit(Context, i, Init);
2249       }
2250     } else {
2251       ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr);
2252       std::string Str;
2253       Context.getObjCEncodingForType(E->getEncodedType(), Str);
2254 
2255       // Get the length of the string.
2256       uint64_t StrLen = Str.size();
2257       if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen))
2258         StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue();
2259       StructuredList->resizeInits(Context, StrLen);
2260 
2261       // Build a literal for each character in the string, and put them into
2262       // the init list.
2263       for (unsigned i = 0, e = StrLen; i != e; ++i) {
2264         llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]);
2265         Expr *Init = new (Context) IntegerLiteral(
2266             Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc());
2267         if (CharTy != PromotedCharTy)
2268           Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast,
2269                                           Init, nullptr, VK_RValue);
2270         StructuredList->updateInit(Context, i, Init);
2271       }
2272     }
2273   }
2274 
2275   // Make sure that our non-designated initializer list has space
2276   // for a subobject corresponding to this array element.
2277   if (!VerifyOnly &&
2278       DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits())
2279     StructuredList->resizeInits(SemaRef.Context,
2280                                 DesignatedEndIndex.getZExtValue() + 1);
2281 
2282   // Repeatedly perform subobject initializations in the range
2283   // [DesignatedStartIndex, DesignatedEndIndex].
2284 
2285   // Move to the next designator
2286   unsigned ElementIndex = DesignatedStartIndex.getZExtValue();
2287   unsigned OldIndex = Index;
2288 
2289   InitializedEntity ElementEntity =
2290     InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity);
2291 
2292   while (DesignatedStartIndex <= DesignatedEndIndex) {
2293     // Recurse to check later designated subobjects.
2294     QualType ElementType = AT->getElementType();
2295     Index = OldIndex;
2296 
2297     ElementEntity.setElementIndex(ElementIndex);
2298     if (CheckDesignatedInitializer(ElementEntity, IList, DIE, DesigIdx + 1,
2299                                    ElementType, nullptr, nullptr, Index,
2300                                    StructuredList, ElementIndex,
2301                                    (DesignatedStartIndex == DesignatedEndIndex),
2302                                    false))
2303       return true;
2304 
2305     // Move to the next index in the array that we'll be initializing.
2306     ++DesignatedStartIndex;
2307     ElementIndex = DesignatedStartIndex.getZExtValue();
2308   }
2309 
2310   // If this the first designator, our caller will continue checking
2311   // the rest of this array subobject.
2312   if (IsFirstDesignator) {
2313     if (NextElementIndex)
2314       *NextElementIndex = DesignatedStartIndex;
2315     StructuredIndex = ElementIndex;
2316     return false;
2317   }
2318 
2319   if (!FinishSubobjectInit)
2320     return false;
2321 
2322   // Check the remaining elements within this array subobject.
2323   bool prevHadError = hadError;
2324   CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex,
2325                  /*SubobjectIsDesignatorContext=*/false, Index,
2326                  StructuredList, ElementIndex);
2327   return hadError && !prevHadError;
2328 }
2329 
2330 // Get the structured initializer list for a subobject of type
2331 // @p CurrentObjectType.
2332 InitListExpr *
getStructuredSubobjectInit(InitListExpr * IList,unsigned Index,QualType CurrentObjectType,InitListExpr * StructuredList,unsigned StructuredIndex,SourceRange InitRange)2333 InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index,
2334                                             QualType CurrentObjectType,
2335                                             InitListExpr *StructuredList,
2336                                             unsigned StructuredIndex,
2337                                             SourceRange InitRange) {
2338   if (VerifyOnly)
2339     return nullptr; // No structured list in verification-only mode.
2340   Expr *ExistingInit = nullptr;
2341   if (!StructuredList)
2342     ExistingInit = SyntacticToSemantic.lookup(IList);
2343   else if (StructuredIndex < StructuredList->getNumInits())
2344     ExistingInit = StructuredList->getInit(StructuredIndex);
2345 
2346   if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit))
2347     return Result;
2348 
2349   if (ExistingInit) {
2350     // We are creating an initializer list that initializes the
2351     // subobjects of the current object, but there was already an
2352     // initialization that completely initialized the current
2353     // subobject, e.g., by a compound literal:
2354     //
2355     // struct X { int a, b; };
2356     // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 };
2357     //
2358     // Here, xs[0].a == 0 and xs[0].b == 3, since the second,
2359     // designated initializer re-initializes the whole
2360     // subobject [0], overwriting previous initializers.
2361     SemaRef.Diag(InitRange.getBegin(),
2362                  diag::warn_subobject_initializer_overrides)
2363       << InitRange;
2364     SemaRef.Diag(ExistingInit->getLocStart(),
2365                   diag::note_previous_initializer)
2366       << /*FIXME:has side effects=*/0
2367       << ExistingInit->getSourceRange();
2368   }
2369 
2370   InitListExpr *Result
2371     = new (SemaRef.Context) InitListExpr(SemaRef.Context,
2372                                          InitRange.getBegin(), None,
2373                                          InitRange.getEnd());
2374 
2375   QualType ResultType = CurrentObjectType;
2376   if (!ResultType->isArrayType())
2377     ResultType = ResultType.getNonLValueExprType(SemaRef.Context);
2378   Result->setType(ResultType);
2379 
2380   // Pre-allocate storage for the structured initializer list.
2381   unsigned NumElements = 0;
2382   unsigned NumInits = 0;
2383   bool GotNumInits = false;
2384   if (!StructuredList) {
2385     NumInits = IList->getNumInits();
2386     GotNumInits = true;
2387   } else if (Index < IList->getNumInits()) {
2388     if (InitListExpr *SubList = dyn_cast<InitListExpr>(IList->getInit(Index))) {
2389       NumInits = SubList->getNumInits();
2390       GotNumInits = true;
2391     }
2392   }
2393 
2394   if (const ArrayType *AType
2395       = SemaRef.Context.getAsArrayType(CurrentObjectType)) {
2396     if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) {
2397       NumElements = CAType->getSize().getZExtValue();
2398       // Simple heuristic so that we don't allocate a very large
2399       // initializer with many empty entries at the end.
2400       if (GotNumInits && NumElements > NumInits)
2401         NumElements = 0;
2402     }
2403   } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>())
2404     NumElements = VType->getNumElements();
2405   else if (const RecordType *RType = CurrentObjectType->getAs<RecordType>()) {
2406     RecordDecl *RDecl = RType->getDecl();
2407     if (RDecl->isUnion())
2408       NumElements = 1;
2409     else
2410       NumElements = std::distance(RDecl->field_begin(), RDecl->field_end());
2411   }
2412 
2413   Result->reserveInits(SemaRef.Context, NumElements);
2414 
2415   // Link this new initializer list into the structured initializer
2416   // lists.
2417   if (StructuredList)
2418     StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result);
2419   else {
2420     Result->setSyntacticForm(IList);
2421     SyntacticToSemantic[IList] = Result;
2422   }
2423 
2424   return Result;
2425 }
2426 
2427 /// Update the initializer at index @p StructuredIndex within the
2428 /// structured initializer list to the value @p expr.
UpdateStructuredListElement(InitListExpr * StructuredList,unsigned & StructuredIndex,Expr * expr)2429 void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList,
2430                                                   unsigned &StructuredIndex,
2431                                                   Expr *expr) {
2432   // No structured initializer list to update
2433   if (!StructuredList)
2434     return;
2435 
2436   if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context,
2437                                                   StructuredIndex, expr)) {
2438     // This initializer overwrites a previous initializer. Warn.
2439     SemaRef.Diag(expr->getLocStart(),
2440                   diag::warn_initializer_overrides)
2441       << expr->getSourceRange();
2442     SemaRef.Diag(PrevInit->getLocStart(),
2443                   diag::note_previous_initializer)
2444       << /*FIXME:has side effects=*/0
2445       << PrevInit->getSourceRange();
2446   }
2447 
2448   ++StructuredIndex;
2449 }
2450 
2451 /// Check that the given Index expression is a valid array designator
2452 /// value. This is essentially just a wrapper around
2453 /// VerifyIntegerConstantExpression that also checks for negative values
2454 /// and produces a reasonable diagnostic if there is a
2455 /// failure. Returns the index expression, possibly with an implicit cast
2456 /// added, on success.  If everything went okay, Value will receive the
2457 /// value of the constant expression.
2458 static ExprResult
CheckArrayDesignatorExpr(Sema & S,Expr * Index,llvm::APSInt & Value)2459 CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) {
2460   SourceLocation Loc = Index->getLocStart();
2461 
2462   // Make sure this is an integer constant expression.
2463   ExprResult Result = S.VerifyIntegerConstantExpression(Index, &Value);
2464   if (Result.isInvalid())
2465     return Result;
2466 
2467   if (Value.isSigned() && Value.isNegative())
2468     return S.Diag(Loc, diag::err_array_designator_negative)
2469       << Value.toString(10) << Index->getSourceRange();
2470 
2471   Value.setIsUnsigned(true);
2472   return Result;
2473 }
2474 
ActOnDesignatedInitializer(Designation & Desig,SourceLocation Loc,bool GNUSyntax,ExprResult Init)2475 ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig,
2476                                             SourceLocation Loc,
2477                                             bool GNUSyntax,
2478                                             ExprResult Init) {
2479   typedef DesignatedInitExpr::Designator ASTDesignator;
2480 
2481   bool Invalid = false;
2482   SmallVector<ASTDesignator, 32> Designators;
2483   SmallVector<Expr *, 32> InitExpressions;
2484 
2485   // Build designators and check array designator expressions.
2486   for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) {
2487     const Designator &D = Desig.getDesignator(Idx);
2488     switch (D.getKind()) {
2489     case Designator::FieldDesignator:
2490       Designators.push_back(ASTDesignator(D.getField(), D.getDotLoc(),
2491                                           D.getFieldLoc()));
2492       break;
2493 
2494     case Designator::ArrayDesignator: {
2495       Expr *Index = static_cast<Expr *>(D.getArrayIndex());
2496       llvm::APSInt IndexValue;
2497       if (!Index->isTypeDependent() && !Index->isValueDependent())
2498         Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get();
2499       if (!Index)
2500         Invalid = true;
2501       else {
2502         Designators.push_back(ASTDesignator(InitExpressions.size(),
2503                                             D.getLBracketLoc(),
2504                                             D.getRBracketLoc()));
2505         InitExpressions.push_back(Index);
2506       }
2507       break;
2508     }
2509 
2510     case Designator::ArrayRangeDesignator: {
2511       Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart());
2512       Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd());
2513       llvm::APSInt StartValue;
2514       llvm::APSInt EndValue;
2515       bool StartDependent = StartIndex->isTypeDependent() ||
2516                             StartIndex->isValueDependent();
2517       bool EndDependent = EndIndex->isTypeDependent() ||
2518                           EndIndex->isValueDependent();
2519       if (!StartDependent)
2520         StartIndex =
2521             CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get();
2522       if (!EndDependent)
2523         EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get();
2524 
2525       if (!StartIndex || !EndIndex)
2526         Invalid = true;
2527       else {
2528         // Make sure we're comparing values with the same bit width.
2529         if (StartDependent || EndDependent) {
2530           // Nothing to compute.
2531         } else if (StartValue.getBitWidth() > EndValue.getBitWidth())
2532           EndValue = EndValue.extend(StartValue.getBitWidth());
2533         else if (StartValue.getBitWidth() < EndValue.getBitWidth())
2534           StartValue = StartValue.extend(EndValue.getBitWidth());
2535 
2536         if (!StartDependent && !EndDependent && EndValue < StartValue) {
2537           Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range)
2538             << StartValue.toString(10) << EndValue.toString(10)
2539             << StartIndex->getSourceRange() << EndIndex->getSourceRange();
2540           Invalid = true;
2541         } else {
2542           Designators.push_back(ASTDesignator(InitExpressions.size(),
2543                                               D.getLBracketLoc(),
2544                                               D.getEllipsisLoc(),
2545                                               D.getRBracketLoc()));
2546           InitExpressions.push_back(StartIndex);
2547           InitExpressions.push_back(EndIndex);
2548         }
2549       }
2550       break;
2551     }
2552     }
2553   }
2554 
2555   if (Invalid || Init.isInvalid())
2556     return ExprError();
2557 
2558   // Clear out the expressions within the designation.
2559   Desig.ClearExprs(*this);
2560 
2561   DesignatedInitExpr *DIE
2562     = DesignatedInitExpr::Create(Context,
2563                                  Designators.data(), Designators.size(),
2564                                  InitExpressions, Loc, GNUSyntax,
2565                                  Init.getAs<Expr>());
2566 
2567   if (!getLangOpts().C99)
2568     Diag(DIE->getLocStart(), diag::ext_designated_init)
2569       << DIE->getSourceRange();
2570 
2571   return DIE;
2572 }
2573 
2574 //===----------------------------------------------------------------------===//
2575 // Initialization entity
2576 //===----------------------------------------------------------------------===//
2577 
InitializedEntity(ASTContext & Context,unsigned Index,const InitializedEntity & Parent)2578 InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index,
2579                                      const InitializedEntity &Parent)
2580   : Parent(&Parent), Index(Index)
2581 {
2582   if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) {
2583     Kind = EK_ArrayElement;
2584     Type = AT->getElementType();
2585   } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) {
2586     Kind = EK_VectorElement;
2587     Type = VT->getElementType();
2588   } else {
2589     const ComplexType *CT = Parent.getType()->getAs<ComplexType>();
2590     assert(CT && "Unexpected type");
2591     Kind = EK_ComplexElement;
2592     Type = CT->getElementType();
2593   }
2594 }
2595 
2596 InitializedEntity
InitializeBase(ASTContext & Context,const CXXBaseSpecifier * Base,bool IsInheritedVirtualBase)2597 InitializedEntity::InitializeBase(ASTContext &Context,
2598                                   const CXXBaseSpecifier *Base,
2599                                   bool IsInheritedVirtualBase) {
2600   InitializedEntity Result;
2601   Result.Kind = EK_Base;
2602   Result.Parent = nullptr;
2603   Result.Base = reinterpret_cast<uintptr_t>(Base);
2604   if (IsInheritedVirtualBase)
2605     Result.Base |= 0x01;
2606 
2607   Result.Type = Base->getType();
2608   return Result;
2609 }
2610 
getName() const2611 DeclarationName InitializedEntity::getName() const {
2612   switch (getKind()) {
2613   case EK_Parameter:
2614   case EK_Parameter_CF_Audited: {
2615     ParmVarDecl *D = reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2616     return (D ? D->getDeclName() : DeclarationName());
2617   }
2618 
2619   case EK_Variable:
2620   case EK_Member:
2621     return VariableOrMember->getDeclName();
2622 
2623   case EK_LambdaCapture:
2624     return DeclarationName(Capture.VarID);
2625 
2626   case EK_Result:
2627   case EK_Exception:
2628   case EK_New:
2629   case EK_Temporary:
2630   case EK_Base:
2631   case EK_Delegating:
2632   case EK_ArrayElement:
2633   case EK_VectorElement:
2634   case EK_ComplexElement:
2635   case EK_BlockElement:
2636   case EK_CompoundLiteralInit:
2637   case EK_RelatedResult:
2638     return DeclarationName();
2639   }
2640 
2641   llvm_unreachable("Invalid EntityKind!");
2642 }
2643 
getDecl() const2644 DeclaratorDecl *InitializedEntity::getDecl() const {
2645   switch (getKind()) {
2646   case EK_Variable:
2647   case EK_Member:
2648     return VariableOrMember;
2649 
2650   case EK_Parameter:
2651   case EK_Parameter_CF_Audited:
2652     return reinterpret_cast<ParmVarDecl*>(Parameter & ~0x1);
2653 
2654   case EK_Result:
2655   case EK_Exception:
2656   case EK_New:
2657   case EK_Temporary:
2658   case EK_Base:
2659   case EK_Delegating:
2660   case EK_ArrayElement:
2661   case EK_VectorElement:
2662   case EK_ComplexElement:
2663   case EK_BlockElement:
2664   case EK_LambdaCapture:
2665   case EK_CompoundLiteralInit:
2666   case EK_RelatedResult:
2667     return nullptr;
2668   }
2669 
2670   llvm_unreachable("Invalid EntityKind!");
2671 }
2672 
allowsNRVO() const2673 bool InitializedEntity::allowsNRVO() const {
2674   switch (getKind()) {
2675   case EK_Result:
2676   case EK_Exception:
2677     return LocAndNRVO.NRVO;
2678 
2679   case EK_Variable:
2680   case EK_Parameter:
2681   case EK_Parameter_CF_Audited:
2682   case EK_Member:
2683   case EK_New:
2684   case EK_Temporary:
2685   case EK_CompoundLiteralInit:
2686   case EK_Base:
2687   case EK_Delegating:
2688   case EK_ArrayElement:
2689   case EK_VectorElement:
2690   case EK_ComplexElement:
2691   case EK_BlockElement:
2692   case EK_LambdaCapture:
2693   case EK_RelatedResult:
2694     break;
2695   }
2696 
2697   return false;
2698 }
2699 
dumpImpl(raw_ostream & OS) const2700 unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const {
2701   assert(getParent() != this);
2702   unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0;
2703   for (unsigned I = 0; I != Depth; ++I)
2704     OS << "`-";
2705 
2706   switch (getKind()) {
2707   case EK_Variable: OS << "Variable"; break;
2708   case EK_Parameter: OS << "Parameter"; break;
2709   case EK_Parameter_CF_Audited: OS << "CF audited function Parameter";
2710     break;
2711   case EK_Result: OS << "Result"; break;
2712   case EK_Exception: OS << "Exception"; break;
2713   case EK_Member: OS << "Member"; break;
2714   case EK_New: OS << "New"; break;
2715   case EK_Temporary: OS << "Temporary"; break;
2716   case EK_CompoundLiteralInit: OS << "CompoundLiteral";break;
2717   case EK_RelatedResult: OS << "RelatedResult"; break;
2718   case EK_Base: OS << "Base"; break;
2719   case EK_Delegating: OS << "Delegating"; break;
2720   case EK_ArrayElement: OS << "ArrayElement " << Index; break;
2721   case EK_VectorElement: OS << "VectorElement " << Index; break;
2722   case EK_ComplexElement: OS << "ComplexElement " << Index; break;
2723   case EK_BlockElement: OS << "Block"; break;
2724   case EK_LambdaCapture:
2725     OS << "LambdaCapture ";
2726     OS << DeclarationName(Capture.VarID);
2727     break;
2728   }
2729 
2730   if (Decl *D = getDecl()) {
2731     OS << " ";
2732     cast<NamedDecl>(D)->printQualifiedName(OS);
2733   }
2734 
2735   OS << " '" << getType().getAsString() << "'\n";
2736 
2737   return Depth + 1;
2738 }
2739 
dump() const2740 void InitializedEntity::dump() const {
2741   dumpImpl(llvm::errs());
2742 }
2743 
2744 //===----------------------------------------------------------------------===//
2745 // Initialization sequence
2746 //===----------------------------------------------------------------------===//
2747 
Destroy()2748 void InitializationSequence::Step::Destroy() {
2749   switch (Kind) {
2750   case SK_ResolveAddressOfOverloadedFunction:
2751   case SK_CastDerivedToBaseRValue:
2752   case SK_CastDerivedToBaseXValue:
2753   case SK_CastDerivedToBaseLValue:
2754   case SK_BindReference:
2755   case SK_BindReferenceToTemporary:
2756   case SK_ExtraneousCopyToTemporary:
2757   case SK_UserConversion:
2758   case SK_QualificationConversionRValue:
2759   case SK_QualificationConversionXValue:
2760   case SK_QualificationConversionLValue:
2761   case SK_LValueToRValue:
2762   case SK_ListInitialization:
2763   case SK_ListConstructorCall:
2764   case SK_UnwrapInitList:
2765   case SK_RewrapInitList:
2766   case SK_ConstructorInitialization:
2767   case SK_ZeroInitialization:
2768   case SK_CAssignment:
2769   case SK_StringInit:
2770   case SK_ObjCObjectConversion:
2771   case SK_ArrayInit:
2772   case SK_ParenthesizedArrayInit:
2773   case SK_PassByIndirectCopyRestore:
2774   case SK_PassByIndirectRestore:
2775   case SK_ProduceObjCObject:
2776   case SK_StdInitializerList:
2777   case SK_OCLSamplerInit:
2778   case SK_OCLZeroEvent:
2779     break;
2780 
2781   case SK_ConversionSequence:
2782   case SK_ConversionSequenceNoNarrowing:
2783     delete ICS;
2784   }
2785 }
2786 
isDirectReferenceBinding() const2787 bool InitializationSequence::isDirectReferenceBinding() const {
2788   return !Steps.empty() && Steps.back().Kind == SK_BindReference;
2789 }
2790 
isAmbiguous() const2791 bool InitializationSequence::isAmbiguous() const {
2792   if (!Failed())
2793     return false;
2794 
2795   switch (getFailureKind()) {
2796   case FK_TooManyInitsForReference:
2797   case FK_ArrayNeedsInitList:
2798   case FK_ArrayNeedsInitListOrStringLiteral:
2799   case FK_ArrayNeedsInitListOrWideStringLiteral:
2800   case FK_NarrowStringIntoWideCharArray:
2801   case FK_WideStringIntoCharArray:
2802   case FK_IncompatWideStringIntoWideChar:
2803   case FK_AddressOfOverloadFailed: // FIXME: Could do better
2804   case FK_NonConstLValueReferenceBindingToTemporary:
2805   case FK_NonConstLValueReferenceBindingToUnrelated:
2806   case FK_RValueReferenceBindingToLValue:
2807   case FK_ReferenceInitDropsQualifiers:
2808   case FK_ReferenceInitFailed:
2809   case FK_ConversionFailed:
2810   case FK_ConversionFromPropertyFailed:
2811   case FK_TooManyInitsForScalar:
2812   case FK_ReferenceBindingToInitList:
2813   case FK_InitListBadDestinationType:
2814   case FK_DefaultInitOfConst:
2815   case FK_Incomplete:
2816   case FK_ArrayTypeMismatch:
2817   case FK_NonConstantArrayInit:
2818   case FK_ListInitializationFailed:
2819   case FK_VariableLengthArrayHasInitializer:
2820   case FK_PlaceholderType:
2821   case FK_ExplicitConstructor:
2822     return false;
2823 
2824   case FK_ReferenceInitOverloadFailed:
2825   case FK_UserConversionOverloadFailed:
2826   case FK_ConstructorOverloadFailed:
2827   case FK_ListConstructorOverloadFailed:
2828     return FailedOverloadResult == OR_Ambiguous;
2829   }
2830 
2831   llvm_unreachable("Invalid EntityKind!");
2832 }
2833 
isConstructorInitialization() const2834 bool InitializationSequence::isConstructorInitialization() const {
2835   return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization;
2836 }
2837 
2838 void
2839 InitializationSequence
AddAddressOverloadResolutionStep(FunctionDecl * Function,DeclAccessPair Found,bool HadMultipleCandidates)2840 ::AddAddressOverloadResolutionStep(FunctionDecl *Function,
2841                                    DeclAccessPair Found,
2842                                    bool HadMultipleCandidates) {
2843   Step S;
2844   S.Kind = SK_ResolveAddressOfOverloadedFunction;
2845   S.Type = Function->getType();
2846   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2847   S.Function.Function = Function;
2848   S.Function.FoundDecl = Found;
2849   Steps.push_back(S);
2850 }
2851 
AddDerivedToBaseCastStep(QualType BaseType,ExprValueKind VK)2852 void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType,
2853                                                       ExprValueKind VK) {
2854   Step S;
2855   switch (VK) {
2856   case VK_RValue: S.Kind = SK_CastDerivedToBaseRValue; break;
2857   case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break;
2858   case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break;
2859   }
2860   S.Type = BaseType;
2861   Steps.push_back(S);
2862 }
2863 
AddReferenceBindingStep(QualType T,bool BindingTemporary)2864 void InitializationSequence::AddReferenceBindingStep(QualType T,
2865                                                      bool BindingTemporary) {
2866   Step S;
2867   S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference;
2868   S.Type = T;
2869   Steps.push_back(S);
2870 }
2871 
AddExtraneousCopyToTemporary(QualType T)2872 void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) {
2873   Step S;
2874   S.Kind = SK_ExtraneousCopyToTemporary;
2875   S.Type = T;
2876   Steps.push_back(S);
2877 }
2878 
2879 void
AddUserConversionStep(FunctionDecl * Function,DeclAccessPair FoundDecl,QualType T,bool HadMultipleCandidates)2880 InitializationSequence::AddUserConversionStep(FunctionDecl *Function,
2881                                               DeclAccessPair FoundDecl,
2882                                               QualType T,
2883                                               bool HadMultipleCandidates) {
2884   Step S;
2885   S.Kind = SK_UserConversion;
2886   S.Type = T;
2887   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2888   S.Function.Function = Function;
2889   S.Function.FoundDecl = FoundDecl;
2890   Steps.push_back(S);
2891 }
2892 
AddQualificationConversionStep(QualType Ty,ExprValueKind VK)2893 void InitializationSequence::AddQualificationConversionStep(QualType Ty,
2894                                                             ExprValueKind VK) {
2895   Step S;
2896   S.Kind = SK_QualificationConversionRValue; // work around a gcc warning
2897   switch (VK) {
2898   case VK_RValue:
2899     S.Kind = SK_QualificationConversionRValue;
2900     break;
2901   case VK_XValue:
2902     S.Kind = SK_QualificationConversionXValue;
2903     break;
2904   case VK_LValue:
2905     S.Kind = SK_QualificationConversionLValue;
2906     break;
2907   }
2908   S.Type = Ty;
2909   Steps.push_back(S);
2910 }
2911 
AddLValueToRValueStep(QualType Ty)2912 void InitializationSequence::AddLValueToRValueStep(QualType Ty) {
2913   assert(!Ty.hasQualifiers() && "rvalues may not have qualifiers");
2914 
2915   Step S;
2916   S.Kind = SK_LValueToRValue;
2917   S.Type = Ty;
2918   Steps.push_back(S);
2919 }
2920 
AddConversionSequenceStep(const ImplicitConversionSequence & ICS,QualType T,bool TopLevelOfInitList)2921 void InitializationSequence::AddConversionSequenceStep(
2922     const ImplicitConversionSequence &ICS, QualType T,
2923     bool TopLevelOfInitList) {
2924   Step S;
2925   S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing
2926                               : SK_ConversionSequence;
2927   S.Type = T;
2928   S.ICS = new ImplicitConversionSequence(ICS);
2929   Steps.push_back(S);
2930 }
2931 
AddListInitializationStep(QualType T)2932 void InitializationSequence::AddListInitializationStep(QualType T) {
2933   Step S;
2934   S.Kind = SK_ListInitialization;
2935   S.Type = T;
2936   Steps.push_back(S);
2937 }
2938 
2939 void
2940 InitializationSequence
AddConstructorInitializationStep(CXXConstructorDecl * Constructor,AccessSpecifier Access,QualType T,bool HadMultipleCandidates,bool FromInitList,bool AsInitList)2941 ::AddConstructorInitializationStep(CXXConstructorDecl *Constructor,
2942                                    AccessSpecifier Access,
2943                                    QualType T,
2944                                    bool HadMultipleCandidates,
2945                                    bool FromInitList, bool AsInitList) {
2946   Step S;
2947   S.Kind = FromInitList && !AsInitList ? SK_ListConstructorCall
2948                                        : SK_ConstructorInitialization;
2949   S.Type = T;
2950   S.Function.HadMultipleCandidates = HadMultipleCandidates;
2951   S.Function.Function = Constructor;
2952   S.Function.FoundDecl = DeclAccessPair::make(Constructor, Access);
2953   Steps.push_back(S);
2954 }
2955 
AddZeroInitializationStep(QualType T)2956 void InitializationSequence::AddZeroInitializationStep(QualType T) {
2957   Step S;
2958   S.Kind = SK_ZeroInitialization;
2959   S.Type = T;
2960   Steps.push_back(S);
2961 }
2962 
AddCAssignmentStep(QualType T)2963 void InitializationSequence::AddCAssignmentStep(QualType T) {
2964   Step S;
2965   S.Kind = SK_CAssignment;
2966   S.Type = T;
2967   Steps.push_back(S);
2968 }
2969 
AddStringInitStep(QualType T)2970 void InitializationSequence::AddStringInitStep(QualType T) {
2971   Step S;
2972   S.Kind = SK_StringInit;
2973   S.Type = T;
2974   Steps.push_back(S);
2975 }
2976 
AddObjCObjectConversionStep(QualType T)2977 void InitializationSequence::AddObjCObjectConversionStep(QualType T) {
2978   Step S;
2979   S.Kind = SK_ObjCObjectConversion;
2980   S.Type = T;
2981   Steps.push_back(S);
2982 }
2983 
AddArrayInitStep(QualType T)2984 void InitializationSequence::AddArrayInitStep(QualType T) {
2985   Step S;
2986   S.Kind = SK_ArrayInit;
2987   S.Type = T;
2988   Steps.push_back(S);
2989 }
2990 
AddParenthesizedArrayInitStep(QualType T)2991 void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) {
2992   Step S;
2993   S.Kind = SK_ParenthesizedArrayInit;
2994   S.Type = T;
2995   Steps.push_back(S);
2996 }
2997 
AddPassByIndirectCopyRestoreStep(QualType type,bool shouldCopy)2998 void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type,
2999                                                               bool shouldCopy) {
3000   Step s;
3001   s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore
3002                        : SK_PassByIndirectRestore);
3003   s.Type = type;
3004   Steps.push_back(s);
3005 }
3006 
AddProduceObjCObjectStep(QualType T)3007 void InitializationSequence::AddProduceObjCObjectStep(QualType T) {
3008   Step S;
3009   S.Kind = SK_ProduceObjCObject;
3010   S.Type = T;
3011   Steps.push_back(S);
3012 }
3013 
AddStdInitializerListConstructionStep(QualType T)3014 void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) {
3015   Step S;
3016   S.Kind = SK_StdInitializerList;
3017   S.Type = T;
3018   Steps.push_back(S);
3019 }
3020 
AddOCLSamplerInitStep(QualType T)3021 void InitializationSequence::AddOCLSamplerInitStep(QualType T) {
3022   Step S;
3023   S.Kind = SK_OCLSamplerInit;
3024   S.Type = T;
3025   Steps.push_back(S);
3026 }
3027 
AddOCLZeroEventStep(QualType T)3028 void InitializationSequence::AddOCLZeroEventStep(QualType T) {
3029   Step S;
3030   S.Kind = SK_OCLZeroEvent;
3031   S.Type = T;
3032   Steps.push_back(S);
3033 }
3034 
RewrapReferenceInitList(QualType T,InitListExpr * Syntactic)3035 void InitializationSequence::RewrapReferenceInitList(QualType T,
3036                                                      InitListExpr *Syntactic) {
3037   assert(Syntactic->getNumInits() == 1 &&
3038          "Can only rewrap trivial init lists.");
3039   Step S;
3040   S.Kind = SK_UnwrapInitList;
3041   S.Type = Syntactic->getInit(0)->getType();
3042   Steps.insert(Steps.begin(), S);
3043 
3044   S.Kind = SK_RewrapInitList;
3045   S.Type = T;
3046   S.WrappingSyntacticList = Syntactic;
3047   Steps.push_back(S);
3048 }
3049 
SetOverloadFailure(FailureKind Failure,OverloadingResult Result)3050 void InitializationSequence::SetOverloadFailure(FailureKind Failure,
3051                                                 OverloadingResult Result) {
3052   setSequenceKind(FailedSequence);
3053   this->Failure = Failure;
3054   this->FailedOverloadResult = Result;
3055 }
3056 
3057 //===----------------------------------------------------------------------===//
3058 // Attempt initialization
3059 //===----------------------------------------------------------------------===//
3060 
MaybeProduceObjCObject(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity)3061 static void MaybeProduceObjCObject(Sema &S,
3062                                    InitializationSequence &Sequence,
3063                                    const InitializedEntity &Entity) {
3064   if (!S.getLangOpts().ObjCAutoRefCount) return;
3065 
3066   /// When initializing a parameter, produce the value if it's marked
3067   /// __attribute__((ns_consumed)).
3068   if (Entity.isParameterKind()) {
3069     if (!Entity.isParameterConsumed())
3070       return;
3071 
3072     assert(Entity.getType()->isObjCRetainableType() &&
3073            "consuming an object of unretainable type?");
3074     Sequence.AddProduceObjCObjectStep(Entity.getType());
3075 
3076   /// When initializing a return value, if the return type is a
3077   /// retainable type, then returns need to immediately retain the
3078   /// object.  If an autorelease is required, it will be done at the
3079   /// last instant.
3080   } else if (Entity.getKind() == InitializedEntity::EK_Result) {
3081     if (!Entity.getType()->isObjCRetainableType())
3082       return;
3083 
3084     Sequence.AddProduceObjCObjectStep(Entity.getType());
3085   }
3086 }
3087 
3088 static void TryListInitialization(Sema &S,
3089                                   const InitializedEntity &Entity,
3090                                   const InitializationKind &Kind,
3091                                   InitListExpr *InitList,
3092                                   InitializationSequence &Sequence);
3093 
3094 /// \brief When initializing from init list via constructor, handle
3095 /// initialization of an object of type std::initializer_list<T>.
3096 ///
3097 /// \return true if we have handled initialization of an object of type
3098 /// std::initializer_list<T>, false otherwise.
TryInitializerListConstruction(Sema & S,InitListExpr * List,QualType DestType,InitializationSequence & Sequence)3099 static bool TryInitializerListConstruction(Sema &S,
3100                                            InitListExpr *List,
3101                                            QualType DestType,
3102                                            InitializationSequence &Sequence) {
3103   QualType E;
3104   if (!S.isStdInitializerList(DestType, &E))
3105     return false;
3106 
3107   if (S.RequireCompleteType(List->getExprLoc(), E, 0)) {
3108     Sequence.setIncompleteTypeFailure(E);
3109     return true;
3110   }
3111 
3112   // Try initializing a temporary array from the init list.
3113   QualType ArrayType = S.Context.getConstantArrayType(
3114       E.withConst(), llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
3115                                  List->getNumInits()),
3116       clang::ArrayType::Normal, 0);
3117   InitializedEntity HiddenArray =
3118       InitializedEntity::InitializeTemporary(ArrayType);
3119   InitializationKind Kind =
3120       InitializationKind::CreateDirectList(List->getExprLoc());
3121   TryListInitialization(S, HiddenArray, Kind, List, Sequence);
3122   if (Sequence)
3123     Sequence.AddStdInitializerListConstructionStep(DestType);
3124   return true;
3125 }
3126 
3127 static OverloadingResult
ResolveConstructorOverload(Sema & S,SourceLocation DeclLoc,MultiExprArg Args,OverloadCandidateSet & CandidateSet,ArrayRef<NamedDecl * > Ctors,OverloadCandidateSet::iterator & Best,bool CopyInitializing,bool AllowExplicit,bool OnlyListConstructors,bool InitListSyntax)3128 ResolveConstructorOverload(Sema &S, SourceLocation DeclLoc,
3129                            MultiExprArg Args,
3130                            OverloadCandidateSet &CandidateSet,
3131                            ArrayRef<NamedDecl *> Ctors,
3132                            OverloadCandidateSet::iterator &Best,
3133                            bool CopyInitializing, bool AllowExplicit,
3134                            bool OnlyListConstructors, bool InitListSyntax) {
3135   CandidateSet.clear();
3136 
3137   for (ArrayRef<NamedDecl *>::iterator
3138          Con = Ctors.begin(), ConEnd = Ctors.end(); Con != ConEnd; ++Con) {
3139     NamedDecl *D = *Con;
3140     DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3141     bool SuppressUserConversions = false;
3142 
3143     // Find the constructor (which may be a template).
3144     CXXConstructorDecl *Constructor = nullptr;
3145     FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3146     if (ConstructorTmpl)
3147       Constructor = cast<CXXConstructorDecl>(
3148                                            ConstructorTmpl->getTemplatedDecl());
3149     else {
3150       Constructor = cast<CXXConstructorDecl>(D);
3151 
3152       // C++11 [over.best.ics]p4:
3153       //   However, when considering the argument of a constructor or
3154       //   user-defined conversion function that is a candidate:
3155       //    -- by 13.3.1.3 when invoked for the copying/moving of a temporary
3156       //       in the second step of a class copy-initialization,
3157       //    -- by 13.3.1.7 when passing the initializer list as a single
3158       //       argument or when the initializer list has exactly one elementand
3159       //       a conversion to some class X or reference to (possibly
3160       //       cv-qualified) X is considered for the first parameter of a
3161       //       constructor of X, or
3162       //    -- by 13.3.1.4, 13.3.1.5, or 13.3.1.6 in all cases,
3163       //   only standard conversion sequences and ellipsis conversion sequences
3164       //   are considered.
3165       if ((CopyInitializing || (InitListSyntax && Args.size() == 1)) &&
3166           Constructor->isCopyOrMoveConstructor())
3167         SuppressUserConversions = true;
3168     }
3169 
3170     if (!Constructor->isInvalidDecl() &&
3171         (AllowExplicit || !Constructor->isExplicit()) &&
3172         (!OnlyListConstructors || S.isInitListConstructor(Constructor))) {
3173       if (ConstructorTmpl)
3174         S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3175                                        /*ExplicitArgs*/ nullptr, Args,
3176                                        CandidateSet, SuppressUserConversions);
3177       else {
3178         // C++ [over.match.copy]p1:
3179         //   - When initializing a temporary to be bound to the first parameter
3180         //     of a constructor that takes a reference to possibly cv-qualified
3181         //     T as its first argument, called with a single argument in the
3182         //     context of direct-initialization, explicit conversion functions
3183         //     are also considered.
3184         bool AllowExplicitConv = AllowExplicit && !CopyInitializing &&
3185                                  Args.size() == 1 &&
3186                                  Constructor->isCopyOrMoveConstructor();
3187         S.AddOverloadCandidate(Constructor, FoundDecl, Args, CandidateSet,
3188                                SuppressUserConversions,
3189                                /*PartialOverloading=*/false,
3190                                /*AllowExplicit=*/AllowExplicitConv);
3191       }
3192     }
3193   }
3194 
3195   // Perform overload resolution and return the result.
3196   return CandidateSet.BestViableFunction(S, DeclLoc, Best);
3197 }
3198 
3199 /// \brief Attempt initialization by constructor (C++ [dcl.init]), which
3200 /// enumerates the constructors of the initialized entity and performs overload
3201 /// resolution to select the best.
3202 /// If InitListSyntax is true, this is list-initialization of a non-aggregate
3203 /// class type.
TryConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType DestType,InitializationSequence & Sequence,bool InitListSyntax=false)3204 static void TryConstructorInitialization(Sema &S,
3205                                          const InitializedEntity &Entity,
3206                                          const InitializationKind &Kind,
3207                                          MultiExprArg Args, QualType DestType,
3208                                          InitializationSequence &Sequence,
3209                                          bool InitListSyntax = false) {
3210   assert((!InitListSyntax || (Args.size() == 1 && isa<InitListExpr>(Args[0]))) &&
3211          "InitListSyntax must come with a single initializer list argument.");
3212 
3213   // The type we're constructing needs to be complete.
3214   if (S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
3215     Sequence.setIncompleteTypeFailure(DestType);
3216     return;
3217   }
3218 
3219   const RecordType *DestRecordType = DestType->getAs<RecordType>();
3220   assert(DestRecordType && "Constructor initialization requires record type");
3221   CXXRecordDecl *DestRecordDecl
3222     = cast<CXXRecordDecl>(DestRecordType->getDecl());
3223 
3224   // Build the candidate set directly in the initialization sequence
3225   // structure, so that it will persist if we fail.
3226   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3227 
3228   // Determine whether we are allowed to call explicit constructors or
3229   // explicit conversion operators.
3230   bool AllowExplicit = Kind.AllowExplicit() || InitListSyntax;
3231   bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy;
3232 
3233   //   - Otherwise, if T is a class type, constructors are considered. The
3234   //     applicable constructors are enumerated, and the best one is chosen
3235   //     through overload resolution.
3236   DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
3237   // The container holding the constructors can under certain conditions
3238   // be changed while iterating (e.g. because of deserialization).
3239   // To be safe we copy the lookup results to a new container.
3240   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3241 
3242   OverloadingResult Result = OR_No_Viable_Function;
3243   OverloadCandidateSet::iterator Best;
3244   bool AsInitializerList = false;
3245 
3246   // C++11 [over.match.list]p1:
3247   //   When objects of non-aggregate type T are list-initialized, overload
3248   //   resolution selects the constructor in two phases:
3249   //   - Initially, the candidate functions are the initializer-list
3250   //     constructors of the class T and the argument list consists of the
3251   //     initializer list as a single argument.
3252   if (InitListSyntax) {
3253     InitListExpr *ILE = cast<InitListExpr>(Args[0]);
3254     AsInitializerList = true;
3255 
3256     // If the initializer list has no elements and T has a default constructor,
3257     // the first phase is omitted.
3258     if (ILE->getNumInits() != 0 || !DestRecordDecl->hasDefaultConstructor())
3259       Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3260                                           CandidateSet, Ctors, Best,
3261                                           CopyInitialization, AllowExplicit,
3262                                           /*OnlyListConstructor=*/true,
3263                                           InitListSyntax);
3264 
3265     // Time to unwrap the init list.
3266     Args = MultiExprArg(ILE->getInits(), ILE->getNumInits());
3267   }
3268 
3269   // C++11 [over.match.list]p1:
3270   //   - If no viable initializer-list constructor is found, overload resolution
3271   //     is performed again, where the candidate functions are all the
3272   //     constructors of the class T and the argument list consists of the
3273   //     elements of the initializer list.
3274   if (Result == OR_No_Viable_Function) {
3275     AsInitializerList = false;
3276     Result = ResolveConstructorOverload(S, Kind.getLocation(), Args,
3277                                         CandidateSet, Ctors, Best,
3278                                         CopyInitialization, AllowExplicit,
3279                                         /*OnlyListConstructors=*/false,
3280                                         InitListSyntax);
3281   }
3282   if (Result) {
3283     Sequence.SetOverloadFailure(InitListSyntax ?
3284                       InitializationSequence::FK_ListConstructorOverloadFailed :
3285                       InitializationSequence::FK_ConstructorOverloadFailed,
3286                                 Result);
3287     return;
3288   }
3289 
3290   // C++11 [dcl.init]p6:
3291   //   If a program calls for the default initialization of an object
3292   //   of a const-qualified type T, T shall be a class type with a
3293   //   user-provided default constructor.
3294   if (Kind.getKind() == InitializationKind::IK_Default &&
3295       Entity.getType().isConstQualified() &&
3296       !cast<CXXConstructorDecl>(Best->Function)->isUserProvided()) {
3297     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
3298     return;
3299   }
3300 
3301   // C++11 [over.match.list]p1:
3302   //   In copy-list-initialization, if an explicit constructor is chosen, the
3303   //   initializer is ill-formed.
3304   CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
3305   if (InitListSyntax && !Kind.AllowExplicit() && CtorDecl->isExplicit()) {
3306     Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor);
3307     return;
3308   }
3309 
3310   // Add the constructor initialization step. Any cv-qualification conversion is
3311   // subsumed by the initialization.
3312   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3313   Sequence.AddConstructorInitializationStep(CtorDecl,
3314                                             Best->FoundDecl.getAccess(),
3315                                             DestType, HadMultipleCandidates,
3316                                             InitListSyntax, AsInitializerList);
3317 }
3318 
3319 static bool
ResolveOverloadedFunctionForReferenceBinding(Sema & S,Expr * Initializer,QualType & SourceType,QualType & UnqualifiedSourceType,QualType UnqualifiedTargetType,InitializationSequence & Sequence)3320 ResolveOverloadedFunctionForReferenceBinding(Sema &S,
3321                                              Expr *Initializer,
3322                                              QualType &SourceType,
3323                                              QualType &UnqualifiedSourceType,
3324                                              QualType UnqualifiedTargetType,
3325                                              InitializationSequence &Sequence) {
3326   if (S.Context.getCanonicalType(UnqualifiedSourceType) ==
3327         S.Context.OverloadTy) {
3328     DeclAccessPair Found;
3329     bool HadMultipleCandidates = false;
3330     if (FunctionDecl *Fn
3331         = S.ResolveAddressOfOverloadedFunction(Initializer,
3332                                                UnqualifiedTargetType,
3333                                                false, Found,
3334                                                &HadMultipleCandidates)) {
3335       Sequence.AddAddressOverloadResolutionStep(Fn, Found,
3336                                                 HadMultipleCandidates);
3337       SourceType = Fn->getType();
3338       UnqualifiedSourceType = SourceType.getUnqualifiedType();
3339     } else if (!UnqualifiedTargetType->isRecordType()) {
3340       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3341       return true;
3342     }
3343   }
3344   return false;
3345 }
3346 
3347 static void TryReferenceInitializationCore(Sema &S,
3348                                            const InitializedEntity &Entity,
3349                                            const InitializationKind &Kind,
3350                                            Expr *Initializer,
3351                                            QualType cv1T1, QualType T1,
3352                                            Qualifiers T1Quals,
3353                                            QualType cv2T2, QualType T2,
3354                                            Qualifiers T2Quals,
3355                                            InitializationSequence &Sequence);
3356 
3357 static void TryValueInitialization(Sema &S,
3358                                    const InitializedEntity &Entity,
3359                                    const InitializationKind &Kind,
3360                                    InitializationSequence &Sequence,
3361                                    InitListExpr *InitList = nullptr);
3362 
3363 /// \brief Attempt list initialization of a reference.
TryReferenceListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3364 static void TryReferenceListInitialization(Sema &S,
3365                                            const InitializedEntity &Entity,
3366                                            const InitializationKind &Kind,
3367                                            InitListExpr *InitList,
3368                                            InitializationSequence &Sequence) {
3369   // First, catch C++03 where this isn't possible.
3370   if (!S.getLangOpts().CPlusPlus11) {
3371     Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList);
3372     return;
3373   }
3374 
3375   QualType DestType = Entity.getType();
3376   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3377   Qualifiers T1Quals;
3378   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3379 
3380   // Reference initialization via an initializer list works thus:
3381   // If the initializer list consists of a single element that is
3382   // reference-related to the referenced type, bind directly to that element
3383   // (possibly creating temporaries).
3384   // Otherwise, initialize a temporary with the initializer list and
3385   // bind to that.
3386   if (InitList->getNumInits() == 1) {
3387     Expr *Initializer = InitList->getInit(0);
3388     QualType cv2T2 = Initializer->getType();
3389     Qualifiers T2Quals;
3390     QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3391 
3392     // If this fails, creating a temporary wouldn't work either.
3393     if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3394                                                      T1, Sequence))
3395       return;
3396 
3397     SourceLocation DeclLoc = Initializer->getLocStart();
3398     bool dummy1, dummy2, dummy3;
3399     Sema::ReferenceCompareResult RefRelationship
3400       = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, dummy1,
3401                                        dummy2, dummy3);
3402     if (RefRelationship >= Sema::Ref_Related) {
3403       // Try to bind the reference here.
3404       TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3405                                      T1Quals, cv2T2, T2, T2Quals, Sequence);
3406       if (Sequence)
3407         Sequence.RewrapReferenceInitList(cv1T1, InitList);
3408       return;
3409     }
3410 
3411     // Update the initializer if we've resolved an overloaded function.
3412     if (Sequence.step_begin() != Sequence.step_end())
3413       Sequence.RewrapReferenceInitList(cv1T1, InitList);
3414   }
3415 
3416   // Not reference-related. Create a temporary and bind to that.
3417   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3418 
3419   TryListInitialization(S, TempEntity, Kind, InitList, Sequence);
3420   if (Sequence) {
3421     if (DestType->isRValueReferenceType() ||
3422         (T1Quals.hasConst() && !T1Quals.hasVolatile()))
3423       Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
3424     else
3425       Sequence.SetFailed(
3426           InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3427   }
3428 }
3429 
3430 /// \brief Attempt list initialization (C++0x [dcl.init.list])
TryListInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitListExpr * InitList,InitializationSequence & Sequence)3431 static void TryListInitialization(Sema &S,
3432                                   const InitializedEntity &Entity,
3433                                   const InitializationKind &Kind,
3434                                   InitListExpr *InitList,
3435                                   InitializationSequence &Sequence) {
3436   QualType DestType = Entity.getType();
3437 
3438   // C++ doesn't allow scalar initialization with more than one argument.
3439   // But C99 complex numbers are scalars and it makes sense there.
3440   if (S.getLangOpts().CPlusPlus && DestType->isScalarType() &&
3441       !DestType->isAnyComplexType() && InitList->getNumInits() > 1) {
3442     Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar);
3443     return;
3444   }
3445   if (DestType->isReferenceType()) {
3446     TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence);
3447     return;
3448   }
3449   if (DestType->isRecordType()) {
3450     if (S.RequireCompleteType(InitList->getLocStart(), DestType, 0)) {
3451       Sequence.setIncompleteTypeFailure(DestType);
3452       return;
3453     }
3454 
3455     // C++11 [dcl.init.list]p3:
3456     //   - If T is an aggregate, aggregate initialization is performed.
3457     if (!DestType->isAggregateType()) {
3458       if (S.getLangOpts().CPlusPlus11) {
3459         //   - Otherwise, if the initializer list has no elements and T is a
3460         //     class type with a default constructor, the object is
3461         //     value-initialized.
3462         if (InitList->getNumInits() == 0) {
3463           CXXRecordDecl *RD = DestType->getAsCXXRecordDecl();
3464           if (RD->hasDefaultConstructor()) {
3465             TryValueInitialization(S, Entity, Kind, Sequence, InitList);
3466             return;
3467           }
3468         }
3469 
3470         //   - Otherwise, if T is a specialization of std::initializer_list<E>,
3471         //     an initializer_list object constructed [...]
3472         if (TryInitializerListConstruction(S, InitList, DestType, Sequence))
3473           return;
3474 
3475         //   - Otherwise, if T is a class type, constructors are considered.
3476         Expr *InitListAsExpr = InitList;
3477         TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType,
3478                                      Sequence, /*InitListSyntax*/true);
3479       } else
3480         Sequence.SetFailed(
3481             InitializationSequence::FK_InitListBadDestinationType);
3482       return;
3483     }
3484   }
3485   if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() &&
3486       InitList->getNumInits() == 1 &&
3487       InitList->getInit(0)->getType()->isRecordType()) {
3488     //   - Otherwise, if the initializer list has a single element of type E
3489     //     [...references are handled above...], the object or reference is
3490     //     initialized from that element; if a narrowing conversion is required
3491     //     to convert the element to T, the program is ill-formed.
3492     //
3493     // Per core-24034, this is direct-initialization if we were performing
3494     // direct-list-initialization and copy-initialization otherwise.
3495     // We can't use InitListChecker for this, because it always performs
3496     // copy-initialization. This only matters if we might use an 'explicit'
3497     // conversion operator, so we only need to handle the cases where the source
3498     // is of record type.
3499     InitializationKind SubKind =
3500         Kind.getKind() == InitializationKind::IK_DirectList
3501             ? InitializationKind::CreateDirect(Kind.getLocation(),
3502                                                InitList->getLBraceLoc(),
3503                                                InitList->getRBraceLoc())
3504             : Kind;
3505     Expr *SubInit[1] = { InitList->getInit(0) };
3506     Sequence.InitializeFrom(S, Entity, SubKind, SubInit,
3507                             /*TopLevelOfInitList*/true);
3508     if (Sequence)
3509       Sequence.RewrapReferenceInitList(Entity.getType(), InitList);
3510     return;
3511   }
3512 
3513   InitListChecker CheckInitList(S, Entity, InitList,
3514           DestType, /*VerifyOnly=*/true);
3515   if (CheckInitList.HadError()) {
3516     Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed);
3517     return;
3518   }
3519 
3520   // Add the list initialization step with the built init list.
3521   Sequence.AddListInitializationStep(DestType);
3522 }
3523 
3524 /// \brief Try a reference initialization that involves calling a conversion
3525 /// function.
TryRefInitWithConversionFunction(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,bool AllowRValues,InitializationSequence & Sequence)3526 static OverloadingResult TryRefInitWithConversionFunction(Sema &S,
3527                                              const InitializedEntity &Entity,
3528                                              const InitializationKind &Kind,
3529                                              Expr *Initializer,
3530                                              bool AllowRValues,
3531                                              InitializationSequence &Sequence) {
3532   QualType DestType = Entity.getType();
3533   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3534   QualType T1 = cv1T1.getUnqualifiedType();
3535   QualType cv2T2 = Initializer->getType();
3536   QualType T2 = cv2T2.getUnqualifiedType();
3537 
3538   bool DerivedToBase;
3539   bool ObjCConversion;
3540   bool ObjCLifetimeConversion;
3541   assert(!S.CompareReferenceRelationship(Initializer->getLocStart(),
3542                                          T1, T2, DerivedToBase,
3543                                          ObjCConversion,
3544                                          ObjCLifetimeConversion) &&
3545          "Must have incompatible references when binding via conversion");
3546   (void)DerivedToBase;
3547   (void)ObjCConversion;
3548   (void)ObjCLifetimeConversion;
3549 
3550   // Build the candidate set directly in the initialization sequence
3551   // structure, so that it will persist if we fail.
3552   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
3553   CandidateSet.clear();
3554 
3555   // Determine whether we are allowed to call explicit constructors or
3556   // explicit conversion operators.
3557   bool AllowExplicit = Kind.AllowExplicit();
3558   bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding();
3559 
3560   const RecordType *T1RecordType = nullptr;
3561   if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) &&
3562       !S.RequireCompleteType(Kind.getLocation(), T1, 0)) {
3563     // The type we're converting to is a class type. Enumerate its constructors
3564     // to see if there is a suitable conversion.
3565     CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl());
3566 
3567     DeclContext::lookup_result R = S.LookupConstructors(T1RecordDecl);
3568     // The container holding the constructors can under certain conditions
3569     // be changed while iterating (e.g. because of deserialization).
3570     // To be safe we copy the lookup results to a new container.
3571     SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
3572     for (SmallVectorImpl<NamedDecl *>::iterator
3573            CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
3574       NamedDecl *D = *CI;
3575       DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
3576 
3577       // Find the constructor (which may be a template).
3578       CXXConstructorDecl *Constructor = nullptr;
3579       FunctionTemplateDecl *ConstructorTmpl = dyn_cast<FunctionTemplateDecl>(D);
3580       if (ConstructorTmpl)
3581         Constructor = cast<CXXConstructorDecl>(
3582                                          ConstructorTmpl->getTemplatedDecl());
3583       else
3584         Constructor = cast<CXXConstructorDecl>(D);
3585 
3586       if (!Constructor->isInvalidDecl() &&
3587           Constructor->isConvertingConstructor(AllowExplicit)) {
3588         if (ConstructorTmpl)
3589           S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
3590                                          /*ExplicitArgs*/ nullptr,
3591                                          Initializer, CandidateSet,
3592                                          /*SuppressUserConversions=*/true);
3593         else
3594           S.AddOverloadCandidate(Constructor, FoundDecl,
3595                                  Initializer, CandidateSet,
3596                                  /*SuppressUserConversions=*/true);
3597       }
3598     }
3599   }
3600   if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl())
3601     return OR_No_Viable_Function;
3602 
3603   const RecordType *T2RecordType = nullptr;
3604   if ((T2RecordType = T2->getAs<RecordType>()) &&
3605       !S.RequireCompleteType(Kind.getLocation(), T2, 0)) {
3606     // The type we're converting from is a class type, enumerate its conversion
3607     // functions.
3608     CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl());
3609 
3610     std::pair<CXXRecordDecl::conversion_iterator,
3611               CXXRecordDecl::conversion_iterator>
3612       Conversions = T2RecordDecl->getVisibleConversionFunctions();
3613     for (CXXRecordDecl::conversion_iterator
3614            I = Conversions.first, E = Conversions.second; I != E; ++I) {
3615       NamedDecl *D = *I;
3616       CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
3617       if (isa<UsingShadowDecl>(D))
3618         D = cast<UsingShadowDecl>(D)->getTargetDecl();
3619 
3620       FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
3621       CXXConversionDecl *Conv;
3622       if (ConvTemplate)
3623         Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
3624       else
3625         Conv = cast<CXXConversionDecl>(D);
3626 
3627       // If the conversion function doesn't return a reference type,
3628       // it can't be considered for this conversion unless we're allowed to
3629       // consider rvalues.
3630       // FIXME: Do we need to make sure that we only consider conversion
3631       // candidates with reference-compatible results? That might be needed to
3632       // break recursion.
3633       if ((AllowExplicitConvs || !Conv->isExplicit()) &&
3634           (AllowRValues || Conv->getConversionType()->isLValueReferenceType())){
3635         if (ConvTemplate)
3636           S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
3637                                            ActingDC, Initializer,
3638                                            DestType, CandidateSet,
3639                                            /*AllowObjCConversionOnExplicit=*/
3640                                              false);
3641         else
3642           S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
3643                                    Initializer, DestType, CandidateSet,
3644                                    /*AllowObjCConversionOnExplicit=*/false);
3645       }
3646     }
3647   }
3648   if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl())
3649     return OR_No_Viable_Function;
3650 
3651   SourceLocation DeclLoc = Initializer->getLocStart();
3652 
3653   // Perform overload resolution. If it fails, return the failed result.
3654   OverloadCandidateSet::iterator Best;
3655   if (OverloadingResult Result
3656         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true))
3657     return Result;
3658 
3659   FunctionDecl *Function = Best->Function;
3660   // This is the overload that will be used for this initialization step if we
3661   // use this initialization. Mark it as referenced.
3662   Function->setReferenced();
3663 
3664   // Compute the returned type of the conversion.
3665   if (isa<CXXConversionDecl>(Function))
3666     T2 = Function->getReturnType();
3667   else
3668     T2 = cv1T1;
3669 
3670   // Add the user-defined conversion step.
3671   bool HadMultipleCandidates = (CandidateSet.size() > 1);
3672   Sequence.AddUserConversionStep(Function, Best->FoundDecl,
3673                                  T2.getNonLValueExprType(S.Context),
3674                                  HadMultipleCandidates);
3675 
3676   // Determine whether we need to perform derived-to-base or
3677   // cv-qualification adjustments.
3678   ExprValueKind VK = VK_RValue;
3679   if (T2->isLValueReferenceType())
3680     VK = VK_LValue;
3681   else if (const RValueReferenceType *RRef = T2->getAs<RValueReferenceType>())
3682     VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue;
3683 
3684   bool NewDerivedToBase = false;
3685   bool NewObjCConversion = false;
3686   bool NewObjCLifetimeConversion = false;
3687   Sema::ReferenceCompareResult NewRefRelationship
3688     = S.CompareReferenceRelationship(DeclLoc, T1,
3689                                      T2.getNonLValueExprType(S.Context),
3690                                      NewDerivedToBase, NewObjCConversion,
3691                                      NewObjCLifetimeConversion);
3692   if (NewRefRelationship == Sema::Ref_Incompatible) {
3693     // If the type we've converted to is not reference-related to the
3694     // type we're looking for, then there is another conversion step
3695     // we need to perform to produce a temporary of the right type
3696     // that we'll be binding to.
3697     ImplicitConversionSequence ICS;
3698     ICS.setStandard();
3699     ICS.Standard = Best->FinalConversion;
3700     T2 = ICS.Standard.getToType(2);
3701     Sequence.AddConversionSequenceStep(ICS, T2);
3702   } else if (NewDerivedToBase)
3703     Sequence.AddDerivedToBaseCastStep(
3704                                 S.Context.getQualifiedType(T1,
3705                                   T2.getNonReferenceType().getQualifiers()),
3706                                       VK);
3707   else if (NewObjCConversion)
3708     Sequence.AddObjCObjectConversionStep(
3709                                 S.Context.getQualifiedType(T1,
3710                                   T2.getNonReferenceType().getQualifiers()));
3711 
3712   if (cv1T1.getQualifiers() != T2.getNonReferenceType().getQualifiers())
3713     Sequence.AddQualificationConversionStep(cv1T1, VK);
3714 
3715   Sequence.AddReferenceBindingStep(cv1T1, !T2->isReferenceType());
3716   return OR_Success;
3717 }
3718 
3719 static void CheckCXX98CompatAccessibleCopy(Sema &S,
3720                                            const InitializedEntity &Entity,
3721                                            Expr *CurInitExpr);
3722 
3723 /// \brief Attempt reference initialization (C++0x [dcl.init.ref])
TryReferenceInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)3724 static void TryReferenceInitialization(Sema &S,
3725                                        const InitializedEntity &Entity,
3726                                        const InitializationKind &Kind,
3727                                        Expr *Initializer,
3728                                        InitializationSequence &Sequence) {
3729   QualType DestType = Entity.getType();
3730   QualType cv1T1 = DestType->getAs<ReferenceType>()->getPointeeType();
3731   Qualifiers T1Quals;
3732   QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals);
3733   QualType cv2T2 = Initializer->getType();
3734   Qualifiers T2Quals;
3735   QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals);
3736 
3737   // If the initializer is the address of an overloaded function, try
3738   // to resolve the overloaded function. If all goes well, T2 is the
3739   // type of the resulting function.
3740   if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2,
3741                                                    T1, Sequence))
3742     return;
3743 
3744   // Delegate everything else to a subfunction.
3745   TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1,
3746                                  T1Quals, cv2T2, T2, T2Quals, Sequence);
3747 }
3748 
3749 /// Converts the target of reference initialization so that it has the
3750 /// appropriate qualifiers and value kind.
3751 ///
3752 /// In this case, 'x' is an 'int' lvalue, but it needs to be 'const int'.
3753 /// \code
3754 ///   int x;
3755 ///   const int &r = x;
3756 /// \endcode
3757 ///
3758 /// In this case the reference is binding to a bitfield lvalue, which isn't
3759 /// valid. Perform a load to create a lifetime-extended temporary instead.
3760 /// \code
3761 ///   const int &r = someStruct.bitfield;
3762 /// \endcode
3763 static ExprValueKind
convertQualifiersAndValueKindIfNecessary(Sema & S,InitializationSequence & Sequence,Expr * Initializer,QualType cv1T1,Qualifiers T1Quals,Qualifiers T2Quals,bool IsLValueRef)3764 convertQualifiersAndValueKindIfNecessary(Sema &S,
3765                                          InitializationSequence &Sequence,
3766                                          Expr *Initializer,
3767                                          QualType cv1T1,
3768                                          Qualifiers T1Quals,
3769                                          Qualifiers T2Quals,
3770                                          bool IsLValueRef) {
3771   bool IsNonAddressableType = Initializer->refersToBitField() ||
3772                               Initializer->refersToVectorElement();
3773 
3774   if (IsNonAddressableType) {
3775     // C++11 [dcl.init.ref]p5: [...] Otherwise, the reference shall be an
3776     // lvalue reference to a non-volatile const type, or the reference shall be
3777     // an rvalue reference.
3778     //
3779     // If not, we can't make a temporary and bind to that. Give up and allow the
3780     // error to be diagnosed later.
3781     if (IsLValueRef && (!T1Quals.hasConst() || T1Quals.hasVolatile())) {
3782       assert(Initializer->isGLValue());
3783       return Initializer->getValueKind();
3784     }
3785 
3786     // Force a load so we can materialize a temporary.
3787     Sequence.AddLValueToRValueStep(cv1T1.getUnqualifiedType());
3788     return VK_RValue;
3789   }
3790 
3791   if (T1Quals != T2Quals) {
3792     Sequence.AddQualificationConversionStep(cv1T1,
3793                                             Initializer->getValueKind());
3794   }
3795 
3796   return Initializer->getValueKind();
3797 }
3798 
3799 
3800 /// \brief Reference initialization without resolving overloaded functions.
TryReferenceInitializationCore(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,QualType cv1T1,QualType T1,Qualifiers T1Quals,QualType cv2T2,QualType T2,Qualifiers T2Quals,InitializationSequence & Sequence)3801 static void TryReferenceInitializationCore(Sema &S,
3802                                            const InitializedEntity &Entity,
3803                                            const InitializationKind &Kind,
3804                                            Expr *Initializer,
3805                                            QualType cv1T1, QualType T1,
3806                                            Qualifiers T1Quals,
3807                                            QualType cv2T2, QualType T2,
3808                                            Qualifiers T2Quals,
3809                                            InitializationSequence &Sequence) {
3810   QualType DestType = Entity.getType();
3811   SourceLocation DeclLoc = Initializer->getLocStart();
3812   // Compute some basic properties of the types and the initializer.
3813   bool isLValueRef = DestType->isLValueReferenceType();
3814   bool isRValueRef = !isLValueRef;
3815   bool DerivedToBase = false;
3816   bool ObjCConversion = false;
3817   bool ObjCLifetimeConversion = false;
3818   Expr::Classification InitCategory = Initializer->Classify(S.Context);
3819   Sema::ReferenceCompareResult RefRelationship
3820     = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, DerivedToBase,
3821                                      ObjCConversion, ObjCLifetimeConversion);
3822 
3823   // C++0x [dcl.init.ref]p5:
3824   //   A reference to type "cv1 T1" is initialized by an expression of type
3825   //   "cv2 T2" as follows:
3826   //
3827   //     - If the reference is an lvalue reference and the initializer
3828   //       expression
3829   // Note the analogous bullet points for rvalue refs to functions. Because
3830   // there are no function rvalues in C++, rvalue refs to functions are treated
3831   // like lvalue refs.
3832   OverloadingResult ConvOvlResult = OR_Success;
3833   bool T1Function = T1->isFunctionType();
3834   if (isLValueRef || T1Function) {
3835     if (InitCategory.isLValue() &&
3836         (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3837          (Kind.isCStyleOrFunctionalCast() &&
3838           RefRelationship == Sema::Ref_Related))) {
3839       //   - is an lvalue (but is not a bit-field), and "cv1 T1" is
3840       //     reference-compatible with "cv2 T2," or
3841       //
3842       // Per C++ [over.best.ics]p2, we don't diagnose whether the lvalue is a
3843       // bit-field when we're determining whether the reference initialization
3844       // can occur. However, we do pay attention to whether it is a bit-field
3845       // to decide whether we're actually binding to a temporary created from
3846       // the bit-field.
3847       if (DerivedToBase)
3848         Sequence.AddDerivedToBaseCastStep(
3849                          S.Context.getQualifiedType(T1, T2Quals),
3850                          VK_LValue);
3851       else if (ObjCConversion)
3852         Sequence.AddObjCObjectConversionStep(
3853                                      S.Context.getQualifiedType(T1, T2Quals));
3854 
3855       ExprValueKind ValueKind =
3856         convertQualifiersAndValueKindIfNecessary(S, Sequence, Initializer,
3857                                                  cv1T1, T1Quals, T2Quals,
3858                                                  isLValueRef);
3859       Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3860       return;
3861     }
3862 
3863     //     - has a class type (i.e., T2 is a class type), where T1 is not
3864     //       reference-related to T2, and can be implicitly converted to an
3865     //       lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible
3866     //       with "cv3 T3" (this conversion is selected by enumerating the
3867     //       applicable conversion functions (13.3.1.6) and choosing the best
3868     //       one through overload resolution (13.3)),
3869     // If we have an rvalue ref to function type here, the rhs must be
3870     // an rvalue. DR1287 removed the "implicitly" here.
3871     if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() &&
3872         (isLValueRef || InitCategory.isRValue())) {
3873       ConvOvlResult = TryRefInitWithConversionFunction(
3874           S, Entity, Kind, Initializer, /*AllowRValues*/isRValueRef, Sequence);
3875       if (ConvOvlResult == OR_Success)
3876         return;
3877       if (ConvOvlResult != OR_No_Viable_Function)
3878         Sequence.SetOverloadFailure(
3879             InitializationSequence::FK_ReferenceInitOverloadFailed,
3880             ConvOvlResult);
3881     }
3882   }
3883 
3884   //     - Otherwise, the reference shall be an lvalue reference to a
3885   //       non-volatile const type (i.e., cv1 shall be const), or the reference
3886   //       shall be an rvalue reference.
3887   if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile())) {
3888     if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
3889       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
3890     else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
3891       Sequence.SetOverloadFailure(
3892                         InitializationSequence::FK_ReferenceInitOverloadFailed,
3893                                   ConvOvlResult);
3894     else
3895       Sequence.SetFailed(InitCategory.isLValue()
3896         ? (RefRelationship == Sema::Ref_Related
3897              ? InitializationSequence::FK_ReferenceInitDropsQualifiers
3898              : InitializationSequence::FK_NonConstLValueReferenceBindingToUnrelated)
3899         : InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary);
3900 
3901     return;
3902   }
3903 
3904   //    - If the initializer expression
3905   //      - is an xvalue, class prvalue, array prvalue, or function lvalue and
3906   //        "cv1 T1" is reference-compatible with "cv2 T2"
3907   // Note: functions are handled below.
3908   if (!T1Function &&
3909       (RefRelationship >= Sema::Ref_Compatible_With_Added_Qualification ||
3910        (Kind.isCStyleOrFunctionalCast() &&
3911         RefRelationship == Sema::Ref_Related)) &&
3912       (InitCategory.isXValue() ||
3913        (InitCategory.isPRValue() && T2->isRecordType()) ||
3914        (InitCategory.isPRValue() && T2->isArrayType()))) {
3915     ExprValueKind ValueKind = InitCategory.isXValue()? VK_XValue : VK_RValue;
3916     if (InitCategory.isPRValue() && T2->isRecordType()) {
3917       // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the
3918       // compiler the freedom to perform a copy here or bind to the
3919       // object, while C++0x requires that we bind directly to the
3920       // object. Hence, we always bind to the object without making an
3921       // extra copy. However, in C++03 requires that we check for the
3922       // presence of a suitable copy constructor:
3923       //
3924       //   The constructor that would be used to make the copy shall
3925       //   be callable whether or not the copy is actually done.
3926       if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt)
3927         Sequence.AddExtraneousCopyToTemporary(cv2T2);
3928       else if (S.getLangOpts().CPlusPlus11)
3929         CheckCXX98CompatAccessibleCopy(S, Entity, Initializer);
3930     }
3931 
3932     if (DerivedToBase)
3933       Sequence.AddDerivedToBaseCastStep(S.Context.getQualifiedType(T1, T2Quals),
3934                                         ValueKind);
3935     else if (ObjCConversion)
3936       Sequence.AddObjCObjectConversionStep(
3937                                        S.Context.getQualifiedType(T1, T2Quals));
3938 
3939     ValueKind = convertQualifiersAndValueKindIfNecessary(S, Sequence,
3940                                                          Initializer, cv1T1,
3941                                                          T1Quals, T2Quals,
3942                                                          isLValueRef);
3943 
3944     Sequence.AddReferenceBindingStep(cv1T1, ValueKind == VK_RValue);
3945     return;
3946   }
3947 
3948   //       - has a class type (i.e., T2 is a class type), where T1 is not
3949   //         reference-related to T2, and can be implicitly converted to an
3950   //         xvalue, class prvalue, or function lvalue of type "cv3 T3",
3951   //         where "cv1 T1" is reference-compatible with "cv3 T3",
3952   //
3953   // DR1287 removes the "implicitly" here.
3954   if (T2->isRecordType()) {
3955     if (RefRelationship == Sema::Ref_Incompatible) {
3956       ConvOvlResult = TryRefInitWithConversionFunction(
3957           S, Entity, Kind, Initializer, /*AllowRValues*/true, Sequence);
3958       if (ConvOvlResult)
3959         Sequence.SetOverloadFailure(
3960             InitializationSequence::FK_ReferenceInitOverloadFailed,
3961             ConvOvlResult);
3962 
3963       return;
3964     }
3965 
3966     if ((RefRelationship == Sema::Ref_Compatible ||
3967          RefRelationship == Sema::Ref_Compatible_With_Added_Qualification) &&
3968         isRValueRef && InitCategory.isLValue()) {
3969       Sequence.SetFailed(
3970         InitializationSequence::FK_RValueReferenceBindingToLValue);
3971       return;
3972     }
3973 
3974     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
3975     return;
3976   }
3977 
3978   //      - Otherwise, a temporary of type "cv1 T1" is created and initialized
3979   //        from the initializer expression using the rules for a non-reference
3980   //        copy-initialization (8.5). The reference is then bound to the
3981   //        temporary. [...]
3982 
3983   InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(cv1T1);
3984 
3985   // FIXME: Why do we use an implicit conversion here rather than trying
3986   // copy-initialization?
3987   ImplicitConversionSequence ICS
3988     = S.TryImplicitConversion(Initializer, TempEntity.getType(),
3989                               /*SuppressUserConversions=*/false,
3990                               /*AllowExplicit=*/false,
3991                               /*FIXME:InOverloadResolution=*/false,
3992                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
3993                               /*AllowObjCWritebackConversion=*/false);
3994 
3995   if (ICS.isBad()) {
3996     // FIXME: Use the conversion function set stored in ICS to turn
3997     // this into an overloading ambiguity diagnostic. However, we need
3998     // to keep that set as an OverloadCandidateSet rather than as some
3999     // other kind of set.
4000     if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty())
4001       Sequence.SetOverloadFailure(
4002                         InitializationSequence::FK_ReferenceInitOverloadFailed,
4003                                   ConvOvlResult);
4004     else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy)
4005       Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4006     else
4007       Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed);
4008     return;
4009   } else {
4010     Sequence.AddConversionSequenceStep(ICS, TempEntity.getType());
4011   }
4012 
4013   //        [...] If T1 is reference-related to T2, cv1 must be the
4014   //        same cv-qualification as, or greater cv-qualification
4015   //        than, cv2; otherwise, the program is ill-formed.
4016   unsigned T1CVRQuals = T1Quals.getCVRQualifiers();
4017   unsigned T2CVRQuals = T2Quals.getCVRQualifiers();
4018   if (RefRelationship == Sema::Ref_Related &&
4019       (T1CVRQuals | T2CVRQuals) != T1CVRQuals) {
4020     Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers);
4021     return;
4022   }
4023 
4024   //   [...] If T1 is reference-related to T2 and the reference is an rvalue
4025   //   reference, the initializer expression shall not be an lvalue.
4026   if (RefRelationship >= Sema::Ref_Related && !isLValueRef &&
4027       InitCategory.isLValue()) {
4028     Sequence.SetFailed(
4029                     InitializationSequence::FK_RValueReferenceBindingToLValue);
4030     return;
4031   }
4032 
4033   Sequence.AddReferenceBindingStep(cv1T1, /*bindingTemporary=*/true);
4034   return;
4035 }
4036 
4037 /// \brief Attempt character array initialization from a string literal
4038 /// (C++ [dcl.init.string], C99 6.7.8).
TryStringLiteralInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence)4039 static void TryStringLiteralInitialization(Sema &S,
4040                                            const InitializedEntity &Entity,
4041                                            const InitializationKind &Kind,
4042                                            Expr *Initializer,
4043                                        InitializationSequence &Sequence) {
4044   Sequence.AddStringInitStep(Entity.getType());
4045 }
4046 
4047 /// \brief Attempt value initialization (C++ [dcl.init]p7).
TryValueInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence,InitListExpr * InitList)4048 static void TryValueInitialization(Sema &S,
4049                                    const InitializedEntity &Entity,
4050                                    const InitializationKind &Kind,
4051                                    InitializationSequence &Sequence,
4052                                    InitListExpr *InitList) {
4053   assert((!InitList || InitList->getNumInits() == 0) &&
4054          "Shouldn't use value-init for non-empty init lists");
4055 
4056   // C++98 [dcl.init]p5, C++11 [dcl.init]p7:
4057   //
4058   //   To value-initialize an object of type T means:
4059   QualType T = Entity.getType();
4060 
4061   //     -- if T is an array type, then each element is value-initialized;
4062   T = S.Context.getBaseElementType(T);
4063 
4064   if (const RecordType *RT = T->getAs<RecordType>()) {
4065     if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
4066       bool NeedZeroInitialization = true;
4067       if (!S.getLangOpts().CPlusPlus11) {
4068         // C++98:
4069         // -- if T is a class type (clause 9) with a user-declared constructor
4070         //    (12.1), then the default constructor for T is called (and the
4071         //    initialization is ill-formed if T has no accessible default
4072         //    constructor);
4073         if (ClassDecl->hasUserDeclaredConstructor())
4074           NeedZeroInitialization = false;
4075       } else {
4076         // C++11:
4077         // -- if T is a class type (clause 9) with either no default constructor
4078         //    (12.1 [class.ctor]) or a default constructor that is user-provided
4079         //    or deleted, then the object is default-initialized;
4080         CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl);
4081         if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted())
4082           NeedZeroInitialization = false;
4083       }
4084 
4085       // -- if T is a (possibly cv-qualified) non-union class type without a
4086       //    user-provided or deleted default constructor, then the object is
4087       //    zero-initialized and, if T has a non-trivial default constructor,
4088       //    default-initialized;
4089       // The 'non-union' here was removed by DR1502. The 'non-trivial default
4090       // constructor' part was removed by DR1507.
4091       if (NeedZeroInitialization)
4092         Sequence.AddZeroInitializationStep(Entity.getType());
4093 
4094       // C++03:
4095       // -- if T is a non-union class type without a user-declared constructor,
4096       //    then every non-static data member and base class component of T is
4097       //    value-initialized;
4098       // [...] A program that calls for [...] value-initialization of an
4099       // entity of reference type is ill-formed.
4100       //
4101       // C++11 doesn't need this handling, because value-initialization does not
4102       // occur recursively there, and the implicit default constructor is
4103       // defined as deleted in the problematic cases.
4104       if (!S.getLangOpts().CPlusPlus11 &&
4105           ClassDecl->hasUninitializedReferenceMember()) {
4106         Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference);
4107         return;
4108       }
4109 
4110       // If this is list-value-initialization, pass the empty init list on when
4111       // building the constructor call. This affects the semantics of a few
4112       // things (such as whether an explicit default constructor can be called).
4113       Expr *InitListAsExpr = InitList;
4114       MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0);
4115       bool InitListSyntax = InitList;
4116 
4117       return TryConstructorInitialization(S, Entity, Kind, Args, T, Sequence,
4118                                           InitListSyntax);
4119     }
4120   }
4121 
4122   Sequence.AddZeroInitializationStep(Entity.getType());
4123 }
4124 
4125 /// \brief Attempt default initialization (C++ [dcl.init]p6).
TryDefaultInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,InitializationSequence & Sequence)4126 static void TryDefaultInitialization(Sema &S,
4127                                      const InitializedEntity &Entity,
4128                                      const InitializationKind &Kind,
4129                                      InitializationSequence &Sequence) {
4130   assert(Kind.getKind() == InitializationKind::IK_Default);
4131 
4132   // C++ [dcl.init]p6:
4133   //   To default-initialize an object of type T means:
4134   //     - if T is an array type, each element is default-initialized;
4135   QualType DestType = S.Context.getBaseElementType(Entity.getType());
4136 
4137   //     - if T is a (possibly cv-qualified) class type (Clause 9), the default
4138   //       constructor for T is called (and the initialization is ill-formed if
4139   //       T has no accessible default constructor);
4140   if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) {
4141     TryConstructorInitialization(S, Entity, Kind, None, DestType, Sequence);
4142     return;
4143   }
4144 
4145   //     - otherwise, no initialization is performed.
4146 
4147   //   If a program calls for the default initialization of an object of
4148   //   a const-qualified type T, T shall be a class type with a user-provided
4149   //   default constructor.
4150   if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) {
4151     Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst);
4152     return;
4153   }
4154 
4155   // If the destination type has a lifetime property, zero-initialize it.
4156   if (DestType.getQualifiers().hasObjCLifetime()) {
4157     Sequence.AddZeroInitializationStep(Entity.getType());
4158     return;
4159   }
4160 }
4161 
4162 /// \brief Attempt a user-defined conversion between two types (C++ [dcl.init]),
4163 /// which enumerates all conversion functions and performs overload resolution
4164 /// to select the best.
TryUserDefinedConversion(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,Expr * Initializer,InitializationSequence & Sequence,bool TopLevelOfInitList)4165 static void TryUserDefinedConversion(Sema &S,
4166                                      const InitializedEntity &Entity,
4167                                      const InitializationKind &Kind,
4168                                      Expr *Initializer,
4169                                      InitializationSequence &Sequence,
4170                                      bool TopLevelOfInitList) {
4171   QualType DestType = Entity.getType();
4172   assert(!DestType->isReferenceType() && "References are handled elsewhere");
4173   QualType SourceType = Initializer->getType();
4174   assert((DestType->isRecordType() || SourceType->isRecordType()) &&
4175          "Must have a class type to perform a user-defined conversion");
4176 
4177   // Build the candidate set directly in the initialization sequence
4178   // structure, so that it will persist if we fail.
4179   OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet();
4180   CandidateSet.clear();
4181 
4182   // Determine whether we are allowed to call explicit constructors or
4183   // explicit conversion operators.
4184   bool AllowExplicit = Kind.AllowExplicit();
4185 
4186   if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) {
4187     // The type we're converting to is a class type. Enumerate its constructors
4188     // to see if there is a suitable conversion.
4189     CXXRecordDecl *DestRecordDecl
4190       = cast<CXXRecordDecl>(DestRecordType->getDecl());
4191 
4192     // Try to complete the type we're converting to.
4193     if (!S.RequireCompleteType(Kind.getLocation(), DestType, 0)) {
4194       DeclContext::lookup_result R = S.LookupConstructors(DestRecordDecl);
4195       // The container holding the constructors can under certain conditions
4196       // be changed while iterating. To be safe we copy the lookup results
4197       // to a new container.
4198       SmallVector<NamedDecl*, 8> CopyOfCon(R.begin(), R.end());
4199       for (SmallVectorImpl<NamedDecl *>::iterator
4200              Con = CopyOfCon.begin(), ConEnd = CopyOfCon.end();
4201            Con != ConEnd; ++Con) {
4202         NamedDecl *D = *Con;
4203         DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
4204 
4205         // Find the constructor (which may be a template).
4206         CXXConstructorDecl *Constructor = nullptr;
4207         FunctionTemplateDecl *ConstructorTmpl
4208           = dyn_cast<FunctionTemplateDecl>(D);
4209         if (ConstructorTmpl)
4210           Constructor = cast<CXXConstructorDecl>(
4211                                            ConstructorTmpl->getTemplatedDecl());
4212         else
4213           Constructor = cast<CXXConstructorDecl>(D);
4214 
4215         if (!Constructor->isInvalidDecl() &&
4216             Constructor->isConvertingConstructor(AllowExplicit)) {
4217           if (ConstructorTmpl)
4218             S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
4219                                            /*ExplicitArgs*/ nullptr,
4220                                            Initializer, CandidateSet,
4221                                            /*SuppressUserConversions=*/true);
4222           else
4223             S.AddOverloadCandidate(Constructor, FoundDecl,
4224                                    Initializer, CandidateSet,
4225                                    /*SuppressUserConversions=*/true);
4226         }
4227       }
4228     }
4229   }
4230 
4231   SourceLocation DeclLoc = Initializer->getLocStart();
4232 
4233   if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) {
4234     // The type we're converting from is a class type, enumerate its conversion
4235     // functions.
4236 
4237     // We can only enumerate the conversion functions for a complete type; if
4238     // the type isn't complete, simply skip this step.
4239     if (!S.RequireCompleteType(DeclLoc, SourceType, 0)) {
4240       CXXRecordDecl *SourceRecordDecl
4241         = cast<CXXRecordDecl>(SourceRecordType->getDecl());
4242 
4243       std::pair<CXXRecordDecl::conversion_iterator,
4244                 CXXRecordDecl::conversion_iterator>
4245         Conversions = SourceRecordDecl->getVisibleConversionFunctions();
4246       for (CXXRecordDecl::conversion_iterator
4247              I = Conversions.first, E = Conversions.second; I != E; ++I) {
4248         NamedDecl *D = *I;
4249         CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext());
4250         if (isa<UsingShadowDecl>(D))
4251           D = cast<UsingShadowDecl>(D)->getTargetDecl();
4252 
4253         FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D);
4254         CXXConversionDecl *Conv;
4255         if (ConvTemplate)
4256           Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl());
4257         else
4258           Conv = cast<CXXConversionDecl>(D);
4259 
4260         if (AllowExplicit || !Conv->isExplicit()) {
4261           if (ConvTemplate)
4262             S.AddTemplateConversionCandidate(ConvTemplate, I.getPair(),
4263                                              ActingDC, Initializer, DestType,
4264                                              CandidateSet, AllowExplicit);
4265           else
4266             S.AddConversionCandidate(Conv, I.getPair(), ActingDC,
4267                                      Initializer, DestType, CandidateSet,
4268                                      AllowExplicit);
4269         }
4270       }
4271     }
4272   }
4273 
4274   // Perform overload resolution. If it fails, return the failed result.
4275   OverloadCandidateSet::iterator Best;
4276   if (OverloadingResult Result
4277         = CandidateSet.BestViableFunction(S, DeclLoc, Best, true)) {
4278     Sequence.SetOverloadFailure(
4279                         InitializationSequence::FK_UserConversionOverloadFailed,
4280                                 Result);
4281     return;
4282   }
4283 
4284   FunctionDecl *Function = Best->Function;
4285   Function->setReferenced();
4286   bool HadMultipleCandidates = (CandidateSet.size() > 1);
4287 
4288   if (isa<CXXConstructorDecl>(Function)) {
4289     // Add the user-defined conversion step. Any cv-qualification conversion is
4290     // subsumed by the initialization. Per DR5, the created temporary is of the
4291     // cv-unqualified type of the destination.
4292     Sequence.AddUserConversionStep(Function, Best->FoundDecl,
4293                                    DestType.getUnqualifiedType(),
4294                                    HadMultipleCandidates);
4295     return;
4296   }
4297 
4298   // Add the user-defined conversion step that calls the conversion function.
4299   QualType ConvType = Function->getCallResultType();
4300   if (ConvType->getAs<RecordType>()) {
4301     // If we're converting to a class type, there may be an copy of
4302     // the resulting temporary object (possible to create an object of
4303     // a base class type). That copy is not a separate conversion, so
4304     // we just make a note of the actual destination type (possibly a
4305     // base class of the type returned by the conversion function) and
4306     // let the user-defined conversion step handle the conversion.
4307     Sequence.AddUserConversionStep(Function, Best->FoundDecl, DestType,
4308                                    HadMultipleCandidates);
4309     return;
4310   }
4311 
4312   Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType,
4313                                  HadMultipleCandidates);
4314 
4315   // If the conversion following the call to the conversion function
4316   // is interesting, add it as a separate step.
4317   if (Best->FinalConversion.First || Best->FinalConversion.Second ||
4318       Best->FinalConversion.Third) {
4319     ImplicitConversionSequence ICS;
4320     ICS.setStandard();
4321     ICS.Standard = Best->FinalConversion;
4322     Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList);
4323   }
4324 }
4325 
4326 /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>,
4327 /// a function with a pointer return type contains a 'return false;' statement.
4328 /// In C++11, 'false' is not a null pointer, so this breaks the build of any
4329 /// code using that header.
4330 ///
4331 /// Work around this by treating 'return false;' as zero-initializing the result
4332 /// if it's used in a pointer-returning function in a system header.
isLibstdcxxPointerReturnFalseHack(Sema & S,const InitializedEntity & Entity,const Expr * Init)4333 static bool isLibstdcxxPointerReturnFalseHack(Sema &S,
4334                                               const InitializedEntity &Entity,
4335                                               const Expr *Init) {
4336   return S.getLangOpts().CPlusPlus11 &&
4337          Entity.getKind() == InitializedEntity::EK_Result &&
4338          Entity.getType()->isPointerType() &&
4339          isa<CXXBoolLiteralExpr>(Init) &&
4340          !cast<CXXBoolLiteralExpr>(Init)->getValue() &&
4341          S.getSourceManager().isInSystemHeader(Init->getExprLoc());
4342 }
4343 
4344 /// The non-zero enum values here are indexes into diagnostic alternatives.
4345 enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar };
4346 
4347 /// Determines whether this expression is an acceptable ICR source.
isInvalidICRSource(ASTContext & C,Expr * e,bool isAddressOf,bool & isWeakAccess)4348 static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e,
4349                                          bool isAddressOf, bool &isWeakAccess) {
4350   // Skip parens.
4351   e = e->IgnoreParens();
4352 
4353   // Skip address-of nodes.
4354   if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) {
4355     if (op->getOpcode() == UO_AddrOf)
4356       return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true,
4357                                 isWeakAccess);
4358 
4359   // Skip certain casts.
4360   } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) {
4361     switch (ce->getCastKind()) {
4362     case CK_Dependent:
4363     case CK_BitCast:
4364     case CK_LValueBitCast:
4365     case CK_NoOp:
4366       return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess);
4367 
4368     case CK_ArrayToPointerDecay:
4369       return IIK_nonscalar;
4370 
4371     case CK_NullToPointer:
4372       return IIK_okay;
4373 
4374     default:
4375       break;
4376     }
4377 
4378   // If we have a declaration reference, it had better be a local variable.
4379   } else if (isa<DeclRefExpr>(e)) {
4380     // set isWeakAccess to true, to mean that there will be an implicit
4381     // load which requires a cleanup.
4382     if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
4383       isWeakAccess = true;
4384 
4385     if (!isAddressOf) return IIK_nonlocal;
4386 
4387     VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl());
4388     if (!var) return IIK_nonlocal;
4389 
4390     return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal);
4391 
4392   // If we have a conditional operator, check both sides.
4393   } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) {
4394     if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf,
4395                                                 isWeakAccess))
4396       return iik;
4397 
4398     return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess);
4399 
4400   // These are never scalar.
4401   } else if (isa<ArraySubscriptExpr>(e)) {
4402     return IIK_nonscalar;
4403 
4404   // Otherwise, it needs to be a null pointer constant.
4405   } else {
4406     return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull)
4407             ? IIK_okay : IIK_nonlocal);
4408   }
4409 
4410   return IIK_nonlocal;
4411 }
4412 
4413 /// Check whether the given expression is a valid operand for an
4414 /// indirect copy/restore.
checkIndirectCopyRestoreSource(Sema & S,Expr * src)4415 static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) {
4416   assert(src->isRValue());
4417   bool isWeakAccess = false;
4418   InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess);
4419   // If isWeakAccess to true, there will be an implicit
4420   // load which requires a cleanup.
4421   if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess)
4422     S.ExprNeedsCleanups = true;
4423 
4424   if (iik == IIK_okay) return;
4425 
4426   S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback)
4427     << ((unsigned) iik - 1)  // shift index into diagnostic explanations
4428     << src->getSourceRange();
4429 }
4430 
4431 /// \brief Determine whether we have compatible array types for the
4432 /// purposes of GNU by-copy array initialization.
hasCompatibleArrayTypes(ASTContext & Context,const ArrayType * Dest,const ArrayType * Source)4433 static bool hasCompatibleArrayTypes(ASTContext &Context,
4434                                     const ArrayType *Dest,
4435                                     const ArrayType *Source) {
4436   // If the source and destination array types are equivalent, we're
4437   // done.
4438   if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0)))
4439     return true;
4440 
4441   // Make sure that the element types are the same.
4442   if (!Context.hasSameType(Dest->getElementType(), Source->getElementType()))
4443     return false;
4444 
4445   // The only mismatch we allow is when the destination is an
4446   // incomplete array type and the source is a constant array type.
4447   return Source->isConstantArrayType() && Dest->isIncompleteArrayType();
4448 }
4449 
tryObjCWritebackConversion(Sema & S,InitializationSequence & Sequence,const InitializedEntity & Entity,Expr * Initializer)4450 static bool tryObjCWritebackConversion(Sema &S,
4451                                        InitializationSequence &Sequence,
4452                                        const InitializedEntity &Entity,
4453                                        Expr *Initializer) {
4454   bool ArrayDecay = false;
4455   QualType ArgType = Initializer->getType();
4456   QualType ArgPointee;
4457   if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) {
4458     ArrayDecay = true;
4459     ArgPointee = ArgArrayType->getElementType();
4460     ArgType = S.Context.getPointerType(ArgPointee);
4461   }
4462 
4463   // Handle write-back conversion.
4464   QualType ConvertedArgType;
4465   if (!S.isObjCWritebackConversion(ArgType, Entity.getType(),
4466                                    ConvertedArgType))
4467     return false;
4468 
4469   // We should copy unless we're passing to an argument explicitly
4470   // marked 'out'.
4471   bool ShouldCopy = true;
4472   if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4473     ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4474 
4475   // Do we need an lvalue conversion?
4476   if (ArrayDecay || Initializer->isGLValue()) {
4477     ImplicitConversionSequence ICS;
4478     ICS.setStandard();
4479     ICS.Standard.setAsIdentityConversion();
4480 
4481     QualType ResultType;
4482     if (ArrayDecay) {
4483       ICS.Standard.First = ICK_Array_To_Pointer;
4484       ResultType = S.Context.getPointerType(ArgPointee);
4485     } else {
4486       ICS.Standard.First = ICK_Lvalue_To_Rvalue;
4487       ResultType = Initializer->getType().getNonLValueExprType(S.Context);
4488     }
4489 
4490     Sequence.AddConversionSequenceStep(ICS, ResultType);
4491   }
4492 
4493   Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4494   return true;
4495 }
4496 
TryOCLSamplerInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4497 static bool TryOCLSamplerInitialization(Sema &S,
4498                                         InitializationSequence &Sequence,
4499                                         QualType DestType,
4500                                         Expr *Initializer) {
4501   if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() ||
4502     !Initializer->isIntegerConstantExpr(S.getASTContext()))
4503     return false;
4504 
4505   Sequence.AddOCLSamplerInitStep(DestType);
4506   return true;
4507 }
4508 
4509 //
4510 // OpenCL 1.2 spec, s6.12.10
4511 //
4512 // The event argument can also be used to associate the
4513 // async_work_group_copy with a previous async copy allowing
4514 // an event to be shared by multiple async copies; otherwise
4515 // event should be zero.
4516 //
TryOCLZeroEventInitialization(Sema & S,InitializationSequence & Sequence,QualType DestType,Expr * Initializer)4517 static bool TryOCLZeroEventInitialization(Sema &S,
4518                                           InitializationSequence &Sequence,
4519                                           QualType DestType,
4520                                           Expr *Initializer) {
4521   if (!S.getLangOpts().OpenCL || !DestType->isEventT() ||
4522       !Initializer->isIntegerConstantExpr(S.getASTContext()) ||
4523       (Initializer->EvaluateKnownConstInt(S.getASTContext()) != 0))
4524     return false;
4525 
4526   Sequence.AddOCLZeroEventStep(DestType);
4527   return true;
4528 }
4529 
InitializationSequence(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList)4530 InitializationSequence::InitializationSequence(Sema &S,
4531                                                const InitializedEntity &Entity,
4532                                                const InitializationKind &Kind,
4533                                                MultiExprArg Args,
4534                                                bool TopLevelOfInitList)
4535     : FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) {
4536   InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList);
4537 }
4538 
InitializeFrom(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,bool TopLevelOfInitList)4539 void InitializationSequence::InitializeFrom(Sema &S,
4540                                             const InitializedEntity &Entity,
4541                                             const InitializationKind &Kind,
4542                                             MultiExprArg Args,
4543                                             bool TopLevelOfInitList) {
4544   ASTContext &Context = S.Context;
4545 
4546   // Eliminate non-overload placeholder types in the arguments.  We
4547   // need to do this before checking whether types are dependent
4548   // because lowering a pseudo-object expression might well give us
4549   // something of dependent type.
4550   for (unsigned I = 0, E = Args.size(); I != E; ++I)
4551     if (Args[I]->getType()->isNonOverloadPlaceholderType()) {
4552       // FIXME: should we be doing this here?
4553       ExprResult result = S.CheckPlaceholderExpr(Args[I]);
4554       if (result.isInvalid()) {
4555         SetFailed(FK_PlaceholderType);
4556         return;
4557       }
4558       Args[I] = result.get();
4559     }
4560 
4561   // C++0x [dcl.init]p16:
4562   //   The semantics of initializers are as follows. The destination type is
4563   //   the type of the object or reference being initialized and the source
4564   //   type is the type of the initializer expression. The source type is not
4565   //   defined when the initializer is a braced-init-list or when it is a
4566   //   parenthesized list of expressions.
4567   QualType DestType = Entity.getType();
4568 
4569   if (DestType->isDependentType() ||
4570       Expr::hasAnyTypeDependentArguments(Args)) {
4571     SequenceKind = DependentSequence;
4572     return;
4573   }
4574 
4575   // Almost everything is a normal sequence.
4576   setSequenceKind(NormalSequence);
4577 
4578   QualType SourceType;
4579   Expr *Initializer = nullptr;
4580   if (Args.size() == 1) {
4581     Initializer = Args[0];
4582     if (S.getLangOpts().ObjC1) {
4583       if (S.CheckObjCBridgeRelatedConversions(Initializer->getLocStart(),
4584                                               DestType, Initializer->getType(),
4585                                               Initializer) ||
4586           S.ConversionToObjCStringLiteralCheck(DestType, Initializer))
4587         Args[0] = Initializer;
4588 
4589     }
4590     if (!isa<InitListExpr>(Initializer))
4591       SourceType = Initializer->getType();
4592   }
4593 
4594   //     - If the initializer is a (non-parenthesized) braced-init-list, the
4595   //       object is list-initialized (8.5.4).
4596   if (Kind.getKind() != InitializationKind::IK_Direct) {
4597     if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) {
4598       TryListInitialization(S, Entity, Kind, InitList, *this);
4599       return;
4600     }
4601   }
4602 
4603   //     - If the destination type is a reference type, see 8.5.3.
4604   if (DestType->isReferenceType()) {
4605     // C++0x [dcl.init.ref]p1:
4606     //   A variable declared to be a T& or T&&, that is, "reference to type T"
4607     //   (8.3.2), shall be initialized by an object, or function, of type T or
4608     //   by an object that can be converted into a T.
4609     // (Therefore, multiple arguments are not permitted.)
4610     if (Args.size() != 1)
4611       SetFailed(FK_TooManyInitsForReference);
4612     else
4613       TryReferenceInitialization(S, Entity, Kind, Args[0], *this);
4614     return;
4615   }
4616 
4617   //     - If the initializer is (), the object is value-initialized.
4618   if (Kind.getKind() == InitializationKind::IK_Value ||
4619       (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) {
4620     TryValueInitialization(S, Entity, Kind, *this);
4621     return;
4622   }
4623 
4624   // Handle default initialization.
4625   if (Kind.getKind() == InitializationKind::IK_Default) {
4626     TryDefaultInitialization(S, Entity, Kind, *this);
4627     return;
4628   }
4629 
4630   //     - If the destination type is an array of characters, an array of
4631   //       char16_t, an array of char32_t, or an array of wchar_t, and the
4632   //       initializer is a string literal, see 8.5.2.
4633   //     - Otherwise, if the destination type is an array, the program is
4634   //       ill-formed.
4635   if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) {
4636     if (Initializer && isa<VariableArrayType>(DestAT)) {
4637       SetFailed(FK_VariableLengthArrayHasInitializer);
4638       return;
4639     }
4640 
4641     if (Initializer) {
4642       switch (IsStringInit(Initializer, DestAT, Context)) {
4643       case SIF_None:
4644         TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this);
4645         return;
4646       case SIF_NarrowStringIntoWideChar:
4647         SetFailed(FK_NarrowStringIntoWideCharArray);
4648         return;
4649       case SIF_WideStringIntoChar:
4650         SetFailed(FK_WideStringIntoCharArray);
4651         return;
4652       case SIF_IncompatWideStringIntoWideChar:
4653         SetFailed(FK_IncompatWideStringIntoWideChar);
4654         return;
4655       case SIF_Other:
4656         break;
4657       }
4658     }
4659 
4660     // Note: as an GNU C extension, we allow initialization of an
4661     // array from a compound literal that creates an array of the same
4662     // type, so long as the initializer has no side effects.
4663     if (!S.getLangOpts().CPlusPlus && Initializer &&
4664         isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) &&
4665         Initializer->getType()->isArrayType()) {
4666       const ArrayType *SourceAT
4667         = Context.getAsArrayType(Initializer->getType());
4668       if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT))
4669         SetFailed(FK_ArrayTypeMismatch);
4670       else if (Initializer->HasSideEffects(S.Context))
4671         SetFailed(FK_NonConstantArrayInit);
4672       else {
4673         AddArrayInitStep(DestType);
4674       }
4675     }
4676     // Note: as a GNU C++ extension, we allow list-initialization of a
4677     // class member of array type from a parenthesized initializer list.
4678     else if (S.getLangOpts().CPlusPlus &&
4679              Entity.getKind() == InitializedEntity::EK_Member &&
4680              Initializer && isa<InitListExpr>(Initializer)) {
4681       TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer),
4682                             *this);
4683       AddParenthesizedArrayInitStep(DestType);
4684     } else if (DestAT->getElementType()->isCharType())
4685       SetFailed(FK_ArrayNeedsInitListOrStringLiteral);
4686     else if (IsWideCharCompatible(DestAT->getElementType(), Context))
4687       SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral);
4688     else
4689       SetFailed(FK_ArrayNeedsInitList);
4690 
4691     return;
4692   }
4693 
4694   // Determine whether we should consider writeback conversions for
4695   // Objective-C ARC.
4696   bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount &&
4697          Entity.isParameterKind();
4698 
4699   // We're at the end of the line for C: it's either a write-back conversion
4700   // or it's a C assignment. There's no need to check anything else.
4701   if (!S.getLangOpts().CPlusPlus) {
4702     // If allowed, check whether this is an Objective-C writeback conversion.
4703     if (allowObjCWritebackConversion &&
4704         tryObjCWritebackConversion(S, *this, Entity, Initializer)) {
4705       return;
4706     }
4707 
4708     if (TryOCLSamplerInitialization(S, *this, DestType, Initializer))
4709       return;
4710 
4711     if (TryOCLZeroEventInitialization(S, *this, DestType, Initializer))
4712       return;
4713 
4714     // Handle initialization in C
4715     AddCAssignmentStep(DestType);
4716     MaybeProduceObjCObject(S, *this, Entity);
4717     return;
4718   }
4719 
4720   assert(S.getLangOpts().CPlusPlus);
4721 
4722   //     - If the destination type is a (possibly cv-qualified) class type:
4723   if (DestType->isRecordType()) {
4724     //     - If the initialization is direct-initialization, or if it is
4725     //       copy-initialization where the cv-unqualified version of the
4726     //       source type is the same class as, or a derived class of, the
4727     //       class of the destination, constructors are considered. [...]
4728     if (Kind.getKind() == InitializationKind::IK_Direct ||
4729         (Kind.getKind() == InitializationKind::IK_Copy &&
4730          (Context.hasSameUnqualifiedType(SourceType, DestType) ||
4731           S.IsDerivedFrom(SourceType, DestType))))
4732       TryConstructorInitialization(S, Entity, Kind, Args,
4733                                    Entity.getType(), *this);
4734     //     - Otherwise (i.e., for the remaining copy-initialization cases),
4735     //       user-defined conversion sequences that can convert from the source
4736     //       type to the destination type or (when a conversion function is
4737     //       used) to a derived class thereof are enumerated as described in
4738     //       13.3.1.4, and the best one is chosen through overload resolution
4739     //       (13.3).
4740     else
4741       TryUserDefinedConversion(S, Entity, Kind, Initializer, *this,
4742                                TopLevelOfInitList);
4743     return;
4744   }
4745 
4746   if (Args.size() > 1) {
4747     SetFailed(FK_TooManyInitsForScalar);
4748     return;
4749   }
4750   assert(Args.size() == 1 && "Zero-argument case handled above");
4751 
4752   //    - Otherwise, if the source type is a (possibly cv-qualified) class
4753   //      type, conversion functions are considered.
4754   if (!SourceType.isNull() && SourceType->isRecordType()) {
4755     TryUserDefinedConversion(S, Entity, Kind, Initializer, *this,
4756                              TopLevelOfInitList);
4757     MaybeProduceObjCObject(S, *this, Entity);
4758     return;
4759   }
4760 
4761   //    - Otherwise, the initial value of the object being initialized is the
4762   //      (possibly converted) value of the initializer expression. Standard
4763   //      conversions (Clause 4) will be used, if necessary, to convert the
4764   //      initializer expression to the cv-unqualified version of the
4765   //      destination type; no user-defined conversions are considered.
4766 
4767   ImplicitConversionSequence ICS
4768     = S.TryImplicitConversion(Initializer, Entity.getType(),
4769                               /*SuppressUserConversions*/true,
4770                               /*AllowExplicitConversions*/ false,
4771                               /*InOverloadResolution*/ false,
4772                               /*CStyle=*/Kind.isCStyleOrFunctionalCast(),
4773                               allowObjCWritebackConversion);
4774 
4775   if (ICS.isStandard() &&
4776       ICS.Standard.Second == ICK_Writeback_Conversion) {
4777     // Objective-C ARC writeback conversion.
4778 
4779     // We should copy unless we're passing to an argument explicitly
4780     // marked 'out'.
4781     bool ShouldCopy = true;
4782     if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl()))
4783       ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out);
4784 
4785     // If there was an lvalue adjustment, add it as a separate conversion.
4786     if (ICS.Standard.First == ICK_Array_To_Pointer ||
4787         ICS.Standard.First == ICK_Lvalue_To_Rvalue) {
4788       ImplicitConversionSequence LvalueICS;
4789       LvalueICS.setStandard();
4790       LvalueICS.Standard.setAsIdentityConversion();
4791       LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0));
4792       LvalueICS.Standard.First = ICS.Standard.First;
4793       AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0));
4794     }
4795 
4796     AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy);
4797   } else if (ICS.isBad()) {
4798     DeclAccessPair dap;
4799     if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) {
4800       AddZeroInitializationStep(Entity.getType());
4801     } else if (Initializer->getType() == Context.OverloadTy &&
4802                !S.ResolveAddressOfOverloadedFunction(Initializer, DestType,
4803                                                      false, dap))
4804       SetFailed(InitializationSequence::FK_AddressOfOverloadFailed);
4805     else
4806       SetFailed(InitializationSequence::FK_ConversionFailed);
4807   } else {
4808     AddConversionSequenceStep(ICS, Entity.getType(), TopLevelOfInitList);
4809 
4810     MaybeProduceObjCObject(S, *this, Entity);
4811   }
4812 }
4813 
~InitializationSequence()4814 InitializationSequence::~InitializationSequence() {
4815   for (SmallVectorImpl<Step>::iterator Step = Steps.begin(),
4816                                           StepEnd = Steps.end();
4817        Step != StepEnd; ++Step)
4818     Step->Destroy();
4819 }
4820 
4821 //===----------------------------------------------------------------------===//
4822 // Perform initialization
4823 //===----------------------------------------------------------------------===//
4824 static Sema::AssignmentAction
getAssignmentAction(const InitializedEntity & Entity,bool Diagnose=false)4825 getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) {
4826   switch(Entity.getKind()) {
4827   case InitializedEntity::EK_Variable:
4828   case InitializedEntity::EK_New:
4829   case InitializedEntity::EK_Exception:
4830   case InitializedEntity::EK_Base:
4831   case InitializedEntity::EK_Delegating:
4832     return Sema::AA_Initializing;
4833 
4834   case InitializedEntity::EK_Parameter:
4835     if (Entity.getDecl() &&
4836         isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4837       return Sema::AA_Sending;
4838 
4839     return Sema::AA_Passing;
4840 
4841   case InitializedEntity::EK_Parameter_CF_Audited:
4842     if (Entity.getDecl() &&
4843       isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext()))
4844       return Sema::AA_Sending;
4845 
4846     return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited;
4847 
4848   case InitializedEntity::EK_Result:
4849     return Sema::AA_Returning;
4850 
4851   case InitializedEntity::EK_Temporary:
4852   case InitializedEntity::EK_RelatedResult:
4853     // FIXME: Can we tell apart casting vs. converting?
4854     return Sema::AA_Casting;
4855 
4856   case InitializedEntity::EK_Member:
4857   case InitializedEntity::EK_ArrayElement:
4858   case InitializedEntity::EK_VectorElement:
4859   case InitializedEntity::EK_ComplexElement:
4860   case InitializedEntity::EK_BlockElement:
4861   case InitializedEntity::EK_LambdaCapture:
4862   case InitializedEntity::EK_CompoundLiteralInit:
4863     return Sema::AA_Initializing;
4864   }
4865 
4866   llvm_unreachable("Invalid EntityKind!");
4867 }
4868 
4869 /// \brief Whether we should bind a created object as a temporary when
4870 /// initializing the given entity.
shouldBindAsTemporary(const InitializedEntity & Entity)4871 static bool shouldBindAsTemporary(const InitializedEntity &Entity) {
4872   switch (Entity.getKind()) {
4873   case InitializedEntity::EK_ArrayElement:
4874   case InitializedEntity::EK_Member:
4875   case InitializedEntity::EK_Result:
4876   case InitializedEntity::EK_New:
4877   case InitializedEntity::EK_Variable:
4878   case InitializedEntity::EK_Base:
4879   case InitializedEntity::EK_Delegating:
4880   case InitializedEntity::EK_VectorElement:
4881   case InitializedEntity::EK_ComplexElement:
4882   case InitializedEntity::EK_Exception:
4883   case InitializedEntity::EK_BlockElement:
4884   case InitializedEntity::EK_LambdaCapture:
4885   case InitializedEntity::EK_CompoundLiteralInit:
4886     return false;
4887 
4888   case InitializedEntity::EK_Parameter:
4889   case InitializedEntity::EK_Parameter_CF_Audited:
4890   case InitializedEntity::EK_Temporary:
4891   case InitializedEntity::EK_RelatedResult:
4892     return true;
4893   }
4894 
4895   llvm_unreachable("missed an InitializedEntity kind?");
4896 }
4897 
4898 /// \brief Whether the given entity, when initialized with an object
4899 /// created for that initialization, requires destruction.
shouldDestroyTemporary(const InitializedEntity & Entity)4900 static bool shouldDestroyTemporary(const InitializedEntity &Entity) {
4901   switch (Entity.getKind()) {
4902     case InitializedEntity::EK_Result:
4903     case InitializedEntity::EK_New:
4904     case InitializedEntity::EK_Base:
4905     case InitializedEntity::EK_Delegating:
4906     case InitializedEntity::EK_VectorElement:
4907     case InitializedEntity::EK_ComplexElement:
4908     case InitializedEntity::EK_BlockElement:
4909     case InitializedEntity::EK_LambdaCapture:
4910       return false;
4911 
4912     case InitializedEntity::EK_Member:
4913     case InitializedEntity::EK_Variable:
4914     case InitializedEntity::EK_Parameter:
4915     case InitializedEntity::EK_Parameter_CF_Audited:
4916     case InitializedEntity::EK_Temporary:
4917     case InitializedEntity::EK_ArrayElement:
4918     case InitializedEntity::EK_Exception:
4919     case InitializedEntity::EK_CompoundLiteralInit:
4920     case InitializedEntity::EK_RelatedResult:
4921       return true;
4922   }
4923 
4924   llvm_unreachable("missed an InitializedEntity kind?");
4925 }
4926 
4927 /// \brief Look for copy and move constructors and constructor templates, for
4928 /// copying an object via direct-initialization (per C++11 [dcl.init]p16).
LookupCopyAndMoveConstructors(Sema & S,OverloadCandidateSet & CandidateSet,CXXRecordDecl * Class,Expr * CurInitExpr)4929 static void LookupCopyAndMoveConstructors(Sema &S,
4930                                           OverloadCandidateSet &CandidateSet,
4931                                           CXXRecordDecl *Class,
4932                                           Expr *CurInitExpr) {
4933   DeclContext::lookup_result R = S.LookupConstructors(Class);
4934   // The container holding the constructors can under certain conditions
4935   // be changed while iterating (e.g. because of deserialization).
4936   // To be safe we copy the lookup results to a new container.
4937   SmallVector<NamedDecl*, 16> Ctors(R.begin(), R.end());
4938   for (SmallVectorImpl<NamedDecl *>::iterator
4939          CI = Ctors.begin(), CE = Ctors.end(); CI != CE; ++CI) {
4940     NamedDecl *D = *CI;
4941     CXXConstructorDecl *Constructor = nullptr;
4942 
4943     if ((Constructor = dyn_cast<CXXConstructorDecl>(D))) {
4944       // Handle copy/moveconstructors, only.
4945       if (!Constructor || Constructor->isInvalidDecl() ||
4946           !Constructor->isCopyOrMoveConstructor() ||
4947           !Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4948         continue;
4949 
4950       DeclAccessPair FoundDecl
4951         = DeclAccessPair::make(Constructor, Constructor->getAccess());
4952       S.AddOverloadCandidate(Constructor, FoundDecl,
4953                              CurInitExpr, CandidateSet);
4954       continue;
4955     }
4956 
4957     // Handle constructor templates.
4958     FunctionTemplateDecl *ConstructorTmpl = cast<FunctionTemplateDecl>(D);
4959     if (ConstructorTmpl->isInvalidDecl())
4960       continue;
4961 
4962     Constructor = cast<CXXConstructorDecl>(
4963                                          ConstructorTmpl->getTemplatedDecl());
4964     if (!Constructor->isConvertingConstructor(/*AllowExplicit=*/true))
4965       continue;
4966 
4967     // FIXME: Do we need to limit this to copy-constructor-like
4968     // candidates?
4969     DeclAccessPair FoundDecl
4970       = DeclAccessPair::make(ConstructorTmpl, ConstructorTmpl->getAccess());
4971     S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl, nullptr,
4972                                    CurInitExpr, CandidateSet, true);
4973   }
4974 }
4975 
4976 /// \brief Get the location at which initialization diagnostics should appear.
getInitializationLoc(const InitializedEntity & Entity,Expr * Initializer)4977 static SourceLocation getInitializationLoc(const InitializedEntity &Entity,
4978                                            Expr *Initializer) {
4979   switch (Entity.getKind()) {
4980   case InitializedEntity::EK_Result:
4981     return Entity.getReturnLoc();
4982 
4983   case InitializedEntity::EK_Exception:
4984     return Entity.getThrowLoc();
4985 
4986   case InitializedEntity::EK_Variable:
4987     return Entity.getDecl()->getLocation();
4988 
4989   case InitializedEntity::EK_LambdaCapture:
4990     return Entity.getCaptureLoc();
4991 
4992   case InitializedEntity::EK_ArrayElement:
4993   case InitializedEntity::EK_Member:
4994   case InitializedEntity::EK_Parameter:
4995   case InitializedEntity::EK_Parameter_CF_Audited:
4996   case InitializedEntity::EK_Temporary:
4997   case InitializedEntity::EK_New:
4998   case InitializedEntity::EK_Base:
4999   case InitializedEntity::EK_Delegating:
5000   case InitializedEntity::EK_VectorElement:
5001   case InitializedEntity::EK_ComplexElement:
5002   case InitializedEntity::EK_BlockElement:
5003   case InitializedEntity::EK_CompoundLiteralInit:
5004   case InitializedEntity::EK_RelatedResult:
5005     return Initializer->getLocStart();
5006   }
5007   llvm_unreachable("missed an InitializedEntity kind?");
5008 }
5009 
5010 /// \brief Make a (potentially elidable) temporary copy of the object
5011 /// provided by the given initializer by calling the appropriate copy
5012 /// constructor.
5013 ///
5014 /// \param S The Sema object used for type-checking.
5015 ///
5016 /// \param T The type of the temporary object, which must either be
5017 /// the type of the initializer expression or a superclass thereof.
5018 ///
5019 /// \param Entity The entity being initialized.
5020 ///
5021 /// \param CurInit The initializer expression.
5022 ///
5023 /// \param IsExtraneousCopy Whether this is an "extraneous" copy that
5024 /// is permitted in C++03 (but not C++0x) when binding a reference to
5025 /// an rvalue.
5026 ///
5027 /// \returns An expression that copies the initializer expression into
5028 /// a temporary object, or an error expression if a copy could not be
5029 /// created.
CopyObject(Sema & S,QualType T,const InitializedEntity & Entity,ExprResult CurInit,bool IsExtraneousCopy)5030 static ExprResult CopyObject(Sema &S,
5031                              QualType T,
5032                              const InitializedEntity &Entity,
5033                              ExprResult CurInit,
5034                              bool IsExtraneousCopy) {
5035   // Determine which class type we're copying to.
5036   Expr *CurInitExpr = (Expr *)CurInit.get();
5037   CXXRecordDecl *Class = nullptr;
5038   if (const RecordType *Record = T->getAs<RecordType>())
5039     Class = cast<CXXRecordDecl>(Record->getDecl());
5040   if (!Class)
5041     return CurInit;
5042 
5043   // C++0x [class.copy]p32:
5044   //   When certain criteria are met, an implementation is allowed to
5045   //   omit the copy/move construction of a class object, even if the
5046   //   copy/move constructor and/or destructor for the object have
5047   //   side effects. [...]
5048   //     - when a temporary class object that has not been bound to a
5049   //       reference (12.2) would be copied/moved to a class object
5050   //       with the same cv-unqualified type, the copy/move operation
5051   //       can be omitted by constructing the temporary object
5052   //       directly into the target of the omitted copy/move
5053   //
5054   // Note that the other three bullets are handled elsewhere. Copy
5055   // elision for return statements and throw expressions are handled as part
5056   // of constructor initialization, while copy elision for exception handlers
5057   // is handled by the run-time.
5058   bool Elidable = CurInitExpr->isTemporaryObject(S.Context, Class);
5059   SourceLocation Loc = getInitializationLoc(Entity, CurInit.get());
5060 
5061   // Make sure that the type we are copying is complete.
5062   if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete))
5063     return CurInit;
5064 
5065   // Perform overload resolution using the class's copy/move constructors.
5066   // Only consider constructors and constructor templates. Per
5067   // C++0x [dcl.init]p16, second bullet to class types, this initialization
5068   // is direct-initialization.
5069   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5070   LookupCopyAndMoveConstructors(S, CandidateSet, Class, CurInitExpr);
5071 
5072   bool HadMultipleCandidates = (CandidateSet.size() > 1);
5073 
5074   OverloadCandidateSet::iterator Best;
5075   switch (CandidateSet.BestViableFunction(S, Loc, Best)) {
5076   case OR_Success:
5077     break;
5078 
5079   case OR_No_Viable_Function:
5080     S.Diag(Loc, IsExtraneousCopy && !S.isSFINAEContext()
5081            ? diag::ext_rvalue_to_reference_temp_copy_no_viable
5082            : diag::err_temp_copy_no_viable)
5083       << (int)Entity.getKind() << CurInitExpr->getType()
5084       << CurInitExpr->getSourceRange();
5085     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5086     if (!IsExtraneousCopy || S.isSFINAEContext())
5087       return ExprError();
5088     return CurInit;
5089 
5090   case OR_Ambiguous:
5091     S.Diag(Loc, diag::err_temp_copy_ambiguous)
5092       << (int)Entity.getKind() << CurInitExpr->getType()
5093       << CurInitExpr->getSourceRange();
5094     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5095     return ExprError();
5096 
5097   case OR_Deleted:
5098     S.Diag(Loc, diag::err_temp_copy_deleted)
5099       << (int)Entity.getKind() << CurInitExpr->getType()
5100       << CurInitExpr->getSourceRange();
5101     S.NoteDeletedFunction(Best->Function);
5102     return ExprError();
5103   }
5104 
5105   CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
5106   SmallVector<Expr*, 8> ConstructorArgs;
5107   CurInit.get(); // Ownership transferred into MultiExprArg, below.
5108 
5109   S.CheckConstructorAccess(Loc, Constructor, Entity,
5110                            Best->FoundDecl.getAccess(), IsExtraneousCopy);
5111 
5112   if (IsExtraneousCopy) {
5113     // If this is a totally extraneous copy for C++03 reference
5114     // binding purposes, just return the original initialization
5115     // expression. We don't generate an (elided) copy operation here
5116     // because doing so would require us to pass down a flag to avoid
5117     // infinite recursion, where each step adds another extraneous,
5118     // elidable copy.
5119 
5120     // Instantiate the default arguments of any extra parameters in
5121     // the selected copy constructor, as if we were going to create a
5122     // proper call to the copy constructor.
5123     for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) {
5124       ParmVarDecl *Parm = Constructor->getParamDecl(I);
5125       if (S.RequireCompleteType(Loc, Parm->getType(),
5126                                 diag::err_call_incomplete_argument))
5127         break;
5128 
5129       // Build the default argument expression; we don't actually care
5130       // if this succeeds or not, because this routine will complain
5131       // if there was a problem.
5132       S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm);
5133     }
5134 
5135     return CurInitExpr;
5136   }
5137 
5138   // Determine the arguments required to actually perform the
5139   // constructor call (we might have derived-to-base conversions, or
5140   // the copy constructor may have default arguments).
5141   if (S.CompleteConstructorCall(Constructor, CurInitExpr, Loc, ConstructorArgs))
5142     return ExprError();
5143 
5144   // Actually perform the constructor call.
5145   CurInit = S.BuildCXXConstructExpr(Loc, T, Constructor, Elidable,
5146                                     ConstructorArgs,
5147                                     HadMultipleCandidates,
5148                                     /*ListInit*/ false,
5149                                     /*ZeroInit*/ false,
5150                                     CXXConstructExpr::CK_Complete,
5151                                     SourceRange());
5152 
5153   // If we're supposed to bind temporaries, do so.
5154   if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity))
5155     CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
5156   return CurInit;
5157 }
5158 
5159 /// \brief Check whether elidable copy construction for binding a reference to
5160 /// a temporary would have succeeded if we were building in C++98 mode, for
5161 /// -Wc++98-compat.
CheckCXX98CompatAccessibleCopy(Sema & S,const InitializedEntity & Entity,Expr * CurInitExpr)5162 static void CheckCXX98CompatAccessibleCopy(Sema &S,
5163                                            const InitializedEntity &Entity,
5164                                            Expr *CurInitExpr) {
5165   assert(S.getLangOpts().CPlusPlus11);
5166 
5167   const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>();
5168   if (!Record)
5169     return;
5170 
5171   SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr);
5172   if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc))
5173     return;
5174 
5175   // Find constructors which would have been considered.
5176   OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal);
5177   LookupCopyAndMoveConstructors(
5178       S, CandidateSet, cast<CXXRecordDecl>(Record->getDecl()), CurInitExpr);
5179 
5180   // Perform overload resolution.
5181   OverloadCandidateSet::iterator Best;
5182   OverloadingResult OR = CandidateSet.BestViableFunction(S, Loc, Best);
5183 
5184   PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy)
5185     << OR << (int)Entity.getKind() << CurInitExpr->getType()
5186     << CurInitExpr->getSourceRange();
5187 
5188   switch (OR) {
5189   case OR_Success:
5190     S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function),
5191                              Entity, Best->FoundDecl.getAccess(), Diag);
5192     // FIXME: Check default arguments as far as that's possible.
5193     break;
5194 
5195   case OR_No_Viable_Function:
5196     S.Diag(Loc, Diag);
5197     CandidateSet.NoteCandidates(S, OCD_AllCandidates, CurInitExpr);
5198     break;
5199 
5200   case OR_Ambiguous:
5201     S.Diag(Loc, Diag);
5202     CandidateSet.NoteCandidates(S, OCD_ViableCandidates, CurInitExpr);
5203     break;
5204 
5205   case OR_Deleted:
5206     S.Diag(Loc, Diag);
5207     S.NoteDeletedFunction(Best->Function);
5208     break;
5209   }
5210 }
5211 
PrintInitLocationNote(Sema & S,const InitializedEntity & Entity)5212 void InitializationSequence::PrintInitLocationNote(Sema &S,
5213                                               const InitializedEntity &Entity) {
5214   if (Entity.isParameterKind() && Entity.getDecl()) {
5215     if (Entity.getDecl()->getLocation().isInvalid())
5216       return;
5217 
5218     if (Entity.getDecl()->getDeclName())
5219       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here)
5220         << Entity.getDecl()->getDeclName();
5221     else
5222       S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here);
5223   }
5224   else if (Entity.getKind() == InitializedEntity::EK_RelatedResult &&
5225            Entity.getMethodDecl())
5226     S.Diag(Entity.getMethodDecl()->getLocation(),
5227            diag::note_method_return_type_change)
5228       << Entity.getMethodDecl()->getDeclName();
5229 }
5230 
isReferenceBinding(const InitializationSequence::Step & s)5231 static bool isReferenceBinding(const InitializationSequence::Step &s) {
5232   return s.Kind == InitializationSequence::SK_BindReference ||
5233          s.Kind == InitializationSequence::SK_BindReferenceToTemporary;
5234 }
5235 
5236 /// Returns true if the parameters describe a constructor initialization of
5237 /// an explicit temporary object, e.g. "Point(x, y)".
isExplicitTemporary(const InitializedEntity & Entity,const InitializationKind & Kind,unsigned NumArgs)5238 static bool isExplicitTemporary(const InitializedEntity &Entity,
5239                                 const InitializationKind &Kind,
5240                                 unsigned NumArgs) {
5241   switch (Entity.getKind()) {
5242   case InitializedEntity::EK_Temporary:
5243   case InitializedEntity::EK_CompoundLiteralInit:
5244   case InitializedEntity::EK_RelatedResult:
5245     break;
5246   default:
5247     return false;
5248   }
5249 
5250   switch (Kind.getKind()) {
5251   case InitializationKind::IK_DirectList:
5252     return true;
5253   // FIXME: Hack to work around cast weirdness.
5254   case InitializationKind::IK_Direct:
5255   case InitializationKind::IK_Value:
5256     return NumArgs != 1;
5257   default:
5258     return false;
5259   }
5260 }
5261 
5262 static ExprResult
PerformConstructorInitialization(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,const InitializationSequence::Step & Step,bool & ConstructorInitRequiresZeroInit,bool IsListInitialization,SourceLocation LBraceLoc,SourceLocation RBraceLoc)5263 PerformConstructorInitialization(Sema &S,
5264                                  const InitializedEntity &Entity,
5265                                  const InitializationKind &Kind,
5266                                  MultiExprArg Args,
5267                                  const InitializationSequence::Step& Step,
5268                                  bool &ConstructorInitRequiresZeroInit,
5269                                  bool IsListInitialization,
5270                                  SourceLocation LBraceLoc,
5271                                  SourceLocation RBraceLoc) {
5272   unsigned NumArgs = Args.size();
5273   CXXConstructorDecl *Constructor
5274     = cast<CXXConstructorDecl>(Step.Function.Function);
5275   bool HadMultipleCandidates = Step.Function.HadMultipleCandidates;
5276 
5277   // Build a call to the selected constructor.
5278   SmallVector<Expr*, 8> ConstructorArgs;
5279   SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid())
5280                          ? Kind.getEqualLoc()
5281                          : Kind.getLocation();
5282 
5283   if (Kind.getKind() == InitializationKind::IK_Default) {
5284     // Force even a trivial, implicit default constructor to be
5285     // semantically checked. We do this explicitly because we don't build
5286     // the definition for completely trivial constructors.
5287     assert(Constructor->getParent() && "No parent class for constructor.");
5288     if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() &&
5289         Constructor->isTrivial() && !Constructor->isUsed(false))
5290       S.DefineImplicitDefaultConstructor(Loc, Constructor);
5291   }
5292 
5293   ExprResult CurInit((Expr *)nullptr);
5294 
5295   // C++ [over.match.copy]p1:
5296   //   - When initializing a temporary to be bound to the first parameter
5297   //     of a constructor that takes a reference to possibly cv-qualified
5298   //     T as its first argument, called with a single argument in the
5299   //     context of direct-initialization, explicit conversion functions
5300   //     are also considered.
5301   bool AllowExplicitConv = Kind.AllowExplicit() && !Kind.isCopyInit() &&
5302                            Args.size() == 1 &&
5303                            Constructor->isCopyOrMoveConstructor();
5304 
5305   // Determine the arguments required to actually perform the constructor
5306   // call.
5307   if (S.CompleteConstructorCall(Constructor, Args,
5308                                 Loc, ConstructorArgs,
5309                                 AllowExplicitConv,
5310                                 IsListInitialization))
5311     return ExprError();
5312 
5313 
5314   if (isExplicitTemporary(Entity, Kind, NumArgs)) {
5315     // An explicitly-constructed temporary, e.g., X(1, 2).
5316     S.MarkFunctionReferenced(Loc, Constructor);
5317     if (S.DiagnoseUseOfDecl(Constructor, Loc))
5318       return ExprError();
5319 
5320     TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
5321     if (!TSInfo)
5322       TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc);
5323     SourceRange ParenOrBraceRange =
5324       (Kind.getKind() == InitializationKind::IK_DirectList)
5325       ? SourceRange(LBraceLoc, RBraceLoc)
5326       : Kind.getParenRange();
5327 
5328     CurInit = new (S.Context) CXXTemporaryObjectExpr(
5329         S.Context, Constructor, TSInfo, ConstructorArgs, ParenOrBraceRange,
5330         HadMultipleCandidates, IsListInitialization,
5331         ConstructorInitRequiresZeroInit);
5332   } else {
5333     CXXConstructExpr::ConstructionKind ConstructKind =
5334       CXXConstructExpr::CK_Complete;
5335 
5336     if (Entity.getKind() == InitializedEntity::EK_Base) {
5337       ConstructKind = Entity.getBaseSpecifier()->isVirtual() ?
5338         CXXConstructExpr::CK_VirtualBase :
5339         CXXConstructExpr::CK_NonVirtualBase;
5340     } else if (Entity.getKind() == InitializedEntity::EK_Delegating) {
5341       ConstructKind = CXXConstructExpr::CK_Delegating;
5342     }
5343 
5344     // Only get the parenthesis or brace range if it is a list initialization or
5345     // direct construction.
5346     SourceRange ParenOrBraceRange;
5347     if (IsListInitialization)
5348       ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc);
5349     else if (Kind.getKind() == InitializationKind::IK_Direct)
5350       ParenOrBraceRange = Kind.getParenRange();
5351 
5352     // If the entity allows NRVO, mark the construction as elidable
5353     // unconditionally.
5354     if (Entity.allowsNRVO())
5355       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5356                                         Constructor, /*Elidable=*/true,
5357                                         ConstructorArgs,
5358                                         HadMultipleCandidates,
5359                                         IsListInitialization,
5360                                         ConstructorInitRequiresZeroInit,
5361                                         ConstructKind,
5362                                         ParenOrBraceRange);
5363     else
5364       CurInit = S.BuildCXXConstructExpr(Loc, Entity.getType(),
5365                                         Constructor,
5366                                         ConstructorArgs,
5367                                         HadMultipleCandidates,
5368                                         IsListInitialization,
5369                                         ConstructorInitRequiresZeroInit,
5370                                         ConstructKind,
5371                                         ParenOrBraceRange);
5372   }
5373   if (CurInit.isInvalid())
5374     return ExprError();
5375 
5376   // Only check access if all of that succeeded.
5377   S.CheckConstructorAccess(Loc, Constructor, Entity,
5378                            Step.Function.FoundDecl.getAccess());
5379   if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc))
5380     return ExprError();
5381 
5382   if (shouldBindAsTemporary(Entity))
5383     CurInit = S.MaybeBindToTemporary(CurInit.get());
5384 
5385   return CurInit;
5386 }
5387 
5388 /// Determine whether the specified InitializedEntity definitely has a lifetime
5389 /// longer than the current full-expression. Conservatively returns false if
5390 /// it's unclear.
5391 static bool
InitializedEntityOutlivesFullExpression(const InitializedEntity & Entity)5392 InitializedEntityOutlivesFullExpression(const InitializedEntity &Entity) {
5393   const InitializedEntity *Top = &Entity;
5394   while (Top->getParent())
5395     Top = Top->getParent();
5396 
5397   switch (Top->getKind()) {
5398   case InitializedEntity::EK_Variable:
5399   case InitializedEntity::EK_Result:
5400   case InitializedEntity::EK_Exception:
5401   case InitializedEntity::EK_Member:
5402   case InitializedEntity::EK_New:
5403   case InitializedEntity::EK_Base:
5404   case InitializedEntity::EK_Delegating:
5405     return true;
5406 
5407   case InitializedEntity::EK_ArrayElement:
5408   case InitializedEntity::EK_VectorElement:
5409   case InitializedEntity::EK_BlockElement:
5410   case InitializedEntity::EK_ComplexElement:
5411     // Could not determine what the full initialization is. Assume it might not
5412     // outlive the full-expression.
5413     return false;
5414 
5415   case InitializedEntity::EK_Parameter:
5416   case InitializedEntity::EK_Parameter_CF_Audited:
5417   case InitializedEntity::EK_Temporary:
5418   case InitializedEntity::EK_LambdaCapture:
5419   case InitializedEntity::EK_CompoundLiteralInit:
5420   case InitializedEntity::EK_RelatedResult:
5421     // The entity being initialized might not outlive the full-expression.
5422     return false;
5423   }
5424 
5425   llvm_unreachable("unknown entity kind");
5426 }
5427 
5428 /// Determine the declaration which an initialized entity ultimately refers to,
5429 /// for the purpose of lifetime-extending a temporary bound to a reference in
5430 /// the initialization of \p Entity.
getEntityForTemporaryLifetimeExtension(const InitializedEntity * Entity,const InitializedEntity * FallbackDecl=nullptr)5431 static const InitializedEntity *getEntityForTemporaryLifetimeExtension(
5432     const InitializedEntity *Entity,
5433     const InitializedEntity *FallbackDecl = nullptr) {
5434   // C++11 [class.temporary]p5:
5435   switch (Entity->getKind()) {
5436   case InitializedEntity::EK_Variable:
5437     //   The temporary [...] persists for the lifetime of the reference
5438     return Entity;
5439 
5440   case InitializedEntity::EK_Member:
5441     // For subobjects, we look at the complete object.
5442     if (Entity->getParent())
5443       return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5444                                                     Entity);
5445 
5446     //   except:
5447     //   -- A temporary bound to a reference member in a constructor's
5448     //      ctor-initializer persists until the constructor exits.
5449     return Entity;
5450 
5451   case InitializedEntity::EK_Parameter:
5452   case InitializedEntity::EK_Parameter_CF_Audited:
5453     //   -- A temporary bound to a reference parameter in a function call
5454     //      persists until the completion of the full-expression containing
5455     //      the call.
5456   case InitializedEntity::EK_Result:
5457     //   -- The lifetime of a temporary bound to the returned value in a
5458     //      function return statement is not extended; the temporary is
5459     //      destroyed at the end of the full-expression in the return statement.
5460   case InitializedEntity::EK_New:
5461     //   -- A temporary bound to a reference in a new-initializer persists
5462     //      until the completion of the full-expression containing the
5463     //      new-initializer.
5464     return nullptr;
5465 
5466   case InitializedEntity::EK_Temporary:
5467   case InitializedEntity::EK_CompoundLiteralInit:
5468   case InitializedEntity::EK_RelatedResult:
5469     // We don't yet know the storage duration of the surrounding temporary.
5470     // Assume it's got full-expression duration for now, it will patch up our
5471     // storage duration if that's not correct.
5472     return nullptr;
5473 
5474   case InitializedEntity::EK_ArrayElement:
5475     // For subobjects, we look at the complete object.
5476     return getEntityForTemporaryLifetimeExtension(Entity->getParent(),
5477                                                   FallbackDecl);
5478 
5479   case InitializedEntity::EK_Base:
5480   case InitializedEntity::EK_Delegating:
5481     // We can reach this case for aggregate initialization in a constructor:
5482     //   struct A { int &&r; };
5483     //   struct B : A { B() : A{0} {} };
5484     // In this case, use the innermost field decl as the context.
5485     return FallbackDecl;
5486 
5487   case InitializedEntity::EK_BlockElement:
5488   case InitializedEntity::EK_LambdaCapture:
5489   case InitializedEntity::EK_Exception:
5490   case InitializedEntity::EK_VectorElement:
5491   case InitializedEntity::EK_ComplexElement:
5492     return nullptr;
5493   }
5494   llvm_unreachable("unknown entity kind");
5495 }
5496 
5497 static void performLifetimeExtension(Expr *Init,
5498                                      const InitializedEntity *ExtendingEntity);
5499 
5500 /// Update a glvalue expression that is used as the initializer of a reference
5501 /// to note that its lifetime is extended.
5502 /// \return \c true if any temporary had its lifetime extended.
5503 static bool
performReferenceExtension(Expr * Init,const InitializedEntity * ExtendingEntity)5504 performReferenceExtension(Expr *Init,
5505                           const InitializedEntity *ExtendingEntity) {
5506   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5507     if (ILE->getNumInits() == 1 && ILE->isGLValue()) {
5508       // This is just redundant braces around an initializer. Step over it.
5509       Init = ILE->getInit(0);
5510     }
5511   }
5512 
5513   // Walk past any constructs which we can lifetime-extend across.
5514   Expr *Old;
5515   do {
5516     Old = Init;
5517 
5518     // Step over any subobject adjustments; we may have a materialized
5519     // temporary inside them.
5520     SmallVector<const Expr *, 2> CommaLHSs;
5521     SmallVector<SubobjectAdjustment, 2> Adjustments;
5522     Init = const_cast<Expr *>(
5523         Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5524 
5525     // Per current approach for DR1376, look through casts to reference type
5526     // when performing lifetime extension.
5527     if (CastExpr *CE = dyn_cast<CastExpr>(Init))
5528       if (CE->getSubExpr()->isGLValue())
5529         Init = CE->getSubExpr();
5530 
5531     // FIXME: Per DR1213, subscripting on an array temporary produces an xvalue.
5532     // It's unclear if binding a reference to that xvalue extends the array
5533     // temporary.
5534   } while (Init != Old);
5535 
5536   if (MaterializeTemporaryExpr *ME = dyn_cast<MaterializeTemporaryExpr>(Init)) {
5537     // Update the storage duration of the materialized temporary.
5538     // FIXME: Rebuild the expression instead of mutating it.
5539     ME->setExtendingDecl(ExtendingEntity->getDecl(),
5540                          ExtendingEntity->allocateManglingNumber());
5541     performLifetimeExtension(ME->GetTemporaryExpr(), ExtendingEntity);
5542     return true;
5543   }
5544 
5545   return false;
5546 }
5547 
5548 /// Update a prvalue expression that is going to be materialized as a
5549 /// lifetime-extended temporary.
performLifetimeExtension(Expr * Init,const InitializedEntity * ExtendingEntity)5550 static void performLifetimeExtension(Expr *Init,
5551                                      const InitializedEntity *ExtendingEntity) {
5552   // Dig out the expression which constructs the extended temporary.
5553   SmallVector<const Expr *, 2> CommaLHSs;
5554   SmallVector<SubobjectAdjustment, 2> Adjustments;
5555   Init = const_cast<Expr *>(
5556       Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
5557 
5558   if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init))
5559     Init = BTE->getSubExpr();
5560 
5561   if (CXXStdInitializerListExpr *ILE =
5562           dyn_cast<CXXStdInitializerListExpr>(Init)) {
5563     performReferenceExtension(ILE->getSubExpr(), ExtendingEntity);
5564     return;
5565   }
5566 
5567   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5568     if (ILE->getType()->isArrayType()) {
5569       for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I)
5570         performLifetimeExtension(ILE->getInit(I), ExtendingEntity);
5571       return;
5572     }
5573 
5574     if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) {
5575       assert(RD->isAggregate() && "aggregate init on non-aggregate");
5576 
5577       // If we lifetime-extend a braced initializer which is initializing an
5578       // aggregate, and that aggregate contains reference members which are
5579       // bound to temporaries, those temporaries are also lifetime-extended.
5580       if (RD->isUnion() && ILE->getInitializedFieldInUnion() &&
5581           ILE->getInitializedFieldInUnion()->getType()->isReferenceType())
5582         performReferenceExtension(ILE->getInit(0), ExtendingEntity);
5583       else {
5584         unsigned Index = 0;
5585         for (const auto *I : RD->fields()) {
5586           if (Index >= ILE->getNumInits())
5587             break;
5588           if (I->isUnnamedBitfield())
5589             continue;
5590           Expr *SubInit = ILE->getInit(Index);
5591           if (I->getType()->isReferenceType())
5592             performReferenceExtension(SubInit, ExtendingEntity);
5593           else if (isa<InitListExpr>(SubInit) ||
5594                    isa<CXXStdInitializerListExpr>(SubInit))
5595             // This may be either aggregate-initialization of a member or
5596             // initialization of a std::initializer_list object. Either way,
5597             // we should recursively lifetime-extend that initializer.
5598             performLifetimeExtension(SubInit, ExtendingEntity);
5599           ++Index;
5600         }
5601       }
5602     }
5603   }
5604 }
5605 
warnOnLifetimeExtension(Sema & S,const InitializedEntity & Entity,const Expr * Init,bool IsInitializerList,const ValueDecl * ExtendingDecl)5606 static void warnOnLifetimeExtension(Sema &S, const InitializedEntity &Entity,
5607                                     const Expr *Init, bool IsInitializerList,
5608                                     const ValueDecl *ExtendingDecl) {
5609   // Warn if a field lifetime-extends a temporary.
5610   if (isa<FieldDecl>(ExtendingDecl)) {
5611     if (IsInitializerList) {
5612       S.Diag(Init->getExprLoc(), diag::warn_dangling_std_initializer_list)
5613         << /*at end of constructor*/true;
5614       return;
5615     }
5616 
5617     bool IsSubobjectMember = false;
5618     for (const InitializedEntity *Ent = Entity.getParent(); Ent;
5619          Ent = Ent->getParent()) {
5620       if (Ent->getKind() != InitializedEntity::EK_Base) {
5621         IsSubobjectMember = true;
5622         break;
5623       }
5624     }
5625     S.Diag(Init->getExprLoc(),
5626            diag::warn_bind_ref_member_to_temporary)
5627       << ExtendingDecl << Init->getSourceRange()
5628       << IsSubobjectMember << IsInitializerList;
5629     if (IsSubobjectMember)
5630       S.Diag(ExtendingDecl->getLocation(),
5631              diag::note_ref_subobject_of_member_declared_here);
5632     else
5633       S.Diag(ExtendingDecl->getLocation(),
5634              diag::note_ref_or_ptr_member_declared_here)
5635         << /*is pointer*/false;
5636   }
5637 }
5638 
5639 static void DiagnoseNarrowingInInitList(Sema &S,
5640                                         const ImplicitConversionSequence &ICS,
5641                                         QualType PreNarrowingType,
5642                                         QualType EntityType,
5643                                         const Expr *PostInit);
5644 
5645 ExprResult
Perform(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,MultiExprArg Args,QualType * ResultType)5646 InitializationSequence::Perform(Sema &S,
5647                                 const InitializedEntity &Entity,
5648                                 const InitializationKind &Kind,
5649                                 MultiExprArg Args,
5650                                 QualType *ResultType) {
5651   if (Failed()) {
5652     Diagnose(S, Entity, Kind, Args);
5653     return ExprError();
5654   }
5655 
5656   if (getKind() == DependentSequence) {
5657     // If the declaration is a non-dependent, incomplete array type
5658     // that has an initializer, then its type will be completed once
5659     // the initializer is instantiated.
5660     if (ResultType && !Entity.getType()->isDependentType() &&
5661         Args.size() == 1) {
5662       QualType DeclType = Entity.getType();
5663       if (const IncompleteArrayType *ArrayT
5664                            = S.Context.getAsIncompleteArrayType(DeclType)) {
5665         // FIXME: We don't currently have the ability to accurately
5666         // compute the length of an initializer list without
5667         // performing full type-checking of the initializer list
5668         // (since we have to determine where braces are implicitly
5669         // introduced and such).  So, we fall back to making the array
5670         // type a dependently-sized array type with no specified
5671         // bound.
5672         if (isa<InitListExpr>((Expr *)Args[0])) {
5673           SourceRange Brackets;
5674 
5675           // Scavange the location of the brackets from the entity, if we can.
5676           if (DeclaratorDecl *DD = Entity.getDecl()) {
5677             if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) {
5678               TypeLoc TL = TInfo->getTypeLoc();
5679               if (IncompleteArrayTypeLoc ArrayLoc =
5680                       TL.getAs<IncompleteArrayTypeLoc>())
5681                 Brackets = ArrayLoc.getBracketsRange();
5682             }
5683           }
5684 
5685           *ResultType
5686             = S.Context.getDependentSizedArrayType(ArrayT->getElementType(),
5687                                                    /*NumElts=*/nullptr,
5688                                                    ArrayT->getSizeModifier(),
5689                                        ArrayT->getIndexTypeCVRQualifiers(),
5690                                                    Brackets);
5691         }
5692 
5693       }
5694     }
5695     if (Kind.getKind() == InitializationKind::IK_Direct &&
5696         !Kind.isExplicitCast()) {
5697       // Rebuild the ParenListExpr.
5698       SourceRange ParenRange = Kind.getParenRange();
5699       return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(),
5700                                   Args);
5701     }
5702     assert(Kind.getKind() == InitializationKind::IK_Copy ||
5703            Kind.isExplicitCast() ||
5704            Kind.getKind() == InitializationKind::IK_DirectList);
5705     return ExprResult(Args[0]);
5706   }
5707 
5708   // No steps means no initialization.
5709   if (Steps.empty())
5710     return ExprResult((Expr *)nullptr);
5711 
5712   if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() &&
5713       Args.size() == 1 && isa<InitListExpr>(Args[0]) &&
5714       !Entity.isParameterKind()) {
5715     // Produce a C++98 compatibility warning if we are initializing a reference
5716     // from an initializer list. For parameters, we produce a better warning
5717     // elsewhere.
5718     Expr *Init = Args[0];
5719     S.Diag(Init->getLocStart(), diag::warn_cxx98_compat_reference_list_init)
5720       << Init->getSourceRange();
5721   }
5722 
5723   // Diagnose cases where we initialize a pointer to an array temporary, and the
5724   // pointer obviously outlives the temporary.
5725   if (Args.size() == 1 && Args[0]->getType()->isArrayType() &&
5726       Entity.getType()->isPointerType() &&
5727       InitializedEntityOutlivesFullExpression(Entity)) {
5728     Expr *Init = Args[0];
5729     Expr::LValueClassification Kind = Init->ClassifyLValue(S.Context);
5730     if (Kind == Expr::LV_ClassTemporary || Kind == Expr::LV_ArrayTemporary)
5731       S.Diag(Init->getLocStart(), diag::warn_temporary_array_to_pointer_decay)
5732         << Init->getSourceRange();
5733   }
5734 
5735   QualType DestType = Entity.getType().getNonReferenceType();
5736   // FIXME: Ugly hack around the fact that Entity.getType() is not
5737   // the same as Entity.getDecl()->getType() in cases involving type merging,
5738   //  and we want latter when it makes sense.
5739   if (ResultType)
5740     *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() :
5741                                      Entity.getType();
5742 
5743   ExprResult CurInit((Expr *)nullptr);
5744 
5745   // For initialization steps that start with a single initializer,
5746   // grab the only argument out the Args and place it into the "current"
5747   // initializer.
5748   switch (Steps.front().Kind) {
5749   case SK_ResolveAddressOfOverloadedFunction:
5750   case SK_CastDerivedToBaseRValue:
5751   case SK_CastDerivedToBaseXValue:
5752   case SK_CastDerivedToBaseLValue:
5753   case SK_BindReference:
5754   case SK_BindReferenceToTemporary:
5755   case SK_ExtraneousCopyToTemporary:
5756   case SK_UserConversion:
5757   case SK_QualificationConversionLValue:
5758   case SK_QualificationConversionXValue:
5759   case SK_QualificationConversionRValue:
5760   case SK_LValueToRValue:
5761   case SK_ConversionSequence:
5762   case SK_ConversionSequenceNoNarrowing:
5763   case SK_ListInitialization:
5764   case SK_UnwrapInitList:
5765   case SK_RewrapInitList:
5766   case SK_CAssignment:
5767   case SK_StringInit:
5768   case SK_ObjCObjectConversion:
5769   case SK_ArrayInit:
5770   case SK_ParenthesizedArrayInit:
5771   case SK_PassByIndirectCopyRestore:
5772   case SK_PassByIndirectRestore:
5773   case SK_ProduceObjCObject:
5774   case SK_StdInitializerList:
5775   case SK_OCLSamplerInit:
5776   case SK_OCLZeroEvent: {
5777     assert(Args.size() == 1);
5778     CurInit = Args[0];
5779     if (!CurInit.get()) return ExprError();
5780     break;
5781   }
5782 
5783   case SK_ConstructorInitialization:
5784   case SK_ListConstructorCall:
5785   case SK_ZeroInitialization:
5786     break;
5787   }
5788 
5789   // Walk through the computed steps for the initialization sequence,
5790   // performing the specified conversions along the way.
5791   bool ConstructorInitRequiresZeroInit = false;
5792   for (step_iterator Step = step_begin(), StepEnd = step_end();
5793        Step != StepEnd; ++Step) {
5794     if (CurInit.isInvalid())
5795       return ExprError();
5796 
5797     QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType();
5798 
5799     switch (Step->Kind) {
5800     case SK_ResolveAddressOfOverloadedFunction:
5801       // Overload resolution determined which function invoke; update the
5802       // initializer to reflect that choice.
5803       S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl);
5804       if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation()))
5805         return ExprError();
5806       CurInit = S.FixOverloadedFunctionReference(CurInit,
5807                                                  Step->Function.FoundDecl,
5808                                                  Step->Function.Function);
5809       break;
5810 
5811     case SK_CastDerivedToBaseRValue:
5812     case SK_CastDerivedToBaseXValue:
5813     case SK_CastDerivedToBaseLValue: {
5814       // We have a derived-to-base cast that produces either an rvalue or an
5815       // lvalue. Perform that cast.
5816 
5817       CXXCastPath BasePath;
5818 
5819       // Casts to inaccessible base classes are allowed with C-style casts.
5820       bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast();
5821       if (S.CheckDerivedToBaseConversion(SourceType, Step->Type,
5822                                          CurInit.get()->getLocStart(),
5823                                          CurInit.get()->getSourceRange(),
5824                                          &BasePath, IgnoreBaseAccess))
5825         return ExprError();
5826 
5827       if (S.BasePathInvolvesVirtualBase(BasePath)) {
5828         QualType T = SourceType;
5829         if (const PointerType *Pointer = T->getAs<PointerType>())
5830           T = Pointer->getPointeeType();
5831         if (const RecordType *RecordTy = T->getAs<RecordType>())
5832           S.MarkVTableUsed(CurInit.get()->getLocStart(),
5833                            cast<CXXRecordDecl>(RecordTy->getDecl()));
5834       }
5835 
5836       ExprValueKind VK =
5837           Step->Kind == SK_CastDerivedToBaseLValue ?
5838               VK_LValue :
5839               (Step->Kind == SK_CastDerivedToBaseXValue ?
5840                    VK_XValue :
5841                    VK_RValue);
5842       CurInit =
5843           ImplicitCastExpr::Create(S.Context, Step->Type, CK_DerivedToBase,
5844                                    CurInit.get(), &BasePath, VK);
5845       break;
5846     }
5847 
5848     case SK_BindReference:
5849       // References cannot bind to bit-fields (C++ [dcl.init.ref]p5).
5850       if (CurInit.get()->refersToBitField()) {
5851         // We don't necessarily have an unambiguous source bit-field.
5852         FieldDecl *BitField = CurInit.get()->getSourceBitField();
5853         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield)
5854           << Entity.getType().isVolatileQualified()
5855           << (BitField ? BitField->getDeclName() : DeclarationName())
5856           << (BitField != nullptr)
5857           << CurInit.get()->getSourceRange();
5858         if (BitField)
5859           S.Diag(BitField->getLocation(), diag::note_bitfield_decl);
5860 
5861         return ExprError();
5862       }
5863 
5864       if (CurInit.get()->refersToVectorElement()) {
5865         // References cannot bind to vector elements.
5866         S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element)
5867           << Entity.getType().isVolatileQualified()
5868           << CurInit.get()->getSourceRange();
5869         PrintInitLocationNote(S, Entity);
5870         return ExprError();
5871       }
5872 
5873       // Reference binding does not have any corresponding ASTs.
5874 
5875       // Check exception specifications
5876       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5877         return ExprError();
5878 
5879       // Even though we didn't materialize a temporary, the binding may still
5880       // extend the lifetime of a temporary. This happens if we bind a reference
5881       // to the result of a cast to reference type.
5882       if (const InitializedEntity *ExtendingEntity =
5883               getEntityForTemporaryLifetimeExtension(&Entity))
5884         if (performReferenceExtension(CurInit.get(), ExtendingEntity))
5885           warnOnLifetimeExtension(S, Entity, CurInit.get(),
5886                                   /*IsInitializerList=*/false,
5887                                   ExtendingEntity->getDecl());
5888 
5889       break;
5890 
5891     case SK_BindReferenceToTemporary: {
5892       // Make sure the "temporary" is actually an rvalue.
5893       assert(CurInit.get()->isRValue() && "not a temporary");
5894 
5895       // Check exception specifications
5896       if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType))
5897         return ExprError();
5898 
5899       // Materialize the temporary into memory.
5900       MaterializeTemporaryExpr *MTE = new (S.Context) MaterializeTemporaryExpr(
5901           Entity.getType().getNonReferenceType(), CurInit.get(),
5902           Entity.getType()->isLValueReferenceType());
5903 
5904       // Maybe lifetime-extend the temporary's subobjects to match the
5905       // entity's lifetime.
5906       if (const InitializedEntity *ExtendingEntity =
5907               getEntityForTemporaryLifetimeExtension(&Entity))
5908         if (performReferenceExtension(MTE, ExtendingEntity))
5909           warnOnLifetimeExtension(S, Entity, CurInit.get(), /*IsInitializerList=*/false,
5910                                   ExtendingEntity->getDecl());
5911 
5912       // If we're binding to an Objective-C object that has lifetime, we
5913       // need cleanups. Likewise if we're extending this temporary to automatic
5914       // storage duration -- we need to register its cleanup during the
5915       // full-expression's cleanups.
5916       if ((S.getLangOpts().ObjCAutoRefCount &&
5917            MTE->getType()->isObjCLifetimeType()) ||
5918           (MTE->getStorageDuration() == SD_Automatic &&
5919            MTE->getType().isDestructedType()))
5920         S.ExprNeedsCleanups = true;
5921 
5922       CurInit = MTE;
5923       break;
5924     }
5925 
5926     case SK_ExtraneousCopyToTemporary:
5927       CurInit = CopyObject(S, Step->Type, Entity, CurInit,
5928                            /*IsExtraneousCopy=*/true);
5929       break;
5930 
5931     case SK_UserConversion: {
5932       // We have a user-defined conversion that invokes either a constructor
5933       // or a conversion function.
5934       CastKind CastKind;
5935       bool IsCopy = false;
5936       FunctionDecl *Fn = Step->Function.Function;
5937       DeclAccessPair FoundFn = Step->Function.FoundDecl;
5938       bool HadMultipleCandidates = Step->Function.HadMultipleCandidates;
5939       bool CreatedObject = false;
5940       if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) {
5941         // Build a call to the selected constructor.
5942         SmallVector<Expr*, 8> ConstructorArgs;
5943         SourceLocation Loc = CurInit.get()->getLocStart();
5944         CurInit.get(); // Ownership transferred into MultiExprArg, below.
5945 
5946         // Determine the arguments required to actually perform the constructor
5947         // call.
5948         Expr *Arg = CurInit.get();
5949         if (S.CompleteConstructorCall(Constructor,
5950                                       MultiExprArg(&Arg, 1),
5951                                       Loc, ConstructorArgs))
5952           return ExprError();
5953 
5954         // Build an expression that constructs a temporary.
5955         CurInit = S.BuildCXXConstructExpr(Loc, Step->Type, Constructor,
5956                                           ConstructorArgs,
5957                                           HadMultipleCandidates,
5958                                           /*ListInit*/ false,
5959                                           /*ZeroInit*/ false,
5960                                           CXXConstructExpr::CK_Complete,
5961                                           SourceRange());
5962         if (CurInit.isInvalid())
5963           return ExprError();
5964 
5965         S.CheckConstructorAccess(Kind.getLocation(), Constructor, Entity,
5966                                  FoundFn.getAccess());
5967         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5968           return ExprError();
5969 
5970         CastKind = CK_ConstructorConversion;
5971         QualType Class = S.Context.getTypeDeclType(Constructor->getParent());
5972         if (S.Context.hasSameUnqualifiedType(SourceType, Class) ||
5973             S.IsDerivedFrom(SourceType, Class))
5974           IsCopy = true;
5975 
5976         CreatedObject = true;
5977       } else {
5978         // Build a call to the conversion function.
5979         CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn);
5980         S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr,
5981                                     FoundFn);
5982         if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation()))
5983           return ExprError();
5984 
5985         // FIXME: Should we move this initialization into a separate
5986         // derived-to-base conversion? I believe the answer is "no", because
5987         // we don't want to turn off access control here for c-style casts.
5988         ExprResult CurInitExprRes =
5989           S.PerformObjectArgumentInitialization(CurInit.get(),
5990                                                 /*Qualifier=*/nullptr,
5991                                                 FoundFn, Conversion);
5992         if(CurInitExprRes.isInvalid())
5993           return ExprError();
5994         CurInit = CurInitExprRes;
5995 
5996         // Build the actual call to the conversion function.
5997         CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion,
5998                                            HadMultipleCandidates);
5999         if (CurInit.isInvalid() || !CurInit.get())
6000           return ExprError();
6001 
6002         CastKind = CK_UserDefinedConversion;
6003 
6004         CreatedObject = Conversion->getReturnType()->isRecordType();
6005       }
6006 
6007       bool RequiresCopy = !IsCopy && !isReferenceBinding(Steps.back());
6008       bool MaybeBindToTemp = RequiresCopy || shouldBindAsTemporary(Entity);
6009 
6010       if (!MaybeBindToTemp && CreatedObject && shouldDestroyTemporary(Entity)) {
6011         QualType T = CurInit.get()->getType();
6012         if (const RecordType *Record = T->getAs<RecordType>()) {
6013           CXXDestructorDecl *Destructor
6014             = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl()));
6015           S.CheckDestructorAccess(CurInit.get()->getLocStart(), Destructor,
6016                                   S.PDiag(diag::err_access_dtor_temp) << T);
6017           S.MarkFunctionReferenced(CurInit.get()->getLocStart(), Destructor);
6018           if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getLocStart()))
6019             return ExprError();
6020         }
6021       }
6022 
6023       CurInit = ImplicitCastExpr::Create(S.Context, CurInit.get()->getType(),
6024                                          CastKind, CurInit.get(), nullptr,
6025                                          CurInit.get()->getValueKind());
6026       if (MaybeBindToTemp)
6027         CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>());
6028       if (RequiresCopy)
6029         CurInit = CopyObject(S, Entity.getType().getNonReferenceType(), Entity,
6030                              CurInit, /*IsExtraneousCopy=*/false);
6031       break;
6032     }
6033 
6034     case SK_QualificationConversionLValue:
6035     case SK_QualificationConversionXValue:
6036     case SK_QualificationConversionRValue: {
6037       // Perform a qualification conversion; these can never go wrong.
6038       ExprValueKind VK =
6039           Step->Kind == SK_QualificationConversionLValue ?
6040               VK_LValue :
6041               (Step->Kind == SK_QualificationConversionXValue ?
6042                    VK_XValue :
6043                    VK_RValue);
6044       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK);
6045       break;
6046     }
6047 
6048     case SK_LValueToRValue: {
6049       assert(CurInit.get()->isGLValue() && "cannot load from a prvalue");
6050       CurInit = ImplicitCastExpr::Create(S.Context, Step->Type,
6051                                          CK_LValueToRValue, CurInit.get(),
6052                                          /*BasePath=*/nullptr, VK_RValue);
6053       break;
6054     }
6055 
6056     case SK_ConversionSequence:
6057     case SK_ConversionSequenceNoNarrowing: {
6058       Sema::CheckedConversionKind CCK
6059         = Kind.isCStyleCast()? Sema::CCK_CStyleCast
6060         : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast
6061         : Kind.isExplicitCast()? Sema::CCK_OtherCast
6062         : Sema::CCK_ImplicitConversion;
6063       ExprResult CurInitExprRes =
6064         S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS,
6065                                     getAssignmentAction(Entity), CCK);
6066       if (CurInitExprRes.isInvalid())
6067         return ExprError();
6068       CurInit = CurInitExprRes;
6069 
6070       if (Step->Kind == SK_ConversionSequenceNoNarrowing &&
6071           S.getLangOpts().CPlusPlus && !CurInit.get()->isValueDependent())
6072         DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(),
6073                                     CurInit.get());
6074       break;
6075     }
6076 
6077     case SK_ListInitialization: {
6078       InitListExpr *InitList = cast<InitListExpr>(CurInit.get());
6079       // If we're not initializing the top-level entity, we need to create an
6080       // InitializeTemporary entity for our target type.
6081       QualType Ty = Step->Type;
6082       bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty);
6083       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty);
6084       InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity;
6085       InitListChecker PerformInitList(S, InitEntity,
6086           InitList, Ty, /*VerifyOnly=*/false);
6087       if (PerformInitList.HadError())
6088         return ExprError();
6089 
6090       // Hack: We must update *ResultType if available in order to set the
6091       // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'.
6092       // Worst case: 'const int (&arref)[] = {1, 2, 3};'.
6093       if (ResultType &&
6094           ResultType->getNonReferenceType()->isIncompleteArrayType()) {
6095         if ((*ResultType)->isRValueReferenceType())
6096           Ty = S.Context.getRValueReferenceType(Ty);
6097         else if ((*ResultType)->isLValueReferenceType())
6098           Ty = S.Context.getLValueReferenceType(Ty,
6099             (*ResultType)->getAs<LValueReferenceType>()->isSpelledAsLValue());
6100         *ResultType = Ty;
6101       }
6102 
6103       InitListExpr *StructuredInitList =
6104           PerformInitList.getFullyStructuredList();
6105       CurInit.get();
6106       CurInit = shouldBindAsTemporary(InitEntity)
6107           ? S.MaybeBindToTemporary(StructuredInitList)
6108           : StructuredInitList;
6109       break;
6110     }
6111 
6112     case SK_ListConstructorCall: {
6113       // When an initializer list is passed for a parameter of type "reference
6114       // to object", we don't get an EK_Temporary entity, but instead an
6115       // EK_Parameter entity with reference type.
6116       // FIXME: This is a hack. What we really should do is create a user
6117       // conversion step for this case, but this makes it considerably more
6118       // complicated. For now, this will do.
6119       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6120                                         Entity.getType().getNonReferenceType());
6121       bool UseTemporary = Entity.getType()->isReferenceType();
6122       assert(Args.size() == 1 && "expected a single argument for list init");
6123       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6124       S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init)
6125         << InitList->getSourceRange();
6126       MultiExprArg Arg(InitList->getInits(), InitList->getNumInits());
6127       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity :
6128                                                                    Entity,
6129                                                  Kind, Arg, *Step,
6130                                                ConstructorInitRequiresZeroInit,
6131                                                /*IsListInitialization*/ true,
6132                                                InitList->getLBraceLoc(),
6133                                                InitList->getRBraceLoc());
6134       break;
6135     }
6136 
6137     case SK_UnwrapInitList:
6138       CurInit = cast<InitListExpr>(CurInit.get())->getInit(0);
6139       break;
6140 
6141     case SK_RewrapInitList: {
6142       Expr *E = CurInit.get();
6143       InitListExpr *Syntactic = Step->WrappingSyntacticList;
6144       InitListExpr *ILE = new (S.Context) InitListExpr(S.Context,
6145           Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc());
6146       ILE->setSyntacticForm(Syntactic);
6147       ILE->setType(E->getType());
6148       ILE->setValueKind(E->getValueKind());
6149       CurInit = ILE;
6150       break;
6151     }
6152 
6153     case SK_ConstructorInitialization: {
6154       // When an initializer list is passed for a parameter of type "reference
6155       // to object", we don't get an EK_Temporary entity, but instead an
6156       // EK_Parameter entity with reference type.
6157       // FIXME: This is a hack. What we really should do is create a user
6158       // conversion step for this case, but this makes it considerably more
6159       // complicated. For now, this will do.
6160       InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(
6161                                         Entity.getType().getNonReferenceType());
6162       bool UseTemporary = Entity.getType()->isReferenceType();
6163       CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity
6164                                                                  : Entity,
6165                                                  Kind, Args, *Step,
6166                                                ConstructorInitRequiresZeroInit,
6167                                                /*IsListInitialization*/ false,
6168                                                /*LBraceLoc*/ SourceLocation(),
6169                                                /*RBraceLoc*/ SourceLocation());
6170       break;
6171     }
6172 
6173     case SK_ZeroInitialization: {
6174       step_iterator NextStep = Step;
6175       ++NextStep;
6176       if (NextStep != StepEnd &&
6177           (NextStep->Kind == SK_ConstructorInitialization ||
6178            NextStep->Kind == SK_ListConstructorCall)) {
6179         // The need for zero-initialization is recorded directly into
6180         // the call to the object's constructor within the next step.
6181         ConstructorInitRequiresZeroInit = true;
6182       } else if (Kind.getKind() == InitializationKind::IK_Value &&
6183                  S.getLangOpts().CPlusPlus &&
6184                  !Kind.isImplicitValueInit()) {
6185         TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo();
6186         if (!TSInfo)
6187           TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type,
6188                                                     Kind.getRange().getBegin());
6189 
6190         CurInit = new (S.Context) CXXScalarValueInitExpr(
6191             TSInfo->getType().getNonLValueExprType(S.Context), TSInfo,
6192             Kind.getRange().getEnd());
6193       } else {
6194         CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type);
6195       }
6196       break;
6197     }
6198 
6199     case SK_CAssignment: {
6200       QualType SourceType = CurInit.get()->getType();
6201       ExprResult Result = CurInit;
6202       Sema::AssignConvertType ConvTy =
6203         S.CheckSingleAssignmentConstraints(Step->Type, Result, true,
6204             Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited);
6205       if (Result.isInvalid())
6206         return ExprError();
6207       CurInit = Result;
6208 
6209       // If this is a call, allow conversion to a transparent union.
6210       ExprResult CurInitExprRes = CurInit;
6211       if (ConvTy != Sema::Compatible &&
6212           Entity.isParameterKind() &&
6213           S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes)
6214             == Sema::Compatible)
6215         ConvTy = Sema::Compatible;
6216       if (CurInitExprRes.isInvalid())
6217         return ExprError();
6218       CurInit = CurInitExprRes;
6219 
6220       bool Complained;
6221       if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(),
6222                                      Step->Type, SourceType,
6223                                      CurInit.get(),
6224                                      getAssignmentAction(Entity, true),
6225                                      &Complained)) {
6226         PrintInitLocationNote(S, Entity);
6227         return ExprError();
6228       } else if (Complained)
6229         PrintInitLocationNote(S, Entity);
6230       break;
6231     }
6232 
6233     case SK_StringInit: {
6234       QualType Ty = Step->Type;
6235       CheckStringInit(CurInit.get(), ResultType ? *ResultType : Ty,
6236                       S.Context.getAsArrayType(Ty), S);
6237       break;
6238     }
6239 
6240     case SK_ObjCObjectConversion:
6241       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6242                           CK_ObjCObjectLValueCast,
6243                           CurInit.get()->getValueKind());
6244       break;
6245 
6246     case SK_ArrayInit:
6247       // Okay: we checked everything before creating this step. Note that
6248       // this is a GNU extension.
6249       S.Diag(Kind.getLocation(), diag::ext_array_init_copy)
6250         << Step->Type << CurInit.get()->getType()
6251         << CurInit.get()->getSourceRange();
6252 
6253       // If the destination type is an incomplete array type, update the
6254       // type accordingly.
6255       if (ResultType) {
6256         if (const IncompleteArrayType *IncompleteDest
6257                            = S.Context.getAsIncompleteArrayType(Step->Type)) {
6258           if (const ConstantArrayType *ConstantSource
6259                  = S.Context.getAsConstantArrayType(CurInit.get()->getType())) {
6260             *ResultType = S.Context.getConstantArrayType(
6261                                              IncompleteDest->getElementType(),
6262                                              ConstantSource->getSize(),
6263                                              ArrayType::Normal, 0);
6264           }
6265         }
6266       }
6267       break;
6268 
6269     case SK_ParenthesizedArrayInit:
6270       // Okay: we checked everything before creating this step. Note that
6271       // this is a GNU extension.
6272       S.Diag(Kind.getLocation(), diag::ext_array_init_parens)
6273         << CurInit.get()->getSourceRange();
6274       break;
6275 
6276     case SK_PassByIndirectCopyRestore:
6277     case SK_PassByIndirectRestore:
6278       checkIndirectCopyRestoreSource(S, CurInit.get());
6279       CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr(
6280           CurInit.get(), Step->Type,
6281           Step->Kind == SK_PassByIndirectCopyRestore);
6282       break;
6283 
6284     case SK_ProduceObjCObject:
6285       CurInit =
6286           ImplicitCastExpr::Create(S.Context, Step->Type, CK_ARCProduceObject,
6287                                    CurInit.get(), nullptr, VK_RValue);
6288       break;
6289 
6290     case SK_StdInitializerList: {
6291       S.Diag(CurInit.get()->getExprLoc(),
6292              diag::warn_cxx98_compat_initializer_list_init)
6293         << CurInit.get()->getSourceRange();
6294 
6295       // Materialize the temporary into memory.
6296       MaterializeTemporaryExpr *MTE = new (S.Context)
6297           MaterializeTemporaryExpr(CurInit.get()->getType(), CurInit.get(),
6298                                    /*BoundToLvalueReference=*/false);
6299 
6300       // Maybe lifetime-extend the array temporary's subobjects to match the
6301       // entity's lifetime.
6302       if (const InitializedEntity *ExtendingEntity =
6303               getEntityForTemporaryLifetimeExtension(&Entity))
6304         if (performReferenceExtension(MTE, ExtendingEntity))
6305           warnOnLifetimeExtension(S, Entity, CurInit.get(),
6306                                   /*IsInitializerList=*/true,
6307                                   ExtendingEntity->getDecl());
6308 
6309       // Wrap it in a construction of a std::initializer_list<T>.
6310       CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE);
6311 
6312       // Bind the result, in case the library has given initializer_list a
6313       // non-trivial destructor.
6314       if (shouldBindAsTemporary(Entity))
6315         CurInit = S.MaybeBindToTemporary(CurInit.get());
6316       break;
6317     }
6318 
6319     case SK_OCLSamplerInit: {
6320       assert(Step->Type->isSamplerT() &&
6321              "Sampler initialization on non-sampler type.");
6322 
6323       QualType SourceType = CurInit.get()->getType();
6324 
6325       if (Entity.isParameterKind()) {
6326         if (!SourceType->isSamplerT())
6327           S.Diag(Kind.getLocation(), diag::err_sampler_argument_required)
6328             << SourceType;
6329       } else if (Entity.getKind() != InitializedEntity::EK_Variable) {
6330         llvm_unreachable("Invalid EntityKind!");
6331       }
6332 
6333       break;
6334     }
6335     case SK_OCLZeroEvent: {
6336       assert(Step->Type->isEventT() &&
6337              "Event initialization on non-event type.");
6338 
6339       CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type,
6340                                     CK_ZeroToOCLEvent,
6341                                     CurInit.get()->getValueKind());
6342       break;
6343     }
6344     }
6345   }
6346 
6347   // Diagnose non-fatal problems with the completed initialization.
6348   if (Entity.getKind() == InitializedEntity::EK_Member &&
6349       cast<FieldDecl>(Entity.getDecl())->isBitField())
6350     S.CheckBitFieldInitialization(Kind.getLocation(),
6351                                   cast<FieldDecl>(Entity.getDecl()),
6352                                   CurInit.get());
6353 
6354   return CurInit;
6355 }
6356 
6357 /// Somewhere within T there is an uninitialized reference subobject.
6358 /// Dig it out and diagnose it.
DiagnoseUninitializedReference(Sema & S,SourceLocation Loc,QualType T)6359 static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc,
6360                                            QualType T) {
6361   if (T->isReferenceType()) {
6362     S.Diag(Loc, diag::err_reference_without_init)
6363       << T.getNonReferenceType();
6364     return true;
6365   }
6366 
6367   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
6368   if (!RD || !RD->hasUninitializedReferenceMember())
6369     return false;
6370 
6371   for (const auto *FI : RD->fields()) {
6372     if (FI->isUnnamedBitfield())
6373       continue;
6374 
6375     if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) {
6376       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6377       return true;
6378     }
6379   }
6380 
6381   for (const auto &BI : RD->bases()) {
6382     if (DiagnoseUninitializedReference(S, BI.getLocStart(), BI.getType())) {
6383       S.Diag(Loc, diag::note_value_initialization_here) << RD;
6384       return true;
6385     }
6386   }
6387 
6388   return false;
6389 }
6390 
6391 
6392 //===----------------------------------------------------------------------===//
6393 // Diagnose initialization failures
6394 //===----------------------------------------------------------------------===//
6395 
6396 /// Emit notes associated with an initialization that failed due to a
6397 /// "simple" conversion failure.
emitBadConversionNotes(Sema & S,const InitializedEntity & entity,Expr * op)6398 static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity,
6399                                    Expr *op) {
6400   QualType destType = entity.getType();
6401   if (destType.getNonReferenceType()->isObjCObjectPointerType() &&
6402       op->getType()->isObjCObjectPointerType()) {
6403 
6404     // Emit a possible note about the conversion failing because the
6405     // operand is a message send with a related result type.
6406     S.EmitRelatedResultTypeNote(op);
6407 
6408     // Emit a possible note about a return failing because we're
6409     // expecting a related result type.
6410     if (entity.getKind() == InitializedEntity::EK_Result)
6411       S.EmitRelatedResultTypeNoteForReturn(destType);
6412   }
6413 }
6414 
diagnoseListInit(Sema & S,const InitializedEntity & Entity,InitListExpr * InitList)6415 static void diagnoseListInit(Sema &S, const InitializedEntity &Entity,
6416                              InitListExpr *InitList) {
6417   QualType DestType = Entity.getType();
6418 
6419   QualType E;
6420   if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) {
6421     QualType ArrayType = S.Context.getConstantArrayType(
6422         E.withConst(),
6423         llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()),
6424                     InitList->getNumInits()),
6425         clang::ArrayType::Normal, 0);
6426     InitializedEntity HiddenArray =
6427         InitializedEntity::InitializeTemporary(ArrayType);
6428     return diagnoseListInit(S, HiddenArray, InitList);
6429   }
6430 
6431   InitListChecker DiagnoseInitList(S, Entity, InitList, DestType,
6432                                    /*VerifyOnly=*/false);
6433   assert(DiagnoseInitList.HadError() &&
6434          "Inconsistent init list check result.");
6435 }
6436 
Diagnose(Sema & S,const InitializedEntity & Entity,const InitializationKind & Kind,ArrayRef<Expr * > Args)6437 bool InitializationSequence::Diagnose(Sema &S,
6438                                       const InitializedEntity &Entity,
6439                                       const InitializationKind &Kind,
6440                                       ArrayRef<Expr *> Args) {
6441   if (!Failed())
6442     return false;
6443 
6444   QualType DestType = Entity.getType();
6445   switch (Failure) {
6446   case FK_TooManyInitsForReference:
6447     // FIXME: Customize for the initialized entity?
6448     if (Args.empty()) {
6449       // Dig out the reference subobject which is uninitialized and diagnose it.
6450       // If this is value-initialization, this could be nested some way within
6451       // the target type.
6452       assert(Kind.getKind() == InitializationKind::IK_Value ||
6453              DestType->isReferenceType());
6454       bool Diagnosed =
6455         DiagnoseUninitializedReference(S, Kind.getLocation(), DestType);
6456       assert(Diagnosed && "couldn't find uninitialized reference to diagnose");
6457       (void)Diagnosed;
6458     } else  // FIXME: diagnostic below could be better!
6459       S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits)
6460         << SourceRange(Args.front()->getLocStart(), Args.back()->getLocEnd());
6461     break;
6462 
6463   case FK_ArrayNeedsInitList:
6464     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0;
6465     break;
6466   case FK_ArrayNeedsInitListOrStringLiteral:
6467     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1;
6468     break;
6469   case FK_ArrayNeedsInitListOrWideStringLiteral:
6470     S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2;
6471     break;
6472   case FK_NarrowStringIntoWideCharArray:
6473     S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar);
6474     break;
6475   case FK_WideStringIntoCharArray:
6476     S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char);
6477     break;
6478   case FK_IncompatWideStringIntoWideChar:
6479     S.Diag(Kind.getLocation(),
6480            diag::err_array_init_incompat_wide_string_into_wchar);
6481     break;
6482   case FK_ArrayTypeMismatch:
6483   case FK_NonConstantArrayInit:
6484     S.Diag(Kind.getLocation(),
6485            (Failure == FK_ArrayTypeMismatch
6486               ? diag::err_array_init_different_type
6487               : diag::err_array_init_non_constant_array))
6488       << DestType.getNonReferenceType()
6489       << Args[0]->getType()
6490       << Args[0]->getSourceRange();
6491     break;
6492 
6493   case FK_VariableLengthArrayHasInitializer:
6494     S.Diag(Kind.getLocation(), diag::err_variable_object_no_init)
6495       << Args[0]->getSourceRange();
6496     break;
6497 
6498   case FK_AddressOfOverloadFailed: {
6499     DeclAccessPair Found;
6500     S.ResolveAddressOfOverloadedFunction(Args[0],
6501                                          DestType.getNonReferenceType(),
6502                                          true,
6503                                          Found);
6504     break;
6505   }
6506 
6507   case FK_ReferenceInitOverloadFailed:
6508   case FK_UserConversionOverloadFailed:
6509     switch (FailedOverloadResult) {
6510     case OR_Ambiguous:
6511       if (Failure == FK_UserConversionOverloadFailed)
6512         S.Diag(Kind.getLocation(), diag::err_typecheck_ambiguous_condition)
6513           << Args[0]->getType() << DestType
6514           << Args[0]->getSourceRange();
6515       else
6516         S.Diag(Kind.getLocation(), diag::err_ref_init_ambiguous)
6517           << DestType << Args[0]->getType()
6518           << Args[0]->getSourceRange();
6519 
6520       FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6521       break;
6522 
6523     case OR_No_Viable_Function:
6524       if (!S.RequireCompleteType(Kind.getLocation(),
6525                                  DestType.getNonReferenceType(),
6526                           diag::err_typecheck_nonviable_condition_incomplete,
6527                                Args[0]->getType(), Args[0]->getSourceRange()))
6528         S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition)
6529           << Args[0]->getType() << Args[0]->getSourceRange()
6530           << DestType.getNonReferenceType();
6531 
6532       FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6533       break;
6534 
6535     case OR_Deleted: {
6536       S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function)
6537         << Args[0]->getType() << DestType.getNonReferenceType()
6538         << Args[0]->getSourceRange();
6539       OverloadCandidateSet::iterator Best;
6540       OverloadingResult Ovl
6541         = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best,
6542                                                 true);
6543       if (Ovl == OR_Deleted) {
6544         S.NoteDeletedFunction(Best->Function);
6545       } else {
6546         llvm_unreachable("Inconsistent overload resolution?");
6547       }
6548       break;
6549     }
6550 
6551     case OR_Success:
6552       llvm_unreachable("Conversion did not fail!");
6553     }
6554     break;
6555 
6556   case FK_NonConstLValueReferenceBindingToTemporary:
6557     if (isa<InitListExpr>(Args[0])) {
6558       S.Diag(Kind.getLocation(),
6559              diag::err_lvalue_reference_bind_to_initlist)
6560       << DestType.getNonReferenceType().isVolatileQualified()
6561       << DestType.getNonReferenceType()
6562       << Args[0]->getSourceRange();
6563       break;
6564     }
6565     // Intentional fallthrough
6566 
6567   case FK_NonConstLValueReferenceBindingToUnrelated:
6568     S.Diag(Kind.getLocation(),
6569            Failure == FK_NonConstLValueReferenceBindingToTemporary
6570              ? diag::err_lvalue_reference_bind_to_temporary
6571              : diag::err_lvalue_reference_bind_to_unrelated)
6572       << DestType.getNonReferenceType().isVolatileQualified()
6573       << DestType.getNonReferenceType()
6574       << Args[0]->getType()
6575       << Args[0]->getSourceRange();
6576     break;
6577 
6578   case FK_RValueReferenceBindingToLValue:
6579     S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref)
6580       << DestType.getNonReferenceType() << Args[0]->getType()
6581       << Args[0]->getSourceRange();
6582     break;
6583 
6584   case FK_ReferenceInitDropsQualifiers:
6585     S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals)
6586       << DestType.getNonReferenceType()
6587       << Args[0]->getType()
6588       << Args[0]->getSourceRange();
6589     break;
6590 
6591   case FK_ReferenceInitFailed:
6592     S.Diag(Kind.getLocation(), diag::err_reference_bind_failed)
6593       << DestType.getNonReferenceType()
6594       << Args[0]->isLValue()
6595       << Args[0]->getType()
6596       << Args[0]->getSourceRange();
6597     emitBadConversionNotes(S, Entity, Args[0]);
6598     break;
6599 
6600   case FK_ConversionFailed: {
6601     QualType FromType = Args[0]->getType();
6602     PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed)
6603       << (int)Entity.getKind()
6604       << DestType
6605       << Args[0]->isLValue()
6606       << FromType
6607       << Args[0]->getSourceRange();
6608     S.HandleFunctionTypeMismatch(PDiag, FromType, DestType);
6609     S.Diag(Kind.getLocation(), PDiag);
6610     emitBadConversionNotes(S, Entity, Args[0]);
6611     break;
6612   }
6613 
6614   case FK_ConversionFromPropertyFailed:
6615     // No-op. This error has already been reported.
6616     break;
6617 
6618   case FK_TooManyInitsForScalar: {
6619     SourceRange R;
6620 
6621     if (InitListExpr *InitList = dyn_cast<InitListExpr>(Args[0]))
6622       R = SourceRange(InitList->getInit(0)->getLocEnd(),
6623                       InitList->getLocEnd());
6624     else
6625       R = SourceRange(Args.front()->getLocEnd(), Args.back()->getLocEnd());
6626 
6627     R.setBegin(S.getLocForEndOfToken(R.getBegin()));
6628     if (Kind.isCStyleOrFunctionalCast())
6629       S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg)
6630         << R;
6631     else
6632       S.Diag(Kind.getLocation(), diag::err_excess_initializers)
6633         << /*scalar=*/2 << R;
6634     break;
6635   }
6636 
6637   case FK_ReferenceBindingToInitList:
6638     S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list)
6639       << DestType.getNonReferenceType() << Args[0]->getSourceRange();
6640     break;
6641 
6642   case FK_InitListBadDestinationType:
6643     S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type)
6644       << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange();
6645     break;
6646 
6647   case FK_ListConstructorOverloadFailed:
6648   case FK_ConstructorOverloadFailed: {
6649     SourceRange ArgsRange;
6650     if (Args.size())
6651       ArgsRange = SourceRange(Args.front()->getLocStart(),
6652                               Args.back()->getLocEnd());
6653 
6654     if (Failure == FK_ListConstructorOverloadFailed) {
6655       assert(Args.size() == 1 &&
6656              "List construction from other than 1 argument.");
6657       InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6658       Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
6659     }
6660 
6661     // FIXME: Using "DestType" for the entity we're printing is probably
6662     // bad.
6663     switch (FailedOverloadResult) {
6664       case OR_Ambiguous:
6665         S.Diag(Kind.getLocation(), diag::err_ovl_ambiguous_init)
6666           << DestType << ArgsRange;
6667         FailedCandidateSet.NoteCandidates(S, OCD_ViableCandidates, Args);
6668         break;
6669 
6670       case OR_No_Viable_Function:
6671         if (Kind.getKind() == InitializationKind::IK_Default &&
6672             (Entity.getKind() == InitializedEntity::EK_Base ||
6673              Entity.getKind() == InitializedEntity::EK_Member) &&
6674             isa<CXXConstructorDecl>(S.CurContext)) {
6675           // This is implicit default initialization of a member or
6676           // base within a constructor. If no viable function was
6677           // found, notify the user that she needs to explicitly
6678           // initialize this base/member.
6679           CXXConstructorDecl *Constructor
6680             = cast<CXXConstructorDecl>(S.CurContext);
6681           if (Entity.getKind() == InitializedEntity::EK_Base) {
6682             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6683               << (Constructor->getInheritedConstructor() ? 2 :
6684                   Constructor->isImplicit() ? 1 : 0)
6685               << S.Context.getTypeDeclType(Constructor->getParent())
6686               << /*base=*/0
6687               << Entity.getType();
6688 
6689             RecordDecl *BaseDecl
6690               = Entity.getBaseSpecifier()->getType()->getAs<RecordType>()
6691                                                                   ->getDecl();
6692             S.Diag(BaseDecl->getLocation(), diag::note_previous_decl)
6693               << S.Context.getTagDeclType(BaseDecl);
6694           } else {
6695             S.Diag(Kind.getLocation(), diag::err_missing_default_ctor)
6696               << (Constructor->getInheritedConstructor() ? 2 :
6697                   Constructor->isImplicit() ? 1 : 0)
6698               << S.Context.getTypeDeclType(Constructor->getParent())
6699               << /*member=*/1
6700               << Entity.getName();
6701             S.Diag(Entity.getDecl()->getLocation(),
6702                    diag::note_member_declared_at);
6703 
6704             if (const RecordType *Record
6705                                  = Entity.getType()->getAs<RecordType>())
6706               S.Diag(Record->getDecl()->getLocation(),
6707                      diag::note_previous_decl)
6708                 << S.Context.getTagDeclType(Record->getDecl());
6709           }
6710           break;
6711         }
6712 
6713         S.Diag(Kind.getLocation(), diag::err_ovl_no_viable_function_in_init)
6714           << DestType << ArgsRange;
6715         FailedCandidateSet.NoteCandidates(S, OCD_AllCandidates, Args);
6716         break;
6717 
6718       case OR_Deleted: {
6719         OverloadCandidateSet::iterator Best;
6720         OverloadingResult Ovl
6721           = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6722         if (Ovl != OR_Deleted) {
6723           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6724             << true << DestType << ArgsRange;
6725           llvm_unreachable("Inconsistent overload resolution?");
6726           break;
6727         }
6728 
6729         // If this is a defaulted or implicitly-declared function, then
6730         // it was implicitly deleted. Make it clear that the deletion was
6731         // implicit.
6732         if (S.isImplicitlyDeleted(Best->Function))
6733           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init)
6734             << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function))
6735             << DestType << ArgsRange;
6736         else
6737           S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init)
6738             << true << DestType << ArgsRange;
6739 
6740         S.NoteDeletedFunction(Best->Function);
6741         break;
6742       }
6743 
6744       case OR_Success:
6745         llvm_unreachable("Conversion did not fail!");
6746     }
6747   }
6748   break;
6749 
6750   case FK_DefaultInitOfConst:
6751     if (Entity.getKind() == InitializedEntity::EK_Member &&
6752         isa<CXXConstructorDecl>(S.CurContext)) {
6753       // This is implicit default-initialization of a const member in
6754       // a constructor. Complain that it needs to be explicitly
6755       // initialized.
6756       CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext);
6757       S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor)
6758         << (Constructor->getInheritedConstructor() ? 2 :
6759             Constructor->isImplicit() ? 1 : 0)
6760         << S.Context.getTypeDeclType(Constructor->getParent())
6761         << /*const=*/1
6762         << Entity.getName();
6763       S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl)
6764         << Entity.getName();
6765     } else {
6766       S.Diag(Kind.getLocation(), diag::err_default_init_const)
6767         << DestType << (bool)DestType->getAs<RecordType>();
6768     }
6769     break;
6770 
6771   case FK_Incomplete:
6772     S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType,
6773                           diag::err_init_incomplete_type);
6774     break;
6775 
6776   case FK_ListInitializationFailed: {
6777     // Run the init list checker again to emit diagnostics.
6778     InitListExpr *InitList = cast<InitListExpr>(Args[0]);
6779     diagnoseListInit(S, Entity, InitList);
6780     break;
6781   }
6782 
6783   case FK_PlaceholderType: {
6784     // FIXME: Already diagnosed!
6785     break;
6786   }
6787 
6788   case FK_ExplicitConstructor: {
6789     S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor)
6790       << Args[0]->getSourceRange();
6791     OverloadCandidateSet::iterator Best;
6792     OverloadingResult Ovl
6793       = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best);
6794     (void)Ovl;
6795     assert(Ovl == OR_Success && "Inconsistent overload resolution");
6796     CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function);
6797     S.Diag(CtorDecl->getLocation(), diag::note_constructor_declared_here);
6798     break;
6799   }
6800   }
6801 
6802   PrintInitLocationNote(S, Entity);
6803   return true;
6804 }
6805 
dump(raw_ostream & OS) const6806 void InitializationSequence::dump(raw_ostream &OS) const {
6807   switch (SequenceKind) {
6808   case FailedSequence: {
6809     OS << "Failed sequence: ";
6810     switch (Failure) {
6811     case FK_TooManyInitsForReference:
6812       OS << "too many initializers for reference";
6813       break;
6814 
6815     case FK_ArrayNeedsInitList:
6816       OS << "array requires initializer list";
6817       break;
6818 
6819     case FK_ArrayNeedsInitListOrStringLiteral:
6820       OS << "array requires initializer list or string literal";
6821       break;
6822 
6823     case FK_ArrayNeedsInitListOrWideStringLiteral:
6824       OS << "array requires initializer list or wide string literal";
6825       break;
6826 
6827     case FK_NarrowStringIntoWideCharArray:
6828       OS << "narrow string into wide char array";
6829       break;
6830 
6831     case FK_WideStringIntoCharArray:
6832       OS << "wide string into char array";
6833       break;
6834 
6835     case FK_IncompatWideStringIntoWideChar:
6836       OS << "incompatible wide string into wide char array";
6837       break;
6838 
6839     case FK_ArrayTypeMismatch:
6840       OS << "array type mismatch";
6841       break;
6842 
6843     case FK_NonConstantArrayInit:
6844       OS << "non-constant array initializer";
6845       break;
6846 
6847     case FK_AddressOfOverloadFailed:
6848       OS << "address of overloaded function failed";
6849       break;
6850 
6851     case FK_ReferenceInitOverloadFailed:
6852       OS << "overload resolution for reference initialization failed";
6853       break;
6854 
6855     case FK_NonConstLValueReferenceBindingToTemporary:
6856       OS << "non-const lvalue reference bound to temporary";
6857       break;
6858 
6859     case FK_NonConstLValueReferenceBindingToUnrelated:
6860       OS << "non-const lvalue reference bound to unrelated type";
6861       break;
6862 
6863     case FK_RValueReferenceBindingToLValue:
6864       OS << "rvalue reference bound to an lvalue";
6865       break;
6866 
6867     case FK_ReferenceInitDropsQualifiers:
6868       OS << "reference initialization drops qualifiers";
6869       break;
6870 
6871     case FK_ReferenceInitFailed:
6872       OS << "reference initialization failed";
6873       break;
6874 
6875     case FK_ConversionFailed:
6876       OS << "conversion failed";
6877       break;
6878 
6879     case FK_ConversionFromPropertyFailed:
6880       OS << "conversion from property failed";
6881       break;
6882 
6883     case FK_TooManyInitsForScalar:
6884       OS << "too many initializers for scalar";
6885       break;
6886 
6887     case FK_ReferenceBindingToInitList:
6888       OS << "referencing binding to initializer list";
6889       break;
6890 
6891     case FK_InitListBadDestinationType:
6892       OS << "initializer list for non-aggregate, non-scalar type";
6893       break;
6894 
6895     case FK_UserConversionOverloadFailed:
6896       OS << "overloading failed for user-defined conversion";
6897       break;
6898 
6899     case FK_ConstructorOverloadFailed:
6900       OS << "constructor overloading failed";
6901       break;
6902 
6903     case FK_DefaultInitOfConst:
6904       OS << "default initialization of a const variable";
6905       break;
6906 
6907     case FK_Incomplete:
6908       OS << "initialization of incomplete type";
6909       break;
6910 
6911     case FK_ListInitializationFailed:
6912       OS << "list initialization checker failure";
6913       break;
6914 
6915     case FK_VariableLengthArrayHasInitializer:
6916       OS << "variable length array has an initializer";
6917       break;
6918 
6919     case FK_PlaceholderType:
6920       OS << "initializer expression isn't contextually valid";
6921       break;
6922 
6923     case FK_ListConstructorOverloadFailed:
6924       OS << "list constructor overloading failed";
6925       break;
6926 
6927     case FK_ExplicitConstructor:
6928       OS << "list copy initialization chose explicit constructor";
6929       break;
6930     }
6931     OS << '\n';
6932     return;
6933   }
6934 
6935   case DependentSequence:
6936     OS << "Dependent sequence\n";
6937     return;
6938 
6939   case NormalSequence:
6940     OS << "Normal sequence: ";
6941     break;
6942   }
6943 
6944   for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) {
6945     if (S != step_begin()) {
6946       OS << " -> ";
6947     }
6948 
6949     switch (S->Kind) {
6950     case SK_ResolveAddressOfOverloadedFunction:
6951       OS << "resolve address of overloaded function";
6952       break;
6953 
6954     case SK_CastDerivedToBaseRValue:
6955       OS << "derived-to-base case (rvalue" << S->Type.getAsString() << ")";
6956       break;
6957 
6958     case SK_CastDerivedToBaseXValue:
6959       OS << "derived-to-base case (xvalue" << S->Type.getAsString() << ")";
6960       break;
6961 
6962     case SK_CastDerivedToBaseLValue:
6963       OS << "derived-to-base case (lvalue" << S->Type.getAsString() << ")";
6964       break;
6965 
6966     case SK_BindReference:
6967       OS << "bind reference to lvalue";
6968       break;
6969 
6970     case SK_BindReferenceToTemporary:
6971       OS << "bind reference to a temporary";
6972       break;
6973 
6974     case SK_ExtraneousCopyToTemporary:
6975       OS << "extraneous C++03 copy to temporary";
6976       break;
6977 
6978     case SK_UserConversion:
6979       OS << "user-defined conversion via " << *S->Function.Function;
6980       break;
6981 
6982     case SK_QualificationConversionRValue:
6983       OS << "qualification conversion (rvalue)";
6984       break;
6985 
6986     case SK_QualificationConversionXValue:
6987       OS << "qualification conversion (xvalue)";
6988       break;
6989 
6990     case SK_QualificationConversionLValue:
6991       OS << "qualification conversion (lvalue)";
6992       break;
6993 
6994     case SK_LValueToRValue:
6995       OS << "load (lvalue to rvalue)";
6996       break;
6997 
6998     case SK_ConversionSequence:
6999       OS << "implicit conversion sequence (";
7000       S->ICS->dump(); // FIXME: use OS
7001       OS << ")";
7002       break;
7003 
7004     case SK_ConversionSequenceNoNarrowing:
7005       OS << "implicit conversion sequence with narrowing prohibited (";
7006       S->ICS->dump(); // FIXME: use OS
7007       OS << ")";
7008       break;
7009 
7010     case SK_ListInitialization:
7011       OS << "list aggregate initialization";
7012       break;
7013 
7014     case SK_ListConstructorCall:
7015       OS << "list initialization via constructor";
7016       break;
7017 
7018     case SK_UnwrapInitList:
7019       OS << "unwrap reference initializer list";
7020       break;
7021 
7022     case SK_RewrapInitList:
7023       OS << "rewrap reference initializer list";
7024       break;
7025 
7026     case SK_ConstructorInitialization:
7027       OS << "constructor initialization";
7028       break;
7029 
7030     case SK_ZeroInitialization:
7031       OS << "zero initialization";
7032       break;
7033 
7034     case SK_CAssignment:
7035       OS << "C assignment";
7036       break;
7037 
7038     case SK_StringInit:
7039       OS << "string initialization";
7040       break;
7041 
7042     case SK_ObjCObjectConversion:
7043       OS << "Objective-C object conversion";
7044       break;
7045 
7046     case SK_ArrayInit:
7047       OS << "array initialization";
7048       break;
7049 
7050     case SK_ParenthesizedArrayInit:
7051       OS << "parenthesized array initialization";
7052       break;
7053 
7054     case SK_PassByIndirectCopyRestore:
7055       OS << "pass by indirect copy and restore";
7056       break;
7057 
7058     case SK_PassByIndirectRestore:
7059       OS << "pass by indirect restore";
7060       break;
7061 
7062     case SK_ProduceObjCObject:
7063       OS << "Objective-C object retension";
7064       break;
7065 
7066     case SK_StdInitializerList:
7067       OS << "std::initializer_list from initializer list";
7068       break;
7069 
7070     case SK_OCLSamplerInit:
7071       OS << "OpenCL sampler_t from integer constant";
7072       break;
7073 
7074     case SK_OCLZeroEvent:
7075       OS << "OpenCL event_t from zero";
7076       break;
7077     }
7078 
7079     OS << " [" << S->Type.getAsString() << ']';
7080   }
7081 
7082   OS << '\n';
7083 }
7084 
dump() const7085 void InitializationSequence::dump() const {
7086   dump(llvm::errs());
7087 }
7088 
DiagnoseNarrowingInInitList(Sema & S,const ImplicitConversionSequence & ICS,QualType PreNarrowingType,QualType EntityType,const Expr * PostInit)7089 static void DiagnoseNarrowingInInitList(Sema &S,
7090                                         const ImplicitConversionSequence &ICS,
7091                                         QualType PreNarrowingType,
7092                                         QualType EntityType,
7093                                         const Expr *PostInit) {
7094   const StandardConversionSequence *SCS = nullptr;
7095   switch (ICS.getKind()) {
7096   case ImplicitConversionSequence::StandardConversion:
7097     SCS = &ICS.Standard;
7098     break;
7099   case ImplicitConversionSequence::UserDefinedConversion:
7100     SCS = &ICS.UserDefined.After;
7101     break;
7102   case ImplicitConversionSequence::AmbiguousConversion:
7103   case ImplicitConversionSequence::EllipsisConversion:
7104   case ImplicitConversionSequence::BadConversion:
7105     return;
7106   }
7107 
7108   // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion.
7109   APValue ConstantValue;
7110   QualType ConstantType;
7111   switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue,
7112                                 ConstantType)) {
7113   case NK_Not_Narrowing:
7114     // No narrowing occurred.
7115     return;
7116 
7117   case NK_Type_Narrowing:
7118     // This was a floating-to-integer conversion, which is always considered a
7119     // narrowing conversion even if the value is a constant and can be
7120     // represented exactly as an integer.
7121     S.Diag(PostInit->getLocStart(),
7122            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7123                ? diag::warn_init_list_type_narrowing
7124                : diag::ext_init_list_type_narrowing)
7125       << PostInit->getSourceRange()
7126       << PreNarrowingType.getLocalUnqualifiedType()
7127       << EntityType.getLocalUnqualifiedType();
7128     break;
7129 
7130   case NK_Constant_Narrowing:
7131     // A constant value was narrowed.
7132     S.Diag(PostInit->getLocStart(),
7133            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7134                ? diag::warn_init_list_constant_narrowing
7135                : diag::ext_init_list_constant_narrowing)
7136       << PostInit->getSourceRange()
7137       << ConstantValue.getAsString(S.getASTContext(), ConstantType)
7138       << EntityType.getLocalUnqualifiedType();
7139     break;
7140 
7141   case NK_Variable_Narrowing:
7142     // A variable's value may have been narrowed.
7143     S.Diag(PostInit->getLocStart(),
7144            (S.getLangOpts().MicrosoftExt || !S.getLangOpts().CPlusPlus11)
7145                ? diag::warn_init_list_variable_narrowing
7146                : diag::ext_init_list_variable_narrowing)
7147       << PostInit->getSourceRange()
7148       << PreNarrowingType.getLocalUnqualifiedType()
7149       << EntityType.getLocalUnqualifiedType();
7150     break;
7151   }
7152 
7153   SmallString<128> StaticCast;
7154   llvm::raw_svector_ostream OS(StaticCast);
7155   OS << "static_cast<";
7156   if (const TypedefType *TT = EntityType->getAs<TypedefType>()) {
7157     // It's important to use the typedef's name if there is one so that the
7158     // fixit doesn't break code using types like int64_t.
7159     //
7160     // FIXME: This will break if the typedef requires qualification.  But
7161     // getQualifiedNameAsString() includes non-machine-parsable components.
7162     OS << *TT->getDecl();
7163   } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>())
7164     OS << BT->getName(S.getLangOpts());
7165   else {
7166     // Oops, we didn't find the actual type of the variable.  Don't emit a fixit
7167     // with a broken cast.
7168     return;
7169   }
7170   OS << ">(";
7171   S.Diag(PostInit->getLocStart(), diag::note_init_list_narrowing_silence)
7172       << PostInit->getSourceRange()
7173       << FixItHint::CreateInsertion(PostInit->getLocStart(), OS.str())
7174       << FixItHint::CreateInsertion(
7175              S.getLocForEndOfToken(PostInit->getLocEnd()), ")");
7176 }
7177 
7178 //===----------------------------------------------------------------------===//
7179 // Initialization helper functions
7180 //===----------------------------------------------------------------------===//
7181 bool
CanPerformCopyInitialization(const InitializedEntity & Entity,ExprResult Init)7182 Sema::CanPerformCopyInitialization(const InitializedEntity &Entity,
7183                                    ExprResult Init) {
7184   if (Init.isInvalid())
7185     return false;
7186 
7187   Expr *InitE = Init.get();
7188   assert(InitE && "No initialization expression");
7189 
7190   InitializationKind Kind
7191     = InitializationKind::CreateCopy(InitE->getLocStart(), SourceLocation());
7192   InitializationSequence Seq(*this, Entity, Kind, InitE);
7193   return !Seq.Failed();
7194 }
7195 
7196 ExprResult
PerformCopyInitialization(const InitializedEntity & Entity,SourceLocation EqualLoc,ExprResult Init,bool TopLevelOfInitList,bool AllowExplicit)7197 Sema::PerformCopyInitialization(const InitializedEntity &Entity,
7198                                 SourceLocation EqualLoc,
7199                                 ExprResult Init,
7200                                 bool TopLevelOfInitList,
7201                                 bool AllowExplicit) {
7202   if (Init.isInvalid())
7203     return ExprError();
7204 
7205   Expr *InitE = Init.get();
7206   assert(InitE && "No initialization expression?");
7207 
7208   if (EqualLoc.isInvalid())
7209     EqualLoc = InitE->getLocStart();
7210 
7211   InitializationKind Kind = InitializationKind::CreateCopy(InitE->getLocStart(),
7212                                                            EqualLoc,
7213                                                            AllowExplicit);
7214   InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList);
7215   Init.get();
7216 
7217   ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE);
7218 
7219   return Result;
7220 }
7221