1 //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for declarations.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TypeLocBuilder.h"
16 #include "clang/AST/ASTConsumer.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/ASTLambda.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/CharUnits.h"
21 #include "clang/AST/CommentDiagnostic.h"
22 #include "clang/AST/DeclCXX.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/DeclTemplate.h"
25 #include "clang/AST/EvaluatedExprVisitor.h"
26 #include "clang/AST/ExprCXX.h"
27 #include "clang/AST/StmtCXX.h"
28 #include "clang/Basic/Builtins.h"
29 #include "clang/Basic/PartialDiagnostic.h"
30 #include "clang/Basic/SourceManager.h"
31 #include "clang/Basic/TargetInfo.h"
32 #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34 #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35 #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36 #include "clang/Parse/ParseDiagnostic.h"
37 #include "clang/Sema/CXXFieldCollector.h"
38 #include "clang/Sema/DeclSpec.h"
39 #include "clang/Sema/DelayedDiagnostic.h"
40 #include "clang/Sema/Initialization.h"
41 #include "clang/Sema/Lookup.h"
42 #include "clang/Sema/ParsedTemplate.h"
43 #include "clang/Sema/Scope.h"
44 #include "clang/Sema/ScopeInfo.h"
45 #include "clang/Sema/Template.h"
46 #include "llvm/ADT/SmallString.h"
47 #include "llvm/ADT/Triple.h"
48 #include <algorithm>
49 #include <cstring>
50 #include <functional>
51 using namespace clang;
52 using namespace sema;
53
ConvertDeclToDeclGroup(Decl * Ptr,Decl * OwnedType)54 Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55 if (OwnedType) {
56 Decl *Group[2] = { OwnedType, Ptr };
57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58 }
59
60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61 }
62
63 namespace {
64
65 class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66 public:
TypeNameValidatorCCC(bool AllowInvalid,bool WantClass=false,bool AllowTemplates=false)67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false,
68 bool AllowTemplates=false)
69 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
70 AllowClassTemplates(AllowTemplates) {
71 WantExpressionKeywords = false;
72 WantCXXNamedCasts = false;
73 WantRemainingKeywords = false;
74 }
75
ValidateCandidate(const TypoCorrection & candidate)76 bool ValidateCandidate(const TypoCorrection &candidate) override {
77 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
78 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
79 bool AllowedTemplate = AllowClassTemplates && isa<ClassTemplateDecl>(ND);
80 return (IsType || AllowedTemplate) &&
81 (AllowInvalidDecl || !ND->isInvalidDecl());
82 }
83 return !WantClassName && candidate.isKeyword();
84 }
85
86 private:
87 bool AllowInvalidDecl;
88 bool WantClassName;
89 bool AllowClassTemplates;
90 };
91
92 }
93
94 /// \brief Determine whether the token kind starts a simple-type-specifier.
isSimpleTypeSpecifier(tok::TokenKind Kind) const95 bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
96 switch (Kind) {
97 // FIXME: Take into account the current language when deciding whether a
98 // token kind is a valid type specifier
99 case tok::kw_short:
100 case tok::kw_long:
101 case tok::kw___int64:
102 case tok::kw___int128:
103 case tok::kw_signed:
104 case tok::kw_unsigned:
105 case tok::kw_void:
106 case tok::kw_char:
107 case tok::kw_int:
108 case tok::kw_half:
109 case tok::kw_float:
110 case tok::kw_double:
111 case tok::kw_wchar_t:
112 case tok::kw_bool:
113 case tok::kw___underlying_type:
114 return true;
115
116 case tok::annot_typename:
117 case tok::kw_char16_t:
118 case tok::kw_char32_t:
119 case tok::kw_typeof:
120 case tok::annot_decltype:
121 case tok::kw_decltype:
122 return getLangOpts().CPlusPlus;
123
124 default:
125 break;
126 }
127
128 return false;
129 }
130
recoverFromTypeInKnownDependentBase(Sema & S,const IdentifierInfo & II,SourceLocation NameLoc)131 static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
132 const IdentifierInfo &II,
133 SourceLocation NameLoc) {
134 // Find the first parent class template context, if any.
135 // FIXME: Perform the lookup in all enclosing class templates.
136 const CXXRecordDecl *RD = nullptr;
137 for (DeclContext *DC = S.CurContext; DC; DC = DC->getParent()) {
138 RD = dyn_cast<CXXRecordDecl>(DC);
139 if (RD && RD->getDescribedClassTemplate())
140 break;
141 }
142 if (!RD)
143 return ParsedType();
144
145 // Look for type decls in dependent base classes that have known primary
146 // templates.
147 bool FoundTypeDecl = false;
148 for (const auto &Base : RD->bases()) {
149 auto *TST = Base.getType()->getAs<TemplateSpecializationType>();
150 if (!TST || !TST->isDependentType())
151 continue;
152 auto *TD = TST->getTemplateName().getAsTemplateDecl();
153 if (!TD)
154 continue;
155 auto *BasePrimaryTemplate = cast<CXXRecordDecl>(TD->getTemplatedDecl());
156 // FIXME: Allow lookup into non-dependent bases of dependent bases, possibly
157 // by calling or integrating with the main LookupQualifiedName mechanism.
158 for (NamedDecl *ND : BasePrimaryTemplate->lookup(&II)) {
159 if (FoundTypeDecl)
160 return ParsedType();
161 FoundTypeDecl = isa<TypeDecl>(ND);
162 if (!FoundTypeDecl)
163 return ParsedType();
164 }
165 }
166 if (!FoundTypeDecl)
167 return ParsedType();
168
169 // We found some types in dependent base classes. Recover as if the user
170 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
171 // lookup during template instantiation.
172 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
173
174 ASTContext &Context = S.Context;
175 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
176 cast<Type>(Context.getRecordType(RD)));
177 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
178
179 CXXScopeSpec SS;
180 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
181
182 TypeLocBuilder Builder;
183 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
184 DepTL.setNameLoc(NameLoc);
185 DepTL.setElaboratedKeywordLoc(SourceLocation());
186 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
187 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
188 }
189
190 /// \brief If the identifier refers to a type name within this scope,
191 /// return the declaration of that type.
192 ///
193 /// This routine performs ordinary name lookup of the identifier II
194 /// within the given scope, with optional C++ scope specifier SS, to
195 /// determine whether the name refers to a type. If so, returns an
196 /// opaque pointer (actually a QualType) corresponding to that
197 /// type. Otherwise, returns NULL.
getTypeName(const IdentifierInfo & II,SourceLocation NameLoc,Scope * S,CXXScopeSpec * SS,bool isClassName,bool HasTrailingDot,ParsedType ObjectTypePtr,bool IsCtorOrDtorName,bool WantNontrivialTypeSourceInfo,IdentifierInfo ** CorrectedII)198 ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
199 Scope *S, CXXScopeSpec *SS,
200 bool isClassName, bool HasTrailingDot,
201 ParsedType ObjectTypePtr,
202 bool IsCtorOrDtorName,
203 bool WantNontrivialTypeSourceInfo,
204 IdentifierInfo **CorrectedII) {
205 // Determine where we will perform name lookup.
206 DeclContext *LookupCtx = nullptr;
207 if (ObjectTypePtr) {
208 QualType ObjectType = ObjectTypePtr.get();
209 if (ObjectType->isRecordType())
210 LookupCtx = computeDeclContext(ObjectType);
211 } else if (SS && SS->isNotEmpty()) {
212 LookupCtx = computeDeclContext(*SS, false);
213
214 if (!LookupCtx) {
215 if (isDependentScopeSpecifier(*SS)) {
216 // C++ [temp.res]p3:
217 // A qualified-id that refers to a type and in which the
218 // nested-name-specifier depends on a template-parameter (14.6.2)
219 // shall be prefixed by the keyword typename to indicate that the
220 // qualified-id denotes a type, forming an
221 // elaborated-type-specifier (7.1.5.3).
222 //
223 // We therefore do not perform any name lookup if the result would
224 // refer to a member of an unknown specialization.
225 if (!isClassName && !IsCtorOrDtorName)
226 return ParsedType();
227
228 // We know from the grammar that this name refers to a type,
229 // so build a dependent node to describe the type.
230 if (WantNontrivialTypeSourceInfo)
231 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
232
233 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
234 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
235 II, NameLoc);
236 return ParsedType::make(T);
237 }
238
239 return ParsedType();
240 }
241
242 if (!LookupCtx->isDependentContext() &&
243 RequireCompleteDeclContext(*SS, LookupCtx))
244 return ParsedType();
245 }
246
247 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
248 // lookup for class-names.
249 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
250 LookupOrdinaryName;
251 LookupResult Result(*this, &II, NameLoc, Kind);
252 if (LookupCtx) {
253 // Perform "qualified" name lookup into the declaration context we
254 // computed, which is either the type of the base of a member access
255 // expression or the declaration context associated with a prior
256 // nested-name-specifier.
257 LookupQualifiedName(Result, LookupCtx);
258
259 if (ObjectTypePtr && Result.empty()) {
260 // C++ [basic.lookup.classref]p3:
261 // If the unqualified-id is ~type-name, the type-name is looked up
262 // in the context of the entire postfix-expression. If the type T of
263 // the object expression is of a class type C, the type-name is also
264 // looked up in the scope of class C. At least one of the lookups shall
265 // find a name that refers to (possibly cv-qualified) T.
266 LookupName(Result, S);
267 }
268 } else {
269 // Perform unqualified name lookup.
270 LookupName(Result, S);
271
272 // For unqualified lookup in a class template in MSVC mode, look into
273 // dependent base classes where the primary class template is known.
274 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
275 if (ParsedType TypeInBase =
276 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
277 return TypeInBase;
278 }
279 }
280
281 NamedDecl *IIDecl = nullptr;
282 switch (Result.getResultKind()) {
283 case LookupResult::NotFound:
284 case LookupResult::NotFoundInCurrentInstantiation:
285 if (CorrectedII) {
286 TypeNameValidatorCCC Validator(true, isClassName);
287 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
288 Kind, S, SS, Validator,
289 CTK_ErrorRecovery);
290 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
291 TemplateTy Template;
292 bool MemberOfUnknownSpecialization;
293 UnqualifiedId TemplateName;
294 TemplateName.setIdentifier(NewII, NameLoc);
295 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
296 CXXScopeSpec NewSS, *NewSSPtr = SS;
297 if (SS && NNS) {
298 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
299 NewSSPtr = &NewSS;
300 }
301 if (Correction && (NNS || NewII != &II) &&
302 // Ignore a correction to a template type as the to-be-corrected
303 // identifier is not a template (typo correction for template names
304 // is handled elsewhere).
305 !(getLangOpts().CPlusPlus && NewSSPtr &&
306 isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
307 false, Template, MemberOfUnknownSpecialization))) {
308 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
309 isClassName, HasTrailingDot, ObjectTypePtr,
310 IsCtorOrDtorName,
311 WantNontrivialTypeSourceInfo);
312 if (Ty) {
313 diagnoseTypo(Correction,
314 PDiag(diag::err_unknown_type_or_class_name_suggest)
315 << Result.getLookupName() << isClassName);
316 if (SS && NNS)
317 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
318 *CorrectedII = NewII;
319 return Ty;
320 }
321 }
322 }
323 // If typo correction failed or was not performed, fall through
324 case LookupResult::FoundOverloaded:
325 case LookupResult::FoundUnresolvedValue:
326 Result.suppressDiagnostics();
327 return ParsedType();
328
329 case LookupResult::Ambiguous:
330 // Recover from type-hiding ambiguities by hiding the type. We'll
331 // do the lookup again when looking for an object, and we can
332 // diagnose the error then. If we don't do this, then the error
333 // about hiding the type will be immediately followed by an error
334 // that only makes sense if the identifier was treated like a type.
335 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
336 Result.suppressDiagnostics();
337 return ParsedType();
338 }
339
340 // Look to see if we have a type anywhere in the list of results.
341 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
342 Res != ResEnd; ++Res) {
343 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
344 if (!IIDecl ||
345 (*Res)->getLocation().getRawEncoding() <
346 IIDecl->getLocation().getRawEncoding())
347 IIDecl = *Res;
348 }
349 }
350
351 if (!IIDecl) {
352 // None of the entities we found is a type, so there is no way
353 // to even assume that the result is a type. In this case, don't
354 // complain about the ambiguity. The parser will either try to
355 // perform this lookup again (e.g., as an object name), which
356 // will produce the ambiguity, or will complain that it expected
357 // a type name.
358 Result.suppressDiagnostics();
359 return ParsedType();
360 }
361
362 // We found a type within the ambiguous lookup; diagnose the
363 // ambiguity and then return that type. This might be the right
364 // answer, or it might not be, but it suppresses any attempt to
365 // perform the name lookup again.
366 break;
367
368 case LookupResult::Found:
369 IIDecl = Result.getFoundDecl();
370 break;
371 }
372
373 assert(IIDecl && "Didn't find decl");
374
375 QualType T;
376 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
377 DiagnoseUseOfDecl(IIDecl, NameLoc);
378
379 T = Context.getTypeDeclType(TD);
380
381 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
382 // constructor or destructor name (in such a case, the scope specifier
383 // will be attached to the enclosing Expr or Decl node).
384 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
385 if (WantNontrivialTypeSourceInfo) {
386 // Construct a type with type-source information.
387 TypeLocBuilder Builder;
388 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
389
390 T = getElaboratedType(ETK_None, *SS, T);
391 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
392 ElabTL.setElaboratedKeywordLoc(SourceLocation());
393 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
394 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
395 } else {
396 T = getElaboratedType(ETK_None, *SS, T);
397 }
398 }
399 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
400 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
401 if (!HasTrailingDot)
402 T = Context.getObjCInterfaceType(IDecl);
403 }
404
405 if (T.isNull()) {
406 // If it's not plausibly a type, suppress diagnostics.
407 Result.suppressDiagnostics();
408 return ParsedType();
409 }
410 return ParsedType::make(T);
411 }
412
413 // Builds a fake NNS for the given decl context.
414 static NestedNameSpecifier *
synthesizeCurrentNestedNameSpecifier(ASTContext & Context,DeclContext * DC)415 synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
416 for (;; DC = DC->getLookupParent()) {
417 DC = DC->getPrimaryContext();
418 auto *ND = dyn_cast<NamespaceDecl>(DC);
419 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
420 return NestedNameSpecifier::Create(Context, nullptr, ND);
421 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
422 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
423 RD->getTypeForDecl());
424 else if (isa<TranslationUnitDecl>(DC))
425 return NestedNameSpecifier::GlobalSpecifier(Context);
426 }
427 llvm_unreachable("something isn't in TU scope?");
428 }
429
ActOnDelayedDefaultTemplateArg(const IdentifierInfo & II,SourceLocation NameLoc)430 ParsedType Sema::ActOnDelayedDefaultTemplateArg(const IdentifierInfo &II,
431 SourceLocation NameLoc) {
432 // Accepting an undeclared identifier as a default argument for a template
433 // type parameter is a Microsoft extension.
434 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
435
436 // Build a fake DependentNameType that will perform lookup into CurContext at
437 // instantiation time. The name specifier isn't dependent, so template
438 // instantiation won't transform it. It will retry the lookup, however.
439 NestedNameSpecifier *NNS =
440 synthesizeCurrentNestedNameSpecifier(Context, CurContext);
441 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
442
443 // Build type location information. We synthesized the qualifier, so we have
444 // to build a fake NestedNameSpecifierLoc.
445 NestedNameSpecifierLocBuilder NNSLocBuilder;
446 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
447 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
448
449 TypeLocBuilder Builder;
450 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
451 DepTL.setNameLoc(NameLoc);
452 DepTL.setElaboratedKeywordLoc(SourceLocation());
453 DepTL.setQualifierLoc(QualifierLoc);
454 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
455 }
456
457 /// isTagName() - This method is called *for error recovery purposes only*
458 /// to determine if the specified name is a valid tag name ("struct foo"). If
459 /// so, this returns the TST for the tag corresponding to it (TST_enum,
460 /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
461 /// cases in C where the user forgot to specify the tag.
isTagName(IdentifierInfo & II,Scope * S)462 DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
463 // Do a tag name lookup in this scope.
464 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
465 LookupName(R, S, false);
466 R.suppressDiagnostics();
467 if (R.getResultKind() == LookupResult::Found)
468 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
469 switch (TD->getTagKind()) {
470 case TTK_Struct: return DeclSpec::TST_struct;
471 case TTK_Interface: return DeclSpec::TST_interface;
472 case TTK_Union: return DeclSpec::TST_union;
473 case TTK_Class: return DeclSpec::TST_class;
474 case TTK_Enum: return DeclSpec::TST_enum;
475 }
476 }
477
478 return DeclSpec::TST_unspecified;
479 }
480
481 /// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
482 /// if a CXXScopeSpec's type is equal to the type of one of the base classes
483 /// then downgrade the missing typename error to a warning.
484 /// This is needed for MSVC compatibility; Example:
485 /// @code
486 /// template<class T> class A {
487 /// public:
488 /// typedef int TYPE;
489 /// };
490 /// template<class T> class B : public A<T> {
491 /// public:
492 /// A<T>::TYPE a; // no typename required because A<T> is a base class.
493 /// };
494 /// @endcode
isMicrosoftMissingTypename(const CXXScopeSpec * SS,Scope * S)495 bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
496 if (CurContext->isRecord()) {
497 const Type *Ty = SS->getScopeRep()->getAsType();
498
499 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
500 for (const auto &Base : RD->bases())
501 if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
502 return true;
503 return S->isFunctionPrototypeScope();
504 }
505 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
506 }
507
DiagnoseUnknownTypeName(IdentifierInfo * & II,SourceLocation IILoc,Scope * S,CXXScopeSpec * SS,ParsedType & SuggestedType,bool AllowClassTemplates)508 void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
509 SourceLocation IILoc,
510 Scope *S,
511 CXXScopeSpec *SS,
512 ParsedType &SuggestedType,
513 bool AllowClassTemplates) {
514 // We don't have anything to suggest (yet).
515 SuggestedType = ParsedType();
516
517 // There may have been a typo in the name of the type. Look up typo
518 // results, in case we have something that we can suggest.
519 TypeNameValidatorCCC Validator(false, false, AllowClassTemplates);
520 if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
521 LookupOrdinaryName, S, SS,
522 Validator, CTK_ErrorRecovery)) {
523 if (Corrected.isKeyword()) {
524 // We corrected to a keyword.
525 diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
526 II = Corrected.getCorrectionAsIdentifierInfo();
527 } else {
528 // We found a similarly-named type or interface; suggest that.
529 if (!SS || !SS->isSet()) {
530 diagnoseTypo(Corrected,
531 PDiag(diag::err_unknown_typename_suggest) << II);
532 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
533 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
534 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
535 II->getName().equals(CorrectedStr);
536 diagnoseTypo(Corrected,
537 PDiag(diag::err_unknown_nested_typename_suggest)
538 << II << DC << DroppedSpecifier << SS->getRange());
539 } else {
540 llvm_unreachable("could not have corrected a typo here");
541 }
542
543 CXXScopeSpec tmpSS;
544 if (Corrected.getCorrectionSpecifier())
545 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
546 SourceRange(IILoc));
547 SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
548 IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
549 false, ParsedType(),
550 /*IsCtorOrDtorName=*/false,
551 /*NonTrivialTypeSourceInfo=*/true);
552 }
553 return;
554 }
555
556 if (getLangOpts().CPlusPlus) {
557 // See if II is a class template that the user forgot to pass arguments to.
558 UnqualifiedId Name;
559 Name.setIdentifier(II, IILoc);
560 CXXScopeSpec EmptySS;
561 TemplateTy TemplateResult;
562 bool MemberOfUnknownSpecialization;
563 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
564 Name, ParsedType(), true, TemplateResult,
565 MemberOfUnknownSpecialization) == TNK_Type_template) {
566 TemplateName TplName = TemplateResult.get();
567 Diag(IILoc, diag::err_template_missing_args) << TplName;
568 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
569 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
570 << TplDecl->getTemplateParameters()->getSourceRange();
571 }
572 return;
573 }
574 }
575
576 // FIXME: Should we move the logic that tries to recover from a missing tag
577 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
578
579 if (!SS || (!SS->isSet() && !SS->isInvalid()))
580 Diag(IILoc, diag::err_unknown_typename) << II;
581 else if (DeclContext *DC = computeDeclContext(*SS, false))
582 Diag(IILoc, diag::err_typename_nested_not_found)
583 << II << DC << SS->getRange();
584 else if (isDependentScopeSpecifier(*SS)) {
585 unsigned DiagID = diag::err_typename_missing;
586 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
587 DiagID = diag::ext_typename_missing;
588
589 Diag(SS->getRange().getBegin(), DiagID)
590 << SS->getScopeRep() << II->getName()
591 << SourceRange(SS->getRange().getBegin(), IILoc)
592 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
593 SuggestedType = ActOnTypenameType(S, SourceLocation(),
594 *SS, *II, IILoc).get();
595 } else {
596 assert(SS && SS->isInvalid() &&
597 "Invalid scope specifier has already been diagnosed");
598 }
599 }
600
601 /// \brief Determine whether the given result set contains either a type name
602 /// or
isResultTypeOrTemplate(LookupResult & R,const Token & NextToken)603 static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
604 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
605 NextToken.is(tok::less);
606
607 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
608 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
609 return true;
610
611 if (CheckTemplate && isa<TemplateDecl>(*I))
612 return true;
613 }
614
615 return false;
616 }
617
isTagTypeWithMissingTag(Sema & SemaRef,LookupResult & Result,Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc)618 static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
619 Scope *S, CXXScopeSpec &SS,
620 IdentifierInfo *&Name,
621 SourceLocation NameLoc) {
622 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
623 SemaRef.LookupParsedName(R, S, &SS);
624 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
625 StringRef FixItTagName;
626 switch (Tag->getTagKind()) {
627 case TTK_Class:
628 FixItTagName = "class ";
629 break;
630
631 case TTK_Enum:
632 FixItTagName = "enum ";
633 break;
634
635 case TTK_Struct:
636 FixItTagName = "struct ";
637 break;
638
639 case TTK_Interface:
640 FixItTagName = "__interface ";
641 break;
642
643 case TTK_Union:
644 FixItTagName = "union ";
645 break;
646 }
647
648 StringRef TagName = FixItTagName.drop_back();
649 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
650 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
651 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
652
653 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
654 I != IEnd; ++I)
655 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
656 << Name << TagName;
657
658 // Replace lookup results with just the tag decl.
659 Result.clear(Sema::LookupTagName);
660 SemaRef.LookupParsedName(Result, S, &SS);
661 return true;
662 }
663
664 return false;
665 }
666
667 /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
buildNestedType(Sema & S,CXXScopeSpec & SS,QualType T,SourceLocation NameLoc)668 static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
669 QualType T, SourceLocation NameLoc) {
670 ASTContext &Context = S.Context;
671
672 TypeLocBuilder Builder;
673 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
674
675 T = S.getElaboratedType(ETK_None, SS, T);
676 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
677 ElabTL.setElaboratedKeywordLoc(SourceLocation());
678 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
679 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
680 }
681
ClassifyName(Scope * S,CXXScopeSpec & SS,IdentifierInfo * & Name,SourceLocation NameLoc,const Token & NextToken,bool IsAddressOfOperand,CorrectionCandidateCallback * CCC)682 Sema::NameClassification Sema::ClassifyName(Scope *S,
683 CXXScopeSpec &SS,
684 IdentifierInfo *&Name,
685 SourceLocation NameLoc,
686 const Token &NextToken,
687 bool IsAddressOfOperand,
688 CorrectionCandidateCallback *CCC) {
689 DeclarationNameInfo NameInfo(Name, NameLoc);
690 ObjCMethodDecl *CurMethod = getCurMethodDecl();
691
692 if (NextToken.is(tok::coloncolon)) {
693 BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
694 QualType(), false, SS, nullptr, false);
695 }
696
697 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
698 LookupParsedName(Result, S, &SS, !CurMethod);
699
700 // For unqualified lookup in a class template in MSVC mode, look into
701 // dependent base classes where the primary class template is known.
702 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
703 if (ParsedType TypeInBase =
704 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
705 return TypeInBase;
706 }
707
708 // Perform lookup for Objective-C instance variables (including automatically
709 // synthesized instance variables), if we're in an Objective-C method.
710 // FIXME: This lookup really, really needs to be folded in to the normal
711 // unqualified lookup mechanism.
712 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
713 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
714 if (E.get() || E.isInvalid())
715 return E;
716 }
717
718 bool SecondTry = false;
719 bool IsFilteredTemplateName = false;
720
721 Corrected:
722 switch (Result.getResultKind()) {
723 case LookupResult::NotFound:
724 // If an unqualified-id is followed by a '(', then we have a function
725 // call.
726 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
727 // In C++, this is an ADL-only call.
728 // FIXME: Reference?
729 if (getLangOpts().CPlusPlus)
730 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
731
732 // C90 6.3.2.2:
733 // If the expression that precedes the parenthesized argument list in a
734 // function call consists solely of an identifier, and if no
735 // declaration is visible for this identifier, the identifier is
736 // implicitly declared exactly as if, in the innermost block containing
737 // the function call, the declaration
738 //
739 // extern int identifier ();
740 //
741 // appeared.
742 //
743 // We also allow this in C99 as an extension.
744 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
745 Result.addDecl(D);
746 Result.resolveKind();
747 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
748 }
749 }
750
751 // In C, we first see whether there is a tag type by the same name, in
752 // which case it's likely that the user just forget to write "enum",
753 // "struct", or "union".
754 if (!getLangOpts().CPlusPlus && !SecondTry &&
755 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
756 break;
757 }
758
759 // Perform typo correction to determine if there is another name that is
760 // close to this name.
761 if (!SecondTry && CCC) {
762 SecondTry = true;
763 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
764 Result.getLookupKind(), S,
765 &SS, *CCC,
766 CTK_ErrorRecovery)) {
767 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
768 unsigned QualifiedDiag = diag::err_no_member_suggest;
769
770 NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
771 NamedDecl *UnderlyingFirstDecl
772 = FirstDecl? FirstDecl->getUnderlyingDecl() : nullptr;
773 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
774 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
775 UnqualifiedDiag = diag::err_no_template_suggest;
776 QualifiedDiag = diag::err_no_member_template_suggest;
777 } else if (UnderlyingFirstDecl &&
778 (isa<TypeDecl>(UnderlyingFirstDecl) ||
779 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
780 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
781 UnqualifiedDiag = diag::err_unknown_typename_suggest;
782 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
783 }
784
785 if (SS.isEmpty()) {
786 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
787 } else {// FIXME: is this even reachable? Test it.
788 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
789 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
790 Name->getName().equals(CorrectedStr);
791 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
792 << Name << computeDeclContext(SS, false)
793 << DroppedSpecifier << SS.getRange());
794 }
795
796 // Update the name, so that the caller has the new name.
797 Name = Corrected.getCorrectionAsIdentifierInfo();
798
799 // Typo correction corrected to a keyword.
800 if (Corrected.isKeyword())
801 return Name;
802
803 // Also update the LookupResult...
804 // FIXME: This should probably go away at some point
805 Result.clear();
806 Result.setLookupName(Corrected.getCorrection());
807 if (FirstDecl)
808 Result.addDecl(FirstDecl);
809
810 // If we found an Objective-C instance variable, let
811 // LookupInObjCMethod build the appropriate expression to
812 // reference the ivar.
813 // FIXME: This is a gross hack.
814 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
815 Result.clear();
816 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
817 return E;
818 }
819
820 goto Corrected;
821 }
822 }
823
824 // We failed to correct; just fall through and let the parser deal with it.
825 Result.suppressDiagnostics();
826 return NameClassification::Unknown();
827
828 case LookupResult::NotFoundInCurrentInstantiation: {
829 // We performed name lookup into the current instantiation, and there were
830 // dependent bases, so we treat this result the same way as any other
831 // dependent nested-name-specifier.
832
833 // C++ [temp.res]p2:
834 // A name used in a template declaration or definition and that is
835 // dependent on a template-parameter is assumed not to name a type
836 // unless the applicable name lookup finds a type name or the name is
837 // qualified by the keyword typename.
838 //
839 // FIXME: If the next token is '<', we might want to ask the parser to
840 // perform some heroics to see if we actually have a
841 // template-argument-list, which would indicate a missing 'template'
842 // keyword here.
843 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
844 NameInfo, IsAddressOfOperand,
845 /*TemplateArgs=*/nullptr);
846 }
847
848 case LookupResult::Found:
849 case LookupResult::FoundOverloaded:
850 case LookupResult::FoundUnresolvedValue:
851 break;
852
853 case LookupResult::Ambiguous:
854 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
855 hasAnyAcceptableTemplateNames(Result)) {
856 // C++ [temp.local]p3:
857 // A lookup that finds an injected-class-name (10.2) can result in an
858 // ambiguity in certain cases (for example, if it is found in more than
859 // one base class). If all of the injected-class-names that are found
860 // refer to specializations of the same class template, and if the name
861 // is followed by a template-argument-list, the reference refers to the
862 // class template itself and not a specialization thereof, and is not
863 // ambiguous.
864 //
865 // This filtering can make an ambiguous result into an unambiguous one,
866 // so try again after filtering out template names.
867 FilterAcceptableTemplateNames(Result);
868 if (!Result.isAmbiguous()) {
869 IsFilteredTemplateName = true;
870 break;
871 }
872 }
873
874 // Diagnose the ambiguity and return an error.
875 return NameClassification::Error();
876 }
877
878 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
879 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
880 // C++ [temp.names]p3:
881 // After name lookup (3.4) finds that a name is a template-name or that
882 // an operator-function-id or a literal- operator-id refers to a set of
883 // overloaded functions any member of which is a function template if
884 // this is followed by a <, the < is always taken as the delimiter of a
885 // template-argument-list and never as the less-than operator.
886 if (!IsFilteredTemplateName)
887 FilterAcceptableTemplateNames(Result);
888
889 if (!Result.empty()) {
890 bool IsFunctionTemplate;
891 bool IsVarTemplate;
892 TemplateName Template;
893 if (Result.end() - Result.begin() > 1) {
894 IsFunctionTemplate = true;
895 Template = Context.getOverloadedTemplateName(Result.begin(),
896 Result.end());
897 } else {
898 TemplateDecl *TD
899 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
900 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
901 IsVarTemplate = isa<VarTemplateDecl>(TD);
902
903 if (SS.isSet() && !SS.isInvalid())
904 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
905 /*TemplateKeyword=*/false,
906 TD);
907 else
908 Template = TemplateName(TD);
909 }
910
911 if (IsFunctionTemplate) {
912 // Function templates always go through overload resolution, at which
913 // point we'll perform the various checks (e.g., accessibility) we need
914 // to based on which function we selected.
915 Result.suppressDiagnostics();
916
917 return NameClassification::FunctionTemplate(Template);
918 }
919
920 return IsVarTemplate ? NameClassification::VarTemplate(Template)
921 : NameClassification::TypeTemplate(Template);
922 }
923 }
924
925 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
926 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
927 DiagnoseUseOfDecl(Type, NameLoc);
928 QualType T = Context.getTypeDeclType(Type);
929 if (SS.isNotEmpty())
930 return buildNestedType(*this, SS, T, NameLoc);
931 return ParsedType::make(T);
932 }
933
934 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
935 if (!Class) {
936 // FIXME: It's unfortunate that we don't have a Type node for handling this.
937 if (ObjCCompatibleAliasDecl *Alias =
938 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
939 Class = Alias->getClassInterface();
940 }
941
942 if (Class) {
943 DiagnoseUseOfDecl(Class, NameLoc);
944
945 if (NextToken.is(tok::period)) {
946 // Interface. <something> is parsed as a property reference expression.
947 // Just return "unknown" as a fall-through for now.
948 Result.suppressDiagnostics();
949 return NameClassification::Unknown();
950 }
951
952 QualType T = Context.getObjCInterfaceType(Class);
953 return ParsedType::make(T);
954 }
955
956 // We can have a type template here if we're classifying a template argument.
957 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
958 return NameClassification::TypeTemplate(
959 TemplateName(cast<TemplateDecl>(FirstDecl)));
960
961 // Check for a tag type hidden by a non-type decl in a few cases where it
962 // seems likely a type is wanted instead of the non-type that was found.
963 bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
964 if ((NextToken.is(tok::identifier) ||
965 (NextIsOp &&
966 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
967 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
968 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
969 DiagnoseUseOfDecl(Type, NameLoc);
970 QualType T = Context.getTypeDeclType(Type);
971 if (SS.isNotEmpty())
972 return buildNestedType(*this, SS, T, NameLoc);
973 return ParsedType::make(T);
974 }
975
976 if (FirstDecl->isCXXClassMember())
977 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
978 nullptr);
979
980 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
981 return BuildDeclarationNameExpr(SS, Result, ADL);
982 }
983
984 // Determines the context to return to after temporarily entering a
985 // context. This depends in an unnecessarily complicated way on the
986 // exact ordering of callbacks from the parser.
getContainingDC(DeclContext * DC)987 DeclContext *Sema::getContainingDC(DeclContext *DC) {
988
989 // Functions defined inline within classes aren't parsed until we've
990 // finished parsing the top-level class, so the top-level class is
991 // the context we'll need to return to.
992 // A Lambda call operator whose parent is a class must not be treated
993 // as an inline member function. A Lambda can be used legally
994 // either as an in-class member initializer or a default argument. These
995 // are parsed once the class has been marked complete and so the containing
996 // context would be the nested class (when the lambda is defined in one);
997 // If the class is not complete, then the lambda is being used in an
998 // ill-formed fashion (such as to specify the width of a bit-field, or
999 // in an array-bound) - in which case we still want to return the
1000 // lexically containing DC (which could be a nested class).
1001 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1002 DC = DC->getLexicalParent();
1003
1004 // A function not defined within a class will always return to its
1005 // lexical context.
1006 if (!isa<CXXRecordDecl>(DC))
1007 return DC;
1008
1009 // A C++ inline method/friend is parsed *after* the topmost class
1010 // it was declared in is fully parsed ("complete"); the topmost
1011 // class is the context we need to return to.
1012 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1013 DC = RD;
1014
1015 // Return the declaration context of the topmost class the inline method is
1016 // declared in.
1017 return DC;
1018 }
1019
1020 return DC->getLexicalParent();
1021 }
1022
PushDeclContext(Scope * S,DeclContext * DC)1023 void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1024 assert(getContainingDC(DC) == CurContext &&
1025 "The next DeclContext should be lexically contained in the current one.");
1026 CurContext = DC;
1027 S->setEntity(DC);
1028 }
1029
PopDeclContext()1030 void Sema::PopDeclContext() {
1031 assert(CurContext && "DeclContext imbalance!");
1032
1033 CurContext = getContainingDC(CurContext);
1034 assert(CurContext && "Popped translation unit!");
1035 }
1036
1037 /// EnterDeclaratorContext - Used when we must lookup names in the context
1038 /// of a declarator's nested name specifier.
1039 ///
EnterDeclaratorContext(Scope * S,DeclContext * DC)1040 void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1041 // C++0x [basic.lookup.unqual]p13:
1042 // A name used in the definition of a static data member of class
1043 // X (after the qualified-id of the static member) is looked up as
1044 // if the name was used in a member function of X.
1045 // C++0x [basic.lookup.unqual]p14:
1046 // If a variable member of a namespace is defined outside of the
1047 // scope of its namespace then any name used in the definition of
1048 // the variable member (after the declarator-id) is looked up as
1049 // if the definition of the variable member occurred in its
1050 // namespace.
1051 // Both of these imply that we should push a scope whose context
1052 // is the semantic context of the declaration. We can't use
1053 // PushDeclContext here because that context is not necessarily
1054 // lexically contained in the current context. Fortunately,
1055 // the containing scope should have the appropriate information.
1056
1057 assert(!S->getEntity() && "scope already has entity");
1058
1059 #ifndef NDEBUG
1060 Scope *Ancestor = S->getParent();
1061 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1062 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
1063 #endif
1064
1065 CurContext = DC;
1066 S->setEntity(DC);
1067 }
1068
ExitDeclaratorContext(Scope * S)1069 void Sema::ExitDeclaratorContext(Scope *S) {
1070 assert(S->getEntity() == CurContext && "Context imbalance!");
1071
1072 // Switch back to the lexical context. The safety of this is
1073 // enforced by an assert in EnterDeclaratorContext.
1074 Scope *Ancestor = S->getParent();
1075 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1076 CurContext = Ancestor->getEntity();
1077
1078 // We don't need to do anything with the scope, which is going to
1079 // disappear.
1080 }
1081
1082
ActOnReenterFunctionContext(Scope * S,Decl * D)1083 void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1084 // We assume that the caller has already called
1085 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1086 FunctionDecl *FD = D->getAsFunction();
1087 if (!FD)
1088 return;
1089
1090 // Same implementation as PushDeclContext, but enters the context
1091 // from the lexical parent, rather than the top-level class.
1092 assert(CurContext == FD->getLexicalParent() &&
1093 "The next DeclContext should be lexically contained in the current one.");
1094 CurContext = FD;
1095 S->setEntity(CurContext);
1096
1097 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1098 ParmVarDecl *Param = FD->getParamDecl(P);
1099 // If the parameter has an identifier, then add it to the scope
1100 if (Param->getIdentifier()) {
1101 S->AddDecl(Param);
1102 IdResolver.AddDecl(Param);
1103 }
1104 }
1105 }
1106
1107
ActOnExitFunctionContext()1108 void Sema::ActOnExitFunctionContext() {
1109 // Same implementation as PopDeclContext, but returns to the lexical parent,
1110 // rather than the top-level class.
1111 assert(CurContext && "DeclContext imbalance!");
1112 CurContext = CurContext->getLexicalParent();
1113 assert(CurContext && "Popped translation unit!");
1114 }
1115
1116
1117 /// \brief Determine whether we allow overloading of the function
1118 /// PrevDecl with another declaration.
1119 ///
1120 /// This routine determines whether overloading is possible, not
1121 /// whether some new function is actually an overload. It will return
1122 /// true in C++ (where we can always provide overloads) or, as an
1123 /// extension, in C when the previous function is already an
1124 /// overloaded function declaration or has the "overloadable"
1125 /// attribute.
AllowOverloadingOfFunction(LookupResult & Previous,ASTContext & Context)1126 static bool AllowOverloadingOfFunction(LookupResult &Previous,
1127 ASTContext &Context) {
1128 if (Context.getLangOpts().CPlusPlus)
1129 return true;
1130
1131 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1132 return true;
1133
1134 return (Previous.getResultKind() == LookupResult::Found
1135 && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1136 }
1137
1138 /// Add this decl to the scope shadowed decl chains.
PushOnScopeChains(NamedDecl * D,Scope * S,bool AddToContext)1139 void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1140 // Move up the scope chain until we find the nearest enclosing
1141 // non-transparent context. The declaration will be introduced into this
1142 // scope.
1143 while (S->getEntity() && S->getEntity()->isTransparentContext())
1144 S = S->getParent();
1145
1146 // Add scoped declarations into their context, so that they can be
1147 // found later. Declarations without a context won't be inserted
1148 // into any context.
1149 if (AddToContext)
1150 CurContext->addDecl(D);
1151
1152 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1153 // are function-local declarations.
1154 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1155 !D->getDeclContext()->getRedeclContext()->Equals(
1156 D->getLexicalDeclContext()->getRedeclContext()) &&
1157 !D->getLexicalDeclContext()->isFunctionOrMethod())
1158 return;
1159
1160 // Template instantiations should also not be pushed into scope.
1161 if (isa<FunctionDecl>(D) &&
1162 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1163 return;
1164
1165 // If this replaces anything in the current scope,
1166 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1167 IEnd = IdResolver.end();
1168 for (; I != IEnd; ++I) {
1169 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1170 S->RemoveDecl(*I);
1171 IdResolver.RemoveDecl(*I);
1172
1173 // Should only need to replace one decl.
1174 break;
1175 }
1176 }
1177
1178 S->AddDecl(D);
1179
1180 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1181 // Implicitly-generated labels may end up getting generated in an order that
1182 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1183 // the label at the appropriate place in the identifier chain.
1184 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1185 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1186 if (IDC == CurContext) {
1187 if (!S->isDeclScope(*I))
1188 continue;
1189 } else if (IDC->Encloses(CurContext))
1190 break;
1191 }
1192
1193 IdResolver.InsertDeclAfter(I, D);
1194 } else {
1195 IdResolver.AddDecl(D);
1196 }
1197 }
1198
pushExternalDeclIntoScope(NamedDecl * D,DeclarationName Name)1199 void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1200 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1201 TUScope->AddDecl(D);
1202 }
1203
isDeclInScope(NamedDecl * D,DeclContext * Ctx,Scope * S,bool AllowInlineNamespace)1204 bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1205 bool AllowInlineNamespace) {
1206 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1207 }
1208
getScopeForDeclContext(Scope * S,DeclContext * DC)1209 Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1210 DeclContext *TargetDC = DC->getPrimaryContext();
1211 do {
1212 if (DeclContext *ScopeDC = S->getEntity())
1213 if (ScopeDC->getPrimaryContext() == TargetDC)
1214 return S;
1215 } while ((S = S->getParent()));
1216
1217 return nullptr;
1218 }
1219
1220 static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1221 DeclContext*,
1222 ASTContext&);
1223
1224 /// Filters out lookup results that don't fall within the given scope
1225 /// as determined by isDeclInScope.
FilterLookupForScope(LookupResult & R,DeclContext * Ctx,Scope * S,bool ConsiderLinkage,bool AllowInlineNamespace)1226 void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1227 bool ConsiderLinkage,
1228 bool AllowInlineNamespace) {
1229 LookupResult::Filter F = R.makeFilter();
1230 while (F.hasNext()) {
1231 NamedDecl *D = F.next();
1232
1233 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1234 continue;
1235
1236 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1237 continue;
1238
1239 F.erase();
1240 }
1241
1242 F.done();
1243 }
1244
isUsingDecl(NamedDecl * D)1245 static bool isUsingDecl(NamedDecl *D) {
1246 return isa<UsingShadowDecl>(D) ||
1247 isa<UnresolvedUsingTypenameDecl>(D) ||
1248 isa<UnresolvedUsingValueDecl>(D);
1249 }
1250
1251 /// Removes using shadow declarations from the lookup results.
RemoveUsingDecls(LookupResult & R)1252 static void RemoveUsingDecls(LookupResult &R) {
1253 LookupResult::Filter F = R.makeFilter();
1254 while (F.hasNext())
1255 if (isUsingDecl(F.next()))
1256 F.erase();
1257
1258 F.done();
1259 }
1260
1261 /// \brief Check for this common pattern:
1262 /// @code
1263 /// class S {
1264 /// S(const S&); // DO NOT IMPLEMENT
1265 /// void operator=(const S&); // DO NOT IMPLEMENT
1266 /// };
1267 /// @endcode
IsDisallowedCopyOrAssign(const CXXMethodDecl * D)1268 static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1269 // FIXME: Should check for private access too but access is set after we get
1270 // the decl here.
1271 if (D->doesThisDeclarationHaveABody())
1272 return false;
1273
1274 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1275 return CD->isCopyConstructor();
1276 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1277 return Method->isCopyAssignmentOperator();
1278 return false;
1279 }
1280
1281 // We need this to handle
1282 //
1283 // typedef struct {
1284 // void *foo() { return 0; }
1285 // } A;
1286 //
1287 // When we see foo we don't know if after the typedef we will get 'A' or '*A'
1288 // for example. If 'A', foo will have external linkage. If we have '*A',
1289 // foo will have no linkage. Since we can't know until we get to the end
1290 // of the typedef, this function finds out if D might have non-external linkage.
1291 // Callers should verify at the end of the TU if it D has external linkage or
1292 // not.
mightHaveNonExternalLinkage(const DeclaratorDecl * D)1293 bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1294 const DeclContext *DC = D->getDeclContext();
1295 while (!DC->isTranslationUnit()) {
1296 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1297 if (!RD->hasNameForLinkage())
1298 return true;
1299 }
1300 DC = DC->getParent();
1301 }
1302
1303 return !D->isExternallyVisible();
1304 }
1305
1306 // FIXME: This needs to be refactored; some other isInMainFile users want
1307 // these semantics.
isMainFileLoc(const Sema & S,SourceLocation Loc)1308 static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1309 if (S.TUKind != TU_Complete)
1310 return false;
1311 return S.SourceMgr.isInMainFile(Loc);
1312 }
1313
ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl * D) const1314 bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1315 assert(D);
1316
1317 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1318 return false;
1319
1320 // Ignore all entities declared within templates, and out-of-line definitions
1321 // of members of class templates.
1322 if (D->getDeclContext()->isDependentContext() ||
1323 D->getLexicalDeclContext()->isDependentContext())
1324 return false;
1325
1326 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1327 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1328 return false;
1329
1330 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1331 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1332 return false;
1333 } else {
1334 // 'static inline' functions are defined in headers; don't warn.
1335 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1336 return false;
1337 }
1338
1339 if (FD->doesThisDeclarationHaveABody() &&
1340 Context.DeclMustBeEmitted(FD))
1341 return false;
1342 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1343 // Constants and utility variables are defined in headers with internal
1344 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1345 // like "inline".)
1346 if (!isMainFileLoc(*this, VD->getLocation()))
1347 return false;
1348
1349 if (Context.DeclMustBeEmitted(VD))
1350 return false;
1351
1352 if (VD->isStaticDataMember() &&
1353 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1354 return false;
1355 } else {
1356 return false;
1357 }
1358
1359 // Only warn for unused decls internal to the translation unit.
1360 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1361 // for inline functions defined in the main source file, for instance.
1362 return mightHaveNonExternalLinkage(D);
1363 }
1364
MarkUnusedFileScopedDecl(const DeclaratorDecl * D)1365 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1366 if (!D)
1367 return;
1368
1369 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1370 const FunctionDecl *First = FD->getFirstDecl();
1371 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1372 return; // First should already be in the vector.
1373 }
1374
1375 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1376 const VarDecl *First = VD->getFirstDecl();
1377 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1378 return; // First should already be in the vector.
1379 }
1380
1381 if (ShouldWarnIfUnusedFileScopedDecl(D))
1382 UnusedFileScopedDecls.push_back(D);
1383 }
1384
ShouldDiagnoseUnusedDecl(const NamedDecl * D)1385 static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1386 if (D->isInvalidDecl())
1387 return false;
1388
1389 if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>() ||
1390 D->hasAttr<ObjCPreciseLifetimeAttr>())
1391 return false;
1392
1393 if (isa<LabelDecl>(D))
1394 return true;
1395
1396 // White-list anything that isn't a local variable.
1397 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1398 !D->getDeclContext()->isFunctionOrMethod())
1399 return false;
1400
1401 // Types of valid local variables should be complete, so this should succeed.
1402 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1403
1404 // White-list anything with an __attribute__((unused)) type.
1405 QualType Ty = VD->getType();
1406
1407 // Only look at the outermost level of typedef.
1408 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1409 if (TT->getDecl()->hasAttr<UnusedAttr>())
1410 return false;
1411 }
1412
1413 // If we failed to complete the type for some reason, or if the type is
1414 // dependent, don't diagnose the variable.
1415 if (Ty->isIncompleteType() || Ty->isDependentType())
1416 return false;
1417
1418 if (const TagType *TT = Ty->getAs<TagType>()) {
1419 const TagDecl *Tag = TT->getDecl();
1420 if (Tag->hasAttr<UnusedAttr>())
1421 return false;
1422
1423 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1424 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1425 return false;
1426
1427 if (const Expr *Init = VD->getInit()) {
1428 if (const ExprWithCleanups *Cleanups =
1429 dyn_cast<ExprWithCleanups>(Init))
1430 Init = Cleanups->getSubExpr();
1431 const CXXConstructExpr *Construct =
1432 dyn_cast<CXXConstructExpr>(Init);
1433 if (Construct && !Construct->isElidable()) {
1434 CXXConstructorDecl *CD = Construct->getConstructor();
1435 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1436 return false;
1437 }
1438 }
1439 }
1440 }
1441
1442 // TODO: __attribute__((unused)) templates?
1443 }
1444
1445 return true;
1446 }
1447
GenerateFixForUnusedDecl(const NamedDecl * D,ASTContext & Ctx,FixItHint & Hint)1448 static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1449 FixItHint &Hint) {
1450 if (isa<LabelDecl>(D)) {
1451 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1452 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1453 if (AfterColon.isInvalid())
1454 return;
1455 Hint = FixItHint::CreateRemoval(CharSourceRange::
1456 getCharRange(D->getLocStart(), AfterColon));
1457 }
1458 return;
1459 }
1460
1461 /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1462 /// unless they are marked attr(unused).
DiagnoseUnusedDecl(const NamedDecl * D)1463 void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1464 if (!ShouldDiagnoseUnusedDecl(D))
1465 return;
1466
1467 FixItHint Hint;
1468 GenerateFixForUnusedDecl(D, Context, Hint);
1469
1470 unsigned DiagID;
1471 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1472 DiagID = diag::warn_unused_exception_param;
1473 else if (isa<LabelDecl>(D))
1474 DiagID = diag::warn_unused_label;
1475 else
1476 DiagID = diag::warn_unused_variable;
1477
1478 Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1479 }
1480
CheckPoppedLabel(LabelDecl * L,Sema & S)1481 static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1482 // Verify that we have no forward references left. If so, there was a goto
1483 // or address of a label taken, but no definition of it. Label fwd
1484 // definitions are indicated with a null substmt.
1485 if (L->getStmt() == nullptr)
1486 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1487 }
1488
ActOnPopScope(SourceLocation Loc,Scope * S)1489 void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1490 S->mergeNRVOIntoParent();
1491
1492 if (S->decl_empty()) return;
1493 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1494 "Scope shouldn't contain decls!");
1495
1496 for (auto *TmpD : S->decls()) {
1497 assert(TmpD && "This decl didn't get pushed??");
1498
1499 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1500 NamedDecl *D = cast<NamedDecl>(TmpD);
1501
1502 if (!D->getDeclName()) continue;
1503
1504 // Diagnose unused variables in this scope.
1505 if (!S->hasUnrecoverableErrorOccurred())
1506 DiagnoseUnusedDecl(D);
1507
1508 // If this was a forward reference to a label, verify it was defined.
1509 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1510 CheckPoppedLabel(LD, *this);
1511
1512 // Remove this name from our lexical scope.
1513 IdResolver.RemoveDecl(D);
1514 }
1515 }
1516
1517 /// \brief Look for an Objective-C class in the translation unit.
1518 ///
1519 /// \param Id The name of the Objective-C class we're looking for. If
1520 /// typo-correction fixes this name, the Id will be updated
1521 /// to the fixed name.
1522 ///
1523 /// \param IdLoc The location of the name in the translation unit.
1524 ///
1525 /// \param DoTypoCorrection If true, this routine will attempt typo correction
1526 /// if there is no class with the given name.
1527 ///
1528 /// \returns The declaration of the named Objective-C class, or NULL if the
1529 /// class could not be found.
getObjCInterfaceDecl(IdentifierInfo * & Id,SourceLocation IdLoc,bool DoTypoCorrection)1530 ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1531 SourceLocation IdLoc,
1532 bool DoTypoCorrection) {
1533 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1534 // creation from this context.
1535 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1536
1537 if (!IDecl && DoTypoCorrection) {
1538 // Perform typo correction at the given location, but only if we
1539 // find an Objective-C class name.
1540 DeclFilterCCC<ObjCInterfaceDecl> Validator;
1541 if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1542 LookupOrdinaryName, TUScope, nullptr,
1543 Validator, CTK_ErrorRecovery)) {
1544 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1545 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1546 Id = IDecl->getIdentifier();
1547 }
1548 }
1549 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1550 // This routine must always return a class definition, if any.
1551 if (Def && Def->getDefinition())
1552 Def = Def->getDefinition();
1553 return Def;
1554 }
1555
1556 /// getNonFieldDeclScope - Retrieves the innermost scope, starting
1557 /// from S, where a non-field would be declared. This routine copes
1558 /// with the difference between C and C++ scoping rules in structs and
1559 /// unions. For example, the following code is well-formed in C but
1560 /// ill-formed in C++:
1561 /// @code
1562 /// struct S6 {
1563 /// enum { BAR } e;
1564 /// };
1565 ///
1566 /// void test_S6() {
1567 /// struct S6 a;
1568 /// a.e = BAR;
1569 /// }
1570 /// @endcode
1571 /// For the declaration of BAR, this routine will return a different
1572 /// scope. The scope S will be the scope of the unnamed enumeration
1573 /// within S6. In C++, this routine will return the scope associated
1574 /// with S6, because the enumeration's scope is a transparent
1575 /// context but structures can contain non-field names. In C, this
1576 /// routine will return the translation unit scope, since the
1577 /// enumeration's scope is a transparent context and structures cannot
1578 /// contain non-field names.
getNonFieldDeclScope(Scope * S)1579 Scope *Sema::getNonFieldDeclScope(Scope *S) {
1580 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1581 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1582 (S->isClassScope() && !getLangOpts().CPlusPlus))
1583 S = S->getParent();
1584 return S;
1585 }
1586
1587 /// \brief Looks up the declaration of "struct objc_super" and
1588 /// saves it for later use in building builtin declaration of
1589 /// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1590 /// pre-existing declaration exists no action takes place.
LookupPredefedObjCSuperType(Sema & ThisSema,Scope * S,IdentifierInfo * II)1591 static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1592 IdentifierInfo *II) {
1593 if (!II->isStr("objc_msgSendSuper"))
1594 return;
1595 ASTContext &Context = ThisSema.Context;
1596
1597 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1598 SourceLocation(), Sema::LookupTagName);
1599 ThisSema.LookupName(Result, S);
1600 if (Result.getResultKind() == LookupResult::Found)
1601 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1602 Context.setObjCSuperType(Context.getTagDeclType(TD));
1603 }
1604
1605 /// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1606 /// file scope. lazily create a decl for it. ForRedeclaration is true
1607 /// if we're creating this built-in in anticipation of redeclaring the
1608 /// built-in.
LazilyCreateBuiltin(IdentifierInfo * II,unsigned bid,Scope * S,bool ForRedeclaration,SourceLocation Loc)1609 NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1610 Scope *S, bool ForRedeclaration,
1611 SourceLocation Loc) {
1612 LookupPredefedObjCSuperType(*this, S, II);
1613
1614 Builtin::ID BID = (Builtin::ID)bid;
1615
1616 ASTContext::GetBuiltinTypeError Error;
1617 QualType R = Context.GetBuiltinType(BID, Error);
1618 switch (Error) {
1619 case ASTContext::GE_None:
1620 // Okay
1621 break;
1622
1623 case ASTContext::GE_Missing_stdio:
1624 if (ForRedeclaration)
1625 Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1626 << Context.BuiltinInfo.GetName(BID);
1627 return nullptr;
1628
1629 case ASTContext::GE_Missing_setjmp:
1630 if (ForRedeclaration)
1631 Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1632 << Context.BuiltinInfo.GetName(BID);
1633 return nullptr;
1634
1635 case ASTContext::GE_Missing_ucontext:
1636 if (ForRedeclaration)
1637 Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1638 << Context.BuiltinInfo.GetName(BID);
1639 return nullptr;
1640 }
1641
1642 if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1643 Diag(Loc, diag::ext_implicit_lib_function_decl)
1644 << Context.BuiltinInfo.GetName(BID)
1645 << R;
1646 if (Context.BuiltinInfo.getHeaderName(BID) &&
1647 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1648 Diag(Loc, diag::note_please_include_header)
1649 << Context.BuiltinInfo.getHeaderName(BID)
1650 << Context.BuiltinInfo.GetName(BID);
1651 }
1652
1653 DeclContext *Parent = Context.getTranslationUnitDecl();
1654 if (getLangOpts().CPlusPlus) {
1655 LinkageSpecDecl *CLinkageDecl =
1656 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1657 LinkageSpecDecl::lang_c, false);
1658 CLinkageDecl->setImplicit();
1659 Parent->addDecl(CLinkageDecl);
1660 Parent = CLinkageDecl;
1661 }
1662
1663 FunctionDecl *New = FunctionDecl::Create(Context,
1664 Parent,
1665 Loc, Loc, II, R, /*TInfo=*/nullptr,
1666 SC_Extern,
1667 false,
1668 /*hasPrototype=*/true);
1669 New->setImplicit();
1670
1671 // Create Decl objects for each parameter, adding them to the
1672 // FunctionDecl.
1673 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1674 SmallVector<ParmVarDecl*, 16> Params;
1675 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
1676 ParmVarDecl *parm =
1677 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
1678 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
1679 SC_None, nullptr);
1680 parm->setScopeInfo(0, i);
1681 Params.push_back(parm);
1682 }
1683 New->setParams(Params);
1684 }
1685
1686 AddKnownFunctionAttributes(New);
1687 RegisterLocallyScopedExternCDecl(New, S);
1688
1689 // TUScope is the translation-unit scope to insert this function into.
1690 // FIXME: This is hideous. We need to teach PushOnScopeChains to
1691 // relate Scopes to DeclContexts, and probably eliminate CurContext
1692 // entirely, but we're not there yet.
1693 DeclContext *SavedContext = CurContext;
1694 CurContext = Parent;
1695 PushOnScopeChains(New, TUScope);
1696 CurContext = SavedContext;
1697 return New;
1698 }
1699
1700 /// \brief Filter out any previous declarations that the given declaration
1701 /// should not consider because they are not permitted to conflict, e.g.,
1702 /// because they come from hidden sub-modules and do not refer to the same
1703 /// entity.
filterNonConflictingPreviousDecls(ASTContext & context,NamedDecl * decl,LookupResult & previous)1704 static void filterNonConflictingPreviousDecls(ASTContext &context,
1705 NamedDecl *decl,
1706 LookupResult &previous){
1707 // This is only interesting when modules are enabled.
1708 if (!context.getLangOpts().Modules)
1709 return;
1710
1711 // Empty sets are uninteresting.
1712 if (previous.empty())
1713 return;
1714
1715 LookupResult::Filter filter = previous.makeFilter();
1716 while (filter.hasNext()) {
1717 NamedDecl *old = filter.next();
1718
1719 // Non-hidden declarations are never ignored.
1720 if (!old->isHidden())
1721 continue;
1722
1723 if (!old->isExternallyVisible())
1724 filter.erase();
1725 }
1726
1727 filter.done();
1728 }
1729
isIncompatibleTypedef(TypeDecl * Old,TypedefNameDecl * New)1730 bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1731 QualType OldType;
1732 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1733 OldType = OldTypedef->getUnderlyingType();
1734 else
1735 OldType = Context.getTypeDeclType(Old);
1736 QualType NewType = New->getUnderlyingType();
1737
1738 if (NewType->isVariablyModifiedType()) {
1739 // Must not redefine a typedef with a variably-modified type.
1740 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1741 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1742 << Kind << NewType;
1743 if (Old->getLocation().isValid())
1744 Diag(Old->getLocation(), diag::note_previous_definition);
1745 New->setInvalidDecl();
1746 return true;
1747 }
1748
1749 if (OldType != NewType &&
1750 !OldType->isDependentType() &&
1751 !NewType->isDependentType() &&
1752 !Context.hasSameType(OldType, NewType)) {
1753 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1754 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1755 << Kind << NewType << OldType;
1756 if (Old->getLocation().isValid())
1757 Diag(Old->getLocation(), diag::note_previous_definition);
1758 New->setInvalidDecl();
1759 return true;
1760 }
1761 return false;
1762 }
1763
1764 /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1765 /// same name and scope as a previous declaration 'Old'. Figure out
1766 /// how to resolve this situation, merging decls or emitting
1767 /// diagnostics as appropriate. If there was an error, set New to be invalid.
1768 ///
MergeTypedefNameDecl(TypedefNameDecl * New,LookupResult & OldDecls)1769 void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1770 // If the new decl is known invalid already, don't bother doing any
1771 // merging checks.
1772 if (New->isInvalidDecl()) return;
1773
1774 // Allow multiple definitions for ObjC built-in typedefs.
1775 // FIXME: Verify the underlying types are equivalent!
1776 if (getLangOpts().ObjC1) {
1777 const IdentifierInfo *TypeID = New->getIdentifier();
1778 switch (TypeID->getLength()) {
1779 default: break;
1780 case 2:
1781 {
1782 if (!TypeID->isStr("id"))
1783 break;
1784 QualType T = New->getUnderlyingType();
1785 if (!T->isPointerType())
1786 break;
1787 if (!T->isVoidPointerType()) {
1788 QualType PT = T->getAs<PointerType>()->getPointeeType();
1789 if (!PT->isStructureType())
1790 break;
1791 }
1792 Context.setObjCIdRedefinitionType(T);
1793 // Install the built-in type for 'id', ignoring the current definition.
1794 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1795 return;
1796 }
1797 case 5:
1798 if (!TypeID->isStr("Class"))
1799 break;
1800 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1801 // Install the built-in type for 'Class', ignoring the current definition.
1802 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1803 return;
1804 case 3:
1805 if (!TypeID->isStr("SEL"))
1806 break;
1807 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1808 // Install the built-in type for 'SEL', ignoring the current definition.
1809 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1810 return;
1811 }
1812 // Fall through - the typedef name was not a builtin type.
1813 }
1814
1815 // Verify the old decl was also a type.
1816 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1817 if (!Old) {
1818 Diag(New->getLocation(), diag::err_redefinition_different_kind)
1819 << New->getDeclName();
1820
1821 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1822 if (OldD->getLocation().isValid())
1823 Diag(OldD->getLocation(), diag::note_previous_definition);
1824
1825 return New->setInvalidDecl();
1826 }
1827
1828 // If the old declaration is invalid, just give up here.
1829 if (Old->isInvalidDecl())
1830 return New->setInvalidDecl();
1831
1832 // If the typedef types are not identical, reject them in all languages and
1833 // with any extensions enabled.
1834 if (isIncompatibleTypedef(Old, New))
1835 return;
1836
1837 // The types match. Link up the redeclaration chain and merge attributes if
1838 // the old declaration was a typedef.
1839 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1840 New->setPreviousDecl(Typedef);
1841 mergeDeclAttributes(New, Old);
1842 }
1843
1844 if (getLangOpts().MicrosoftExt)
1845 return;
1846
1847 if (getLangOpts().CPlusPlus) {
1848 // C++ [dcl.typedef]p2:
1849 // In a given non-class scope, a typedef specifier can be used to
1850 // redefine the name of any type declared in that scope to refer
1851 // to the type to which it already refers.
1852 if (!isa<CXXRecordDecl>(CurContext))
1853 return;
1854
1855 // C++0x [dcl.typedef]p4:
1856 // In a given class scope, a typedef specifier can be used to redefine
1857 // any class-name declared in that scope that is not also a typedef-name
1858 // to refer to the type to which it already refers.
1859 //
1860 // This wording came in via DR424, which was a correction to the
1861 // wording in DR56, which accidentally banned code like:
1862 //
1863 // struct S {
1864 // typedef struct A { } A;
1865 // };
1866 //
1867 // in the C++03 standard. We implement the C++0x semantics, which
1868 // allow the above but disallow
1869 //
1870 // struct S {
1871 // typedef int I;
1872 // typedef int I;
1873 // };
1874 //
1875 // since that was the intent of DR56.
1876 if (!isa<TypedefNameDecl>(Old))
1877 return;
1878
1879 Diag(New->getLocation(), diag::err_redefinition)
1880 << New->getDeclName();
1881 Diag(Old->getLocation(), diag::note_previous_definition);
1882 return New->setInvalidDecl();
1883 }
1884
1885 // Modules always permit redefinition of typedefs, as does C11.
1886 if (getLangOpts().Modules || getLangOpts().C11)
1887 return;
1888
1889 // If we have a redefinition of a typedef in C, emit a warning. This warning
1890 // is normally mapped to an error, but can be controlled with
1891 // -Wtypedef-redefinition. If either the original or the redefinition is
1892 // in a system header, don't emit this for compatibility with GCC.
1893 if (getDiagnostics().getSuppressSystemWarnings() &&
1894 (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1895 Context.getSourceManager().isInSystemHeader(New->getLocation())))
1896 return;
1897
1898 Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1899 << New->getDeclName();
1900 Diag(Old->getLocation(), diag::note_previous_definition);
1901 return;
1902 }
1903
1904 /// DeclhasAttr - returns true if decl Declaration already has the target
1905 /// attribute.
DeclHasAttr(const Decl * D,const Attr * A)1906 static bool DeclHasAttr(const Decl *D, const Attr *A) {
1907 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1908 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1909 for (const auto *i : D->attrs())
1910 if (i->getKind() == A->getKind()) {
1911 if (Ann) {
1912 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
1913 return true;
1914 continue;
1915 }
1916 // FIXME: Don't hardcode this check
1917 if (OA && isa<OwnershipAttr>(i))
1918 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
1919 return true;
1920 }
1921
1922 return false;
1923 }
1924
isAttributeTargetADefinition(Decl * D)1925 static bool isAttributeTargetADefinition(Decl *D) {
1926 if (VarDecl *VD = dyn_cast<VarDecl>(D))
1927 return VD->isThisDeclarationADefinition();
1928 if (TagDecl *TD = dyn_cast<TagDecl>(D))
1929 return TD->isCompleteDefinition() || TD->isBeingDefined();
1930 return true;
1931 }
1932
1933 /// Merge alignment attributes from \p Old to \p New, taking into account the
1934 /// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1935 ///
1936 /// \return \c true if any attributes were added to \p New.
mergeAlignedAttrs(Sema & S,NamedDecl * New,Decl * Old)1937 static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1938 // Look for alignas attributes on Old, and pick out whichever attribute
1939 // specifies the strictest alignment requirement.
1940 AlignedAttr *OldAlignasAttr = nullptr;
1941 AlignedAttr *OldStrictestAlignAttr = nullptr;
1942 unsigned OldAlign = 0;
1943 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
1944 // FIXME: We have no way of representing inherited dependent alignments
1945 // in a case like:
1946 // template<int A, int B> struct alignas(A) X;
1947 // template<int A, int B> struct alignas(B) X {};
1948 // For now, we just ignore any alignas attributes which are not on the
1949 // definition in such a case.
1950 if (I->isAlignmentDependent())
1951 return false;
1952
1953 if (I->isAlignas())
1954 OldAlignasAttr = I;
1955
1956 unsigned Align = I->getAlignment(S.Context);
1957 if (Align > OldAlign) {
1958 OldAlign = Align;
1959 OldStrictestAlignAttr = I;
1960 }
1961 }
1962
1963 // Look for alignas attributes on New.
1964 AlignedAttr *NewAlignasAttr = nullptr;
1965 unsigned NewAlign = 0;
1966 for (auto *I : New->specific_attrs<AlignedAttr>()) {
1967 if (I->isAlignmentDependent())
1968 return false;
1969
1970 if (I->isAlignas())
1971 NewAlignasAttr = I;
1972
1973 unsigned Align = I->getAlignment(S.Context);
1974 if (Align > NewAlign)
1975 NewAlign = Align;
1976 }
1977
1978 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1979 // Both declarations have 'alignas' attributes. We require them to match.
1980 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1981 // fall short. (If two declarations both have alignas, they must both match
1982 // every definition, and so must match each other if there is a definition.)
1983
1984 // If either declaration only contains 'alignas(0)' specifiers, then it
1985 // specifies the natural alignment for the type.
1986 if (OldAlign == 0 || NewAlign == 0) {
1987 QualType Ty;
1988 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1989 Ty = VD->getType();
1990 else
1991 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1992
1993 if (OldAlign == 0)
1994 OldAlign = S.Context.getTypeAlign(Ty);
1995 if (NewAlign == 0)
1996 NewAlign = S.Context.getTypeAlign(Ty);
1997 }
1998
1999 if (OldAlign != NewAlign) {
2000 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2001 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2002 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2003 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2004 }
2005 }
2006
2007 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2008 // C++11 [dcl.align]p6:
2009 // if any declaration of an entity has an alignment-specifier,
2010 // every defining declaration of that entity shall specify an
2011 // equivalent alignment.
2012 // C11 6.7.5/7:
2013 // If the definition of an object does not have an alignment
2014 // specifier, any other declaration of that object shall also
2015 // have no alignment specifier.
2016 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2017 << OldAlignasAttr;
2018 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2019 << OldAlignasAttr;
2020 }
2021
2022 bool AnyAdded = false;
2023
2024 // Ensure we have an attribute representing the strictest alignment.
2025 if (OldAlign > NewAlign) {
2026 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2027 Clone->setInherited(true);
2028 New->addAttr(Clone);
2029 AnyAdded = true;
2030 }
2031
2032 // Ensure we have an alignas attribute if the old declaration had one.
2033 if (OldAlignasAttr && !NewAlignasAttr &&
2034 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2035 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2036 Clone->setInherited(true);
2037 New->addAttr(Clone);
2038 AnyAdded = true;
2039 }
2040
2041 return AnyAdded;
2042 }
2043
mergeDeclAttribute(Sema & S,NamedDecl * D,const InheritableAttr * Attr,bool Override)2044 static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2045 const InheritableAttr *Attr, bool Override) {
2046 InheritableAttr *NewAttr = nullptr;
2047 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2048 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2049 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2050 AA->getIntroduced(), AA->getDeprecated(),
2051 AA->getObsoleted(), AA->getUnavailable(),
2052 AA->getMessage(), Override,
2053 AttrSpellingListIndex);
2054 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2055 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2056 AttrSpellingListIndex);
2057 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2058 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2059 AttrSpellingListIndex);
2060 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2061 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2062 AttrSpellingListIndex);
2063 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2064 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2065 AttrSpellingListIndex);
2066 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2067 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2068 FA->getFormatIdx(), FA->getFirstArg(),
2069 AttrSpellingListIndex);
2070 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2071 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2072 AttrSpellingListIndex);
2073 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2074 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2075 AttrSpellingListIndex,
2076 IA->getSemanticSpelling());
2077 else if (isa<AlignedAttr>(Attr))
2078 // AlignedAttrs are handled separately, because we need to handle all
2079 // such attributes on a declaration at the same time.
2080 NewAttr = nullptr;
2081 else if (Attr->duplicatesAllowed() || !DeclHasAttr(D, Attr))
2082 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2083
2084 if (NewAttr) {
2085 NewAttr->setInherited(true);
2086 D->addAttr(NewAttr);
2087 return true;
2088 }
2089
2090 return false;
2091 }
2092
getDefinition(const Decl * D)2093 static const Decl *getDefinition(const Decl *D) {
2094 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2095 return TD->getDefinition();
2096 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2097 const VarDecl *Def = VD->getDefinition();
2098 if (Def)
2099 return Def;
2100 return VD->getActingDefinition();
2101 }
2102 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2103 const FunctionDecl* Def;
2104 if (FD->isDefined(Def))
2105 return Def;
2106 }
2107 return nullptr;
2108 }
2109
hasAttribute(const Decl * D,attr::Kind Kind)2110 static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2111 for (const auto *Attribute : D->attrs())
2112 if (Attribute->getKind() == Kind)
2113 return true;
2114 return false;
2115 }
2116
2117 /// checkNewAttributesAfterDef - If we already have a definition, check that
2118 /// there are no new attributes in this declaration.
checkNewAttributesAfterDef(Sema & S,Decl * New,const Decl * Old)2119 static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2120 if (!New->hasAttrs())
2121 return;
2122
2123 const Decl *Def = getDefinition(Old);
2124 if (!Def || Def == New)
2125 return;
2126
2127 AttrVec &NewAttributes = New->getAttrs();
2128 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2129 const Attr *NewAttribute = NewAttributes[I];
2130
2131 if (isa<AliasAttr>(NewAttribute)) {
2132 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New))
2133 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def));
2134 else {
2135 VarDecl *VD = cast<VarDecl>(New);
2136 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2137 VarDecl::TentativeDefinition
2138 ? diag::err_alias_after_tentative
2139 : diag::err_redefinition;
2140 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2141 S.Diag(Def->getLocation(), diag::note_previous_definition);
2142 VD->setInvalidDecl();
2143 }
2144 ++I;
2145 continue;
2146 }
2147
2148 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2149 // Tentative definitions are only interesting for the alias check above.
2150 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2151 ++I;
2152 continue;
2153 }
2154 }
2155
2156 if (hasAttribute(Def, NewAttribute->getKind())) {
2157 ++I;
2158 continue; // regular attr merging will take care of validating this.
2159 }
2160
2161 if (isa<C11NoReturnAttr>(NewAttribute)) {
2162 // C's _Noreturn is allowed to be added to a function after it is defined.
2163 ++I;
2164 continue;
2165 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2166 if (AA->isAlignas()) {
2167 // C++11 [dcl.align]p6:
2168 // if any declaration of an entity has an alignment-specifier,
2169 // every defining declaration of that entity shall specify an
2170 // equivalent alignment.
2171 // C11 6.7.5/7:
2172 // If the definition of an object does not have an alignment
2173 // specifier, any other declaration of that object shall also
2174 // have no alignment specifier.
2175 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2176 << AA;
2177 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2178 << AA;
2179 NewAttributes.erase(NewAttributes.begin() + I);
2180 --E;
2181 continue;
2182 }
2183 }
2184
2185 S.Diag(NewAttribute->getLocation(),
2186 diag::warn_attribute_precede_definition);
2187 S.Diag(Def->getLocation(), diag::note_previous_definition);
2188 NewAttributes.erase(NewAttributes.begin() + I);
2189 --E;
2190 }
2191 }
2192
2193 /// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
mergeDeclAttributes(NamedDecl * New,Decl * Old,AvailabilityMergeKind AMK)2194 void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2195 AvailabilityMergeKind AMK) {
2196 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2197 UsedAttr *NewAttr = OldAttr->clone(Context);
2198 NewAttr->setInherited(true);
2199 New->addAttr(NewAttr);
2200 }
2201
2202 if (!Old->hasAttrs() && !New->hasAttrs())
2203 return;
2204
2205 // attributes declared post-definition are currently ignored
2206 checkNewAttributesAfterDef(*this, New, Old);
2207
2208 if (!Old->hasAttrs())
2209 return;
2210
2211 bool foundAny = New->hasAttrs();
2212
2213 // Ensure that any moving of objects within the allocated map is done before
2214 // we process them.
2215 if (!foundAny) New->setAttrs(AttrVec());
2216
2217 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2218 bool Override = false;
2219 // Ignore deprecated/unavailable/availability attributes if requested.
2220 if (isa<DeprecatedAttr>(I) ||
2221 isa<UnavailableAttr>(I) ||
2222 isa<AvailabilityAttr>(I)) {
2223 switch (AMK) {
2224 case AMK_None:
2225 continue;
2226
2227 case AMK_Redeclaration:
2228 break;
2229
2230 case AMK_Override:
2231 Override = true;
2232 break;
2233 }
2234 }
2235
2236 // Already handled.
2237 if (isa<UsedAttr>(I))
2238 continue;
2239
2240 if (mergeDeclAttribute(*this, New, I, Override))
2241 foundAny = true;
2242 }
2243
2244 if (mergeAlignedAttrs(*this, New, Old))
2245 foundAny = true;
2246
2247 if (!foundAny) New->dropAttrs();
2248 }
2249
2250 /// mergeParamDeclAttributes - Copy attributes from the old parameter
2251 /// to the new one.
mergeParamDeclAttributes(ParmVarDecl * newDecl,const ParmVarDecl * oldDecl,Sema & S)2252 static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2253 const ParmVarDecl *oldDecl,
2254 Sema &S) {
2255 // C++11 [dcl.attr.depend]p2:
2256 // The first declaration of a function shall specify the
2257 // carries_dependency attribute for its declarator-id if any declaration
2258 // of the function specifies the carries_dependency attribute.
2259 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2260 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2261 S.Diag(CDA->getLocation(),
2262 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2263 // Find the first declaration of the parameter.
2264 // FIXME: Should we build redeclaration chains for function parameters?
2265 const FunctionDecl *FirstFD =
2266 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2267 const ParmVarDecl *FirstVD =
2268 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2269 S.Diag(FirstVD->getLocation(),
2270 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2271 }
2272
2273 if (!oldDecl->hasAttrs())
2274 return;
2275
2276 bool foundAny = newDecl->hasAttrs();
2277
2278 // Ensure that any moving of objects within the allocated map is
2279 // done before we process them.
2280 if (!foundAny) newDecl->setAttrs(AttrVec());
2281
2282 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2283 if (!DeclHasAttr(newDecl, I)) {
2284 InheritableAttr *newAttr =
2285 cast<InheritableParamAttr>(I->clone(S.Context));
2286 newAttr->setInherited(true);
2287 newDecl->addAttr(newAttr);
2288 foundAny = true;
2289 }
2290 }
2291
2292 if (!foundAny) newDecl->dropAttrs();
2293 }
2294
2295 namespace {
2296
2297 /// Used in MergeFunctionDecl to keep track of function parameters in
2298 /// C.
2299 struct GNUCompatibleParamWarning {
2300 ParmVarDecl *OldParm;
2301 ParmVarDecl *NewParm;
2302 QualType PromotedType;
2303 };
2304
2305 }
2306
2307 /// getSpecialMember - get the special member enum for a method.
getSpecialMember(const CXXMethodDecl * MD)2308 Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2309 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2310 if (Ctor->isDefaultConstructor())
2311 return Sema::CXXDefaultConstructor;
2312
2313 if (Ctor->isCopyConstructor())
2314 return Sema::CXXCopyConstructor;
2315
2316 if (Ctor->isMoveConstructor())
2317 return Sema::CXXMoveConstructor;
2318 } else if (isa<CXXDestructorDecl>(MD)) {
2319 return Sema::CXXDestructor;
2320 } else if (MD->isCopyAssignmentOperator()) {
2321 return Sema::CXXCopyAssignment;
2322 } else if (MD->isMoveAssignmentOperator()) {
2323 return Sema::CXXMoveAssignment;
2324 }
2325
2326 return Sema::CXXInvalid;
2327 }
2328
2329 // Determine whether the previous declaration was a definition, implicit
2330 // declaration, or a declaration.
2331 template <typename T>
2332 static std::pair<diag::kind, SourceLocation>
getNoteDiagForInvalidRedeclaration(const T * Old,const T * New)2333 getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2334 diag::kind PrevDiag;
2335 SourceLocation OldLocation = Old->getLocation();
2336 if (Old->isThisDeclarationADefinition())
2337 PrevDiag = diag::note_previous_definition;
2338 else if (Old->isImplicit()) {
2339 PrevDiag = diag::note_previous_implicit_declaration;
2340 if (OldLocation.isInvalid())
2341 OldLocation = New->getLocation();
2342 } else
2343 PrevDiag = diag::note_previous_declaration;
2344 return std::make_pair(PrevDiag, OldLocation);
2345 }
2346
2347 /// canRedefineFunction - checks if a function can be redefined. Currently,
2348 /// only extern inline functions can be redefined, and even then only in
2349 /// GNU89 mode.
canRedefineFunction(const FunctionDecl * FD,const LangOptions & LangOpts)2350 static bool canRedefineFunction(const FunctionDecl *FD,
2351 const LangOptions& LangOpts) {
2352 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2353 !LangOpts.CPlusPlus &&
2354 FD->isInlineSpecified() &&
2355 FD->getStorageClass() == SC_Extern);
2356 }
2357
getCallingConvAttributedType(QualType T) const2358 const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2359 const AttributedType *AT = T->getAs<AttributedType>();
2360 while (AT && !AT->isCallingConv())
2361 AT = AT->getModifiedType()->getAs<AttributedType>();
2362 return AT;
2363 }
2364
2365 template <typename T>
haveIncompatibleLanguageLinkages(const T * Old,const T * New)2366 static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2367 const DeclContext *DC = Old->getDeclContext();
2368 if (DC->isRecord())
2369 return false;
2370
2371 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2372 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2373 return true;
2374 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2375 return true;
2376 return false;
2377 }
2378
2379 /// MergeFunctionDecl - We just parsed a function 'New' from
2380 /// declarator D which has the same name and scope as a previous
2381 /// declaration 'Old'. Figure out how to resolve this situation,
2382 /// merging decls or emitting diagnostics as appropriate.
2383 ///
2384 /// In C++, New and Old must be declarations that are not
2385 /// overloaded. Use IsOverload to determine whether New and Old are
2386 /// overloaded, and to select the Old declaration that New should be
2387 /// merged with.
2388 ///
2389 /// Returns true if there was an error, false otherwise.
MergeFunctionDecl(FunctionDecl * New,NamedDecl * & OldD,Scope * S,bool MergeTypeWithOld)2390 bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2391 Scope *S, bool MergeTypeWithOld) {
2392 // Verify the old decl was also a function.
2393 FunctionDecl *Old = OldD->getAsFunction();
2394 if (!Old) {
2395 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2396 if (New->getFriendObjectKind()) {
2397 Diag(New->getLocation(), diag::err_using_decl_friend);
2398 Diag(Shadow->getTargetDecl()->getLocation(),
2399 diag::note_using_decl_target);
2400 Diag(Shadow->getUsingDecl()->getLocation(),
2401 diag::note_using_decl) << 0;
2402 return true;
2403 }
2404
2405 // C++11 [namespace.udecl]p14:
2406 // If a function declaration in namespace scope or block scope has the
2407 // same name and the same parameter-type-list as a function introduced
2408 // by a using-declaration, and the declarations do not declare the same
2409 // function, the program is ill-formed.
2410
2411 // Check whether the two declarations might declare the same function.
2412 Old = dyn_cast<FunctionDecl>(Shadow->getTargetDecl());
2413 if (Old &&
2414 !Old->getDeclContext()->getRedeclContext()->Equals(
2415 New->getDeclContext()->getRedeclContext()) &&
2416 !(Old->isExternC() && New->isExternC()))
2417 Old = nullptr;
2418
2419 if (!Old) {
2420 Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2421 Diag(Shadow->getTargetDecl()->getLocation(),
2422 diag::note_using_decl_target);
2423 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2424 return true;
2425 }
2426 OldD = Old;
2427 } else {
2428 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2429 << New->getDeclName();
2430 Diag(OldD->getLocation(), diag::note_previous_definition);
2431 return true;
2432 }
2433 }
2434
2435 // If the old declaration is invalid, just give up here.
2436 if (Old->isInvalidDecl())
2437 return true;
2438
2439 diag::kind PrevDiag;
2440 SourceLocation OldLocation;
2441 std::tie(PrevDiag, OldLocation) =
2442 getNoteDiagForInvalidRedeclaration(Old, New);
2443
2444 // Don't complain about this if we're in GNU89 mode and the old function
2445 // is an extern inline function.
2446 // Don't complain about specializations. They are not supposed to have
2447 // storage classes.
2448 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2449 New->getStorageClass() == SC_Static &&
2450 Old->hasExternalFormalLinkage() &&
2451 !New->getTemplateSpecializationInfo() &&
2452 !canRedefineFunction(Old, getLangOpts())) {
2453 if (getLangOpts().MicrosoftExt) {
2454 Diag(New->getLocation(), diag::ext_static_non_static) << New;
2455 Diag(OldLocation, PrevDiag);
2456 } else {
2457 Diag(New->getLocation(), diag::err_static_non_static) << New;
2458 Diag(OldLocation, PrevDiag);
2459 return true;
2460 }
2461 }
2462
2463
2464 // If a function is first declared with a calling convention, but is later
2465 // declared or defined without one, all following decls assume the calling
2466 // convention of the first.
2467 //
2468 // It's OK if a function is first declared without a calling convention,
2469 // but is later declared or defined with the default calling convention.
2470 //
2471 // To test if either decl has an explicit calling convention, we look for
2472 // AttributedType sugar nodes on the type as written. If they are missing or
2473 // were canonicalized away, we assume the calling convention was implicit.
2474 //
2475 // Note also that we DO NOT return at this point, because we still have
2476 // other tests to run.
2477 QualType OldQType = Context.getCanonicalType(Old->getType());
2478 QualType NewQType = Context.getCanonicalType(New->getType());
2479 const FunctionType *OldType = cast<FunctionType>(OldQType);
2480 const FunctionType *NewType = cast<FunctionType>(NewQType);
2481 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2482 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2483 bool RequiresAdjustment = false;
2484
2485 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2486 FunctionDecl *First = Old->getFirstDecl();
2487 const FunctionType *FT =
2488 First->getType().getCanonicalType()->castAs<FunctionType>();
2489 FunctionType::ExtInfo FI = FT->getExtInfo();
2490 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2491 if (!NewCCExplicit) {
2492 // Inherit the CC from the previous declaration if it was specified
2493 // there but not here.
2494 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2495 RequiresAdjustment = true;
2496 } else {
2497 // Calling conventions aren't compatible, so complain.
2498 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2499 Diag(New->getLocation(), diag::err_cconv_change)
2500 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2501 << !FirstCCExplicit
2502 << (!FirstCCExplicit ? "" :
2503 FunctionType::getNameForCallConv(FI.getCC()));
2504
2505 // Put the note on the first decl, since it is the one that matters.
2506 Diag(First->getLocation(), diag::note_previous_declaration);
2507 return true;
2508 }
2509 }
2510
2511 // FIXME: diagnose the other way around?
2512 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2513 NewTypeInfo = NewTypeInfo.withNoReturn(true);
2514 RequiresAdjustment = true;
2515 }
2516
2517 // Merge regparm attribute.
2518 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2519 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2520 if (NewTypeInfo.getHasRegParm()) {
2521 Diag(New->getLocation(), diag::err_regparm_mismatch)
2522 << NewType->getRegParmType()
2523 << OldType->getRegParmType();
2524 Diag(OldLocation, diag::note_previous_declaration);
2525 return true;
2526 }
2527
2528 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2529 RequiresAdjustment = true;
2530 }
2531
2532 // Merge ns_returns_retained attribute.
2533 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2534 if (NewTypeInfo.getProducesResult()) {
2535 Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2536 Diag(OldLocation, diag::note_previous_declaration);
2537 return true;
2538 }
2539
2540 NewTypeInfo = NewTypeInfo.withProducesResult(true);
2541 RequiresAdjustment = true;
2542 }
2543
2544 if (RequiresAdjustment) {
2545 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2546 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2547 New->setType(QualType(AdjustedType, 0));
2548 NewQType = Context.getCanonicalType(New->getType());
2549 NewType = cast<FunctionType>(NewQType);
2550 }
2551
2552 // If this redeclaration makes the function inline, we may need to add it to
2553 // UndefinedButUsed.
2554 if (!Old->isInlined() && New->isInlined() &&
2555 !New->hasAttr<GNUInlineAttr>() &&
2556 (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2557 Old->isUsed(false) &&
2558 !Old->isDefined() && !New->isThisDeclarationADefinition())
2559 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2560 SourceLocation()));
2561
2562 // If this redeclaration makes it newly gnu_inline, we don't want to warn
2563 // about it.
2564 if (New->hasAttr<GNUInlineAttr>() &&
2565 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2566 UndefinedButUsed.erase(Old->getCanonicalDecl());
2567 }
2568
2569 if (getLangOpts().CPlusPlus) {
2570 // (C++98 13.1p2):
2571 // Certain function declarations cannot be overloaded:
2572 // -- Function declarations that differ only in the return type
2573 // cannot be overloaded.
2574
2575 // Go back to the type source info to compare the declared return types,
2576 // per C++1y [dcl.type.auto]p13:
2577 // Redeclarations or specializations of a function or function template
2578 // with a declared return type that uses a placeholder type shall also
2579 // use that placeholder, not a deduced type.
2580 QualType OldDeclaredReturnType =
2581 (Old->getTypeSourceInfo()
2582 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2583 : OldType)->getReturnType();
2584 QualType NewDeclaredReturnType =
2585 (New->getTypeSourceInfo()
2586 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2587 : NewType)->getReturnType();
2588 QualType ResQT;
2589 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2590 !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2591 New->isLocalExternDecl())) {
2592 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2593 OldDeclaredReturnType->isObjCObjectPointerType())
2594 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2595 if (ResQT.isNull()) {
2596 if (New->isCXXClassMember() && New->isOutOfLine())
2597 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
2598 << New << New->getReturnTypeSourceRange();
2599 else
2600 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
2601 << New->getReturnTypeSourceRange();
2602 Diag(OldLocation, PrevDiag) << Old << Old->getType()
2603 << Old->getReturnTypeSourceRange();
2604 return true;
2605 }
2606 else
2607 NewQType = ResQT;
2608 }
2609
2610 QualType OldReturnType = OldType->getReturnType();
2611 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
2612 if (OldReturnType != NewReturnType) {
2613 // If this function has a deduced return type and has already been
2614 // defined, copy the deduced value from the old declaration.
2615 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
2616 if (OldAT && OldAT->isDeduced()) {
2617 New->setType(
2618 SubstAutoType(New->getType(),
2619 OldAT->isDependentType() ? Context.DependentTy
2620 : OldAT->getDeducedType()));
2621 NewQType = Context.getCanonicalType(
2622 SubstAutoType(NewQType,
2623 OldAT->isDependentType() ? Context.DependentTy
2624 : OldAT->getDeducedType()));
2625 }
2626 }
2627
2628 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2629 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2630 if (OldMethod && NewMethod) {
2631 // Preserve triviality.
2632 NewMethod->setTrivial(OldMethod->isTrivial());
2633
2634 // MSVC allows explicit template specialization at class scope:
2635 // 2 CXXMethodDecls referring to the same function will be injected.
2636 // We don't want a redeclaration error.
2637 bool IsClassScopeExplicitSpecialization =
2638 OldMethod->isFunctionTemplateSpecialization() &&
2639 NewMethod->isFunctionTemplateSpecialization();
2640 bool isFriend = NewMethod->getFriendObjectKind();
2641
2642 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2643 !IsClassScopeExplicitSpecialization) {
2644 // -- Member function declarations with the same name and the
2645 // same parameter types cannot be overloaded if any of them
2646 // is a static member function declaration.
2647 if (OldMethod->isStatic() != NewMethod->isStatic()) {
2648 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2649 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2650 return true;
2651 }
2652
2653 // C++ [class.mem]p1:
2654 // [...] A member shall not be declared twice in the
2655 // member-specification, except that a nested class or member
2656 // class template can be declared and then later defined.
2657 if (ActiveTemplateInstantiations.empty()) {
2658 unsigned NewDiag;
2659 if (isa<CXXConstructorDecl>(OldMethod))
2660 NewDiag = diag::err_constructor_redeclared;
2661 else if (isa<CXXDestructorDecl>(NewMethod))
2662 NewDiag = diag::err_destructor_redeclared;
2663 else if (isa<CXXConversionDecl>(NewMethod))
2664 NewDiag = diag::err_conv_function_redeclared;
2665 else
2666 NewDiag = diag::err_member_redeclared;
2667
2668 Diag(New->getLocation(), NewDiag);
2669 } else {
2670 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2671 << New << New->getType();
2672 }
2673 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2674
2675 // Complain if this is an explicit declaration of a special
2676 // member that was initially declared implicitly.
2677 //
2678 // As an exception, it's okay to befriend such methods in order
2679 // to permit the implicit constructor/destructor/operator calls.
2680 } else if (OldMethod->isImplicit()) {
2681 if (isFriend) {
2682 NewMethod->setImplicit();
2683 } else {
2684 Diag(NewMethod->getLocation(),
2685 diag::err_definition_of_implicitly_declared_member)
2686 << New << getSpecialMember(OldMethod);
2687 return true;
2688 }
2689 } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2690 Diag(NewMethod->getLocation(),
2691 diag::err_definition_of_explicitly_defaulted_member)
2692 << getSpecialMember(OldMethod);
2693 return true;
2694 }
2695 }
2696
2697 // C++11 [dcl.attr.noreturn]p1:
2698 // The first declaration of a function shall specify the noreturn
2699 // attribute if any declaration of that function specifies the noreturn
2700 // attribute.
2701 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
2702 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
2703 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
2704 Diag(Old->getFirstDecl()->getLocation(),
2705 diag::note_noreturn_missing_first_decl);
2706 }
2707
2708 // C++11 [dcl.attr.depend]p2:
2709 // The first declaration of a function shall specify the
2710 // carries_dependency attribute for its declarator-id if any declaration
2711 // of the function specifies the carries_dependency attribute.
2712 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
2713 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
2714 Diag(CDA->getLocation(),
2715 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2716 Diag(Old->getFirstDecl()->getLocation(),
2717 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2718 }
2719
2720 // (C++98 8.3.5p3):
2721 // All declarations for a function shall agree exactly in both the
2722 // return type and the parameter-type-list.
2723 // We also want to respect all the extended bits except noreturn.
2724
2725 // noreturn should now match unless the old type info didn't have it.
2726 QualType OldQTypeForComparison = OldQType;
2727 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2728 assert(OldQType == QualType(OldType, 0));
2729 const FunctionType *OldTypeForComparison
2730 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2731 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2732 assert(OldQTypeForComparison.isCanonical());
2733 }
2734
2735 if (haveIncompatibleLanguageLinkages(Old, New)) {
2736 // As a special case, retain the language linkage from previous
2737 // declarations of a friend function as an extension.
2738 //
2739 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
2740 // and is useful because there's otherwise no way to specify language
2741 // linkage within class scope.
2742 //
2743 // Check cautiously as the friend object kind isn't yet complete.
2744 if (New->getFriendObjectKind() != Decl::FOK_None) {
2745 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
2746 Diag(OldLocation, PrevDiag);
2747 } else {
2748 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2749 Diag(OldLocation, PrevDiag);
2750 return true;
2751 }
2752 }
2753
2754 if (OldQTypeForComparison == NewQType)
2755 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2756
2757 if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2758 New->isLocalExternDecl()) {
2759 // It's OK if we couldn't merge types for a local function declaraton
2760 // if either the old or new type is dependent. We'll merge the types
2761 // when we instantiate the function.
2762 return false;
2763 }
2764
2765 // Fall through for conflicting redeclarations and redefinitions.
2766 }
2767
2768 // C: Function types need to be compatible, not identical. This handles
2769 // duplicate function decls like "void f(int); void f(enum X);" properly.
2770 if (!getLangOpts().CPlusPlus &&
2771 Context.typesAreCompatible(OldQType, NewQType)) {
2772 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2773 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2774 const FunctionProtoType *OldProto = nullptr;
2775 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2776 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2777 // The old declaration provided a function prototype, but the
2778 // new declaration does not. Merge in the prototype.
2779 assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2780 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
2781 NewQType =
2782 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
2783 OldProto->getExtProtoInfo());
2784 New->setType(NewQType);
2785 New->setHasInheritedPrototype();
2786
2787 // Synthesize parameters with the same types.
2788 SmallVector<ParmVarDecl*, 16> Params;
2789 for (const auto &ParamType : OldProto->param_types()) {
2790 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
2791 SourceLocation(), nullptr,
2792 ParamType, /*TInfo=*/nullptr,
2793 SC_None, nullptr);
2794 Param->setScopeInfo(0, Params.size());
2795 Param->setImplicit();
2796 Params.push_back(Param);
2797 }
2798
2799 New->setParams(Params);
2800 }
2801
2802 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2803 }
2804
2805 // GNU C permits a K&R definition to follow a prototype declaration
2806 // if the declared types of the parameters in the K&R definition
2807 // match the types in the prototype declaration, even when the
2808 // promoted types of the parameters from the K&R definition differ
2809 // from the types in the prototype. GCC then keeps the types from
2810 // the prototype.
2811 //
2812 // If a variadic prototype is followed by a non-variadic K&R definition,
2813 // the K&R definition becomes variadic. This is sort of an edge case, but
2814 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2815 // C99 6.9.1p8.
2816 if (!getLangOpts().CPlusPlus &&
2817 Old->hasPrototype() && !New->hasPrototype() &&
2818 New->getType()->getAs<FunctionProtoType>() &&
2819 Old->getNumParams() == New->getNumParams()) {
2820 SmallVector<QualType, 16> ArgTypes;
2821 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2822 const FunctionProtoType *OldProto
2823 = Old->getType()->getAs<FunctionProtoType>();
2824 const FunctionProtoType *NewProto
2825 = New->getType()->getAs<FunctionProtoType>();
2826
2827 // Determine whether this is the GNU C extension.
2828 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
2829 NewProto->getReturnType());
2830 bool LooseCompatible = !MergedReturn.isNull();
2831 for (unsigned Idx = 0, End = Old->getNumParams();
2832 LooseCompatible && Idx != End; ++Idx) {
2833 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2834 ParmVarDecl *NewParm = New->getParamDecl(Idx);
2835 if (Context.typesAreCompatible(OldParm->getType(),
2836 NewProto->getParamType(Idx))) {
2837 ArgTypes.push_back(NewParm->getType());
2838 } else if (Context.typesAreCompatible(OldParm->getType(),
2839 NewParm->getType(),
2840 /*CompareUnqualified=*/true)) {
2841 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
2842 NewProto->getParamType(Idx) };
2843 Warnings.push_back(Warn);
2844 ArgTypes.push_back(NewParm->getType());
2845 } else
2846 LooseCompatible = false;
2847 }
2848
2849 if (LooseCompatible) {
2850 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2851 Diag(Warnings[Warn].NewParm->getLocation(),
2852 diag::ext_param_promoted_not_compatible_with_prototype)
2853 << Warnings[Warn].PromotedType
2854 << Warnings[Warn].OldParm->getType();
2855 if (Warnings[Warn].OldParm->getLocation().isValid())
2856 Diag(Warnings[Warn].OldParm->getLocation(),
2857 diag::note_previous_declaration);
2858 }
2859
2860 if (MergeTypeWithOld)
2861 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2862 OldProto->getExtProtoInfo()));
2863 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2864 }
2865
2866 // Fall through to diagnose conflicting types.
2867 }
2868
2869 // A function that has already been declared has been redeclared or
2870 // defined with a different type; show an appropriate diagnostic.
2871
2872 // If the previous declaration was an implicitly-generated builtin
2873 // declaration, then at the very least we should use a specialized note.
2874 unsigned BuiltinID;
2875 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2876 // If it's actually a library-defined builtin function like 'malloc'
2877 // or 'printf', just warn about the incompatible redeclaration.
2878 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2879 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2880 Diag(OldLocation, diag::note_previous_builtin_declaration)
2881 << Old << Old->getType();
2882
2883 // If this is a global redeclaration, just forget hereafter
2884 // about the "builtin-ness" of the function.
2885 //
2886 // Doing this for local extern declarations is problematic. If
2887 // the builtin declaration remains visible, a second invalid
2888 // local declaration will produce a hard error; if it doesn't
2889 // remain visible, a single bogus local redeclaration (which is
2890 // actually only a warning) could break all the downstream code.
2891 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2892 New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2893
2894 return false;
2895 }
2896
2897 PrevDiag = diag::note_previous_builtin_declaration;
2898 }
2899
2900 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2901 Diag(OldLocation, PrevDiag) << Old << Old->getType();
2902 return true;
2903 }
2904
2905 /// \brief Completes the merge of two function declarations that are
2906 /// known to be compatible.
2907 ///
2908 /// This routine handles the merging of attributes and other
2909 /// properties of function declarations from the old declaration to
2910 /// the new declaration, once we know that New is in fact a
2911 /// redeclaration of Old.
2912 ///
2913 /// \returns false
MergeCompatibleFunctionDecls(FunctionDecl * New,FunctionDecl * Old,Scope * S,bool MergeTypeWithOld)2914 bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2915 Scope *S, bool MergeTypeWithOld) {
2916 // Merge the attributes
2917 mergeDeclAttributes(New, Old);
2918
2919 // Merge "pure" flag.
2920 if (Old->isPure())
2921 New->setPure();
2922
2923 // Merge "used" flag.
2924 if (Old->getMostRecentDecl()->isUsed(false))
2925 New->setIsUsed();
2926
2927 // Merge attributes from the parameters. These can mismatch with K&R
2928 // declarations.
2929 if (New->getNumParams() == Old->getNumParams())
2930 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2931 mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2932 *this);
2933
2934 if (getLangOpts().CPlusPlus)
2935 return MergeCXXFunctionDecl(New, Old, S);
2936
2937 // Merge the function types so the we get the composite types for the return
2938 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2939 // was visible.
2940 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2941 if (!Merged.isNull() && MergeTypeWithOld)
2942 New->setType(Merged);
2943
2944 return false;
2945 }
2946
2947
mergeObjCMethodDecls(ObjCMethodDecl * newMethod,ObjCMethodDecl * oldMethod)2948 void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2949 ObjCMethodDecl *oldMethod) {
2950
2951 // Merge the attributes, including deprecated/unavailable
2952 AvailabilityMergeKind MergeKind =
2953 isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2954 : AMK_Override;
2955 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2956
2957 // Merge attributes from the parameters.
2958 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2959 oe = oldMethod->param_end();
2960 for (ObjCMethodDecl::param_iterator
2961 ni = newMethod->param_begin(), ne = newMethod->param_end();
2962 ni != ne && oi != oe; ++ni, ++oi)
2963 mergeParamDeclAttributes(*ni, *oi, *this);
2964
2965 CheckObjCMethodOverride(newMethod, oldMethod);
2966 }
2967
2968 /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2969 /// scope as a previous declaration 'Old'. Figure out how to merge their types,
2970 /// emitting diagnostics as appropriate.
2971 ///
2972 /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2973 /// to here in AddInitializerToDecl. We can't check them before the initializer
2974 /// is attached.
MergeVarDeclTypes(VarDecl * New,VarDecl * Old,bool MergeTypeWithOld)2975 void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2976 bool MergeTypeWithOld) {
2977 if (New->isInvalidDecl() || Old->isInvalidDecl())
2978 return;
2979
2980 QualType MergedT;
2981 if (getLangOpts().CPlusPlus) {
2982 if (New->getType()->isUndeducedType()) {
2983 // We don't know what the new type is until the initializer is attached.
2984 return;
2985 } else if (Context.hasSameType(New->getType(), Old->getType())) {
2986 // These could still be something that needs exception specs checked.
2987 return MergeVarDeclExceptionSpecs(New, Old);
2988 }
2989 // C++ [basic.link]p10:
2990 // [...] the types specified by all declarations referring to a given
2991 // object or function shall be identical, except that declarations for an
2992 // array object can specify array types that differ by the presence or
2993 // absence of a major array bound (8.3.4).
2994 else if (Old->getType()->isIncompleteArrayType() &&
2995 New->getType()->isArrayType()) {
2996 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2997 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2998 if (Context.hasSameType(OldArray->getElementType(),
2999 NewArray->getElementType()))
3000 MergedT = New->getType();
3001 } else if (Old->getType()->isArrayType() &&
3002 New->getType()->isIncompleteArrayType()) {
3003 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3004 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3005 if (Context.hasSameType(OldArray->getElementType(),
3006 NewArray->getElementType()))
3007 MergedT = Old->getType();
3008 } else if (New->getType()->isObjCObjectPointerType() &&
3009 Old->getType()->isObjCObjectPointerType()) {
3010 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3011 Old->getType());
3012 }
3013 } else {
3014 // C 6.2.7p2:
3015 // All declarations that refer to the same object or function shall have
3016 // compatible type.
3017 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3018 }
3019 if (MergedT.isNull()) {
3020 // It's OK if we couldn't merge types if either type is dependent, for a
3021 // block-scope variable. In other cases (static data members of class
3022 // templates, variable templates, ...), we require the types to be
3023 // equivalent.
3024 // FIXME: The C++ standard doesn't say anything about this.
3025 if ((New->getType()->isDependentType() ||
3026 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3027 // If the old type was dependent, we can't merge with it, so the new type
3028 // becomes dependent for now. We'll reproduce the original type when we
3029 // instantiate the TypeSourceInfo for the variable.
3030 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3031 New->setType(Context.DependentTy);
3032 return;
3033 }
3034
3035 // FIXME: Even if this merging succeeds, some other non-visible declaration
3036 // of this variable might have an incompatible type. For instance:
3037 //
3038 // extern int arr[];
3039 // void f() { extern int arr[2]; }
3040 // void g() { extern int arr[3]; }
3041 //
3042 // Neither C nor C++ requires a diagnostic for this, but we should still try
3043 // to diagnose it.
3044 Diag(New->getLocation(), diag::err_redefinition_different_type)
3045 << New->getDeclName() << New->getType() << Old->getType();
3046 Diag(Old->getLocation(), diag::note_previous_definition);
3047 return New->setInvalidDecl();
3048 }
3049
3050 // Don't actually update the type on the new declaration if the old
3051 // declaration was an extern declaration in a different scope.
3052 if (MergeTypeWithOld)
3053 New->setType(MergedT);
3054 }
3055
mergeTypeWithPrevious(Sema & S,VarDecl * NewVD,VarDecl * OldVD,LookupResult & Previous)3056 static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3057 LookupResult &Previous) {
3058 // C11 6.2.7p4:
3059 // For an identifier with internal or external linkage declared
3060 // in a scope in which a prior declaration of that identifier is
3061 // visible, if the prior declaration specifies internal or
3062 // external linkage, the type of the identifier at the later
3063 // declaration becomes the composite type.
3064 //
3065 // If the variable isn't visible, we do not merge with its type.
3066 if (Previous.isShadowed())
3067 return false;
3068
3069 if (S.getLangOpts().CPlusPlus) {
3070 // C++11 [dcl.array]p3:
3071 // If there is a preceding declaration of the entity in the same
3072 // scope in which the bound was specified, an omitted array bound
3073 // is taken to be the same as in that earlier declaration.
3074 return NewVD->isPreviousDeclInSameBlockScope() ||
3075 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3076 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3077 } else {
3078 // If the old declaration was function-local, don't merge with its
3079 // type unless we're in the same function.
3080 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3081 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3082 }
3083 }
3084
3085 /// MergeVarDecl - We just parsed a variable 'New' which has the same name
3086 /// and scope as a previous declaration 'Old'. Figure out how to resolve this
3087 /// situation, merging decls or emitting diagnostics as appropriate.
3088 ///
3089 /// Tentative definition rules (C99 6.9.2p2) are checked by
3090 /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3091 /// definitions here, since the initializer hasn't been attached.
3092 ///
MergeVarDecl(VarDecl * New,LookupResult & Previous)3093 void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3094 // If the new decl is already invalid, don't do any other checking.
3095 if (New->isInvalidDecl())
3096 return;
3097
3098 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3099
3100 // Verify the old decl was also a variable or variable template.
3101 VarDecl *Old = nullptr;
3102 VarTemplateDecl *OldTemplate = nullptr;
3103 if (Previous.isSingleResult()) {
3104 if (NewTemplate) {
3105 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3106 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3107 } else
3108 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3109 }
3110 if (!Old) {
3111 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3112 << New->getDeclName();
3113 Diag(Previous.getRepresentativeDecl()->getLocation(),
3114 diag::note_previous_definition);
3115 return New->setInvalidDecl();
3116 }
3117
3118 if (!shouldLinkPossiblyHiddenDecl(Old, New))
3119 return;
3120
3121 // Ensure the template parameters are compatible.
3122 if (NewTemplate &&
3123 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3124 OldTemplate->getTemplateParameters(),
3125 /*Complain=*/true, TPL_TemplateMatch))
3126 return;
3127
3128 // C++ [class.mem]p1:
3129 // A member shall not be declared twice in the member-specification [...]
3130 //
3131 // Here, we need only consider static data members.
3132 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3133 Diag(New->getLocation(), diag::err_duplicate_member)
3134 << New->getIdentifier();
3135 Diag(Old->getLocation(), diag::note_previous_declaration);
3136 New->setInvalidDecl();
3137 }
3138
3139 mergeDeclAttributes(New, Old);
3140 // Warn if an already-declared variable is made a weak_import in a subsequent
3141 // declaration
3142 if (New->hasAttr<WeakImportAttr>() &&
3143 Old->getStorageClass() == SC_None &&
3144 !Old->hasAttr<WeakImportAttr>()) {
3145 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3146 Diag(Old->getLocation(), diag::note_previous_definition);
3147 // Remove weak_import attribute on new declaration.
3148 New->dropAttr<WeakImportAttr>();
3149 }
3150
3151 // Merge the types.
3152 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3153
3154 if (New->isInvalidDecl())
3155 return;
3156
3157 diag::kind PrevDiag;
3158 SourceLocation OldLocation;
3159 std::tie(PrevDiag, OldLocation) =
3160 getNoteDiagForInvalidRedeclaration(Old, New);
3161
3162 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3163 if (New->getStorageClass() == SC_Static &&
3164 !New->isStaticDataMember() &&
3165 Old->hasExternalFormalLinkage()) {
3166 if (getLangOpts().MicrosoftExt) {
3167 Diag(New->getLocation(), diag::ext_static_non_static)
3168 << New->getDeclName();
3169 Diag(OldLocation, PrevDiag);
3170 } else {
3171 Diag(New->getLocation(), diag::err_static_non_static)
3172 << New->getDeclName();
3173 Diag(OldLocation, PrevDiag);
3174 return New->setInvalidDecl();
3175 }
3176 }
3177 // C99 6.2.2p4:
3178 // For an identifier declared with the storage-class specifier
3179 // extern in a scope in which a prior declaration of that
3180 // identifier is visible,23) if the prior declaration specifies
3181 // internal or external linkage, the linkage of the identifier at
3182 // the later declaration is the same as the linkage specified at
3183 // the prior declaration. If no prior declaration is visible, or
3184 // if the prior declaration specifies no linkage, then the
3185 // identifier has external linkage.
3186 if (New->hasExternalStorage() && Old->hasLinkage())
3187 /* Okay */;
3188 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3189 !New->isStaticDataMember() &&
3190 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3191 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3192 Diag(OldLocation, PrevDiag);
3193 return New->setInvalidDecl();
3194 }
3195
3196 // Check if extern is followed by non-extern and vice-versa.
3197 if (New->hasExternalStorage() &&
3198 !Old->hasLinkage() && Old->isLocalVarDecl()) {
3199 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3200 Diag(OldLocation, PrevDiag);
3201 return New->setInvalidDecl();
3202 }
3203 if (Old->hasLinkage() && New->isLocalVarDecl() &&
3204 !New->hasExternalStorage()) {
3205 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3206 Diag(OldLocation, PrevDiag);
3207 return New->setInvalidDecl();
3208 }
3209
3210 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3211
3212 // FIXME: The test for external storage here seems wrong? We still
3213 // need to check for mismatches.
3214 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3215 // Don't complain about out-of-line definitions of static members.
3216 !(Old->getLexicalDeclContext()->isRecord() &&
3217 !New->getLexicalDeclContext()->isRecord())) {
3218 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3219 Diag(OldLocation, PrevDiag);
3220 return New->setInvalidDecl();
3221 }
3222
3223 if (New->getTLSKind() != Old->getTLSKind()) {
3224 if (!Old->getTLSKind()) {
3225 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3226 Diag(OldLocation, PrevDiag);
3227 } else if (!New->getTLSKind()) {
3228 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3229 Diag(OldLocation, PrevDiag);
3230 } else {
3231 // Do not allow redeclaration to change the variable between requiring
3232 // static and dynamic initialization.
3233 // FIXME: GCC allows this, but uses the TLS keyword on the first
3234 // declaration to determine the kind. Do we need to be compatible here?
3235 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3236 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3237 Diag(OldLocation, PrevDiag);
3238 }
3239 }
3240
3241 // C++ doesn't have tentative definitions, so go right ahead and check here.
3242 const VarDecl *Def;
3243 if (getLangOpts().CPlusPlus &&
3244 New->isThisDeclarationADefinition() == VarDecl::Definition &&
3245 (Def = Old->getDefinition())) {
3246 Diag(New->getLocation(), diag::err_redefinition) << New;
3247 Diag(Def->getLocation(), diag::note_previous_definition);
3248 New->setInvalidDecl();
3249 return;
3250 }
3251
3252 if (haveIncompatibleLanguageLinkages(Old, New)) {
3253 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3254 Diag(OldLocation, PrevDiag);
3255 New->setInvalidDecl();
3256 return;
3257 }
3258
3259 // Merge "used" flag.
3260 if (Old->getMostRecentDecl()->isUsed(false))
3261 New->setIsUsed();
3262
3263 // Keep a chain of previous declarations.
3264 New->setPreviousDecl(Old);
3265 if (NewTemplate)
3266 NewTemplate->setPreviousDecl(OldTemplate);
3267
3268 // Inherit access appropriately.
3269 New->setAccess(Old->getAccess());
3270 if (NewTemplate)
3271 NewTemplate->setAccess(New->getAccess());
3272 }
3273
3274 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3275 /// no declarator (e.g. "struct foo;") is parsed.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS)3276 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3277 DeclSpec &DS) {
3278 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3279 }
3280
HandleTagNumbering(Sema & S,const TagDecl * Tag,Scope * TagScope)3281 static void HandleTagNumbering(Sema &S, const TagDecl *Tag, Scope *TagScope) {
3282 if (!S.Context.getLangOpts().CPlusPlus)
3283 return;
3284
3285 if (isa<CXXRecordDecl>(Tag->getParent())) {
3286 // If this tag is the direct child of a class, number it if
3287 // it is anonymous.
3288 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3289 return;
3290 MangleNumberingContext &MCtx =
3291 S.Context.getManglingNumberContext(Tag->getParent());
3292 S.Context.setManglingNumber(
3293 Tag, MCtx.getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3294 return;
3295 }
3296
3297 // If this tag isn't a direct child of a class, number it if it is local.
3298 Decl *ManglingContextDecl;
3299 if (MangleNumberingContext *MCtx =
3300 S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3301 ManglingContextDecl)) {
3302 S.Context.setManglingNumber(
3303 Tag,
3304 MCtx->getManglingNumber(Tag, TagScope->getMSLocalManglingNumber()));
3305 }
3306 }
3307
3308 /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3309 /// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3310 /// parameters to cope with template friend declarations.
ParsedFreeStandingDeclSpec(Scope * S,AccessSpecifier AS,DeclSpec & DS,MultiTemplateParamsArg TemplateParams,bool IsExplicitInstantiation)3311 Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3312 DeclSpec &DS,
3313 MultiTemplateParamsArg TemplateParams,
3314 bool IsExplicitInstantiation) {
3315 Decl *TagD = nullptr;
3316 TagDecl *Tag = nullptr;
3317 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3318 DS.getTypeSpecType() == DeclSpec::TST_struct ||
3319 DS.getTypeSpecType() == DeclSpec::TST_interface ||
3320 DS.getTypeSpecType() == DeclSpec::TST_union ||
3321 DS.getTypeSpecType() == DeclSpec::TST_enum) {
3322 TagD = DS.getRepAsDecl();
3323
3324 if (!TagD) // We probably had an error
3325 return nullptr;
3326
3327 // Note that the above type specs guarantee that the
3328 // type rep is a Decl, whereas in many of the others
3329 // it's a Type.
3330 if (isa<TagDecl>(TagD))
3331 Tag = cast<TagDecl>(TagD);
3332 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3333 Tag = CTD->getTemplatedDecl();
3334 }
3335
3336 if (Tag) {
3337 HandleTagNumbering(*this, Tag, S);
3338 Tag->setFreeStanding();
3339 if (Tag->isInvalidDecl())
3340 return Tag;
3341 }
3342
3343 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3344 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3345 // or incomplete types shall not be restrict-qualified."
3346 if (TypeQuals & DeclSpec::TQ_restrict)
3347 Diag(DS.getRestrictSpecLoc(),
3348 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3349 << DS.getSourceRange();
3350 }
3351
3352 if (DS.isConstexprSpecified()) {
3353 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3354 // and definitions of functions and variables.
3355 if (Tag)
3356 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3357 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3358 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3359 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3360 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3361 else
3362 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3363 // Don't emit warnings after this error.
3364 return TagD;
3365 }
3366
3367 DiagnoseFunctionSpecifiers(DS);
3368
3369 if (DS.isFriendSpecified()) {
3370 // If we're dealing with a decl but not a TagDecl, assume that
3371 // whatever routines created it handled the friendship aspect.
3372 if (TagD && !Tag)
3373 return nullptr;
3374 return ActOnFriendTypeDecl(S, DS, TemplateParams);
3375 }
3376
3377 CXXScopeSpec &SS = DS.getTypeSpecScope();
3378 bool IsExplicitSpecialization =
3379 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3380 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3381 !IsExplicitInstantiation && !IsExplicitSpecialization) {
3382 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3383 // nested-name-specifier unless it is an explicit instantiation
3384 // or an explicit specialization.
3385 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3386 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3387 << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3388 DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3389 DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3390 DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3391 << SS.getRange();
3392 return nullptr;
3393 }
3394
3395 // Track whether this decl-specifier declares anything.
3396 bool DeclaresAnything = true;
3397
3398 // Handle anonymous struct definitions.
3399 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3400 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3401 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3402 if (getLangOpts().CPlusPlus ||
3403 Record->getDeclContext()->isRecord())
3404 return BuildAnonymousStructOrUnion(S, DS, AS, Record, Context.getPrintingPolicy());
3405
3406 DeclaresAnything = false;
3407 }
3408 }
3409
3410 // Check for Microsoft C extension: anonymous struct member.
3411 if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3412 CurContext->isRecord() &&
3413 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3414 // Handle 2 kinds of anonymous struct:
3415 // struct STRUCT;
3416 // and
3417 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
3418 RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3419 if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3420 (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3421 DS.getRepAsType().get()->isStructureType())) {
3422 Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3423 << DS.getSourceRange();
3424 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3425 }
3426 }
3427
3428 // Skip all the checks below if we have a type error.
3429 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3430 (TagD && TagD->isInvalidDecl()))
3431 return TagD;
3432
3433 if (getLangOpts().CPlusPlus &&
3434 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3435 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3436 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3437 !Enum->getIdentifier() && !Enum->isInvalidDecl())
3438 DeclaresAnything = false;
3439
3440 if (!DS.isMissingDeclaratorOk()) {
3441 // Customize diagnostic for a typedef missing a name.
3442 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3443 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3444 << DS.getSourceRange();
3445 else
3446 DeclaresAnything = false;
3447 }
3448
3449 if (DS.isModulePrivateSpecified() &&
3450 Tag && Tag->getDeclContext()->isFunctionOrMethod())
3451 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3452 << Tag->getTagKind()
3453 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3454
3455 ActOnDocumentableDecl(TagD);
3456
3457 // C 6.7/2:
3458 // A declaration [...] shall declare at least a declarator [...], a tag,
3459 // or the members of an enumeration.
3460 // C++ [dcl.dcl]p3:
3461 // [If there are no declarators], and except for the declaration of an
3462 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
3463 // names into the program, or shall redeclare a name introduced by a
3464 // previous declaration.
3465 if (!DeclaresAnything) {
3466 // In C, we allow this as a (popular) extension / bug. Don't bother
3467 // producing further diagnostics for redundant qualifiers after this.
3468 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3469 return TagD;
3470 }
3471
3472 // C++ [dcl.stc]p1:
3473 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3474 // init-declarator-list of the declaration shall not be empty.
3475 // C++ [dcl.fct.spec]p1:
3476 // If a cv-qualifier appears in a decl-specifier-seq, the
3477 // init-declarator-list of the declaration shall not be empty.
3478 //
3479 // Spurious qualifiers here appear to be valid in C.
3480 unsigned DiagID = diag::warn_standalone_specifier;
3481 if (getLangOpts().CPlusPlus)
3482 DiagID = diag::ext_standalone_specifier;
3483
3484 // Note that a linkage-specification sets a storage class, but
3485 // 'extern "C" struct foo;' is actually valid and not theoretically
3486 // useless.
3487 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
3488 if (SCS == DeclSpec::SCS_mutable)
3489 // Since mutable is not a viable storage class specifier in C, there is
3490 // no reason to treat it as an extension. Instead, diagnose as an error.
3491 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
3492 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3493 Diag(DS.getStorageClassSpecLoc(), DiagID)
3494 << DeclSpec::getSpecifierName(SCS);
3495 }
3496
3497 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3498 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3499 << DeclSpec::getSpecifierName(TSCS);
3500 if (DS.getTypeQualifiers()) {
3501 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3502 Diag(DS.getConstSpecLoc(), DiagID) << "const";
3503 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3504 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3505 // Restrict is covered above.
3506 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3507 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3508 }
3509
3510 // Warn about ignored type attributes, for example:
3511 // __attribute__((aligned)) struct A;
3512 // Attributes should be placed after tag to apply to type declaration.
3513 if (!DS.getAttributes().empty()) {
3514 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3515 if (TypeSpecType == DeclSpec::TST_class ||
3516 TypeSpecType == DeclSpec::TST_struct ||
3517 TypeSpecType == DeclSpec::TST_interface ||
3518 TypeSpecType == DeclSpec::TST_union ||
3519 TypeSpecType == DeclSpec::TST_enum) {
3520 AttributeList* attrs = DS.getAttributes().getList();
3521 while (attrs) {
3522 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3523 << attrs->getName()
3524 << (TypeSpecType == DeclSpec::TST_class ? 0 :
3525 TypeSpecType == DeclSpec::TST_struct ? 1 :
3526 TypeSpecType == DeclSpec::TST_union ? 2 :
3527 TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3528 attrs = attrs->getNext();
3529 }
3530 }
3531 }
3532
3533 return TagD;
3534 }
3535
3536 /// We are trying to inject an anonymous member into the given scope;
3537 /// check if there's an existing declaration that can't be overloaded.
3538 ///
3539 /// \return true if this is a forbidden redeclaration
CheckAnonMemberRedeclaration(Sema & SemaRef,Scope * S,DeclContext * Owner,DeclarationName Name,SourceLocation NameLoc,unsigned diagnostic)3540 static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3541 Scope *S,
3542 DeclContext *Owner,
3543 DeclarationName Name,
3544 SourceLocation NameLoc,
3545 unsigned diagnostic) {
3546 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3547 Sema::ForRedeclaration);
3548 if (!SemaRef.LookupName(R, S)) return false;
3549
3550 if (R.getAsSingle<TagDecl>())
3551 return false;
3552
3553 // Pick a representative declaration.
3554 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3555 assert(PrevDecl && "Expected a non-null Decl");
3556
3557 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3558 return false;
3559
3560 SemaRef.Diag(NameLoc, diagnostic) << Name;
3561 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3562
3563 return true;
3564 }
3565
3566 /// InjectAnonymousStructOrUnionMembers - Inject the members of the
3567 /// anonymous struct or union AnonRecord into the owning context Owner
3568 /// and scope S. This routine will be invoked just after we realize
3569 /// that an unnamed union or struct is actually an anonymous union or
3570 /// struct, e.g.,
3571 ///
3572 /// @code
3573 /// union {
3574 /// int i;
3575 /// float f;
3576 /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3577 /// // f into the surrounding scope.x
3578 /// @endcode
3579 ///
3580 /// This routine is recursive, injecting the names of nested anonymous
3581 /// structs/unions into the owning context and scope as well.
InjectAnonymousStructOrUnionMembers(Sema & SemaRef,Scope * S,DeclContext * Owner,RecordDecl * AnonRecord,AccessSpecifier AS,SmallVectorImpl<NamedDecl * > & Chaining,bool MSAnonStruct)3582 static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3583 DeclContext *Owner,
3584 RecordDecl *AnonRecord,
3585 AccessSpecifier AS,
3586 SmallVectorImpl<NamedDecl *> &Chaining,
3587 bool MSAnonStruct) {
3588 unsigned diagKind
3589 = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3590 : diag::err_anonymous_struct_member_redecl;
3591
3592 bool Invalid = false;
3593
3594 // Look every FieldDecl and IndirectFieldDecl with a name.
3595 for (auto *D : AnonRecord->decls()) {
3596 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
3597 cast<NamedDecl>(D)->getDeclName()) {
3598 ValueDecl *VD = cast<ValueDecl>(D);
3599 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3600 VD->getLocation(), diagKind)) {
3601 // C++ [class.union]p2:
3602 // The names of the members of an anonymous union shall be
3603 // distinct from the names of any other entity in the
3604 // scope in which the anonymous union is declared.
3605 Invalid = true;
3606 } else {
3607 // C++ [class.union]p2:
3608 // For the purpose of name lookup, after the anonymous union
3609 // definition, the members of the anonymous union are
3610 // considered to have been defined in the scope in which the
3611 // anonymous union is declared.
3612 unsigned OldChainingSize = Chaining.size();
3613 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3614 for (auto *PI : IF->chain())
3615 Chaining.push_back(PI);
3616 else
3617 Chaining.push_back(VD);
3618
3619 assert(Chaining.size() >= 2);
3620 NamedDecl **NamedChain =
3621 new (SemaRef.Context)NamedDecl*[Chaining.size()];
3622 for (unsigned i = 0; i < Chaining.size(); i++)
3623 NamedChain[i] = Chaining[i];
3624
3625 IndirectFieldDecl* IndirectField =
3626 IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3627 VD->getIdentifier(), VD->getType(),
3628 NamedChain, Chaining.size());
3629
3630 IndirectField->setAccess(AS);
3631 IndirectField->setImplicit();
3632 SemaRef.PushOnScopeChains(IndirectField, S);
3633
3634 // That includes picking up the appropriate access specifier.
3635 if (AS != AS_none) IndirectField->setAccess(AS);
3636
3637 Chaining.resize(OldChainingSize);
3638 }
3639 }
3640 }
3641
3642 return Invalid;
3643 }
3644
3645 /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3646 /// a VarDecl::StorageClass. Any error reporting is up to the caller:
3647 /// illegal input values are mapped to SC_None.
3648 static StorageClass
StorageClassSpecToVarDeclStorageClass(const DeclSpec & DS)3649 StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3650 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3651 assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3652 "Parser allowed 'typedef' as storage class VarDecl.");
3653 switch (StorageClassSpec) {
3654 case DeclSpec::SCS_unspecified: return SC_None;
3655 case DeclSpec::SCS_extern:
3656 if (DS.isExternInLinkageSpec())
3657 return SC_None;
3658 return SC_Extern;
3659 case DeclSpec::SCS_static: return SC_Static;
3660 case DeclSpec::SCS_auto: return SC_Auto;
3661 case DeclSpec::SCS_register: return SC_Register;
3662 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3663 // Illegal SCSs map to None: error reporting is up to the caller.
3664 case DeclSpec::SCS_mutable: // Fall through.
3665 case DeclSpec::SCS_typedef: return SC_None;
3666 }
3667 llvm_unreachable("unknown storage class specifier");
3668 }
3669
findDefaultInitializer(const CXXRecordDecl * Record)3670 static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
3671 assert(Record->hasInClassInitializer());
3672
3673 for (const auto *I : Record->decls()) {
3674 const auto *FD = dyn_cast<FieldDecl>(I);
3675 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
3676 FD = IFD->getAnonField();
3677 if (FD && FD->hasInClassInitializer())
3678 return FD->getLocation();
3679 }
3680
3681 llvm_unreachable("couldn't find in-class initializer");
3682 }
3683
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,SourceLocation DefaultInitLoc)3684 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3685 SourceLocation DefaultInitLoc) {
3686 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3687 return;
3688
3689 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
3690 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
3691 }
3692
checkDuplicateDefaultInit(Sema & S,CXXRecordDecl * Parent,CXXRecordDecl * AnonUnion)3693 static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
3694 CXXRecordDecl *AnonUnion) {
3695 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
3696 return;
3697
3698 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
3699 }
3700
3701 /// BuildAnonymousStructOrUnion - Handle the declaration of an
3702 /// anonymous structure or union. Anonymous unions are a C++ feature
3703 /// (C++ [class.union]) and a C11 feature; anonymous structures
3704 /// are a C11 feature and GNU C++ extension.
BuildAnonymousStructOrUnion(Scope * S,DeclSpec & DS,AccessSpecifier AS,RecordDecl * Record,const PrintingPolicy & Policy)3705 Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3706 AccessSpecifier AS,
3707 RecordDecl *Record,
3708 const PrintingPolicy &Policy) {
3709 DeclContext *Owner = Record->getDeclContext();
3710
3711 // Diagnose whether this anonymous struct/union is an extension.
3712 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3713 Diag(Record->getLocation(), diag::ext_anonymous_union);
3714 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3715 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3716 else if (!Record->isUnion() && !getLangOpts().C11)
3717 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3718
3719 // C and C++ require different kinds of checks for anonymous
3720 // structs/unions.
3721 bool Invalid = false;
3722 if (getLangOpts().CPlusPlus) {
3723 const char *PrevSpec = nullptr;
3724 unsigned DiagID;
3725 if (Record->isUnion()) {
3726 // C++ [class.union]p6:
3727 // Anonymous unions declared in a named namespace or in the
3728 // global namespace shall be declared static.
3729 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3730 (isa<TranslationUnitDecl>(Owner) ||
3731 (isa<NamespaceDecl>(Owner) &&
3732 cast<NamespaceDecl>(Owner)->getDeclName()))) {
3733 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3734 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3735
3736 // Recover by adding 'static'.
3737 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3738 PrevSpec, DiagID, Policy);
3739 }
3740 // C++ [class.union]p6:
3741 // A storage class is not allowed in a declaration of an
3742 // anonymous union in a class scope.
3743 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3744 isa<RecordDecl>(Owner)) {
3745 Diag(DS.getStorageClassSpecLoc(),
3746 diag::err_anonymous_union_with_storage_spec)
3747 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3748
3749 // Recover by removing the storage specifier.
3750 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3751 SourceLocation(),
3752 PrevSpec, DiagID, Context.getPrintingPolicy());
3753 }
3754 }
3755
3756 // Ignore const/volatile/restrict qualifiers.
3757 if (DS.getTypeQualifiers()) {
3758 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3759 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3760 << Record->isUnion() << "const"
3761 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3762 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3763 Diag(DS.getVolatileSpecLoc(),
3764 diag::ext_anonymous_struct_union_qualified)
3765 << Record->isUnion() << "volatile"
3766 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3767 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3768 Diag(DS.getRestrictSpecLoc(),
3769 diag::ext_anonymous_struct_union_qualified)
3770 << Record->isUnion() << "restrict"
3771 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3772 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3773 Diag(DS.getAtomicSpecLoc(),
3774 diag::ext_anonymous_struct_union_qualified)
3775 << Record->isUnion() << "_Atomic"
3776 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3777
3778 DS.ClearTypeQualifiers();
3779 }
3780
3781 // C++ [class.union]p2:
3782 // The member-specification of an anonymous union shall only
3783 // define non-static data members. [Note: nested types and
3784 // functions cannot be declared within an anonymous union. ]
3785 for (auto *Mem : Record->decls()) {
3786 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
3787 // C++ [class.union]p3:
3788 // An anonymous union shall not have private or protected
3789 // members (clause 11).
3790 assert(FD->getAccess() != AS_none);
3791 if (FD->getAccess() != AS_public) {
3792 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3793 << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3794 Invalid = true;
3795 }
3796
3797 // C++ [class.union]p1
3798 // An object of a class with a non-trivial constructor, a non-trivial
3799 // copy constructor, a non-trivial destructor, or a non-trivial copy
3800 // assignment operator cannot be a member of a union, nor can an
3801 // array of such objects.
3802 if (CheckNontrivialField(FD))
3803 Invalid = true;
3804 } else if (Mem->isImplicit()) {
3805 // Any implicit members are fine.
3806 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
3807 // This is a type that showed up in an
3808 // elaborated-type-specifier inside the anonymous struct or
3809 // union, but which actually declares a type outside of the
3810 // anonymous struct or union. It's okay.
3811 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
3812 if (!MemRecord->isAnonymousStructOrUnion() &&
3813 MemRecord->getDeclName()) {
3814 // Visual C++ allows type definition in anonymous struct or union.
3815 if (getLangOpts().MicrosoftExt)
3816 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3817 << (int)Record->isUnion();
3818 else {
3819 // This is a nested type declaration.
3820 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3821 << (int)Record->isUnion();
3822 Invalid = true;
3823 }
3824 } else {
3825 // This is an anonymous type definition within another anonymous type.
3826 // This is a popular extension, provided by Plan9, MSVC and GCC, but
3827 // not part of standard C++.
3828 Diag(MemRecord->getLocation(),
3829 diag::ext_anonymous_record_with_anonymous_type)
3830 << (int)Record->isUnion();
3831 }
3832 } else if (isa<AccessSpecDecl>(Mem)) {
3833 // Any access specifier is fine.
3834 } else if (isa<StaticAssertDecl>(Mem)) {
3835 // In C++1z, static_assert declarations are also fine.
3836 } else {
3837 // We have something that isn't a non-static data
3838 // member. Complain about it.
3839 unsigned DK = diag::err_anonymous_record_bad_member;
3840 if (isa<TypeDecl>(Mem))
3841 DK = diag::err_anonymous_record_with_type;
3842 else if (isa<FunctionDecl>(Mem))
3843 DK = diag::err_anonymous_record_with_function;
3844 else if (isa<VarDecl>(Mem))
3845 DK = diag::err_anonymous_record_with_static;
3846
3847 // Visual C++ allows type definition in anonymous struct or union.
3848 if (getLangOpts().MicrosoftExt &&
3849 DK == diag::err_anonymous_record_with_type)
3850 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
3851 << (int)Record->isUnion();
3852 else {
3853 Diag(Mem->getLocation(), DK)
3854 << (int)Record->isUnion();
3855 Invalid = true;
3856 }
3857 }
3858 }
3859
3860 // C++11 [class.union]p8 (DR1460):
3861 // At most one variant member of a union may have a
3862 // brace-or-equal-initializer.
3863 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
3864 Owner->isRecord())
3865 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
3866 cast<CXXRecordDecl>(Record));
3867 }
3868
3869 if (!Record->isUnion() && !Owner->isRecord()) {
3870 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3871 << (int)getLangOpts().CPlusPlus;
3872 Invalid = true;
3873 }
3874
3875 // Mock up a declarator.
3876 Declarator Dc(DS, Declarator::MemberContext);
3877 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3878 assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3879
3880 // Create a declaration for this anonymous struct/union.
3881 NamedDecl *Anon = nullptr;
3882 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3883 Anon = FieldDecl::Create(Context, OwningClass,
3884 DS.getLocStart(),
3885 Record->getLocation(),
3886 /*IdentifierInfo=*/nullptr,
3887 Context.getTypeDeclType(Record),
3888 TInfo,
3889 /*BitWidth=*/nullptr, /*Mutable=*/false,
3890 /*InitStyle=*/ICIS_NoInit);
3891 Anon->setAccess(AS);
3892 if (getLangOpts().CPlusPlus)
3893 FieldCollector->Add(cast<FieldDecl>(Anon));
3894 } else {
3895 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3896 VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3897 if (SCSpec == DeclSpec::SCS_mutable) {
3898 // mutable can only appear on non-static class members, so it's always
3899 // an error here
3900 Diag(Record->getLocation(), diag::err_mutable_nonmember);
3901 Invalid = true;
3902 SC = SC_None;
3903 }
3904
3905 Anon = VarDecl::Create(Context, Owner,
3906 DS.getLocStart(),
3907 Record->getLocation(), /*IdentifierInfo=*/nullptr,
3908 Context.getTypeDeclType(Record),
3909 TInfo, SC);
3910
3911 // Default-initialize the implicit variable. This initialization will be
3912 // trivial in almost all cases, except if a union member has an in-class
3913 // initializer:
3914 // union { int n = 0; };
3915 ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3916 }
3917 Anon->setImplicit();
3918
3919 // Mark this as an anonymous struct/union type.
3920 Record->setAnonymousStructOrUnion(true);
3921
3922 // Add the anonymous struct/union object to the current
3923 // context. We'll be referencing this object when we refer to one of
3924 // its members.
3925 Owner->addDecl(Anon);
3926
3927 // Inject the members of the anonymous struct/union into the owning
3928 // context and into the identifier resolver chain for name lookup
3929 // purposes.
3930 SmallVector<NamedDecl*, 2> Chain;
3931 Chain.push_back(Anon);
3932
3933 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3934 Chain, false))
3935 Invalid = true;
3936
3937 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
3938 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
3939 Decl *ManglingContextDecl;
3940 if (MangleNumberingContext *MCtx =
3941 getCurrentMangleNumberContext(NewVD->getDeclContext(),
3942 ManglingContextDecl)) {
3943 Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
3944 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
3945 }
3946 }
3947 }
3948
3949 if (Invalid)
3950 Anon->setInvalidDecl();
3951
3952 return Anon;
3953 }
3954
3955 /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3956 /// Microsoft C anonymous structure.
3957 /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3958 /// Example:
3959 ///
3960 /// struct A { int a; };
3961 /// struct B { struct A; int b; };
3962 ///
3963 /// void foo() {
3964 /// B var;
3965 /// var.a = 3;
3966 /// }
3967 ///
BuildMicrosoftCAnonymousStruct(Scope * S,DeclSpec & DS,RecordDecl * Record)3968 Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3969 RecordDecl *Record) {
3970
3971 // If there is no Record, get the record via the typedef.
3972 if (!Record)
3973 Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3974
3975 // Mock up a declarator.
3976 Declarator Dc(DS, Declarator::TypeNameContext);
3977 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3978 assert(TInfo && "couldn't build declarator info for anonymous struct");
3979
3980 // Create a declaration for this anonymous struct.
3981 NamedDecl *Anon = FieldDecl::Create(Context,
3982 cast<RecordDecl>(CurContext),
3983 DS.getLocStart(),
3984 DS.getLocStart(),
3985 /*IdentifierInfo=*/nullptr,
3986 Context.getTypeDeclType(Record),
3987 TInfo,
3988 /*BitWidth=*/nullptr, /*Mutable=*/false,
3989 /*InitStyle=*/ICIS_NoInit);
3990 Anon->setImplicit();
3991
3992 // Add the anonymous struct object to the current context.
3993 CurContext->addDecl(Anon);
3994
3995 // Inject the members of the anonymous struct into the current
3996 // context and into the identifier resolver chain for name lookup
3997 // purposes.
3998 SmallVector<NamedDecl*, 2> Chain;
3999 Chain.push_back(Anon);
4000
4001 RecordDecl *RecordDef = Record->getDefinition();
4002 if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
4003 RecordDef, AS_none,
4004 Chain, true))
4005 Anon->setInvalidDecl();
4006
4007 return Anon;
4008 }
4009
4010 /// GetNameForDeclarator - Determine the full declaration name for the
4011 /// given Declarator.
GetNameForDeclarator(Declarator & D)4012 DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4013 return GetNameFromUnqualifiedId(D.getName());
4014 }
4015
4016 /// \brief Retrieves the declaration name from a parsed unqualified-id.
4017 DeclarationNameInfo
GetNameFromUnqualifiedId(const UnqualifiedId & Name)4018 Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4019 DeclarationNameInfo NameInfo;
4020 NameInfo.setLoc(Name.StartLocation);
4021
4022 switch (Name.getKind()) {
4023
4024 case UnqualifiedId::IK_ImplicitSelfParam:
4025 case UnqualifiedId::IK_Identifier:
4026 NameInfo.setName(Name.Identifier);
4027 NameInfo.setLoc(Name.StartLocation);
4028 return NameInfo;
4029
4030 case UnqualifiedId::IK_OperatorFunctionId:
4031 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4032 Name.OperatorFunctionId.Operator));
4033 NameInfo.setLoc(Name.StartLocation);
4034 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4035 = Name.OperatorFunctionId.SymbolLocations[0];
4036 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4037 = Name.EndLocation.getRawEncoding();
4038 return NameInfo;
4039
4040 case UnqualifiedId::IK_LiteralOperatorId:
4041 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4042 Name.Identifier));
4043 NameInfo.setLoc(Name.StartLocation);
4044 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4045 return NameInfo;
4046
4047 case UnqualifiedId::IK_ConversionFunctionId: {
4048 TypeSourceInfo *TInfo;
4049 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4050 if (Ty.isNull())
4051 return DeclarationNameInfo();
4052 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
4053 Context.getCanonicalType(Ty)));
4054 NameInfo.setLoc(Name.StartLocation);
4055 NameInfo.setNamedTypeInfo(TInfo);
4056 return NameInfo;
4057 }
4058
4059 case UnqualifiedId::IK_ConstructorName: {
4060 TypeSourceInfo *TInfo;
4061 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
4062 if (Ty.isNull())
4063 return DeclarationNameInfo();
4064 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4065 Context.getCanonicalType(Ty)));
4066 NameInfo.setLoc(Name.StartLocation);
4067 NameInfo.setNamedTypeInfo(TInfo);
4068 return NameInfo;
4069 }
4070
4071 case UnqualifiedId::IK_ConstructorTemplateId: {
4072 // In well-formed code, we can only have a constructor
4073 // template-id that refers to the current context, so go there
4074 // to find the actual type being constructed.
4075 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
4076 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
4077 return DeclarationNameInfo();
4078
4079 // Determine the type of the class being constructed.
4080 QualType CurClassType = Context.getTypeDeclType(CurClass);
4081
4082 // FIXME: Check two things: that the template-id names the same type as
4083 // CurClassType, and that the template-id does not occur when the name
4084 // was qualified.
4085
4086 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
4087 Context.getCanonicalType(CurClassType)));
4088 NameInfo.setLoc(Name.StartLocation);
4089 // FIXME: should we retrieve TypeSourceInfo?
4090 NameInfo.setNamedTypeInfo(nullptr);
4091 return NameInfo;
4092 }
4093
4094 case UnqualifiedId::IK_DestructorName: {
4095 TypeSourceInfo *TInfo;
4096 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
4097 if (Ty.isNull())
4098 return DeclarationNameInfo();
4099 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
4100 Context.getCanonicalType(Ty)));
4101 NameInfo.setLoc(Name.StartLocation);
4102 NameInfo.setNamedTypeInfo(TInfo);
4103 return NameInfo;
4104 }
4105
4106 case UnqualifiedId::IK_TemplateId: {
4107 TemplateName TName = Name.TemplateId->Template.get();
4108 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
4109 return Context.getNameForTemplate(TName, TNameLoc);
4110 }
4111
4112 } // switch (Name.getKind())
4113
4114 llvm_unreachable("Unknown name kind");
4115 }
4116
getCoreType(QualType Ty)4117 static QualType getCoreType(QualType Ty) {
4118 do {
4119 if (Ty->isPointerType() || Ty->isReferenceType())
4120 Ty = Ty->getPointeeType();
4121 else if (Ty->isArrayType())
4122 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
4123 else
4124 return Ty.withoutLocalFastQualifiers();
4125 } while (true);
4126 }
4127
4128 /// hasSimilarParameters - Determine whether the C++ functions Declaration
4129 /// and Definition have "nearly" matching parameters. This heuristic is
4130 /// used to improve diagnostics in the case where an out-of-line function
4131 /// definition doesn't match any declaration within the class or namespace.
4132 /// Also sets Params to the list of indices to the parameters that differ
4133 /// between the declaration and the definition. If hasSimilarParameters
4134 /// returns true and Params is empty, then all of the parameters match.
hasSimilarParameters(ASTContext & Context,FunctionDecl * Declaration,FunctionDecl * Definition,SmallVectorImpl<unsigned> & Params)4135 static bool hasSimilarParameters(ASTContext &Context,
4136 FunctionDecl *Declaration,
4137 FunctionDecl *Definition,
4138 SmallVectorImpl<unsigned> &Params) {
4139 Params.clear();
4140 if (Declaration->param_size() != Definition->param_size())
4141 return false;
4142 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
4143 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
4144 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
4145
4146 // The parameter types are identical
4147 if (Context.hasSameType(DefParamTy, DeclParamTy))
4148 continue;
4149
4150 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
4151 QualType DefParamBaseTy = getCoreType(DefParamTy);
4152 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
4153 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
4154
4155 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
4156 (DeclTyName && DeclTyName == DefTyName))
4157 Params.push_back(Idx);
4158 else // The two parameters aren't even close
4159 return false;
4160 }
4161
4162 return true;
4163 }
4164
4165 /// NeedsRebuildingInCurrentInstantiation - Checks whether the given
4166 /// declarator needs to be rebuilt in the current instantiation.
4167 /// Any bits of declarator which appear before the name are valid for
4168 /// consideration here. That's specifically the type in the decl spec
4169 /// and the base type in any member-pointer chunks.
RebuildDeclaratorInCurrentInstantiation(Sema & S,Declarator & D,DeclarationName Name)4170 static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
4171 DeclarationName Name) {
4172 // The types we specifically need to rebuild are:
4173 // - typenames, typeofs, and decltypes
4174 // - types which will become injected class names
4175 // Of course, we also need to rebuild any type referencing such a
4176 // type. It's safest to just say "dependent", but we call out a
4177 // few cases here.
4178
4179 DeclSpec &DS = D.getMutableDeclSpec();
4180 switch (DS.getTypeSpecType()) {
4181 case DeclSpec::TST_typename:
4182 case DeclSpec::TST_typeofType:
4183 case DeclSpec::TST_underlyingType:
4184 case DeclSpec::TST_atomic: {
4185 // Grab the type from the parser.
4186 TypeSourceInfo *TSI = nullptr;
4187 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
4188 if (T.isNull() || !T->isDependentType()) break;
4189
4190 // Make sure there's a type source info. This isn't really much
4191 // of a waste; most dependent types should have type source info
4192 // attached already.
4193 if (!TSI)
4194 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
4195
4196 // Rebuild the type in the current instantiation.
4197 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
4198 if (!TSI) return true;
4199
4200 // Store the new type back in the decl spec.
4201 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
4202 DS.UpdateTypeRep(LocType);
4203 break;
4204 }
4205
4206 case DeclSpec::TST_decltype:
4207 case DeclSpec::TST_typeofExpr: {
4208 Expr *E = DS.getRepAsExpr();
4209 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
4210 if (Result.isInvalid()) return true;
4211 DS.UpdateExprRep(Result.get());
4212 break;
4213 }
4214
4215 default:
4216 // Nothing to do for these decl specs.
4217 break;
4218 }
4219
4220 // It doesn't matter what order we do this in.
4221 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
4222 DeclaratorChunk &Chunk = D.getTypeObject(I);
4223
4224 // The only type information in the declarator which can come
4225 // before the declaration name is the base type of a member
4226 // pointer.
4227 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
4228 continue;
4229
4230 // Rebuild the scope specifier in-place.
4231 CXXScopeSpec &SS = Chunk.Mem.Scope();
4232 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
4233 return true;
4234 }
4235
4236 return false;
4237 }
4238
ActOnDeclarator(Scope * S,Declarator & D)4239 Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4240 D.setFunctionDefinitionKind(FDK_Declaration);
4241 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4242
4243 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4244 Dcl && Dcl->getDeclContext()->isFileContext())
4245 Dcl->setTopLevelDeclInObjCContainer();
4246
4247 return Dcl;
4248 }
4249
4250 /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4251 /// If T is the name of a class, then each of the following shall have a
4252 /// name different from T:
4253 /// - every static data member of class T;
4254 /// - every member function of class T
4255 /// - every member of class T that is itself a type;
4256 /// \returns true if the declaration name violates these rules.
DiagnoseClassNameShadow(DeclContext * DC,DeclarationNameInfo NameInfo)4257 bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4258 DeclarationNameInfo NameInfo) {
4259 DeclarationName Name = NameInfo.getName();
4260
4261 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4262 if (Record->getIdentifier() && Record->getDeclName() == Name) {
4263 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4264 return true;
4265 }
4266
4267 return false;
4268 }
4269
4270 /// \brief Diagnose a declaration whose declarator-id has the given
4271 /// nested-name-specifier.
4272 ///
4273 /// \param SS The nested-name-specifier of the declarator-id.
4274 ///
4275 /// \param DC The declaration context to which the nested-name-specifier
4276 /// resolves.
4277 ///
4278 /// \param Name The name of the entity being declared.
4279 ///
4280 /// \param Loc The location of the name of the entity being declared.
4281 ///
4282 /// \returns true if we cannot safely recover from this error, false otherwise.
diagnoseQualifiedDeclaration(CXXScopeSpec & SS,DeclContext * DC,DeclarationName Name,SourceLocation Loc)4283 bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4284 DeclarationName Name,
4285 SourceLocation Loc) {
4286 DeclContext *Cur = CurContext;
4287 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4288 Cur = Cur->getParent();
4289
4290 // If the user provided a superfluous scope specifier that refers back to the
4291 // class in which the entity is already declared, diagnose and ignore it.
4292 //
4293 // class X {
4294 // void X::f();
4295 // };
4296 //
4297 // Note, it was once ill-formed to give redundant qualification in all
4298 // contexts, but that rule was removed by DR482.
4299 if (Cur->Equals(DC)) {
4300 if (Cur->isRecord()) {
4301 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
4302 : diag::err_member_extra_qualification)
4303 << Name << FixItHint::CreateRemoval(SS.getRange());
4304 SS.clear();
4305 } else {
4306 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
4307 }
4308 return false;
4309 }
4310
4311 // Check whether the qualifying scope encloses the scope of the original
4312 // declaration.
4313 if (!Cur->Encloses(DC)) {
4314 if (Cur->isRecord())
4315 Diag(Loc, diag::err_member_qualification)
4316 << Name << SS.getRange();
4317 else if (isa<TranslationUnitDecl>(DC))
4318 Diag(Loc, diag::err_invalid_declarator_global_scope)
4319 << Name << SS.getRange();
4320 else if (isa<FunctionDecl>(Cur))
4321 Diag(Loc, diag::err_invalid_declarator_in_function)
4322 << Name << SS.getRange();
4323 else if (isa<BlockDecl>(Cur))
4324 Diag(Loc, diag::err_invalid_declarator_in_block)
4325 << Name << SS.getRange();
4326 else
4327 Diag(Loc, diag::err_invalid_declarator_scope)
4328 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4329
4330 return true;
4331 }
4332
4333 if (Cur->isRecord()) {
4334 // Cannot qualify members within a class.
4335 Diag(Loc, diag::err_member_qualification)
4336 << Name << SS.getRange();
4337 SS.clear();
4338
4339 // C++ constructors and destructors with incorrect scopes can break
4340 // our AST invariants by having the wrong underlying types. If
4341 // that's the case, then drop this declaration entirely.
4342 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4343 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4344 !Context.hasSameType(Name.getCXXNameType(),
4345 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4346 return true;
4347
4348 return false;
4349 }
4350
4351 // C++11 [dcl.meaning]p1:
4352 // [...] "The nested-name-specifier of the qualified declarator-id shall
4353 // not begin with a decltype-specifer"
4354 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4355 while (SpecLoc.getPrefix())
4356 SpecLoc = SpecLoc.getPrefix();
4357 if (dyn_cast_or_null<DecltypeType>(
4358 SpecLoc.getNestedNameSpecifier()->getAsType()))
4359 Diag(Loc, diag::err_decltype_in_declarator)
4360 << SpecLoc.getTypeLoc().getSourceRange();
4361
4362 return false;
4363 }
4364
HandleDeclarator(Scope * S,Declarator & D,MultiTemplateParamsArg TemplateParamLists)4365 NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4366 MultiTemplateParamsArg TemplateParamLists) {
4367 // TODO: consider using NameInfo for diagnostic.
4368 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4369 DeclarationName Name = NameInfo.getName();
4370
4371 // All of these full declarators require an identifier. If it doesn't have
4372 // one, the ParsedFreeStandingDeclSpec action should be used.
4373 if (!Name) {
4374 if (!D.isInvalidType()) // Reject this if we think it is valid.
4375 Diag(D.getDeclSpec().getLocStart(),
4376 diag::err_declarator_need_ident)
4377 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4378 return nullptr;
4379 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4380 return nullptr;
4381
4382 // The scope passed in may not be a decl scope. Zip up the scope tree until
4383 // we find one that is.
4384 while ((S->getFlags() & Scope::DeclScope) == 0 ||
4385 (S->getFlags() & Scope::TemplateParamScope) != 0)
4386 S = S->getParent();
4387
4388 DeclContext *DC = CurContext;
4389 if (D.getCXXScopeSpec().isInvalid())
4390 D.setInvalidType();
4391 else if (D.getCXXScopeSpec().isSet()) {
4392 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4393 UPPC_DeclarationQualifier))
4394 return nullptr;
4395
4396 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4397 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4398 if (!DC || isa<EnumDecl>(DC)) {
4399 // If we could not compute the declaration context, it's because the
4400 // declaration context is dependent but does not refer to a class,
4401 // class template, or class template partial specialization. Complain
4402 // and return early, to avoid the coming semantic disaster.
4403 Diag(D.getIdentifierLoc(),
4404 diag::err_template_qualified_declarator_no_match)
4405 << D.getCXXScopeSpec().getScopeRep()
4406 << D.getCXXScopeSpec().getRange();
4407 return nullptr;
4408 }
4409 bool IsDependentContext = DC->isDependentContext();
4410
4411 if (!IsDependentContext &&
4412 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4413 return nullptr;
4414
4415 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4416 Diag(D.getIdentifierLoc(),
4417 diag::err_member_def_undefined_record)
4418 << Name << DC << D.getCXXScopeSpec().getRange();
4419 D.setInvalidType();
4420 } else if (!D.getDeclSpec().isFriendSpecified()) {
4421 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4422 Name, D.getIdentifierLoc())) {
4423 if (DC->isRecord())
4424 return nullptr;
4425
4426 D.setInvalidType();
4427 }
4428 }
4429
4430 // Check whether we need to rebuild the type of the given
4431 // declaration in the current instantiation.
4432 if (EnteringContext && IsDependentContext &&
4433 TemplateParamLists.size() != 0) {
4434 ContextRAII SavedContext(*this, DC);
4435 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4436 D.setInvalidType();
4437 }
4438 }
4439
4440 if (DiagnoseClassNameShadow(DC, NameInfo))
4441 // If this is a typedef, we'll end up spewing multiple diagnostics.
4442 // Just return early; it's safer.
4443 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4444 return nullptr;
4445
4446 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4447 QualType R = TInfo->getType();
4448
4449 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4450 UPPC_DeclarationType))
4451 D.setInvalidType();
4452
4453 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4454 ForRedeclaration);
4455
4456 // See if this is a redefinition of a variable in the same scope.
4457 if (!D.getCXXScopeSpec().isSet()) {
4458 bool IsLinkageLookup = false;
4459 bool CreateBuiltins = false;
4460
4461 // If the declaration we're planning to build will be a function
4462 // or object with linkage, then look for another declaration with
4463 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4464 //
4465 // If the declaration we're planning to build will be declared with
4466 // external linkage in the translation unit, create any builtin with
4467 // the same name.
4468 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4469 /* Do nothing*/;
4470 else if (CurContext->isFunctionOrMethod() &&
4471 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4472 R->isFunctionType())) {
4473 IsLinkageLookup = true;
4474 CreateBuiltins =
4475 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4476 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4477 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4478 CreateBuiltins = true;
4479
4480 if (IsLinkageLookup)
4481 Previous.clear(LookupRedeclarationWithLinkage);
4482
4483 LookupName(Previous, S, CreateBuiltins);
4484 } else { // Something like "int foo::x;"
4485 LookupQualifiedName(Previous, DC);
4486
4487 // C++ [dcl.meaning]p1:
4488 // When the declarator-id is qualified, the declaration shall refer to a
4489 // previously declared member of the class or namespace to which the
4490 // qualifier refers (or, in the case of a namespace, of an element of the
4491 // inline namespace set of that namespace (7.3.1)) or to a specialization
4492 // thereof; [...]
4493 //
4494 // Note that we already checked the context above, and that we do not have
4495 // enough information to make sure that Previous contains the declaration
4496 // we want to match. For example, given:
4497 //
4498 // class X {
4499 // void f();
4500 // void f(float);
4501 // };
4502 //
4503 // void X::f(int) { } // ill-formed
4504 //
4505 // In this case, Previous will point to the overload set
4506 // containing the two f's declared in X, but neither of them
4507 // matches.
4508
4509 // C++ [dcl.meaning]p1:
4510 // [...] the member shall not merely have been introduced by a
4511 // using-declaration in the scope of the class or namespace nominated by
4512 // the nested-name-specifier of the declarator-id.
4513 RemoveUsingDecls(Previous);
4514 }
4515
4516 if (Previous.isSingleResult() &&
4517 Previous.getFoundDecl()->isTemplateParameter()) {
4518 // Maybe we will complain about the shadowed template parameter.
4519 if (!D.isInvalidType())
4520 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4521 Previous.getFoundDecl());
4522
4523 // Just pretend that we didn't see the previous declaration.
4524 Previous.clear();
4525 }
4526
4527 // In C++, the previous declaration we find might be a tag type
4528 // (class or enum). In this case, the new declaration will hide the
4529 // tag type. Note that this does does not apply if we're declaring a
4530 // typedef (C++ [dcl.typedef]p4).
4531 if (Previous.isSingleTagDecl() &&
4532 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4533 Previous.clear();
4534
4535 // Check that there are no default arguments other than in the parameters
4536 // of a function declaration (C++ only).
4537 if (getLangOpts().CPlusPlus)
4538 CheckExtraCXXDefaultArguments(D);
4539
4540 NamedDecl *New;
4541
4542 bool AddToScope = true;
4543 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4544 if (TemplateParamLists.size()) {
4545 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4546 return nullptr;
4547 }
4548
4549 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4550 } else if (R->isFunctionType()) {
4551 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4552 TemplateParamLists,
4553 AddToScope);
4554 } else {
4555 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4556 AddToScope);
4557 }
4558
4559 if (!New)
4560 return nullptr;
4561
4562 // If this has an identifier and is not an invalid redeclaration or
4563 // function template specialization, add it to the scope stack.
4564 if (New->getDeclName() && AddToScope &&
4565 !(D.isRedeclaration() && New->isInvalidDecl())) {
4566 // Only make a locally-scoped extern declaration visible if it is the first
4567 // declaration of this entity. Qualified lookup for such an entity should
4568 // only find this declaration if there is no visible declaration of it.
4569 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4570 PushOnScopeChains(New, S, AddToContext);
4571 if (!AddToContext)
4572 CurContext->addHiddenDecl(New);
4573 }
4574
4575 return New;
4576 }
4577
4578 /// Helper method to turn variable array types into constant array
4579 /// types in certain situations which would otherwise be errors (for
4580 /// GCC compatibility).
TryToFixInvalidVariablyModifiedType(QualType T,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4581 static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4582 ASTContext &Context,
4583 bool &SizeIsNegative,
4584 llvm::APSInt &Oversized) {
4585 // This method tries to turn a variable array into a constant
4586 // array even when the size isn't an ICE. This is necessary
4587 // for compatibility with code that depends on gcc's buggy
4588 // constant expression folding, like struct {char x[(int)(char*)2];}
4589 SizeIsNegative = false;
4590 Oversized = 0;
4591
4592 if (T->isDependentType())
4593 return QualType();
4594
4595 QualifierCollector Qs;
4596 const Type *Ty = Qs.strip(T);
4597
4598 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4599 QualType Pointee = PTy->getPointeeType();
4600 QualType FixedType =
4601 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4602 Oversized);
4603 if (FixedType.isNull()) return FixedType;
4604 FixedType = Context.getPointerType(FixedType);
4605 return Qs.apply(Context, FixedType);
4606 }
4607 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4608 QualType Inner = PTy->getInnerType();
4609 QualType FixedType =
4610 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4611 Oversized);
4612 if (FixedType.isNull()) return FixedType;
4613 FixedType = Context.getParenType(FixedType);
4614 return Qs.apply(Context, FixedType);
4615 }
4616
4617 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4618 if (!VLATy)
4619 return QualType();
4620 // FIXME: We should probably handle this case
4621 if (VLATy->getElementType()->isVariablyModifiedType())
4622 return QualType();
4623
4624 llvm::APSInt Res;
4625 if (!VLATy->getSizeExpr() ||
4626 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4627 return QualType();
4628
4629 // Check whether the array size is negative.
4630 if (Res.isSigned() && Res.isNegative()) {
4631 SizeIsNegative = true;
4632 return QualType();
4633 }
4634
4635 // Check whether the array is too large to be addressed.
4636 unsigned ActiveSizeBits
4637 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4638 Res);
4639 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4640 Oversized = Res;
4641 return QualType();
4642 }
4643
4644 return Context.getConstantArrayType(VLATy->getElementType(),
4645 Res, ArrayType::Normal, 0);
4646 }
4647
4648 static void
FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL,TypeLoc DstTL)4649 FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4650 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4651 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4652 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4653 DstPTL.getPointeeLoc());
4654 DstPTL.setStarLoc(SrcPTL.getStarLoc());
4655 return;
4656 }
4657 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4658 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4659 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4660 DstPTL.getInnerLoc());
4661 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4662 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4663 return;
4664 }
4665 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4666 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4667 TypeLoc SrcElemTL = SrcATL.getElementLoc();
4668 TypeLoc DstElemTL = DstATL.getElementLoc();
4669 DstElemTL.initializeFullCopy(SrcElemTL);
4670 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4671 DstATL.setSizeExpr(SrcATL.getSizeExpr());
4672 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4673 }
4674
4675 /// Helper method to turn variable array types into constant array
4676 /// types in certain situations which would otherwise be errors (for
4677 /// GCC compatibility).
4678 static TypeSourceInfo*
TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo * TInfo,ASTContext & Context,bool & SizeIsNegative,llvm::APSInt & Oversized)4679 TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4680 ASTContext &Context,
4681 bool &SizeIsNegative,
4682 llvm::APSInt &Oversized) {
4683 QualType FixedTy
4684 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4685 SizeIsNegative, Oversized);
4686 if (FixedTy.isNull())
4687 return nullptr;
4688 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4689 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4690 FixedTInfo->getTypeLoc());
4691 return FixedTInfo;
4692 }
4693
4694 /// \brief Register the given locally-scoped extern "C" declaration so
4695 /// that it can be found later for redeclarations. We include any extern "C"
4696 /// declaration that is not visible in the translation unit here, not just
4697 /// function-scope declarations.
4698 void
RegisterLocallyScopedExternCDecl(NamedDecl * ND,Scope * S)4699 Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4700 if (!getLangOpts().CPlusPlus &&
4701 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4702 // Don't need to track declarations in the TU in C.
4703 return;
4704
4705 // Note that we have a locally-scoped external with this name.
4706 // FIXME: There can be multiple such declarations if they are functions marked
4707 // __attribute__((overloadable)) declared in function scope in C.
4708 LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4709 }
4710
findLocallyScopedExternCDecl(DeclarationName Name)4711 NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4712 if (ExternalSource) {
4713 // Load locally-scoped external decls from the external source.
4714 // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4715 SmallVector<NamedDecl *, 4> Decls;
4716 ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4717 for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4718 llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4719 = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4720 if (Pos == LocallyScopedExternCDecls.end())
4721 LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4722 }
4723 }
4724
4725 NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4726 return D ? D->getMostRecentDecl() : nullptr;
4727 }
4728
4729 /// \brief Diagnose function specifiers on a declaration of an identifier that
4730 /// does not identify a function.
DiagnoseFunctionSpecifiers(const DeclSpec & DS)4731 void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4732 // FIXME: We should probably indicate the identifier in question to avoid
4733 // confusion for constructs like "inline int a(), b;"
4734 if (DS.isInlineSpecified())
4735 Diag(DS.getInlineSpecLoc(),
4736 diag::err_inline_non_function);
4737
4738 if (DS.isVirtualSpecified())
4739 Diag(DS.getVirtualSpecLoc(),
4740 diag::err_virtual_non_function);
4741
4742 if (DS.isExplicitSpecified())
4743 Diag(DS.getExplicitSpecLoc(),
4744 diag::err_explicit_non_function);
4745
4746 if (DS.isNoreturnSpecified())
4747 Diag(DS.getNoreturnSpecLoc(),
4748 diag::err_noreturn_non_function);
4749 }
4750
4751 NamedDecl*
ActOnTypedefDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous)4752 Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4753 TypeSourceInfo *TInfo, LookupResult &Previous) {
4754 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4755 if (D.getCXXScopeSpec().isSet()) {
4756 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4757 << D.getCXXScopeSpec().getRange();
4758 D.setInvalidType();
4759 // Pretend we didn't see the scope specifier.
4760 DC = CurContext;
4761 Previous.clear();
4762 }
4763
4764 DiagnoseFunctionSpecifiers(D.getDeclSpec());
4765
4766 if (D.getDeclSpec().isConstexprSpecified())
4767 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4768 << 1;
4769
4770 if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4771 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4772 << D.getName().getSourceRange();
4773 return nullptr;
4774 }
4775
4776 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4777 if (!NewTD) return nullptr;
4778
4779 // Handle attributes prior to checking for duplicates in MergeVarDecl
4780 ProcessDeclAttributes(S, NewTD, D);
4781
4782 CheckTypedefForVariablyModifiedType(S, NewTD);
4783
4784 bool Redeclaration = D.isRedeclaration();
4785 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4786 D.setRedeclaration(Redeclaration);
4787 return ND;
4788 }
4789
4790 void
CheckTypedefForVariablyModifiedType(Scope * S,TypedefNameDecl * NewTD)4791 Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4792 // C99 6.7.7p2: If a typedef name specifies a variably modified type
4793 // then it shall have block scope.
4794 // Note that variably modified types must be fixed before merging the decl so
4795 // that redeclarations will match.
4796 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4797 QualType T = TInfo->getType();
4798 if (T->isVariablyModifiedType()) {
4799 getCurFunction()->setHasBranchProtectedScope();
4800
4801 if (S->getFnParent() == nullptr) {
4802 bool SizeIsNegative;
4803 llvm::APSInt Oversized;
4804 TypeSourceInfo *FixedTInfo =
4805 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4806 SizeIsNegative,
4807 Oversized);
4808 if (FixedTInfo) {
4809 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4810 NewTD->setTypeSourceInfo(FixedTInfo);
4811 } else {
4812 if (SizeIsNegative)
4813 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4814 else if (T->isVariableArrayType())
4815 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4816 else if (Oversized.getBoolValue())
4817 Diag(NewTD->getLocation(), diag::err_array_too_large)
4818 << Oversized.toString(10);
4819 else
4820 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4821 NewTD->setInvalidDecl();
4822 }
4823 }
4824 }
4825 }
4826
4827
4828 /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4829 /// declares a typedef-name, either using the 'typedef' type specifier or via
4830 /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4831 NamedDecl*
ActOnTypedefNameDecl(Scope * S,DeclContext * DC,TypedefNameDecl * NewTD,LookupResult & Previous,bool & Redeclaration)4832 Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4833 LookupResult &Previous, bool &Redeclaration) {
4834 // Merge the decl with the existing one if appropriate. If the decl is
4835 // in an outer scope, it isn't the same thing.
4836 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
4837 /*AllowInlineNamespace*/false);
4838 filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4839 if (!Previous.empty()) {
4840 Redeclaration = true;
4841 MergeTypedefNameDecl(NewTD, Previous);
4842 }
4843
4844 // If this is the C FILE type, notify the AST context.
4845 if (IdentifierInfo *II = NewTD->getIdentifier())
4846 if (!NewTD->isInvalidDecl() &&
4847 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4848 if (II->isStr("FILE"))
4849 Context.setFILEDecl(NewTD);
4850 else if (II->isStr("jmp_buf"))
4851 Context.setjmp_bufDecl(NewTD);
4852 else if (II->isStr("sigjmp_buf"))
4853 Context.setsigjmp_bufDecl(NewTD);
4854 else if (II->isStr("ucontext_t"))
4855 Context.setucontext_tDecl(NewTD);
4856 }
4857
4858 return NewTD;
4859 }
4860
4861 /// \brief Determines whether the given declaration is an out-of-scope
4862 /// previous declaration.
4863 ///
4864 /// This routine should be invoked when name lookup has found a
4865 /// previous declaration (PrevDecl) that is not in the scope where a
4866 /// new declaration by the same name is being introduced. If the new
4867 /// declaration occurs in a local scope, previous declarations with
4868 /// linkage may still be considered previous declarations (C99
4869 /// 6.2.2p4-5, C++ [basic.link]p6).
4870 ///
4871 /// \param PrevDecl the previous declaration found by name
4872 /// lookup
4873 ///
4874 /// \param DC the context in which the new declaration is being
4875 /// declared.
4876 ///
4877 /// \returns true if PrevDecl is an out-of-scope previous declaration
4878 /// for a new delcaration with the same name.
4879 static bool
isOutOfScopePreviousDeclaration(NamedDecl * PrevDecl,DeclContext * DC,ASTContext & Context)4880 isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4881 ASTContext &Context) {
4882 if (!PrevDecl)
4883 return false;
4884
4885 if (!PrevDecl->hasLinkage())
4886 return false;
4887
4888 if (Context.getLangOpts().CPlusPlus) {
4889 // C++ [basic.link]p6:
4890 // If there is a visible declaration of an entity with linkage
4891 // having the same name and type, ignoring entities declared
4892 // outside the innermost enclosing namespace scope, the block
4893 // scope declaration declares that same entity and receives the
4894 // linkage of the previous declaration.
4895 DeclContext *OuterContext = DC->getRedeclContext();
4896 if (!OuterContext->isFunctionOrMethod())
4897 // This rule only applies to block-scope declarations.
4898 return false;
4899
4900 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4901 if (PrevOuterContext->isRecord())
4902 // We found a member function: ignore it.
4903 return false;
4904
4905 // Find the innermost enclosing namespace for the new and
4906 // previous declarations.
4907 OuterContext = OuterContext->getEnclosingNamespaceContext();
4908 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4909
4910 // The previous declaration is in a different namespace, so it
4911 // isn't the same function.
4912 if (!OuterContext->Equals(PrevOuterContext))
4913 return false;
4914 }
4915
4916 return true;
4917 }
4918
SetNestedNameSpecifier(DeclaratorDecl * DD,Declarator & D)4919 static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4920 CXXScopeSpec &SS = D.getCXXScopeSpec();
4921 if (!SS.isSet()) return;
4922 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4923 }
4924
inferObjCARCLifetime(ValueDecl * decl)4925 bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4926 QualType type = decl->getType();
4927 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4928 if (lifetime == Qualifiers::OCL_Autoreleasing) {
4929 // Various kinds of declaration aren't allowed to be __autoreleasing.
4930 unsigned kind = -1U;
4931 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4932 if (var->hasAttr<BlocksAttr>())
4933 kind = 0; // __block
4934 else if (!var->hasLocalStorage())
4935 kind = 1; // global
4936 } else if (isa<ObjCIvarDecl>(decl)) {
4937 kind = 3; // ivar
4938 } else if (isa<FieldDecl>(decl)) {
4939 kind = 2; // field
4940 }
4941
4942 if (kind != -1U) {
4943 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4944 << kind;
4945 }
4946 } else if (lifetime == Qualifiers::OCL_None) {
4947 // Try to infer lifetime.
4948 if (!type->isObjCLifetimeType())
4949 return false;
4950
4951 lifetime = type->getObjCARCImplicitLifetime();
4952 type = Context.getLifetimeQualifiedType(type, lifetime);
4953 decl->setType(type);
4954 }
4955
4956 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4957 // Thread-local variables cannot have lifetime.
4958 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4959 var->getTLSKind()) {
4960 Diag(var->getLocation(), diag::err_arc_thread_ownership)
4961 << var->getType();
4962 return true;
4963 }
4964 }
4965
4966 return false;
4967 }
4968
checkAttributesAfterMerging(Sema & S,NamedDecl & ND)4969 static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4970 // Ensure that an auto decl is deduced otherwise the checks below might cache
4971 // the wrong linkage.
4972 assert(S.ParsingInitForAutoVars.count(&ND) == 0);
4973
4974 // 'weak' only applies to declarations with external linkage.
4975 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4976 if (!ND.isExternallyVisible()) {
4977 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4978 ND.dropAttr<WeakAttr>();
4979 }
4980 }
4981 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4982 if (ND.isExternallyVisible()) {
4983 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4984 ND.dropAttr<WeakRefAttr>();
4985 }
4986 }
4987
4988 // 'selectany' only applies to externally visible varable declarations.
4989 // It does not apply to functions.
4990 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4991 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4992 S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4993 ND.dropAttr<SelectAnyAttr>();
4994 }
4995 }
4996
4997 // dll attributes require external linkage.
4998 if (const DLLImportAttr *Attr = ND.getAttr<DLLImportAttr>()) {
4999 if (!ND.isExternallyVisible()) {
5000 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5001 << &ND << Attr;
5002 ND.setInvalidDecl();
5003 }
5004 }
5005 if (const DLLExportAttr *Attr = ND.getAttr<DLLExportAttr>()) {
5006 if (!ND.isExternallyVisible()) {
5007 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5008 << &ND << Attr;
5009 ND.setInvalidDecl();
5010 }
5011 }
5012 }
5013
checkDLLAttributeRedeclaration(Sema & S,NamedDecl * OldDecl,NamedDecl * NewDecl,bool IsSpecialization)5014 static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5015 NamedDecl *NewDecl,
5016 bool IsSpecialization) {
5017 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl))
5018 OldDecl = OldTD->getTemplatedDecl();
5019 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl))
5020 NewDecl = NewTD->getTemplatedDecl();
5021
5022 if (!OldDecl || !NewDecl)
5023 return;
5024
5025 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
5026 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
5027 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
5028 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
5029
5030 // dllimport and dllexport are inheritable attributes so we have to exclude
5031 // inherited attribute instances.
5032 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
5033 (NewExportAttr && !NewExportAttr->isInherited());
5034
5035 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
5036 // the only exception being explicit specializations.
5037 // Implicitly generated declarations are also excluded for now because there
5038 // is no other way to switch these to use dllimport or dllexport.
5039 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
5040 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
5041 S.Diag(NewDecl->getLocation(), diag::err_attribute_dll_redeclaration)
5042 << NewDecl
5043 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
5044 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5045 NewDecl->setInvalidDecl();
5046 return;
5047 }
5048
5049 // A redeclaration is not allowed to drop a dllimport attribute, the only
5050 // exception being inline function definitions.
5051 // NB: MSVC converts such a declaration to dllexport.
5052 bool IsInline = false, IsStaticDataMember = false;
5053 if (const auto *VD = dyn_cast<VarDecl>(NewDecl))
5054 // Ignore static data because out-of-line definitions are diagnosed
5055 // separately.
5056 IsStaticDataMember = VD->isStaticDataMember();
5057 else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl))
5058 IsInline = FD->isInlined();
5059
5060 if (OldImportAttr && !HasNewAttr && !IsInline && !IsStaticDataMember) {
5061 S.Diag(NewDecl->getLocation(),
5062 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5063 << NewDecl << OldImportAttr;
5064 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
5065 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
5066 OldDecl->dropAttr<DLLImportAttr>();
5067 NewDecl->dropAttr<DLLImportAttr>();
5068 }
5069 }
5070
5071 /// Given that we are within the definition of the given function,
5072 /// will that definition behave like C99's 'inline', where the
5073 /// definition is discarded except for optimization purposes?
isFunctionDefinitionDiscarded(Sema & S,FunctionDecl * FD)5074 static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
5075 // Try to avoid calling GetGVALinkageForFunction.
5076
5077 // All cases of this require the 'inline' keyword.
5078 if (!FD->isInlined()) return false;
5079
5080 // This is only possible in C++ with the gnu_inline attribute.
5081 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
5082 return false;
5083
5084 // Okay, go ahead and call the relatively-more-expensive function.
5085
5086 #ifndef NDEBUG
5087 // AST quite reasonably asserts that it's working on a function
5088 // definition. We don't really have a way to tell it that we're
5089 // currently defining the function, so just lie to it in +Asserts
5090 // builds. This is an awful hack.
5091 FD->setLazyBody(1);
5092 #endif
5093
5094 bool isC99Inline =
5095 S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
5096
5097 #ifndef NDEBUG
5098 FD->setLazyBody(0);
5099 #endif
5100
5101 return isC99Inline;
5102 }
5103
5104 /// Determine whether a variable is extern "C" prior to attaching
5105 /// an initializer. We can't just call isExternC() here, because that
5106 /// will also compute and cache whether the declaration is externally
5107 /// visible, which might change when we attach the initializer.
5108 ///
5109 /// This can only be used if the declaration is known to not be a
5110 /// redeclaration of an internal linkage declaration.
5111 ///
5112 /// For instance:
5113 ///
5114 /// auto x = []{};
5115 ///
5116 /// Attaching the initializer here makes this declaration not externally
5117 /// visible, because its type has internal linkage.
5118 ///
5119 /// FIXME: This is a hack.
5120 template<typename T>
isIncompleteDeclExternC(Sema & S,const T * D)5121 static bool isIncompleteDeclExternC(Sema &S, const T *D) {
5122 if (S.getLangOpts().CPlusPlus) {
5123 // In C++, the overloadable attribute negates the effects of extern "C".
5124 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
5125 return false;
5126 }
5127 return D->isExternC();
5128 }
5129
shouldConsiderLinkage(const VarDecl * VD)5130 static bool shouldConsiderLinkage(const VarDecl *VD) {
5131 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
5132 if (DC->isFunctionOrMethod())
5133 return VD->hasExternalStorage();
5134 if (DC->isFileContext())
5135 return true;
5136 if (DC->isRecord())
5137 return false;
5138 llvm_unreachable("Unexpected context");
5139 }
5140
shouldConsiderLinkage(const FunctionDecl * FD)5141 static bool shouldConsiderLinkage(const FunctionDecl *FD) {
5142 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
5143 if (DC->isFileContext() || DC->isFunctionOrMethod())
5144 return true;
5145 if (DC->isRecord())
5146 return false;
5147 llvm_unreachable("Unexpected context");
5148 }
5149
hasParsedAttr(Scope * S,const AttributeList * AttrList,AttributeList::Kind Kind)5150 static bool hasParsedAttr(Scope *S, const AttributeList *AttrList,
5151 AttributeList::Kind Kind) {
5152 for (const AttributeList *L = AttrList; L; L = L->getNext())
5153 if (L->getKind() == Kind)
5154 return true;
5155 return false;
5156 }
5157
hasParsedAttr(Scope * S,const Declarator & PD,AttributeList::Kind Kind)5158 static bool hasParsedAttr(Scope *S, const Declarator &PD,
5159 AttributeList::Kind Kind) {
5160 // Check decl attributes on the DeclSpec.
5161 if (hasParsedAttr(S, PD.getDeclSpec().getAttributes().getList(), Kind))
5162 return true;
5163
5164 // Walk the declarator structure, checking decl attributes that were in a type
5165 // position to the decl itself.
5166 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
5167 if (hasParsedAttr(S, PD.getTypeObject(I).getAttrs(), Kind))
5168 return true;
5169 }
5170
5171 // Finally, check attributes on the decl itself.
5172 return hasParsedAttr(S, PD.getAttributes(), Kind);
5173 }
5174
5175 /// Adjust the \c DeclContext for a function or variable that might be a
5176 /// function-local external declaration.
adjustContextForLocalExternDecl(DeclContext * & DC)5177 bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
5178 if (!DC->isFunctionOrMethod())
5179 return false;
5180
5181 // If this is a local extern function or variable declared within a function
5182 // template, don't add it into the enclosing namespace scope until it is
5183 // instantiated; it might have a dependent type right now.
5184 if (DC->isDependentContext())
5185 return true;
5186
5187 // C++11 [basic.link]p7:
5188 // When a block scope declaration of an entity with linkage is not found to
5189 // refer to some other declaration, then that entity is a member of the
5190 // innermost enclosing namespace.
5191 //
5192 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
5193 // semantically-enclosing namespace, not a lexically-enclosing one.
5194 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
5195 DC = DC->getParent();
5196 return true;
5197 }
5198
5199 NamedDecl *
ActOnVariableDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)5200 Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5201 TypeSourceInfo *TInfo, LookupResult &Previous,
5202 MultiTemplateParamsArg TemplateParamLists,
5203 bool &AddToScope) {
5204 QualType R = TInfo->getType();
5205 DeclarationName Name = GetNameForDeclarator(D).getName();
5206
5207 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
5208 VarDecl::StorageClass SC =
5209 StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
5210
5211 // dllimport globals without explicit storage class are treated as extern. We
5212 // have to change the storage class this early to get the right DeclContext.
5213 if (SC == SC_None && !DC->isRecord() &&
5214 hasParsedAttr(S, D, AttributeList::AT_DLLImport) &&
5215 !hasParsedAttr(S, D, AttributeList::AT_DLLExport))
5216 SC = SC_Extern;
5217
5218 DeclContext *OriginalDC = DC;
5219 bool IsLocalExternDecl = SC == SC_Extern &&
5220 adjustContextForLocalExternDecl(DC);
5221
5222 if (getLangOpts().OpenCL) {
5223 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
5224 QualType NR = R;
5225 while (NR->isPointerType()) {
5226 if (NR->isFunctionPointerType()) {
5227 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer_variable);
5228 D.setInvalidType();
5229 break;
5230 }
5231 NR = NR->getPointeeType();
5232 }
5233
5234 if (!getOpenCLOptions().cl_khr_fp16) {
5235 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
5236 // half array type (unless the cl_khr_fp16 extension is enabled).
5237 if (Context.getBaseElementType(R)->isHalfType()) {
5238 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
5239 D.setInvalidType();
5240 }
5241 }
5242 }
5243
5244 if (SCSpec == DeclSpec::SCS_mutable) {
5245 // mutable can only appear on non-static class members, so it's always
5246 // an error here
5247 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
5248 D.setInvalidType();
5249 SC = SC_None;
5250 }
5251
5252 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
5253 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
5254 D.getDeclSpec().getStorageClassSpecLoc())) {
5255 // In C++11, the 'register' storage class specifier is deprecated.
5256 // Suppress the warning in system macros, it's used in macros in some
5257 // popular C system headers, such as in glibc's htonl() macro.
5258 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5259 diag::warn_deprecated_register)
5260 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5261 }
5262
5263 IdentifierInfo *II = Name.getAsIdentifierInfo();
5264 if (!II) {
5265 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
5266 << Name;
5267 return nullptr;
5268 }
5269
5270 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5271
5272 if (!DC->isRecord() && S->getFnParent() == nullptr) {
5273 // C99 6.9p2: The storage-class specifiers auto and register shall not
5274 // appear in the declaration specifiers in an external declaration.
5275 // Global Register+Asm is a GNU extension we support.
5276 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
5277 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
5278 D.setInvalidType();
5279 }
5280 }
5281
5282 if (getLangOpts().OpenCL) {
5283 // Set up the special work-group-local storage class for variables in the
5284 // OpenCL __local address space.
5285 if (R.getAddressSpace() == LangAS::opencl_local) {
5286 SC = SC_OpenCLWorkGroupLocal;
5287 }
5288
5289 // OpenCL v1.2 s6.9.b p4:
5290 // The sampler type cannot be used with the __local and __global address
5291 // space qualifiers.
5292 if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
5293 R.getAddressSpace() == LangAS::opencl_global)) {
5294 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
5295 }
5296
5297 // OpenCL 1.2 spec, p6.9 r:
5298 // The event type cannot be used to declare a program scope variable.
5299 // The event type cannot be used with the __local, __constant and __global
5300 // address space qualifiers.
5301 if (R->isEventT()) {
5302 if (S->getParent() == nullptr) {
5303 Diag(D.getLocStart(), diag::err_event_t_global_var);
5304 D.setInvalidType();
5305 }
5306
5307 if (R.getAddressSpace()) {
5308 Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
5309 D.setInvalidType();
5310 }
5311 }
5312 }
5313
5314 bool IsExplicitSpecialization = false;
5315 bool IsVariableTemplateSpecialization = false;
5316 bool IsPartialSpecialization = false;
5317 bool IsVariableTemplate = false;
5318 VarDecl *NewVD = nullptr;
5319 VarTemplateDecl *NewTemplate = nullptr;
5320 TemplateParameterList *TemplateParams = nullptr;
5321 if (!getLangOpts().CPlusPlus) {
5322 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5323 D.getIdentifierLoc(), II,
5324 R, TInfo, SC);
5325
5326 if (D.isInvalidType())
5327 NewVD->setInvalidDecl();
5328 } else {
5329 bool Invalid = false;
5330
5331 if (DC->isRecord() && !CurContext->isRecord()) {
5332 // This is an out-of-line definition of a static data member.
5333 switch (SC) {
5334 case SC_None:
5335 break;
5336 case SC_Static:
5337 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5338 diag::err_static_out_of_line)
5339 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5340 break;
5341 case SC_Auto:
5342 case SC_Register:
5343 case SC_Extern:
5344 // [dcl.stc] p2: The auto or register specifiers shall be applied only
5345 // to names of variables declared in a block or to function parameters.
5346 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
5347 // of class members
5348
5349 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5350 diag::err_storage_class_for_static_member)
5351 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5352 break;
5353 case SC_PrivateExtern:
5354 llvm_unreachable("C storage class in c++!");
5355 case SC_OpenCLWorkGroupLocal:
5356 llvm_unreachable("OpenCL storage class in c++!");
5357 }
5358 }
5359
5360 if (SC == SC_Static && CurContext->isRecord()) {
5361 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5362 if (RD->isLocalClass())
5363 Diag(D.getIdentifierLoc(),
5364 diag::err_static_data_member_not_allowed_in_local_class)
5365 << Name << RD->getDeclName();
5366
5367 // C++98 [class.union]p1: If a union contains a static data member,
5368 // the program is ill-formed. C++11 drops this restriction.
5369 if (RD->isUnion())
5370 Diag(D.getIdentifierLoc(),
5371 getLangOpts().CPlusPlus11
5372 ? diag::warn_cxx98_compat_static_data_member_in_union
5373 : diag::ext_static_data_member_in_union) << Name;
5374 // We conservatively disallow static data members in anonymous structs.
5375 else if (!RD->getDeclName())
5376 Diag(D.getIdentifierLoc(),
5377 diag::err_static_data_member_not_allowed_in_anon_struct)
5378 << Name << RD->isUnion();
5379 }
5380 }
5381
5382 // Match up the template parameter lists with the scope specifier, then
5383 // determine whether we have a template or a template specialization.
5384 TemplateParams = MatchTemplateParametersToScopeSpecifier(
5385 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5386 D.getCXXScopeSpec(),
5387 D.getName().getKind() == UnqualifiedId::IK_TemplateId
5388 ? D.getName().TemplateId
5389 : nullptr,
5390 TemplateParamLists,
5391 /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5392
5393 if (TemplateParams) {
5394 if (!TemplateParams->size() &&
5395 D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5396 // There is an extraneous 'template<>' for this variable. Complain
5397 // about it, but allow the declaration of the variable.
5398 Diag(TemplateParams->getTemplateLoc(),
5399 diag::err_template_variable_noparams)
5400 << II
5401 << SourceRange(TemplateParams->getTemplateLoc(),
5402 TemplateParams->getRAngleLoc());
5403 TemplateParams = nullptr;
5404 } else {
5405 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5406 // This is an explicit specialization or a partial specialization.
5407 // FIXME: Check that we can declare a specialization here.
5408 IsVariableTemplateSpecialization = true;
5409 IsPartialSpecialization = TemplateParams->size() > 0;
5410 } else { // if (TemplateParams->size() > 0)
5411 // This is a template declaration.
5412 IsVariableTemplate = true;
5413
5414 // Check that we can declare a template here.
5415 if (CheckTemplateDeclScope(S, TemplateParams))
5416 return nullptr;
5417
5418 // Only C++1y supports variable templates (N3651).
5419 Diag(D.getIdentifierLoc(),
5420 getLangOpts().CPlusPlus1y
5421 ? diag::warn_cxx11_compat_variable_template
5422 : diag::ext_variable_template);
5423 }
5424 }
5425 } else {
5426 assert(D.getName().getKind() != UnqualifiedId::IK_TemplateId &&
5427 "should have a 'template<>' for this decl");
5428 }
5429
5430 if (IsVariableTemplateSpecialization) {
5431 SourceLocation TemplateKWLoc =
5432 TemplateParamLists.size() > 0
5433 ? TemplateParamLists[0]->getTemplateLoc()
5434 : SourceLocation();
5435 DeclResult Res = ActOnVarTemplateSpecialization(
5436 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5437 IsPartialSpecialization);
5438 if (Res.isInvalid())
5439 return nullptr;
5440 NewVD = cast<VarDecl>(Res.get());
5441 AddToScope = false;
5442 } else
5443 NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5444 D.getIdentifierLoc(), II, R, TInfo, SC);
5445
5446 // If this is supposed to be a variable template, create it as such.
5447 if (IsVariableTemplate) {
5448 NewTemplate =
5449 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5450 TemplateParams, NewVD);
5451 NewVD->setDescribedVarTemplate(NewTemplate);
5452 }
5453
5454 // If this decl has an auto type in need of deduction, make a note of the
5455 // Decl so we can diagnose uses of it in its own initializer.
5456 if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5457 ParsingInitForAutoVars.insert(NewVD);
5458
5459 if (D.isInvalidType() || Invalid) {
5460 NewVD->setInvalidDecl();
5461 if (NewTemplate)
5462 NewTemplate->setInvalidDecl();
5463 }
5464
5465 SetNestedNameSpecifier(NewVD, D);
5466
5467 // If we have any template parameter lists that don't directly belong to
5468 // the variable (matching the scope specifier), store them.
5469 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
5470 if (TemplateParamLists.size() > VDTemplateParamLists)
5471 NewVD->setTemplateParameterListsInfo(
5472 Context, TemplateParamLists.size() - VDTemplateParamLists,
5473 TemplateParamLists.data());
5474
5475 if (D.getDeclSpec().isConstexprSpecified())
5476 NewVD->setConstexpr(true);
5477 }
5478
5479 // Set the lexical context. If the declarator has a C++ scope specifier, the
5480 // lexical context will be different from the semantic context.
5481 NewVD->setLexicalDeclContext(CurContext);
5482 if (NewTemplate)
5483 NewTemplate->setLexicalDeclContext(CurContext);
5484
5485 if (IsLocalExternDecl)
5486 NewVD->setLocalExternDecl();
5487
5488 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5489 if (NewVD->hasLocalStorage()) {
5490 // C++11 [dcl.stc]p4:
5491 // When thread_local is applied to a variable of block scope the
5492 // storage-class-specifier static is implied if it does not appear
5493 // explicitly.
5494 // Core issue: 'static' is not implied if the variable is declared
5495 // 'extern'.
5496 if (SCSpec == DeclSpec::SCS_unspecified &&
5497 TSCS == DeclSpec::TSCS_thread_local &&
5498 DC->isFunctionOrMethod())
5499 NewVD->setTSCSpec(TSCS);
5500 else
5501 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5502 diag::err_thread_non_global)
5503 << DeclSpec::getSpecifierName(TSCS);
5504 } else if (!Context.getTargetInfo().isTLSSupported())
5505 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5506 diag::err_thread_unsupported);
5507 else
5508 NewVD->setTSCSpec(TSCS);
5509 }
5510
5511 // C99 6.7.4p3
5512 // An inline definition of a function with external linkage shall
5513 // not contain a definition of a modifiable object with static or
5514 // thread storage duration...
5515 // We only apply this when the function is required to be defined
5516 // elsewhere, i.e. when the function is not 'extern inline'. Note
5517 // that a local variable with thread storage duration still has to
5518 // be marked 'static'. Also note that it's possible to get these
5519 // semantics in C++ using __attribute__((gnu_inline)).
5520 if (SC == SC_Static && S->getFnParent() != nullptr &&
5521 !NewVD->getType().isConstQualified()) {
5522 FunctionDecl *CurFD = getCurFunctionDecl();
5523 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5524 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5525 diag::warn_static_local_in_extern_inline);
5526 MaybeSuggestAddingStaticToDecl(CurFD);
5527 }
5528 }
5529
5530 if (D.getDeclSpec().isModulePrivateSpecified()) {
5531 if (IsVariableTemplateSpecialization)
5532 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5533 << (IsPartialSpecialization ? 1 : 0)
5534 << FixItHint::CreateRemoval(
5535 D.getDeclSpec().getModulePrivateSpecLoc());
5536 else if (IsExplicitSpecialization)
5537 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5538 << 2
5539 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5540 else if (NewVD->hasLocalStorage())
5541 Diag(NewVD->getLocation(), diag::err_module_private_local)
5542 << 0 << NewVD->getDeclName()
5543 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5544 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5545 else {
5546 NewVD->setModulePrivate();
5547 if (NewTemplate)
5548 NewTemplate->setModulePrivate();
5549 }
5550 }
5551
5552 // Handle attributes prior to checking for duplicates in MergeVarDecl
5553 ProcessDeclAttributes(S, NewVD, D);
5554
5555 if (getLangOpts().CUDA) {
5556 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5557 // storage [duration]."
5558 if (SC == SC_None && S->getFnParent() != nullptr &&
5559 (NewVD->hasAttr<CUDASharedAttr>() ||
5560 NewVD->hasAttr<CUDAConstantAttr>())) {
5561 NewVD->setStorageClass(SC_Static);
5562 }
5563 }
5564
5565 // Ensure that dllimport globals without explicit storage class are treated as
5566 // extern. The storage class is set above using parsed attributes. Now we can
5567 // check the VarDecl itself.
5568 assert(!NewVD->hasAttr<DLLImportAttr>() ||
5569 NewVD->getAttr<DLLImportAttr>()->isInherited() ||
5570 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None);
5571
5572 // In auto-retain/release, infer strong retension for variables of
5573 // retainable type.
5574 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5575 NewVD->setInvalidDecl();
5576
5577 // Handle GNU asm-label extension (encoded as an attribute).
5578 if (Expr *E = (Expr*)D.getAsmLabel()) {
5579 // The parser guarantees this is a string.
5580 StringLiteral *SE = cast<StringLiteral>(E);
5581 StringRef Label = SE->getString();
5582 if (S->getFnParent() != nullptr) {
5583 switch (SC) {
5584 case SC_None:
5585 case SC_Auto:
5586 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5587 break;
5588 case SC_Register:
5589 // Local Named register
5590 if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5591 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5592 break;
5593 case SC_Static:
5594 case SC_Extern:
5595 case SC_PrivateExtern:
5596 case SC_OpenCLWorkGroupLocal:
5597 break;
5598 }
5599 } else if (SC == SC_Register) {
5600 // Global Named register
5601 if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5602 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5603 if (!R->isIntegralType(Context) && !R->isPointerType()) {
5604 Diag(D.getLocStart(), diag::err_asm_bad_register_type);
5605 NewVD->setInvalidDecl(true);
5606 }
5607 }
5608
5609 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5610 Context, Label, 0));
5611 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5612 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5613 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5614 if (I != ExtnameUndeclaredIdentifiers.end()) {
5615 NewVD->addAttr(I->second);
5616 ExtnameUndeclaredIdentifiers.erase(I);
5617 }
5618 }
5619
5620 // Diagnose shadowed variables before filtering for scope.
5621 if (D.getCXXScopeSpec().isEmpty())
5622 CheckShadow(S, NewVD, Previous);
5623
5624 // Don't consider existing declarations that are in a different
5625 // scope and are out-of-semantic-context declarations (if the new
5626 // declaration has linkage).
5627 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5628 D.getCXXScopeSpec().isNotEmpty() ||
5629 IsExplicitSpecialization ||
5630 IsVariableTemplateSpecialization);
5631
5632 // Check whether the previous declaration is in the same block scope. This
5633 // affects whether we merge types with it, per C++11 [dcl.array]p3.
5634 if (getLangOpts().CPlusPlus &&
5635 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5636 NewVD->setPreviousDeclInSameBlockScope(
5637 Previous.isSingleResult() && !Previous.isShadowed() &&
5638 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5639
5640 if (!getLangOpts().CPlusPlus) {
5641 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5642 } else {
5643 // If this is an explicit specialization of a static data member, check it.
5644 if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5645 CheckMemberSpecialization(NewVD, Previous))
5646 NewVD->setInvalidDecl();
5647
5648 // Merge the decl with the existing one if appropriate.
5649 if (!Previous.empty()) {
5650 if (Previous.isSingleResult() &&
5651 isa<FieldDecl>(Previous.getFoundDecl()) &&
5652 D.getCXXScopeSpec().isSet()) {
5653 // The user tried to define a non-static data member
5654 // out-of-line (C++ [dcl.meaning]p1).
5655 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5656 << D.getCXXScopeSpec().getRange();
5657 Previous.clear();
5658 NewVD->setInvalidDecl();
5659 }
5660 } else if (D.getCXXScopeSpec().isSet()) {
5661 // No previous declaration in the qualifying scope.
5662 Diag(D.getIdentifierLoc(), diag::err_no_member)
5663 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5664 << D.getCXXScopeSpec().getRange();
5665 NewVD->setInvalidDecl();
5666 }
5667
5668 if (!IsVariableTemplateSpecialization)
5669 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5670
5671 if (NewTemplate) {
5672 VarTemplateDecl *PrevVarTemplate =
5673 NewVD->getPreviousDecl()
5674 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
5675 : nullptr;
5676
5677 // Check the template parameter list of this declaration, possibly
5678 // merging in the template parameter list from the previous variable
5679 // template declaration.
5680 if (CheckTemplateParameterList(
5681 TemplateParams,
5682 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5683 : nullptr,
5684 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5685 DC->isDependentContext())
5686 ? TPC_ClassTemplateMember
5687 : TPC_VarTemplate))
5688 NewVD->setInvalidDecl();
5689
5690 // If we are providing an explicit specialization of a static variable
5691 // template, make a note of that.
5692 if (PrevVarTemplate &&
5693 PrevVarTemplate->getInstantiatedFromMemberTemplate())
5694 PrevVarTemplate->setMemberSpecialization();
5695 }
5696 }
5697
5698 ProcessPragmaWeak(S, NewVD);
5699
5700 // If this is the first declaration of an extern C variable, update
5701 // the map of such variables.
5702 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5703 isIncompleteDeclExternC(*this, NewVD))
5704 RegisterLocallyScopedExternCDecl(NewVD, S);
5705
5706 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5707 Decl *ManglingContextDecl;
5708 if (MangleNumberingContext *MCtx =
5709 getCurrentMangleNumberContext(NewVD->getDeclContext(),
5710 ManglingContextDecl)) {
5711 Context.setManglingNumber(
5712 NewVD, MCtx->getManglingNumber(NewVD, S->getMSLocalManglingNumber()));
5713 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5714 }
5715 }
5716
5717 if (D.isRedeclaration() && !Previous.empty()) {
5718 checkDLLAttributeRedeclaration(
5719 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewVD,
5720 IsExplicitSpecialization);
5721 }
5722
5723 if (NewTemplate) {
5724 if (NewVD->isInvalidDecl())
5725 NewTemplate->setInvalidDecl();
5726 ActOnDocumentableDecl(NewTemplate);
5727 return NewTemplate;
5728 }
5729
5730 return NewVD;
5731 }
5732
5733 /// \brief Diagnose variable or built-in function shadowing. Implements
5734 /// -Wshadow.
5735 ///
5736 /// This method is called whenever a VarDecl is added to a "useful"
5737 /// scope.
5738 ///
5739 /// \param S the scope in which the shadowing name is being declared
5740 /// \param R the lookup of the name
5741 ///
CheckShadow(Scope * S,VarDecl * D,const LookupResult & R)5742 void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5743 // Return if warning is ignored.
5744 if (Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()))
5745 return;
5746
5747 // Don't diagnose declarations at file scope.
5748 if (D->hasGlobalStorage())
5749 return;
5750
5751 DeclContext *NewDC = D->getDeclContext();
5752
5753 // Only diagnose if we're shadowing an unambiguous field or variable.
5754 if (R.getResultKind() != LookupResult::Found)
5755 return;
5756
5757 NamedDecl* ShadowedDecl = R.getFoundDecl();
5758 if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5759 return;
5760
5761 // Fields are not shadowed by variables in C++ static methods.
5762 if (isa<FieldDecl>(ShadowedDecl))
5763 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5764 if (MD->isStatic())
5765 return;
5766
5767 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5768 if (shadowedVar->isExternC()) {
5769 // For shadowing external vars, make sure that we point to the global
5770 // declaration, not a locally scoped extern declaration.
5771 for (auto I : shadowedVar->redecls())
5772 if (I->isFileVarDecl()) {
5773 ShadowedDecl = I;
5774 break;
5775 }
5776 }
5777
5778 DeclContext *OldDC = ShadowedDecl->getDeclContext();
5779
5780 // Only warn about certain kinds of shadowing for class members.
5781 if (NewDC && NewDC->isRecord()) {
5782 // In particular, don't warn about shadowing non-class members.
5783 if (!OldDC->isRecord())
5784 return;
5785
5786 // TODO: should we warn about static data members shadowing
5787 // static data members from base classes?
5788
5789 // TODO: don't diagnose for inaccessible shadowed members.
5790 // This is hard to do perfectly because we might friend the
5791 // shadowing context, but that's just a false negative.
5792 }
5793
5794 // Determine what kind of declaration we're shadowing.
5795 unsigned Kind;
5796 if (isa<RecordDecl>(OldDC)) {
5797 if (isa<FieldDecl>(ShadowedDecl))
5798 Kind = 3; // field
5799 else
5800 Kind = 2; // static data member
5801 } else if (OldDC->isFileContext())
5802 Kind = 1; // global
5803 else
5804 Kind = 0; // local
5805
5806 DeclarationName Name = R.getLookupName();
5807
5808 // Emit warning and note.
5809 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
5810 return;
5811 Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5812 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5813 }
5814
5815 /// \brief Check -Wshadow without the advantage of a previous lookup.
CheckShadow(Scope * S,VarDecl * D)5816 void Sema::CheckShadow(Scope *S, VarDecl *D) {
5817 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
5818 return;
5819
5820 LookupResult R(*this, D->getDeclName(), D->getLocation(),
5821 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5822 LookupName(R, S);
5823 CheckShadow(S, D, R);
5824 }
5825
5826 /// Check for conflict between this global or extern "C" declaration and
5827 /// previous global or extern "C" declarations. This is only used in C++.
5828 template<typename T>
checkGlobalOrExternCConflict(Sema & S,const T * ND,bool IsGlobal,LookupResult & Previous)5829 static bool checkGlobalOrExternCConflict(
5830 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5831 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5832 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5833
5834 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5835 // The common case: this global doesn't conflict with any extern "C"
5836 // declaration.
5837 return false;
5838 }
5839
5840 if (Prev) {
5841 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5842 // Both the old and new declarations have C language linkage. This is a
5843 // redeclaration.
5844 Previous.clear();
5845 Previous.addDecl(Prev);
5846 return true;
5847 }
5848
5849 // This is a global, non-extern "C" declaration, and there is a previous
5850 // non-global extern "C" declaration. Diagnose if this is a variable
5851 // declaration.
5852 if (!isa<VarDecl>(ND))
5853 return false;
5854 } else {
5855 // The declaration is extern "C". Check for any declaration in the
5856 // translation unit which might conflict.
5857 if (IsGlobal) {
5858 // We have already performed the lookup into the translation unit.
5859 IsGlobal = false;
5860 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5861 I != E; ++I) {
5862 if (isa<VarDecl>(*I)) {
5863 Prev = *I;
5864 break;
5865 }
5866 }
5867 } else {
5868 DeclContext::lookup_result R =
5869 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5870 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5871 I != E; ++I) {
5872 if (isa<VarDecl>(*I)) {
5873 Prev = *I;
5874 break;
5875 }
5876 // FIXME: If we have any other entity with this name in global scope,
5877 // the declaration is ill-formed, but that is a defect: it breaks the
5878 // 'stat' hack, for instance. Only variables can have mangled name
5879 // clashes with extern "C" declarations, so only they deserve a
5880 // diagnostic.
5881 }
5882 }
5883
5884 if (!Prev)
5885 return false;
5886 }
5887
5888 // Use the first declaration's location to ensure we point at something which
5889 // is lexically inside an extern "C" linkage-spec.
5890 assert(Prev && "should have found a previous declaration to diagnose");
5891 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5892 Prev = FD->getFirstDecl();
5893 else
5894 Prev = cast<VarDecl>(Prev)->getFirstDecl();
5895
5896 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5897 << IsGlobal << ND;
5898 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5899 << IsGlobal;
5900 return false;
5901 }
5902
5903 /// Apply special rules for handling extern "C" declarations. Returns \c true
5904 /// if we have found that this is a redeclaration of some prior entity.
5905 ///
5906 /// Per C++ [dcl.link]p6:
5907 /// Two declarations [for a function or variable] with C language linkage
5908 /// with the same name that appear in different scopes refer to the same
5909 /// [entity]. An entity with C language linkage shall not be declared with
5910 /// the same name as an entity in global scope.
5911 template<typename T>
checkForConflictWithNonVisibleExternC(Sema & S,const T * ND,LookupResult & Previous)5912 static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5913 LookupResult &Previous) {
5914 if (!S.getLangOpts().CPlusPlus) {
5915 // In C, when declaring a global variable, look for a corresponding 'extern'
5916 // variable declared in function scope. We don't need this in C++, because
5917 // we find local extern decls in the surrounding file-scope DeclContext.
5918 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5919 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5920 Previous.clear();
5921 Previous.addDecl(Prev);
5922 return true;
5923 }
5924 }
5925 return false;
5926 }
5927
5928 // A declaration in the translation unit can conflict with an extern "C"
5929 // declaration.
5930 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5931 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5932
5933 // An extern "C" declaration can conflict with a declaration in the
5934 // translation unit or can be a redeclaration of an extern "C" declaration
5935 // in another scope.
5936 if (isIncompleteDeclExternC(S,ND))
5937 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5938
5939 // Neither global nor extern "C": nothing to do.
5940 return false;
5941 }
5942
CheckVariableDeclarationType(VarDecl * NewVD)5943 void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5944 // If the decl is already known invalid, don't check it.
5945 if (NewVD->isInvalidDecl())
5946 return;
5947
5948 TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5949 QualType T = TInfo->getType();
5950
5951 // Defer checking an 'auto' type until its initializer is attached.
5952 if (T->isUndeducedType())
5953 return;
5954
5955 if (NewVD->hasAttrs())
5956 CheckAlignasUnderalignment(NewVD);
5957
5958 if (T->isObjCObjectType()) {
5959 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5960 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5961 T = Context.getObjCObjectPointerType(T);
5962 NewVD->setType(T);
5963 }
5964
5965 // Emit an error if an address space was applied to decl with local storage.
5966 // This includes arrays of objects with address space qualifiers, but not
5967 // automatic variables that point to other address spaces.
5968 // ISO/IEC TR 18037 S5.1.2
5969 if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5970 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5971 NewVD->setInvalidDecl();
5972 return;
5973 }
5974
5975 // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5976 // __constant address space.
5977 if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5978 && T.getAddressSpace() != LangAS::opencl_constant
5979 && !T->isSamplerT()){
5980 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5981 NewVD->setInvalidDecl();
5982 return;
5983 }
5984
5985 // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5986 // scope.
5987 if ((getLangOpts().OpenCLVersion >= 120)
5988 && NewVD->isStaticLocal()) {
5989 Diag(NewVD->getLocation(), diag::err_static_function_scope);
5990 NewVD->setInvalidDecl();
5991 return;
5992 }
5993
5994 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5995 && !NewVD->hasAttr<BlocksAttr>()) {
5996 if (getLangOpts().getGC() != LangOptions::NonGC)
5997 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5998 else {
5999 assert(!getLangOpts().ObjCAutoRefCount);
6000 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
6001 }
6002 }
6003
6004 bool isVM = T->isVariablyModifiedType();
6005 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
6006 NewVD->hasAttr<BlocksAttr>())
6007 getCurFunction()->setHasBranchProtectedScope();
6008
6009 if ((isVM && NewVD->hasLinkage()) ||
6010 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
6011 bool SizeIsNegative;
6012 llvm::APSInt Oversized;
6013 TypeSourceInfo *FixedTInfo =
6014 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6015 SizeIsNegative, Oversized);
6016 if (!FixedTInfo && T->isVariableArrayType()) {
6017 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
6018 // FIXME: This won't give the correct result for
6019 // int a[10][n];
6020 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
6021
6022 if (NewVD->isFileVarDecl())
6023 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
6024 << SizeRange;
6025 else if (NewVD->isStaticLocal())
6026 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
6027 << SizeRange;
6028 else
6029 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
6030 << SizeRange;
6031 NewVD->setInvalidDecl();
6032 return;
6033 }
6034
6035 if (!FixedTInfo) {
6036 if (NewVD->isFileVarDecl())
6037 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
6038 else
6039 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
6040 NewVD->setInvalidDecl();
6041 return;
6042 }
6043
6044 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
6045 NewVD->setType(FixedTInfo->getType());
6046 NewVD->setTypeSourceInfo(FixedTInfo);
6047 }
6048
6049 if (T->isVoidType()) {
6050 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
6051 // of objects and functions.
6052 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
6053 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
6054 << T;
6055 NewVD->setInvalidDecl();
6056 return;
6057 }
6058 }
6059
6060 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
6061 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
6062 NewVD->setInvalidDecl();
6063 return;
6064 }
6065
6066 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
6067 Diag(NewVD->getLocation(), diag::err_block_on_vm);
6068 NewVD->setInvalidDecl();
6069 return;
6070 }
6071
6072 if (NewVD->isConstexpr() && !T->isDependentType() &&
6073 RequireLiteralType(NewVD->getLocation(), T,
6074 diag::err_constexpr_var_non_literal)) {
6075 NewVD->setInvalidDecl();
6076 return;
6077 }
6078 }
6079
6080 /// \brief Perform semantic checking on a newly-created variable
6081 /// declaration.
6082 ///
6083 /// This routine performs all of the type-checking required for a
6084 /// variable declaration once it has been built. It is used both to
6085 /// check variables after they have been parsed and their declarators
6086 /// have been translated into a declaration, and to check variables
6087 /// that have been instantiated from a template.
6088 ///
6089 /// Sets NewVD->isInvalidDecl() if an error was encountered.
6090 ///
6091 /// Returns true if the variable declaration is a redeclaration.
CheckVariableDeclaration(VarDecl * NewVD,LookupResult & Previous)6092 bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
6093 CheckVariableDeclarationType(NewVD);
6094
6095 // If the decl is already known invalid, don't check it.
6096 if (NewVD->isInvalidDecl())
6097 return false;
6098
6099 // If we did not find anything by this name, look for a non-visible
6100 // extern "C" declaration with the same name.
6101 if (Previous.empty() &&
6102 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
6103 Previous.setShadowed();
6104
6105 // Filter out any non-conflicting previous declarations.
6106 filterNonConflictingPreviousDecls(Context, NewVD, Previous);
6107
6108 if (!Previous.empty()) {
6109 MergeVarDecl(NewVD, Previous);
6110 return true;
6111 }
6112 return false;
6113 }
6114
6115 /// \brief Data used with FindOverriddenMethod
6116 struct FindOverriddenMethodData {
6117 Sema *S;
6118 CXXMethodDecl *Method;
6119 };
6120
6121 /// \brief Member lookup function that determines whether a given C++
6122 /// method overrides a method in a base class, to be used with
6123 /// CXXRecordDecl::lookupInBases().
FindOverriddenMethod(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * UserData)6124 static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
6125 CXXBasePath &Path,
6126 void *UserData) {
6127 RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
6128
6129 FindOverriddenMethodData *Data
6130 = reinterpret_cast<FindOverriddenMethodData*>(UserData);
6131
6132 DeclarationName Name = Data->Method->getDeclName();
6133
6134 // FIXME: Do we care about other names here too?
6135 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6136 // We really want to find the base class destructor here.
6137 QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
6138 CanQualType CT = Data->S->Context.getCanonicalType(T);
6139
6140 Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
6141 }
6142
6143 for (Path.Decls = BaseRecord->lookup(Name);
6144 !Path.Decls.empty();
6145 Path.Decls = Path.Decls.slice(1)) {
6146 NamedDecl *D = Path.Decls.front();
6147 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
6148 if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
6149 return true;
6150 }
6151 }
6152
6153 return false;
6154 }
6155
6156 namespace {
6157 enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
6158 }
6159 /// \brief Report an error regarding overriding, along with any relevant
6160 /// overriden methods.
6161 ///
6162 /// \param DiagID the primary error to report.
6163 /// \param MD the overriding method.
6164 /// \param OEK which overrides to include as notes.
ReportOverrides(Sema & S,unsigned DiagID,const CXXMethodDecl * MD,OverrideErrorKind OEK=OEK_All)6165 static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
6166 OverrideErrorKind OEK = OEK_All) {
6167 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
6168 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
6169 E = MD->end_overridden_methods();
6170 I != E; ++I) {
6171 // This check (& the OEK parameter) could be replaced by a predicate, but
6172 // without lambdas that would be overkill. This is still nicer than writing
6173 // out the diag loop 3 times.
6174 if ((OEK == OEK_All) ||
6175 (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
6176 (OEK == OEK_Deleted && (*I)->isDeleted()))
6177 S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
6178 }
6179 }
6180
6181 /// AddOverriddenMethods - See if a method overrides any in the base classes,
6182 /// and if so, check that it's a valid override and remember it.
AddOverriddenMethods(CXXRecordDecl * DC,CXXMethodDecl * MD)6183 bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
6184 // Look for virtual methods in base classes that this method might override.
6185 CXXBasePaths Paths;
6186 FindOverriddenMethodData Data;
6187 Data.Method = MD;
6188 Data.S = this;
6189 bool hasDeletedOverridenMethods = false;
6190 bool hasNonDeletedOverridenMethods = false;
6191 bool AddedAny = false;
6192 if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
6193 for (auto *I : Paths.found_decls()) {
6194 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
6195 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
6196 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
6197 !CheckOverridingFunctionAttributes(MD, OldMD) &&
6198 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
6199 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
6200 hasDeletedOverridenMethods |= OldMD->isDeleted();
6201 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
6202 AddedAny = true;
6203 }
6204 }
6205 }
6206 }
6207
6208 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
6209 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
6210 }
6211 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
6212 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
6213 }
6214
6215 return AddedAny;
6216 }
6217
6218 namespace {
6219 // Struct for holding all of the extra arguments needed by
6220 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
6221 struct ActOnFDArgs {
6222 Scope *S;
6223 Declarator &D;
6224 MultiTemplateParamsArg TemplateParamLists;
6225 bool AddToScope;
6226 };
6227 }
6228
6229 namespace {
6230
6231 // Callback to only accept typo corrections that have a non-zero edit distance.
6232 // Also only accept corrections that have the same parent decl.
6233 class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
6234 public:
DifferentNameValidatorCCC(ASTContext & Context,FunctionDecl * TypoFD,CXXRecordDecl * Parent)6235 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
6236 CXXRecordDecl *Parent)
6237 : Context(Context), OriginalFD(TypoFD),
6238 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
6239
ValidateCandidate(const TypoCorrection & candidate)6240 bool ValidateCandidate(const TypoCorrection &candidate) override {
6241 if (candidate.getEditDistance() == 0)
6242 return false;
6243
6244 SmallVector<unsigned, 1> MismatchedParams;
6245 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
6246 CDeclEnd = candidate.end();
6247 CDecl != CDeclEnd; ++CDecl) {
6248 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6249
6250 if (FD && !FD->hasBody() &&
6251 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
6252 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
6253 CXXRecordDecl *Parent = MD->getParent();
6254 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
6255 return true;
6256 } else if (!ExpectedParent) {
6257 return true;
6258 }
6259 }
6260 }
6261
6262 return false;
6263 }
6264
6265 private:
6266 ASTContext &Context;
6267 FunctionDecl *OriginalFD;
6268 CXXRecordDecl *ExpectedParent;
6269 };
6270
6271 }
6272
6273 /// \brief Generate diagnostics for an invalid function redeclaration.
6274 ///
6275 /// This routine handles generating the diagnostic messages for an invalid
6276 /// function redeclaration, including finding possible similar declarations
6277 /// or performing typo correction if there are no previous declarations with
6278 /// the same name.
6279 ///
6280 /// Returns a NamedDecl iff typo correction was performed and substituting in
6281 /// the new declaration name does not cause new errors.
DiagnoseInvalidRedeclaration(Sema & SemaRef,LookupResult & Previous,FunctionDecl * NewFD,ActOnFDArgs & ExtraArgs,bool IsLocalFriend,Scope * S)6282 static NamedDecl *DiagnoseInvalidRedeclaration(
6283 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
6284 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
6285 DeclarationName Name = NewFD->getDeclName();
6286 DeclContext *NewDC = NewFD->getDeclContext();
6287 SmallVector<unsigned, 1> MismatchedParams;
6288 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
6289 TypoCorrection Correction;
6290 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
6291 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
6292 : diag::err_member_decl_does_not_match;
6293 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
6294 IsLocalFriend ? Sema::LookupLocalFriendName
6295 : Sema::LookupOrdinaryName,
6296 Sema::ForRedeclaration);
6297
6298 NewFD->setInvalidDecl();
6299 if (IsLocalFriend)
6300 SemaRef.LookupName(Prev, S);
6301 else
6302 SemaRef.LookupQualifiedName(Prev, NewDC);
6303 assert(!Prev.isAmbiguous() &&
6304 "Cannot have an ambiguity in previous-declaration lookup");
6305 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6306 DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
6307 MD ? MD->getParent() : nullptr);
6308 if (!Prev.empty()) {
6309 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
6310 Func != FuncEnd; ++Func) {
6311 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
6312 if (FD &&
6313 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6314 // Add 1 to the index so that 0 can mean the mismatch didn't
6315 // involve a parameter
6316 unsigned ParamNum =
6317 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6318 NearMatches.push_back(std::make_pair(FD, ParamNum));
6319 }
6320 }
6321 // If the qualified name lookup yielded nothing, try typo correction
6322 } else if ((Correction = SemaRef.CorrectTypo(
6323 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6324 &ExtraArgs.D.getCXXScopeSpec(), Validator,
6325 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
6326 // Set up everything for the call to ActOnFunctionDeclarator
6327 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6328 ExtraArgs.D.getIdentifierLoc());
6329 Previous.clear();
6330 Previous.setLookupName(Correction.getCorrection());
6331 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6332 CDeclEnd = Correction.end();
6333 CDecl != CDeclEnd; ++CDecl) {
6334 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6335 if (FD && !FD->hasBody() &&
6336 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6337 Previous.addDecl(FD);
6338 }
6339 }
6340 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6341
6342 NamedDecl *Result;
6343 // Retry building the function declaration with the new previous
6344 // declarations, and with errors suppressed.
6345 {
6346 // Trap errors.
6347 Sema::SFINAETrap Trap(SemaRef);
6348
6349 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6350 // pieces need to verify the typo-corrected C++ declaration and hopefully
6351 // eliminate the need for the parameter pack ExtraArgs.
6352 Result = SemaRef.ActOnFunctionDeclarator(
6353 ExtraArgs.S, ExtraArgs.D,
6354 Correction.getCorrectionDecl()->getDeclContext(),
6355 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6356 ExtraArgs.AddToScope);
6357
6358 if (Trap.hasErrorOccurred())
6359 Result = nullptr;
6360 }
6361
6362 if (Result) {
6363 // Determine which correction we picked.
6364 Decl *Canonical = Result->getCanonicalDecl();
6365 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6366 I != E; ++I)
6367 if ((*I)->getCanonicalDecl() == Canonical)
6368 Correction.setCorrectionDecl(*I);
6369
6370 SemaRef.diagnoseTypo(
6371 Correction,
6372 SemaRef.PDiag(IsLocalFriend
6373 ? diag::err_no_matching_local_friend_suggest
6374 : diag::err_member_decl_does_not_match_suggest)
6375 << Name << NewDC << IsDefinition);
6376 return Result;
6377 }
6378
6379 // Pretend the typo correction never occurred
6380 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6381 ExtraArgs.D.getIdentifierLoc());
6382 ExtraArgs.D.setRedeclaration(wasRedeclaration);
6383 Previous.clear();
6384 Previous.setLookupName(Name);
6385 }
6386
6387 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6388 << Name << NewDC << IsDefinition << NewFD->getLocation();
6389
6390 bool NewFDisConst = false;
6391 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6392 NewFDisConst = NewMD->isConst();
6393
6394 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6395 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6396 NearMatch != NearMatchEnd; ++NearMatch) {
6397 FunctionDecl *FD = NearMatch->first;
6398 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6399 bool FDisConst = MD && MD->isConst();
6400 bool IsMember = MD || !IsLocalFriend;
6401
6402 // FIXME: These notes are poorly worded for the local friend case.
6403 if (unsigned Idx = NearMatch->second) {
6404 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6405 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6406 if (Loc.isInvalid()) Loc = FD->getLocation();
6407 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6408 : diag::note_local_decl_close_param_match)
6409 << Idx << FDParam->getType()
6410 << NewFD->getParamDecl(Idx - 1)->getType();
6411 } else if (FDisConst != NewFDisConst) {
6412 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6413 << NewFDisConst << FD->getSourceRange().getEnd();
6414 } else
6415 SemaRef.Diag(FD->getLocation(),
6416 IsMember ? diag::note_member_def_close_match
6417 : diag::note_local_decl_close_match);
6418 }
6419 return nullptr;
6420 }
6421
getFunctionStorageClass(Sema & SemaRef,Declarator & D)6422 static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6423 Declarator &D) {
6424 switch (D.getDeclSpec().getStorageClassSpec()) {
6425 default: llvm_unreachable("Unknown storage class!");
6426 case DeclSpec::SCS_auto:
6427 case DeclSpec::SCS_register:
6428 case DeclSpec::SCS_mutable:
6429 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6430 diag::err_typecheck_sclass_func);
6431 D.setInvalidType();
6432 break;
6433 case DeclSpec::SCS_unspecified: break;
6434 case DeclSpec::SCS_extern:
6435 if (D.getDeclSpec().isExternInLinkageSpec())
6436 return SC_None;
6437 return SC_Extern;
6438 case DeclSpec::SCS_static: {
6439 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6440 // C99 6.7.1p5:
6441 // The declaration of an identifier for a function that has
6442 // block scope shall have no explicit storage-class specifier
6443 // other than extern
6444 // See also (C++ [dcl.stc]p4).
6445 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6446 diag::err_static_block_func);
6447 break;
6448 } else
6449 return SC_Static;
6450 }
6451 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6452 }
6453
6454 // No explicit storage class has already been returned
6455 return SC_None;
6456 }
6457
CreateNewFunctionDecl(Sema & SemaRef,Declarator & D,DeclContext * DC,QualType & R,TypeSourceInfo * TInfo,FunctionDecl::StorageClass SC,bool & IsVirtualOkay)6458 static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6459 DeclContext *DC, QualType &R,
6460 TypeSourceInfo *TInfo,
6461 FunctionDecl::StorageClass SC,
6462 bool &IsVirtualOkay) {
6463 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6464 DeclarationName Name = NameInfo.getName();
6465
6466 FunctionDecl *NewFD = nullptr;
6467 bool isInline = D.getDeclSpec().isInlineSpecified();
6468
6469 if (!SemaRef.getLangOpts().CPlusPlus) {
6470 // Determine whether the function was written with a
6471 // prototype. This true when:
6472 // - there is a prototype in the declarator, or
6473 // - the type R of the function is some kind of typedef or other reference
6474 // to a type name (which eventually refers to a function type).
6475 bool HasPrototype =
6476 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6477 (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6478
6479 NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6480 D.getLocStart(), NameInfo, R,
6481 TInfo, SC, isInline,
6482 HasPrototype, false);
6483 if (D.isInvalidType())
6484 NewFD->setInvalidDecl();
6485
6486 // Set the lexical context.
6487 NewFD->setLexicalDeclContext(SemaRef.CurContext);
6488
6489 return NewFD;
6490 }
6491
6492 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6493 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6494
6495 // Check that the return type is not an abstract class type.
6496 // For record types, this is done by the AbstractClassUsageDiagnoser once
6497 // the class has been completely parsed.
6498 if (!DC->isRecord() &&
6499 SemaRef.RequireNonAbstractType(
6500 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
6501 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
6502 D.setInvalidType();
6503
6504 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6505 // This is a C++ constructor declaration.
6506 assert(DC->isRecord() &&
6507 "Constructors can only be declared in a member context");
6508
6509 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6510 return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6511 D.getLocStart(), NameInfo,
6512 R, TInfo, isExplicit, isInline,
6513 /*isImplicitlyDeclared=*/false,
6514 isConstexpr);
6515
6516 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6517 // This is a C++ destructor declaration.
6518 if (DC->isRecord()) {
6519 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6520 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6521 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6522 SemaRef.Context, Record,
6523 D.getLocStart(),
6524 NameInfo, R, TInfo, isInline,
6525 /*isImplicitlyDeclared=*/false);
6526
6527 // If the class is complete, then we now create the implicit exception
6528 // specification. If the class is incomplete or dependent, we can't do
6529 // it yet.
6530 if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6531 Record->getDefinition() && !Record->isBeingDefined() &&
6532 R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6533 SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6534 }
6535
6536 IsVirtualOkay = true;
6537 return NewDD;
6538
6539 } else {
6540 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6541 D.setInvalidType();
6542
6543 // Create a FunctionDecl to satisfy the function definition parsing
6544 // code path.
6545 return FunctionDecl::Create(SemaRef.Context, DC,
6546 D.getLocStart(),
6547 D.getIdentifierLoc(), Name, R, TInfo,
6548 SC, isInline,
6549 /*hasPrototype=*/true, isConstexpr);
6550 }
6551
6552 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6553 if (!DC->isRecord()) {
6554 SemaRef.Diag(D.getIdentifierLoc(),
6555 diag::err_conv_function_not_member);
6556 return nullptr;
6557 }
6558
6559 SemaRef.CheckConversionDeclarator(D, R, SC);
6560 IsVirtualOkay = true;
6561 return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6562 D.getLocStart(), NameInfo,
6563 R, TInfo, isInline, isExplicit,
6564 isConstexpr, SourceLocation());
6565
6566 } else if (DC->isRecord()) {
6567 // If the name of the function is the same as the name of the record,
6568 // then this must be an invalid constructor that has a return type.
6569 // (The parser checks for a return type and makes the declarator a
6570 // constructor if it has no return type).
6571 if (Name.getAsIdentifierInfo() &&
6572 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6573 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6574 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6575 << SourceRange(D.getIdentifierLoc());
6576 return nullptr;
6577 }
6578
6579 // This is a C++ method declaration.
6580 CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6581 cast<CXXRecordDecl>(DC),
6582 D.getLocStart(), NameInfo, R,
6583 TInfo, SC, isInline,
6584 isConstexpr, SourceLocation());
6585 IsVirtualOkay = !Ret->isStatic();
6586 return Ret;
6587 } else {
6588 // Determine whether the function was written with a
6589 // prototype. This true when:
6590 // - we're in C++ (where every function has a prototype),
6591 return FunctionDecl::Create(SemaRef.Context, DC,
6592 D.getLocStart(),
6593 NameInfo, R, TInfo, SC, isInline,
6594 true/*HasPrototype*/, isConstexpr);
6595 }
6596 }
6597
6598 enum OpenCLParamType {
6599 ValidKernelParam,
6600 PtrPtrKernelParam,
6601 PtrKernelParam,
6602 PrivatePtrKernelParam,
6603 InvalidKernelParam,
6604 RecordKernelParam
6605 };
6606
getOpenCLKernelParameterType(QualType PT)6607 static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6608 if (PT->isPointerType()) {
6609 QualType PointeeType = PT->getPointeeType();
6610 if (PointeeType->isPointerType())
6611 return PtrPtrKernelParam;
6612 return PointeeType.getAddressSpace() == 0 ? PrivatePtrKernelParam
6613 : PtrKernelParam;
6614 }
6615
6616 // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6617 // be used as builtin types.
6618
6619 if (PT->isImageType())
6620 return PtrKernelParam;
6621
6622 if (PT->isBooleanType())
6623 return InvalidKernelParam;
6624
6625 if (PT->isEventT())
6626 return InvalidKernelParam;
6627
6628 if (PT->isHalfType())
6629 return InvalidKernelParam;
6630
6631 if (PT->isRecordType())
6632 return RecordKernelParam;
6633
6634 return ValidKernelParam;
6635 }
6636
checkIsValidOpenCLKernelParameter(Sema & S,Declarator & D,ParmVarDecl * Param,llvm::SmallPtrSet<const Type *,16> & ValidTypes)6637 static void checkIsValidOpenCLKernelParameter(
6638 Sema &S,
6639 Declarator &D,
6640 ParmVarDecl *Param,
6641 llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6642 QualType PT = Param->getType();
6643
6644 // Cache the valid types we encounter to avoid rechecking structs that are
6645 // used again
6646 if (ValidTypes.count(PT.getTypePtr()))
6647 return;
6648
6649 switch (getOpenCLKernelParameterType(PT)) {
6650 case PtrPtrKernelParam:
6651 // OpenCL v1.2 s6.9.a:
6652 // A kernel function argument cannot be declared as a
6653 // pointer to a pointer type.
6654 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6655 D.setInvalidType();
6656 return;
6657
6658 case PrivatePtrKernelParam:
6659 // OpenCL v1.2 s6.9.a:
6660 // A kernel function argument cannot be declared as a
6661 // pointer to the private address space.
6662 S.Diag(Param->getLocation(), diag::err_opencl_private_ptr_kernel_param);
6663 D.setInvalidType();
6664 return;
6665
6666 // OpenCL v1.2 s6.9.k:
6667 // Arguments to kernel functions in a program cannot be declared with the
6668 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6669 // uintptr_t or a struct and/or union that contain fields declared to be
6670 // one of these built-in scalar types.
6671
6672 case InvalidKernelParam:
6673 // OpenCL v1.2 s6.8 n:
6674 // A kernel function argument cannot be declared
6675 // of event_t type.
6676 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6677 D.setInvalidType();
6678 return;
6679
6680 case PtrKernelParam:
6681 case ValidKernelParam:
6682 ValidTypes.insert(PT.getTypePtr());
6683 return;
6684
6685 case RecordKernelParam:
6686 break;
6687 }
6688
6689 // Track nested structs we will inspect
6690 SmallVector<const Decl *, 4> VisitStack;
6691
6692 // Track where we are in the nested structs. Items will migrate from
6693 // VisitStack to HistoryStack as we do the DFS for bad field.
6694 SmallVector<const FieldDecl *, 4> HistoryStack;
6695 HistoryStack.push_back(nullptr);
6696
6697 const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6698 VisitStack.push_back(PD);
6699
6700 assert(VisitStack.back() && "First decl null?");
6701
6702 do {
6703 const Decl *Next = VisitStack.pop_back_val();
6704 if (!Next) {
6705 assert(!HistoryStack.empty());
6706 // Found a marker, we have gone up a level
6707 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6708 ValidTypes.insert(Hist->getType().getTypePtr());
6709
6710 continue;
6711 }
6712
6713 // Adds everything except the original parameter declaration (which is not a
6714 // field itself) to the history stack.
6715 const RecordDecl *RD;
6716 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6717 HistoryStack.push_back(Field);
6718 RD = Field->getType()->castAs<RecordType>()->getDecl();
6719 } else {
6720 RD = cast<RecordDecl>(Next);
6721 }
6722
6723 // Add a null marker so we know when we've gone back up a level
6724 VisitStack.push_back(nullptr);
6725
6726 for (const auto *FD : RD->fields()) {
6727 QualType QT = FD->getType();
6728
6729 if (ValidTypes.count(QT.getTypePtr()))
6730 continue;
6731
6732 OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6733 if (ParamType == ValidKernelParam)
6734 continue;
6735
6736 if (ParamType == RecordKernelParam) {
6737 VisitStack.push_back(FD);
6738 continue;
6739 }
6740
6741 // OpenCL v1.2 s6.9.p:
6742 // Arguments to kernel functions that are declared to be a struct or union
6743 // do not allow OpenCL objects to be passed as elements of the struct or
6744 // union.
6745 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
6746 ParamType == PrivatePtrKernelParam) {
6747 S.Diag(Param->getLocation(),
6748 diag::err_record_with_pointers_kernel_param)
6749 << PT->isUnionType()
6750 << PT;
6751 } else {
6752 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6753 }
6754
6755 S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6756 << PD->getDeclName();
6757
6758 // We have an error, now let's go back up through history and show where
6759 // the offending field came from
6760 for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6761 E = HistoryStack.end(); I != E; ++I) {
6762 const FieldDecl *OuterField = *I;
6763 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6764 << OuterField->getType();
6765 }
6766
6767 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6768 << QT->isPointerType()
6769 << QT;
6770 D.setInvalidType();
6771 return;
6772 }
6773 } while (!VisitStack.empty());
6774 }
6775
6776 NamedDecl*
ActOnFunctionDeclarator(Scope * S,Declarator & D,DeclContext * DC,TypeSourceInfo * TInfo,LookupResult & Previous,MultiTemplateParamsArg TemplateParamLists,bool & AddToScope)6777 Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6778 TypeSourceInfo *TInfo, LookupResult &Previous,
6779 MultiTemplateParamsArg TemplateParamLists,
6780 bool &AddToScope) {
6781 QualType R = TInfo->getType();
6782
6783 assert(R.getTypePtr()->isFunctionType());
6784
6785 // TODO: consider using NameInfo for diagnostic.
6786 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6787 DeclarationName Name = NameInfo.getName();
6788 FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6789
6790 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6791 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6792 diag::err_invalid_thread)
6793 << DeclSpec::getSpecifierName(TSCS);
6794
6795 if (D.isFirstDeclarationOfMember())
6796 adjustMemberFunctionCC(R, D.isStaticMember());
6797
6798 bool isFriend = false;
6799 FunctionTemplateDecl *FunctionTemplate = nullptr;
6800 bool isExplicitSpecialization = false;
6801 bool isFunctionTemplateSpecialization = false;
6802
6803 bool isDependentClassScopeExplicitSpecialization = false;
6804 bool HasExplicitTemplateArgs = false;
6805 TemplateArgumentListInfo TemplateArgs;
6806
6807 bool isVirtualOkay = false;
6808
6809 DeclContext *OriginalDC = DC;
6810 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6811
6812 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6813 isVirtualOkay);
6814 if (!NewFD) return nullptr;
6815
6816 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6817 NewFD->setTopLevelDeclInObjCContainer();
6818
6819 // Set the lexical context. If this is a function-scope declaration, or has a
6820 // C++ scope specifier, or is the object of a friend declaration, the lexical
6821 // context will be different from the semantic context.
6822 NewFD->setLexicalDeclContext(CurContext);
6823
6824 if (IsLocalExternDecl)
6825 NewFD->setLocalExternDecl();
6826
6827 if (getLangOpts().CPlusPlus) {
6828 bool isInline = D.getDeclSpec().isInlineSpecified();
6829 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6830 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6831 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6832 isFriend = D.getDeclSpec().isFriendSpecified();
6833 if (isFriend && !isInline && D.isFunctionDefinition()) {
6834 // C++ [class.friend]p5
6835 // A function can be defined in a friend declaration of a
6836 // class . . . . Such a function is implicitly inline.
6837 NewFD->setImplicitlyInline();
6838 }
6839
6840 // If this is a method defined in an __interface, and is not a constructor
6841 // or an overloaded operator, then set the pure flag (isVirtual will already
6842 // return true).
6843 if (const CXXRecordDecl *Parent =
6844 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6845 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6846 NewFD->setPure(true);
6847 }
6848
6849 SetNestedNameSpecifier(NewFD, D);
6850 isExplicitSpecialization = false;
6851 isFunctionTemplateSpecialization = false;
6852 if (D.isInvalidType())
6853 NewFD->setInvalidDecl();
6854
6855 // Match up the template parameter lists with the scope specifier, then
6856 // determine whether we have a template or a template specialization.
6857 bool Invalid = false;
6858 if (TemplateParameterList *TemplateParams =
6859 MatchTemplateParametersToScopeSpecifier(
6860 D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6861 D.getCXXScopeSpec(),
6862 D.getName().getKind() == UnqualifiedId::IK_TemplateId
6863 ? D.getName().TemplateId
6864 : nullptr,
6865 TemplateParamLists, isFriend, isExplicitSpecialization,
6866 Invalid)) {
6867 if (TemplateParams->size() > 0) {
6868 // This is a function template
6869
6870 // Check that we can declare a template here.
6871 if (CheckTemplateDeclScope(S, TemplateParams))
6872 return nullptr;
6873
6874 // A destructor cannot be a template.
6875 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6876 Diag(NewFD->getLocation(), diag::err_destructor_template);
6877 return nullptr;
6878 }
6879
6880 // If we're adding a template to a dependent context, we may need to
6881 // rebuilding some of the types used within the template parameter list,
6882 // now that we know what the current instantiation is.
6883 if (DC->isDependentContext()) {
6884 ContextRAII SavedContext(*this, DC);
6885 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6886 Invalid = true;
6887 }
6888
6889
6890 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6891 NewFD->getLocation(),
6892 Name, TemplateParams,
6893 NewFD);
6894 FunctionTemplate->setLexicalDeclContext(CurContext);
6895 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6896
6897 // For source fidelity, store the other template param lists.
6898 if (TemplateParamLists.size() > 1) {
6899 NewFD->setTemplateParameterListsInfo(Context,
6900 TemplateParamLists.size() - 1,
6901 TemplateParamLists.data());
6902 }
6903 } else {
6904 // This is a function template specialization.
6905 isFunctionTemplateSpecialization = true;
6906 // For source fidelity, store all the template param lists.
6907 if (TemplateParamLists.size() > 0)
6908 NewFD->setTemplateParameterListsInfo(Context,
6909 TemplateParamLists.size(),
6910 TemplateParamLists.data());
6911
6912 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6913 if (isFriend) {
6914 // We want to remove the "template<>", found here.
6915 SourceRange RemoveRange = TemplateParams->getSourceRange();
6916
6917 // If we remove the template<> and the name is not a
6918 // template-id, we're actually silently creating a problem:
6919 // the friend declaration will refer to an untemplated decl,
6920 // and clearly the user wants a template specialization. So
6921 // we need to insert '<>' after the name.
6922 SourceLocation InsertLoc;
6923 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6924 InsertLoc = D.getName().getSourceRange().getEnd();
6925 InsertLoc = getLocForEndOfToken(InsertLoc);
6926 }
6927
6928 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6929 << Name << RemoveRange
6930 << FixItHint::CreateRemoval(RemoveRange)
6931 << FixItHint::CreateInsertion(InsertLoc, "<>");
6932 }
6933 }
6934 }
6935 else {
6936 // All template param lists were matched against the scope specifier:
6937 // this is NOT (an explicit specialization of) a template.
6938 if (TemplateParamLists.size() > 0)
6939 // For source fidelity, store all the template param lists.
6940 NewFD->setTemplateParameterListsInfo(Context,
6941 TemplateParamLists.size(),
6942 TemplateParamLists.data());
6943 }
6944
6945 if (Invalid) {
6946 NewFD->setInvalidDecl();
6947 if (FunctionTemplate)
6948 FunctionTemplate->setInvalidDecl();
6949 }
6950
6951 // C++ [dcl.fct.spec]p5:
6952 // The virtual specifier shall only be used in declarations of
6953 // nonstatic class member functions that appear within a
6954 // member-specification of a class declaration; see 10.3.
6955 //
6956 if (isVirtual && !NewFD->isInvalidDecl()) {
6957 if (!isVirtualOkay) {
6958 Diag(D.getDeclSpec().getVirtualSpecLoc(),
6959 diag::err_virtual_non_function);
6960 } else if (!CurContext->isRecord()) {
6961 // 'virtual' was specified outside of the class.
6962 Diag(D.getDeclSpec().getVirtualSpecLoc(),
6963 diag::err_virtual_out_of_class)
6964 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6965 } else if (NewFD->getDescribedFunctionTemplate()) {
6966 // C++ [temp.mem]p3:
6967 // A member function template shall not be virtual.
6968 Diag(D.getDeclSpec().getVirtualSpecLoc(),
6969 diag::err_virtual_member_function_template)
6970 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6971 } else {
6972 // Okay: Add virtual to the method.
6973 NewFD->setVirtualAsWritten(true);
6974 }
6975
6976 if (getLangOpts().CPlusPlus1y &&
6977 NewFD->getReturnType()->isUndeducedType())
6978 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6979 }
6980
6981 if (getLangOpts().CPlusPlus1y &&
6982 (NewFD->isDependentContext() ||
6983 (isFriend && CurContext->isDependentContext())) &&
6984 NewFD->getReturnType()->isUndeducedType()) {
6985 // If the function template is referenced directly (for instance, as a
6986 // member of the current instantiation), pretend it has a dependent type.
6987 // This is not really justified by the standard, but is the only sane
6988 // thing to do.
6989 // FIXME: For a friend function, we have not marked the function as being
6990 // a friend yet, so 'isDependentContext' on the FD doesn't work.
6991 const FunctionProtoType *FPT =
6992 NewFD->getType()->castAs<FunctionProtoType>();
6993 QualType Result =
6994 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
6995 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
6996 FPT->getExtProtoInfo()));
6997 }
6998
6999 // C++ [dcl.fct.spec]p3:
7000 // The inline specifier shall not appear on a block scope function
7001 // declaration.
7002 if (isInline && !NewFD->isInvalidDecl()) {
7003 if (CurContext->isFunctionOrMethod()) {
7004 // 'inline' is not allowed on block scope function declaration.
7005 Diag(D.getDeclSpec().getInlineSpecLoc(),
7006 diag::err_inline_declaration_block_scope) << Name
7007 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7008 }
7009 }
7010
7011 // C++ [dcl.fct.spec]p6:
7012 // The explicit specifier shall be used only in the declaration of a
7013 // constructor or conversion function within its class definition;
7014 // see 12.3.1 and 12.3.2.
7015 if (isExplicit && !NewFD->isInvalidDecl()) {
7016 if (!CurContext->isRecord()) {
7017 // 'explicit' was specified outside of the class.
7018 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7019 diag::err_explicit_out_of_class)
7020 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7021 } else if (!isa<CXXConstructorDecl>(NewFD) &&
7022 !isa<CXXConversionDecl>(NewFD)) {
7023 // 'explicit' was specified on a function that wasn't a constructor
7024 // or conversion function.
7025 Diag(D.getDeclSpec().getExplicitSpecLoc(),
7026 diag::err_explicit_non_ctor_or_conv_function)
7027 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
7028 }
7029 }
7030
7031 if (isConstexpr) {
7032 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
7033 // are implicitly inline.
7034 NewFD->setImplicitlyInline();
7035
7036 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
7037 // be either constructors or to return a literal type. Therefore,
7038 // destructors cannot be declared constexpr.
7039 if (isa<CXXDestructorDecl>(NewFD))
7040 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
7041 }
7042
7043 // If __module_private__ was specified, mark the function accordingly.
7044 if (D.getDeclSpec().isModulePrivateSpecified()) {
7045 if (isFunctionTemplateSpecialization) {
7046 SourceLocation ModulePrivateLoc
7047 = D.getDeclSpec().getModulePrivateSpecLoc();
7048 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
7049 << 0
7050 << FixItHint::CreateRemoval(ModulePrivateLoc);
7051 } else {
7052 NewFD->setModulePrivate();
7053 if (FunctionTemplate)
7054 FunctionTemplate->setModulePrivate();
7055 }
7056 }
7057
7058 if (isFriend) {
7059 if (FunctionTemplate) {
7060 FunctionTemplate->setObjectOfFriendDecl();
7061 FunctionTemplate->setAccess(AS_public);
7062 }
7063 NewFD->setObjectOfFriendDecl();
7064 NewFD->setAccess(AS_public);
7065 }
7066
7067 // If a function is defined as defaulted or deleted, mark it as such now.
7068 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
7069 // definition kind to FDK_Definition.
7070 switch (D.getFunctionDefinitionKind()) {
7071 case FDK_Declaration:
7072 case FDK_Definition:
7073 break;
7074
7075 case FDK_Defaulted:
7076 NewFD->setDefaulted();
7077 break;
7078
7079 case FDK_Deleted:
7080 NewFD->setDeletedAsWritten();
7081 break;
7082 }
7083
7084 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
7085 D.isFunctionDefinition()) {
7086 // C++ [class.mfct]p2:
7087 // A member function may be defined (8.4) in its class definition, in
7088 // which case it is an inline member function (7.1.2)
7089 NewFD->setImplicitlyInline();
7090 }
7091
7092 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
7093 !CurContext->isRecord()) {
7094 // C++ [class.static]p1:
7095 // A data or function member of a class may be declared static
7096 // in a class definition, in which case it is a static member of
7097 // the class.
7098
7099 // Complain about the 'static' specifier if it's on an out-of-line
7100 // member function definition.
7101 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7102 diag::err_static_out_of_line)
7103 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7104 }
7105
7106 // C++11 [except.spec]p15:
7107 // A deallocation function with no exception-specification is treated
7108 // as if it were specified with noexcept(true).
7109 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
7110 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
7111 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
7112 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
7113 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7114 EPI.ExceptionSpecType = EST_BasicNoexcept;
7115 NewFD->setType(Context.getFunctionType(FPT->getReturnType(),
7116 FPT->getParamTypes(), EPI));
7117 }
7118 }
7119
7120 // Filter out previous declarations that don't match the scope.
7121 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
7122 D.getCXXScopeSpec().isNotEmpty() ||
7123 isExplicitSpecialization ||
7124 isFunctionTemplateSpecialization);
7125
7126 // Handle GNU asm-label extension (encoded as an attribute).
7127 if (Expr *E = (Expr*) D.getAsmLabel()) {
7128 // The parser guarantees this is a string.
7129 StringLiteral *SE = cast<StringLiteral>(E);
7130 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
7131 SE->getString(), 0));
7132 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7133 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7134 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
7135 if (I != ExtnameUndeclaredIdentifiers.end()) {
7136 NewFD->addAttr(I->second);
7137 ExtnameUndeclaredIdentifiers.erase(I);
7138 }
7139 }
7140
7141 // Copy the parameter declarations from the declarator D to the function
7142 // declaration NewFD, if they are available. First scavenge them into Params.
7143 SmallVector<ParmVarDecl*, 16> Params;
7144 if (D.isFunctionDeclarator()) {
7145 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7146
7147 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
7148 // function that takes no arguments, not a function that takes a
7149 // single void argument.
7150 // We let through "const void" here because Sema::GetTypeForDeclarator
7151 // already checks for that case.
7152 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
7153 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
7154 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
7155 assert(Param->getDeclContext() != NewFD && "Was set before ?");
7156 Param->setDeclContext(NewFD);
7157 Params.push_back(Param);
7158
7159 if (Param->isInvalidDecl())
7160 NewFD->setInvalidDecl();
7161 }
7162 }
7163
7164 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
7165 // When we're declaring a function with a typedef, typeof, etc as in the
7166 // following example, we'll need to synthesize (unnamed)
7167 // parameters for use in the declaration.
7168 //
7169 // @code
7170 // typedef void fn(int);
7171 // fn f;
7172 // @endcode
7173
7174 // Synthesize a parameter for each argument type.
7175 for (const auto &AI : FT->param_types()) {
7176 ParmVarDecl *Param =
7177 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
7178 Param->setScopeInfo(0, Params.size());
7179 Params.push_back(Param);
7180 }
7181 } else {
7182 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
7183 "Should not need args for typedef of non-prototype fn");
7184 }
7185
7186 // Finally, we know we have the right number of parameters, install them.
7187 NewFD->setParams(Params);
7188
7189 // Find all anonymous symbols defined during the declaration of this function
7190 // and add to NewFD. This lets us track decls such 'enum Y' in:
7191 //
7192 // void f(enum Y {AA} x) {}
7193 //
7194 // which would otherwise incorrectly end up in the translation unit scope.
7195 NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
7196 DeclsInPrototypeScope.clear();
7197
7198 if (D.getDeclSpec().isNoreturnSpecified())
7199 NewFD->addAttr(
7200 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
7201 Context, 0));
7202
7203 // Functions returning a variably modified type violate C99 6.7.5.2p2
7204 // because all functions have linkage.
7205 if (!NewFD->isInvalidDecl() &&
7206 NewFD->getReturnType()->isVariablyModifiedType()) {
7207 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
7208 NewFD->setInvalidDecl();
7209 }
7210
7211 if (D.isFunctionDefinition() && CodeSegStack.CurrentValue &&
7212 !NewFD->hasAttr<SectionAttr>()) {
7213 NewFD->addAttr(
7214 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
7215 CodeSegStack.CurrentValue->getString(),
7216 CodeSegStack.CurrentPragmaLocation));
7217 if (UnifySection(CodeSegStack.CurrentValue->getString(),
7218 PSF_Implicit | PSF_Execute | PSF_Read, NewFD))
7219 NewFD->dropAttr<SectionAttr>();
7220 }
7221
7222 // Handle attributes.
7223 ProcessDeclAttributes(S, NewFD, D);
7224
7225 QualType RetType = NewFD->getReturnType();
7226 const CXXRecordDecl *Ret = RetType->isRecordType() ?
7227 RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
7228 if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
7229 Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
7230 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7231 // Attach WarnUnusedResult to functions returning types with that attribute.
7232 // Don't apply the attribute to that type's own non-static member functions
7233 // (to avoid warning on things like assignment operators)
7234 if (!MD || MD->getParent() != Ret)
7235 NewFD->addAttr(WarnUnusedResultAttr::CreateImplicit(Context));
7236 }
7237
7238 if (getLangOpts().OpenCL) {
7239 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
7240 // type declaration will generate a compilation error.
7241 unsigned AddressSpace = RetType.getAddressSpace();
7242 if (AddressSpace == LangAS::opencl_local ||
7243 AddressSpace == LangAS::opencl_global ||
7244 AddressSpace == LangAS::opencl_constant) {
7245 Diag(NewFD->getLocation(),
7246 diag::err_opencl_return_value_with_address_space);
7247 NewFD->setInvalidDecl();
7248 }
7249 }
7250
7251 if (!getLangOpts().CPlusPlus) {
7252 // Perform semantic checking on the function declaration.
7253 bool isExplicitSpecialization=false;
7254 if (!NewFD->isInvalidDecl() && NewFD->isMain())
7255 CheckMain(NewFD, D.getDeclSpec());
7256
7257 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7258 CheckMSVCRTEntryPoint(NewFD);
7259
7260 if (!NewFD->isInvalidDecl())
7261 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7262 isExplicitSpecialization));
7263 else if (!Previous.empty())
7264 // Make graceful recovery from an invalid redeclaration.
7265 D.setRedeclaration(true);
7266 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7267 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7268 "previous declaration set still overloaded");
7269 } else {
7270 // C++11 [replacement.functions]p3:
7271 // The program's definitions shall not be specified as inline.
7272 //
7273 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
7274 //
7275 // Suppress the diagnostic if the function is __attribute__((used)), since
7276 // that forces an external definition to be emitted.
7277 if (D.getDeclSpec().isInlineSpecified() &&
7278 NewFD->isReplaceableGlobalAllocationFunction() &&
7279 !NewFD->hasAttr<UsedAttr>())
7280 Diag(D.getDeclSpec().getInlineSpecLoc(),
7281 diag::ext_operator_new_delete_declared_inline)
7282 << NewFD->getDeclName();
7283
7284 // If the declarator is a template-id, translate the parser's template
7285 // argument list into our AST format.
7286 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7287 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
7288 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
7289 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
7290 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
7291 TemplateId->NumArgs);
7292 translateTemplateArguments(TemplateArgsPtr,
7293 TemplateArgs);
7294
7295 HasExplicitTemplateArgs = true;
7296
7297 if (NewFD->isInvalidDecl()) {
7298 HasExplicitTemplateArgs = false;
7299 } else if (FunctionTemplate) {
7300 // Function template with explicit template arguments.
7301 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
7302 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
7303
7304 HasExplicitTemplateArgs = false;
7305 } else {
7306 assert((isFunctionTemplateSpecialization ||
7307 D.getDeclSpec().isFriendSpecified()) &&
7308 "should have a 'template<>' for this decl");
7309 // "friend void foo<>(int);" is an implicit specialization decl.
7310 isFunctionTemplateSpecialization = true;
7311 }
7312 } else if (isFriend && isFunctionTemplateSpecialization) {
7313 // This combination is only possible in a recovery case; the user
7314 // wrote something like:
7315 // template <> friend void foo(int);
7316 // which we're recovering from as if the user had written:
7317 // friend void foo<>(int);
7318 // Go ahead and fake up a template id.
7319 HasExplicitTemplateArgs = true;
7320 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
7321 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
7322 }
7323
7324 // If it's a friend (and only if it's a friend), it's possible
7325 // that either the specialized function type or the specialized
7326 // template is dependent, and therefore matching will fail. In
7327 // this case, don't check the specialization yet.
7328 bool InstantiationDependent = false;
7329 if (isFunctionTemplateSpecialization && isFriend &&
7330 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7331 TemplateSpecializationType::anyDependentTemplateArguments(
7332 TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7333 InstantiationDependent))) {
7334 assert(HasExplicitTemplateArgs &&
7335 "friend function specialization without template args");
7336 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7337 Previous))
7338 NewFD->setInvalidDecl();
7339 } else if (isFunctionTemplateSpecialization) {
7340 if (CurContext->isDependentContext() && CurContext->isRecord()
7341 && !isFriend) {
7342 isDependentClassScopeExplicitSpecialization = true;
7343 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7344 diag::ext_function_specialization_in_class :
7345 diag::err_function_specialization_in_class)
7346 << NewFD->getDeclName();
7347 } else if (CheckFunctionTemplateSpecialization(NewFD,
7348 (HasExplicitTemplateArgs ? &TemplateArgs
7349 : nullptr),
7350 Previous))
7351 NewFD->setInvalidDecl();
7352
7353 // C++ [dcl.stc]p1:
7354 // A storage-class-specifier shall not be specified in an explicit
7355 // specialization (14.7.3)
7356 FunctionTemplateSpecializationInfo *Info =
7357 NewFD->getTemplateSpecializationInfo();
7358 if (Info && SC != SC_None) {
7359 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7360 Diag(NewFD->getLocation(),
7361 diag::err_explicit_specialization_inconsistent_storage_class)
7362 << SC
7363 << FixItHint::CreateRemoval(
7364 D.getDeclSpec().getStorageClassSpecLoc());
7365
7366 else
7367 Diag(NewFD->getLocation(),
7368 diag::ext_explicit_specialization_storage_class)
7369 << FixItHint::CreateRemoval(
7370 D.getDeclSpec().getStorageClassSpecLoc());
7371 }
7372
7373 } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7374 if (CheckMemberSpecialization(NewFD, Previous))
7375 NewFD->setInvalidDecl();
7376 }
7377
7378 // Perform semantic checking on the function declaration.
7379 if (!isDependentClassScopeExplicitSpecialization) {
7380 if (!NewFD->isInvalidDecl() && NewFD->isMain())
7381 CheckMain(NewFD, D.getDeclSpec());
7382
7383 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7384 CheckMSVCRTEntryPoint(NewFD);
7385
7386 if (!NewFD->isInvalidDecl())
7387 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7388 isExplicitSpecialization));
7389 }
7390
7391 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7392 Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7393 "previous declaration set still overloaded");
7394
7395 NamedDecl *PrincipalDecl = (FunctionTemplate
7396 ? cast<NamedDecl>(FunctionTemplate)
7397 : NewFD);
7398
7399 if (isFriend && D.isRedeclaration()) {
7400 AccessSpecifier Access = AS_public;
7401 if (!NewFD->isInvalidDecl())
7402 Access = NewFD->getPreviousDecl()->getAccess();
7403
7404 NewFD->setAccess(Access);
7405 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7406 }
7407
7408 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7409 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7410 PrincipalDecl->setNonMemberOperator();
7411
7412 // If we have a function template, check the template parameter
7413 // list. This will check and merge default template arguments.
7414 if (FunctionTemplate) {
7415 FunctionTemplateDecl *PrevTemplate =
7416 FunctionTemplate->getPreviousDecl();
7417 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7418 PrevTemplate ? PrevTemplate->getTemplateParameters()
7419 : nullptr,
7420 D.getDeclSpec().isFriendSpecified()
7421 ? (D.isFunctionDefinition()
7422 ? TPC_FriendFunctionTemplateDefinition
7423 : TPC_FriendFunctionTemplate)
7424 : (D.getCXXScopeSpec().isSet() &&
7425 DC && DC->isRecord() &&
7426 DC->isDependentContext())
7427 ? TPC_ClassTemplateMember
7428 : TPC_FunctionTemplate);
7429 }
7430
7431 if (NewFD->isInvalidDecl()) {
7432 // Ignore all the rest of this.
7433 } else if (!D.isRedeclaration()) {
7434 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7435 AddToScope };
7436 // Fake up an access specifier if it's supposed to be a class member.
7437 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7438 NewFD->setAccess(AS_public);
7439
7440 // Qualified decls generally require a previous declaration.
7441 if (D.getCXXScopeSpec().isSet()) {
7442 // ...with the major exception of templated-scope or
7443 // dependent-scope friend declarations.
7444
7445 // TODO: we currently also suppress this check in dependent
7446 // contexts because (1) the parameter depth will be off when
7447 // matching friend templates and (2) we might actually be
7448 // selecting a friend based on a dependent factor. But there
7449 // are situations where these conditions don't apply and we
7450 // can actually do this check immediately.
7451 if (isFriend &&
7452 (TemplateParamLists.size() ||
7453 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7454 CurContext->isDependentContext())) {
7455 // ignore these
7456 } else {
7457 // The user tried to provide an out-of-line definition for a
7458 // function that is a member of a class or namespace, but there
7459 // was no such member function declared (C++ [class.mfct]p2,
7460 // C++ [namespace.memdef]p2). For example:
7461 //
7462 // class X {
7463 // void f() const;
7464 // };
7465 //
7466 // void X::f() { } // ill-formed
7467 //
7468 // Complain about this problem, and attempt to suggest close
7469 // matches (e.g., those that differ only in cv-qualifiers and
7470 // whether the parameter types are references).
7471
7472 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7473 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
7474 AddToScope = ExtraArgs.AddToScope;
7475 return Result;
7476 }
7477 }
7478
7479 // Unqualified local friend declarations are required to resolve
7480 // to something.
7481 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7482 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7483 *this, Previous, NewFD, ExtraArgs, true, S)) {
7484 AddToScope = ExtraArgs.AddToScope;
7485 return Result;
7486 }
7487 }
7488
7489 } else if (!D.isFunctionDefinition() &&
7490 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
7491 !isFriend && !isFunctionTemplateSpecialization &&
7492 !isExplicitSpecialization) {
7493 // An out-of-line member function declaration must also be a
7494 // definition (C++ [class.mfct]p2).
7495 // Note that this is not the case for explicit specializations of
7496 // function templates or member functions of class templates, per
7497 // C++ [temp.expl.spec]p2. We also allow these declarations as an
7498 // extension for compatibility with old SWIG code which likes to
7499 // generate them.
7500 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7501 << D.getCXXScopeSpec().getRange();
7502 }
7503 }
7504
7505 ProcessPragmaWeak(S, NewFD);
7506 checkAttributesAfterMerging(*this, *NewFD);
7507
7508 AddKnownFunctionAttributes(NewFD);
7509
7510 if (NewFD->hasAttr<OverloadableAttr>() &&
7511 !NewFD->getType()->getAs<FunctionProtoType>()) {
7512 Diag(NewFD->getLocation(),
7513 diag::err_attribute_overloadable_no_prototype)
7514 << NewFD;
7515
7516 // Turn this into a variadic function with no parameters.
7517 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7518 FunctionProtoType::ExtProtoInfo EPI(
7519 Context.getDefaultCallingConvention(true, false));
7520 EPI.Variadic = true;
7521 EPI.ExtInfo = FT->getExtInfo();
7522
7523 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
7524 NewFD->setType(R);
7525 }
7526
7527 // If there's a #pragma GCC visibility in scope, and this isn't a class
7528 // member, set the visibility of this function.
7529 if (!DC->isRecord() && NewFD->isExternallyVisible())
7530 AddPushedVisibilityAttribute(NewFD);
7531
7532 // If there's a #pragma clang arc_cf_code_audited in scope, consider
7533 // marking the function.
7534 AddCFAuditedAttribute(NewFD);
7535
7536 // If this is a function definition, check if we have to apply optnone due to
7537 // a pragma.
7538 if(D.isFunctionDefinition())
7539 AddRangeBasedOptnone(NewFD);
7540
7541 // If this is the first declaration of an extern C variable, update
7542 // the map of such variables.
7543 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7544 isIncompleteDeclExternC(*this, NewFD))
7545 RegisterLocallyScopedExternCDecl(NewFD, S);
7546
7547 // Set this FunctionDecl's range up to the right paren.
7548 NewFD->setRangeEnd(D.getSourceRange().getEnd());
7549
7550 if (D.isRedeclaration() && !Previous.empty()) {
7551 checkDLLAttributeRedeclaration(
7552 *this, dyn_cast<NamedDecl>(Previous.getRepresentativeDecl()), NewFD,
7553 isExplicitSpecialization || isFunctionTemplateSpecialization);
7554 }
7555
7556 if (getLangOpts().CPlusPlus) {
7557 if (FunctionTemplate) {
7558 if (NewFD->isInvalidDecl())
7559 FunctionTemplate->setInvalidDecl();
7560 return FunctionTemplate;
7561 }
7562 }
7563
7564 if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7565 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7566 if ((getLangOpts().OpenCLVersion >= 120)
7567 && (SC == SC_Static)) {
7568 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7569 D.setInvalidType();
7570 }
7571
7572 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7573 if (!NewFD->getReturnType()->isVoidType()) {
7574 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
7575 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
7576 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
7577 : FixItHint());
7578 D.setInvalidType();
7579 }
7580
7581 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7582 for (auto Param : NewFD->params())
7583 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7584 }
7585
7586 MarkUnusedFileScopedDecl(NewFD);
7587
7588 if (getLangOpts().CUDA)
7589 if (IdentifierInfo *II = NewFD->getIdentifier())
7590 if (!NewFD->isInvalidDecl() &&
7591 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7592 if (II->isStr("cudaConfigureCall")) {
7593 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
7594 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7595
7596 Context.setcudaConfigureCallDecl(NewFD);
7597 }
7598 }
7599
7600 // Here we have an function template explicit specialization at class scope.
7601 // The actually specialization will be postponed to template instatiation
7602 // time via the ClassScopeFunctionSpecializationDecl node.
7603 if (isDependentClassScopeExplicitSpecialization) {
7604 ClassScopeFunctionSpecializationDecl *NewSpec =
7605 ClassScopeFunctionSpecializationDecl::Create(
7606 Context, CurContext, SourceLocation(),
7607 cast<CXXMethodDecl>(NewFD),
7608 HasExplicitTemplateArgs, TemplateArgs);
7609 CurContext->addDecl(NewSpec);
7610 AddToScope = false;
7611 }
7612
7613 return NewFD;
7614 }
7615
7616 /// \brief Perform semantic checking of a new function declaration.
7617 ///
7618 /// Performs semantic analysis of the new function declaration
7619 /// NewFD. This routine performs all semantic checking that does not
7620 /// require the actual declarator involved in the declaration, and is
7621 /// used both for the declaration of functions as they are parsed
7622 /// (called via ActOnDeclarator) and for the declaration of functions
7623 /// that have been instantiated via C++ template instantiation (called
7624 /// via InstantiateDecl).
7625 ///
7626 /// \param IsExplicitSpecialization whether this new function declaration is
7627 /// an explicit specialization of the previous declaration.
7628 ///
7629 /// This sets NewFD->isInvalidDecl() to true if there was an error.
7630 ///
7631 /// \returns true if the function declaration is a redeclaration.
CheckFunctionDeclaration(Scope * S,FunctionDecl * NewFD,LookupResult & Previous,bool IsExplicitSpecialization)7632 bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7633 LookupResult &Previous,
7634 bool IsExplicitSpecialization) {
7635 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&
7636 "Variably modified return types are not handled here");
7637
7638 // Determine whether the type of this function should be merged with
7639 // a previous visible declaration. This never happens for functions in C++,
7640 // and always happens in C if the previous declaration was visible.
7641 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7642 !Previous.isShadowed();
7643
7644 // Filter out any non-conflicting previous declarations.
7645 filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7646
7647 bool Redeclaration = false;
7648 NamedDecl *OldDecl = nullptr;
7649
7650 // Merge or overload the declaration with an existing declaration of
7651 // the same name, if appropriate.
7652 if (!Previous.empty()) {
7653 // Determine whether NewFD is an overload of PrevDecl or
7654 // a declaration that requires merging. If it's an overload,
7655 // there's no more work to do here; we'll just add the new
7656 // function to the scope.
7657 if (!AllowOverloadingOfFunction(Previous, Context)) {
7658 NamedDecl *Candidate = Previous.getFoundDecl();
7659 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7660 Redeclaration = true;
7661 OldDecl = Candidate;
7662 }
7663 } else {
7664 switch (CheckOverload(S, NewFD, Previous, OldDecl,
7665 /*NewIsUsingDecl*/ false)) {
7666 case Ovl_Match:
7667 Redeclaration = true;
7668 break;
7669
7670 case Ovl_NonFunction:
7671 Redeclaration = true;
7672 break;
7673
7674 case Ovl_Overload:
7675 Redeclaration = false;
7676 break;
7677 }
7678
7679 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7680 // If a function name is overloadable in C, then every function
7681 // with that name must be marked "overloadable".
7682 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7683 << Redeclaration << NewFD;
7684 NamedDecl *OverloadedDecl = nullptr;
7685 if (Redeclaration)
7686 OverloadedDecl = OldDecl;
7687 else if (!Previous.empty())
7688 OverloadedDecl = Previous.getRepresentativeDecl();
7689 if (OverloadedDecl)
7690 Diag(OverloadedDecl->getLocation(),
7691 diag::note_attribute_overloadable_prev_overload);
7692 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7693 }
7694 }
7695 }
7696
7697 // Check for a previous extern "C" declaration with this name.
7698 if (!Redeclaration &&
7699 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7700 filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7701 if (!Previous.empty()) {
7702 // This is an extern "C" declaration with the same name as a previous
7703 // declaration, and thus redeclares that entity...
7704 Redeclaration = true;
7705 OldDecl = Previous.getFoundDecl();
7706 MergeTypeWithPrevious = false;
7707
7708 // ... except in the presence of __attribute__((overloadable)).
7709 if (OldDecl->hasAttr<OverloadableAttr>()) {
7710 if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7711 Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7712 << Redeclaration << NewFD;
7713 Diag(Previous.getFoundDecl()->getLocation(),
7714 diag::note_attribute_overloadable_prev_overload);
7715 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
7716 }
7717 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7718 Redeclaration = false;
7719 OldDecl = nullptr;
7720 }
7721 }
7722 }
7723 }
7724
7725 // C++11 [dcl.constexpr]p8:
7726 // A constexpr specifier for a non-static member function that is not
7727 // a constructor declares that member function to be const.
7728 //
7729 // This needs to be delayed until we know whether this is an out-of-line
7730 // definition of a static member function.
7731 //
7732 // This rule is not present in C++1y, so we produce a backwards
7733 // compatibility warning whenever it happens in C++11.
7734 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7735 if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7736 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7737 (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7738 CXXMethodDecl *OldMD = nullptr;
7739 if (OldDecl)
7740 OldMD = dyn_cast<CXXMethodDecl>(OldDecl->getAsFunction());
7741 if (!OldMD || !OldMD->isStatic()) {
7742 const FunctionProtoType *FPT =
7743 MD->getType()->castAs<FunctionProtoType>();
7744 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7745 EPI.TypeQuals |= Qualifiers::Const;
7746 MD->setType(Context.getFunctionType(FPT->getReturnType(),
7747 FPT->getParamTypes(), EPI));
7748
7749 // Warn that we did this, if we're not performing template instantiation.
7750 // In that case, we'll have warned already when the template was defined.
7751 if (ActiveTemplateInstantiations.empty()) {
7752 SourceLocation AddConstLoc;
7753 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7754 .IgnoreParens().getAs<FunctionTypeLoc>())
7755 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
7756
7757 Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7758 << FixItHint::CreateInsertion(AddConstLoc, " const");
7759 }
7760 }
7761 }
7762
7763 if (Redeclaration) {
7764 // NewFD and OldDecl represent declarations that need to be
7765 // merged.
7766 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7767 NewFD->setInvalidDecl();
7768 return Redeclaration;
7769 }
7770
7771 Previous.clear();
7772 Previous.addDecl(OldDecl);
7773
7774 if (FunctionTemplateDecl *OldTemplateDecl
7775 = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7776 NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7777 FunctionTemplateDecl *NewTemplateDecl
7778 = NewFD->getDescribedFunctionTemplate();
7779 assert(NewTemplateDecl && "Template/non-template mismatch");
7780 if (CXXMethodDecl *Method
7781 = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7782 Method->setAccess(OldTemplateDecl->getAccess());
7783 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7784 }
7785
7786 // If this is an explicit specialization of a member that is a function
7787 // template, mark it as a member specialization.
7788 if (IsExplicitSpecialization &&
7789 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7790 NewTemplateDecl->setMemberSpecialization();
7791 assert(OldTemplateDecl->isMemberSpecialization());
7792 }
7793
7794 } else {
7795 // This needs to happen first so that 'inline' propagates.
7796 NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7797
7798 if (isa<CXXMethodDecl>(NewFD)) {
7799 // A valid redeclaration of a C++ method must be out-of-line,
7800 // but (unfortunately) it's not necessarily a definition
7801 // because of templates, which means that the previous
7802 // declaration is not necessarily from the class definition.
7803
7804 // For just setting the access, that doesn't matter.
7805 CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7806 NewFD->setAccess(oldMethod->getAccess());
7807
7808 // Update the key-function state if necessary for this ABI.
7809 if (NewFD->isInlined() &&
7810 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7811 // setNonKeyFunction needs to work with the original
7812 // declaration from the class definition, and isVirtual() is
7813 // just faster in that case, so map back to that now.
7814 oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
7815 if (oldMethod->isVirtual()) {
7816 Context.setNonKeyFunction(oldMethod);
7817 }
7818 }
7819 }
7820 }
7821 }
7822
7823 // Semantic checking for this function declaration (in isolation).
7824 if (getLangOpts().CPlusPlus) {
7825 // C++-specific checks.
7826 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7827 CheckConstructor(Constructor);
7828 } else if (CXXDestructorDecl *Destructor =
7829 dyn_cast<CXXDestructorDecl>(NewFD)) {
7830 CXXRecordDecl *Record = Destructor->getParent();
7831 QualType ClassType = Context.getTypeDeclType(Record);
7832
7833 // FIXME: Shouldn't we be able to perform this check even when the class
7834 // type is dependent? Both gcc and edg can handle that.
7835 if (!ClassType->isDependentType()) {
7836 DeclarationName Name
7837 = Context.DeclarationNames.getCXXDestructorName(
7838 Context.getCanonicalType(ClassType));
7839 if (NewFD->getDeclName() != Name) {
7840 Diag(NewFD->getLocation(), diag::err_destructor_name);
7841 NewFD->setInvalidDecl();
7842 return Redeclaration;
7843 }
7844 }
7845 } else if (CXXConversionDecl *Conversion
7846 = dyn_cast<CXXConversionDecl>(NewFD)) {
7847 ActOnConversionDeclarator(Conversion);
7848 }
7849
7850 // Find any virtual functions that this function overrides.
7851 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7852 if (!Method->isFunctionTemplateSpecialization() &&
7853 !Method->getDescribedFunctionTemplate() &&
7854 Method->isCanonicalDecl()) {
7855 if (AddOverriddenMethods(Method->getParent(), Method)) {
7856 // If the function was marked as "static", we have a problem.
7857 if (NewFD->getStorageClass() == SC_Static) {
7858 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7859 }
7860 }
7861 }
7862
7863 if (Method->isStatic())
7864 checkThisInStaticMemberFunctionType(Method);
7865 }
7866
7867 // Extra checking for C++ overloaded operators (C++ [over.oper]).
7868 if (NewFD->isOverloadedOperator() &&
7869 CheckOverloadedOperatorDeclaration(NewFD)) {
7870 NewFD->setInvalidDecl();
7871 return Redeclaration;
7872 }
7873
7874 // Extra checking for C++0x literal operators (C++0x [over.literal]).
7875 if (NewFD->getLiteralIdentifier() &&
7876 CheckLiteralOperatorDeclaration(NewFD)) {
7877 NewFD->setInvalidDecl();
7878 return Redeclaration;
7879 }
7880
7881 // In C++, check default arguments now that we have merged decls. Unless
7882 // the lexical context is the class, because in this case this is done
7883 // during delayed parsing anyway.
7884 if (!CurContext->isRecord())
7885 CheckCXXDefaultArguments(NewFD);
7886
7887 // If this function declares a builtin function, check the type of this
7888 // declaration against the expected type for the builtin.
7889 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7890 ASTContext::GetBuiltinTypeError Error;
7891 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7892 QualType T = Context.GetBuiltinType(BuiltinID, Error);
7893 if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7894 // The type of this function differs from the type of the builtin,
7895 // so forget about the builtin entirely.
7896 Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7897 }
7898 }
7899
7900 // If this function is declared as being extern "C", then check to see if
7901 // the function returns a UDT (class, struct, or union type) that is not C
7902 // compatible, and if it does, warn the user.
7903 // But, issue any diagnostic on the first declaration only.
7904 if (NewFD->isExternC() && Previous.empty()) {
7905 QualType R = NewFD->getReturnType();
7906 if (R->isIncompleteType() && !R->isVoidType())
7907 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7908 << NewFD << R;
7909 else if (!R.isPODType(Context) && !R->isVoidType() &&
7910 !R->isObjCObjectPointerType())
7911 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7912 }
7913 }
7914 return Redeclaration;
7915 }
7916
CheckMain(FunctionDecl * FD,const DeclSpec & DS)7917 void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7918 // C++11 [basic.start.main]p3:
7919 // A program that [...] declares main to be inline, static or
7920 // constexpr is ill-formed.
7921 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
7922 // appear in a declaration of main.
7923 // static main is not an error under C99, but we should warn about it.
7924 // We accept _Noreturn main as an extension.
7925 if (FD->getStorageClass() == SC_Static)
7926 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7927 ? diag::err_static_main : diag::warn_static_main)
7928 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7929 if (FD->isInlineSpecified())
7930 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7931 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7932 if (DS.isNoreturnSpecified()) {
7933 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7934 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
7935 Diag(NoreturnLoc, diag::ext_noreturn_main);
7936 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7937 << FixItHint::CreateRemoval(NoreturnRange);
7938 }
7939 if (FD->isConstexpr()) {
7940 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7941 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7942 FD->setConstexpr(false);
7943 }
7944
7945 if (getLangOpts().OpenCL) {
7946 Diag(FD->getLocation(), diag::err_opencl_no_main)
7947 << FD->hasAttr<OpenCLKernelAttr>();
7948 FD->setInvalidDecl();
7949 return;
7950 }
7951
7952 QualType T = FD->getType();
7953 assert(T->isFunctionType() && "function decl is not of function type");
7954 const FunctionType* FT = T->castAs<FunctionType>();
7955
7956 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7957 // In C with GNU extensions we allow main() to have non-integer return
7958 // type, but we should warn about the extension, and we disable the
7959 // implicit-return-zero rule.
7960
7961 // GCC in C mode accepts qualified 'int'.
7962 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
7963 FD->setHasImplicitReturnZero(true);
7964 else {
7965 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7966 SourceRange RTRange = FD->getReturnTypeSourceRange();
7967 if (RTRange.isValid())
7968 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
7969 << FixItHint::CreateReplacement(RTRange, "int");
7970 }
7971 } else {
7972 // In C and C++, main magically returns 0 if you fall off the end;
7973 // set the flag which tells us that.
7974 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7975
7976 // All the standards say that main() should return 'int'.
7977 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
7978 FD->setHasImplicitReturnZero(true);
7979 else {
7980 // Otherwise, this is just a flat-out error.
7981 SourceRange RTRange = FD->getReturnTypeSourceRange();
7982 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7983 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
7984 : FixItHint());
7985 FD->setInvalidDecl(true);
7986 }
7987 }
7988
7989 // Treat protoless main() as nullary.
7990 if (isa<FunctionNoProtoType>(FT)) return;
7991
7992 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7993 unsigned nparams = FTP->getNumParams();
7994 assert(FD->getNumParams() == nparams);
7995
7996 bool HasExtraParameters = (nparams > 3);
7997
7998 // Darwin passes an undocumented fourth argument of type char**. If
7999 // other platforms start sprouting these, the logic below will start
8000 // getting shifty.
8001 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
8002 HasExtraParameters = false;
8003
8004 if (HasExtraParameters) {
8005 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
8006 FD->setInvalidDecl(true);
8007 nparams = 3;
8008 }
8009
8010 // FIXME: a lot of the following diagnostics would be improved
8011 // if we had some location information about types.
8012
8013 QualType CharPP =
8014 Context.getPointerType(Context.getPointerType(Context.CharTy));
8015 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
8016
8017 for (unsigned i = 0; i < nparams; ++i) {
8018 QualType AT = FTP->getParamType(i);
8019
8020 bool mismatch = true;
8021
8022 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
8023 mismatch = false;
8024 else if (Expected[i] == CharPP) {
8025 // As an extension, the following forms are okay:
8026 // char const **
8027 // char const * const *
8028 // char * const *
8029
8030 QualifierCollector qs;
8031 const PointerType* PT;
8032 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
8033 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
8034 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
8035 Context.CharTy)) {
8036 qs.removeConst();
8037 mismatch = !qs.empty();
8038 }
8039 }
8040
8041 if (mismatch) {
8042 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
8043 // TODO: suggest replacing given type with expected type
8044 FD->setInvalidDecl(true);
8045 }
8046 }
8047
8048 if (nparams == 1 && !FD->isInvalidDecl()) {
8049 Diag(FD->getLocation(), diag::warn_main_one_arg);
8050 }
8051
8052 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8053 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8054 FD->setInvalidDecl();
8055 }
8056 }
8057
CheckMSVCRTEntryPoint(FunctionDecl * FD)8058 void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
8059 QualType T = FD->getType();
8060 assert(T->isFunctionType() && "function decl is not of function type");
8061 const FunctionType *FT = T->castAs<FunctionType>();
8062
8063 // Set an implicit return of 'zero' if the function can return some integral,
8064 // enumeration, pointer or nullptr type.
8065 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
8066 FT->getReturnType()->isAnyPointerType() ||
8067 FT->getReturnType()->isNullPtrType())
8068 // DllMain is exempt because a return value of zero means it failed.
8069 if (FD->getName() != "DllMain")
8070 FD->setHasImplicitReturnZero(true);
8071
8072 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
8073 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
8074 FD->setInvalidDecl();
8075 }
8076 }
8077
CheckForConstantInitializer(Expr * Init,QualType DclT)8078 bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
8079 // FIXME: Need strict checking. In C89, we need to check for
8080 // any assignment, increment, decrement, function-calls, or
8081 // commas outside of a sizeof. In C99, it's the same list,
8082 // except that the aforementioned are allowed in unevaluated
8083 // expressions. Everything else falls under the
8084 // "may accept other forms of constant expressions" exception.
8085 // (We never end up here for C++, so the constant expression
8086 // rules there don't matter.)
8087 const Expr *Culprit;
8088 if (Init->isConstantInitializer(Context, false, &Culprit))
8089 return false;
8090 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
8091 << Culprit->getSourceRange();
8092 return true;
8093 }
8094
8095 namespace {
8096 // Visits an initialization expression to see if OrigDecl is evaluated in
8097 // its own initialization and throws a warning if it does.
8098 class SelfReferenceChecker
8099 : public EvaluatedExprVisitor<SelfReferenceChecker> {
8100 Sema &S;
8101 Decl *OrigDecl;
8102 bool isRecordType;
8103 bool isPODType;
8104 bool isReferenceType;
8105
8106 public:
8107 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
8108
SelfReferenceChecker(Sema & S,Decl * OrigDecl)8109 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
8110 S(S), OrigDecl(OrigDecl) {
8111 isPODType = false;
8112 isRecordType = false;
8113 isReferenceType = false;
8114 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
8115 isPODType = VD->getType().isPODType(S.Context);
8116 isRecordType = VD->getType()->isRecordType();
8117 isReferenceType = VD->getType()->isReferenceType();
8118 }
8119 }
8120
8121 // For most expressions, the cast is directly above the DeclRefExpr.
8122 // For conditional operators, the cast can be outside the conditional
8123 // operator if both expressions are DeclRefExpr's.
HandleValue(Expr * E)8124 void HandleValue(Expr *E) {
8125 if (isReferenceType)
8126 return;
8127 E = E->IgnoreParenImpCasts();
8128 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
8129 HandleDeclRefExpr(DRE);
8130 return;
8131 }
8132
8133 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8134 HandleValue(CO->getTrueExpr());
8135 HandleValue(CO->getFalseExpr());
8136 return;
8137 }
8138
8139 if (isa<MemberExpr>(E)) {
8140 Expr *Base = E->IgnoreParenImpCasts();
8141 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8142 // Check for static member variables and don't warn on them.
8143 if (!isa<FieldDecl>(ME->getMemberDecl()))
8144 return;
8145 Base = ME->getBase()->IgnoreParenImpCasts();
8146 }
8147 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
8148 HandleDeclRefExpr(DRE);
8149 return;
8150 }
8151 }
8152
8153 // Reference types are handled here since all uses of references are
8154 // bad, not just r-value uses.
VisitDeclRefExpr(DeclRefExpr * E)8155 void VisitDeclRefExpr(DeclRefExpr *E) {
8156 if (isReferenceType)
8157 HandleDeclRefExpr(E);
8158 }
8159
VisitImplicitCastExpr(ImplicitCastExpr * E)8160 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
8161 if (E->getCastKind() == CK_LValueToRValue ||
8162 (isRecordType && E->getCastKind() == CK_NoOp))
8163 HandleValue(E->getSubExpr());
8164
8165 Inherited::VisitImplicitCastExpr(E);
8166 }
8167
VisitMemberExpr(MemberExpr * E)8168 void VisitMemberExpr(MemberExpr *E) {
8169 // Don't warn on arrays since they can be treated as pointers.
8170 if (E->getType()->canDecayToPointerType()) return;
8171
8172 // Warn when a non-static method call is followed by non-static member
8173 // field accesses, which is followed by a DeclRefExpr.
8174 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
8175 bool Warn = (MD && !MD->isStatic());
8176 Expr *Base = E->getBase()->IgnoreParenImpCasts();
8177 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
8178 if (!isa<FieldDecl>(ME->getMemberDecl()))
8179 Warn = false;
8180 Base = ME->getBase()->IgnoreParenImpCasts();
8181 }
8182
8183 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
8184 if (Warn)
8185 HandleDeclRefExpr(DRE);
8186 return;
8187 }
8188
8189 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
8190 // Visit that expression.
8191 Visit(Base);
8192 }
8193
VisitCXXOperatorCallExpr(CXXOperatorCallExpr * E)8194 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
8195 if (E->getNumArgs() > 0)
8196 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
8197 HandleDeclRefExpr(DRE);
8198
8199 Inherited::VisitCXXOperatorCallExpr(E);
8200 }
8201
VisitUnaryOperator(UnaryOperator * E)8202 void VisitUnaryOperator(UnaryOperator *E) {
8203 // For POD record types, addresses of its own members are well-defined.
8204 if (E->getOpcode() == UO_AddrOf && isRecordType &&
8205 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
8206 if (!isPODType)
8207 HandleValue(E->getSubExpr());
8208 return;
8209 }
8210 Inherited::VisitUnaryOperator(E);
8211 }
8212
VisitObjCMessageExpr(ObjCMessageExpr * E)8213 void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
8214
HandleDeclRefExpr(DeclRefExpr * DRE)8215 void HandleDeclRefExpr(DeclRefExpr *DRE) {
8216 Decl* ReferenceDecl = DRE->getDecl();
8217 if (OrigDecl != ReferenceDecl) return;
8218 unsigned diag;
8219 if (isReferenceType) {
8220 diag = diag::warn_uninit_self_reference_in_reference_init;
8221 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
8222 diag = diag::warn_static_self_reference_in_init;
8223 } else {
8224 diag = diag::warn_uninit_self_reference_in_init;
8225 }
8226
8227 S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
8228 S.PDiag(diag)
8229 << DRE->getNameInfo().getName()
8230 << OrigDecl->getLocation()
8231 << DRE->getSourceRange());
8232 }
8233 };
8234
8235 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
CheckSelfReference(Sema & S,Decl * OrigDecl,Expr * E,bool DirectInit)8236 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
8237 bool DirectInit) {
8238 // Parameters arguments are occassionially constructed with itself,
8239 // for instance, in recursive functions. Skip them.
8240 if (isa<ParmVarDecl>(OrigDecl))
8241 return;
8242
8243 E = E->IgnoreParens();
8244
8245 // Skip checking T a = a where T is not a record or reference type.
8246 // Doing so is a way to silence uninitialized warnings.
8247 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
8248 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
8249 if (ICE->getCastKind() == CK_LValueToRValue)
8250 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
8251 if (DRE->getDecl() == OrigDecl)
8252 return;
8253
8254 SelfReferenceChecker(S, OrigDecl).Visit(E);
8255 }
8256 }
8257
8258 /// AddInitializerToDecl - Adds the initializer Init to the
8259 /// declaration dcl. If DirectInit is true, this is C++ direct
8260 /// initialization rather than copy initialization.
AddInitializerToDecl(Decl * RealDecl,Expr * Init,bool DirectInit,bool TypeMayContainAuto)8261 void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
8262 bool DirectInit, bool TypeMayContainAuto) {
8263 // If there is no declaration, there was an error parsing it. Just ignore
8264 // the initializer.
8265 if (!RealDecl || RealDecl->isInvalidDecl())
8266 return;
8267
8268 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
8269 // With declarators parsed the way they are, the parser cannot
8270 // distinguish between a normal initializer and a pure-specifier.
8271 // Thus this grotesque test.
8272 IntegerLiteral *IL;
8273 if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
8274 Context.getCanonicalType(IL->getType()) == Context.IntTy)
8275 CheckPureMethod(Method, Init->getSourceRange());
8276 else {
8277 Diag(Method->getLocation(), diag::err_member_function_initialization)
8278 << Method->getDeclName() << Init->getSourceRange();
8279 Method->setInvalidDecl();
8280 }
8281 return;
8282 }
8283
8284 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
8285 if (!VDecl) {
8286 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
8287 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
8288 RealDecl->setInvalidDecl();
8289 return;
8290 }
8291 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
8292
8293 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
8294 if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
8295 Expr *DeduceInit = Init;
8296 // Initializer could be a C++ direct-initializer. Deduction only works if it
8297 // contains exactly one expression.
8298 if (CXXDirectInit) {
8299 if (CXXDirectInit->getNumExprs() == 0) {
8300 // It isn't possible to write this directly, but it is possible to
8301 // end up in this situation with "auto x(some_pack...);"
8302 Diag(CXXDirectInit->getLocStart(),
8303 VDecl->isInitCapture() ? diag::err_init_capture_no_expression
8304 : diag::err_auto_var_init_no_expression)
8305 << VDecl->getDeclName() << VDecl->getType()
8306 << VDecl->getSourceRange();
8307 RealDecl->setInvalidDecl();
8308 return;
8309 } else if (CXXDirectInit->getNumExprs() > 1) {
8310 Diag(CXXDirectInit->getExpr(1)->getLocStart(),
8311 VDecl->isInitCapture()
8312 ? diag::err_init_capture_multiple_expressions
8313 : diag::err_auto_var_init_multiple_expressions)
8314 << VDecl->getDeclName() << VDecl->getType()
8315 << VDecl->getSourceRange();
8316 RealDecl->setInvalidDecl();
8317 return;
8318 } else {
8319 DeduceInit = CXXDirectInit->getExpr(0);
8320 if (isa<InitListExpr>(DeduceInit))
8321 Diag(CXXDirectInit->getLocStart(),
8322 diag::err_auto_var_init_paren_braces)
8323 << VDecl->getDeclName() << VDecl->getType()
8324 << VDecl->getSourceRange();
8325 }
8326 }
8327
8328 // Expressions default to 'id' when we're in a debugger.
8329 bool DefaultedToAuto = false;
8330 if (getLangOpts().DebuggerCastResultToId &&
8331 Init->getType() == Context.UnknownAnyTy) {
8332 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8333 if (Result.isInvalid()) {
8334 VDecl->setInvalidDecl();
8335 return;
8336 }
8337 Init = Result.get();
8338 DefaultedToAuto = true;
8339 }
8340
8341 QualType DeducedType;
8342 if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8343 DAR_Failed)
8344 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8345 if (DeducedType.isNull()) {
8346 RealDecl->setInvalidDecl();
8347 return;
8348 }
8349 VDecl->setType(DeducedType);
8350 assert(VDecl->isLinkageValid());
8351
8352 // In ARC, infer lifetime.
8353 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8354 VDecl->setInvalidDecl();
8355
8356 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8357 // 'id' instead of a specific object type prevents most of our usual checks.
8358 // We only want to warn outside of template instantiations, though:
8359 // inside a template, the 'id' could have come from a parameter.
8360 if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8361 DeducedType->isObjCIdType()) {
8362 SourceLocation Loc =
8363 VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8364 Diag(Loc, diag::warn_auto_var_is_id)
8365 << VDecl->getDeclName() << DeduceInit->getSourceRange();
8366 }
8367
8368 // If this is a redeclaration, check that the type we just deduced matches
8369 // the previously declared type.
8370 if (VarDecl *Old = VDecl->getPreviousDecl()) {
8371 // We never need to merge the type, because we cannot form an incomplete
8372 // array of auto, nor deduce such a type.
8373 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8374 }
8375
8376 // Check the deduced type is valid for a variable declaration.
8377 CheckVariableDeclarationType(VDecl);
8378 if (VDecl->isInvalidDecl())
8379 return;
8380 }
8381
8382 // dllimport cannot be used on variable definitions.
8383 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
8384 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
8385 VDecl->setInvalidDecl();
8386 return;
8387 }
8388
8389 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8390 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8391 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8392 VDecl->setInvalidDecl();
8393 return;
8394 }
8395
8396 if (!VDecl->getType()->isDependentType()) {
8397 // A definition must end up with a complete type, which means it must be
8398 // complete with the restriction that an array type might be completed by
8399 // the initializer; note that later code assumes this restriction.
8400 QualType BaseDeclType = VDecl->getType();
8401 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8402 BaseDeclType = Array->getElementType();
8403 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8404 diag::err_typecheck_decl_incomplete_type)) {
8405 RealDecl->setInvalidDecl();
8406 return;
8407 }
8408
8409 // The variable can not have an abstract class type.
8410 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8411 diag::err_abstract_type_in_decl,
8412 AbstractVariableType))
8413 VDecl->setInvalidDecl();
8414 }
8415
8416 const VarDecl *Def;
8417 if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8418 Diag(VDecl->getLocation(), diag::err_redefinition)
8419 << VDecl->getDeclName();
8420 Diag(Def->getLocation(), diag::note_previous_definition);
8421 VDecl->setInvalidDecl();
8422 return;
8423 }
8424
8425 const VarDecl *PrevInit = nullptr;
8426 if (getLangOpts().CPlusPlus) {
8427 // C++ [class.static.data]p4
8428 // If a static data member is of const integral or const
8429 // enumeration type, its declaration in the class definition can
8430 // specify a constant-initializer which shall be an integral
8431 // constant expression (5.19). In that case, the member can appear
8432 // in integral constant expressions. The member shall still be
8433 // defined in a namespace scope if it is used in the program and the
8434 // namespace scope definition shall not contain an initializer.
8435 //
8436 // We already performed a redefinition check above, but for static
8437 // data members we also need to check whether there was an in-class
8438 // declaration with an initializer.
8439 if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8440 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
8441 << VDecl->getDeclName();
8442 Diag(PrevInit->getInit()->getExprLoc(), diag::note_previous_initializer) << 0;
8443 return;
8444 }
8445
8446 if (VDecl->hasLocalStorage())
8447 getCurFunction()->setHasBranchProtectedScope();
8448
8449 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8450 VDecl->setInvalidDecl();
8451 return;
8452 }
8453 }
8454
8455 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8456 // a kernel function cannot be initialized."
8457 if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8458 Diag(VDecl->getLocation(), diag::err_local_cant_init);
8459 VDecl->setInvalidDecl();
8460 return;
8461 }
8462
8463 // Get the decls type and save a reference for later, since
8464 // CheckInitializerTypes may change it.
8465 QualType DclT = VDecl->getType(), SavT = DclT;
8466
8467 // Expressions default to 'id' when we're in a debugger
8468 // and we are assigning it to a variable of Objective-C pointer type.
8469 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8470 Init->getType() == Context.UnknownAnyTy) {
8471 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8472 if (Result.isInvalid()) {
8473 VDecl->setInvalidDecl();
8474 return;
8475 }
8476 Init = Result.get();
8477 }
8478
8479 // Perform the initialization.
8480 if (!VDecl->isInvalidDecl()) {
8481 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8482 InitializationKind Kind
8483 = DirectInit ?
8484 CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8485 Init->getLocStart(),
8486 Init->getLocEnd())
8487 : InitializationKind::CreateDirectList(
8488 VDecl->getLocation())
8489 : InitializationKind::CreateCopy(VDecl->getLocation(),
8490 Init->getLocStart());
8491
8492 MultiExprArg Args = Init;
8493 if (CXXDirectInit)
8494 Args = MultiExprArg(CXXDirectInit->getExprs(),
8495 CXXDirectInit->getNumExprs());
8496
8497 InitializationSequence InitSeq(*this, Entity, Kind, Args);
8498 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8499 if (Result.isInvalid()) {
8500 VDecl->setInvalidDecl();
8501 return;
8502 }
8503
8504 Init = Result.getAs<Expr>();
8505 }
8506
8507 // Check for self-references within variable initializers.
8508 // Variables declared within a function/method body (except for references)
8509 // are handled by a dataflow analysis.
8510 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8511 VDecl->getType()->isReferenceType()) {
8512 CheckSelfReference(*this, RealDecl, Init, DirectInit);
8513 }
8514
8515 // If the type changed, it means we had an incomplete type that was
8516 // completed by the initializer. For example:
8517 // int ary[] = { 1, 3, 5 };
8518 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8519 if (!VDecl->isInvalidDecl() && (DclT != SavT))
8520 VDecl->setType(DclT);
8521
8522 if (!VDecl->isInvalidDecl()) {
8523 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8524
8525 if (VDecl->hasAttr<BlocksAttr>())
8526 checkRetainCycles(VDecl, Init);
8527
8528 // It is safe to assign a weak reference into a strong variable.
8529 // Although this code can still have problems:
8530 // id x = self.weakProp;
8531 // id y = self.weakProp;
8532 // we do not warn to warn spuriously when 'x' and 'y' are on separate
8533 // paths through the function. This should be revisited if
8534 // -Wrepeated-use-of-weak is made flow-sensitive.
8535 if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong &&
8536 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
8537 Init->getLocStart()))
8538 getCurFunction()->markSafeWeakUse(Init);
8539 }
8540
8541 // The initialization is usually a full-expression.
8542 //
8543 // FIXME: If this is a braced initialization of an aggregate, it is not
8544 // an expression, and each individual field initializer is a separate
8545 // full-expression. For instance, in:
8546 //
8547 // struct Temp { ~Temp(); };
8548 // struct S { S(Temp); };
8549 // struct T { S a, b; } t = { Temp(), Temp() }
8550 //
8551 // we should destroy the first Temp before constructing the second.
8552 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8553 false,
8554 VDecl->isConstexpr());
8555 if (Result.isInvalid()) {
8556 VDecl->setInvalidDecl();
8557 return;
8558 }
8559 Init = Result.get();
8560
8561 // Attach the initializer to the decl.
8562 VDecl->setInit(Init);
8563
8564 if (VDecl->isLocalVarDecl()) {
8565 // C99 6.7.8p4: All the expressions in an initializer for an object that has
8566 // static storage duration shall be constant expressions or string literals.
8567 // C++ does not have this restriction.
8568 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8569 const Expr *Culprit;
8570 if (VDecl->getStorageClass() == SC_Static)
8571 CheckForConstantInitializer(Init, DclT);
8572 // C89 is stricter than C99 for non-static aggregate types.
8573 // C89 6.5.7p3: All the expressions [...] in an initializer list
8574 // for an object that has aggregate or union type shall be
8575 // constant expressions.
8576 else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8577 isa<InitListExpr>(Init) &&
8578 !Init->isConstantInitializer(Context, false, &Culprit))
8579 Diag(Culprit->getExprLoc(),
8580 diag::ext_aggregate_init_not_constant)
8581 << Culprit->getSourceRange();
8582 }
8583 } else if (VDecl->isStaticDataMember() &&
8584 VDecl->getLexicalDeclContext()->isRecord()) {
8585 // This is an in-class initialization for a static data member, e.g.,
8586 //
8587 // struct S {
8588 // static const int value = 17;
8589 // };
8590
8591 // C++ [class.mem]p4:
8592 // A member-declarator can contain a constant-initializer only
8593 // if it declares a static member (9.4) of const integral or
8594 // const enumeration type, see 9.4.2.
8595 //
8596 // C++11 [class.static.data]p3:
8597 // If a non-volatile const static data member is of integral or
8598 // enumeration type, its declaration in the class definition can
8599 // specify a brace-or-equal-initializer in which every initalizer-clause
8600 // that is an assignment-expression is a constant expression. A static
8601 // data member of literal type can be declared in the class definition
8602 // with the constexpr specifier; if so, its declaration shall specify a
8603 // brace-or-equal-initializer in which every initializer-clause that is
8604 // an assignment-expression is a constant expression.
8605
8606 // Do nothing on dependent types.
8607 if (DclT->isDependentType()) {
8608
8609 // Allow any 'static constexpr' members, whether or not they are of literal
8610 // type. We separately check that every constexpr variable is of literal
8611 // type.
8612 } else if (VDecl->isConstexpr()) {
8613
8614 // Require constness.
8615 } else if (!DclT.isConstQualified()) {
8616 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8617 << Init->getSourceRange();
8618 VDecl->setInvalidDecl();
8619
8620 // We allow integer constant expressions in all cases.
8621 } else if (DclT->isIntegralOrEnumerationType()) {
8622 // Check whether the expression is a constant expression.
8623 SourceLocation Loc;
8624 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8625 // In C++11, a non-constexpr const static data member with an
8626 // in-class initializer cannot be volatile.
8627 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8628 else if (Init->isValueDependent())
8629 ; // Nothing to check.
8630 else if (Init->isIntegerConstantExpr(Context, &Loc))
8631 ; // Ok, it's an ICE!
8632 else if (Init->isEvaluatable(Context)) {
8633 // If we can constant fold the initializer through heroics, accept it,
8634 // but report this as a use of an extension for -pedantic.
8635 Diag(Loc, diag::ext_in_class_initializer_non_constant)
8636 << Init->getSourceRange();
8637 } else {
8638 // Otherwise, this is some crazy unknown case. Report the issue at the
8639 // location provided by the isIntegerConstantExpr failed check.
8640 Diag(Loc, diag::err_in_class_initializer_non_constant)
8641 << Init->getSourceRange();
8642 VDecl->setInvalidDecl();
8643 }
8644
8645 // We allow foldable floating-point constants as an extension.
8646 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8647 // In C++98, this is a GNU extension. In C++11, it is not, but we support
8648 // it anyway and provide a fixit to add the 'constexpr'.
8649 if (getLangOpts().CPlusPlus11) {
8650 Diag(VDecl->getLocation(),
8651 diag::ext_in_class_initializer_float_type_cxx11)
8652 << DclT << Init->getSourceRange();
8653 Diag(VDecl->getLocStart(),
8654 diag::note_in_class_initializer_float_type_cxx11)
8655 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8656 } else {
8657 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8658 << DclT << Init->getSourceRange();
8659
8660 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8661 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8662 << Init->getSourceRange();
8663 VDecl->setInvalidDecl();
8664 }
8665 }
8666
8667 // Suggest adding 'constexpr' in C++11 for literal types.
8668 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8669 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8670 << DclT << Init->getSourceRange()
8671 << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8672 VDecl->setConstexpr(true);
8673
8674 } else {
8675 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8676 << DclT << Init->getSourceRange();
8677 VDecl->setInvalidDecl();
8678 }
8679 } else if (VDecl->isFileVarDecl()) {
8680 if (VDecl->getStorageClass() == SC_Extern &&
8681 (!getLangOpts().CPlusPlus ||
8682 !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8683 VDecl->isExternC())) &&
8684 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
8685 Diag(VDecl->getLocation(), diag::warn_extern_init);
8686
8687 // C99 6.7.8p4. All file scoped initializers need to be constant.
8688 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8689 CheckForConstantInitializer(Init, DclT);
8690 }
8691
8692 // We will represent direct-initialization similarly to copy-initialization:
8693 // int x(1); -as-> int x = 1;
8694 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8695 //
8696 // Clients that want to distinguish between the two forms, can check for
8697 // direct initializer using VarDecl::getInitStyle().
8698 // A major benefit is that clients that don't particularly care about which
8699 // exactly form was it (like the CodeGen) can handle both cases without
8700 // special case code.
8701
8702 // C++ 8.5p11:
8703 // The form of initialization (using parentheses or '=') is generally
8704 // insignificant, but does matter when the entity being initialized has a
8705 // class type.
8706 if (CXXDirectInit) {
8707 assert(DirectInit && "Call-style initializer must be direct init.");
8708 VDecl->setInitStyle(VarDecl::CallInit);
8709 } else if (DirectInit) {
8710 // This must be list-initialization. No other way is direct-initialization.
8711 VDecl->setInitStyle(VarDecl::ListInit);
8712 }
8713
8714 CheckCompleteVariableDeclaration(VDecl);
8715 }
8716
8717 /// ActOnInitializerError - Given that there was an error parsing an
8718 /// initializer for the given declaration, try to return to some form
8719 /// of sanity.
ActOnInitializerError(Decl * D)8720 void Sema::ActOnInitializerError(Decl *D) {
8721 // Our main concern here is re-establishing invariants like "a
8722 // variable's type is either dependent or complete".
8723 if (!D || D->isInvalidDecl()) return;
8724
8725 VarDecl *VD = dyn_cast<VarDecl>(D);
8726 if (!VD) return;
8727
8728 // Auto types are meaningless if we can't make sense of the initializer.
8729 if (ParsingInitForAutoVars.count(D)) {
8730 D->setInvalidDecl();
8731 return;
8732 }
8733
8734 QualType Ty = VD->getType();
8735 if (Ty->isDependentType()) return;
8736
8737 // Require a complete type.
8738 if (RequireCompleteType(VD->getLocation(),
8739 Context.getBaseElementType(Ty),
8740 diag::err_typecheck_decl_incomplete_type)) {
8741 VD->setInvalidDecl();
8742 return;
8743 }
8744
8745 // Require a non-abstract type.
8746 if (RequireNonAbstractType(VD->getLocation(), Ty,
8747 diag::err_abstract_type_in_decl,
8748 AbstractVariableType)) {
8749 VD->setInvalidDecl();
8750 return;
8751 }
8752
8753 // Don't bother complaining about constructors or destructors,
8754 // though.
8755 }
8756
ActOnUninitializedDecl(Decl * RealDecl,bool TypeMayContainAuto)8757 void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8758 bool TypeMayContainAuto) {
8759 // If there is no declaration, there was an error parsing it. Just ignore it.
8760 if (!RealDecl)
8761 return;
8762
8763 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8764 QualType Type = Var->getType();
8765
8766 // C++11 [dcl.spec.auto]p3
8767 if (TypeMayContainAuto && Type->getContainedAutoType()) {
8768 Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8769 << Var->getDeclName() << Type;
8770 Var->setInvalidDecl();
8771 return;
8772 }
8773
8774 // C++11 [class.static.data]p3: A static data member can be declared with
8775 // the constexpr specifier; if so, its declaration shall specify
8776 // a brace-or-equal-initializer.
8777 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8778 // the definition of a variable [...] or the declaration of a static data
8779 // member.
8780 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8781 if (Var->isStaticDataMember())
8782 Diag(Var->getLocation(),
8783 diag::err_constexpr_static_mem_var_requires_init)
8784 << Var->getDeclName();
8785 else
8786 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8787 Var->setInvalidDecl();
8788 return;
8789 }
8790
8791 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
8792 // be initialized.
8793 if (!Var->isInvalidDecl() &&
8794 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
8795 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
8796 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
8797 Var->setInvalidDecl();
8798 return;
8799 }
8800
8801 switch (Var->isThisDeclarationADefinition()) {
8802 case VarDecl::Definition:
8803 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8804 break;
8805
8806 // We have an out-of-line definition of a static data member
8807 // that has an in-class initializer, so we type-check this like
8808 // a declaration.
8809 //
8810 // Fall through
8811
8812 case VarDecl::DeclarationOnly:
8813 // It's only a declaration.
8814
8815 // Block scope. C99 6.7p7: If an identifier for an object is
8816 // declared with no linkage (C99 6.2.2p6), the type for the
8817 // object shall be complete.
8818 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8819 !Var->hasLinkage() && !Var->isInvalidDecl() &&
8820 RequireCompleteType(Var->getLocation(), Type,
8821 diag::err_typecheck_decl_incomplete_type))
8822 Var->setInvalidDecl();
8823
8824 // Make sure that the type is not abstract.
8825 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8826 RequireNonAbstractType(Var->getLocation(), Type,
8827 diag::err_abstract_type_in_decl,
8828 AbstractVariableType))
8829 Var->setInvalidDecl();
8830 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8831 Var->getStorageClass() == SC_PrivateExtern) {
8832 Diag(Var->getLocation(), diag::warn_private_extern);
8833 Diag(Var->getLocation(), diag::note_private_extern);
8834 }
8835
8836 return;
8837
8838 case VarDecl::TentativeDefinition:
8839 // File scope. C99 6.9.2p2: A declaration of an identifier for an
8840 // object that has file scope without an initializer, and without a
8841 // storage-class specifier or with the storage-class specifier "static",
8842 // constitutes a tentative definition. Note: A tentative definition with
8843 // external linkage is valid (C99 6.2.2p5).
8844 if (!Var->isInvalidDecl()) {
8845 if (const IncompleteArrayType *ArrayT
8846 = Context.getAsIncompleteArrayType(Type)) {
8847 if (RequireCompleteType(Var->getLocation(),
8848 ArrayT->getElementType(),
8849 diag::err_illegal_decl_array_incomplete_type))
8850 Var->setInvalidDecl();
8851 } else if (Var->getStorageClass() == SC_Static) {
8852 // C99 6.9.2p3: If the declaration of an identifier for an object is
8853 // a tentative definition and has internal linkage (C99 6.2.2p3), the
8854 // declared type shall not be an incomplete type.
8855 // NOTE: code such as the following
8856 // static struct s;
8857 // struct s { int a; };
8858 // is accepted by gcc. Hence here we issue a warning instead of
8859 // an error and we do not invalidate the static declaration.
8860 // NOTE: to avoid multiple warnings, only check the first declaration.
8861 if (Var->isFirstDecl())
8862 RequireCompleteType(Var->getLocation(), Type,
8863 diag::ext_typecheck_decl_incomplete_type);
8864 }
8865 }
8866
8867 // Record the tentative definition; we're done.
8868 if (!Var->isInvalidDecl())
8869 TentativeDefinitions.push_back(Var);
8870 return;
8871 }
8872
8873 // Provide a specific diagnostic for uninitialized variable
8874 // definitions with incomplete array type.
8875 if (Type->isIncompleteArrayType()) {
8876 Diag(Var->getLocation(),
8877 diag::err_typecheck_incomplete_array_needs_initializer);
8878 Var->setInvalidDecl();
8879 return;
8880 }
8881
8882 // Provide a specific diagnostic for uninitialized variable
8883 // definitions with reference type.
8884 if (Type->isReferenceType()) {
8885 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8886 << Var->getDeclName()
8887 << SourceRange(Var->getLocation(), Var->getLocation());
8888 Var->setInvalidDecl();
8889 return;
8890 }
8891
8892 // Do not attempt to type-check the default initializer for a
8893 // variable with dependent type.
8894 if (Type->isDependentType())
8895 return;
8896
8897 if (Var->isInvalidDecl())
8898 return;
8899
8900 if (!Var->hasAttr<AliasAttr>()) {
8901 if (RequireCompleteType(Var->getLocation(),
8902 Context.getBaseElementType(Type),
8903 diag::err_typecheck_decl_incomplete_type)) {
8904 Var->setInvalidDecl();
8905 return;
8906 }
8907 }
8908
8909 // The variable can not have an abstract class type.
8910 if (RequireNonAbstractType(Var->getLocation(), Type,
8911 diag::err_abstract_type_in_decl,
8912 AbstractVariableType)) {
8913 Var->setInvalidDecl();
8914 return;
8915 }
8916
8917 // Check for jumps past the implicit initializer. C++0x
8918 // clarifies that this applies to a "variable with automatic
8919 // storage duration", not a "local variable".
8920 // C++11 [stmt.dcl]p3
8921 // A program that jumps from a point where a variable with automatic
8922 // storage duration is not in scope to a point where it is in scope is
8923 // ill-formed unless the variable has scalar type, class type with a
8924 // trivial default constructor and a trivial destructor, a cv-qualified
8925 // version of one of these types, or an array of one of the preceding
8926 // types and is declared without an initializer.
8927 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8928 if (const RecordType *Record
8929 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8930 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8931 // Mark the function for further checking even if the looser rules of
8932 // C++11 do not require such checks, so that we can diagnose
8933 // incompatibilities with C++98.
8934 if (!CXXRecord->isPOD())
8935 getCurFunction()->setHasBranchProtectedScope();
8936 }
8937 }
8938
8939 // C++03 [dcl.init]p9:
8940 // If no initializer is specified for an object, and the
8941 // object is of (possibly cv-qualified) non-POD class type (or
8942 // array thereof), the object shall be default-initialized; if
8943 // the object is of const-qualified type, the underlying class
8944 // type shall have a user-declared default
8945 // constructor. Otherwise, if no initializer is specified for
8946 // a non- static object, the object and its subobjects, if
8947 // any, have an indeterminate initial value); if the object
8948 // or any of its subobjects are of const-qualified type, the
8949 // program is ill-formed.
8950 // C++0x [dcl.init]p11:
8951 // If no initializer is specified for an object, the object is
8952 // default-initialized; [...].
8953 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8954 InitializationKind Kind
8955 = InitializationKind::CreateDefault(Var->getLocation());
8956
8957 InitializationSequence InitSeq(*this, Entity, Kind, None);
8958 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8959 if (Init.isInvalid())
8960 Var->setInvalidDecl();
8961 else if (Init.get()) {
8962 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8963 // This is important for template substitution.
8964 Var->setInitStyle(VarDecl::CallInit);
8965 }
8966
8967 CheckCompleteVariableDeclaration(Var);
8968 }
8969 }
8970
ActOnCXXForRangeDecl(Decl * D)8971 void Sema::ActOnCXXForRangeDecl(Decl *D) {
8972 VarDecl *VD = dyn_cast<VarDecl>(D);
8973 if (!VD) {
8974 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8975 D->setInvalidDecl();
8976 return;
8977 }
8978
8979 VD->setCXXForRangeDecl(true);
8980
8981 // for-range-declaration cannot be given a storage class specifier.
8982 int Error = -1;
8983 switch (VD->getStorageClass()) {
8984 case SC_None:
8985 break;
8986 case SC_Extern:
8987 Error = 0;
8988 break;
8989 case SC_Static:
8990 Error = 1;
8991 break;
8992 case SC_PrivateExtern:
8993 Error = 2;
8994 break;
8995 case SC_Auto:
8996 Error = 3;
8997 break;
8998 case SC_Register:
8999 Error = 4;
9000 break;
9001 case SC_OpenCLWorkGroupLocal:
9002 llvm_unreachable("Unexpected storage class");
9003 }
9004 if (VD->isConstexpr())
9005 Error = 5;
9006 if (Error != -1) {
9007 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
9008 << VD->getDeclName() << Error;
9009 D->setInvalidDecl();
9010 }
9011 }
9012
9013 StmtResult
ActOnCXXForRangeIdentifier(Scope * S,SourceLocation IdentLoc,IdentifierInfo * Ident,ParsedAttributes & Attrs,SourceLocation AttrEnd)9014 Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
9015 IdentifierInfo *Ident,
9016 ParsedAttributes &Attrs,
9017 SourceLocation AttrEnd) {
9018 // C++1y [stmt.iter]p1:
9019 // A range-based for statement of the form
9020 // for ( for-range-identifier : for-range-initializer ) statement
9021 // is equivalent to
9022 // for ( auto&& for-range-identifier : for-range-initializer ) statement
9023 DeclSpec DS(Attrs.getPool().getFactory());
9024
9025 const char *PrevSpec;
9026 unsigned DiagID;
9027 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
9028 getPrintingPolicy());
9029
9030 Declarator D(DS, Declarator::ForContext);
9031 D.SetIdentifier(Ident, IdentLoc);
9032 D.takeAttributes(Attrs, AttrEnd);
9033
9034 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
9035 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/false),
9036 EmptyAttrs, IdentLoc);
9037 Decl *Var = ActOnDeclarator(S, D);
9038 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
9039 FinalizeDeclaration(Var);
9040 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
9041 AttrEnd.isValid() ? AttrEnd : IdentLoc);
9042 }
9043
CheckCompleteVariableDeclaration(VarDecl * var)9044 void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
9045 if (var->isInvalidDecl()) return;
9046
9047 // In ARC, don't allow jumps past the implicit initialization of a
9048 // local retaining variable.
9049 if (getLangOpts().ObjCAutoRefCount &&
9050 var->hasLocalStorage()) {
9051 switch (var->getType().getObjCLifetime()) {
9052 case Qualifiers::OCL_None:
9053 case Qualifiers::OCL_ExplicitNone:
9054 case Qualifiers::OCL_Autoreleasing:
9055 break;
9056
9057 case Qualifiers::OCL_Weak:
9058 case Qualifiers::OCL_Strong:
9059 getCurFunction()->setHasBranchProtectedScope();
9060 break;
9061 }
9062 }
9063
9064 // Warn about externally-visible variables being defined without a
9065 // prior declaration. We only want to do this for global
9066 // declarations, but we also specifically need to avoid doing it for
9067 // class members because the linkage of an anonymous class can
9068 // change if it's later given a typedef name.
9069 if (var->isThisDeclarationADefinition() &&
9070 var->getDeclContext()->getRedeclContext()->isFileContext() &&
9071 var->isExternallyVisible() && var->hasLinkage() &&
9072 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
9073 var->getLocation())) {
9074 // Find a previous declaration that's not a definition.
9075 VarDecl *prev = var->getPreviousDecl();
9076 while (prev && prev->isThisDeclarationADefinition())
9077 prev = prev->getPreviousDecl();
9078
9079 if (!prev)
9080 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
9081 }
9082
9083 if (var->getTLSKind() == VarDecl::TLS_Static) {
9084 const Expr *Culprit;
9085 if (var->getType().isDestructedType()) {
9086 // GNU C++98 edits for __thread, [basic.start.term]p3:
9087 // The type of an object with thread storage duration shall not
9088 // have a non-trivial destructor.
9089 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
9090 if (getLangOpts().CPlusPlus11)
9091 Diag(var->getLocation(), diag::note_use_thread_local);
9092 } else if (getLangOpts().CPlusPlus && var->hasInit() &&
9093 !var->getInit()->isConstantInitializer(
9094 Context, var->getType()->isReferenceType(), &Culprit)) {
9095 // GNU C++98 edits for __thread, [basic.start.init]p4:
9096 // An object of thread storage duration shall not require dynamic
9097 // initialization.
9098 // FIXME: Need strict checking here.
9099 Diag(Culprit->getExprLoc(), diag::err_thread_dynamic_init)
9100 << Culprit->getSourceRange();
9101 if (getLangOpts().CPlusPlus11)
9102 Diag(var->getLocation(), diag::note_use_thread_local);
9103 }
9104
9105 }
9106
9107 if (var->isThisDeclarationADefinition() &&
9108 ActiveTemplateInstantiations.empty()) {
9109 PragmaStack<StringLiteral *> *Stack = nullptr;
9110 int SectionFlags = PSF_Implicit | PSF_Read;
9111 if (var->getType().isConstQualified())
9112 Stack = &ConstSegStack;
9113 else if (!var->getInit()) {
9114 Stack = &BSSSegStack;
9115 SectionFlags |= PSF_Write;
9116 } else {
9117 Stack = &DataSegStack;
9118 SectionFlags |= PSF_Write;
9119 }
9120 if (!var->hasAttr<SectionAttr>() && Stack->CurrentValue)
9121 var->addAttr(
9122 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
9123 Stack->CurrentValue->getString(),
9124 Stack->CurrentPragmaLocation));
9125 if (const SectionAttr *SA = var->getAttr<SectionAttr>())
9126 if (UnifySection(SA->getName(), SectionFlags, var))
9127 var->dropAttr<SectionAttr>();
9128 }
9129
9130 // All the following checks are C++ only.
9131 if (!getLangOpts().CPlusPlus) return;
9132
9133 QualType type = var->getType();
9134 if (type->isDependentType()) return;
9135
9136 // __block variables might require us to capture a copy-initializer.
9137 if (var->hasAttr<BlocksAttr>()) {
9138 // It's currently invalid to ever have a __block variable with an
9139 // array type; should we diagnose that here?
9140
9141 // Regardless, we don't want to ignore array nesting when
9142 // constructing this copy.
9143 if (type->isStructureOrClassType()) {
9144 EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
9145 SourceLocation poi = var->getLocation();
9146 Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
9147 ExprResult result
9148 = PerformMoveOrCopyInitialization(
9149 InitializedEntity::InitializeBlock(poi, type, false),
9150 var, var->getType(), varRef, /*AllowNRVO=*/true);
9151 if (!result.isInvalid()) {
9152 result = MaybeCreateExprWithCleanups(result);
9153 Expr *init = result.getAs<Expr>();
9154 Context.setBlockVarCopyInits(var, init);
9155 }
9156 }
9157 }
9158
9159 Expr *Init = var->getInit();
9160 bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
9161 QualType baseType = Context.getBaseElementType(type);
9162
9163 if (!var->getDeclContext()->isDependentContext() &&
9164 Init && !Init->isValueDependent()) {
9165 if (IsGlobal && !var->isConstexpr() &&
9166 !getDiagnostics().isIgnored(diag::warn_global_constructor,
9167 var->getLocation())) {
9168 // Warn about globals which don't have a constant initializer. Don't
9169 // warn about globals with a non-trivial destructor because we already
9170 // warned about them.
9171 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
9172 if (!(RD && !RD->hasTrivialDestructor()) &&
9173 !Init->isConstantInitializer(Context, baseType->isReferenceType()))
9174 Diag(var->getLocation(), diag::warn_global_constructor)
9175 << Init->getSourceRange();
9176 }
9177
9178 if (var->isConstexpr()) {
9179 SmallVector<PartialDiagnosticAt, 8> Notes;
9180 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
9181 SourceLocation DiagLoc = var->getLocation();
9182 // If the note doesn't add any useful information other than a source
9183 // location, fold it into the primary diagnostic.
9184 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
9185 diag::note_invalid_subexpr_in_const_expr) {
9186 DiagLoc = Notes[0].first;
9187 Notes.clear();
9188 }
9189 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
9190 << var << Init->getSourceRange();
9191 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
9192 Diag(Notes[I].first, Notes[I].second);
9193 }
9194 } else if (var->isUsableInConstantExpressions(Context)) {
9195 // Check whether the initializer of a const variable of integral or
9196 // enumeration type is an ICE now, since we can't tell whether it was
9197 // initialized by a constant expression if we check later.
9198 var->checkInitIsICE();
9199 }
9200 }
9201
9202 // Require the destructor.
9203 if (const RecordType *recordType = baseType->getAs<RecordType>())
9204 FinalizeVarWithDestructor(var, recordType);
9205 }
9206
9207 /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
9208 /// any semantic actions necessary after any initializer has been attached.
9209 void
FinalizeDeclaration(Decl * ThisDecl)9210 Sema::FinalizeDeclaration(Decl *ThisDecl) {
9211 // Note that we are no longer parsing the initializer for this declaration.
9212 ParsingInitForAutoVars.erase(ThisDecl);
9213
9214 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
9215 if (!VD)
9216 return;
9217
9218 checkAttributesAfterMerging(*this, *VD);
9219
9220 // Static locals inherit dll attributes from their function.
9221 if (VD->isStaticLocal()) {
9222 if (FunctionDecl *FD =
9223 dyn_cast<FunctionDecl>(VD->getParentFunctionOrMethod())) {
9224 if (Attr *A = getDLLAttr(FD)) {
9225 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
9226 NewAttr->setInherited(true);
9227 VD->addAttr(NewAttr);
9228 }
9229 }
9230 }
9231
9232 // Imported static data members cannot be defined out-of-line.
9233 if (const DLLImportAttr *IA = VD->getAttr<DLLImportAttr>()) {
9234 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
9235 VD->isThisDeclarationADefinition()) {
9236 // We allow definitions of dllimport class template static data members
9237 // with a warning.
9238 CXXRecordDecl *Context =
9239 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
9240 bool IsClassTemplateMember =
9241 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
9242 Context->getDescribedClassTemplate();
9243
9244 Diag(VD->getLocation(),
9245 IsClassTemplateMember
9246 ? diag::warn_attribute_dllimport_static_field_definition
9247 : diag::err_attribute_dllimport_static_field_definition);
9248 Diag(IA->getLocation(), diag::note_attribute);
9249 if (!IsClassTemplateMember)
9250 VD->setInvalidDecl();
9251 }
9252 }
9253
9254 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
9255 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
9256 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
9257 VD->dropAttr<UsedAttr>();
9258 }
9259 }
9260
9261 if (!VD->isInvalidDecl() &&
9262 VD->isThisDeclarationADefinition() == VarDecl::TentativeDefinition) {
9263 if (const VarDecl *Def = VD->getDefinition()) {
9264 if (Def->hasAttr<AliasAttr>()) {
9265 Diag(VD->getLocation(), diag::err_tentative_after_alias)
9266 << VD->getDeclName();
9267 Diag(Def->getLocation(), diag::note_previous_definition);
9268 VD->setInvalidDecl();
9269 }
9270 }
9271 }
9272
9273 const DeclContext *DC = VD->getDeclContext();
9274 // If there's a #pragma GCC visibility in scope, and this isn't a class
9275 // member, set the visibility of this variable.
9276 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
9277 AddPushedVisibilityAttribute(VD);
9278
9279 // FIXME: Warn on unused templates.
9280 if (VD->isFileVarDecl() && !VD->getDescribedVarTemplate() &&
9281 !isa<VarTemplatePartialSpecializationDecl>(VD))
9282 MarkUnusedFileScopedDecl(VD);
9283
9284 // Now we have parsed the initializer and can update the table of magic
9285 // tag values.
9286 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
9287 !VD->getType()->isIntegralOrEnumerationType())
9288 return;
9289
9290 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
9291 const Expr *MagicValueExpr = VD->getInit();
9292 if (!MagicValueExpr) {
9293 continue;
9294 }
9295 llvm::APSInt MagicValueInt;
9296 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
9297 Diag(I->getRange().getBegin(),
9298 diag::err_type_tag_for_datatype_not_ice)
9299 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9300 continue;
9301 }
9302 if (MagicValueInt.getActiveBits() > 64) {
9303 Diag(I->getRange().getBegin(),
9304 diag::err_type_tag_for_datatype_too_large)
9305 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
9306 continue;
9307 }
9308 uint64_t MagicValue = MagicValueInt.getZExtValue();
9309 RegisterTypeTagForDatatype(I->getArgumentKind(),
9310 MagicValue,
9311 I->getMatchingCType(),
9312 I->getLayoutCompatible(),
9313 I->getMustBeNull());
9314 }
9315 }
9316
FinalizeDeclaratorGroup(Scope * S,const DeclSpec & DS,ArrayRef<Decl * > Group)9317 Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
9318 ArrayRef<Decl *> Group) {
9319 SmallVector<Decl*, 8> Decls;
9320
9321 if (DS.isTypeSpecOwned())
9322 Decls.push_back(DS.getRepAsDecl());
9323
9324 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
9325 for (unsigned i = 0, e = Group.size(); i != e; ++i)
9326 if (Decl *D = Group[i]) {
9327 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
9328 if (!FirstDeclaratorInGroup)
9329 FirstDeclaratorInGroup = DD;
9330 Decls.push_back(D);
9331 }
9332
9333 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
9334 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
9335 HandleTagNumbering(*this, Tag, S);
9336 if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
9337 Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
9338 }
9339 }
9340
9341 return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
9342 }
9343
9344 /// BuildDeclaratorGroup - convert a list of declarations into a declaration
9345 /// group, performing any necessary semantic checking.
9346 Sema::DeclGroupPtrTy
BuildDeclaratorGroup(MutableArrayRef<Decl * > Group,bool TypeMayContainAuto)9347 Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group,
9348 bool TypeMayContainAuto) {
9349 // C++0x [dcl.spec.auto]p7:
9350 // If the type deduced for the template parameter U is not the same in each
9351 // deduction, the program is ill-formed.
9352 // FIXME: When initializer-list support is added, a distinction is needed
9353 // between the deduced type U and the deduced type which 'auto' stands for.
9354 // auto a = 0, b = { 1, 2, 3 };
9355 // is legal because the deduced type U is 'int' in both cases.
9356 if (TypeMayContainAuto && Group.size() > 1) {
9357 QualType Deduced;
9358 CanQualType DeducedCanon;
9359 VarDecl *DeducedDecl = nullptr;
9360 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
9361 if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
9362 AutoType *AT = D->getType()->getContainedAutoType();
9363 // Don't reissue diagnostics when instantiating a template.
9364 if (AT && D->isInvalidDecl())
9365 break;
9366 QualType U = AT ? AT->getDeducedType() : QualType();
9367 if (!U.isNull()) {
9368 CanQualType UCanon = Context.getCanonicalType(U);
9369 if (Deduced.isNull()) {
9370 Deduced = U;
9371 DeducedCanon = UCanon;
9372 DeducedDecl = D;
9373 } else if (DeducedCanon != UCanon) {
9374 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
9375 diag::err_auto_different_deductions)
9376 << (AT->isDecltypeAuto() ? 1 : 0)
9377 << Deduced << DeducedDecl->getDeclName()
9378 << U << D->getDeclName()
9379 << DeducedDecl->getInit()->getSourceRange()
9380 << D->getInit()->getSourceRange();
9381 D->setInvalidDecl();
9382 break;
9383 }
9384 }
9385 }
9386 }
9387 }
9388
9389 ActOnDocumentableDecls(Group);
9390
9391 return DeclGroupPtrTy::make(
9392 DeclGroupRef::Create(Context, Group.data(), Group.size()));
9393 }
9394
ActOnDocumentableDecl(Decl * D)9395 void Sema::ActOnDocumentableDecl(Decl *D) {
9396 ActOnDocumentableDecls(D);
9397 }
9398
ActOnDocumentableDecls(ArrayRef<Decl * > Group)9399 void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
9400 // Don't parse the comment if Doxygen diagnostics are ignored.
9401 if (Group.empty() || !Group[0])
9402 return;
9403
9404 if (Diags.isIgnored(diag::warn_doc_param_not_found, Group[0]->getLocation()))
9405 return;
9406
9407 if (Group.size() >= 2) {
9408 // This is a decl group. Normally it will contain only declarations
9409 // produced from declarator list. But in case we have any definitions or
9410 // additional declaration references:
9411 // 'typedef struct S {} S;'
9412 // 'typedef struct S *S;'
9413 // 'struct S *pS;'
9414 // FinalizeDeclaratorGroup adds these as separate declarations.
9415 Decl *MaybeTagDecl = Group[0];
9416 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
9417 Group = Group.slice(1);
9418 }
9419 }
9420
9421 // See if there are any new comments that are not attached to a decl.
9422 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
9423 if (!Comments.empty() &&
9424 !Comments.back()->isAttached()) {
9425 // There is at least one comment that not attached to a decl.
9426 // Maybe it should be attached to one of these decls?
9427 //
9428 // Note that this way we pick up not only comments that precede the
9429 // declaration, but also comments that *follow* the declaration -- thanks to
9430 // the lookahead in the lexer: we've consumed the semicolon and looked
9431 // ahead through comments.
9432 for (unsigned i = 0, e = Group.size(); i != e; ++i)
9433 Context.getCommentForDecl(Group[i], &PP);
9434 }
9435 }
9436
9437 /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
9438 /// to introduce parameters into function prototype scope.
ActOnParamDeclarator(Scope * S,Declarator & D)9439 Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
9440 const DeclSpec &DS = D.getDeclSpec();
9441
9442 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
9443
9444 // C++03 [dcl.stc]p2 also permits 'auto'.
9445 VarDecl::StorageClass StorageClass = SC_None;
9446 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
9447 StorageClass = SC_Register;
9448 } else if (getLangOpts().CPlusPlus &&
9449 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9450 StorageClass = SC_Auto;
9451 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9452 Diag(DS.getStorageClassSpecLoc(),
9453 diag::err_invalid_storage_class_in_func_decl);
9454 D.getMutableDeclSpec().ClearStorageClassSpecs();
9455 }
9456
9457 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9458 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9459 << DeclSpec::getSpecifierName(TSCS);
9460 if (DS.isConstexprSpecified())
9461 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9462 << 0;
9463
9464 DiagnoseFunctionSpecifiers(DS);
9465
9466 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9467 QualType parmDeclType = TInfo->getType();
9468
9469 if (getLangOpts().CPlusPlus) {
9470 // Check that there are no default arguments inside the type of this
9471 // parameter.
9472 CheckExtraCXXDefaultArguments(D);
9473
9474 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9475 if (D.getCXXScopeSpec().isSet()) {
9476 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9477 << D.getCXXScopeSpec().getRange();
9478 D.getCXXScopeSpec().clear();
9479 }
9480 }
9481
9482 // Ensure we have a valid name
9483 IdentifierInfo *II = nullptr;
9484 if (D.hasName()) {
9485 II = D.getIdentifier();
9486 if (!II) {
9487 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9488 << GetNameForDeclarator(D).getName();
9489 D.setInvalidType(true);
9490 }
9491 }
9492
9493 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9494 if (II) {
9495 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9496 ForRedeclaration);
9497 LookupName(R, S);
9498 if (R.isSingleResult()) {
9499 NamedDecl *PrevDecl = R.getFoundDecl();
9500 if (PrevDecl->isTemplateParameter()) {
9501 // Maybe we will complain about the shadowed template parameter.
9502 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9503 // Just pretend that we didn't see the previous declaration.
9504 PrevDecl = nullptr;
9505 } else if (S->isDeclScope(PrevDecl)) {
9506 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9507 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9508
9509 // Recover by removing the name
9510 II = nullptr;
9511 D.SetIdentifier(nullptr, D.getIdentifierLoc());
9512 D.setInvalidType(true);
9513 }
9514 }
9515 }
9516
9517 // Temporarily put parameter variables in the translation unit, not
9518 // the enclosing context. This prevents them from accidentally
9519 // looking like class members in C++.
9520 ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9521 D.getLocStart(),
9522 D.getIdentifierLoc(), II,
9523 parmDeclType, TInfo,
9524 StorageClass);
9525
9526 if (D.isInvalidType())
9527 New->setInvalidDecl();
9528
9529 assert(S->isFunctionPrototypeScope());
9530 assert(S->getFunctionPrototypeDepth() >= 1);
9531 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9532 S->getNextFunctionPrototypeIndex());
9533
9534 // Add the parameter declaration into this scope.
9535 S->AddDecl(New);
9536 if (II)
9537 IdResolver.AddDecl(New);
9538
9539 ProcessDeclAttributes(S, New, D);
9540
9541 if (D.getDeclSpec().isModulePrivateSpecified())
9542 Diag(New->getLocation(), diag::err_module_private_local)
9543 << 1 << New->getDeclName()
9544 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9545 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9546
9547 if (New->hasAttr<BlocksAttr>()) {
9548 Diag(New->getLocation(), diag::err_block_on_nonlocal);
9549 }
9550 return New;
9551 }
9552
9553 /// \brief Synthesizes a variable for a parameter arising from a
9554 /// typedef.
BuildParmVarDeclForTypedef(DeclContext * DC,SourceLocation Loc,QualType T)9555 ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9556 SourceLocation Loc,
9557 QualType T) {
9558 /* FIXME: setting StartLoc == Loc.
9559 Would it be worth to modify callers so as to provide proper source
9560 location for the unnamed parameters, embedding the parameter's type? */
9561 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
9562 T, Context.getTrivialTypeSourceInfo(T, Loc),
9563 SC_None, nullptr);
9564 Param->setImplicit();
9565 return Param;
9566 }
9567
DiagnoseUnusedParameters(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd)9568 void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9569 ParmVarDecl * const *ParamEnd) {
9570 // Don't diagnose unused-parameter errors in template instantiations; we
9571 // will already have done so in the template itself.
9572 if (!ActiveTemplateInstantiations.empty())
9573 return;
9574
9575 for (; Param != ParamEnd; ++Param) {
9576 if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9577 !(*Param)->hasAttr<UnusedAttr>()) {
9578 Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9579 << (*Param)->getDeclName();
9580 }
9581 }
9582 }
9583
DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const * Param,ParmVarDecl * const * ParamEnd,QualType ReturnTy,NamedDecl * D)9584 void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9585 ParmVarDecl * const *ParamEnd,
9586 QualType ReturnTy,
9587 NamedDecl *D) {
9588 if (LangOpts.NumLargeByValueCopy == 0) // No check.
9589 return;
9590
9591 // Warn if the return value is pass-by-value and larger than the specified
9592 // threshold.
9593 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9594 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9595 if (Size > LangOpts.NumLargeByValueCopy)
9596 Diag(D->getLocation(), diag::warn_return_value_size)
9597 << D->getDeclName() << Size;
9598 }
9599
9600 // Warn if any parameter is pass-by-value and larger than the specified
9601 // threshold.
9602 for (; Param != ParamEnd; ++Param) {
9603 QualType T = (*Param)->getType();
9604 if (T->isDependentType() || !T.isPODType(Context))
9605 continue;
9606 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9607 if (Size > LangOpts.NumLargeByValueCopy)
9608 Diag((*Param)->getLocation(), diag::warn_parameter_size)
9609 << (*Param)->getDeclName() << Size;
9610 }
9611 }
9612
CheckParameter(DeclContext * DC,SourceLocation StartLoc,SourceLocation NameLoc,IdentifierInfo * Name,QualType T,TypeSourceInfo * TSInfo,VarDecl::StorageClass StorageClass)9613 ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9614 SourceLocation NameLoc, IdentifierInfo *Name,
9615 QualType T, TypeSourceInfo *TSInfo,
9616 VarDecl::StorageClass StorageClass) {
9617 // In ARC, infer a lifetime qualifier for appropriate parameter types.
9618 if (getLangOpts().ObjCAutoRefCount &&
9619 T.getObjCLifetime() == Qualifiers::OCL_None &&
9620 T->isObjCLifetimeType()) {
9621
9622 Qualifiers::ObjCLifetime lifetime;
9623
9624 // Special cases for arrays:
9625 // - if it's const, use __unsafe_unretained
9626 // - otherwise, it's an error
9627 if (T->isArrayType()) {
9628 if (!T.isConstQualified()) {
9629 DelayedDiagnostics.add(
9630 sema::DelayedDiagnostic::makeForbiddenType(
9631 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9632 }
9633 lifetime = Qualifiers::OCL_ExplicitNone;
9634 } else {
9635 lifetime = T->getObjCARCImplicitLifetime();
9636 }
9637 T = Context.getLifetimeQualifiedType(T, lifetime);
9638 }
9639
9640 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9641 Context.getAdjustedParameterType(T),
9642 TSInfo,
9643 StorageClass, nullptr);
9644
9645 // Parameters can not be abstract class types.
9646 // For record types, this is done by the AbstractClassUsageDiagnoser once
9647 // the class has been completely parsed.
9648 if (!CurContext->isRecord() &&
9649 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9650 AbstractParamType))
9651 New->setInvalidDecl();
9652
9653 // Parameter declarators cannot be interface types. All ObjC objects are
9654 // passed by reference.
9655 if (T->isObjCObjectType()) {
9656 SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9657 Diag(NameLoc,
9658 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9659 << FixItHint::CreateInsertion(TypeEndLoc, "*");
9660 T = Context.getObjCObjectPointerType(T);
9661 New->setType(T);
9662 }
9663
9664 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9665 // duration shall not be qualified by an address-space qualifier."
9666 // Since all parameters have automatic store duration, they can not have
9667 // an address space.
9668 if (T.getAddressSpace() != 0) {
9669 // OpenCL allows function arguments declared to be an array of a type
9670 // to be qualified with an address space.
9671 if (!(getLangOpts().OpenCL && T->isArrayType())) {
9672 Diag(NameLoc, diag::err_arg_with_address_space);
9673 New->setInvalidDecl();
9674 }
9675 }
9676
9677 return New;
9678 }
9679
ActOnFinishKNRParamDeclarations(Scope * S,Declarator & D,SourceLocation LocAfterDecls)9680 void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9681 SourceLocation LocAfterDecls) {
9682 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9683
9684 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9685 // for a K&R function.
9686 if (!FTI.hasPrototype) {
9687 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
9688 --i;
9689 if (FTI.Params[i].Param == nullptr) {
9690 SmallString<256> Code;
9691 llvm::raw_svector_ostream(Code)
9692 << " int " << FTI.Params[i].Ident->getName() << ";\n";
9693 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
9694 << FTI.Params[i].Ident
9695 << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9696
9697 // Implicitly declare the argument as type 'int' for lack of a better
9698 // type.
9699 AttributeFactory attrs;
9700 DeclSpec DS(attrs);
9701 const char* PrevSpec; // unused
9702 unsigned DiagID; // unused
9703 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
9704 DiagID, Context.getPrintingPolicy());
9705 // Use the identifier location for the type source range.
9706 DS.SetRangeStart(FTI.Params[i].IdentLoc);
9707 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
9708 Declarator ParamD(DS, Declarator::KNRTypeListContext);
9709 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
9710 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
9711 }
9712 }
9713 }
9714 }
9715
ActOnStartOfFunctionDef(Scope * FnBodyScope,Declarator & D)9716 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9717 assert(getCurFunctionDecl() == nullptr && "Function parsing confused");
9718 assert(D.isFunctionDeclarator() && "Not a function declarator!");
9719 Scope *ParentScope = FnBodyScope->getParent();
9720
9721 D.setFunctionDefinitionKind(FDK_Definition);
9722 Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9723 return ActOnStartOfFunctionDef(FnBodyScope, DP);
9724 }
9725
ActOnFinishInlineMethodDef(CXXMethodDecl * D)9726 void Sema::ActOnFinishInlineMethodDef(CXXMethodDecl *D) {
9727 Consumer.HandleInlineMethodDefinition(D);
9728 }
9729
ShouldWarnAboutMissingPrototype(const FunctionDecl * FD,const FunctionDecl * & PossibleZeroParamPrototype)9730 static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9731 const FunctionDecl*& PossibleZeroParamPrototype) {
9732 // Don't warn about invalid declarations.
9733 if (FD->isInvalidDecl())
9734 return false;
9735
9736 // Or declarations that aren't global.
9737 if (!FD->isGlobal())
9738 return false;
9739
9740 // Don't warn about C++ member functions.
9741 if (isa<CXXMethodDecl>(FD))
9742 return false;
9743
9744 // Don't warn about 'main'.
9745 if (FD->isMain())
9746 return false;
9747
9748 // Don't warn about inline functions.
9749 if (FD->isInlined())
9750 return false;
9751
9752 // Don't warn about function templates.
9753 if (FD->getDescribedFunctionTemplate())
9754 return false;
9755
9756 // Don't warn about function template specializations.
9757 if (FD->isFunctionTemplateSpecialization())
9758 return false;
9759
9760 // Don't warn for OpenCL kernels.
9761 if (FD->hasAttr<OpenCLKernelAttr>())
9762 return false;
9763
9764 bool MissingPrototype = true;
9765 for (const FunctionDecl *Prev = FD->getPreviousDecl();
9766 Prev; Prev = Prev->getPreviousDecl()) {
9767 // Ignore any declarations that occur in function or method
9768 // scope, because they aren't visible from the header.
9769 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
9770 continue;
9771
9772 MissingPrototype = !Prev->getType()->isFunctionProtoType();
9773 if (FD->getNumParams() == 0)
9774 PossibleZeroParamPrototype = Prev;
9775 break;
9776 }
9777
9778 return MissingPrototype;
9779 }
9780
9781 void
CheckForFunctionRedefinition(FunctionDecl * FD,const FunctionDecl * EffectiveDefinition)9782 Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
9783 const FunctionDecl *EffectiveDefinition) {
9784 // Don't complain if we're in GNU89 mode and the previous definition
9785 // was an extern inline function.
9786 const FunctionDecl *Definition = EffectiveDefinition;
9787 if (!Definition)
9788 if (!FD->isDefined(Definition))
9789 return;
9790
9791 if (canRedefineFunction(Definition, getLangOpts()))
9792 return;
9793
9794 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9795 Definition->getStorageClass() == SC_Extern)
9796 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9797 << FD->getDeclName() << getLangOpts().CPlusPlus;
9798 else
9799 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9800
9801 Diag(Definition->getLocation(), diag::note_previous_definition);
9802 FD->setInvalidDecl();
9803 }
9804
9805
RebuildLambdaScopeInfo(CXXMethodDecl * CallOperator,Sema & S)9806 static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
9807 Sema &S) {
9808 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
9809
9810 LambdaScopeInfo *LSI = S.PushLambdaScope();
9811 LSI->CallOperator = CallOperator;
9812 LSI->Lambda = LambdaClass;
9813 LSI->ReturnType = CallOperator->getReturnType();
9814 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
9815
9816 if (LCD == LCD_None)
9817 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
9818 else if (LCD == LCD_ByCopy)
9819 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
9820 else if (LCD == LCD_ByRef)
9821 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
9822 DeclarationNameInfo DNI = CallOperator->getNameInfo();
9823
9824 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
9825 LSI->Mutable = !CallOperator->isConst();
9826
9827 // Add the captures to the LSI so they can be noted as already
9828 // captured within tryCaptureVar.
9829 for (const auto &C : LambdaClass->captures()) {
9830 if (C.capturesVariable()) {
9831 VarDecl *VD = C.getCapturedVar();
9832 if (VD->isInitCapture())
9833 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
9834 QualType CaptureType = VD->getType();
9835 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
9836 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
9837 /*RefersToEnclosingLocal*/true, C.getLocation(),
9838 /*EllipsisLoc*/C.isPackExpansion()
9839 ? C.getEllipsisLoc() : SourceLocation(),
9840 CaptureType, /*Expr*/ nullptr);
9841
9842 } else if (C.capturesThis()) {
9843 LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
9844 S.getCurrentThisType(), /*Expr*/ nullptr);
9845 }
9846 }
9847 }
9848
ActOnStartOfFunctionDef(Scope * FnBodyScope,Decl * D)9849 Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9850 // Clear the last template instantiation error context.
9851 LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9852
9853 if (!D)
9854 return D;
9855 FunctionDecl *FD = nullptr;
9856
9857 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9858 FD = FunTmpl->getTemplatedDecl();
9859 else
9860 FD = cast<FunctionDecl>(D);
9861 // If we are instantiating a generic lambda call operator, push
9862 // a LambdaScopeInfo onto the function stack. But use the information
9863 // that's already been calculated (ActOnLambdaExpr) to prime the current
9864 // LambdaScopeInfo.
9865 // When the template operator is being specialized, the LambdaScopeInfo,
9866 // has to be properly restored so that tryCaptureVariable doesn't try
9867 // and capture any new variables. In addition when calculating potential
9868 // captures during transformation of nested lambdas, it is necessary to
9869 // have the LSI properly restored.
9870 if (isGenericLambdaCallOperatorSpecialization(FD)) {
9871 assert(ActiveTemplateInstantiations.size() &&
9872 "There should be an active template instantiation on the stack "
9873 "when instantiating a generic lambda!");
9874 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
9875 }
9876 else
9877 // Enter a new function scope
9878 PushFunctionScope();
9879
9880 // See if this is a redefinition.
9881 if (!FD->isLateTemplateParsed())
9882 CheckForFunctionRedefinition(FD);
9883
9884 // Builtin functions cannot be defined.
9885 if (unsigned BuiltinID = FD->getBuiltinID()) {
9886 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9887 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9888 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9889 FD->setInvalidDecl();
9890 }
9891 }
9892
9893 // The return type of a function definition must be complete
9894 // (C99 6.9.1p3, C++ [dcl.fct]p6).
9895 QualType ResultType = FD->getReturnType();
9896 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9897 !FD->isInvalidDecl() &&
9898 RequireCompleteType(FD->getLocation(), ResultType,
9899 diag::err_func_def_incomplete_result))
9900 FD->setInvalidDecl();
9901
9902 // GNU warning -Wmissing-prototypes:
9903 // Warn if a global function is defined without a previous
9904 // prototype declaration. This warning is issued even if the
9905 // definition itself provides a prototype. The aim is to detect
9906 // global functions that fail to be declared in header files.
9907 const FunctionDecl *PossibleZeroParamPrototype = nullptr;
9908 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9909 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9910
9911 if (PossibleZeroParamPrototype) {
9912 // We found a declaration that is not a prototype,
9913 // but that could be a zero-parameter prototype
9914 if (TypeSourceInfo *TI =
9915 PossibleZeroParamPrototype->getTypeSourceInfo()) {
9916 TypeLoc TL = TI->getTypeLoc();
9917 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9918 Diag(PossibleZeroParamPrototype->getLocation(),
9919 diag::note_declaration_not_a_prototype)
9920 << PossibleZeroParamPrototype
9921 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9922 }
9923 }
9924 }
9925
9926 if (FnBodyScope)
9927 PushDeclContext(FnBodyScope, FD);
9928
9929 // Check the validity of our function parameters
9930 CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9931 /*CheckParameterNames=*/true);
9932
9933 // Introduce our parameters into the function scope
9934 for (auto Param : FD->params()) {
9935 Param->setOwningFunction(FD);
9936
9937 // If this has an identifier, add it to the scope stack.
9938 if (Param->getIdentifier() && FnBodyScope) {
9939 CheckShadow(FnBodyScope, Param);
9940
9941 PushOnScopeChains(Param, FnBodyScope);
9942 }
9943 }
9944
9945 // If we had any tags defined in the function prototype,
9946 // introduce them into the function scope.
9947 if (FnBodyScope) {
9948 for (ArrayRef<NamedDecl *>::iterator
9949 I = FD->getDeclsInPrototypeScope().begin(),
9950 E = FD->getDeclsInPrototypeScope().end();
9951 I != E; ++I) {
9952 NamedDecl *D = *I;
9953
9954 // Some of these decls (like enums) may have been pinned to the translation unit
9955 // for lack of a real context earlier. If so, remove from the translation unit
9956 // and reattach to the current context.
9957 if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9958 // Is the decl actually in the context?
9959 for (const auto *DI : Context.getTranslationUnitDecl()->decls()) {
9960 if (DI == D) {
9961 Context.getTranslationUnitDecl()->removeDecl(D);
9962 break;
9963 }
9964 }
9965 // Either way, reassign the lexical decl context to our FunctionDecl.
9966 D->setLexicalDeclContext(CurContext);
9967 }
9968
9969 // If the decl has a non-null name, make accessible in the current scope.
9970 if (!D->getName().empty())
9971 PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9972
9973 // Similarly, dive into enums and fish their constants out, making them
9974 // accessible in this scope.
9975 if (auto *ED = dyn_cast<EnumDecl>(D)) {
9976 for (auto *EI : ED->enumerators())
9977 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
9978 }
9979 }
9980 }
9981
9982 // Ensure that the function's exception specification is instantiated.
9983 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9984 ResolveExceptionSpec(D->getLocation(), FPT);
9985
9986 // dllimport cannot be applied to non-inline function definitions.
9987 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
9988 !FD->isTemplateInstantiation()) {
9989 assert(!FD->hasAttr<DLLExportAttr>());
9990 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
9991 FD->setInvalidDecl();
9992 return D;
9993 }
9994 // We want to attach documentation to original Decl (which might be
9995 // a function template).
9996 ActOnDocumentableDecl(D);
9997 if (getCurLexicalContext()->isObjCContainer() &&
9998 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
9999 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
10000 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
10001
10002 return D;
10003 }
10004
10005 /// \brief Given the set of return statements within a function body,
10006 /// compute the variables that are subject to the named return value
10007 /// optimization.
10008 ///
10009 /// Each of the variables that is subject to the named return value
10010 /// optimization will be marked as NRVO variables in the AST, and any
10011 /// return statement that has a marked NRVO variable as its NRVO candidate can
10012 /// use the named return value optimization.
10013 ///
10014 /// This function applies a very simplistic algorithm for NRVO: if every return
10015 /// statement in the scope of a variable has the same NRVO candidate, that
10016 /// candidate is an NRVO variable.
computeNRVO(Stmt * Body,FunctionScopeInfo * Scope)10017 void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
10018 ReturnStmt **Returns = Scope->Returns.data();
10019
10020 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
10021 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
10022 if (!NRVOCandidate->isNRVOVariable())
10023 Returns[I]->setNRVOCandidate(nullptr);
10024 }
10025 }
10026 }
10027
canDelayFunctionBody(const Declarator & D)10028 bool Sema::canDelayFunctionBody(const Declarator &D) {
10029 // We can't delay parsing the body of a constexpr function template (yet).
10030 if (D.getDeclSpec().isConstexprSpecified())
10031 return false;
10032
10033 // We can't delay parsing the body of a function template with a deduced
10034 // return type (yet).
10035 if (D.getDeclSpec().containsPlaceholderType()) {
10036 // If the placeholder introduces a non-deduced trailing return type,
10037 // we can still delay parsing it.
10038 if (D.getNumTypeObjects()) {
10039 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
10040 if (Outer.Kind == DeclaratorChunk::Function &&
10041 Outer.Fun.hasTrailingReturnType()) {
10042 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
10043 return Ty.isNull() || !Ty->isUndeducedType();
10044 }
10045 }
10046 return false;
10047 }
10048
10049 return true;
10050 }
10051
canSkipFunctionBody(Decl * D)10052 bool Sema::canSkipFunctionBody(Decl *D) {
10053 // We cannot skip the body of a function (or function template) which is
10054 // constexpr, since we may need to evaluate its body in order to parse the
10055 // rest of the file.
10056 // We cannot skip the body of a function with an undeduced return type,
10057 // because any callers of that function need to know the type.
10058 if (const FunctionDecl *FD = D->getAsFunction())
10059 if (FD->isConstexpr() || FD->getReturnType()->isUndeducedType())
10060 return false;
10061 return Consumer.shouldSkipFunctionBody(D);
10062 }
10063
ActOnSkippedFunctionBody(Decl * Decl)10064 Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
10065 if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
10066 FD->setHasSkippedBody();
10067 else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
10068 MD->setHasSkippedBody();
10069 return ActOnFinishFunctionBody(Decl, nullptr);
10070 }
10071
ActOnFinishFunctionBody(Decl * D,Stmt * BodyArg)10072 Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
10073 return ActOnFinishFunctionBody(D, BodyArg, false);
10074 }
10075
ActOnFinishFunctionBody(Decl * dcl,Stmt * Body,bool IsInstantiation)10076 Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
10077 bool IsInstantiation) {
10078 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
10079
10080 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
10081 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
10082
10083 if (FD) {
10084 FD->setBody(Body);
10085
10086 if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
10087 !FD->isDependentContext() && FD->getReturnType()->isUndeducedType()) {
10088 // If the function has a deduced result type but contains no 'return'
10089 // statements, the result type as written must be exactly 'auto', and
10090 // the deduced result type is 'void'.
10091 if (!FD->getReturnType()->getAs<AutoType>()) {
10092 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
10093 << FD->getReturnType();
10094 FD->setInvalidDecl();
10095 } else {
10096 // Substitute 'void' for the 'auto' in the type.
10097 TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
10098 IgnoreParens().castAs<FunctionProtoTypeLoc>().getReturnLoc();
10099 Context.adjustDeducedFunctionResultType(
10100 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
10101 }
10102 }
10103
10104 // The only way to be included in UndefinedButUsed is if there is an
10105 // ODR use before the definition. Avoid the expensive map lookup if this
10106 // is the first declaration.
10107 if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
10108 if (!FD->isExternallyVisible())
10109 UndefinedButUsed.erase(FD);
10110 else if (FD->isInlined() &&
10111 (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
10112 (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
10113 UndefinedButUsed.erase(FD);
10114 }
10115
10116 // If the function implicitly returns zero (like 'main') or is naked,
10117 // don't complain about missing return statements.
10118 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
10119 WP.disableCheckFallThrough();
10120
10121 // MSVC permits the use of pure specifier (=0) on function definition,
10122 // defined at class scope, warn about this non-standard construct.
10123 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
10124 Diag(FD->getLocation(), diag::warn_pure_function_definition);
10125
10126 if (!FD->isInvalidDecl()) {
10127 // Don't diagnose unused parameters of defaulted or deleted functions.
10128 if (Body)
10129 DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
10130 DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
10131 FD->getReturnType(), FD);
10132
10133 // If this is a constructor, we need a vtable.
10134 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
10135 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
10136
10137 // Try to apply the named return value optimization. We have to check
10138 // if we can do this here because lambdas keep return statements around
10139 // to deduce an implicit return type.
10140 if (getLangOpts().CPlusPlus && FD->getReturnType()->isRecordType() &&
10141 !FD->isDependentContext())
10142 computeNRVO(Body, getCurFunction());
10143 }
10144
10145 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
10146 "Function parsing confused");
10147 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
10148 assert(MD == getCurMethodDecl() && "Method parsing confused");
10149 MD->setBody(Body);
10150 if (!MD->isInvalidDecl()) {
10151 DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
10152 DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
10153 MD->getReturnType(), MD);
10154
10155 if (Body)
10156 computeNRVO(Body, getCurFunction());
10157 }
10158 if (getCurFunction()->ObjCShouldCallSuper) {
10159 Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
10160 << MD->getSelector().getAsString();
10161 getCurFunction()->ObjCShouldCallSuper = false;
10162 }
10163 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
10164 const ObjCMethodDecl *InitMethod = nullptr;
10165 bool isDesignated =
10166 MD->isDesignatedInitializerForTheInterface(&InitMethod);
10167 assert(isDesignated && InitMethod);
10168 (void)isDesignated;
10169
10170 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
10171 auto IFace = MD->getClassInterface();
10172 if (!IFace)
10173 return false;
10174 auto SuperD = IFace->getSuperClass();
10175 if (!SuperD)
10176 return false;
10177 return SuperD->getIdentifier() ==
10178 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
10179 };
10180 // Don't issue this warning for unavailable inits or direct subclasses
10181 // of NSObject.
10182 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
10183 Diag(MD->getLocation(),
10184 diag::warn_objc_designated_init_missing_super_call);
10185 Diag(InitMethod->getLocation(),
10186 diag::note_objc_designated_init_marked_here);
10187 }
10188 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
10189 }
10190 if (getCurFunction()->ObjCWarnForNoInitDelegation) {
10191 // Don't issue this warning for unavaialable inits.
10192 if (!MD->isUnavailable())
10193 Diag(MD->getLocation(), diag::warn_objc_secondary_init_missing_init_call);
10194 getCurFunction()->ObjCWarnForNoInitDelegation = false;
10195 }
10196 } else {
10197 return nullptr;
10198 }
10199
10200 assert(!getCurFunction()->ObjCShouldCallSuper &&
10201 "This should only be set for ObjC methods, which should have been "
10202 "handled in the block above.");
10203
10204 // Verify and clean out per-function state.
10205 if (Body) {
10206 // C++ constructors that have function-try-blocks can't have return
10207 // statements in the handlers of that block. (C++ [except.handle]p14)
10208 // Verify this.
10209 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
10210 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
10211
10212 // Verify that gotos and switch cases don't jump into scopes illegally.
10213 if (getCurFunction()->NeedsScopeChecking() &&
10214 !PP.isCodeCompletionEnabled())
10215 DiagnoseInvalidJumps(Body);
10216
10217 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
10218 if (!Destructor->getParent()->isDependentType())
10219 CheckDestructor(Destructor);
10220
10221 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
10222 Destructor->getParent());
10223 }
10224
10225 // If any errors have occurred, clear out any temporaries that may have
10226 // been leftover. This ensures that these temporaries won't be picked up for
10227 // deletion in some later function.
10228 if (getDiagnostics().hasErrorOccurred() ||
10229 getDiagnostics().getSuppressAllDiagnostics()) {
10230 DiscardCleanupsInEvaluationContext();
10231 }
10232 if (!getDiagnostics().hasUncompilableErrorOccurred() &&
10233 !isa<FunctionTemplateDecl>(dcl)) {
10234 // Since the body is valid, issue any analysis-based warnings that are
10235 // enabled.
10236 ActivePolicy = &WP;
10237 }
10238
10239 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
10240 (!CheckConstexprFunctionDecl(FD) ||
10241 !CheckConstexprFunctionBody(FD, Body)))
10242 FD->setInvalidDecl();
10243
10244 assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
10245 assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
10246 assert(MaybeODRUseExprs.empty() &&
10247 "Leftover expressions for odr-use checking");
10248 }
10249
10250 if (!IsInstantiation)
10251 PopDeclContext();
10252
10253 PopFunctionScopeInfo(ActivePolicy, dcl);
10254 // If any errors have occurred, clear out any temporaries that may have
10255 // been leftover. This ensures that these temporaries won't be picked up for
10256 // deletion in some later function.
10257 if (getDiagnostics().hasErrorOccurred()) {
10258 DiscardCleanupsInEvaluationContext();
10259 }
10260
10261 return dcl;
10262 }
10263
10264
10265 /// When we finish delayed parsing of an attribute, we must attach it to the
10266 /// relevant Decl.
ActOnFinishDelayedAttribute(Scope * S,Decl * D,ParsedAttributes & Attrs)10267 void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
10268 ParsedAttributes &Attrs) {
10269 // Always attach attributes to the underlying decl.
10270 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
10271 D = TD->getTemplatedDecl();
10272 ProcessDeclAttributeList(S, D, Attrs.getList());
10273
10274 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
10275 if (Method->isStatic())
10276 checkThisInStaticMemberFunctionAttributes(Method);
10277 }
10278
10279
10280 /// ImplicitlyDefineFunction - An undeclared identifier was used in a function
10281 /// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
ImplicitlyDefineFunction(SourceLocation Loc,IdentifierInfo & II,Scope * S)10282 NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
10283 IdentifierInfo &II, Scope *S) {
10284 // Before we produce a declaration for an implicitly defined
10285 // function, see whether there was a locally-scoped declaration of
10286 // this name as a function or variable. If so, use that
10287 // (non-visible) declaration, and complain about it.
10288 if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
10289 Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
10290 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
10291 return ExternCPrev;
10292 }
10293
10294 // Extension in C99. Legal in C90, but warn about it.
10295 unsigned diag_id;
10296 if (II.getName().startswith("__builtin_"))
10297 diag_id = diag::warn_builtin_unknown;
10298 else if (getLangOpts().C99)
10299 diag_id = diag::ext_implicit_function_decl;
10300 else
10301 diag_id = diag::warn_implicit_function_decl;
10302 Diag(Loc, diag_id) << &II;
10303
10304 // Because typo correction is expensive, only do it if the implicit
10305 // function declaration is going to be treated as an error.
10306 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
10307 TypoCorrection Corrected;
10308 DeclFilterCCC<FunctionDecl> Validator;
10309 if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
10310 LookupOrdinaryName, S, nullptr, Validator,
10311 CTK_NonError)))
10312 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
10313 /*ErrorRecovery*/false);
10314 }
10315
10316 // Set a Declarator for the implicit definition: int foo();
10317 const char *Dummy;
10318 AttributeFactory attrFactory;
10319 DeclSpec DS(attrFactory);
10320 unsigned DiagID;
10321 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
10322 Context.getPrintingPolicy());
10323 (void)Error; // Silence warning.
10324 assert(!Error && "Error setting up implicit decl!");
10325 SourceLocation NoLoc;
10326 Declarator D(DS, Declarator::BlockContext);
10327 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
10328 /*IsAmbiguous=*/false,
10329 /*LParenLoc=*/NoLoc,
10330 /*Params=*/nullptr,
10331 /*NumParams=*/0,
10332 /*EllipsisLoc=*/NoLoc,
10333 /*RParenLoc=*/NoLoc,
10334 /*TypeQuals=*/0,
10335 /*RefQualifierIsLvalueRef=*/true,
10336 /*RefQualifierLoc=*/NoLoc,
10337 /*ConstQualifierLoc=*/NoLoc,
10338 /*VolatileQualifierLoc=*/NoLoc,
10339 /*MutableLoc=*/NoLoc,
10340 EST_None,
10341 /*ESpecLoc=*/NoLoc,
10342 /*Exceptions=*/nullptr,
10343 /*ExceptionRanges=*/nullptr,
10344 /*NumExceptions=*/0,
10345 /*NoexceptExpr=*/nullptr,
10346 Loc, Loc, D),
10347 DS.getAttributes(),
10348 SourceLocation());
10349 D.SetIdentifier(&II, Loc);
10350
10351 // Insert this function into translation-unit scope.
10352
10353 DeclContext *PrevDC = CurContext;
10354 CurContext = Context.getTranslationUnitDecl();
10355
10356 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
10357 FD->setImplicit();
10358
10359 CurContext = PrevDC;
10360
10361 AddKnownFunctionAttributes(FD);
10362
10363 return FD;
10364 }
10365
10366 /// \brief Adds any function attributes that we know a priori based on
10367 /// the declaration of this function.
10368 ///
10369 /// These attributes can apply both to implicitly-declared builtins
10370 /// (like __builtin___printf_chk) or to library-declared functions
10371 /// like NSLog or printf.
10372 ///
10373 /// We need to check for duplicate attributes both here and where user-written
10374 /// attributes are applied to declarations.
AddKnownFunctionAttributes(FunctionDecl * FD)10375 void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
10376 if (FD->isInvalidDecl())
10377 return;
10378
10379 // If this is a built-in function, map its builtin attributes to
10380 // actual attributes.
10381 if (unsigned BuiltinID = FD->getBuiltinID()) {
10382 // Handle printf-formatting attributes.
10383 unsigned FormatIdx;
10384 bool HasVAListArg;
10385 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
10386 if (!FD->hasAttr<FormatAttr>()) {
10387 const char *fmt = "printf";
10388 unsigned int NumParams = FD->getNumParams();
10389 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
10390 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
10391 fmt = "NSString";
10392 FD->addAttr(FormatAttr::CreateImplicit(Context,
10393 &Context.Idents.get(fmt),
10394 FormatIdx+1,
10395 HasVAListArg ? 0 : FormatIdx+2,
10396 FD->getLocation()));
10397 }
10398 }
10399 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
10400 HasVAListArg)) {
10401 if (!FD->hasAttr<FormatAttr>())
10402 FD->addAttr(FormatAttr::CreateImplicit(Context,
10403 &Context.Idents.get("scanf"),
10404 FormatIdx+1,
10405 HasVAListArg ? 0 : FormatIdx+2,
10406 FD->getLocation()));
10407 }
10408
10409 // Mark const if we don't care about errno and that is the only
10410 // thing preventing the function from being const. This allows
10411 // IRgen to use LLVM intrinsics for such functions.
10412 if (!getLangOpts().MathErrno &&
10413 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
10414 if (!FD->hasAttr<ConstAttr>())
10415 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10416 }
10417
10418 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
10419 !FD->hasAttr<ReturnsTwiceAttr>())
10420 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
10421 FD->getLocation()));
10422 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
10423 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
10424 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
10425 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
10426 }
10427
10428 IdentifierInfo *Name = FD->getIdentifier();
10429 if (!Name)
10430 return;
10431 if ((!getLangOpts().CPlusPlus &&
10432 FD->getDeclContext()->isTranslationUnit()) ||
10433 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
10434 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
10435 LinkageSpecDecl::lang_c)) {
10436 // Okay: this could be a libc/libm/Objective-C function we know
10437 // about.
10438 } else
10439 return;
10440
10441 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
10442 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
10443 // target-specific builtins, perhaps?
10444 if (!FD->hasAttr<FormatAttr>())
10445 FD->addAttr(FormatAttr::CreateImplicit(Context,
10446 &Context.Idents.get("printf"), 2,
10447 Name->isStr("vasprintf") ? 0 : 3,
10448 FD->getLocation()));
10449 }
10450
10451 if (Name->isStr("__CFStringMakeConstantString")) {
10452 // We already have a __builtin___CFStringMakeConstantString,
10453 // but builds that use -fno-constant-cfstrings don't go through that.
10454 if (!FD->hasAttr<FormatArgAttr>())
10455 FD->addAttr(FormatArgAttr::CreateImplicit(Context, 1,
10456 FD->getLocation()));
10457 }
10458 }
10459
ParseTypedefDecl(Scope * S,Declarator & D,QualType T,TypeSourceInfo * TInfo)10460 TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
10461 TypeSourceInfo *TInfo) {
10462 assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
10463 assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
10464
10465 if (!TInfo) {
10466 assert(D.isInvalidType() && "no declarator info for valid type");
10467 TInfo = Context.getTrivialTypeSourceInfo(T);
10468 }
10469
10470 // Scope manipulation handled by caller.
10471 TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
10472 D.getLocStart(),
10473 D.getIdentifierLoc(),
10474 D.getIdentifier(),
10475 TInfo);
10476
10477 // Bail out immediately if we have an invalid declaration.
10478 if (D.isInvalidType()) {
10479 NewTD->setInvalidDecl();
10480 return NewTD;
10481 }
10482
10483 if (D.getDeclSpec().isModulePrivateSpecified()) {
10484 if (CurContext->isFunctionOrMethod())
10485 Diag(NewTD->getLocation(), diag::err_module_private_local)
10486 << 2 << NewTD->getDeclName()
10487 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
10488 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
10489 else
10490 NewTD->setModulePrivate();
10491 }
10492
10493 // C++ [dcl.typedef]p8:
10494 // If the typedef declaration defines an unnamed class (or
10495 // enum), the first typedef-name declared by the declaration
10496 // to be that class type (or enum type) is used to denote the
10497 // class type (or enum type) for linkage purposes only.
10498 // We need to check whether the type was declared in the declaration.
10499 switch (D.getDeclSpec().getTypeSpecType()) {
10500 case TST_enum:
10501 case TST_struct:
10502 case TST_interface:
10503 case TST_union:
10504 case TST_class: {
10505 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
10506
10507 // Do nothing if the tag is not anonymous or already has an
10508 // associated typedef (from an earlier typedef in this decl group).
10509 if (tagFromDeclSpec->getIdentifier()) break;
10510 if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
10511
10512 // A well-formed anonymous tag must always be a TUK_Definition.
10513 assert(tagFromDeclSpec->isThisDeclarationADefinition());
10514
10515 // The type must match the tag exactly; no qualifiers allowed.
10516 if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
10517 break;
10518
10519 // If we've already computed linkage for the anonymous tag, then
10520 // adding a typedef name for the anonymous decl can change that
10521 // linkage, which might be a serious problem. Diagnose this as
10522 // unsupported and ignore the typedef name. TODO: we should
10523 // pursue this as a language defect and establish a formal rule
10524 // for how to handle it.
10525 if (tagFromDeclSpec->hasLinkageBeenComputed()) {
10526 Diag(D.getIdentifierLoc(), diag::err_typedef_changes_linkage);
10527
10528 SourceLocation tagLoc = D.getDeclSpec().getTypeSpecTypeLoc();
10529 tagLoc = getLocForEndOfToken(tagLoc);
10530
10531 llvm::SmallString<40> textToInsert;
10532 textToInsert += ' ';
10533 textToInsert += D.getIdentifier()->getName();
10534 Diag(tagLoc, diag::note_typedef_changes_linkage)
10535 << FixItHint::CreateInsertion(tagLoc, textToInsert);
10536 break;
10537 }
10538
10539 // Otherwise, set this is the anon-decl typedef for the tag.
10540 tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
10541 break;
10542 }
10543
10544 default:
10545 break;
10546 }
10547
10548 return NewTD;
10549 }
10550
10551
10552 /// \brief Check that this is a valid underlying type for an enum declaration.
CheckEnumUnderlyingType(TypeSourceInfo * TI)10553 bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10554 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10555 QualType T = TI->getType();
10556
10557 if (T->isDependentType())
10558 return false;
10559
10560 if (const BuiltinType *BT = T->getAs<BuiltinType>())
10561 if (BT->isInteger())
10562 return false;
10563
10564 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10565 return true;
10566 }
10567
10568 /// Check whether this is a valid redeclaration of a previous enumeration.
10569 /// \return true if the redeclaration was invalid.
CheckEnumRedeclaration(SourceLocation EnumLoc,bool IsScoped,QualType EnumUnderlyingTy,const EnumDecl * Prev)10570 bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10571 QualType EnumUnderlyingTy,
10572 const EnumDecl *Prev) {
10573 bool IsFixed = !EnumUnderlyingTy.isNull();
10574
10575 if (IsScoped != Prev->isScoped()) {
10576 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10577 << Prev->isScoped();
10578 Diag(Prev->getLocation(), diag::note_previous_declaration);
10579 return true;
10580 }
10581
10582 if (IsFixed && Prev->isFixed()) {
10583 if (!EnumUnderlyingTy->isDependentType() &&
10584 !Prev->getIntegerType()->isDependentType() &&
10585 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10586 Prev->getIntegerType())) {
10587 // TODO: Highlight the underlying type of the redeclaration.
10588 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10589 << EnumUnderlyingTy << Prev->getIntegerType();
10590 Diag(Prev->getLocation(), diag::note_previous_declaration)
10591 << Prev->getIntegerTypeRange();
10592 return true;
10593 }
10594 } else if (IsFixed != Prev->isFixed()) {
10595 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10596 << Prev->isFixed();
10597 Diag(Prev->getLocation(), diag::note_previous_declaration);
10598 return true;
10599 }
10600
10601 return false;
10602 }
10603
10604 /// \brief Get diagnostic %select index for tag kind for
10605 /// redeclaration diagnostic message.
10606 /// WARNING: Indexes apply to particular diagnostics only!
10607 ///
10608 /// \returns diagnostic %select index.
getRedeclDiagFromTagKind(TagTypeKind Tag)10609 static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10610 switch (Tag) {
10611 case TTK_Struct: return 0;
10612 case TTK_Interface: return 1;
10613 case TTK_Class: return 2;
10614 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10615 }
10616 }
10617
10618 /// \brief Determine if tag kind is a class-key compatible with
10619 /// class for redeclaration (class, struct, or __interface).
10620 ///
10621 /// \returns true iff the tag kind is compatible.
isClassCompatTagKind(TagTypeKind Tag)10622 static bool isClassCompatTagKind(TagTypeKind Tag)
10623 {
10624 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10625 }
10626
10627 /// \brief Determine whether a tag with a given kind is acceptable
10628 /// as a redeclaration of the given tag declaration.
10629 ///
10630 /// \returns true if the new tag kind is acceptable, false otherwise.
isAcceptableTagRedeclaration(const TagDecl * Previous,TagTypeKind NewTag,bool isDefinition,SourceLocation NewTagLoc,const IdentifierInfo & Name)10631 bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10632 TagTypeKind NewTag, bool isDefinition,
10633 SourceLocation NewTagLoc,
10634 const IdentifierInfo &Name) {
10635 // C++ [dcl.type.elab]p3:
10636 // The class-key or enum keyword present in the
10637 // elaborated-type-specifier shall agree in kind with the
10638 // declaration to which the name in the elaborated-type-specifier
10639 // refers. This rule also applies to the form of
10640 // elaborated-type-specifier that declares a class-name or
10641 // friend class since it can be construed as referring to the
10642 // definition of the class. Thus, in any
10643 // elaborated-type-specifier, the enum keyword shall be used to
10644 // refer to an enumeration (7.2), the union class-key shall be
10645 // used to refer to a union (clause 9), and either the class or
10646 // struct class-key shall be used to refer to a class (clause 9)
10647 // declared using the class or struct class-key.
10648 TagTypeKind OldTag = Previous->getTagKind();
10649 if (!isDefinition || !isClassCompatTagKind(NewTag))
10650 if (OldTag == NewTag)
10651 return true;
10652
10653 if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10654 // Warn about the struct/class tag mismatch.
10655 bool isTemplate = false;
10656 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10657 isTemplate = Record->getDescribedClassTemplate();
10658
10659 if (!ActiveTemplateInstantiations.empty()) {
10660 // In a template instantiation, do not offer fix-its for tag mismatches
10661 // since they usually mess up the template instead of fixing the problem.
10662 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10663 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10664 << getRedeclDiagFromTagKind(OldTag);
10665 return true;
10666 }
10667
10668 if (isDefinition) {
10669 // On definitions, check previous tags and issue a fix-it for each
10670 // one that doesn't match the current tag.
10671 if (Previous->getDefinition()) {
10672 // Don't suggest fix-its for redefinitions.
10673 return true;
10674 }
10675
10676 bool previousMismatch = false;
10677 for (auto I : Previous->redecls()) {
10678 if (I->getTagKind() != NewTag) {
10679 if (!previousMismatch) {
10680 previousMismatch = true;
10681 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10682 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10683 << getRedeclDiagFromTagKind(I->getTagKind());
10684 }
10685 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10686 << getRedeclDiagFromTagKind(NewTag)
10687 << FixItHint::CreateReplacement(I->getInnerLocStart(),
10688 TypeWithKeyword::getTagTypeKindName(NewTag));
10689 }
10690 }
10691 return true;
10692 }
10693
10694 // Check for a previous definition. If current tag and definition
10695 // are same type, do nothing. If no definition, but disagree with
10696 // with previous tag type, give a warning, but no fix-it.
10697 const TagDecl *Redecl = Previous->getDefinition() ?
10698 Previous->getDefinition() : Previous;
10699 if (Redecl->getTagKind() == NewTag) {
10700 return true;
10701 }
10702
10703 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10704 << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10705 << getRedeclDiagFromTagKind(OldTag);
10706 Diag(Redecl->getLocation(), diag::note_previous_use);
10707
10708 // If there is a previous definition, suggest a fix-it.
10709 if (Previous->getDefinition()) {
10710 Diag(NewTagLoc, diag::note_struct_class_suggestion)
10711 << getRedeclDiagFromTagKind(Redecl->getTagKind())
10712 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10713 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10714 }
10715
10716 return true;
10717 }
10718 return false;
10719 }
10720
10721 /// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'. In the
10722 /// former case, Name will be non-null. In the later case, Name will be null.
10723 /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10724 /// reference/declaration/definition of a tag.
10725 ///
10726 /// IsTypeSpecifier is true if this is a type-specifier (or
10727 /// trailing-type-specifier) other than one in an alias-declaration.
ActOnTag(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,AccessSpecifier AS,SourceLocation ModulePrivateLoc,MultiTemplateParamsArg TemplateParameterLists,bool & OwnedDecl,bool & IsDependent,SourceLocation ScopedEnumKWLoc,bool ScopedEnumUsesClassTag,TypeResult UnderlyingType,bool IsTypeSpecifier)10728 Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10729 SourceLocation KWLoc, CXXScopeSpec &SS,
10730 IdentifierInfo *Name, SourceLocation NameLoc,
10731 AttributeList *Attr, AccessSpecifier AS,
10732 SourceLocation ModulePrivateLoc,
10733 MultiTemplateParamsArg TemplateParameterLists,
10734 bool &OwnedDecl, bool &IsDependent,
10735 SourceLocation ScopedEnumKWLoc,
10736 bool ScopedEnumUsesClassTag,
10737 TypeResult UnderlyingType,
10738 bool IsTypeSpecifier) {
10739 // If this is not a definition, it must have a name.
10740 IdentifierInfo *OrigName = Name;
10741 assert((Name != nullptr || TUK == TUK_Definition) &&
10742 "Nameless record must be a definition!");
10743 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10744
10745 OwnedDecl = false;
10746 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10747 bool ScopedEnum = ScopedEnumKWLoc.isValid();
10748
10749 // FIXME: Check explicit specializations more carefully.
10750 bool isExplicitSpecialization = false;
10751 bool Invalid = false;
10752
10753 // We only need to do this matching if we have template parameters
10754 // or a scope specifier, which also conveniently avoids this work
10755 // for non-C++ cases.
10756 if (TemplateParameterLists.size() > 0 ||
10757 (SS.isNotEmpty() && TUK != TUK_Reference)) {
10758 if (TemplateParameterList *TemplateParams =
10759 MatchTemplateParametersToScopeSpecifier(
10760 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
10761 TUK == TUK_Friend, isExplicitSpecialization, Invalid)) {
10762 if (Kind == TTK_Enum) {
10763 Diag(KWLoc, diag::err_enum_template);
10764 return nullptr;
10765 }
10766
10767 if (TemplateParams->size() > 0) {
10768 // This is a declaration or definition of a class template (which may
10769 // be a member of another template).
10770
10771 if (Invalid)
10772 return nullptr;
10773
10774 OwnedDecl = false;
10775 DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10776 SS, Name, NameLoc, Attr,
10777 TemplateParams, AS,
10778 ModulePrivateLoc,
10779 TemplateParameterLists.size()-1,
10780 TemplateParameterLists.data());
10781 return Result.get();
10782 } else {
10783 // The "template<>" header is extraneous.
10784 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10785 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10786 isExplicitSpecialization = true;
10787 }
10788 }
10789 }
10790
10791 // Figure out the underlying type if this a enum declaration. We need to do
10792 // this early, because it's needed to detect if this is an incompatible
10793 // redeclaration.
10794 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10795
10796 if (Kind == TTK_Enum) {
10797 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10798 // No underlying type explicitly specified, or we failed to parse the
10799 // type, default to int.
10800 EnumUnderlying = Context.IntTy.getTypePtr();
10801 else if (UnderlyingType.get()) {
10802 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10803 // integral type; any cv-qualification is ignored.
10804 TypeSourceInfo *TI = nullptr;
10805 GetTypeFromParser(UnderlyingType.get(), &TI);
10806 EnumUnderlying = TI;
10807
10808 if (CheckEnumUnderlyingType(TI))
10809 // Recover by falling back to int.
10810 EnumUnderlying = Context.IntTy.getTypePtr();
10811
10812 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10813 UPPC_FixedUnderlyingType))
10814 EnumUnderlying = Context.IntTy.getTypePtr();
10815
10816 } else if (getLangOpts().MSVCCompat)
10817 // Microsoft enums are always of int type.
10818 EnumUnderlying = Context.IntTy.getTypePtr();
10819 }
10820
10821 DeclContext *SearchDC = CurContext;
10822 DeclContext *DC = CurContext;
10823 bool isStdBadAlloc = false;
10824
10825 RedeclarationKind Redecl = ForRedeclaration;
10826 if (TUK == TUK_Friend || TUK == TUK_Reference)
10827 Redecl = NotForRedeclaration;
10828
10829 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10830 bool FriendSawTagOutsideEnclosingNamespace = false;
10831 if (Name && SS.isNotEmpty()) {
10832 // We have a nested-name tag ('struct foo::bar').
10833
10834 // Check for invalid 'foo::'.
10835 if (SS.isInvalid()) {
10836 Name = nullptr;
10837 goto CreateNewDecl;
10838 }
10839
10840 // If this is a friend or a reference to a class in a dependent
10841 // context, don't try to make a decl for it.
10842 if (TUK == TUK_Friend || TUK == TUK_Reference) {
10843 DC = computeDeclContext(SS, false);
10844 if (!DC) {
10845 IsDependent = true;
10846 return nullptr;
10847 }
10848 } else {
10849 DC = computeDeclContext(SS, true);
10850 if (!DC) {
10851 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10852 << SS.getRange();
10853 return nullptr;
10854 }
10855 }
10856
10857 if (RequireCompleteDeclContext(SS, DC))
10858 return nullptr;
10859
10860 SearchDC = DC;
10861 // Look-up name inside 'foo::'.
10862 LookupQualifiedName(Previous, DC);
10863
10864 if (Previous.isAmbiguous())
10865 return nullptr;
10866
10867 if (Previous.empty()) {
10868 // Name lookup did not find anything. However, if the
10869 // nested-name-specifier refers to the current instantiation,
10870 // and that current instantiation has any dependent base
10871 // classes, we might find something at instantiation time: treat
10872 // this as a dependent elaborated-type-specifier.
10873 // But this only makes any sense for reference-like lookups.
10874 if (Previous.wasNotFoundInCurrentInstantiation() &&
10875 (TUK == TUK_Reference || TUK == TUK_Friend)) {
10876 IsDependent = true;
10877 return nullptr;
10878 }
10879
10880 // A tag 'foo::bar' must already exist.
10881 Diag(NameLoc, diag::err_not_tag_in_scope)
10882 << Kind << Name << DC << SS.getRange();
10883 Name = nullptr;
10884 Invalid = true;
10885 goto CreateNewDecl;
10886 }
10887 } else if (Name) {
10888 // If this is a named struct, check to see if there was a previous forward
10889 // declaration or definition.
10890 // FIXME: We're looking into outer scopes here, even when we
10891 // shouldn't be. Doing so can result in ambiguities that we
10892 // shouldn't be diagnosing.
10893 LookupName(Previous, S);
10894
10895 // When declaring or defining a tag, ignore ambiguities introduced
10896 // by types using'ed into this scope.
10897 if (Previous.isAmbiguous() &&
10898 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10899 LookupResult::Filter F = Previous.makeFilter();
10900 while (F.hasNext()) {
10901 NamedDecl *ND = F.next();
10902 if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10903 F.erase();
10904 }
10905 F.done();
10906 }
10907
10908 // C++11 [namespace.memdef]p3:
10909 // If the name in a friend declaration is neither qualified nor
10910 // a template-id and the declaration is a function or an
10911 // elaborated-type-specifier, the lookup to determine whether
10912 // the entity has been previously declared shall not consider
10913 // any scopes outside the innermost enclosing namespace.
10914 //
10915 // Does it matter that this should be by scope instead of by
10916 // semantic context?
10917 if (!Previous.empty() && TUK == TUK_Friend) {
10918 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10919 LookupResult::Filter F = Previous.makeFilter();
10920 while (F.hasNext()) {
10921 NamedDecl *ND = F.next();
10922 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10923 if (DC->isFileContext() &&
10924 !EnclosingNS->Encloses(ND->getDeclContext())) {
10925 F.erase();
10926 FriendSawTagOutsideEnclosingNamespace = true;
10927 }
10928 }
10929 F.done();
10930 }
10931
10932 // Note: there used to be some attempt at recovery here.
10933 if (Previous.isAmbiguous())
10934 return nullptr;
10935
10936 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10937 // FIXME: This makes sure that we ignore the contexts associated
10938 // with C structs, unions, and enums when looking for a matching
10939 // tag declaration or definition. See the similar lookup tweak
10940 // in Sema::LookupName; is there a better way to deal with this?
10941 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10942 SearchDC = SearchDC->getParent();
10943 }
10944 }
10945
10946 if (Previous.isSingleResult() &&
10947 Previous.getFoundDecl()->isTemplateParameter()) {
10948 // Maybe we will complain about the shadowed template parameter.
10949 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10950 // Just pretend that we didn't see the previous declaration.
10951 Previous.clear();
10952 }
10953
10954 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10955 DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10956 // This is a declaration of or a reference to "std::bad_alloc".
10957 isStdBadAlloc = true;
10958
10959 if (Previous.empty() && StdBadAlloc) {
10960 // std::bad_alloc has been implicitly declared (but made invisible to
10961 // name lookup). Fill in this implicit declaration as the previous
10962 // declaration, so that the declarations get chained appropriately.
10963 Previous.addDecl(getStdBadAlloc());
10964 }
10965 }
10966
10967 // If we didn't find a previous declaration, and this is a reference
10968 // (or friend reference), move to the correct scope. In C++, we
10969 // also need to do a redeclaration lookup there, just in case
10970 // there's a shadow friend decl.
10971 if (Name && Previous.empty() &&
10972 (TUK == TUK_Reference || TUK == TUK_Friend)) {
10973 if (Invalid) goto CreateNewDecl;
10974 assert(SS.isEmpty());
10975
10976 if (TUK == TUK_Reference) {
10977 // C++ [basic.scope.pdecl]p5:
10978 // -- for an elaborated-type-specifier of the form
10979 //
10980 // class-key identifier
10981 //
10982 // if the elaborated-type-specifier is used in the
10983 // decl-specifier-seq or parameter-declaration-clause of a
10984 // function defined in namespace scope, the identifier is
10985 // declared as a class-name in the namespace that contains
10986 // the declaration; otherwise, except as a friend
10987 // declaration, the identifier is declared in the smallest
10988 // non-class, non-function-prototype scope that contains the
10989 // declaration.
10990 //
10991 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10992 // C structs and unions.
10993 //
10994 // It is an error in C++ to declare (rather than define) an enum
10995 // type, including via an elaborated type specifier. We'll
10996 // diagnose that later; for now, declare the enum in the same
10997 // scope as we would have picked for any other tag type.
10998 //
10999 // GNU C also supports this behavior as part of its incomplete
11000 // enum types extension, while GNU C++ does not.
11001 //
11002 // Find the context where we'll be declaring the tag.
11003 // FIXME: We would like to maintain the current DeclContext as the
11004 // lexical context,
11005 while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
11006 SearchDC = SearchDC->getParent();
11007
11008 // Find the scope where we'll be declaring the tag.
11009 while (S->isClassScope() ||
11010 (getLangOpts().CPlusPlus &&
11011 S->isFunctionPrototypeScope()) ||
11012 ((S->getFlags() & Scope::DeclScope) == 0) ||
11013 (S->getEntity() && S->getEntity()->isTransparentContext()))
11014 S = S->getParent();
11015 } else {
11016 assert(TUK == TUK_Friend);
11017 // C++ [namespace.memdef]p3:
11018 // If a friend declaration in a non-local class first declares a
11019 // class or function, the friend class or function is a member of
11020 // the innermost enclosing namespace.
11021 SearchDC = SearchDC->getEnclosingNamespaceContext();
11022 }
11023
11024 // In C++, we need to do a redeclaration lookup to properly
11025 // diagnose some problems.
11026 if (getLangOpts().CPlusPlus) {
11027 Previous.setRedeclarationKind(ForRedeclaration);
11028 LookupQualifiedName(Previous, SearchDC);
11029 }
11030 }
11031
11032 if (!Previous.empty()) {
11033 NamedDecl *PrevDecl = Previous.getFoundDecl();
11034 NamedDecl *DirectPrevDecl =
11035 getLangOpts().MSVCCompat ? *Previous.begin() : PrevDecl;
11036
11037 // It's okay to have a tag decl in the same scope as a typedef
11038 // which hides a tag decl in the same scope. Finding this
11039 // insanity with a redeclaration lookup can only actually happen
11040 // in C++.
11041 //
11042 // This is also okay for elaborated-type-specifiers, which is
11043 // technically forbidden by the current standard but which is
11044 // okay according to the likely resolution of an open issue;
11045 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
11046 if (getLangOpts().CPlusPlus) {
11047 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11048 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
11049 TagDecl *Tag = TT->getDecl();
11050 if (Tag->getDeclName() == Name &&
11051 Tag->getDeclContext()->getRedeclContext()
11052 ->Equals(TD->getDeclContext()->getRedeclContext())) {
11053 PrevDecl = Tag;
11054 Previous.clear();
11055 Previous.addDecl(Tag);
11056 Previous.resolveKind();
11057 }
11058 }
11059 }
11060 }
11061
11062 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
11063 // If this is a use of a previous tag, or if the tag is already declared
11064 // in the same scope (so that the definition/declaration completes or
11065 // rementions the tag), reuse the decl.
11066 if (TUK == TUK_Reference || TUK == TUK_Friend ||
11067 isDeclInScope(DirectPrevDecl, SearchDC, S,
11068 SS.isNotEmpty() || isExplicitSpecialization)) {
11069 // Make sure that this wasn't declared as an enum and now used as a
11070 // struct or something similar.
11071 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
11072 TUK == TUK_Definition, KWLoc,
11073 *Name)) {
11074 bool SafeToContinue
11075 = (PrevTagDecl->getTagKind() != TTK_Enum &&
11076 Kind != TTK_Enum);
11077 if (SafeToContinue)
11078 Diag(KWLoc, diag::err_use_with_wrong_tag)
11079 << Name
11080 << FixItHint::CreateReplacement(SourceRange(KWLoc),
11081 PrevTagDecl->getKindName());
11082 else
11083 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
11084 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
11085
11086 if (SafeToContinue)
11087 Kind = PrevTagDecl->getTagKind();
11088 else {
11089 // Recover by making this an anonymous redefinition.
11090 Name = nullptr;
11091 Previous.clear();
11092 Invalid = true;
11093 }
11094 }
11095
11096 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
11097 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
11098
11099 // If this is an elaborated-type-specifier for a scoped enumeration,
11100 // the 'class' keyword is not necessary and not permitted.
11101 if (TUK == TUK_Reference || TUK == TUK_Friend) {
11102 if (ScopedEnum)
11103 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
11104 << PrevEnum->isScoped()
11105 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
11106 return PrevTagDecl;
11107 }
11108
11109 QualType EnumUnderlyingTy;
11110 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11111 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
11112 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
11113 EnumUnderlyingTy = QualType(T, 0);
11114
11115 // All conflicts with previous declarations are recovered by
11116 // returning the previous declaration, unless this is a definition,
11117 // in which case we want the caller to bail out.
11118 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
11119 ScopedEnum, EnumUnderlyingTy, PrevEnum))
11120 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
11121 }
11122
11123 // C++11 [class.mem]p1:
11124 // A member shall not be declared twice in the member-specification,
11125 // except that a nested class or member class template can be declared
11126 // and then later defined.
11127 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
11128 S->isDeclScope(PrevDecl)) {
11129 Diag(NameLoc, diag::ext_member_redeclared);
11130 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
11131 }
11132
11133 if (!Invalid) {
11134 // If this is a use, just return the declaration we found, unless
11135 // we have attributes.
11136
11137 // FIXME: In the future, return a variant or some other clue
11138 // for the consumer of this Decl to know it doesn't own it.
11139 // For our current ASTs this shouldn't be a problem, but will
11140 // need to be changed with DeclGroups.
11141 if (!Attr &&
11142 ((TUK == TUK_Reference &&
11143 (!PrevTagDecl->getFriendObjectKind() || getLangOpts().MicrosoftExt))
11144 || TUK == TUK_Friend))
11145 return PrevTagDecl;
11146
11147 // Diagnose attempts to redefine a tag.
11148 if (TUK == TUK_Definition) {
11149 if (TagDecl *Def = PrevTagDecl->getDefinition()) {
11150 // If we're defining a specialization and the previous definition
11151 // is from an implicit instantiation, don't emit an error
11152 // here; we'll catch this in the general case below.
11153 bool IsExplicitSpecializationAfterInstantiation = false;
11154 if (isExplicitSpecialization) {
11155 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
11156 IsExplicitSpecializationAfterInstantiation =
11157 RD->getTemplateSpecializationKind() !=
11158 TSK_ExplicitSpecialization;
11159 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
11160 IsExplicitSpecializationAfterInstantiation =
11161 ED->getTemplateSpecializationKind() !=
11162 TSK_ExplicitSpecialization;
11163 }
11164
11165 if (!IsExplicitSpecializationAfterInstantiation) {
11166 // A redeclaration in function prototype scope in C isn't
11167 // visible elsewhere, so merely issue a warning.
11168 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
11169 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
11170 else
11171 Diag(NameLoc, diag::err_redefinition) << Name;
11172 Diag(Def->getLocation(), diag::note_previous_definition);
11173 // If this is a redefinition, recover by making this
11174 // struct be anonymous, which will make any later
11175 // references get the previous definition.
11176 Name = nullptr;
11177 Previous.clear();
11178 Invalid = true;
11179 }
11180 } else {
11181 // If the type is currently being defined, complain
11182 // about a nested redefinition.
11183 const TagType *Tag
11184 = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
11185 if (Tag->isBeingDefined()) {
11186 Diag(NameLoc, diag::err_nested_redefinition) << Name;
11187 Diag(PrevTagDecl->getLocation(),
11188 diag::note_previous_definition);
11189 Name = nullptr;
11190 Previous.clear();
11191 Invalid = true;
11192 }
11193 }
11194
11195 // Okay, this is definition of a previously declared or referenced
11196 // tag. We're going to create a new Decl for it.
11197 }
11198
11199 // Okay, we're going to make a redeclaration. If this is some kind
11200 // of reference, make sure we build the redeclaration in the same DC
11201 // as the original, and ignore the current access specifier.
11202 if (TUK == TUK_Friend || TUK == TUK_Reference) {
11203 SearchDC = PrevTagDecl->getDeclContext();
11204 AS = AS_none;
11205 }
11206 }
11207 // If we get here we have (another) forward declaration or we
11208 // have a definition. Just create a new decl.
11209
11210 } else {
11211 // If we get here, this is a definition of a new tag type in a nested
11212 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
11213 // new decl/type. We set PrevDecl to NULL so that the entities
11214 // have distinct types.
11215 Previous.clear();
11216 }
11217 // If we get here, we're going to create a new Decl. If PrevDecl
11218 // is non-NULL, it's a definition of the tag declared by
11219 // PrevDecl. If it's NULL, we have a new definition.
11220
11221
11222 // Otherwise, PrevDecl is not a tag, but was found with tag
11223 // lookup. This is only actually possible in C++, where a few
11224 // things like templates still live in the tag namespace.
11225 } else {
11226 // Use a better diagnostic if an elaborated-type-specifier
11227 // found the wrong kind of type on the first
11228 // (non-redeclaration) lookup.
11229 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
11230 !Previous.isForRedeclaration()) {
11231 unsigned Kind = 0;
11232 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11233 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11234 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11235 Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
11236 Diag(PrevDecl->getLocation(), diag::note_declared_at);
11237 Invalid = true;
11238
11239 // Otherwise, only diagnose if the declaration is in scope.
11240 } else if (!isDeclInScope(PrevDecl, SearchDC, S,
11241 SS.isNotEmpty() || isExplicitSpecialization)) {
11242 // do nothing
11243
11244 // Diagnose implicit declarations introduced by elaborated types.
11245 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
11246 unsigned Kind = 0;
11247 if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
11248 else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
11249 else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
11250 Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
11251 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11252 Invalid = true;
11253
11254 // Otherwise it's a declaration. Call out a particularly common
11255 // case here.
11256 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
11257 unsigned Kind = 0;
11258 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
11259 Diag(NameLoc, diag::err_tag_definition_of_typedef)
11260 << Name << Kind << TND->getUnderlyingType();
11261 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
11262 Invalid = true;
11263
11264 // Otherwise, diagnose.
11265 } else {
11266 // The tag name clashes with something else in the target scope,
11267 // issue an error and recover by making this tag be anonymous.
11268 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
11269 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11270 Name = nullptr;
11271 Invalid = true;
11272 }
11273
11274 // The existing declaration isn't relevant to us; we're in a
11275 // new scope, so clear out the previous declaration.
11276 Previous.clear();
11277 }
11278 }
11279
11280 CreateNewDecl:
11281
11282 TagDecl *PrevDecl = nullptr;
11283 if (Previous.isSingleResult())
11284 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
11285
11286 // If there is an identifier, use the location of the identifier as the
11287 // location of the decl, otherwise use the location of the struct/union
11288 // keyword.
11289 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
11290
11291 // Otherwise, create a new declaration. If there is a previous
11292 // declaration of the same entity, the two will be linked via
11293 // PrevDecl.
11294 TagDecl *New;
11295
11296 bool IsForwardReference = false;
11297 if (Kind == TTK_Enum) {
11298 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11299 // enum X { A, B, C } D; D should chain to X.
11300 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
11301 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
11302 ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
11303 // If this is an undefined enum, warn.
11304 if (TUK != TUK_Definition && !Invalid) {
11305 TagDecl *Def;
11306 if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
11307 cast<EnumDecl>(New)->isFixed()) {
11308 // C++0x: 7.2p2: opaque-enum-declaration.
11309 // Conflicts are diagnosed above. Do nothing.
11310 }
11311 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
11312 Diag(Loc, diag::ext_forward_ref_enum_def)
11313 << New;
11314 Diag(Def->getLocation(), diag::note_previous_definition);
11315 } else {
11316 unsigned DiagID = diag::ext_forward_ref_enum;
11317 if (getLangOpts().MSVCCompat)
11318 DiagID = diag::ext_ms_forward_ref_enum;
11319 else if (getLangOpts().CPlusPlus)
11320 DiagID = diag::err_forward_ref_enum;
11321 Diag(Loc, DiagID);
11322
11323 // If this is a forward-declared reference to an enumeration, make a
11324 // note of it; we won't actually be introducing the declaration into
11325 // the declaration context.
11326 if (TUK == TUK_Reference)
11327 IsForwardReference = true;
11328 }
11329 }
11330
11331 if (EnumUnderlying) {
11332 EnumDecl *ED = cast<EnumDecl>(New);
11333 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
11334 ED->setIntegerTypeSourceInfo(TI);
11335 else
11336 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
11337 ED->setPromotionType(ED->getIntegerType());
11338 }
11339
11340 } else {
11341 // struct/union/class
11342
11343 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
11344 // struct X { int A; } D; D should chain to X.
11345 if (getLangOpts().CPlusPlus) {
11346 // FIXME: Look for a way to use RecordDecl for simple structs.
11347 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11348 cast_or_null<CXXRecordDecl>(PrevDecl));
11349
11350 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
11351 StdBadAlloc = cast<CXXRecordDecl>(New);
11352 } else
11353 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
11354 cast_or_null<RecordDecl>(PrevDecl));
11355 }
11356
11357 // C++11 [dcl.type]p3:
11358 // A type-specifier-seq shall not define a class or enumeration [...].
11359 if (getLangOpts().CPlusPlus && IsTypeSpecifier && TUK == TUK_Definition) {
11360 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
11361 << Context.getTagDeclType(New);
11362 Invalid = true;
11363 }
11364
11365 // Maybe add qualifier info.
11366 if (SS.isNotEmpty()) {
11367 if (SS.isSet()) {
11368 // If this is either a declaration or a definition, check the
11369 // nested-name-specifier against the current context. We don't do this
11370 // for explicit specializations, because they have similar checking
11371 // (with more specific diagnostics) in the call to
11372 // CheckMemberSpecialization, below.
11373 if (!isExplicitSpecialization &&
11374 (TUK == TUK_Definition || TUK == TUK_Declaration) &&
11375 diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
11376 Invalid = true;
11377
11378 New->setQualifierInfo(SS.getWithLocInContext(Context));
11379 if (TemplateParameterLists.size() > 0) {
11380 New->setTemplateParameterListsInfo(Context,
11381 TemplateParameterLists.size(),
11382 TemplateParameterLists.data());
11383 }
11384 }
11385 else
11386 Invalid = true;
11387 }
11388
11389 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
11390 // Add alignment attributes if necessary; these attributes are checked when
11391 // the ASTContext lays out the structure.
11392 //
11393 // It is important for implementing the correct semantics that this
11394 // happen here (in act on tag decl). The #pragma pack stack is
11395 // maintained as a result of parser callbacks which can occur at
11396 // many points during the parsing of a struct declaration (because
11397 // the #pragma tokens are effectively skipped over during the
11398 // parsing of the struct).
11399 if (TUK == TUK_Definition) {
11400 AddAlignmentAttributesForRecord(RD);
11401 AddMsStructLayoutForRecord(RD);
11402 }
11403 }
11404
11405 if (ModulePrivateLoc.isValid()) {
11406 if (isExplicitSpecialization)
11407 Diag(New->getLocation(), diag::err_module_private_specialization)
11408 << 2
11409 << FixItHint::CreateRemoval(ModulePrivateLoc);
11410 // __module_private__ does not apply to local classes. However, we only
11411 // diagnose this as an error when the declaration specifiers are
11412 // freestanding. Here, we just ignore the __module_private__.
11413 else if (!SearchDC->isFunctionOrMethod())
11414 New->setModulePrivate();
11415 }
11416
11417 // If this is a specialization of a member class (of a class template),
11418 // check the specialization.
11419 if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
11420 Invalid = true;
11421
11422 // If we're declaring or defining a tag in function prototype scope in C,
11423 // note that this type can only be used within the function and add it to
11424 // the list of decls to inject into the function definition scope.
11425 if ((Name || Kind == TTK_Enum) &&
11426 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
11427 if (getLangOpts().CPlusPlus) {
11428 // C++ [dcl.fct]p6:
11429 // Types shall not be defined in return or parameter types.
11430 if (TUK == TUK_Definition && !IsTypeSpecifier) {
11431 Diag(Loc, diag::err_type_defined_in_param_type)
11432 << Name;
11433 Invalid = true;
11434 }
11435 } else {
11436 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
11437 }
11438 DeclsInPrototypeScope.push_back(New);
11439 }
11440
11441 if (Invalid)
11442 New->setInvalidDecl();
11443
11444 if (Attr)
11445 ProcessDeclAttributeList(S, New, Attr);
11446
11447 // Set the lexical context. If the tag has a C++ scope specifier, the
11448 // lexical context will be different from the semantic context.
11449 New->setLexicalDeclContext(CurContext);
11450
11451 // Mark this as a friend decl if applicable.
11452 // In Microsoft mode, a friend declaration also acts as a forward
11453 // declaration so we always pass true to setObjectOfFriendDecl to make
11454 // the tag name visible.
11455 if (TUK == TUK_Friend)
11456 New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
11457 getLangOpts().MicrosoftExt);
11458
11459 // Set the access specifier.
11460 if (!Invalid && SearchDC->isRecord())
11461 SetMemberAccessSpecifier(New, PrevDecl, AS);
11462
11463 if (TUK == TUK_Definition)
11464 New->startDefinition();
11465
11466 // If this has an identifier, add it to the scope stack.
11467 if (TUK == TUK_Friend) {
11468 // We might be replacing an existing declaration in the lookup tables;
11469 // if so, borrow its access specifier.
11470 if (PrevDecl)
11471 New->setAccess(PrevDecl->getAccess());
11472
11473 DeclContext *DC = New->getDeclContext()->getRedeclContext();
11474 DC->makeDeclVisibleInContext(New);
11475 if (Name) // can be null along some error paths
11476 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
11477 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
11478 } else if (Name) {
11479 S = getNonFieldDeclScope(S);
11480 PushOnScopeChains(New, S, !IsForwardReference);
11481 if (IsForwardReference)
11482 SearchDC->makeDeclVisibleInContext(New);
11483
11484 } else {
11485 CurContext->addDecl(New);
11486 }
11487
11488 // If this is the C FILE type, notify the AST context.
11489 if (IdentifierInfo *II = New->getIdentifier())
11490 if (!New->isInvalidDecl() &&
11491 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
11492 II->isStr("FILE"))
11493 Context.setFILEDecl(New);
11494
11495 if (PrevDecl)
11496 mergeDeclAttributes(New, PrevDecl);
11497
11498 // If there's a #pragma GCC visibility in scope, set the visibility of this
11499 // record.
11500 AddPushedVisibilityAttribute(New);
11501
11502 OwnedDecl = true;
11503 // In C++, don't return an invalid declaration. We can't recover well from
11504 // the cases where we make the type anonymous.
11505 return (Invalid && getLangOpts().CPlusPlus) ? nullptr : New;
11506 }
11507
ActOnTagStartDefinition(Scope * S,Decl * TagD)11508 void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
11509 AdjustDeclIfTemplate(TagD);
11510 TagDecl *Tag = cast<TagDecl>(TagD);
11511
11512 // Enter the tag context.
11513 PushDeclContext(S, Tag);
11514
11515 ActOnDocumentableDecl(TagD);
11516
11517 // If there's a #pragma GCC visibility in scope, set the visibility of this
11518 // record.
11519 AddPushedVisibilityAttribute(Tag);
11520 }
11521
ActOnObjCContainerStartDefinition(Decl * IDecl)11522 Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
11523 assert(isa<ObjCContainerDecl>(IDecl) &&
11524 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
11525 DeclContext *OCD = cast<DeclContext>(IDecl);
11526 assert(getContainingDC(OCD) == CurContext &&
11527 "The next DeclContext should be lexically contained in the current one.");
11528 CurContext = OCD;
11529 return IDecl;
11530 }
11531
ActOnStartCXXMemberDeclarations(Scope * S,Decl * TagD,SourceLocation FinalLoc,bool IsFinalSpelledSealed,SourceLocation LBraceLoc)11532 void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
11533 SourceLocation FinalLoc,
11534 bool IsFinalSpelledSealed,
11535 SourceLocation LBraceLoc) {
11536 AdjustDeclIfTemplate(TagD);
11537 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
11538
11539 FieldCollector->StartClass();
11540
11541 if (!Record->getIdentifier())
11542 return;
11543
11544 if (FinalLoc.isValid())
11545 Record->addAttr(new (Context)
11546 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
11547
11548 // C++ [class]p2:
11549 // [...] The class-name is also inserted into the scope of the
11550 // class itself; this is known as the injected-class-name. For
11551 // purposes of access checking, the injected-class-name is treated
11552 // as if it were a public member name.
11553 CXXRecordDecl *InjectedClassName
11554 = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
11555 Record->getLocStart(), Record->getLocation(),
11556 Record->getIdentifier(),
11557 /*PrevDecl=*/nullptr,
11558 /*DelayTypeCreation=*/true);
11559 Context.getTypeDeclType(InjectedClassName, Record);
11560 InjectedClassName->setImplicit();
11561 InjectedClassName->setAccess(AS_public);
11562 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
11563 InjectedClassName->setDescribedClassTemplate(Template);
11564 PushOnScopeChains(InjectedClassName, S);
11565 assert(InjectedClassName->isInjectedClassName() &&
11566 "Broken injected-class-name");
11567 }
11568
ActOnTagFinishDefinition(Scope * S,Decl * TagD,SourceLocation RBraceLoc)11569 void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
11570 SourceLocation RBraceLoc) {
11571 AdjustDeclIfTemplate(TagD);
11572 TagDecl *Tag = cast<TagDecl>(TagD);
11573 Tag->setRBraceLoc(RBraceLoc);
11574
11575 // Make sure we "complete" the definition even it is invalid.
11576 if (Tag->isBeingDefined()) {
11577 assert(Tag->isInvalidDecl() && "We should already have completed it");
11578 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11579 RD->completeDefinition();
11580 }
11581
11582 if (isa<CXXRecordDecl>(Tag))
11583 FieldCollector->FinishClass();
11584
11585 // Exit this scope of this tag's definition.
11586 PopDeclContext();
11587
11588 if (getCurLexicalContext()->isObjCContainer() &&
11589 Tag->getDeclContext()->isFileContext())
11590 Tag->setTopLevelDeclInObjCContainer();
11591
11592 // Notify the consumer that we've defined a tag.
11593 if (!Tag->isInvalidDecl())
11594 Consumer.HandleTagDeclDefinition(Tag);
11595 }
11596
ActOnObjCContainerFinishDefinition()11597 void Sema::ActOnObjCContainerFinishDefinition() {
11598 // Exit this scope of this interface definition.
11599 PopDeclContext();
11600 }
11601
ActOnObjCTemporaryExitContainerContext(DeclContext * DC)11602 void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
11603 assert(DC == CurContext && "Mismatch of container contexts");
11604 OriginalLexicalContext = DC;
11605 ActOnObjCContainerFinishDefinition();
11606 }
11607
ActOnObjCReenterContainerContext(DeclContext * DC)11608 void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
11609 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
11610 OriginalLexicalContext = nullptr;
11611 }
11612
ActOnTagDefinitionError(Scope * S,Decl * TagD)11613 void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
11614 AdjustDeclIfTemplate(TagD);
11615 TagDecl *Tag = cast<TagDecl>(TagD);
11616 Tag->setInvalidDecl();
11617
11618 // Make sure we "complete" the definition even it is invalid.
11619 if (Tag->isBeingDefined()) {
11620 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11621 RD->completeDefinition();
11622 }
11623
11624 // We're undoing ActOnTagStartDefinition here, not
11625 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11626 // the FieldCollector.
11627
11628 PopDeclContext();
11629 }
11630
11631 // Note that FieldName may be null for anonymous bitfields.
VerifyBitField(SourceLocation FieldLoc,IdentifierInfo * FieldName,QualType FieldTy,bool IsMsStruct,Expr * BitWidth,bool * ZeroWidth)11632 ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11633 IdentifierInfo *FieldName,
11634 QualType FieldTy, bool IsMsStruct,
11635 Expr *BitWidth, bool *ZeroWidth) {
11636 // Default to true; that shouldn't confuse checks for emptiness
11637 if (ZeroWidth)
11638 *ZeroWidth = true;
11639
11640 // C99 6.7.2.1p4 - verify the field type.
11641 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11642 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11643 // Handle incomplete types with specific error.
11644 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11645 return ExprError();
11646 if (FieldName)
11647 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11648 << FieldName << FieldTy << BitWidth->getSourceRange();
11649 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11650 << FieldTy << BitWidth->getSourceRange();
11651 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11652 UPPC_BitFieldWidth))
11653 return ExprError();
11654
11655 // If the bit-width is type- or value-dependent, don't try to check
11656 // it now.
11657 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11658 return BitWidth;
11659
11660 llvm::APSInt Value;
11661 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11662 if (ICE.isInvalid())
11663 return ICE;
11664 BitWidth = ICE.get();
11665
11666 if (Value != 0 && ZeroWidth)
11667 *ZeroWidth = false;
11668
11669 // Zero-width bitfield is ok for anonymous field.
11670 if (Value == 0 && FieldName)
11671 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11672
11673 if (Value.isSigned() && Value.isNegative()) {
11674 if (FieldName)
11675 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11676 << FieldName << Value.toString(10);
11677 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11678 << Value.toString(10);
11679 }
11680
11681 if (!FieldTy->isDependentType()) {
11682 uint64_t TypeSize = Context.getTypeSize(FieldTy);
11683 if (Value.getZExtValue() > TypeSize) {
11684 if (!getLangOpts().CPlusPlus || IsMsStruct ||
11685 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
11686 if (FieldName)
11687 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11688 << FieldName << (unsigned)Value.getZExtValue()
11689 << (unsigned)TypeSize;
11690
11691 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11692 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11693 }
11694
11695 if (FieldName)
11696 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11697 << FieldName << (unsigned)Value.getZExtValue()
11698 << (unsigned)TypeSize;
11699 else
11700 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11701 << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11702 }
11703 }
11704
11705 return BitWidth;
11706 }
11707
11708 /// ActOnField - Each field of a C struct/union is passed into this in order
11709 /// to create a FieldDecl object for it.
ActOnField(Scope * S,Decl * TagD,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth)11710 Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11711 Declarator &D, Expr *BitfieldWidth) {
11712 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11713 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11714 /*InitStyle=*/ICIS_NoInit, AS_public);
11715 return Res;
11716 }
11717
11718 /// HandleField - Analyze a field of a C struct or a C++ data member.
11719 ///
HandleField(Scope * S,RecordDecl * Record,SourceLocation DeclStart,Declarator & D,Expr * BitWidth,InClassInitStyle InitStyle,AccessSpecifier AS)11720 FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11721 SourceLocation DeclStart,
11722 Declarator &D, Expr *BitWidth,
11723 InClassInitStyle InitStyle,
11724 AccessSpecifier AS) {
11725 IdentifierInfo *II = D.getIdentifier();
11726 SourceLocation Loc = DeclStart;
11727 if (II) Loc = D.getIdentifierLoc();
11728
11729 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11730 QualType T = TInfo->getType();
11731 if (getLangOpts().CPlusPlus) {
11732 CheckExtraCXXDefaultArguments(D);
11733
11734 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11735 UPPC_DataMemberType)) {
11736 D.setInvalidType();
11737 T = Context.IntTy;
11738 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11739 }
11740 }
11741
11742 // TR 18037 does not allow fields to be declared with address spaces.
11743 if (T.getQualifiers().hasAddressSpace()) {
11744 Diag(Loc, diag::err_field_with_address_space);
11745 D.setInvalidType();
11746 }
11747
11748 // OpenCL 1.2 spec, s6.9 r:
11749 // The event type cannot be used to declare a structure or union field.
11750 if (LangOpts.OpenCL && T->isEventT()) {
11751 Diag(Loc, diag::err_event_t_struct_field);
11752 D.setInvalidType();
11753 }
11754
11755 DiagnoseFunctionSpecifiers(D.getDeclSpec());
11756
11757 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11758 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11759 diag::err_invalid_thread)
11760 << DeclSpec::getSpecifierName(TSCS);
11761
11762 // Check to see if this name was declared as a member previously
11763 NamedDecl *PrevDecl = nullptr;
11764 LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11765 LookupName(Previous, S);
11766 switch (Previous.getResultKind()) {
11767 case LookupResult::Found:
11768 case LookupResult::FoundUnresolvedValue:
11769 PrevDecl = Previous.getAsSingle<NamedDecl>();
11770 break;
11771
11772 case LookupResult::FoundOverloaded:
11773 PrevDecl = Previous.getRepresentativeDecl();
11774 break;
11775
11776 case LookupResult::NotFound:
11777 case LookupResult::NotFoundInCurrentInstantiation:
11778 case LookupResult::Ambiguous:
11779 break;
11780 }
11781 Previous.suppressDiagnostics();
11782
11783 if (PrevDecl && PrevDecl->isTemplateParameter()) {
11784 // Maybe we will complain about the shadowed template parameter.
11785 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11786 // Just pretend that we didn't see the previous declaration.
11787 PrevDecl = nullptr;
11788 }
11789
11790 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11791 PrevDecl = nullptr;
11792
11793 bool Mutable
11794 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11795 SourceLocation TSSL = D.getLocStart();
11796 FieldDecl *NewFD
11797 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11798 TSSL, AS, PrevDecl, &D);
11799
11800 if (NewFD->isInvalidDecl())
11801 Record->setInvalidDecl();
11802
11803 if (D.getDeclSpec().isModulePrivateSpecified())
11804 NewFD->setModulePrivate();
11805
11806 if (NewFD->isInvalidDecl() && PrevDecl) {
11807 // Don't introduce NewFD into scope; there's already something
11808 // with the same name in the same scope.
11809 } else if (II) {
11810 PushOnScopeChains(NewFD, S);
11811 } else
11812 Record->addDecl(NewFD);
11813
11814 return NewFD;
11815 }
11816
11817 /// \brief Build a new FieldDecl and check its well-formedness.
11818 ///
11819 /// This routine builds a new FieldDecl given the fields name, type,
11820 /// record, etc. \p PrevDecl should refer to any previous declaration
11821 /// with the same name and in the same scope as the field to be
11822 /// created.
11823 ///
11824 /// \returns a new FieldDecl.
11825 ///
11826 /// \todo The Declarator argument is a hack. It will be removed once
CheckFieldDecl(DeclarationName Name,QualType T,TypeSourceInfo * TInfo,RecordDecl * Record,SourceLocation Loc,bool Mutable,Expr * BitWidth,InClassInitStyle InitStyle,SourceLocation TSSL,AccessSpecifier AS,NamedDecl * PrevDecl,Declarator * D)11827 FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11828 TypeSourceInfo *TInfo,
11829 RecordDecl *Record, SourceLocation Loc,
11830 bool Mutable, Expr *BitWidth,
11831 InClassInitStyle InitStyle,
11832 SourceLocation TSSL,
11833 AccessSpecifier AS, NamedDecl *PrevDecl,
11834 Declarator *D) {
11835 IdentifierInfo *II = Name.getAsIdentifierInfo();
11836 bool InvalidDecl = false;
11837 if (D) InvalidDecl = D->isInvalidType();
11838
11839 // If we receive a broken type, recover by assuming 'int' and
11840 // marking this declaration as invalid.
11841 if (T.isNull()) {
11842 InvalidDecl = true;
11843 T = Context.IntTy;
11844 }
11845
11846 QualType EltTy = Context.getBaseElementType(T);
11847 if (!EltTy->isDependentType()) {
11848 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11849 // Fields of incomplete type force their record to be invalid.
11850 Record->setInvalidDecl();
11851 InvalidDecl = true;
11852 } else {
11853 NamedDecl *Def;
11854 EltTy->isIncompleteType(&Def);
11855 if (Def && Def->isInvalidDecl()) {
11856 Record->setInvalidDecl();
11857 InvalidDecl = true;
11858 }
11859 }
11860 }
11861
11862 // OpenCL v1.2 s6.9.c: bitfields are not supported.
11863 if (BitWidth && getLangOpts().OpenCL) {
11864 Diag(Loc, diag::err_opencl_bitfields);
11865 InvalidDecl = true;
11866 }
11867
11868 // C99 6.7.2.1p8: A member of a structure or union may have any type other
11869 // than a variably modified type.
11870 if (!InvalidDecl && T->isVariablyModifiedType()) {
11871 bool SizeIsNegative;
11872 llvm::APSInt Oversized;
11873
11874 TypeSourceInfo *FixedTInfo =
11875 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11876 SizeIsNegative,
11877 Oversized);
11878 if (FixedTInfo) {
11879 Diag(Loc, diag::warn_illegal_constant_array_size);
11880 TInfo = FixedTInfo;
11881 T = FixedTInfo->getType();
11882 } else {
11883 if (SizeIsNegative)
11884 Diag(Loc, diag::err_typecheck_negative_array_size);
11885 else if (Oversized.getBoolValue())
11886 Diag(Loc, diag::err_array_too_large)
11887 << Oversized.toString(10);
11888 else
11889 Diag(Loc, diag::err_typecheck_field_variable_size);
11890 InvalidDecl = true;
11891 }
11892 }
11893
11894 // Fields can not have abstract class types
11895 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11896 diag::err_abstract_type_in_decl,
11897 AbstractFieldType))
11898 InvalidDecl = true;
11899
11900 bool ZeroWidth = false;
11901 // If this is declared as a bit-field, check the bit-field.
11902 if (!InvalidDecl && BitWidth) {
11903 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11904 &ZeroWidth).get();
11905 if (!BitWidth) {
11906 InvalidDecl = true;
11907 BitWidth = nullptr;
11908 ZeroWidth = false;
11909 }
11910 }
11911
11912 // Check that 'mutable' is consistent with the type of the declaration.
11913 if (!InvalidDecl && Mutable) {
11914 unsigned DiagID = 0;
11915 if (T->isReferenceType())
11916 DiagID = diag::err_mutable_reference;
11917 else if (T.isConstQualified())
11918 DiagID = diag::err_mutable_const;
11919
11920 if (DiagID) {
11921 SourceLocation ErrLoc = Loc;
11922 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11923 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11924 Diag(ErrLoc, DiagID);
11925 Mutable = false;
11926 InvalidDecl = true;
11927 }
11928 }
11929
11930 // C++11 [class.union]p8 (DR1460):
11931 // At most one variant member of a union may have a
11932 // brace-or-equal-initializer.
11933 if (InitStyle != ICIS_NoInit)
11934 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
11935
11936 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11937 BitWidth, Mutable, InitStyle);
11938 if (InvalidDecl)
11939 NewFD->setInvalidDecl();
11940
11941 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11942 Diag(Loc, diag::err_duplicate_member) << II;
11943 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11944 NewFD->setInvalidDecl();
11945 }
11946
11947 if (!InvalidDecl && getLangOpts().CPlusPlus) {
11948 if (Record->isUnion()) {
11949 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11950 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11951 if (RDecl->getDefinition()) {
11952 // C++ [class.union]p1: An object of a class with a non-trivial
11953 // constructor, a non-trivial copy constructor, a non-trivial
11954 // destructor, or a non-trivial copy assignment operator
11955 // cannot be a member of a union, nor can an array of such
11956 // objects.
11957 if (CheckNontrivialField(NewFD))
11958 NewFD->setInvalidDecl();
11959 }
11960 }
11961
11962 // C++ [class.union]p1: If a union contains a member of reference type,
11963 // the program is ill-formed, except when compiling with MSVC extensions
11964 // enabled.
11965 if (EltTy->isReferenceType()) {
11966 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11967 diag::ext_union_member_of_reference_type :
11968 diag::err_union_member_of_reference_type)
11969 << NewFD->getDeclName() << EltTy;
11970 if (!getLangOpts().MicrosoftExt)
11971 NewFD->setInvalidDecl();
11972 }
11973 }
11974 }
11975
11976 // FIXME: We need to pass in the attributes given an AST
11977 // representation, not a parser representation.
11978 if (D) {
11979 // FIXME: The current scope is almost... but not entirely... correct here.
11980 ProcessDeclAttributes(getCurScope(), NewFD, *D);
11981
11982 if (NewFD->hasAttrs())
11983 CheckAlignasUnderalignment(NewFD);
11984 }
11985
11986 // In auto-retain/release, infer strong retension for fields of
11987 // retainable type.
11988 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11989 NewFD->setInvalidDecl();
11990
11991 if (T.isObjCGCWeak())
11992 Diag(Loc, diag::warn_attribute_weak_on_field);
11993
11994 NewFD->setAccess(AS);
11995 return NewFD;
11996 }
11997
CheckNontrivialField(FieldDecl * FD)11998 bool Sema::CheckNontrivialField(FieldDecl *FD) {
11999 assert(FD);
12000 assert(getLangOpts().CPlusPlus && "valid check only for C++");
12001
12002 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
12003 return false;
12004
12005 QualType EltTy = Context.getBaseElementType(FD->getType());
12006 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
12007 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
12008 if (RDecl->getDefinition()) {
12009 // We check for copy constructors before constructors
12010 // because otherwise we'll never get complaints about
12011 // copy constructors.
12012
12013 CXXSpecialMember member = CXXInvalid;
12014 // We're required to check for any non-trivial constructors. Since the
12015 // implicit default constructor is suppressed if there are any
12016 // user-declared constructors, we just need to check that there is a
12017 // trivial default constructor and a trivial copy constructor. (We don't
12018 // worry about move constructors here, since this is a C++98 check.)
12019 if (RDecl->hasNonTrivialCopyConstructor())
12020 member = CXXCopyConstructor;
12021 else if (!RDecl->hasTrivialDefaultConstructor())
12022 member = CXXDefaultConstructor;
12023 else if (RDecl->hasNonTrivialCopyAssignment())
12024 member = CXXCopyAssignment;
12025 else if (RDecl->hasNonTrivialDestructor())
12026 member = CXXDestructor;
12027
12028 if (member != CXXInvalid) {
12029 if (!getLangOpts().CPlusPlus11 &&
12030 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
12031 // Objective-C++ ARC: it is an error to have a non-trivial field of
12032 // a union. However, system headers in Objective-C programs
12033 // occasionally have Objective-C lifetime objects within unions,
12034 // and rather than cause the program to fail, we make those
12035 // members unavailable.
12036 SourceLocation Loc = FD->getLocation();
12037 if (getSourceManager().isInSystemHeader(Loc)) {
12038 if (!FD->hasAttr<UnavailableAttr>())
12039 FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12040 "this system field has retaining ownership",
12041 Loc));
12042 return false;
12043 }
12044 }
12045
12046 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
12047 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
12048 diag::err_illegal_union_or_anon_struct_member)
12049 << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
12050 DiagnoseNontrivial(RDecl, member);
12051 return !getLangOpts().CPlusPlus11;
12052 }
12053 }
12054 }
12055
12056 return false;
12057 }
12058
12059 /// TranslateIvarVisibility - Translate visibility from a token ID to an
12060 /// AST enum value.
12061 static ObjCIvarDecl::AccessControl
TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility)12062 TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
12063 switch (ivarVisibility) {
12064 default: llvm_unreachable("Unknown visitibility kind");
12065 case tok::objc_private: return ObjCIvarDecl::Private;
12066 case tok::objc_public: return ObjCIvarDecl::Public;
12067 case tok::objc_protected: return ObjCIvarDecl::Protected;
12068 case tok::objc_package: return ObjCIvarDecl::Package;
12069 }
12070 }
12071
12072 /// ActOnIvar - Each ivar field of an objective-c class is passed into this
12073 /// in order to create an IvarDecl object for it.
ActOnIvar(Scope * S,SourceLocation DeclStart,Declarator & D,Expr * BitfieldWidth,tok::ObjCKeywordKind Visibility)12074 Decl *Sema::ActOnIvar(Scope *S,
12075 SourceLocation DeclStart,
12076 Declarator &D, Expr *BitfieldWidth,
12077 tok::ObjCKeywordKind Visibility) {
12078
12079 IdentifierInfo *II = D.getIdentifier();
12080 Expr *BitWidth = (Expr*)BitfieldWidth;
12081 SourceLocation Loc = DeclStart;
12082 if (II) Loc = D.getIdentifierLoc();
12083
12084 // FIXME: Unnamed fields can be handled in various different ways, for
12085 // example, unnamed unions inject all members into the struct namespace!
12086
12087 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12088 QualType T = TInfo->getType();
12089
12090 if (BitWidth) {
12091 // 6.7.2.1p3, 6.7.2.1p4
12092 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
12093 if (!BitWidth)
12094 D.setInvalidType();
12095 } else {
12096 // Not a bitfield.
12097
12098 // validate II.
12099
12100 }
12101 if (T->isReferenceType()) {
12102 Diag(Loc, diag::err_ivar_reference_type);
12103 D.setInvalidType();
12104 }
12105 // C99 6.7.2.1p8: A member of a structure or union may have any type other
12106 // than a variably modified type.
12107 else if (T->isVariablyModifiedType()) {
12108 Diag(Loc, diag::err_typecheck_ivar_variable_size);
12109 D.setInvalidType();
12110 }
12111
12112 // Get the visibility (access control) for this ivar.
12113 ObjCIvarDecl::AccessControl ac =
12114 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
12115 : ObjCIvarDecl::None;
12116 // Must set ivar's DeclContext to its enclosing interface.
12117 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
12118 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
12119 return nullptr;
12120 ObjCContainerDecl *EnclosingContext;
12121 if (ObjCImplementationDecl *IMPDecl =
12122 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12123 if (LangOpts.ObjCRuntime.isFragile()) {
12124 // Case of ivar declared in an implementation. Context is that of its class.
12125 EnclosingContext = IMPDecl->getClassInterface();
12126 assert(EnclosingContext && "Implementation has no class interface!");
12127 }
12128 else
12129 EnclosingContext = EnclosingDecl;
12130 } else {
12131 if (ObjCCategoryDecl *CDecl =
12132 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12133 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
12134 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
12135 return nullptr;
12136 }
12137 }
12138 EnclosingContext = EnclosingDecl;
12139 }
12140
12141 // Construct the decl.
12142 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
12143 DeclStart, Loc, II, T,
12144 TInfo, ac, (Expr *)BitfieldWidth);
12145
12146 if (II) {
12147 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
12148 ForRedeclaration);
12149 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
12150 && !isa<TagDecl>(PrevDecl)) {
12151 Diag(Loc, diag::err_duplicate_member) << II;
12152 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12153 NewID->setInvalidDecl();
12154 }
12155 }
12156
12157 // Process attributes attached to the ivar.
12158 ProcessDeclAttributes(S, NewID, D);
12159
12160 if (D.isInvalidType())
12161 NewID->setInvalidDecl();
12162
12163 // In ARC, infer 'retaining' for ivars of retainable type.
12164 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
12165 NewID->setInvalidDecl();
12166
12167 if (D.getDeclSpec().isModulePrivateSpecified())
12168 NewID->setModulePrivate();
12169
12170 if (II) {
12171 // FIXME: When interfaces are DeclContexts, we'll need to add
12172 // these to the interface.
12173 S->AddDecl(NewID);
12174 IdResolver.AddDecl(NewID);
12175 }
12176
12177 if (LangOpts.ObjCRuntime.isNonFragile() &&
12178 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
12179 Diag(Loc, diag::warn_ivars_in_interface);
12180
12181 return NewID;
12182 }
12183
12184 /// ActOnLastBitfield - This routine handles synthesized bitfields rules for
12185 /// class and class extensions. For every class \@interface and class
12186 /// extension \@interface, if the last ivar is a bitfield of any type,
12187 /// then add an implicit `char :0` ivar to the end of that interface.
ActOnLastBitfield(SourceLocation DeclLoc,SmallVectorImpl<Decl * > & AllIvarDecls)12188 void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
12189 SmallVectorImpl<Decl *> &AllIvarDecls) {
12190 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
12191 return;
12192
12193 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
12194 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
12195
12196 if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
12197 return;
12198 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
12199 if (!ID) {
12200 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
12201 if (!CD->IsClassExtension())
12202 return;
12203 }
12204 // No need to add this to end of @implementation.
12205 else
12206 return;
12207 }
12208 // All conditions are met. Add a new bitfield to the tail end of ivars.
12209 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
12210 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
12211
12212 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
12213 DeclLoc, DeclLoc, nullptr,
12214 Context.CharTy,
12215 Context.getTrivialTypeSourceInfo(Context.CharTy,
12216 DeclLoc),
12217 ObjCIvarDecl::Private, BW,
12218 true);
12219 AllIvarDecls.push_back(Ivar);
12220 }
12221
ActOnFields(Scope * S,SourceLocation RecLoc,Decl * EnclosingDecl,ArrayRef<Decl * > Fields,SourceLocation LBrac,SourceLocation RBrac,AttributeList * Attr)12222 void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
12223 ArrayRef<Decl *> Fields, SourceLocation LBrac,
12224 SourceLocation RBrac, AttributeList *Attr) {
12225 assert(EnclosingDecl && "missing record or interface decl");
12226
12227 // If this is an Objective-C @implementation or category and we have
12228 // new fields here we should reset the layout of the interface since
12229 // it will now change.
12230 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
12231 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
12232 switch (DC->getKind()) {
12233 default: break;
12234 case Decl::ObjCCategory:
12235 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
12236 break;
12237 case Decl::ObjCImplementation:
12238 Context.
12239 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
12240 break;
12241 }
12242 }
12243
12244 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
12245
12246 // Start counting up the number of named members; make sure to include
12247 // members of anonymous structs and unions in the total.
12248 unsigned NumNamedMembers = 0;
12249 if (Record) {
12250 for (const auto *I : Record->decls()) {
12251 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
12252 if (IFD->getDeclName())
12253 ++NumNamedMembers;
12254 }
12255 }
12256
12257 // Verify that all the fields are okay.
12258 SmallVector<FieldDecl*, 32> RecFields;
12259
12260 bool ARCErrReported = false;
12261 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
12262 i != end; ++i) {
12263 FieldDecl *FD = cast<FieldDecl>(*i);
12264
12265 // Get the type for the field.
12266 const Type *FDTy = FD->getType().getTypePtr();
12267
12268 if (!FD->isAnonymousStructOrUnion()) {
12269 // Remember all fields written by the user.
12270 RecFields.push_back(FD);
12271 }
12272
12273 // If the field is already invalid for some reason, don't emit more
12274 // diagnostics about it.
12275 if (FD->isInvalidDecl()) {
12276 EnclosingDecl->setInvalidDecl();
12277 continue;
12278 }
12279
12280 // C99 6.7.2.1p2:
12281 // A structure or union shall not contain a member with
12282 // incomplete or function type (hence, a structure shall not
12283 // contain an instance of itself, but may contain a pointer to
12284 // an instance of itself), except that the last member of a
12285 // structure with more than one named member may have incomplete
12286 // array type; such a structure (and any union containing,
12287 // possibly recursively, a member that is such a structure)
12288 // shall not be a member of a structure or an element of an
12289 // array.
12290 if (FDTy->isFunctionType()) {
12291 // Field declared as a function.
12292 Diag(FD->getLocation(), diag::err_field_declared_as_function)
12293 << FD->getDeclName();
12294 FD->setInvalidDecl();
12295 EnclosingDecl->setInvalidDecl();
12296 continue;
12297 } else if (FDTy->isIncompleteArrayType() && Record &&
12298 ((i + 1 == Fields.end() && !Record->isUnion()) ||
12299 ((getLangOpts().MicrosoftExt ||
12300 getLangOpts().CPlusPlus) &&
12301 (i + 1 == Fields.end() || Record->isUnion())))) {
12302 // Flexible array member.
12303 // Microsoft and g++ is more permissive regarding flexible array.
12304 // It will accept flexible array in union and also
12305 // as the sole element of a struct/class.
12306 unsigned DiagID = 0;
12307 if (Record->isUnion())
12308 DiagID = getLangOpts().MicrosoftExt
12309 ? diag::ext_flexible_array_union_ms
12310 : getLangOpts().CPlusPlus
12311 ? diag::ext_flexible_array_union_gnu
12312 : diag::err_flexible_array_union;
12313 else if (Fields.size() == 1)
12314 DiagID = getLangOpts().MicrosoftExt
12315 ? diag::ext_flexible_array_empty_aggregate_ms
12316 : getLangOpts().CPlusPlus
12317 ? diag::ext_flexible_array_empty_aggregate_gnu
12318 : NumNamedMembers < 1
12319 ? diag::err_flexible_array_empty_aggregate
12320 : 0;
12321
12322 if (DiagID)
12323 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
12324 << Record->getTagKind();
12325 // While the layout of types that contain virtual bases is not specified
12326 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
12327 // virtual bases after the derived members. This would make a flexible
12328 // array member declared at the end of an object not adjacent to the end
12329 // of the type.
12330 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Record))
12331 if (RD->getNumVBases() != 0)
12332 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
12333 << FD->getDeclName() << Record->getTagKind();
12334 if (!getLangOpts().C99)
12335 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
12336 << FD->getDeclName() << Record->getTagKind();
12337
12338 // If the element type has a non-trivial destructor, we would not
12339 // implicitly destroy the elements, so disallow it for now.
12340 //
12341 // FIXME: GCC allows this. We should probably either implicitly delete
12342 // the destructor of the containing class, or just allow this.
12343 QualType BaseElem = Context.getBaseElementType(FD->getType());
12344 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
12345 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
12346 << FD->getDeclName() << FD->getType();
12347 FD->setInvalidDecl();
12348 EnclosingDecl->setInvalidDecl();
12349 continue;
12350 }
12351 // Okay, we have a legal flexible array member at the end of the struct.
12352 if (Record)
12353 Record->setHasFlexibleArrayMember(true);
12354 } else if (!FDTy->isDependentType() &&
12355 RequireCompleteType(FD->getLocation(), FD->getType(),
12356 diag::err_field_incomplete)) {
12357 // Incomplete type
12358 FD->setInvalidDecl();
12359 EnclosingDecl->setInvalidDecl();
12360 continue;
12361 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
12362 if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
12363 // If this is a member of a union, then entire union becomes "flexible".
12364 if (Record && Record->isUnion()) {
12365 Record->setHasFlexibleArrayMember(true);
12366 } else {
12367 // If this is a struct/class and this is not the last element, reject
12368 // it. Note that GCC supports variable sized arrays in the middle of
12369 // structures.
12370 if (i + 1 != Fields.end())
12371 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
12372 << FD->getDeclName() << FD->getType();
12373 else {
12374 // We support flexible arrays at the end of structs in
12375 // other structs as an extension.
12376 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
12377 << FD->getDeclName();
12378 if (Record)
12379 Record->setHasFlexibleArrayMember(true);
12380 }
12381 }
12382 }
12383 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
12384 RequireNonAbstractType(FD->getLocation(), FD->getType(),
12385 diag::err_abstract_type_in_decl,
12386 AbstractIvarType)) {
12387 // Ivars can not have abstract class types
12388 FD->setInvalidDecl();
12389 }
12390 if (Record && FDTTy->getDecl()->hasObjectMember())
12391 Record->setHasObjectMember(true);
12392 if (Record && FDTTy->getDecl()->hasVolatileMember())
12393 Record->setHasVolatileMember(true);
12394 } else if (FDTy->isObjCObjectType()) {
12395 /// A field cannot be an Objective-c object
12396 Diag(FD->getLocation(), diag::err_statically_allocated_object)
12397 << FixItHint::CreateInsertion(FD->getLocation(), "*");
12398 QualType T = Context.getObjCObjectPointerType(FD->getType());
12399 FD->setType(T);
12400 } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
12401 (!getLangOpts().CPlusPlus || Record->isUnion())) {
12402 // It's an error in ARC if a field has lifetime.
12403 // We don't want to report this in a system header, though,
12404 // so we just make the field unavailable.
12405 // FIXME: that's really not sufficient; we need to make the type
12406 // itself invalid to, say, initialize or copy.
12407 QualType T = FD->getType();
12408 Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
12409 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
12410 SourceLocation loc = FD->getLocation();
12411 if (getSourceManager().isInSystemHeader(loc)) {
12412 if (!FD->hasAttr<UnavailableAttr>()) {
12413 FD->addAttr(UnavailableAttr::CreateImplicit(Context,
12414 "this system field has retaining ownership",
12415 loc));
12416 }
12417 } else {
12418 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
12419 << T->isBlockPointerType() << Record->getTagKind();
12420 }
12421 ARCErrReported = true;
12422 }
12423 } else if (getLangOpts().ObjC1 &&
12424 getLangOpts().getGC() != LangOptions::NonGC &&
12425 Record && !Record->hasObjectMember()) {
12426 if (FD->getType()->isObjCObjectPointerType() ||
12427 FD->getType().isObjCGCStrong())
12428 Record->setHasObjectMember(true);
12429 else if (Context.getAsArrayType(FD->getType())) {
12430 QualType BaseType = Context.getBaseElementType(FD->getType());
12431 if (BaseType->isRecordType() &&
12432 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
12433 Record->setHasObjectMember(true);
12434 else if (BaseType->isObjCObjectPointerType() ||
12435 BaseType.isObjCGCStrong())
12436 Record->setHasObjectMember(true);
12437 }
12438 }
12439 if (Record && FD->getType().isVolatileQualified())
12440 Record->setHasVolatileMember(true);
12441 // Keep track of the number of named members.
12442 if (FD->getIdentifier())
12443 ++NumNamedMembers;
12444 }
12445
12446 // Okay, we successfully defined 'Record'.
12447 if (Record) {
12448 bool Completed = false;
12449 if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
12450 if (!CXXRecord->isInvalidDecl()) {
12451 // Set access bits correctly on the directly-declared conversions.
12452 for (CXXRecordDecl::conversion_iterator
12453 I = CXXRecord->conversion_begin(),
12454 E = CXXRecord->conversion_end(); I != E; ++I)
12455 I.setAccess((*I)->getAccess());
12456
12457 if (!CXXRecord->isDependentType()) {
12458 if (CXXRecord->hasUserDeclaredDestructor()) {
12459 // Adjust user-defined destructor exception spec.
12460 if (getLangOpts().CPlusPlus11)
12461 AdjustDestructorExceptionSpec(CXXRecord,
12462 CXXRecord->getDestructor());
12463 }
12464
12465 // Add any implicitly-declared members to this class.
12466 AddImplicitlyDeclaredMembersToClass(CXXRecord);
12467
12468 // If we have virtual base classes, we may end up finding multiple
12469 // final overriders for a given virtual function. Check for this
12470 // problem now.
12471 if (CXXRecord->getNumVBases()) {
12472 CXXFinalOverriderMap FinalOverriders;
12473 CXXRecord->getFinalOverriders(FinalOverriders);
12474
12475 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
12476 MEnd = FinalOverriders.end();
12477 M != MEnd; ++M) {
12478 for (OverridingMethods::iterator SO = M->second.begin(),
12479 SOEnd = M->second.end();
12480 SO != SOEnd; ++SO) {
12481 assert(SO->second.size() > 0 &&
12482 "Virtual function without overridding functions?");
12483 if (SO->second.size() == 1)
12484 continue;
12485
12486 // C++ [class.virtual]p2:
12487 // In a derived class, if a virtual member function of a base
12488 // class subobject has more than one final overrider the
12489 // program is ill-formed.
12490 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
12491 << (const NamedDecl *)M->first << Record;
12492 Diag(M->first->getLocation(),
12493 diag::note_overridden_virtual_function);
12494 for (OverridingMethods::overriding_iterator
12495 OM = SO->second.begin(),
12496 OMEnd = SO->second.end();
12497 OM != OMEnd; ++OM)
12498 Diag(OM->Method->getLocation(), diag::note_final_overrider)
12499 << (const NamedDecl *)M->first << OM->Method->getParent();
12500
12501 Record->setInvalidDecl();
12502 }
12503 }
12504 CXXRecord->completeDefinition(&FinalOverriders);
12505 Completed = true;
12506 }
12507 }
12508 }
12509 }
12510
12511 if (!Completed)
12512 Record->completeDefinition();
12513
12514 if (Record->hasAttrs()) {
12515 CheckAlignasUnderalignment(Record);
12516
12517 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
12518 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
12519 IA->getRange(), IA->getBestCase(),
12520 IA->getSemanticSpelling());
12521 }
12522
12523 // Check if the structure/union declaration is a type that can have zero
12524 // size in C. For C this is a language extension, for C++ it may cause
12525 // compatibility problems.
12526 bool CheckForZeroSize;
12527 if (!getLangOpts().CPlusPlus) {
12528 CheckForZeroSize = true;
12529 } else {
12530 // For C++ filter out types that cannot be referenced in C code.
12531 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
12532 CheckForZeroSize =
12533 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
12534 !CXXRecord->isDependentType() &&
12535 CXXRecord->isCLike();
12536 }
12537 if (CheckForZeroSize) {
12538 bool ZeroSize = true;
12539 bool IsEmpty = true;
12540 unsigned NonBitFields = 0;
12541 for (RecordDecl::field_iterator I = Record->field_begin(),
12542 E = Record->field_end();
12543 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
12544 IsEmpty = false;
12545 if (I->isUnnamedBitfield()) {
12546 if (I->getBitWidthValue(Context) > 0)
12547 ZeroSize = false;
12548 } else {
12549 ++NonBitFields;
12550 QualType FieldType = I->getType();
12551 if (FieldType->isIncompleteType() ||
12552 !Context.getTypeSizeInChars(FieldType).isZero())
12553 ZeroSize = false;
12554 }
12555 }
12556
12557 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
12558 // allowed in C++, but warn if its declaration is inside
12559 // extern "C" block.
12560 if (ZeroSize) {
12561 Diag(RecLoc, getLangOpts().CPlusPlus ?
12562 diag::warn_zero_size_struct_union_in_extern_c :
12563 diag::warn_zero_size_struct_union_compat)
12564 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
12565 }
12566
12567 // Structs without named members are extension in C (C99 6.7.2.1p7),
12568 // but are accepted by GCC.
12569 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
12570 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
12571 diag::ext_no_named_members_in_struct_union)
12572 << Record->isUnion();
12573 }
12574 }
12575 } else {
12576 ObjCIvarDecl **ClsFields =
12577 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
12578 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
12579 ID->setEndOfDefinitionLoc(RBrac);
12580 // Add ivar's to class's DeclContext.
12581 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12582 ClsFields[i]->setLexicalDeclContext(ID);
12583 ID->addDecl(ClsFields[i]);
12584 }
12585 // Must enforce the rule that ivars in the base classes may not be
12586 // duplicates.
12587 if (ID->getSuperClass())
12588 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
12589 } else if (ObjCImplementationDecl *IMPDecl =
12590 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
12591 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
12592 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
12593 // Ivar declared in @implementation never belongs to the implementation.
12594 // Only it is in implementation's lexical context.
12595 ClsFields[I]->setLexicalDeclContext(IMPDecl);
12596 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
12597 IMPDecl->setIvarLBraceLoc(LBrac);
12598 IMPDecl->setIvarRBraceLoc(RBrac);
12599 } else if (ObjCCategoryDecl *CDecl =
12600 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12601 // case of ivars in class extension; all other cases have been
12602 // reported as errors elsewhere.
12603 // FIXME. Class extension does not have a LocEnd field.
12604 // CDecl->setLocEnd(RBrac);
12605 // Add ivar's to class extension's DeclContext.
12606 // Diagnose redeclaration of private ivars.
12607 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
12608 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12609 if (IDecl) {
12610 if (const ObjCIvarDecl *ClsIvar =
12611 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
12612 Diag(ClsFields[i]->getLocation(),
12613 diag::err_duplicate_ivar_declaration);
12614 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
12615 continue;
12616 }
12617 for (const auto *Ext : IDecl->known_extensions()) {
12618 if (const ObjCIvarDecl *ClsExtIvar
12619 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
12620 Diag(ClsFields[i]->getLocation(),
12621 diag::err_duplicate_ivar_declaration);
12622 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
12623 continue;
12624 }
12625 }
12626 }
12627 ClsFields[i]->setLexicalDeclContext(CDecl);
12628 CDecl->addDecl(ClsFields[i]);
12629 }
12630 CDecl->setIvarLBraceLoc(LBrac);
12631 CDecl->setIvarRBraceLoc(RBrac);
12632 }
12633 }
12634
12635 if (Attr)
12636 ProcessDeclAttributeList(S, Record, Attr);
12637 }
12638
12639 /// \brief Determine whether the given integral value is representable within
12640 /// the given type T.
isRepresentableIntegerValue(ASTContext & Context,llvm::APSInt & Value,QualType T)12641 static bool isRepresentableIntegerValue(ASTContext &Context,
12642 llvm::APSInt &Value,
12643 QualType T) {
12644 assert(T->isIntegralType(Context) && "Integral type required!");
12645 unsigned BitWidth = Context.getIntWidth(T);
12646
12647 if (Value.isUnsigned() || Value.isNonNegative()) {
12648 if (T->isSignedIntegerOrEnumerationType())
12649 --BitWidth;
12650 return Value.getActiveBits() <= BitWidth;
12651 }
12652 return Value.getMinSignedBits() <= BitWidth;
12653 }
12654
12655 // \brief Given an integral type, return the next larger integral type
12656 // (or a NULL type of no such type exists).
getNextLargerIntegralType(ASTContext & Context,QualType T)12657 static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12658 // FIXME: Int128/UInt128 support, which also needs to be introduced into
12659 // enum checking below.
12660 assert(T->isIntegralType(Context) && "Integral type required!");
12661 const unsigned NumTypes = 4;
12662 QualType SignedIntegralTypes[NumTypes] = {
12663 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12664 };
12665 QualType UnsignedIntegralTypes[NumTypes] = {
12666 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12667 Context.UnsignedLongLongTy
12668 };
12669
12670 unsigned BitWidth = Context.getTypeSize(T);
12671 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12672 : UnsignedIntegralTypes;
12673 for (unsigned I = 0; I != NumTypes; ++I)
12674 if (Context.getTypeSize(Types[I]) > BitWidth)
12675 return Types[I];
12676
12677 return QualType();
12678 }
12679
CheckEnumConstant(EnumDecl * Enum,EnumConstantDecl * LastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,Expr * Val)12680 EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12681 EnumConstantDecl *LastEnumConst,
12682 SourceLocation IdLoc,
12683 IdentifierInfo *Id,
12684 Expr *Val) {
12685 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12686 llvm::APSInt EnumVal(IntWidth);
12687 QualType EltTy;
12688
12689 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12690 Val = nullptr;
12691
12692 if (Val)
12693 Val = DefaultLvalueConversion(Val).get();
12694
12695 if (Val) {
12696 if (Enum->isDependentType() || Val->isTypeDependent())
12697 EltTy = Context.DependentTy;
12698 else {
12699 SourceLocation ExpLoc;
12700 if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12701 !getLangOpts().MSVCCompat) {
12702 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12703 // constant-expression in the enumerator-definition shall be a converted
12704 // constant expression of the underlying type.
12705 EltTy = Enum->getIntegerType();
12706 ExprResult Converted =
12707 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12708 CCEK_Enumerator);
12709 if (Converted.isInvalid())
12710 Val = nullptr;
12711 else
12712 Val = Converted.get();
12713 } else if (!Val->isValueDependent() &&
12714 !(Val = VerifyIntegerConstantExpression(Val,
12715 &EnumVal).get())) {
12716 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12717 } else {
12718 if (Enum->isFixed()) {
12719 EltTy = Enum->getIntegerType();
12720
12721 // In Obj-C and Microsoft mode, require the enumeration value to be
12722 // representable in the underlying type of the enumeration. In C++11,
12723 // we perform a non-narrowing conversion as part of converted constant
12724 // expression checking.
12725 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12726 if (getLangOpts().MSVCCompat) {
12727 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12728 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
12729 } else
12730 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12731 } else
12732 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
12733 } else if (getLangOpts().CPlusPlus) {
12734 // C++11 [dcl.enum]p5:
12735 // If the underlying type is not fixed, the type of each enumerator
12736 // is the type of its initializing value:
12737 // - If an initializer is specified for an enumerator, the
12738 // initializing value has the same type as the expression.
12739 EltTy = Val->getType();
12740 } else {
12741 // C99 6.7.2.2p2:
12742 // The expression that defines the value of an enumeration constant
12743 // shall be an integer constant expression that has a value
12744 // representable as an int.
12745
12746 // Complain if the value is not representable in an int.
12747 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12748 Diag(IdLoc, diag::ext_enum_value_not_int)
12749 << EnumVal.toString(10) << Val->getSourceRange()
12750 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12751 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12752 // Force the type of the expression to 'int'.
12753 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
12754 }
12755 EltTy = Val->getType();
12756 }
12757 }
12758 }
12759 }
12760
12761 if (!Val) {
12762 if (Enum->isDependentType())
12763 EltTy = Context.DependentTy;
12764 else if (!LastEnumConst) {
12765 // C++0x [dcl.enum]p5:
12766 // If the underlying type is not fixed, the type of each enumerator
12767 // is the type of its initializing value:
12768 // - If no initializer is specified for the first enumerator, the
12769 // initializing value has an unspecified integral type.
12770 //
12771 // GCC uses 'int' for its unspecified integral type, as does
12772 // C99 6.7.2.2p3.
12773 if (Enum->isFixed()) {
12774 EltTy = Enum->getIntegerType();
12775 }
12776 else {
12777 EltTy = Context.IntTy;
12778 }
12779 } else {
12780 // Assign the last value + 1.
12781 EnumVal = LastEnumConst->getInitVal();
12782 ++EnumVal;
12783 EltTy = LastEnumConst->getType();
12784
12785 // Check for overflow on increment.
12786 if (EnumVal < LastEnumConst->getInitVal()) {
12787 // C++0x [dcl.enum]p5:
12788 // If the underlying type is not fixed, the type of each enumerator
12789 // is the type of its initializing value:
12790 //
12791 // - Otherwise the type of the initializing value is the same as
12792 // the type of the initializing value of the preceding enumerator
12793 // unless the incremented value is not representable in that type,
12794 // in which case the type is an unspecified integral type
12795 // sufficient to contain the incremented value. If no such type
12796 // exists, the program is ill-formed.
12797 QualType T = getNextLargerIntegralType(Context, EltTy);
12798 if (T.isNull() || Enum->isFixed()) {
12799 // There is no integral type larger enough to represent this
12800 // value. Complain, then allow the value to wrap around.
12801 EnumVal = LastEnumConst->getInitVal();
12802 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12803 ++EnumVal;
12804 if (Enum->isFixed())
12805 // When the underlying type is fixed, this is ill-formed.
12806 Diag(IdLoc, diag::err_enumerator_wrapped)
12807 << EnumVal.toString(10)
12808 << EltTy;
12809 else
12810 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
12811 << EnumVal.toString(10);
12812 } else {
12813 EltTy = T;
12814 }
12815
12816 // Retrieve the last enumerator's value, extent that type to the
12817 // type that is supposed to be large enough to represent the incremented
12818 // value, then increment.
12819 EnumVal = LastEnumConst->getInitVal();
12820 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12821 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12822 ++EnumVal;
12823
12824 // If we're not in C++, diagnose the overflow of enumerator values,
12825 // which in C99 means that the enumerator value is not representable in
12826 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12827 // permits enumerator values that are representable in some larger
12828 // integral type.
12829 if (!getLangOpts().CPlusPlus && !T.isNull())
12830 Diag(IdLoc, diag::warn_enum_value_overflow);
12831 } else if (!getLangOpts().CPlusPlus &&
12832 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12833 // Enforce C99 6.7.2.2p2 even when we compute the next value.
12834 Diag(IdLoc, diag::ext_enum_value_not_int)
12835 << EnumVal.toString(10) << 1;
12836 }
12837 }
12838 }
12839
12840 if (!EltTy->isDependentType()) {
12841 // Make the enumerator value match the signedness and size of the
12842 // enumerator's type.
12843 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12844 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12845 }
12846
12847 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12848 Val, EnumVal);
12849 }
12850
12851
ActOnEnumConstant(Scope * S,Decl * theEnumDecl,Decl * lastEnumConst,SourceLocation IdLoc,IdentifierInfo * Id,AttributeList * Attr,SourceLocation EqualLoc,Expr * Val)12852 Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12853 SourceLocation IdLoc, IdentifierInfo *Id,
12854 AttributeList *Attr,
12855 SourceLocation EqualLoc, Expr *Val) {
12856 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12857 EnumConstantDecl *LastEnumConst =
12858 cast_or_null<EnumConstantDecl>(lastEnumConst);
12859
12860 // The scope passed in may not be a decl scope. Zip up the scope tree until
12861 // we find one that is.
12862 S = getNonFieldDeclScope(S);
12863
12864 // Verify that there isn't already something declared with this name in this
12865 // scope.
12866 NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12867 ForRedeclaration);
12868 if (PrevDecl && PrevDecl->isTemplateParameter()) {
12869 // Maybe we will complain about the shadowed template parameter.
12870 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12871 // Just pretend that we didn't see the previous declaration.
12872 PrevDecl = nullptr;
12873 }
12874
12875 if (PrevDecl) {
12876 // When in C++, we may get a TagDecl with the same name; in this case the
12877 // enum constant will 'hide' the tag.
12878 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12879 "Received TagDecl when not in C++!");
12880 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12881 if (isa<EnumConstantDecl>(PrevDecl))
12882 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12883 else
12884 Diag(IdLoc, diag::err_redefinition) << Id;
12885 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12886 return nullptr;
12887 }
12888 }
12889
12890 // C++ [class.mem]p15:
12891 // If T is the name of a class, then each of the following shall have a name
12892 // different from T:
12893 // - every enumerator of every member of class T that is an unscoped
12894 // enumerated type
12895 if (CXXRecordDecl *Record
12896 = dyn_cast<CXXRecordDecl>(
12897 TheEnumDecl->getDeclContext()->getRedeclContext()))
12898 if (!TheEnumDecl->isScoped() &&
12899 Record->getIdentifier() && Record->getIdentifier() == Id)
12900 Diag(IdLoc, diag::err_member_name_of_class) << Id;
12901
12902 EnumConstantDecl *New =
12903 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12904
12905 if (New) {
12906 // Process attributes.
12907 if (Attr) ProcessDeclAttributeList(S, New, Attr);
12908
12909 // Register this decl in the current scope stack.
12910 New->setAccess(TheEnumDecl->getAccess());
12911 PushOnScopeChains(New, S);
12912 }
12913
12914 ActOnDocumentableDecl(New);
12915
12916 return New;
12917 }
12918
12919 // Returns true when the enum initial expression does not trigger the
12920 // duplicate enum warning. A few common cases are exempted as follows:
12921 // Element2 = Element1
12922 // Element2 = Element1 + 1
12923 // Element2 = Element1 - 1
12924 // Where Element2 and Element1 are from the same enum.
ValidDuplicateEnum(EnumConstantDecl * ECD,EnumDecl * Enum)12925 static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12926 Expr *InitExpr = ECD->getInitExpr();
12927 if (!InitExpr)
12928 return true;
12929 InitExpr = InitExpr->IgnoreImpCasts();
12930
12931 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12932 if (!BO->isAdditiveOp())
12933 return true;
12934 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12935 if (!IL)
12936 return true;
12937 if (IL->getValue() != 1)
12938 return true;
12939
12940 InitExpr = BO->getLHS();
12941 }
12942
12943 // This checks if the elements are from the same enum.
12944 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12945 if (!DRE)
12946 return true;
12947
12948 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12949 if (!EnumConstant)
12950 return true;
12951
12952 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12953 Enum)
12954 return true;
12955
12956 return false;
12957 }
12958
12959 struct DupKey {
12960 int64_t val;
12961 bool isTombstoneOrEmptyKey;
DupKeyDupKey12962 DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12963 : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12964 };
12965
GetDupKey(const llvm::APSInt & Val)12966 static DupKey GetDupKey(const llvm::APSInt& Val) {
12967 return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12968 false);
12969 }
12970
12971 struct DenseMapInfoDupKey {
getEmptyKeyDenseMapInfoDupKey12972 static DupKey getEmptyKey() { return DupKey(0, true); }
getTombstoneKeyDenseMapInfoDupKey12973 static DupKey getTombstoneKey() { return DupKey(1, true); }
getHashValueDenseMapInfoDupKey12974 static unsigned getHashValue(const DupKey Key) {
12975 return (unsigned)(Key.val * 37);
12976 }
isEqualDenseMapInfoDupKey12977 static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12978 return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12979 LHS.val == RHS.val;
12980 }
12981 };
12982
12983 // Emits a warning when an element is implicitly set a value that
12984 // a previous element has already been set to.
CheckForDuplicateEnumValues(Sema & S,ArrayRef<Decl * > Elements,EnumDecl * Enum,QualType EnumType)12985 static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12986 EnumDecl *Enum,
12987 QualType EnumType) {
12988 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
12989 return;
12990 // Avoid anonymous enums
12991 if (!Enum->getIdentifier())
12992 return;
12993
12994 // Only check for small enums.
12995 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12996 return;
12997
12998 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12999 typedef SmallVector<ECDVector *, 3> DuplicatesVector;
13000
13001 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
13002 typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
13003 ValueToVectorMap;
13004
13005 DuplicatesVector DupVector;
13006 ValueToVectorMap EnumMap;
13007
13008 // Populate the EnumMap with all values represented by enum constants without
13009 // an initialier.
13010 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13011 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13012
13013 // Null EnumConstantDecl means a previous diagnostic has been emitted for
13014 // this constant. Skip this enum since it may be ill-formed.
13015 if (!ECD) {
13016 return;
13017 }
13018
13019 if (ECD->getInitExpr())
13020 continue;
13021
13022 DupKey Key = GetDupKey(ECD->getInitVal());
13023 DeclOrVector &Entry = EnumMap[Key];
13024
13025 // First time encountering this value.
13026 if (Entry.isNull())
13027 Entry = ECD;
13028 }
13029
13030 // Create vectors for any values that has duplicates.
13031 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13032 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
13033 if (!ValidDuplicateEnum(ECD, Enum))
13034 continue;
13035
13036 DupKey Key = GetDupKey(ECD->getInitVal());
13037
13038 DeclOrVector& Entry = EnumMap[Key];
13039 if (Entry.isNull())
13040 continue;
13041
13042 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
13043 // Ensure constants are different.
13044 if (D == ECD)
13045 continue;
13046
13047 // Create new vector and push values onto it.
13048 ECDVector *Vec = new ECDVector();
13049 Vec->push_back(D);
13050 Vec->push_back(ECD);
13051
13052 // Update entry to point to the duplicates vector.
13053 Entry = Vec;
13054
13055 // Store the vector somewhere we can consult later for quick emission of
13056 // diagnostics.
13057 DupVector.push_back(Vec);
13058 continue;
13059 }
13060
13061 ECDVector *Vec = Entry.get<ECDVector*>();
13062 // Make sure constants are not added more than once.
13063 if (*Vec->begin() == ECD)
13064 continue;
13065
13066 Vec->push_back(ECD);
13067 }
13068
13069 // Emit diagnostics.
13070 for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
13071 DupVectorEnd = DupVector.end();
13072 DupVectorIter != DupVectorEnd; ++DupVectorIter) {
13073 ECDVector *Vec = *DupVectorIter;
13074 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
13075
13076 // Emit warning for one enum constant.
13077 ECDVector::iterator I = Vec->begin();
13078 S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
13079 << (*I)->getName() << (*I)->getInitVal().toString(10)
13080 << (*I)->getSourceRange();
13081 ++I;
13082
13083 // Emit one note for each of the remaining enum constants with
13084 // the same value.
13085 for (ECDVector::iterator E = Vec->end(); I != E; ++I)
13086 S.Diag((*I)->getLocation(), diag::note_duplicate_element)
13087 << (*I)->getName() << (*I)->getInitVal().toString(10)
13088 << (*I)->getSourceRange();
13089 delete Vec;
13090 }
13091 }
13092
ActOnEnumBody(SourceLocation EnumLoc,SourceLocation LBraceLoc,SourceLocation RBraceLoc,Decl * EnumDeclX,ArrayRef<Decl * > Elements,Scope * S,AttributeList * Attr)13093 void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
13094 SourceLocation RBraceLoc, Decl *EnumDeclX,
13095 ArrayRef<Decl *> Elements,
13096 Scope *S, AttributeList *Attr) {
13097 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
13098 QualType EnumType = Context.getTypeDeclType(Enum);
13099
13100 if (Attr)
13101 ProcessDeclAttributeList(S, Enum, Attr);
13102
13103 if (Enum->isDependentType()) {
13104 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13105 EnumConstantDecl *ECD =
13106 cast_or_null<EnumConstantDecl>(Elements[i]);
13107 if (!ECD) continue;
13108
13109 ECD->setType(EnumType);
13110 }
13111
13112 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
13113 return;
13114 }
13115
13116 // TODO: If the result value doesn't fit in an int, it must be a long or long
13117 // long value. ISO C does not support this, but GCC does as an extension,
13118 // emit a warning.
13119 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
13120 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
13121 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
13122
13123 // Verify that all the values are okay, compute the size of the values, and
13124 // reverse the list.
13125 unsigned NumNegativeBits = 0;
13126 unsigned NumPositiveBits = 0;
13127
13128 // Keep track of whether all elements have type int.
13129 bool AllElementsInt = true;
13130
13131 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13132 EnumConstantDecl *ECD =
13133 cast_or_null<EnumConstantDecl>(Elements[i]);
13134 if (!ECD) continue; // Already issued a diagnostic.
13135
13136 const llvm::APSInt &InitVal = ECD->getInitVal();
13137
13138 // Keep track of the size of positive and negative values.
13139 if (InitVal.isUnsigned() || InitVal.isNonNegative())
13140 NumPositiveBits = std::max(NumPositiveBits,
13141 (unsigned)InitVal.getActiveBits());
13142 else
13143 NumNegativeBits = std::max(NumNegativeBits,
13144 (unsigned)InitVal.getMinSignedBits());
13145
13146 // Keep track of whether every enum element has type int (very commmon).
13147 if (AllElementsInt)
13148 AllElementsInt = ECD->getType() == Context.IntTy;
13149 }
13150
13151 // Figure out the type that should be used for this enum.
13152 QualType BestType;
13153 unsigned BestWidth;
13154
13155 // C++0x N3000 [conv.prom]p3:
13156 // An rvalue of an unscoped enumeration type whose underlying
13157 // type is not fixed can be converted to an rvalue of the first
13158 // of the following types that can represent all the values of
13159 // the enumeration: int, unsigned int, long int, unsigned long
13160 // int, long long int, or unsigned long long int.
13161 // C99 6.4.4.3p2:
13162 // An identifier declared as an enumeration constant has type int.
13163 // The C99 rule is modified by a gcc extension
13164 QualType BestPromotionType;
13165
13166 bool Packed = Enum->hasAttr<PackedAttr>();
13167 // -fshort-enums is the equivalent to specifying the packed attribute on all
13168 // enum definitions.
13169 if (LangOpts.ShortEnums)
13170 Packed = true;
13171
13172 if (Enum->isFixed()) {
13173 BestType = Enum->getIntegerType();
13174 if (BestType->isPromotableIntegerType())
13175 BestPromotionType = Context.getPromotedIntegerType(BestType);
13176 else
13177 BestPromotionType = BestType;
13178 // We don't need to set BestWidth, because BestType is going to be the type
13179 // of the enumerators, but we do anyway because otherwise some compilers
13180 // warn that it might be used uninitialized.
13181 BestWidth = CharWidth;
13182 }
13183 else if (NumNegativeBits) {
13184 // If there is a negative value, figure out the smallest integer type (of
13185 // int/long/longlong) that fits.
13186 // If it's packed, check also if it fits a char or a short.
13187 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
13188 BestType = Context.SignedCharTy;
13189 BestWidth = CharWidth;
13190 } else if (Packed && NumNegativeBits <= ShortWidth &&
13191 NumPositiveBits < ShortWidth) {
13192 BestType = Context.ShortTy;
13193 BestWidth = ShortWidth;
13194 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
13195 BestType = Context.IntTy;
13196 BestWidth = IntWidth;
13197 } else {
13198 BestWidth = Context.getTargetInfo().getLongWidth();
13199
13200 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
13201 BestType = Context.LongTy;
13202 } else {
13203 BestWidth = Context.getTargetInfo().getLongLongWidth();
13204
13205 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
13206 Diag(Enum->getLocation(), diag::ext_enum_too_large);
13207 BestType = Context.LongLongTy;
13208 }
13209 }
13210 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
13211 } else {
13212 // If there is no negative value, figure out the smallest type that fits
13213 // all of the enumerator values.
13214 // If it's packed, check also if it fits a char or a short.
13215 if (Packed && NumPositiveBits <= CharWidth) {
13216 BestType = Context.UnsignedCharTy;
13217 BestPromotionType = Context.IntTy;
13218 BestWidth = CharWidth;
13219 } else if (Packed && NumPositiveBits <= ShortWidth) {
13220 BestType = Context.UnsignedShortTy;
13221 BestPromotionType = Context.IntTy;
13222 BestWidth = ShortWidth;
13223 } else if (NumPositiveBits <= IntWidth) {
13224 BestType = Context.UnsignedIntTy;
13225 BestWidth = IntWidth;
13226 BestPromotionType
13227 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13228 ? Context.UnsignedIntTy : Context.IntTy;
13229 } else if (NumPositiveBits <=
13230 (BestWidth = Context.getTargetInfo().getLongWidth())) {
13231 BestType = Context.UnsignedLongTy;
13232 BestPromotionType
13233 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13234 ? Context.UnsignedLongTy : Context.LongTy;
13235 } else {
13236 BestWidth = Context.getTargetInfo().getLongLongWidth();
13237 assert(NumPositiveBits <= BestWidth &&
13238 "How could an initializer get larger than ULL?");
13239 BestType = Context.UnsignedLongLongTy;
13240 BestPromotionType
13241 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
13242 ? Context.UnsignedLongLongTy : Context.LongLongTy;
13243 }
13244 }
13245
13246 // Loop over all of the enumerator constants, changing their types to match
13247 // the type of the enum if needed.
13248 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
13249 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
13250 if (!ECD) continue; // Already issued a diagnostic.
13251
13252 // Standard C says the enumerators have int type, but we allow, as an
13253 // extension, the enumerators to be larger than int size. If each
13254 // enumerator value fits in an int, type it as an int, otherwise type it the
13255 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
13256 // that X has type 'int', not 'unsigned'.
13257
13258 // Determine whether the value fits into an int.
13259 llvm::APSInt InitVal = ECD->getInitVal();
13260
13261 // If it fits into an integer type, force it. Otherwise force it to match
13262 // the enum decl type.
13263 QualType NewTy;
13264 unsigned NewWidth;
13265 bool NewSign;
13266 if (!getLangOpts().CPlusPlus &&
13267 !Enum->isFixed() &&
13268 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
13269 NewTy = Context.IntTy;
13270 NewWidth = IntWidth;
13271 NewSign = true;
13272 } else if (ECD->getType() == BestType) {
13273 // Already the right type!
13274 if (getLangOpts().CPlusPlus)
13275 // C++ [dcl.enum]p4: Following the closing brace of an
13276 // enum-specifier, each enumerator has the type of its
13277 // enumeration.
13278 ECD->setType(EnumType);
13279 continue;
13280 } else {
13281 NewTy = BestType;
13282 NewWidth = BestWidth;
13283 NewSign = BestType->isSignedIntegerOrEnumerationType();
13284 }
13285
13286 // Adjust the APSInt value.
13287 InitVal = InitVal.extOrTrunc(NewWidth);
13288 InitVal.setIsSigned(NewSign);
13289 ECD->setInitVal(InitVal);
13290
13291 // Adjust the Expr initializer and type.
13292 if (ECD->getInitExpr() &&
13293 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
13294 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
13295 CK_IntegralCast,
13296 ECD->getInitExpr(),
13297 /*base paths*/ nullptr,
13298 VK_RValue));
13299 if (getLangOpts().CPlusPlus)
13300 // C++ [dcl.enum]p4: Following the closing brace of an
13301 // enum-specifier, each enumerator has the type of its
13302 // enumeration.
13303 ECD->setType(EnumType);
13304 else
13305 ECD->setType(NewTy);
13306 }
13307
13308 Enum->completeDefinition(BestType, BestPromotionType,
13309 NumPositiveBits, NumNegativeBits);
13310
13311 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
13312
13313 // Now that the enum type is defined, ensure it's not been underaligned.
13314 if (Enum->hasAttrs())
13315 CheckAlignasUnderalignment(Enum);
13316 }
13317
ActOnFileScopeAsmDecl(Expr * expr,SourceLocation StartLoc,SourceLocation EndLoc)13318 Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
13319 SourceLocation StartLoc,
13320 SourceLocation EndLoc) {
13321 StringLiteral *AsmString = cast<StringLiteral>(expr);
13322
13323 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
13324 AsmString, StartLoc,
13325 EndLoc);
13326 CurContext->addDecl(New);
13327 return New;
13328 }
13329
checkModuleImportContext(Sema & S,Module * M,SourceLocation ImportLoc,DeclContext * DC)13330 static void checkModuleImportContext(Sema &S, Module *M,
13331 SourceLocation ImportLoc,
13332 DeclContext *DC) {
13333 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
13334 switch (LSD->getLanguage()) {
13335 case LinkageSpecDecl::lang_c:
13336 if (!M->IsExternC) {
13337 S.Diag(ImportLoc, diag::err_module_import_in_extern_c)
13338 << M->getFullModuleName();
13339 S.Diag(LSD->getLocStart(), diag::note_module_import_in_extern_c);
13340 return;
13341 }
13342 break;
13343 case LinkageSpecDecl::lang_cxx:
13344 break;
13345 }
13346 DC = LSD->getParent();
13347 }
13348
13349 while (isa<LinkageSpecDecl>(DC))
13350 DC = DC->getParent();
13351 if (!isa<TranslationUnitDecl>(DC)) {
13352 S.Diag(ImportLoc, diag::err_module_import_not_at_top_level)
13353 << M->getFullModuleName() << DC;
13354 S.Diag(cast<Decl>(DC)->getLocStart(),
13355 diag::note_module_import_not_at_top_level)
13356 << DC;
13357 }
13358 }
13359
ActOnModuleImport(SourceLocation AtLoc,SourceLocation ImportLoc,ModuleIdPath Path)13360 DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
13361 SourceLocation ImportLoc,
13362 ModuleIdPath Path) {
13363 Module *Mod =
13364 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
13365 /*IsIncludeDirective=*/false);
13366 if (!Mod)
13367 return true;
13368
13369 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
13370
13371 // FIXME: we should support importing a submodule within a different submodule
13372 // of the same top-level module. Until we do, make it an error rather than
13373 // silently ignoring the import.
13374 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule)
13375 Diag(ImportLoc, diag::err_module_self_import)
13376 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
13377
13378 SmallVector<SourceLocation, 2> IdentifierLocs;
13379 Module *ModCheck = Mod;
13380 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
13381 // If we've run out of module parents, just drop the remaining identifiers.
13382 // We need the length to be consistent.
13383 if (!ModCheck)
13384 break;
13385 ModCheck = ModCheck->Parent;
13386
13387 IdentifierLocs.push_back(Path[I].second);
13388 }
13389
13390 ImportDecl *Import = ImportDecl::Create(Context,
13391 Context.getTranslationUnitDecl(),
13392 AtLoc.isValid()? AtLoc : ImportLoc,
13393 Mod, IdentifierLocs);
13394 Context.getTranslationUnitDecl()->addDecl(Import);
13395 return Import;
13396 }
13397
ActOnModuleInclude(SourceLocation DirectiveLoc,Module * Mod)13398 void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
13399 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext);
13400
13401 // FIXME: Should we synthesize an ImportDecl here?
13402 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc,
13403 /*Complain=*/true);
13404 }
13405
createImplicitModuleImportForErrorRecovery(SourceLocation Loc,Module * Mod)13406 void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
13407 Module *Mod) {
13408 // Bail if we're not allowed to implicitly import a module here.
13409 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery)
13410 return;
13411
13412 // Create the implicit import declaration.
13413 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
13414 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
13415 Loc, Mod, Loc);
13416 TU->addDecl(ImportD);
13417 Consumer.HandleImplicitImportDecl(ImportD);
13418
13419 // Make the module visible.
13420 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
13421 /*Complain=*/false);
13422 }
13423
ActOnPragmaRedefineExtname(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)13424 void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
13425 IdentifierInfo* AliasName,
13426 SourceLocation PragmaLoc,
13427 SourceLocation NameLoc,
13428 SourceLocation AliasNameLoc) {
13429 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
13430 LookupOrdinaryName);
13431 AsmLabelAttr *Attr = ::new (Context) AsmLabelAttr(AliasNameLoc, Context,
13432 AliasName->getName(), 0);
13433
13434 if (PrevDecl)
13435 PrevDecl->addAttr(Attr);
13436 else
13437 (void)ExtnameUndeclaredIdentifiers.insert(
13438 std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
13439 }
13440
ActOnPragmaWeakID(IdentifierInfo * Name,SourceLocation PragmaLoc,SourceLocation NameLoc)13441 void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
13442 SourceLocation PragmaLoc,
13443 SourceLocation NameLoc) {
13444 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
13445
13446 if (PrevDecl) {
13447 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
13448 } else {
13449 (void)WeakUndeclaredIdentifiers.insert(
13450 std::pair<IdentifierInfo*,WeakInfo>
13451 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
13452 }
13453 }
13454
ActOnPragmaWeakAlias(IdentifierInfo * Name,IdentifierInfo * AliasName,SourceLocation PragmaLoc,SourceLocation NameLoc,SourceLocation AliasNameLoc)13455 void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
13456 IdentifierInfo* AliasName,
13457 SourceLocation PragmaLoc,
13458 SourceLocation NameLoc,
13459 SourceLocation AliasNameLoc) {
13460 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
13461 LookupOrdinaryName);
13462 WeakInfo W = WeakInfo(Name, NameLoc);
13463
13464 if (PrevDecl) {
13465 if (!PrevDecl->hasAttr<AliasAttr>())
13466 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
13467 DeclApplyPragmaWeak(TUScope, ND, W);
13468 } else {
13469 (void)WeakUndeclaredIdentifiers.insert(
13470 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
13471 }
13472 }
13473
getObjCDeclContext() const13474 Decl *Sema::getObjCDeclContext() const {
13475 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
13476 }
13477
getCurContextAvailability() const13478 AvailabilityResult Sema::getCurContextAvailability() const {
13479 const Decl *D = cast<Decl>(getCurObjCLexicalContext());
13480 // If we are within an Objective-C method, we should consult
13481 // both the availability of the method as well as the
13482 // enclosing class. If the class is (say) deprecated,
13483 // the entire method is considered deprecated from the
13484 // purpose of checking if the current context is deprecated.
13485 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
13486 AvailabilityResult R = MD->getAvailability();
13487 if (R != AR_Available)
13488 return R;
13489 D = MD->getClassInterface();
13490 }
13491 // If we are within an Objective-c @implementation, it
13492 // gets the same availability context as the @interface.
13493 else if (const ObjCImplementationDecl *ID =
13494 dyn_cast<ObjCImplementationDecl>(D)) {
13495 D = ID->getClassInterface();
13496 }
13497 return D->getAvailability();
13498 }
13499