1 /* 2 * Wrapper functions for crypto libraries 3 * Copyright (c) 2004-2013, Jouni Malinen <j@w1.fi> 4 * 5 * This software may be distributed under the terms of the BSD license. 6 * See README for more details. 7 * 8 * This file defines the cryptographic functions that need to be implemented 9 * for wpa_supplicant and hostapd. When TLS is not used, internal 10 * implementation of MD5, SHA1, and AES is used and no external libraries are 11 * required. When TLS is enabled (e.g., by enabling EAP-TLS or EAP-PEAP), the 12 * crypto library used by the TLS implementation is expected to be used for 13 * non-TLS needs, too, in order to save space by not implementing these 14 * functions twice. 15 * 16 * Wrapper code for using each crypto library is in its own file (crypto*.c) 17 * and one of these files is build and linked in to provide the functions 18 * defined here. 19 */ 20 21 #ifndef CRYPTO_H 22 #define CRYPTO_H 23 24 /** 25 * md4_vector - MD4 hash for data vector 26 * @num_elem: Number of elements in the data vector 27 * @addr: Pointers to the data areas 28 * @len: Lengths of the data blocks 29 * @mac: Buffer for the hash 30 * Returns: 0 on success, -1 on failure 31 */ 32 int md4_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 33 34 /** 35 * md5_vector - MD5 hash for data vector 36 * @num_elem: Number of elements in the data vector 37 * @addr: Pointers to the data areas 38 * @len: Lengths of the data blocks 39 * @mac: Buffer for the hash 40 * Returns: 0 on success, -1 on failure 41 */ 42 int md5_vector(size_t num_elem, const u8 *addr[], const size_t *len, u8 *mac); 43 44 45 /** 46 * sha1_vector - SHA-1 hash for data vector 47 * @num_elem: Number of elements in the data vector 48 * @addr: Pointers to the data areas 49 * @len: Lengths of the data blocks 50 * @mac: Buffer for the hash 51 * Returns: 0 on success, -1 on failure 52 */ 53 int sha1_vector(size_t num_elem, const u8 *addr[], const size_t *len, 54 u8 *mac); 55 56 /** 57 * fips186_2-prf - NIST FIPS Publication 186-2 change notice 1 PRF 58 * @seed: Seed/key for the PRF 59 * @seed_len: Seed length in bytes 60 * @x: Buffer for PRF output 61 * @xlen: Output length in bytes 62 * Returns: 0 on success, -1 on failure 63 * 64 * This function implements random number generation specified in NIST FIPS 65 * Publication 186-2 for EAP-SIM. This PRF uses a function that is similar to 66 * SHA-1, but has different message padding. 67 */ 68 int __must_check fips186_2_prf(const u8 *seed, size_t seed_len, u8 *x, 69 size_t xlen); 70 71 /** 72 * sha256_vector - SHA256 hash for data vector 73 * @num_elem: Number of elements in the data vector 74 * @addr: Pointers to the data areas 75 * @len: Lengths of the data blocks 76 * @mac: Buffer for the hash 77 * Returns: 0 on success, -1 on failure 78 */ 79 int sha256_vector(size_t num_elem, const u8 *addr[], const size_t *len, 80 u8 *mac); 81 82 /** 83 * des_encrypt - Encrypt one block with DES 84 * @clear: 8 octets (in) 85 * @key: 7 octets (in) (no parity bits included) 86 * @cypher: 8 octets (out) 87 */ 88 void des_encrypt(const u8 *clear, const u8 *key, u8 *cypher); 89 90 /** 91 * aes_encrypt_init - Initialize AES for encryption 92 * @key: Encryption key 93 * @len: Key length in bytes (usually 16, i.e., 128 bits) 94 * Returns: Pointer to context data or %NULL on failure 95 */ 96 void * aes_encrypt_init(const u8 *key, size_t len); 97 98 /** 99 * aes_encrypt - Encrypt one AES block 100 * @ctx: Context pointer from aes_encrypt_init() 101 * @plain: Plaintext data to be encrypted (16 bytes) 102 * @crypt: Buffer for the encrypted data (16 bytes) 103 */ 104 void aes_encrypt(void *ctx, const u8 *plain, u8 *crypt); 105 106 /** 107 * aes_encrypt_deinit - Deinitialize AES encryption 108 * @ctx: Context pointer from aes_encrypt_init() 109 */ 110 void aes_encrypt_deinit(void *ctx); 111 112 /** 113 * aes_decrypt_init - Initialize AES for decryption 114 * @key: Decryption key 115 * @len: Key length in bytes (usually 16, i.e., 128 bits) 116 * Returns: Pointer to context data or %NULL on failure 117 */ 118 void * aes_decrypt_init(const u8 *key, size_t len); 119 120 /** 121 * aes_decrypt - Decrypt one AES block 122 * @ctx: Context pointer from aes_encrypt_init() 123 * @crypt: Encrypted data (16 bytes) 124 * @plain: Buffer for the decrypted data (16 bytes) 125 */ 126 void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain); 127 128 /** 129 * aes_decrypt_deinit - Deinitialize AES decryption 130 * @ctx: Context pointer from aes_encrypt_init() 131 */ 132 void aes_decrypt_deinit(void *ctx); 133 134 135 enum crypto_hash_alg { 136 CRYPTO_HASH_ALG_MD5, CRYPTO_HASH_ALG_SHA1, 137 CRYPTO_HASH_ALG_HMAC_MD5, CRYPTO_HASH_ALG_HMAC_SHA1, 138 CRYPTO_HASH_ALG_SHA256, CRYPTO_HASH_ALG_HMAC_SHA256 139 }; 140 141 struct crypto_hash; 142 143 /** 144 * crypto_hash_init - Initialize hash/HMAC function 145 * @alg: Hash algorithm 146 * @key: Key for keyed hash (e.g., HMAC) or %NULL if not needed 147 * @key_len: Length of the key in bytes 148 * Returns: Pointer to hash context to use with other hash functions or %NULL 149 * on failure 150 * 151 * This function is only used with internal TLSv1 implementation 152 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 153 * to implement this. 154 */ 155 struct crypto_hash * crypto_hash_init(enum crypto_hash_alg alg, const u8 *key, 156 size_t key_len); 157 158 /** 159 * crypto_hash_update - Add data to hash calculation 160 * @ctx: Context pointer from crypto_hash_init() 161 * @data: Data buffer to add 162 * @len: Length of the buffer 163 * 164 * This function is only used with internal TLSv1 implementation 165 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 166 * to implement this. 167 */ 168 void crypto_hash_update(struct crypto_hash *ctx, const u8 *data, size_t len); 169 170 /** 171 * crypto_hash_finish - Complete hash calculation 172 * @ctx: Context pointer from crypto_hash_init() 173 * @hash: Buffer for hash value or %NULL if caller is just freeing the hash 174 * context 175 * @len: Pointer to length of the buffer or %NULL if caller is just freeing the 176 * hash context; on return, this is set to the actual length of the hash value 177 * Returns: 0 on success, -1 if buffer is too small (len set to needed length), 178 * or -2 on other failures (including failed crypto_hash_update() operations) 179 * 180 * This function calculates the hash value and frees the context buffer that 181 * was used for hash calculation. 182 * 183 * This function is only used with internal TLSv1 implementation 184 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 185 * to implement this. 186 */ 187 int crypto_hash_finish(struct crypto_hash *ctx, u8 *hash, size_t *len); 188 189 190 enum crypto_cipher_alg { 191 CRYPTO_CIPHER_NULL = 0, CRYPTO_CIPHER_ALG_AES, CRYPTO_CIPHER_ALG_3DES, 192 CRYPTO_CIPHER_ALG_DES, CRYPTO_CIPHER_ALG_RC2, CRYPTO_CIPHER_ALG_RC4 193 }; 194 195 struct crypto_cipher; 196 197 /** 198 * crypto_cipher_init - Initialize block/stream cipher function 199 * @alg: Cipher algorithm 200 * @iv: Initialization vector for block ciphers or %NULL for stream ciphers 201 * @key: Cipher key 202 * @key_len: Length of key in bytes 203 * Returns: Pointer to cipher context to use with other cipher functions or 204 * %NULL on failure 205 * 206 * This function is only used with internal TLSv1 implementation 207 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 208 * to implement this. 209 */ 210 struct crypto_cipher * crypto_cipher_init(enum crypto_cipher_alg alg, 211 const u8 *iv, const u8 *key, 212 size_t key_len); 213 214 /** 215 * crypto_cipher_encrypt - Cipher encrypt 216 * @ctx: Context pointer from crypto_cipher_init() 217 * @plain: Plaintext to cipher 218 * @crypt: Resulting ciphertext 219 * @len: Length of the plaintext 220 * Returns: 0 on success, -1 on failure 221 * 222 * This function is only used with internal TLSv1 implementation 223 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 224 * to implement this. 225 */ 226 int __must_check crypto_cipher_encrypt(struct crypto_cipher *ctx, 227 const u8 *plain, u8 *crypt, size_t len); 228 229 /** 230 * crypto_cipher_decrypt - Cipher decrypt 231 * @ctx: Context pointer from crypto_cipher_init() 232 * @crypt: Ciphertext to decrypt 233 * @plain: Resulting plaintext 234 * @len: Length of the cipher text 235 * Returns: 0 on success, -1 on failure 236 * 237 * This function is only used with internal TLSv1 implementation 238 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 239 * to implement this. 240 */ 241 int __must_check crypto_cipher_decrypt(struct crypto_cipher *ctx, 242 const u8 *crypt, u8 *plain, size_t len); 243 244 /** 245 * crypto_cipher_decrypt - Free cipher context 246 * @ctx: Context pointer from crypto_cipher_init() 247 * 248 * This function is only used with internal TLSv1 implementation 249 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 250 * to implement this. 251 */ 252 void crypto_cipher_deinit(struct crypto_cipher *ctx); 253 254 255 struct crypto_public_key; 256 struct crypto_private_key; 257 258 /** 259 * crypto_public_key_import - Import an RSA public key 260 * @key: Key buffer (DER encoded RSA public key) 261 * @len: Key buffer length in bytes 262 * Returns: Pointer to the public key or %NULL on failure 263 * 264 * This function can just return %NULL if the crypto library supports X.509 265 * parsing. In that case, crypto_public_key_from_cert() is used to import the 266 * public key from a certificate. 267 * 268 * This function is only used with internal TLSv1 implementation 269 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 270 * to implement this. 271 */ 272 struct crypto_public_key * crypto_public_key_import(const u8 *key, size_t len); 273 274 struct crypto_public_key * 275 crypto_public_key_import_parts(const u8 *n, size_t n_len, 276 const u8 *e, size_t e_len); 277 278 /** 279 * crypto_private_key_import - Import an RSA private key 280 * @key: Key buffer (DER encoded RSA private key) 281 * @len: Key buffer length in bytes 282 * @passwd: Key encryption password or %NULL if key is not encrypted 283 * Returns: Pointer to the private key or %NULL on failure 284 * 285 * This function is only used with internal TLSv1 implementation 286 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 287 * to implement this. 288 */ 289 struct crypto_private_key * crypto_private_key_import(const u8 *key, 290 size_t len, 291 const char *passwd); 292 293 /** 294 * crypto_public_key_from_cert - Import an RSA public key from a certificate 295 * @buf: DER encoded X.509 certificate 296 * @len: Certificate buffer length in bytes 297 * Returns: Pointer to public key or %NULL on failure 298 * 299 * This function can just return %NULL if the crypto library does not support 300 * X.509 parsing. In that case, internal code will be used to parse the 301 * certificate and public key is imported using crypto_public_key_import(). 302 * 303 * This function is only used with internal TLSv1 implementation 304 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 305 * to implement this. 306 */ 307 struct crypto_public_key * crypto_public_key_from_cert(const u8 *buf, 308 size_t len); 309 310 /** 311 * crypto_public_key_encrypt_pkcs1_v15 - Public key encryption (PKCS #1 v1.5) 312 * @key: Public key 313 * @in: Plaintext buffer 314 * @inlen: Length of plaintext buffer in bytes 315 * @out: Output buffer for encrypted data 316 * @outlen: Length of output buffer in bytes; set to used length on success 317 * Returns: 0 on success, -1 on failure 318 * 319 * This function is only used with internal TLSv1 implementation 320 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 321 * to implement this. 322 */ 323 int __must_check crypto_public_key_encrypt_pkcs1_v15( 324 struct crypto_public_key *key, const u8 *in, size_t inlen, 325 u8 *out, size_t *outlen); 326 327 /** 328 * crypto_private_key_decrypt_pkcs1_v15 - Private key decryption (PKCS #1 v1.5) 329 * @key: Private key 330 * @in: Encrypted buffer 331 * @inlen: Length of encrypted buffer in bytes 332 * @out: Output buffer for encrypted data 333 * @outlen: Length of output buffer in bytes; set to used length on success 334 * Returns: 0 on success, -1 on failure 335 * 336 * This function is only used with internal TLSv1 implementation 337 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 338 * to implement this. 339 */ 340 int __must_check crypto_private_key_decrypt_pkcs1_v15( 341 struct crypto_private_key *key, const u8 *in, size_t inlen, 342 u8 *out, size_t *outlen); 343 344 /** 345 * crypto_private_key_sign_pkcs1 - Sign with private key (PKCS #1) 346 * @key: Private key from crypto_private_key_import() 347 * @in: Plaintext buffer 348 * @inlen: Length of plaintext buffer in bytes 349 * @out: Output buffer for encrypted (signed) data 350 * @outlen: Length of output buffer in bytes; set to used length on success 351 * Returns: 0 on success, -1 on failure 352 * 353 * This function is only used with internal TLSv1 implementation 354 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 355 * to implement this. 356 */ 357 int __must_check crypto_private_key_sign_pkcs1(struct crypto_private_key *key, 358 const u8 *in, size_t inlen, 359 u8 *out, size_t *outlen); 360 361 /** 362 * crypto_public_key_free - Free public key 363 * @key: Public key 364 * 365 * This function is only used with internal TLSv1 implementation 366 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 367 * to implement this. 368 */ 369 void crypto_public_key_free(struct crypto_public_key *key); 370 371 /** 372 * crypto_private_key_free - Free private key 373 * @key: Private key from crypto_private_key_import() 374 * 375 * This function is only used with internal TLSv1 implementation 376 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 377 * to implement this. 378 */ 379 void crypto_private_key_free(struct crypto_private_key *key); 380 381 /** 382 * crypto_public_key_decrypt_pkcs1 - Decrypt PKCS #1 signature 383 * @key: Public key 384 * @crypt: Encrypted signature data (using the private key) 385 * @crypt_len: Encrypted signature data length 386 * @plain: Buffer for plaintext (at least crypt_len bytes) 387 * @plain_len: Plaintext length (max buffer size on input, real len on output); 388 * Returns: 0 on success, -1 on failure 389 */ 390 int __must_check crypto_public_key_decrypt_pkcs1( 391 struct crypto_public_key *key, const u8 *crypt, size_t crypt_len, 392 u8 *plain, size_t *plain_len); 393 394 /** 395 * crypto_global_init - Initialize crypto wrapper 396 * 397 * This function is only used with internal TLSv1 implementation 398 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 399 * to implement this. 400 */ 401 int __must_check crypto_global_init(void); 402 403 /** 404 * crypto_global_deinit - Deinitialize crypto wrapper 405 * 406 * This function is only used with internal TLSv1 implementation 407 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 408 * to implement this. 409 */ 410 void crypto_global_deinit(void); 411 412 /** 413 * crypto_mod_exp - Modular exponentiation of large integers 414 * @base: Base integer (big endian byte array) 415 * @base_len: Length of base integer in bytes 416 * @power: Power integer (big endian byte array) 417 * @power_len: Length of power integer in bytes 418 * @modulus: Modulus integer (big endian byte array) 419 * @modulus_len: Length of modulus integer in bytes 420 * @result: Buffer for the result 421 * @result_len: Result length (max buffer size on input, real len on output) 422 * Returns: 0 on success, -1 on failure 423 * 424 * This function calculates result = base ^ power mod modulus. modules_len is 425 * used as the maximum size of modulus buffer. It is set to the used size on 426 * success. 427 * 428 * This function is only used with internal TLSv1 implementation 429 * (CONFIG_TLS=internal). If that is not used, the crypto wrapper does not need 430 * to implement this. 431 */ 432 int __must_check crypto_mod_exp(const u8 *base, size_t base_len, 433 const u8 *power, size_t power_len, 434 const u8 *modulus, size_t modulus_len, 435 u8 *result, size_t *result_len); 436 437 /** 438 * rc4_skip - XOR RC4 stream to given data with skip-stream-start 439 * @key: RC4 key 440 * @keylen: RC4 key length 441 * @skip: number of bytes to skip from the beginning of the RC4 stream 442 * @data: data to be XOR'ed with RC4 stream 443 * @data_len: buf length 444 * Returns: 0 on success, -1 on failure 445 * 446 * Generate RC4 pseudo random stream for the given key, skip beginning of the 447 * stream, and XOR the end result with the data buffer to perform RC4 448 * encryption/decryption. 449 */ 450 int rc4_skip(const u8 *key, size_t keylen, size_t skip, 451 u8 *data, size_t data_len); 452 453 /** 454 * crypto_get_random - Generate cryptographically strong pseudy-random bytes 455 * @buf: Buffer for data 456 * @len: Number of bytes to generate 457 * Returns: 0 on success, -1 on failure 458 * 459 * If the PRNG does not have enough entropy to ensure unpredictable byte 460 * sequence, this functions must return -1. 461 */ 462 int crypto_get_random(void *buf, size_t len); 463 464 465 /** 466 * struct crypto_bignum - bignum 467 * 468 * Internal data structure for bignum implementation. The contents is specific 469 * to the used crypto library. 470 */ 471 struct crypto_bignum; 472 473 /** 474 * crypto_bignum_init - Allocate memory for bignum 475 * Returns: Pointer to allocated bignum or %NULL on failure 476 */ 477 struct crypto_bignum * crypto_bignum_init(void); 478 479 /** 480 * crypto_bignum_init_set - Allocate memory for bignum and set the value 481 * @buf: Buffer with unsigned binary value 482 * @len: Length of buf in octets 483 * Returns: Pointer to allocated bignum or %NULL on failure 484 */ 485 struct crypto_bignum * crypto_bignum_init_set(const u8 *buf, size_t len); 486 487 /** 488 * crypto_bignum_deinit - Free bignum 489 * @n: Bignum from crypto_bignum_init() or crypto_bignum_init_set() 490 * @clear: Whether to clear the value from memory 491 */ 492 void crypto_bignum_deinit(struct crypto_bignum *n, int clear); 493 494 /** 495 * crypto_bignum_to_bin - Set binary buffer to unsigned bignum 496 * @a: Bignum 497 * @buf: Buffer for the binary number 498 * @len: Length of @buf in octets 499 * @padlen: Length in octets to pad the result to or 0 to indicate no padding 500 * Returns: Number of octets written on success, -1 on failure 501 */ 502 int crypto_bignum_to_bin(const struct crypto_bignum *a, 503 u8 *buf, size_t buflen, size_t padlen); 504 505 /** 506 * crypto_bignum_add - c = a + b 507 * @a: Bignum 508 * @b: Bignum 509 * @c: Bignum; used to store the result of a + b 510 * Returns: 0 on success, -1 on failure 511 */ 512 int crypto_bignum_add(const struct crypto_bignum *a, 513 const struct crypto_bignum *b, 514 struct crypto_bignum *c); 515 516 /** 517 * crypto_bignum_mod - c = a % b 518 * @a: Bignum 519 * @b: Bignum 520 * @c: Bignum; used to store the result of a % b 521 * Returns: 0 on success, -1 on failure 522 */ 523 int crypto_bignum_mod(const struct crypto_bignum *a, 524 const struct crypto_bignum *b, 525 struct crypto_bignum *c); 526 527 /** 528 * crypto_bignum_exptmod - Modular exponentiation: d = a^b (mod c) 529 * @a: Bignum; base 530 * @b: Bignum; exponent 531 * @c: Bignum; modulus 532 * @d: Bignum; used to store the result of a^b (mod c) 533 * Returns: 0 on success, -1 on failure 534 */ 535 int crypto_bignum_exptmod(const struct crypto_bignum *a, 536 const struct crypto_bignum *b, 537 const struct crypto_bignum *c, 538 struct crypto_bignum *d); 539 540 /** 541 * crypto_bignum_inverse - Inverse a bignum so that a * c = 1 (mod b) 542 * @a: Bignum 543 * @b: Bignum 544 * @c: Bignum; used to store the result 545 * Returns: 0 on success, -1 on failure 546 */ 547 int crypto_bignum_inverse(const struct crypto_bignum *a, 548 const struct crypto_bignum *b, 549 struct crypto_bignum *c); 550 551 /** 552 * crypto_bignum_sub - c = a - b 553 * @a: Bignum 554 * @b: Bignum 555 * @c: Bignum; used to store the result of a - b 556 * Returns: 0 on success, -1 on failure 557 */ 558 int crypto_bignum_sub(const struct crypto_bignum *a, 559 const struct crypto_bignum *b, 560 struct crypto_bignum *c); 561 562 /** 563 * crypto_bignum_div - c = a / b 564 * @a: Bignum 565 * @b: Bignum 566 * @c: Bignum; used to store the result of a / b 567 * Returns: 0 on success, -1 on failure 568 */ 569 int crypto_bignum_div(const struct crypto_bignum *a, 570 const struct crypto_bignum *b, 571 struct crypto_bignum *c); 572 573 /** 574 * crypto_bignum_mulmod - d = a * b (mod c) 575 * @a: Bignum 576 * @b: Bignum 577 * @c: Bignum 578 * @d: Bignum; used to store the result of (a * b) % c 579 * Returns: 0 on success, -1 on failure 580 */ 581 int crypto_bignum_mulmod(const struct crypto_bignum *a, 582 const struct crypto_bignum *b, 583 const struct crypto_bignum *c, 584 struct crypto_bignum *d); 585 586 /** 587 * crypto_bignum_cmp - Compare two bignums 588 * @a: Bignum 589 * @b: Bignum 590 * Returns: -1 if a < b, 0 if a == b, or 1 if a > b 591 */ 592 int crypto_bignum_cmp(const struct crypto_bignum *a, 593 const struct crypto_bignum *b); 594 595 /** 596 * crypto_bignum_bits - Get size of a bignum in bits 597 * @a: Bignum 598 * Returns: Number of bits in the bignum 599 */ 600 int crypto_bignum_bits(const struct crypto_bignum *a); 601 602 /** 603 * crypto_bignum_is_zero - Is the given bignum zero 604 * @a: Bignum 605 * Returns: 1 if @a is zero or 0 if not 606 */ 607 int crypto_bignum_is_zero(const struct crypto_bignum *a); 608 609 /** 610 * crypto_bignum_is_one - Is the given bignum one 611 * @a: Bignum 612 * Returns: 1 if @a is one or 0 if not 613 */ 614 int crypto_bignum_is_one(const struct crypto_bignum *a); 615 616 /** 617 * struct crypto_ec - Elliptic curve context 618 * 619 * Internal data structure for EC implementation. The contents is specific 620 * to the used crypto library. 621 */ 622 struct crypto_ec; 623 624 /** 625 * crypto_ec_init - Initialize elliptic curve context 626 * @group: Identifying number for the ECC group (IANA "Group Description" 627 * attribute registrty for RFC 2409) 628 * Returns: Pointer to EC context or %NULL on failure 629 */ 630 struct crypto_ec * crypto_ec_init(int group); 631 632 /** 633 * crypto_ec_deinit - Deinitialize elliptic curve context 634 * @e: EC context from crypto_ec_init() 635 */ 636 void crypto_ec_deinit(struct crypto_ec *e); 637 638 /** 639 * crypto_ec_prime_len - Get length of the prime in octets 640 * @e: EC context from crypto_ec_init() 641 * Returns: Length of the prime defining the group 642 */ 643 size_t crypto_ec_prime_len(struct crypto_ec *e); 644 645 /** 646 * crypto_ec_prime_len_bits - Get length of the prime in bits 647 * @e: EC context from crypto_ec_init() 648 * Returns: Length of the prime defining the group in bits 649 */ 650 size_t crypto_ec_prime_len_bits(struct crypto_ec *e); 651 652 /** 653 * crypto_ec_get_prime - Get prime defining an EC group 654 * @e: EC context from crypto_ec_init() 655 * Returns: Prime (bignum) defining the group 656 */ 657 const struct crypto_bignum * crypto_ec_get_prime(struct crypto_ec *e); 658 659 /** 660 * crypto_ec_get_order - Get order of an EC group 661 * @e: EC context from crypto_ec_init() 662 * Returns: Order (bignum) of the group 663 */ 664 const struct crypto_bignum * crypto_ec_get_order(struct crypto_ec *e); 665 666 /** 667 * struct crypto_ec_point - Elliptic curve point 668 * 669 * Internal data structure for EC implementation to represent a point. The 670 * contents is specific to the used crypto library. 671 */ 672 struct crypto_ec_point; 673 674 /** 675 * crypto_ec_point_init - Initialize data for an EC point 676 * @e: EC context from crypto_ec_init() 677 * Returns: Pointer to EC point data or %NULL on failure 678 */ 679 struct crypto_ec_point * crypto_ec_point_init(struct crypto_ec *e); 680 681 /** 682 * crypto_ec_point_deinit - Deinitialize EC point data 683 * @p: EC point data from crypto_ec_point_init() 684 * @clear: Whether to clear the EC point value from memory 685 */ 686 void crypto_ec_point_deinit(struct crypto_ec_point *p, int clear); 687 688 /** 689 * crypto_ec_point_to_bin - Write EC point value as binary data 690 * @e: EC context from crypto_ec_init() 691 * @p: EC point data from crypto_ec_point_init() 692 * @x: Buffer for writing the binary data for x coordinate or %NULL if not used 693 * @y: Buffer for writing the binary data for y coordinate or %NULL if not used 694 * Returns: 0 on success, -1 on failure 695 * 696 * This function can be used to write an EC point as binary data in a format 697 * that has the x and y coordinates in big endian byte order fields padded to 698 * the length of the prime defining the group. 699 */ 700 int crypto_ec_point_to_bin(struct crypto_ec *e, 701 const struct crypto_ec_point *point, u8 *x, u8 *y); 702 703 /** 704 * crypto_ec_point_from_bin - Create EC point from binary data 705 * @e: EC context from crypto_ec_init() 706 * @val: Binary data to read the EC point from 707 * Returns: Pointer to EC point data or %NULL on failure 708 * 709 * This function readers x and y coordinates of the EC point from the provided 710 * buffer assuming the values are in big endian byte order with fields padded to 711 * the length of the prime defining the group. 712 */ 713 struct crypto_ec_point * crypto_ec_point_from_bin(struct crypto_ec *e, 714 const u8 *val); 715 716 /** 717 * crypto_bignum_add - c = a + b 718 * @e: EC context from crypto_ec_init() 719 * @a: Bignum 720 * @b: Bignum 721 * @c: Bignum; used to store the result of a + b 722 * Returns: 0 on success, -1 on failure 723 */ 724 int crypto_ec_point_add(struct crypto_ec *e, const struct crypto_ec_point *a, 725 const struct crypto_ec_point *b, 726 struct crypto_ec_point *c); 727 728 /** 729 * crypto_bignum_mul - res = b * p 730 * @e: EC context from crypto_ec_init() 731 * @p: EC point 732 * @b: Bignum 733 * @res: EC point; used to store the result of b * p 734 * Returns: 0 on success, -1 on failure 735 */ 736 int crypto_ec_point_mul(struct crypto_ec *e, const struct crypto_ec_point *p, 737 const struct crypto_bignum *b, 738 struct crypto_ec_point *res); 739 740 /** 741 * crypto_ec_point_invert - Compute inverse of an EC point 742 * @e: EC context from crypto_ec_init() 743 * @p: EC point to invert (and result of the operation) 744 * Returns: 0 on success, -1 on failure 745 */ 746 int crypto_ec_point_invert(struct crypto_ec *e, struct crypto_ec_point *p); 747 748 /** 749 * crypto_ec_point_solve_y_coord - Solve y coordinate for an x coordinate 750 * @e: EC context from crypto_ec_init() 751 * @p: EC point to use for the returning the result 752 * @x: x coordinate 753 * @y_bit: y-bit (0 or 1) for selecting the y value to use 754 * Returns: 0 on success, -1 on failure 755 */ 756 int crypto_ec_point_solve_y_coord(struct crypto_ec *e, 757 struct crypto_ec_point *p, 758 const struct crypto_bignum *x, int y_bit); 759 760 /** 761 * crypto_ec_point_is_at_infinity - Check whether EC point is neutral element 762 * @e: EC context from crypto_ec_init() 763 * @p: EC point 764 * Returns: 1 if the specified EC point is the neutral element of the group or 765 * 0 if not 766 */ 767 int crypto_ec_point_is_at_infinity(struct crypto_ec *e, 768 const struct crypto_ec_point *p); 769 770 /** 771 * crypto_ec_point_is_on_curve - Check whether EC point is on curve 772 * @e: EC context from crypto_ec_init() 773 * @p: EC point 774 * Returns: 1 if the specified EC point is on the curve or 0 if not 775 */ 776 int crypto_ec_point_is_on_curve(struct crypto_ec *e, 777 const struct crypto_ec_point *p); 778 779 #endif /* CRYPTO_H */ 780