1 //==- ScheduleDAGInstrs.h - MachineInstr Scheduling --------------*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ScheduleDAGInstrs class, which implements 11 // scheduling for a MachineInstr-based dependency graph. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 16 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H 17 18 #include "llvm/ADT/SparseMultiSet.h" 19 #include "llvm/ADT/SparseSet.h" 20 #include "llvm/CodeGen/ScheduleDAG.h" 21 #include "llvm/CodeGen/TargetSchedule.h" 22 #include "llvm/Support/Compiler.h" 23 #include "llvm/Target/TargetRegisterInfo.h" 24 25 namespace llvm { 26 class MachineFrameInfo; 27 class MachineLoopInfo; 28 class MachineDominatorTree; 29 class LiveIntervals; 30 class RegPressureTracker; 31 class PressureDiffs; 32 33 /// An individual mapping from virtual register number to SUnit. 34 struct VReg2SUnit { 35 unsigned VirtReg; 36 SUnit *SU; 37 VReg2SUnitVReg2SUnit38 VReg2SUnit(unsigned reg, SUnit *su): VirtReg(reg), SU(su) {} 39 getSparseSetIndexVReg2SUnit40 unsigned getSparseSetIndex() const { 41 return TargetRegisterInfo::virtReg2Index(VirtReg); 42 } 43 }; 44 45 /// Record a physical register access. 46 /// For non-data-dependent uses, OpIdx == -1. 47 struct PhysRegSUOper { 48 SUnit *SU; 49 int OpIdx; 50 unsigned Reg; 51 PhysRegSUOperPhysRegSUOper52 PhysRegSUOper(SUnit *su, int op, unsigned R): SU(su), OpIdx(op), Reg(R) {} 53 getSparseSetIndexPhysRegSUOper54 unsigned getSparseSetIndex() const { return Reg; } 55 }; 56 57 /// Use a SparseMultiSet to track physical registers. Storage is only 58 /// allocated once for the pass. It can be cleared in constant time and reused 59 /// without any frees. 60 typedef SparseMultiSet<PhysRegSUOper, llvm::identity<unsigned>, uint16_t> 61 Reg2SUnitsMap; 62 63 /// Use SparseSet as a SparseMap by relying on the fact that it never 64 /// compares ValueT's, only unsigned keys. This allows the set to be cleared 65 /// between scheduling regions in constant time as long as ValueT does not 66 /// require a destructor. 67 typedef SparseSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2SUnitMap; 68 69 /// Track local uses of virtual registers. These uses are gathered by the DAG 70 /// builder and may be consulted by the scheduler to avoid iterating an entire 71 /// vreg use list. 72 typedef SparseMultiSet<VReg2SUnit, VirtReg2IndexFunctor> VReg2UseMap; 73 74 /// ScheduleDAGInstrs - A ScheduleDAG subclass for scheduling lists of 75 /// MachineInstrs. 76 class ScheduleDAGInstrs : public ScheduleDAG { 77 protected: 78 const MachineLoopInfo &MLI; 79 const MachineDominatorTree &MDT; 80 const MachineFrameInfo *MFI; 81 82 /// Live Intervals provides reaching defs in preRA scheduling. 83 LiveIntervals *LIS; 84 85 /// TargetSchedModel provides an interface to the machine model. 86 TargetSchedModel SchedModel; 87 88 /// isPostRA flag indicates vregs cannot be present. 89 bool IsPostRA; 90 91 /// True if the DAG builder should remove kill flags (in preparation for 92 /// rescheduling). 93 bool RemoveKillFlags; 94 95 /// The standard DAG builder does not normally include terminators as DAG 96 /// nodes because it does not create the necessary dependencies to prevent 97 /// reordering. A specialized scheduler can override 98 /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate 99 /// it has taken responsibility for scheduling the terminator correctly. 100 bool CanHandleTerminators; 101 102 /// State specific to the current scheduling region. 103 /// ------------------------------------------------ 104 105 /// The block in which to insert instructions 106 MachineBasicBlock *BB; 107 108 /// The beginning of the range to be scheduled. 109 MachineBasicBlock::iterator RegionBegin; 110 111 /// The end of the range to be scheduled. 112 MachineBasicBlock::iterator RegionEnd; 113 114 /// Instructions in this region (distance(RegionBegin, RegionEnd)). 115 unsigned NumRegionInstrs; 116 117 /// After calling BuildSchedGraph, each machine instruction in the current 118 /// scheduling region is mapped to an SUnit. 119 DenseMap<MachineInstr*, SUnit*> MISUnitMap; 120 121 /// After calling BuildSchedGraph, each vreg used in the scheduling region 122 /// is mapped to a set of SUnits. These include all local vreg uses, not 123 /// just the uses for a singly defined vreg. 124 VReg2UseMap VRegUses; 125 126 /// State internal to DAG building. 127 /// ------------------------------- 128 129 /// Defs, Uses - Remember where defs and uses of each register are as we 130 /// iterate upward through the instructions. This is allocated here instead 131 /// of inside BuildSchedGraph to avoid the need for it to be initialized and 132 /// destructed for each block. 133 Reg2SUnitsMap Defs; 134 Reg2SUnitsMap Uses; 135 136 /// Track the last instruction in this region defining each virtual register. 137 VReg2SUnitMap VRegDefs; 138 139 /// PendingLoads - Remember where unknown loads are after the most recent 140 /// unknown store, as we iterate. As with Defs and Uses, this is here 141 /// to minimize construction/destruction. 142 std::vector<SUnit *> PendingLoads; 143 144 /// DbgValues - Remember instruction that precedes DBG_VALUE. 145 /// These are generated by buildSchedGraph but persist so they can be 146 /// referenced when emitting the final schedule. 147 typedef std::vector<std::pair<MachineInstr *, MachineInstr *> > 148 DbgValueVector; 149 DbgValueVector DbgValues; 150 MachineInstr *FirstDbgValue; 151 152 /// Set of live physical registers for updating kill flags. 153 BitVector LiveRegs; 154 155 public: 156 explicit ScheduleDAGInstrs(MachineFunction &mf, 157 const MachineLoopInfo &mli, 158 const MachineDominatorTree &mdt, 159 bool IsPostRAFlag, 160 bool RemoveKillFlags = false, 161 LiveIntervals *LIS = nullptr); 162 ~ScheduleDAGInstrs()163 virtual ~ScheduleDAGInstrs() {} 164 isPostRA()165 bool isPostRA() const { return IsPostRA; } 166 167 /// \brief Expose LiveIntervals for use in DAG mutators and such. getLIS()168 LiveIntervals *getLIS() const { return LIS; } 169 170 /// \brief Get the machine model for instruction scheduling. getSchedModel()171 const TargetSchedModel *getSchedModel() const { return &SchedModel; } 172 173 /// \brief Resolve and cache a resolved scheduling class for an SUnit. getSchedClass(SUnit * SU)174 const MCSchedClassDesc *getSchedClass(SUnit *SU) const { 175 if (!SU->SchedClass && SchedModel.hasInstrSchedModel()) 176 SU->SchedClass = SchedModel.resolveSchedClass(SU->getInstr()); 177 return SU->SchedClass; 178 } 179 180 /// begin - Return an iterator to the top of the current scheduling region. begin()181 MachineBasicBlock::iterator begin() const { return RegionBegin; } 182 183 /// end - Return an iterator to the bottom of the current scheduling region. end()184 MachineBasicBlock::iterator end() const { return RegionEnd; } 185 186 /// newSUnit - Creates a new SUnit and return a ptr to it. 187 SUnit *newSUnit(MachineInstr *MI); 188 189 /// getSUnit - Return an existing SUnit for this MI, or NULL. 190 SUnit *getSUnit(MachineInstr *MI) const; 191 192 /// startBlock - Prepare to perform scheduling in the given block. 193 virtual void startBlock(MachineBasicBlock *BB); 194 195 /// finishBlock - Clean up after scheduling in the given block. 196 virtual void finishBlock(); 197 198 /// Initialize the scheduler state for the next scheduling region. 199 virtual void enterRegion(MachineBasicBlock *bb, 200 MachineBasicBlock::iterator begin, 201 MachineBasicBlock::iterator end, 202 unsigned regioninstrs); 203 204 /// Notify that the scheduler has finished scheduling the current region. 205 virtual void exitRegion(); 206 207 /// buildSchedGraph - Build SUnits from the MachineBasicBlock that we are 208 /// input. 209 void buildSchedGraph(AliasAnalysis *AA, 210 RegPressureTracker *RPTracker = nullptr, 211 PressureDiffs *PDiffs = nullptr); 212 213 /// addSchedBarrierDeps - Add dependencies from instructions in the current 214 /// list of instructions being scheduled to scheduling barrier. We want to 215 /// make sure instructions which define registers that are either used by 216 /// the terminator or are live-out are properly scheduled. This is 217 /// especially important when the definition latency of the return value(s) 218 /// are too high to be hidden by the branch or when the liveout registers 219 /// used by instructions in the fallthrough block. 220 void addSchedBarrierDeps(); 221 222 /// schedule - Order nodes according to selected style, filling 223 /// in the Sequence member. 224 /// 225 /// Typically, a scheduling algorithm will implement schedule() without 226 /// overriding enterRegion() or exitRegion(). 227 virtual void schedule() = 0; 228 229 /// finalizeSchedule - Allow targets to perform final scheduling actions at 230 /// the level of the whole MachineFunction. By default does nothing. finalizeSchedule()231 virtual void finalizeSchedule() {} 232 233 void dumpNode(const SUnit *SU) const override; 234 235 /// Return a label for a DAG node that points to an instruction. 236 std::string getGraphNodeLabel(const SUnit *SU) const override; 237 238 /// Return a label for the region of code covered by the DAG. 239 std::string getDAGName() const override; 240 241 /// \brief Fix register kill flags that scheduling has made invalid. 242 void fixupKills(MachineBasicBlock *MBB); 243 protected: 244 void initSUnits(); 245 void addPhysRegDataDeps(SUnit *SU, unsigned OperIdx); 246 void addPhysRegDeps(SUnit *SU, unsigned OperIdx); 247 void addVRegDefDeps(SUnit *SU, unsigned OperIdx); 248 void addVRegUseDeps(SUnit *SU, unsigned OperIdx); 249 250 /// \brief PostRA helper for rewriting kill flags. 251 void startBlockForKills(MachineBasicBlock *BB); 252 253 /// \brief Toggle a register operand kill flag. 254 /// 255 /// Other adjustments may be made to the instruction if necessary. Return 256 /// true if the operand has been deleted, false if not. 257 bool toggleKillFlag(MachineInstr *MI, MachineOperand &MO); 258 }; 259 260 /// newSUnit - Creates a new SUnit and return a ptr to it. newSUnit(MachineInstr * MI)261 inline SUnit *ScheduleDAGInstrs::newSUnit(MachineInstr *MI) { 262 #ifndef NDEBUG 263 const SUnit *Addr = SUnits.empty() ? nullptr : &SUnits[0]; 264 #endif 265 SUnits.push_back(SUnit(MI, (unsigned)SUnits.size())); 266 assert((Addr == nullptr || Addr == &SUnits[0]) && 267 "SUnits std::vector reallocated on the fly!"); 268 SUnits.back().OrigNode = &SUnits.back(); 269 return &SUnits.back(); 270 } 271 272 /// getSUnit - Return an existing SUnit for this MI, or NULL. getSUnit(MachineInstr * MI)273 inline SUnit *ScheduleDAGInstrs::getSUnit(MachineInstr *MI) const { 274 DenseMap<MachineInstr*, SUnit*>::const_iterator I = MISUnitMap.find(MI); 275 if (I == MISUnitMap.end()) 276 return nullptr; 277 return I->second; 278 } 279 } // namespace llvm 280 281 #endif 282