1 //===--- SemaStmt.cpp - Semantic Analysis for Statements ------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements semantic analysis for statements.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "clang/AST/ASTContext.h"
16 #include "clang/AST/ASTDiagnostic.h"
17 #include "clang/AST/CharUnits.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/EvaluatedExprVisitor.h"
20 #include "clang/AST/ExprCXX.h"
21 #include "clang/AST/ExprObjC.h"
22 #include "clang/AST/StmtCXX.h"
23 #include "clang/AST/StmtObjC.h"
24 #include "clang/AST/TypeLoc.h"
25 #include "clang/Lex/Preprocessor.h"
26 #include "clang/Sema/Initialization.h"
27 #include "clang/Sema/Lookup.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/ScopeInfo.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/SmallVector.h"
35 using namespace clang;
36 using namespace sema;
37
ActOnExprStmt(ExprResult FE)38 StmtResult Sema::ActOnExprStmt(ExprResult FE) {
39 if (FE.isInvalid())
40 return StmtError();
41
42 FE = ActOnFinishFullExpr(FE.get(), FE.get()->getExprLoc(),
43 /*DiscardedValue*/ true);
44 if (FE.isInvalid())
45 return StmtError();
46
47 // C99 6.8.3p2: The expression in an expression statement is evaluated as a
48 // void expression for its side effects. Conversion to void allows any
49 // operand, even incomplete types.
50
51 // Same thing in for stmt first clause (when expr) and third clause.
52 return StmtResult(FE.getAs<Stmt>());
53 }
54
55
ActOnExprStmtError()56 StmtResult Sema::ActOnExprStmtError() {
57 DiscardCleanupsInEvaluationContext();
58 return StmtError();
59 }
60
ActOnNullStmt(SourceLocation SemiLoc,bool HasLeadingEmptyMacro)61 StmtResult Sema::ActOnNullStmt(SourceLocation SemiLoc,
62 bool HasLeadingEmptyMacro) {
63 return new (Context) NullStmt(SemiLoc, HasLeadingEmptyMacro);
64 }
65
ActOnDeclStmt(DeclGroupPtrTy dg,SourceLocation StartLoc,SourceLocation EndLoc)66 StmtResult Sema::ActOnDeclStmt(DeclGroupPtrTy dg, SourceLocation StartLoc,
67 SourceLocation EndLoc) {
68 DeclGroupRef DG = dg.get();
69
70 // If we have an invalid decl, just return an error.
71 if (DG.isNull()) return StmtError();
72
73 return new (Context) DeclStmt(DG, StartLoc, EndLoc);
74 }
75
ActOnForEachDeclStmt(DeclGroupPtrTy dg)76 void Sema::ActOnForEachDeclStmt(DeclGroupPtrTy dg) {
77 DeclGroupRef DG = dg.get();
78
79 // If we don't have a declaration, or we have an invalid declaration,
80 // just return.
81 if (DG.isNull() || !DG.isSingleDecl())
82 return;
83
84 Decl *decl = DG.getSingleDecl();
85 if (!decl || decl->isInvalidDecl())
86 return;
87
88 // Only variable declarations are permitted.
89 VarDecl *var = dyn_cast<VarDecl>(decl);
90 if (!var) {
91 Diag(decl->getLocation(), diag::err_non_variable_decl_in_for);
92 decl->setInvalidDecl();
93 return;
94 }
95
96 // foreach variables are never actually initialized in the way that
97 // the parser came up with.
98 var->setInit(nullptr);
99
100 // In ARC, we don't need to retain the iteration variable of a fast
101 // enumeration loop. Rather than actually trying to catch that
102 // during declaration processing, we remove the consequences here.
103 if (getLangOpts().ObjCAutoRefCount) {
104 QualType type = var->getType();
105
106 // Only do this if we inferred the lifetime. Inferred lifetime
107 // will show up as a local qualifier because explicit lifetime
108 // should have shown up as an AttributedType instead.
109 if (type.getLocalQualifiers().getObjCLifetime() == Qualifiers::OCL_Strong) {
110 // Add 'const' and mark the variable as pseudo-strong.
111 var->setType(type.withConst());
112 var->setARCPseudoStrong(true);
113 }
114 }
115 }
116
117 /// \brief Diagnose unused comparisons, both builtin and overloaded operators.
118 /// For '==' and '!=', suggest fixits for '=' or '|='.
119 ///
120 /// Adding a cast to void (or other expression wrappers) will prevent the
121 /// warning from firing.
DiagnoseUnusedComparison(Sema & S,const Expr * E)122 static bool DiagnoseUnusedComparison(Sema &S, const Expr *E) {
123 SourceLocation Loc;
124 bool IsNotEqual, CanAssign, IsRelational;
125
126 if (const BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
127 if (!Op->isComparisonOp())
128 return false;
129
130 IsRelational = Op->isRelationalOp();
131 Loc = Op->getOperatorLoc();
132 IsNotEqual = Op->getOpcode() == BO_NE;
133 CanAssign = Op->getLHS()->IgnoreParenImpCasts()->isLValue();
134 } else if (const CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
135 switch (Op->getOperator()) {
136 default:
137 return false;
138 case OO_EqualEqual:
139 case OO_ExclaimEqual:
140 IsRelational = false;
141 break;
142 case OO_Less:
143 case OO_Greater:
144 case OO_GreaterEqual:
145 case OO_LessEqual:
146 IsRelational = true;
147 break;
148 }
149
150 Loc = Op->getOperatorLoc();
151 IsNotEqual = Op->getOperator() == OO_ExclaimEqual;
152 CanAssign = Op->getArg(0)->IgnoreParenImpCasts()->isLValue();
153 } else {
154 // Not a typo-prone comparison.
155 return false;
156 }
157
158 // Suppress warnings when the operator, suspicious as it may be, comes from
159 // a macro expansion.
160 if (S.SourceMgr.isMacroBodyExpansion(Loc))
161 return false;
162
163 S.Diag(Loc, diag::warn_unused_comparison)
164 << (unsigned)IsRelational << (unsigned)IsNotEqual << E->getSourceRange();
165
166 // If the LHS is a plausible entity to assign to, provide a fixit hint to
167 // correct common typos.
168 if (!IsRelational && CanAssign) {
169 if (IsNotEqual)
170 S.Diag(Loc, diag::note_inequality_comparison_to_or_assign)
171 << FixItHint::CreateReplacement(Loc, "|=");
172 else
173 S.Diag(Loc, diag::note_equality_comparison_to_assign)
174 << FixItHint::CreateReplacement(Loc, "=");
175 }
176
177 return true;
178 }
179
DiagnoseUnusedExprResult(const Stmt * S)180 void Sema::DiagnoseUnusedExprResult(const Stmt *S) {
181 if (const LabelStmt *Label = dyn_cast_or_null<LabelStmt>(S))
182 return DiagnoseUnusedExprResult(Label->getSubStmt());
183
184 const Expr *E = dyn_cast_or_null<Expr>(S);
185 if (!E)
186 return;
187 SourceLocation ExprLoc = E->IgnoreParens()->getExprLoc();
188 // In most cases, we don't want to warn if the expression is written in a
189 // macro body, or if the macro comes from a system header. If the offending
190 // expression is a call to a function with the warn_unused_result attribute,
191 // we warn no matter the location. Because of the order in which the various
192 // checks need to happen, we factor out the macro-related test here.
193 bool ShouldSuppress =
194 SourceMgr.isMacroBodyExpansion(ExprLoc) ||
195 SourceMgr.isInSystemMacro(ExprLoc);
196
197 const Expr *WarnExpr;
198 SourceLocation Loc;
199 SourceRange R1, R2;
200 if (!E->isUnusedResultAWarning(WarnExpr, Loc, R1, R2, Context))
201 return;
202
203 // If this is a GNU statement expression expanded from a macro, it is probably
204 // unused because it is a function-like macro that can be used as either an
205 // expression or statement. Don't warn, because it is almost certainly a
206 // false positive.
207 if (isa<StmtExpr>(E) && Loc.isMacroID())
208 return;
209
210 // Okay, we have an unused result. Depending on what the base expression is,
211 // we might want to make a more specific diagnostic. Check for one of these
212 // cases now.
213 unsigned DiagID = diag::warn_unused_expr;
214 if (const ExprWithCleanups *Temps = dyn_cast<ExprWithCleanups>(E))
215 E = Temps->getSubExpr();
216 if (const CXXBindTemporaryExpr *TempExpr = dyn_cast<CXXBindTemporaryExpr>(E))
217 E = TempExpr->getSubExpr();
218
219 if (DiagnoseUnusedComparison(*this, E))
220 return;
221
222 E = WarnExpr;
223 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
224 if (E->getType()->isVoidType())
225 return;
226
227 // If the callee has attribute pure, const, or warn_unused_result, warn with
228 // a more specific message to make it clear what is happening. If the call
229 // is written in a macro body, only warn if it has the warn_unused_result
230 // attribute.
231 if (const Decl *FD = CE->getCalleeDecl()) {
232 if (FD->hasAttr<WarnUnusedResultAttr>()) {
233 Diag(Loc, diag::warn_unused_result) << R1 << R2;
234 return;
235 }
236 if (ShouldSuppress)
237 return;
238 if (FD->hasAttr<PureAttr>()) {
239 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "pure";
240 return;
241 }
242 if (FD->hasAttr<ConstAttr>()) {
243 Diag(Loc, diag::warn_unused_call) << R1 << R2 << "const";
244 return;
245 }
246 }
247 } else if (ShouldSuppress)
248 return;
249
250 if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(E)) {
251 if (getLangOpts().ObjCAutoRefCount && ME->isDelegateInitCall()) {
252 Diag(Loc, diag::err_arc_unused_init_message) << R1;
253 return;
254 }
255 const ObjCMethodDecl *MD = ME->getMethodDecl();
256 if (MD && MD->hasAttr<WarnUnusedResultAttr>()) {
257 Diag(Loc, diag::warn_unused_result) << R1 << R2;
258 return;
259 }
260 } else if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
261 const Expr *Source = POE->getSyntacticForm();
262 if (isa<ObjCSubscriptRefExpr>(Source))
263 DiagID = diag::warn_unused_container_subscript_expr;
264 else
265 DiagID = diag::warn_unused_property_expr;
266 } else if (const CXXFunctionalCastExpr *FC
267 = dyn_cast<CXXFunctionalCastExpr>(E)) {
268 if (isa<CXXConstructExpr>(FC->getSubExpr()) ||
269 isa<CXXTemporaryObjectExpr>(FC->getSubExpr()))
270 return;
271 }
272 // Diagnose "(void*) blah" as a typo for "(void) blah".
273 else if (const CStyleCastExpr *CE = dyn_cast<CStyleCastExpr>(E)) {
274 TypeSourceInfo *TI = CE->getTypeInfoAsWritten();
275 QualType T = TI->getType();
276
277 // We really do want to use the non-canonical type here.
278 if (T == Context.VoidPtrTy) {
279 PointerTypeLoc TL = TI->getTypeLoc().castAs<PointerTypeLoc>();
280
281 Diag(Loc, diag::warn_unused_voidptr)
282 << FixItHint::CreateRemoval(TL.getStarLoc());
283 return;
284 }
285 }
286
287 if (E->isGLValue() && E->getType().isVolatileQualified()) {
288 Diag(Loc, diag::warn_unused_volatile) << R1 << R2;
289 return;
290 }
291
292 DiagRuntimeBehavior(Loc, nullptr, PDiag(DiagID) << R1 << R2);
293 }
294
ActOnStartOfCompoundStmt()295 void Sema::ActOnStartOfCompoundStmt() {
296 PushCompoundScope();
297 }
298
ActOnFinishOfCompoundStmt()299 void Sema::ActOnFinishOfCompoundStmt() {
300 PopCompoundScope();
301 }
302
getCurCompoundScope() const303 sema::CompoundScopeInfo &Sema::getCurCompoundScope() const {
304 return getCurFunction()->CompoundScopes.back();
305 }
306
ActOnCompoundStmt(SourceLocation L,SourceLocation R,ArrayRef<Stmt * > Elts,bool isStmtExpr)307 StmtResult Sema::ActOnCompoundStmt(SourceLocation L, SourceLocation R,
308 ArrayRef<Stmt *> Elts, bool isStmtExpr) {
309 const unsigned NumElts = Elts.size();
310
311 // If we're in C89 mode, check that we don't have any decls after stmts. If
312 // so, emit an extension diagnostic.
313 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus) {
314 // Note that __extension__ can be around a decl.
315 unsigned i = 0;
316 // Skip over all declarations.
317 for (; i != NumElts && isa<DeclStmt>(Elts[i]); ++i)
318 /*empty*/;
319
320 // We found the end of the list or a statement. Scan for another declstmt.
321 for (; i != NumElts && !isa<DeclStmt>(Elts[i]); ++i)
322 /*empty*/;
323
324 if (i != NumElts) {
325 Decl *D = *cast<DeclStmt>(Elts[i])->decl_begin();
326 Diag(D->getLocation(), diag::ext_mixed_decls_code);
327 }
328 }
329 // Warn about unused expressions in statements.
330 for (unsigned i = 0; i != NumElts; ++i) {
331 // Ignore statements that are last in a statement expression.
332 if (isStmtExpr && i == NumElts - 1)
333 continue;
334
335 DiagnoseUnusedExprResult(Elts[i]);
336 }
337
338 // Check for suspicious empty body (null statement) in `for' and `while'
339 // statements. Don't do anything for template instantiations, this just adds
340 // noise.
341 if (NumElts != 0 && !CurrentInstantiationScope &&
342 getCurCompoundScope().HasEmptyLoopBodies) {
343 for (unsigned i = 0; i != NumElts - 1; ++i)
344 DiagnoseEmptyLoopBody(Elts[i], Elts[i + 1]);
345 }
346
347 return new (Context) CompoundStmt(Context, Elts, L, R);
348 }
349
350 StmtResult
ActOnCaseStmt(SourceLocation CaseLoc,Expr * LHSVal,SourceLocation DotDotDotLoc,Expr * RHSVal,SourceLocation ColonLoc)351 Sema::ActOnCaseStmt(SourceLocation CaseLoc, Expr *LHSVal,
352 SourceLocation DotDotDotLoc, Expr *RHSVal,
353 SourceLocation ColonLoc) {
354 assert(LHSVal && "missing expression in case statement");
355
356 if (getCurFunction()->SwitchStack.empty()) {
357 Diag(CaseLoc, diag::err_case_not_in_switch);
358 return StmtError();
359 }
360
361 if (!getLangOpts().CPlusPlus11) {
362 // C99 6.8.4.2p3: The expression shall be an integer constant.
363 // However, GCC allows any evaluatable integer expression.
364 if (!LHSVal->isTypeDependent() && !LHSVal->isValueDependent()) {
365 LHSVal = VerifyIntegerConstantExpression(LHSVal).get();
366 if (!LHSVal)
367 return StmtError();
368 }
369
370 // GCC extension: The expression shall be an integer constant.
371
372 if (RHSVal && !RHSVal->isTypeDependent() && !RHSVal->isValueDependent()) {
373 RHSVal = VerifyIntegerConstantExpression(RHSVal).get();
374 // Recover from an error by just forgetting about it.
375 }
376 }
377
378 LHSVal = ActOnFinishFullExpr(LHSVal, LHSVal->getExprLoc(), false,
379 getLangOpts().CPlusPlus11).get();
380 if (RHSVal)
381 RHSVal = ActOnFinishFullExpr(RHSVal, RHSVal->getExprLoc(), false,
382 getLangOpts().CPlusPlus11).get();
383
384 CaseStmt *CS = new (Context) CaseStmt(LHSVal, RHSVal, CaseLoc, DotDotDotLoc,
385 ColonLoc);
386 getCurFunction()->SwitchStack.back()->addSwitchCase(CS);
387 return CS;
388 }
389
390 /// ActOnCaseStmtBody - This installs a statement as the body of a case.
ActOnCaseStmtBody(Stmt * caseStmt,Stmt * SubStmt)391 void Sema::ActOnCaseStmtBody(Stmt *caseStmt, Stmt *SubStmt) {
392 DiagnoseUnusedExprResult(SubStmt);
393
394 CaseStmt *CS = static_cast<CaseStmt*>(caseStmt);
395 CS->setSubStmt(SubStmt);
396 }
397
398 StmtResult
ActOnDefaultStmt(SourceLocation DefaultLoc,SourceLocation ColonLoc,Stmt * SubStmt,Scope * CurScope)399 Sema::ActOnDefaultStmt(SourceLocation DefaultLoc, SourceLocation ColonLoc,
400 Stmt *SubStmt, Scope *CurScope) {
401 DiagnoseUnusedExprResult(SubStmt);
402
403 if (getCurFunction()->SwitchStack.empty()) {
404 Diag(DefaultLoc, diag::err_default_not_in_switch);
405 return SubStmt;
406 }
407
408 DefaultStmt *DS = new (Context) DefaultStmt(DefaultLoc, ColonLoc, SubStmt);
409 getCurFunction()->SwitchStack.back()->addSwitchCase(DS);
410 return DS;
411 }
412
413 StmtResult
ActOnLabelStmt(SourceLocation IdentLoc,LabelDecl * TheDecl,SourceLocation ColonLoc,Stmt * SubStmt)414 Sema::ActOnLabelStmt(SourceLocation IdentLoc, LabelDecl *TheDecl,
415 SourceLocation ColonLoc, Stmt *SubStmt) {
416 // If the label was multiply defined, reject it now.
417 if (TheDecl->getStmt()) {
418 Diag(IdentLoc, diag::err_redefinition_of_label) << TheDecl->getDeclName();
419 Diag(TheDecl->getLocation(), diag::note_previous_definition);
420 return SubStmt;
421 }
422
423 // Otherwise, things are good. Fill in the declaration and return it.
424 LabelStmt *LS = new (Context) LabelStmt(IdentLoc, TheDecl, SubStmt);
425 TheDecl->setStmt(LS);
426 if (!TheDecl->isGnuLocal()) {
427 TheDecl->setLocStart(IdentLoc);
428 TheDecl->setLocation(IdentLoc);
429 }
430 return LS;
431 }
432
ActOnAttributedStmt(SourceLocation AttrLoc,ArrayRef<const Attr * > Attrs,Stmt * SubStmt)433 StmtResult Sema::ActOnAttributedStmt(SourceLocation AttrLoc,
434 ArrayRef<const Attr*> Attrs,
435 Stmt *SubStmt) {
436 // Fill in the declaration and return it.
437 AttributedStmt *LS = AttributedStmt::Create(Context, AttrLoc, Attrs, SubStmt);
438 return LS;
439 }
440
441 StmtResult
ActOnIfStmt(SourceLocation IfLoc,FullExprArg CondVal,Decl * CondVar,Stmt * thenStmt,SourceLocation ElseLoc,Stmt * elseStmt)442 Sema::ActOnIfStmt(SourceLocation IfLoc, FullExprArg CondVal, Decl *CondVar,
443 Stmt *thenStmt, SourceLocation ElseLoc,
444 Stmt *elseStmt) {
445 // If the condition was invalid, discard the if statement. We could recover
446 // better by replacing it with a valid expr, but don't do that yet.
447 if (!CondVal.get() && !CondVar) {
448 getCurFunction()->setHasDroppedStmt();
449 return StmtError();
450 }
451
452 ExprResult CondResult(CondVal.release());
453
454 VarDecl *ConditionVar = nullptr;
455 if (CondVar) {
456 ConditionVar = cast<VarDecl>(CondVar);
457 CondResult = CheckConditionVariable(ConditionVar, IfLoc, true);
458 if (CondResult.isInvalid())
459 return StmtError();
460 }
461 Expr *ConditionExpr = CondResult.getAs<Expr>();
462 if (!ConditionExpr)
463 return StmtError();
464
465 DiagnoseUnusedExprResult(thenStmt);
466
467 if (!elseStmt) {
468 DiagnoseEmptyStmtBody(ConditionExpr->getLocEnd(), thenStmt,
469 diag::warn_empty_if_body);
470 }
471
472 DiagnoseUnusedExprResult(elseStmt);
473
474 return new (Context) IfStmt(Context, IfLoc, ConditionVar, ConditionExpr,
475 thenStmt, ElseLoc, elseStmt);
476 }
477
478 /// ConvertIntegerToTypeWarnOnOverflow - Convert the specified APInt to have
479 /// the specified width and sign. If an overflow occurs, detect it and emit
480 /// the specified diagnostic.
ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt & Val,unsigned NewWidth,bool NewSign,SourceLocation Loc,unsigned DiagID)481 void Sema::ConvertIntegerToTypeWarnOnOverflow(llvm::APSInt &Val,
482 unsigned NewWidth, bool NewSign,
483 SourceLocation Loc,
484 unsigned DiagID) {
485 // Perform a conversion to the promoted condition type if needed.
486 if (NewWidth > Val.getBitWidth()) {
487 // If this is an extension, just do it.
488 Val = Val.extend(NewWidth);
489 Val.setIsSigned(NewSign);
490
491 // If the input was signed and negative and the output is
492 // unsigned, don't bother to warn: this is implementation-defined
493 // behavior.
494 // FIXME: Introduce a second, default-ignored warning for this case?
495 } else if (NewWidth < Val.getBitWidth()) {
496 // If this is a truncation, check for overflow.
497 llvm::APSInt ConvVal(Val);
498 ConvVal = ConvVal.trunc(NewWidth);
499 ConvVal.setIsSigned(NewSign);
500 ConvVal = ConvVal.extend(Val.getBitWidth());
501 ConvVal.setIsSigned(Val.isSigned());
502 if (ConvVal != Val)
503 Diag(Loc, DiagID) << Val.toString(10) << ConvVal.toString(10);
504
505 // Regardless of whether a diagnostic was emitted, really do the
506 // truncation.
507 Val = Val.trunc(NewWidth);
508 Val.setIsSigned(NewSign);
509 } else if (NewSign != Val.isSigned()) {
510 // Convert the sign to match the sign of the condition. This can cause
511 // overflow as well: unsigned(INTMIN)
512 // We don't diagnose this overflow, because it is implementation-defined
513 // behavior.
514 // FIXME: Introduce a second, default-ignored warning for this case?
515 Val.setIsSigned(NewSign);
516 }
517 }
518
519 namespace {
520 struct CaseCompareFunctor {
operator ()__anon199a60c30111::CaseCompareFunctor521 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
522 const llvm::APSInt &RHS) {
523 return LHS.first < RHS;
524 }
operator ()__anon199a60c30111::CaseCompareFunctor525 bool operator()(const std::pair<llvm::APSInt, CaseStmt*> &LHS,
526 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
527 return LHS.first < RHS.first;
528 }
operator ()__anon199a60c30111::CaseCompareFunctor529 bool operator()(const llvm::APSInt &LHS,
530 const std::pair<llvm::APSInt, CaseStmt*> &RHS) {
531 return LHS < RHS.first;
532 }
533 };
534 }
535
536 /// CmpCaseVals - Comparison predicate for sorting case values.
537 ///
CmpCaseVals(const std::pair<llvm::APSInt,CaseStmt * > & lhs,const std::pair<llvm::APSInt,CaseStmt * > & rhs)538 static bool CmpCaseVals(const std::pair<llvm::APSInt, CaseStmt*>& lhs,
539 const std::pair<llvm::APSInt, CaseStmt*>& rhs) {
540 if (lhs.first < rhs.first)
541 return true;
542
543 if (lhs.first == rhs.first &&
544 lhs.second->getCaseLoc().getRawEncoding()
545 < rhs.second->getCaseLoc().getRawEncoding())
546 return true;
547 return false;
548 }
549
550 /// CmpEnumVals - Comparison predicate for sorting enumeration values.
551 ///
CmpEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)552 static bool CmpEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
553 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
554 {
555 return lhs.first < rhs.first;
556 }
557
558 /// EqEnumVals - Comparison preficate for uniqing enumeration values.
559 ///
EqEnumVals(const std::pair<llvm::APSInt,EnumConstantDecl * > & lhs,const std::pair<llvm::APSInt,EnumConstantDecl * > & rhs)560 static bool EqEnumVals(const std::pair<llvm::APSInt, EnumConstantDecl*>& lhs,
561 const std::pair<llvm::APSInt, EnumConstantDecl*>& rhs)
562 {
563 return lhs.first == rhs.first;
564 }
565
566 /// GetTypeBeforeIntegralPromotion - Returns the pre-promotion type of
567 /// potentially integral-promoted expression @p expr.
GetTypeBeforeIntegralPromotion(Expr * & expr)568 static QualType GetTypeBeforeIntegralPromotion(Expr *&expr) {
569 if (ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(expr))
570 expr = cleanups->getSubExpr();
571 while (ImplicitCastExpr *impcast = dyn_cast<ImplicitCastExpr>(expr)) {
572 if (impcast->getCastKind() != CK_IntegralCast) break;
573 expr = impcast->getSubExpr();
574 }
575 return expr->getType();
576 }
577
578 StmtResult
ActOnStartOfSwitchStmt(SourceLocation SwitchLoc,Expr * Cond,Decl * CondVar)579 Sema::ActOnStartOfSwitchStmt(SourceLocation SwitchLoc, Expr *Cond,
580 Decl *CondVar) {
581 ExprResult CondResult;
582
583 VarDecl *ConditionVar = nullptr;
584 if (CondVar) {
585 ConditionVar = cast<VarDecl>(CondVar);
586 CondResult = CheckConditionVariable(ConditionVar, SourceLocation(), false);
587 if (CondResult.isInvalid())
588 return StmtError();
589
590 Cond = CondResult.get();
591 }
592
593 if (!Cond)
594 return StmtError();
595
596 class SwitchConvertDiagnoser : public ICEConvertDiagnoser {
597 Expr *Cond;
598
599 public:
600 SwitchConvertDiagnoser(Expr *Cond)
601 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/true, false, true),
602 Cond(Cond) {}
603
604 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
605 QualType T) override {
606 return S.Diag(Loc, diag::err_typecheck_statement_requires_integer) << T;
607 }
608
609 SemaDiagnosticBuilder diagnoseIncomplete(
610 Sema &S, SourceLocation Loc, QualType T) override {
611 return S.Diag(Loc, diag::err_switch_incomplete_class_type)
612 << T << Cond->getSourceRange();
613 }
614
615 SemaDiagnosticBuilder diagnoseExplicitConv(
616 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
617 return S.Diag(Loc, diag::err_switch_explicit_conversion) << T << ConvTy;
618 }
619
620 SemaDiagnosticBuilder noteExplicitConv(
621 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
622 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
623 << ConvTy->isEnumeralType() << ConvTy;
624 }
625
626 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc,
627 QualType T) override {
628 return S.Diag(Loc, diag::err_switch_multiple_conversions) << T;
629 }
630
631 SemaDiagnosticBuilder noteAmbiguous(
632 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
633 return S.Diag(Conv->getLocation(), diag::note_switch_conversion)
634 << ConvTy->isEnumeralType() << ConvTy;
635 }
636
637 SemaDiagnosticBuilder diagnoseConversion(
638 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
639 llvm_unreachable("conversion functions are permitted");
640 }
641 } SwitchDiagnoser(Cond);
642
643 CondResult =
644 PerformContextualImplicitConversion(SwitchLoc, Cond, SwitchDiagnoser);
645 if (CondResult.isInvalid()) return StmtError();
646 Cond = CondResult.get();
647
648 // C99 6.8.4.2p5 - Integer promotions are performed on the controlling expr.
649 CondResult = UsualUnaryConversions(Cond);
650 if (CondResult.isInvalid()) return StmtError();
651 Cond = CondResult.get();
652
653 if (!CondVar) {
654 CondResult = ActOnFinishFullExpr(Cond, SwitchLoc);
655 if (CondResult.isInvalid())
656 return StmtError();
657 Cond = CondResult.get();
658 }
659
660 getCurFunction()->setHasBranchIntoScope();
661
662 SwitchStmt *SS = new (Context) SwitchStmt(Context, ConditionVar, Cond);
663 getCurFunction()->SwitchStack.push_back(SS);
664 return SS;
665 }
666
AdjustAPSInt(llvm::APSInt & Val,unsigned BitWidth,bool IsSigned)667 static void AdjustAPSInt(llvm::APSInt &Val, unsigned BitWidth, bool IsSigned) {
668 if (Val.getBitWidth() < BitWidth)
669 Val = Val.extend(BitWidth);
670 else if (Val.getBitWidth() > BitWidth)
671 Val = Val.trunc(BitWidth);
672 Val.setIsSigned(IsSigned);
673 }
674
675 /// Returns true if we should emit a diagnostic about this case expression not
676 /// being a part of the enum used in the switch controlling expression.
ShouldDiagnoseSwitchCaseNotInEnum(const ASTContext & Ctx,const EnumDecl * ED,const Expr * CaseExpr)677 static bool ShouldDiagnoseSwitchCaseNotInEnum(const ASTContext &Ctx,
678 const EnumDecl *ED,
679 const Expr *CaseExpr) {
680 // Don't warn if the 'case' expression refers to a static const variable of
681 // the enum type.
682 CaseExpr = CaseExpr->IgnoreParenImpCasts();
683 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CaseExpr)) {
684 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl())) {
685 if (!VD->hasGlobalStorage())
686 return true;
687 QualType VarType = VD->getType();
688 if (!VarType.isConstQualified())
689 return true;
690 QualType EnumType = Ctx.getTypeDeclType(ED);
691 if (Ctx.hasSameUnqualifiedType(EnumType, VarType))
692 return false;
693 }
694 }
695 return true;
696 }
697
698 StmtResult
ActOnFinishSwitchStmt(SourceLocation SwitchLoc,Stmt * Switch,Stmt * BodyStmt)699 Sema::ActOnFinishSwitchStmt(SourceLocation SwitchLoc, Stmt *Switch,
700 Stmt *BodyStmt) {
701 SwitchStmt *SS = cast<SwitchStmt>(Switch);
702 assert(SS == getCurFunction()->SwitchStack.back() &&
703 "switch stack missing push/pop!");
704
705 if (!BodyStmt) return StmtError();
706 SS->setBody(BodyStmt, SwitchLoc);
707 getCurFunction()->SwitchStack.pop_back();
708
709 Expr *CondExpr = SS->getCond();
710 if (!CondExpr) return StmtError();
711
712 QualType CondType = CondExpr->getType();
713
714 Expr *CondExprBeforePromotion = CondExpr;
715 QualType CondTypeBeforePromotion =
716 GetTypeBeforeIntegralPromotion(CondExprBeforePromotion);
717
718 // C++ 6.4.2.p2:
719 // Integral promotions are performed (on the switch condition).
720 //
721 // A case value unrepresentable by the original switch condition
722 // type (before the promotion) doesn't make sense, even when it can
723 // be represented by the promoted type. Therefore we need to find
724 // the pre-promotion type of the switch condition.
725 if (!CondExpr->isTypeDependent()) {
726 // We have already converted the expression to an integral or enumeration
727 // type, when we started the switch statement. If we don't have an
728 // appropriate type now, just return an error.
729 if (!CondType->isIntegralOrEnumerationType())
730 return StmtError();
731
732 if (CondExpr->isKnownToHaveBooleanValue()) {
733 // switch(bool_expr) {...} is often a programmer error, e.g.
734 // switch(n && mask) { ... } // Doh - should be "n & mask".
735 // One can always use an if statement instead of switch(bool_expr).
736 Diag(SwitchLoc, diag::warn_bool_switch_condition)
737 << CondExpr->getSourceRange();
738 }
739 }
740
741 // Get the bitwidth of the switched-on value before promotions. We must
742 // convert the integer case values to this width before comparison.
743 bool HasDependentValue
744 = CondExpr->isTypeDependent() || CondExpr->isValueDependent();
745 unsigned CondWidth
746 = HasDependentValue ? 0 : Context.getIntWidth(CondTypeBeforePromotion);
747 bool CondIsSigned
748 = CondTypeBeforePromotion->isSignedIntegerOrEnumerationType();
749
750 // Accumulate all of the case values in a vector so that we can sort them
751 // and detect duplicates. This vector contains the APInt for the case after
752 // it has been converted to the condition type.
753 typedef SmallVector<std::pair<llvm::APSInt, CaseStmt*>, 64> CaseValsTy;
754 CaseValsTy CaseVals;
755
756 // Keep track of any GNU case ranges we see. The APSInt is the low value.
757 typedef std::vector<std::pair<llvm::APSInt, CaseStmt*> > CaseRangesTy;
758 CaseRangesTy CaseRanges;
759
760 DefaultStmt *TheDefaultStmt = nullptr;
761
762 bool CaseListIsErroneous = false;
763
764 for (SwitchCase *SC = SS->getSwitchCaseList(); SC && !HasDependentValue;
765 SC = SC->getNextSwitchCase()) {
766
767 if (DefaultStmt *DS = dyn_cast<DefaultStmt>(SC)) {
768 if (TheDefaultStmt) {
769 Diag(DS->getDefaultLoc(), diag::err_multiple_default_labels_defined);
770 Diag(TheDefaultStmt->getDefaultLoc(), diag::note_duplicate_case_prev);
771
772 // FIXME: Remove the default statement from the switch block so that
773 // we'll return a valid AST. This requires recursing down the AST and
774 // finding it, not something we are set up to do right now. For now,
775 // just lop the entire switch stmt out of the AST.
776 CaseListIsErroneous = true;
777 }
778 TheDefaultStmt = DS;
779
780 } else {
781 CaseStmt *CS = cast<CaseStmt>(SC);
782
783 Expr *Lo = CS->getLHS();
784
785 if (Lo->isTypeDependent() || Lo->isValueDependent()) {
786 HasDependentValue = true;
787 break;
788 }
789
790 llvm::APSInt LoVal;
791
792 if (getLangOpts().CPlusPlus11) {
793 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
794 // constant expression of the promoted type of the switch condition.
795 ExprResult ConvLo =
796 CheckConvertedConstantExpression(Lo, CondType, LoVal, CCEK_CaseValue);
797 if (ConvLo.isInvalid()) {
798 CaseListIsErroneous = true;
799 continue;
800 }
801 Lo = ConvLo.get();
802 } else {
803 // We already verified that the expression has a i-c-e value (C99
804 // 6.8.4.2p3) - get that value now.
805 LoVal = Lo->EvaluateKnownConstInt(Context);
806
807 // If the LHS is not the same type as the condition, insert an implicit
808 // cast.
809 Lo = DefaultLvalueConversion(Lo).get();
810 Lo = ImpCastExprToType(Lo, CondType, CK_IntegralCast).get();
811 }
812
813 // Convert the value to the same width/sign as the condition had prior to
814 // integral promotions.
815 //
816 // FIXME: This causes us to reject valid code:
817 // switch ((char)c) { case 256: case 0: return 0; }
818 // Here we claim there is a duplicated condition value, but there is not.
819 ConvertIntegerToTypeWarnOnOverflow(LoVal, CondWidth, CondIsSigned,
820 Lo->getLocStart(),
821 diag::warn_case_value_overflow);
822
823 CS->setLHS(Lo);
824
825 // If this is a case range, remember it in CaseRanges, otherwise CaseVals.
826 if (CS->getRHS()) {
827 if (CS->getRHS()->isTypeDependent() ||
828 CS->getRHS()->isValueDependent()) {
829 HasDependentValue = true;
830 break;
831 }
832 CaseRanges.push_back(std::make_pair(LoVal, CS));
833 } else
834 CaseVals.push_back(std::make_pair(LoVal, CS));
835 }
836 }
837
838 if (!HasDependentValue) {
839 // If we don't have a default statement, check whether the
840 // condition is constant.
841 llvm::APSInt ConstantCondValue;
842 bool HasConstantCond = false;
843 if (!HasDependentValue && !TheDefaultStmt) {
844 HasConstantCond
845 = CondExprBeforePromotion->EvaluateAsInt(ConstantCondValue, Context,
846 Expr::SE_AllowSideEffects);
847 assert(!HasConstantCond ||
848 (ConstantCondValue.getBitWidth() == CondWidth &&
849 ConstantCondValue.isSigned() == CondIsSigned));
850 }
851 bool ShouldCheckConstantCond = HasConstantCond;
852
853 // Sort all the scalar case values so we can easily detect duplicates.
854 std::stable_sort(CaseVals.begin(), CaseVals.end(), CmpCaseVals);
855
856 if (!CaseVals.empty()) {
857 for (unsigned i = 0, e = CaseVals.size(); i != e; ++i) {
858 if (ShouldCheckConstantCond &&
859 CaseVals[i].first == ConstantCondValue)
860 ShouldCheckConstantCond = false;
861
862 if (i != 0 && CaseVals[i].first == CaseVals[i-1].first) {
863 // If we have a duplicate, report it.
864 // First, determine if either case value has a name
865 StringRef PrevString, CurrString;
866 Expr *PrevCase = CaseVals[i-1].second->getLHS()->IgnoreParenCasts();
867 Expr *CurrCase = CaseVals[i].second->getLHS()->IgnoreParenCasts();
868 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(PrevCase)) {
869 PrevString = DeclRef->getDecl()->getName();
870 }
871 if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(CurrCase)) {
872 CurrString = DeclRef->getDecl()->getName();
873 }
874 SmallString<16> CaseValStr;
875 CaseVals[i-1].first.toString(CaseValStr);
876
877 if (PrevString == CurrString)
878 Diag(CaseVals[i].second->getLHS()->getLocStart(),
879 diag::err_duplicate_case) <<
880 (PrevString.empty() ? CaseValStr.str() : PrevString);
881 else
882 Diag(CaseVals[i].second->getLHS()->getLocStart(),
883 diag::err_duplicate_case_differing_expr) <<
884 (PrevString.empty() ? CaseValStr.str() : PrevString) <<
885 (CurrString.empty() ? CaseValStr.str() : CurrString) <<
886 CaseValStr;
887
888 Diag(CaseVals[i-1].second->getLHS()->getLocStart(),
889 diag::note_duplicate_case_prev);
890 // FIXME: We really want to remove the bogus case stmt from the
891 // substmt, but we have no way to do this right now.
892 CaseListIsErroneous = true;
893 }
894 }
895 }
896
897 // Detect duplicate case ranges, which usually don't exist at all in
898 // the first place.
899 if (!CaseRanges.empty()) {
900 // Sort all the case ranges by their low value so we can easily detect
901 // overlaps between ranges.
902 std::stable_sort(CaseRanges.begin(), CaseRanges.end());
903
904 // Scan the ranges, computing the high values and removing empty ranges.
905 std::vector<llvm::APSInt> HiVals;
906 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
907 llvm::APSInt &LoVal = CaseRanges[i].first;
908 CaseStmt *CR = CaseRanges[i].second;
909 Expr *Hi = CR->getRHS();
910 llvm::APSInt HiVal;
911
912 if (getLangOpts().CPlusPlus11) {
913 // C++11 [stmt.switch]p2: the constant-expression shall be a converted
914 // constant expression of the promoted type of the switch condition.
915 ExprResult ConvHi =
916 CheckConvertedConstantExpression(Hi, CondType, HiVal,
917 CCEK_CaseValue);
918 if (ConvHi.isInvalid()) {
919 CaseListIsErroneous = true;
920 continue;
921 }
922 Hi = ConvHi.get();
923 } else {
924 HiVal = Hi->EvaluateKnownConstInt(Context);
925
926 // If the RHS is not the same type as the condition, insert an
927 // implicit cast.
928 Hi = DefaultLvalueConversion(Hi).get();
929 Hi = ImpCastExprToType(Hi, CondType, CK_IntegralCast).get();
930 }
931
932 // Convert the value to the same width/sign as the condition.
933 ConvertIntegerToTypeWarnOnOverflow(HiVal, CondWidth, CondIsSigned,
934 Hi->getLocStart(),
935 diag::warn_case_value_overflow);
936
937 CR->setRHS(Hi);
938
939 // If the low value is bigger than the high value, the case is empty.
940 if (LoVal > HiVal) {
941 Diag(CR->getLHS()->getLocStart(), diag::warn_case_empty_range)
942 << SourceRange(CR->getLHS()->getLocStart(),
943 Hi->getLocEnd());
944 CaseRanges.erase(CaseRanges.begin()+i);
945 --i, --e;
946 continue;
947 }
948
949 if (ShouldCheckConstantCond &&
950 LoVal <= ConstantCondValue &&
951 ConstantCondValue <= HiVal)
952 ShouldCheckConstantCond = false;
953
954 HiVals.push_back(HiVal);
955 }
956
957 // Rescan the ranges, looking for overlap with singleton values and other
958 // ranges. Since the range list is sorted, we only need to compare case
959 // ranges with their neighbors.
960 for (unsigned i = 0, e = CaseRanges.size(); i != e; ++i) {
961 llvm::APSInt &CRLo = CaseRanges[i].first;
962 llvm::APSInt &CRHi = HiVals[i];
963 CaseStmt *CR = CaseRanges[i].second;
964
965 // Check to see whether the case range overlaps with any
966 // singleton cases.
967 CaseStmt *OverlapStmt = nullptr;
968 llvm::APSInt OverlapVal(32);
969
970 // Find the smallest value >= the lower bound. If I is in the
971 // case range, then we have overlap.
972 CaseValsTy::iterator I = std::lower_bound(CaseVals.begin(),
973 CaseVals.end(), CRLo,
974 CaseCompareFunctor());
975 if (I != CaseVals.end() && I->first < CRHi) {
976 OverlapVal = I->first; // Found overlap with scalar.
977 OverlapStmt = I->second;
978 }
979
980 // Find the smallest value bigger than the upper bound.
981 I = std::upper_bound(I, CaseVals.end(), CRHi, CaseCompareFunctor());
982 if (I != CaseVals.begin() && (I-1)->first >= CRLo) {
983 OverlapVal = (I-1)->first; // Found overlap with scalar.
984 OverlapStmt = (I-1)->second;
985 }
986
987 // Check to see if this case stmt overlaps with the subsequent
988 // case range.
989 if (i && CRLo <= HiVals[i-1]) {
990 OverlapVal = HiVals[i-1]; // Found overlap with range.
991 OverlapStmt = CaseRanges[i-1].second;
992 }
993
994 if (OverlapStmt) {
995 // If we have a duplicate, report it.
996 Diag(CR->getLHS()->getLocStart(), diag::err_duplicate_case)
997 << OverlapVal.toString(10);
998 Diag(OverlapStmt->getLHS()->getLocStart(),
999 diag::note_duplicate_case_prev);
1000 // FIXME: We really want to remove the bogus case stmt from the
1001 // substmt, but we have no way to do this right now.
1002 CaseListIsErroneous = true;
1003 }
1004 }
1005 }
1006
1007 // Complain if we have a constant condition and we didn't find a match.
1008 if (!CaseListIsErroneous && ShouldCheckConstantCond) {
1009 // TODO: it would be nice if we printed enums as enums, chars as
1010 // chars, etc.
1011 Diag(CondExpr->getExprLoc(), diag::warn_missing_case_for_condition)
1012 << ConstantCondValue.toString(10)
1013 << CondExpr->getSourceRange();
1014 }
1015
1016 // Check to see if switch is over an Enum and handles all of its
1017 // values. We only issue a warning if there is not 'default:', but
1018 // we still do the analysis to preserve this information in the AST
1019 // (which can be used by flow-based analyes).
1020 //
1021 const EnumType *ET = CondTypeBeforePromotion->getAs<EnumType>();
1022
1023 // If switch has default case, then ignore it.
1024 if (!CaseListIsErroneous && !HasConstantCond && ET) {
1025 const EnumDecl *ED = ET->getDecl();
1026 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl*>, 64>
1027 EnumValsTy;
1028 EnumValsTy EnumVals;
1029
1030 // Gather all enum values, set their type and sort them,
1031 // allowing easier comparison with CaseVals.
1032 for (auto *EDI : ED->enumerators()) {
1033 llvm::APSInt Val = EDI->getInitVal();
1034 AdjustAPSInt(Val, CondWidth, CondIsSigned);
1035 EnumVals.push_back(std::make_pair(Val, EDI));
1036 }
1037 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1038 EnumValsTy::iterator EIend =
1039 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1040
1041 // See which case values aren't in enum.
1042 EnumValsTy::const_iterator EI = EnumVals.begin();
1043 for (CaseValsTy::const_iterator CI = CaseVals.begin();
1044 CI != CaseVals.end(); CI++) {
1045 while (EI != EIend && EI->first < CI->first)
1046 EI++;
1047 if (EI == EIend || EI->first > CI->first) {
1048 Expr *CaseExpr = CI->second->getLHS();
1049 if (ShouldDiagnoseSwitchCaseNotInEnum(Context, ED, CaseExpr))
1050 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1051 << CondTypeBeforePromotion;
1052 }
1053 }
1054 // See which of case ranges aren't in enum
1055 EI = EnumVals.begin();
1056 for (CaseRangesTy::const_iterator RI = CaseRanges.begin();
1057 RI != CaseRanges.end() && EI != EIend; RI++) {
1058 while (EI != EIend && EI->first < RI->first)
1059 EI++;
1060
1061 if (EI == EIend || EI->first != RI->first) {
1062 Expr *CaseExpr = RI->second->getLHS();
1063 if (ShouldDiagnoseSwitchCaseNotInEnum(Context, ED, CaseExpr))
1064 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1065 << CondTypeBeforePromotion;
1066 }
1067
1068 llvm::APSInt Hi =
1069 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1070 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1071 while (EI != EIend && EI->first < Hi)
1072 EI++;
1073 if (EI == EIend || EI->first != Hi) {
1074 Expr *CaseExpr = RI->second->getRHS();
1075 if (ShouldDiagnoseSwitchCaseNotInEnum(Context, ED, CaseExpr))
1076 Diag(CaseExpr->getExprLoc(), diag::warn_not_in_enum)
1077 << CondTypeBeforePromotion;
1078 }
1079 }
1080
1081 // Check which enum vals aren't in switch
1082 CaseValsTy::const_iterator CI = CaseVals.begin();
1083 CaseRangesTy::const_iterator RI = CaseRanges.begin();
1084 bool hasCasesNotInSwitch = false;
1085
1086 SmallVector<DeclarationName,8> UnhandledNames;
1087
1088 for (EI = EnumVals.begin(); EI != EIend; EI++){
1089 // Drop unneeded case values
1090 while (CI != CaseVals.end() && CI->first < EI->first)
1091 CI++;
1092
1093 if (CI != CaseVals.end() && CI->first == EI->first)
1094 continue;
1095
1096 // Drop unneeded case ranges
1097 for (; RI != CaseRanges.end(); RI++) {
1098 llvm::APSInt Hi =
1099 RI->second->getRHS()->EvaluateKnownConstInt(Context);
1100 AdjustAPSInt(Hi, CondWidth, CondIsSigned);
1101 if (EI->first <= Hi)
1102 break;
1103 }
1104
1105 if (RI == CaseRanges.end() || EI->first < RI->first) {
1106 hasCasesNotInSwitch = true;
1107 UnhandledNames.push_back(EI->second->getDeclName());
1108 }
1109 }
1110
1111 if (TheDefaultStmt && UnhandledNames.empty())
1112 Diag(TheDefaultStmt->getDefaultLoc(), diag::warn_unreachable_default);
1113
1114 // Produce a nice diagnostic if multiple values aren't handled.
1115 switch (UnhandledNames.size()) {
1116 case 0: break;
1117 case 1:
1118 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1119 ? diag::warn_def_missing_case1 : diag::warn_missing_case1)
1120 << UnhandledNames[0];
1121 break;
1122 case 2:
1123 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1124 ? diag::warn_def_missing_case2 : diag::warn_missing_case2)
1125 << UnhandledNames[0] << UnhandledNames[1];
1126 break;
1127 case 3:
1128 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1129 ? diag::warn_def_missing_case3 : diag::warn_missing_case3)
1130 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1131 break;
1132 default:
1133 Diag(CondExpr->getExprLoc(), TheDefaultStmt
1134 ? diag::warn_def_missing_cases : diag::warn_missing_cases)
1135 << (unsigned)UnhandledNames.size()
1136 << UnhandledNames[0] << UnhandledNames[1] << UnhandledNames[2];
1137 break;
1138 }
1139
1140 if (!hasCasesNotInSwitch)
1141 SS->setAllEnumCasesCovered();
1142 }
1143 }
1144
1145 if (BodyStmt)
1146 DiagnoseEmptyStmtBody(CondExpr->getLocEnd(), BodyStmt,
1147 diag::warn_empty_switch_body);
1148
1149 // FIXME: If the case list was broken is some way, we don't have a good system
1150 // to patch it up. Instead, just return the whole substmt as broken.
1151 if (CaseListIsErroneous)
1152 return StmtError();
1153
1154 return SS;
1155 }
1156
1157 void
DiagnoseAssignmentEnum(QualType DstType,QualType SrcType,Expr * SrcExpr)1158 Sema::DiagnoseAssignmentEnum(QualType DstType, QualType SrcType,
1159 Expr *SrcExpr) {
1160 if (Diags.isIgnored(diag::warn_not_in_enum_assignment, SrcExpr->getExprLoc()))
1161 return;
1162
1163 if (const EnumType *ET = DstType->getAs<EnumType>())
1164 if (!Context.hasSameUnqualifiedType(SrcType, DstType) &&
1165 SrcType->isIntegerType()) {
1166 if (!SrcExpr->isTypeDependent() && !SrcExpr->isValueDependent() &&
1167 SrcExpr->isIntegerConstantExpr(Context)) {
1168 // Get the bitwidth of the enum value before promotions.
1169 unsigned DstWidth = Context.getIntWidth(DstType);
1170 bool DstIsSigned = DstType->isSignedIntegerOrEnumerationType();
1171
1172 llvm::APSInt RhsVal = SrcExpr->EvaluateKnownConstInt(Context);
1173 AdjustAPSInt(RhsVal, DstWidth, DstIsSigned);
1174 const EnumDecl *ED = ET->getDecl();
1175 typedef SmallVector<std::pair<llvm::APSInt, EnumConstantDecl *>, 64>
1176 EnumValsTy;
1177 EnumValsTy EnumVals;
1178
1179 // Gather all enum values, set their type and sort them,
1180 // allowing easier comparison with rhs constant.
1181 for (auto *EDI : ED->enumerators()) {
1182 llvm::APSInt Val = EDI->getInitVal();
1183 AdjustAPSInt(Val, DstWidth, DstIsSigned);
1184 EnumVals.push_back(std::make_pair(Val, EDI));
1185 }
1186 if (EnumVals.empty())
1187 return;
1188 std::stable_sort(EnumVals.begin(), EnumVals.end(), CmpEnumVals);
1189 EnumValsTy::iterator EIend =
1190 std::unique(EnumVals.begin(), EnumVals.end(), EqEnumVals);
1191
1192 // See which values aren't in the enum.
1193 EnumValsTy::const_iterator EI = EnumVals.begin();
1194 while (EI != EIend && EI->first < RhsVal)
1195 EI++;
1196 if (EI == EIend || EI->first != RhsVal) {
1197 Diag(SrcExpr->getExprLoc(), diag::warn_not_in_enum_assignment)
1198 << DstType.getUnqualifiedType();
1199 }
1200 }
1201 }
1202 }
1203
1204 StmtResult
ActOnWhileStmt(SourceLocation WhileLoc,FullExprArg Cond,Decl * CondVar,Stmt * Body)1205 Sema::ActOnWhileStmt(SourceLocation WhileLoc, FullExprArg Cond,
1206 Decl *CondVar, Stmt *Body) {
1207 ExprResult CondResult(Cond.release());
1208
1209 VarDecl *ConditionVar = nullptr;
1210 if (CondVar) {
1211 ConditionVar = cast<VarDecl>(CondVar);
1212 CondResult = CheckConditionVariable(ConditionVar, WhileLoc, true);
1213 if (CondResult.isInvalid())
1214 return StmtError();
1215 }
1216 Expr *ConditionExpr = CondResult.get();
1217 if (!ConditionExpr)
1218 return StmtError();
1219 CheckBreakContinueBinding(ConditionExpr);
1220
1221 DiagnoseUnusedExprResult(Body);
1222
1223 if (isa<NullStmt>(Body))
1224 getCurCompoundScope().setHasEmptyLoopBodies();
1225
1226 return new (Context)
1227 WhileStmt(Context, ConditionVar, ConditionExpr, Body, WhileLoc);
1228 }
1229
1230 StmtResult
ActOnDoStmt(SourceLocation DoLoc,Stmt * Body,SourceLocation WhileLoc,SourceLocation CondLParen,Expr * Cond,SourceLocation CondRParen)1231 Sema::ActOnDoStmt(SourceLocation DoLoc, Stmt *Body,
1232 SourceLocation WhileLoc, SourceLocation CondLParen,
1233 Expr *Cond, SourceLocation CondRParen) {
1234 assert(Cond && "ActOnDoStmt(): missing expression");
1235
1236 CheckBreakContinueBinding(Cond);
1237 ExprResult CondResult = CheckBooleanCondition(Cond, DoLoc);
1238 if (CondResult.isInvalid())
1239 return StmtError();
1240 Cond = CondResult.get();
1241
1242 CondResult = ActOnFinishFullExpr(Cond, DoLoc);
1243 if (CondResult.isInvalid())
1244 return StmtError();
1245 Cond = CondResult.get();
1246
1247 DiagnoseUnusedExprResult(Body);
1248
1249 return new (Context) DoStmt(Body, Cond, DoLoc, WhileLoc, CondRParen);
1250 }
1251
1252 namespace {
1253 // This visitor will traverse a conditional statement and store all
1254 // the evaluated decls into a vector. Simple is set to true if none
1255 // of the excluded constructs are used.
1256 class DeclExtractor : public EvaluatedExprVisitor<DeclExtractor> {
1257 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1258 SmallVectorImpl<SourceRange> &Ranges;
1259 bool Simple;
1260 public:
1261 typedef EvaluatedExprVisitor<DeclExtractor> Inherited;
1262
DeclExtractor(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,SmallVectorImpl<SourceRange> & Ranges)1263 DeclExtractor(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1264 SmallVectorImpl<SourceRange> &Ranges) :
1265 Inherited(S.Context),
1266 Decls(Decls),
1267 Ranges(Ranges),
1268 Simple(true) {}
1269
isSimple()1270 bool isSimple() { return Simple; }
1271
1272 // Replaces the method in EvaluatedExprVisitor.
VisitMemberExpr(MemberExpr * E)1273 void VisitMemberExpr(MemberExpr* E) {
1274 Simple = false;
1275 }
1276
1277 // Any Stmt not whitelisted will cause the condition to be marked complex.
VisitStmt(Stmt * S)1278 void VisitStmt(Stmt *S) {
1279 Simple = false;
1280 }
1281
VisitBinaryOperator(BinaryOperator * E)1282 void VisitBinaryOperator(BinaryOperator *E) {
1283 Visit(E->getLHS());
1284 Visit(E->getRHS());
1285 }
1286
VisitCastExpr(CastExpr * E)1287 void VisitCastExpr(CastExpr *E) {
1288 Visit(E->getSubExpr());
1289 }
1290
VisitUnaryOperator(UnaryOperator * E)1291 void VisitUnaryOperator(UnaryOperator *E) {
1292 // Skip checking conditionals with derefernces.
1293 if (E->getOpcode() == UO_Deref)
1294 Simple = false;
1295 else
1296 Visit(E->getSubExpr());
1297 }
1298
VisitConditionalOperator(ConditionalOperator * E)1299 void VisitConditionalOperator(ConditionalOperator *E) {
1300 Visit(E->getCond());
1301 Visit(E->getTrueExpr());
1302 Visit(E->getFalseExpr());
1303 }
1304
VisitParenExpr(ParenExpr * E)1305 void VisitParenExpr(ParenExpr *E) {
1306 Visit(E->getSubExpr());
1307 }
1308
VisitBinaryConditionalOperator(BinaryConditionalOperator * E)1309 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
1310 Visit(E->getOpaqueValue()->getSourceExpr());
1311 Visit(E->getFalseExpr());
1312 }
1313
VisitIntegerLiteral(IntegerLiteral * E)1314 void VisitIntegerLiteral(IntegerLiteral *E) { }
VisitFloatingLiteral(FloatingLiteral * E)1315 void VisitFloatingLiteral(FloatingLiteral *E) { }
VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr * E)1316 void VisitCXXBoolLiteralExpr(CXXBoolLiteralExpr *E) { }
VisitCharacterLiteral(CharacterLiteral * E)1317 void VisitCharacterLiteral(CharacterLiteral *E) { }
VisitGNUNullExpr(GNUNullExpr * E)1318 void VisitGNUNullExpr(GNUNullExpr *E) { }
VisitImaginaryLiteral(ImaginaryLiteral * E)1319 void VisitImaginaryLiteral(ImaginaryLiteral *E) { }
1320
VisitDeclRefExpr(DeclRefExpr * E)1321 void VisitDeclRefExpr(DeclRefExpr *E) {
1322 VarDecl *VD = dyn_cast<VarDecl>(E->getDecl());
1323 if (!VD) return;
1324
1325 Ranges.push_back(E->getSourceRange());
1326
1327 Decls.insert(VD);
1328 }
1329
1330 }; // end class DeclExtractor
1331
1332 // DeclMatcher checks to see if the decls are used in a non-evauluated
1333 // context.
1334 class DeclMatcher : public EvaluatedExprVisitor<DeclMatcher> {
1335 llvm::SmallPtrSet<VarDecl*, 8> &Decls;
1336 bool FoundDecl;
1337
1338 public:
1339 typedef EvaluatedExprVisitor<DeclMatcher> Inherited;
1340
DeclMatcher(Sema & S,llvm::SmallPtrSet<VarDecl *,8> & Decls,Stmt * Statement)1341 DeclMatcher(Sema &S, llvm::SmallPtrSet<VarDecl*, 8> &Decls,
1342 Stmt *Statement) :
1343 Inherited(S.Context), Decls(Decls), FoundDecl(false) {
1344 if (!Statement) return;
1345
1346 Visit(Statement);
1347 }
1348
VisitReturnStmt(ReturnStmt * S)1349 void VisitReturnStmt(ReturnStmt *S) {
1350 FoundDecl = true;
1351 }
1352
VisitBreakStmt(BreakStmt * S)1353 void VisitBreakStmt(BreakStmt *S) {
1354 FoundDecl = true;
1355 }
1356
VisitGotoStmt(GotoStmt * S)1357 void VisitGotoStmt(GotoStmt *S) {
1358 FoundDecl = true;
1359 }
1360
VisitCastExpr(CastExpr * E)1361 void VisitCastExpr(CastExpr *E) {
1362 if (E->getCastKind() == CK_LValueToRValue)
1363 CheckLValueToRValueCast(E->getSubExpr());
1364 else
1365 Visit(E->getSubExpr());
1366 }
1367
CheckLValueToRValueCast(Expr * E)1368 void CheckLValueToRValueCast(Expr *E) {
1369 E = E->IgnoreParenImpCasts();
1370
1371 if (isa<DeclRefExpr>(E)) {
1372 return;
1373 }
1374
1375 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
1376 Visit(CO->getCond());
1377 CheckLValueToRValueCast(CO->getTrueExpr());
1378 CheckLValueToRValueCast(CO->getFalseExpr());
1379 return;
1380 }
1381
1382 if (BinaryConditionalOperator *BCO =
1383 dyn_cast<BinaryConditionalOperator>(E)) {
1384 CheckLValueToRValueCast(BCO->getOpaqueValue()->getSourceExpr());
1385 CheckLValueToRValueCast(BCO->getFalseExpr());
1386 return;
1387 }
1388
1389 Visit(E);
1390 }
1391
VisitDeclRefExpr(DeclRefExpr * E)1392 void VisitDeclRefExpr(DeclRefExpr *E) {
1393 if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
1394 if (Decls.count(VD))
1395 FoundDecl = true;
1396 }
1397
FoundDeclInUse()1398 bool FoundDeclInUse() { return FoundDecl; }
1399
1400 }; // end class DeclMatcher
1401
CheckForLoopConditionalStatement(Sema & S,Expr * Second,Expr * Third,Stmt * Body)1402 void CheckForLoopConditionalStatement(Sema &S, Expr *Second,
1403 Expr *Third, Stmt *Body) {
1404 // Condition is empty
1405 if (!Second) return;
1406
1407 if (S.Diags.isIgnored(diag::warn_variables_not_in_loop_body,
1408 Second->getLocStart()))
1409 return;
1410
1411 PartialDiagnostic PDiag = S.PDiag(diag::warn_variables_not_in_loop_body);
1412 llvm::SmallPtrSet<VarDecl*, 8> Decls;
1413 SmallVector<SourceRange, 10> Ranges;
1414 DeclExtractor DE(S, Decls, Ranges);
1415 DE.Visit(Second);
1416
1417 // Don't analyze complex conditionals.
1418 if (!DE.isSimple()) return;
1419
1420 // No decls found.
1421 if (Decls.size() == 0) return;
1422
1423 // Don't warn on volatile, static, or global variables.
1424 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1425 E = Decls.end();
1426 I != E; ++I)
1427 if ((*I)->getType().isVolatileQualified() ||
1428 (*I)->hasGlobalStorage()) return;
1429
1430 if (DeclMatcher(S, Decls, Second).FoundDeclInUse() ||
1431 DeclMatcher(S, Decls, Third).FoundDeclInUse() ||
1432 DeclMatcher(S, Decls, Body).FoundDeclInUse())
1433 return;
1434
1435 // Load decl names into diagnostic.
1436 if (Decls.size() > 4)
1437 PDiag << 0;
1438 else {
1439 PDiag << Decls.size();
1440 for (llvm::SmallPtrSet<VarDecl*, 8>::iterator I = Decls.begin(),
1441 E = Decls.end();
1442 I != E; ++I)
1443 PDiag << (*I)->getDeclName();
1444 }
1445
1446 // Load SourceRanges into diagnostic if there is room.
1447 // Otherwise, load the SourceRange of the conditional expression.
1448 if (Ranges.size() <= PartialDiagnostic::MaxArguments)
1449 for (SmallVectorImpl<SourceRange>::iterator I = Ranges.begin(),
1450 E = Ranges.end();
1451 I != E; ++I)
1452 PDiag << *I;
1453 else
1454 PDiag << Second->getSourceRange();
1455
1456 S.Diag(Ranges.begin()->getBegin(), PDiag);
1457 }
1458
1459 // If Statement is an incemement or decrement, return true and sets the
1460 // variables Increment and DRE.
ProcessIterationStmt(Sema & S,Stmt * Statement,bool & Increment,DeclRefExpr * & DRE)1461 bool ProcessIterationStmt(Sema &S, Stmt* Statement, bool &Increment,
1462 DeclRefExpr *&DRE) {
1463 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(Statement)) {
1464 switch (UO->getOpcode()) {
1465 default: return false;
1466 case UO_PostInc:
1467 case UO_PreInc:
1468 Increment = true;
1469 break;
1470 case UO_PostDec:
1471 case UO_PreDec:
1472 Increment = false;
1473 break;
1474 }
1475 DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr());
1476 return DRE;
1477 }
1478
1479 if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(Statement)) {
1480 FunctionDecl *FD = Call->getDirectCallee();
1481 if (!FD || !FD->isOverloadedOperator()) return false;
1482 switch (FD->getOverloadedOperator()) {
1483 default: return false;
1484 case OO_PlusPlus:
1485 Increment = true;
1486 break;
1487 case OO_MinusMinus:
1488 Increment = false;
1489 break;
1490 }
1491 DRE = dyn_cast<DeclRefExpr>(Call->getArg(0));
1492 return DRE;
1493 }
1494
1495 return false;
1496 }
1497
1498 // A visitor to determine if a continue or break statement is a
1499 // subexpression.
1500 class BreakContinueFinder : public EvaluatedExprVisitor<BreakContinueFinder> {
1501 SourceLocation BreakLoc;
1502 SourceLocation ContinueLoc;
1503 public:
BreakContinueFinder(Sema & S,Stmt * Body)1504 BreakContinueFinder(Sema &S, Stmt* Body) :
1505 Inherited(S.Context) {
1506 Visit(Body);
1507 }
1508
1509 typedef EvaluatedExprVisitor<BreakContinueFinder> Inherited;
1510
VisitContinueStmt(ContinueStmt * E)1511 void VisitContinueStmt(ContinueStmt* E) {
1512 ContinueLoc = E->getContinueLoc();
1513 }
1514
VisitBreakStmt(BreakStmt * E)1515 void VisitBreakStmt(BreakStmt* E) {
1516 BreakLoc = E->getBreakLoc();
1517 }
1518
ContinueFound()1519 bool ContinueFound() { return ContinueLoc.isValid(); }
BreakFound()1520 bool BreakFound() { return BreakLoc.isValid(); }
GetContinueLoc()1521 SourceLocation GetContinueLoc() { return ContinueLoc; }
GetBreakLoc()1522 SourceLocation GetBreakLoc() { return BreakLoc; }
1523
1524 }; // end class BreakContinueFinder
1525
1526 // Emit a warning when a loop increment/decrement appears twice per loop
1527 // iteration. The conditions which trigger this warning are:
1528 // 1) The last statement in the loop body and the third expression in the
1529 // for loop are both increment or both decrement of the same variable
1530 // 2) No continue statements in the loop body.
CheckForRedundantIteration(Sema & S,Expr * Third,Stmt * Body)1531 void CheckForRedundantIteration(Sema &S, Expr *Third, Stmt *Body) {
1532 // Return when there is nothing to check.
1533 if (!Body || !Third) return;
1534
1535 if (S.Diags.isIgnored(diag::warn_redundant_loop_iteration,
1536 Third->getLocStart()))
1537 return;
1538
1539 // Get the last statement from the loop body.
1540 CompoundStmt *CS = dyn_cast<CompoundStmt>(Body);
1541 if (!CS || CS->body_empty()) return;
1542 Stmt *LastStmt = CS->body_back();
1543 if (!LastStmt) return;
1544
1545 bool LoopIncrement, LastIncrement;
1546 DeclRefExpr *LoopDRE, *LastDRE;
1547
1548 if (!ProcessIterationStmt(S, Third, LoopIncrement, LoopDRE)) return;
1549 if (!ProcessIterationStmt(S, LastStmt, LastIncrement, LastDRE)) return;
1550
1551 // Check that the two statements are both increments or both decrements
1552 // on the same variable.
1553 if (LoopIncrement != LastIncrement ||
1554 LoopDRE->getDecl() != LastDRE->getDecl()) return;
1555
1556 if (BreakContinueFinder(S, Body).ContinueFound()) return;
1557
1558 S.Diag(LastDRE->getLocation(), diag::warn_redundant_loop_iteration)
1559 << LastDRE->getDecl() << LastIncrement;
1560 S.Diag(LoopDRE->getLocation(), diag::note_loop_iteration_here)
1561 << LoopIncrement;
1562 }
1563
1564 } // end namespace
1565
1566
CheckBreakContinueBinding(Expr * E)1567 void Sema::CheckBreakContinueBinding(Expr *E) {
1568 if (!E || getLangOpts().CPlusPlus)
1569 return;
1570 BreakContinueFinder BCFinder(*this, E);
1571 Scope *BreakParent = CurScope->getBreakParent();
1572 if (BCFinder.BreakFound() && BreakParent) {
1573 if (BreakParent->getFlags() & Scope::SwitchScope) {
1574 Diag(BCFinder.GetBreakLoc(), diag::warn_break_binds_to_switch);
1575 } else {
1576 Diag(BCFinder.GetBreakLoc(), diag::warn_loop_ctrl_binds_to_inner)
1577 << "break";
1578 }
1579 } else if (BCFinder.ContinueFound() && CurScope->getContinueParent()) {
1580 Diag(BCFinder.GetContinueLoc(), diag::warn_loop_ctrl_binds_to_inner)
1581 << "continue";
1582 }
1583 }
1584
1585 StmtResult
ActOnForStmt(SourceLocation ForLoc,SourceLocation LParenLoc,Stmt * First,FullExprArg second,Decl * secondVar,FullExprArg third,SourceLocation RParenLoc,Stmt * Body)1586 Sema::ActOnForStmt(SourceLocation ForLoc, SourceLocation LParenLoc,
1587 Stmt *First, FullExprArg second, Decl *secondVar,
1588 FullExprArg third,
1589 SourceLocation RParenLoc, Stmt *Body) {
1590 if (!getLangOpts().CPlusPlus) {
1591 if (DeclStmt *DS = dyn_cast_or_null<DeclStmt>(First)) {
1592 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1593 // declare identifiers for objects having storage class 'auto' or
1594 // 'register'.
1595 for (auto *DI : DS->decls()) {
1596 VarDecl *VD = dyn_cast<VarDecl>(DI);
1597 if (VD && VD->isLocalVarDecl() && !VD->hasLocalStorage())
1598 VD = nullptr;
1599 if (!VD) {
1600 Diag(DI->getLocation(), diag::err_non_local_variable_decl_in_for);
1601 DI->setInvalidDecl();
1602 }
1603 }
1604 }
1605 }
1606
1607 CheckBreakContinueBinding(second.get());
1608 CheckBreakContinueBinding(third.get());
1609
1610 CheckForLoopConditionalStatement(*this, second.get(), third.get(), Body);
1611 CheckForRedundantIteration(*this, third.get(), Body);
1612
1613 ExprResult SecondResult(second.release());
1614 VarDecl *ConditionVar = nullptr;
1615 if (secondVar) {
1616 ConditionVar = cast<VarDecl>(secondVar);
1617 SecondResult = CheckConditionVariable(ConditionVar, ForLoc, true);
1618 if (SecondResult.isInvalid())
1619 return StmtError();
1620 }
1621
1622 Expr *Third = third.release().getAs<Expr>();
1623
1624 DiagnoseUnusedExprResult(First);
1625 DiagnoseUnusedExprResult(Third);
1626 DiagnoseUnusedExprResult(Body);
1627
1628 if (isa<NullStmt>(Body))
1629 getCurCompoundScope().setHasEmptyLoopBodies();
1630
1631 return new (Context) ForStmt(Context, First, SecondResult.get(), ConditionVar,
1632 Third, Body, ForLoc, LParenLoc, RParenLoc);
1633 }
1634
1635 /// In an Objective C collection iteration statement:
1636 /// for (x in y)
1637 /// x can be an arbitrary l-value expression. Bind it up as a
1638 /// full-expression.
ActOnForEachLValueExpr(Expr * E)1639 StmtResult Sema::ActOnForEachLValueExpr(Expr *E) {
1640 // Reduce placeholder expressions here. Note that this rejects the
1641 // use of pseudo-object l-values in this position.
1642 ExprResult result = CheckPlaceholderExpr(E);
1643 if (result.isInvalid()) return StmtError();
1644 E = result.get();
1645
1646 ExprResult FullExpr = ActOnFinishFullExpr(E);
1647 if (FullExpr.isInvalid())
1648 return StmtError();
1649 return StmtResult(static_cast<Stmt*>(FullExpr.get()));
1650 }
1651
1652 ExprResult
CheckObjCForCollectionOperand(SourceLocation forLoc,Expr * collection)1653 Sema::CheckObjCForCollectionOperand(SourceLocation forLoc, Expr *collection) {
1654 if (!collection)
1655 return ExprError();
1656
1657 // Bail out early if we've got a type-dependent expression.
1658 if (collection->isTypeDependent()) return collection;
1659
1660 // Perform normal l-value conversion.
1661 ExprResult result = DefaultFunctionArrayLvalueConversion(collection);
1662 if (result.isInvalid())
1663 return ExprError();
1664 collection = result.get();
1665
1666 // The operand needs to have object-pointer type.
1667 // TODO: should we do a contextual conversion?
1668 const ObjCObjectPointerType *pointerType =
1669 collection->getType()->getAs<ObjCObjectPointerType>();
1670 if (!pointerType)
1671 return Diag(forLoc, diag::err_collection_expr_type)
1672 << collection->getType() << collection->getSourceRange();
1673
1674 // Check that the operand provides
1675 // - countByEnumeratingWithState:objects:count:
1676 const ObjCObjectType *objectType = pointerType->getObjectType();
1677 ObjCInterfaceDecl *iface = objectType->getInterface();
1678
1679 // If we have a forward-declared type, we can't do this check.
1680 // Under ARC, it is an error not to have a forward-declared class.
1681 if (iface &&
1682 RequireCompleteType(forLoc, QualType(objectType, 0),
1683 getLangOpts().ObjCAutoRefCount
1684 ? diag::err_arc_collection_forward
1685 : 0,
1686 collection)) {
1687 // Otherwise, if we have any useful type information, check that
1688 // the type declares the appropriate method.
1689 } else if (iface || !objectType->qual_empty()) {
1690 IdentifierInfo *selectorIdents[] = {
1691 &Context.Idents.get("countByEnumeratingWithState"),
1692 &Context.Idents.get("objects"),
1693 &Context.Idents.get("count")
1694 };
1695 Selector selector = Context.Selectors.getSelector(3, &selectorIdents[0]);
1696
1697 ObjCMethodDecl *method = nullptr;
1698
1699 // If there's an interface, look in both the public and private APIs.
1700 if (iface) {
1701 method = iface->lookupInstanceMethod(selector);
1702 if (!method) method = iface->lookupPrivateMethod(selector);
1703 }
1704
1705 // Also check protocol qualifiers.
1706 if (!method)
1707 method = LookupMethodInQualifiedType(selector, pointerType,
1708 /*instance*/ true);
1709
1710 // If we didn't find it anywhere, give up.
1711 if (!method) {
1712 Diag(forLoc, diag::warn_collection_expr_type)
1713 << collection->getType() << selector << collection->getSourceRange();
1714 }
1715
1716 // TODO: check for an incompatible signature?
1717 }
1718
1719 // Wrap up any cleanups in the expression.
1720 return collection;
1721 }
1722
1723 StmtResult
ActOnObjCForCollectionStmt(SourceLocation ForLoc,Stmt * First,Expr * collection,SourceLocation RParenLoc)1724 Sema::ActOnObjCForCollectionStmt(SourceLocation ForLoc,
1725 Stmt *First, Expr *collection,
1726 SourceLocation RParenLoc) {
1727
1728 ExprResult CollectionExprResult =
1729 CheckObjCForCollectionOperand(ForLoc, collection);
1730
1731 if (First) {
1732 QualType FirstType;
1733 if (DeclStmt *DS = dyn_cast<DeclStmt>(First)) {
1734 if (!DS->isSingleDecl())
1735 return StmtError(Diag((*DS->decl_begin())->getLocation(),
1736 diag::err_toomany_element_decls));
1737
1738 VarDecl *D = dyn_cast<VarDecl>(DS->getSingleDecl());
1739 if (!D || D->isInvalidDecl())
1740 return StmtError();
1741
1742 FirstType = D->getType();
1743 // C99 6.8.5p3: The declaration part of a 'for' statement shall only
1744 // declare identifiers for objects having storage class 'auto' or
1745 // 'register'.
1746 if (!D->hasLocalStorage())
1747 return StmtError(Diag(D->getLocation(),
1748 diag::err_non_local_variable_decl_in_for));
1749
1750 // If the type contained 'auto', deduce the 'auto' to 'id'.
1751 if (FirstType->getContainedAutoType()) {
1752 OpaqueValueExpr OpaqueId(D->getLocation(), Context.getObjCIdType(),
1753 VK_RValue);
1754 Expr *DeducedInit = &OpaqueId;
1755 if (DeduceAutoType(D->getTypeSourceInfo(), DeducedInit, FirstType) ==
1756 DAR_Failed)
1757 DiagnoseAutoDeductionFailure(D, DeducedInit);
1758 if (FirstType.isNull()) {
1759 D->setInvalidDecl();
1760 return StmtError();
1761 }
1762
1763 D->setType(FirstType);
1764
1765 if (ActiveTemplateInstantiations.empty()) {
1766 SourceLocation Loc =
1767 D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
1768 Diag(Loc, diag::warn_auto_var_is_id)
1769 << D->getDeclName();
1770 }
1771 }
1772
1773 } else {
1774 Expr *FirstE = cast<Expr>(First);
1775 if (!FirstE->isTypeDependent() && !FirstE->isLValue())
1776 return StmtError(Diag(First->getLocStart(),
1777 diag::err_selector_element_not_lvalue)
1778 << First->getSourceRange());
1779
1780 FirstType = static_cast<Expr*>(First)->getType();
1781 if (FirstType.isConstQualified())
1782 Diag(ForLoc, diag::err_selector_element_const_type)
1783 << FirstType << First->getSourceRange();
1784 }
1785 if (!FirstType->isDependentType() &&
1786 !FirstType->isObjCObjectPointerType() &&
1787 !FirstType->isBlockPointerType())
1788 return StmtError(Diag(ForLoc, diag::err_selector_element_type)
1789 << FirstType << First->getSourceRange());
1790 }
1791
1792 if (CollectionExprResult.isInvalid())
1793 return StmtError();
1794
1795 CollectionExprResult = ActOnFinishFullExpr(CollectionExprResult.get());
1796 if (CollectionExprResult.isInvalid())
1797 return StmtError();
1798
1799 return new (Context) ObjCForCollectionStmt(First, CollectionExprResult.get(),
1800 nullptr, ForLoc, RParenLoc);
1801 }
1802
1803 /// Finish building a variable declaration for a for-range statement.
1804 /// \return true if an error occurs.
FinishForRangeVarDecl(Sema & SemaRef,VarDecl * Decl,Expr * Init,SourceLocation Loc,int DiagID)1805 static bool FinishForRangeVarDecl(Sema &SemaRef, VarDecl *Decl, Expr *Init,
1806 SourceLocation Loc, int DiagID) {
1807 // Deduce the type for the iterator variable now rather than leaving it to
1808 // AddInitializerToDecl, so we can produce a more suitable diagnostic.
1809 QualType InitType;
1810 if ((!isa<InitListExpr>(Init) && Init->getType()->isVoidType()) ||
1811 SemaRef.DeduceAutoType(Decl->getTypeSourceInfo(), Init, InitType) ==
1812 Sema::DAR_Failed)
1813 SemaRef.Diag(Loc, DiagID) << Init->getType();
1814 if (InitType.isNull()) {
1815 Decl->setInvalidDecl();
1816 return true;
1817 }
1818 Decl->setType(InitType);
1819
1820 // In ARC, infer lifetime.
1821 // FIXME: ARC may want to turn this into 'const __unsafe_unretained' if
1822 // we're doing the equivalent of fast iteration.
1823 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
1824 SemaRef.inferObjCARCLifetime(Decl))
1825 Decl->setInvalidDecl();
1826
1827 SemaRef.AddInitializerToDecl(Decl, Init, /*DirectInit=*/false,
1828 /*TypeMayContainAuto=*/false);
1829 SemaRef.FinalizeDeclaration(Decl);
1830 SemaRef.CurContext->addHiddenDecl(Decl);
1831 return false;
1832 }
1833
1834 namespace {
1835
1836 /// Produce a note indicating which begin/end function was implicitly called
1837 /// by a C++11 for-range statement. This is often not obvious from the code,
1838 /// nor from the diagnostics produced when analysing the implicit expressions
1839 /// required in a for-range statement.
NoteForRangeBeginEndFunction(Sema & SemaRef,Expr * E,Sema::BeginEndFunction BEF)1840 void NoteForRangeBeginEndFunction(Sema &SemaRef, Expr *E,
1841 Sema::BeginEndFunction BEF) {
1842 CallExpr *CE = dyn_cast<CallExpr>(E);
1843 if (!CE)
1844 return;
1845 FunctionDecl *D = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1846 if (!D)
1847 return;
1848 SourceLocation Loc = D->getLocation();
1849
1850 std::string Description;
1851 bool IsTemplate = false;
1852 if (FunctionTemplateDecl *FunTmpl = D->getPrimaryTemplate()) {
1853 Description = SemaRef.getTemplateArgumentBindingsText(
1854 FunTmpl->getTemplateParameters(), *D->getTemplateSpecializationArgs());
1855 IsTemplate = true;
1856 }
1857
1858 SemaRef.Diag(Loc, diag::note_for_range_begin_end)
1859 << BEF << IsTemplate << Description << E->getType();
1860 }
1861
1862 /// Build a variable declaration for a for-range statement.
BuildForRangeVarDecl(Sema & SemaRef,SourceLocation Loc,QualType Type,const char * Name)1863 VarDecl *BuildForRangeVarDecl(Sema &SemaRef, SourceLocation Loc,
1864 QualType Type, const char *Name) {
1865 DeclContext *DC = SemaRef.CurContext;
1866 IdentifierInfo *II = &SemaRef.PP.getIdentifierTable().get(Name);
1867 TypeSourceInfo *TInfo = SemaRef.Context.getTrivialTypeSourceInfo(Type, Loc);
1868 VarDecl *Decl = VarDecl::Create(SemaRef.Context, DC, Loc, Loc, II, Type,
1869 TInfo, SC_None);
1870 Decl->setImplicit();
1871 return Decl;
1872 }
1873
1874 }
1875
ObjCEnumerationCollection(Expr * Collection)1876 static bool ObjCEnumerationCollection(Expr *Collection) {
1877 return !Collection->isTypeDependent()
1878 && Collection->getType()->getAs<ObjCObjectPointerType>() != nullptr;
1879 }
1880
1881 /// ActOnCXXForRangeStmt - Check and build a C++11 for-range statement.
1882 ///
1883 /// C++11 [stmt.ranged]:
1884 /// A range-based for statement is equivalent to
1885 ///
1886 /// {
1887 /// auto && __range = range-init;
1888 /// for ( auto __begin = begin-expr,
1889 /// __end = end-expr;
1890 /// __begin != __end;
1891 /// ++__begin ) {
1892 /// for-range-declaration = *__begin;
1893 /// statement
1894 /// }
1895 /// }
1896 ///
1897 /// The body of the loop is not available yet, since it cannot be analysed until
1898 /// we have determined the type of the for-range-declaration.
1899 StmtResult
ActOnCXXForRangeStmt(SourceLocation ForLoc,Stmt * First,SourceLocation ColonLoc,Expr * Range,SourceLocation RParenLoc,BuildForRangeKind Kind)1900 Sema::ActOnCXXForRangeStmt(SourceLocation ForLoc,
1901 Stmt *First, SourceLocation ColonLoc, Expr *Range,
1902 SourceLocation RParenLoc, BuildForRangeKind Kind) {
1903 if (!First)
1904 return StmtError();
1905
1906 if (Range && ObjCEnumerationCollection(Range))
1907 return ActOnObjCForCollectionStmt(ForLoc, First, Range, RParenLoc);
1908
1909 DeclStmt *DS = dyn_cast<DeclStmt>(First);
1910 assert(DS && "first part of for range not a decl stmt");
1911
1912 if (!DS->isSingleDecl()) {
1913 Diag(DS->getStartLoc(), diag::err_type_defined_in_for_range);
1914 return StmtError();
1915 }
1916
1917 Decl *LoopVar = DS->getSingleDecl();
1918 if (LoopVar->isInvalidDecl() || !Range ||
1919 DiagnoseUnexpandedParameterPack(Range, UPPC_Expression)) {
1920 LoopVar->setInvalidDecl();
1921 return StmtError();
1922 }
1923
1924 // Build auto && __range = range-init
1925 SourceLocation RangeLoc = Range->getLocStart();
1926 VarDecl *RangeVar = BuildForRangeVarDecl(*this, RangeLoc,
1927 Context.getAutoRRefDeductType(),
1928 "__range");
1929 if (FinishForRangeVarDecl(*this, RangeVar, Range, RangeLoc,
1930 diag::err_for_range_deduction_failure)) {
1931 LoopVar->setInvalidDecl();
1932 return StmtError();
1933 }
1934
1935 // Claim the type doesn't contain auto: we've already done the checking.
1936 DeclGroupPtrTy RangeGroup =
1937 BuildDeclaratorGroup(MutableArrayRef<Decl *>((Decl **)&RangeVar, 1),
1938 /*TypeMayContainAuto=*/ false);
1939 StmtResult RangeDecl = ActOnDeclStmt(RangeGroup, RangeLoc, RangeLoc);
1940 if (RangeDecl.isInvalid()) {
1941 LoopVar->setInvalidDecl();
1942 return StmtError();
1943 }
1944
1945 return BuildCXXForRangeStmt(ForLoc, ColonLoc, RangeDecl.get(),
1946 /*BeginEndDecl=*/nullptr, /*Cond=*/nullptr,
1947 /*Inc=*/nullptr, DS, RParenLoc, Kind);
1948 }
1949
1950 /// \brief Create the initialization, compare, and increment steps for
1951 /// the range-based for loop expression.
1952 /// This function does not handle array-based for loops,
1953 /// which are created in Sema::BuildCXXForRangeStmt.
1954 ///
1955 /// \returns a ForRangeStatus indicating success or what kind of error occurred.
1956 /// BeginExpr and EndExpr are set and FRS_Success is returned on success;
1957 /// CandidateSet and BEF are set and some non-success value is returned on
1958 /// failure.
BuildNonArrayForRange(Sema & SemaRef,Scope * S,Expr * BeginRange,Expr * EndRange,QualType RangeType,VarDecl * BeginVar,VarDecl * EndVar,SourceLocation ColonLoc,OverloadCandidateSet * CandidateSet,ExprResult * BeginExpr,ExprResult * EndExpr,Sema::BeginEndFunction * BEF)1959 static Sema::ForRangeStatus BuildNonArrayForRange(Sema &SemaRef, Scope *S,
1960 Expr *BeginRange, Expr *EndRange,
1961 QualType RangeType,
1962 VarDecl *BeginVar,
1963 VarDecl *EndVar,
1964 SourceLocation ColonLoc,
1965 OverloadCandidateSet *CandidateSet,
1966 ExprResult *BeginExpr,
1967 ExprResult *EndExpr,
1968 Sema::BeginEndFunction *BEF) {
1969 DeclarationNameInfo BeginNameInfo(
1970 &SemaRef.PP.getIdentifierTable().get("begin"), ColonLoc);
1971 DeclarationNameInfo EndNameInfo(&SemaRef.PP.getIdentifierTable().get("end"),
1972 ColonLoc);
1973
1974 LookupResult BeginMemberLookup(SemaRef, BeginNameInfo,
1975 Sema::LookupMemberName);
1976 LookupResult EndMemberLookup(SemaRef, EndNameInfo, Sema::LookupMemberName);
1977
1978 if (CXXRecordDecl *D = RangeType->getAsCXXRecordDecl()) {
1979 // - if _RangeT is a class type, the unqualified-ids begin and end are
1980 // looked up in the scope of class _RangeT as if by class member access
1981 // lookup (3.4.5), and if either (or both) finds at least one
1982 // declaration, begin-expr and end-expr are __range.begin() and
1983 // __range.end(), respectively;
1984 SemaRef.LookupQualifiedName(BeginMemberLookup, D);
1985 SemaRef.LookupQualifiedName(EndMemberLookup, D);
1986
1987 if (BeginMemberLookup.empty() != EndMemberLookup.empty()) {
1988 SourceLocation RangeLoc = BeginVar->getLocation();
1989 *BEF = BeginMemberLookup.empty() ? Sema::BEF_end : Sema::BEF_begin;
1990
1991 SemaRef.Diag(RangeLoc, diag::err_for_range_member_begin_end_mismatch)
1992 << RangeLoc << BeginRange->getType() << *BEF;
1993 return Sema::FRS_DiagnosticIssued;
1994 }
1995 } else {
1996 // - otherwise, begin-expr and end-expr are begin(__range) and
1997 // end(__range), respectively, where begin and end are looked up with
1998 // argument-dependent lookup (3.4.2). For the purposes of this name
1999 // lookup, namespace std is an associated namespace.
2000
2001 }
2002
2003 *BEF = Sema::BEF_begin;
2004 Sema::ForRangeStatus RangeStatus =
2005 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, BeginVar,
2006 Sema::BEF_begin, BeginNameInfo,
2007 BeginMemberLookup, CandidateSet,
2008 BeginRange, BeginExpr);
2009
2010 if (RangeStatus != Sema::FRS_Success)
2011 return RangeStatus;
2012 if (FinishForRangeVarDecl(SemaRef, BeginVar, BeginExpr->get(), ColonLoc,
2013 diag::err_for_range_iter_deduction_failure)) {
2014 NoteForRangeBeginEndFunction(SemaRef, BeginExpr->get(), *BEF);
2015 return Sema::FRS_DiagnosticIssued;
2016 }
2017
2018 *BEF = Sema::BEF_end;
2019 RangeStatus =
2020 SemaRef.BuildForRangeBeginEndCall(S, ColonLoc, ColonLoc, EndVar,
2021 Sema::BEF_end, EndNameInfo,
2022 EndMemberLookup, CandidateSet,
2023 EndRange, EndExpr);
2024 if (RangeStatus != Sema::FRS_Success)
2025 return RangeStatus;
2026 if (FinishForRangeVarDecl(SemaRef, EndVar, EndExpr->get(), ColonLoc,
2027 diag::err_for_range_iter_deduction_failure)) {
2028 NoteForRangeBeginEndFunction(SemaRef, EndExpr->get(), *BEF);
2029 return Sema::FRS_DiagnosticIssued;
2030 }
2031 return Sema::FRS_Success;
2032 }
2033
2034 /// Speculatively attempt to dereference an invalid range expression.
2035 /// If the attempt fails, this function will return a valid, null StmtResult
2036 /// and emit no diagnostics.
RebuildForRangeWithDereference(Sema & SemaRef,Scope * S,SourceLocation ForLoc,Stmt * LoopVarDecl,SourceLocation ColonLoc,Expr * Range,SourceLocation RangeLoc,SourceLocation RParenLoc)2037 static StmtResult RebuildForRangeWithDereference(Sema &SemaRef, Scope *S,
2038 SourceLocation ForLoc,
2039 Stmt *LoopVarDecl,
2040 SourceLocation ColonLoc,
2041 Expr *Range,
2042 SourceLocation RangeLoc,
2043 SourceLocation RParenLoc) {
2044 // Determine whether we can rebuild the for-range statement with a
2045 // dereferenced range expression.
2046 ExprResult AdjustedRange;
2047 {
2048 Sema::SFINAETrap Trap(SemaRef);
2049
2050 AdjustedRange = SemaRef.BuildUnaryOp(S, RangeLoc, UO_Deref, Range);
2051 if (AdjustedRange.isInvalid())
2052 return StmtResult();
2053
2054 StmtResult SR =
2055 SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
2056 AdjustedRange.get(), RParenLoc,
2057 Sema::BFRK_Check);
2058 if (SR.isInvalid())
2059 return StmtResult();
2060 }
2061
2062 // The attempt to dereference worked well enough that it could produce a valid
2063 // loop. Produce a fixit, and rebuild the loop with diagnostics enabled, in
2064 // case there are any other (non-fatal) problems with it.
2065 SemaRef.Diag(RangeLoc, diag::err_for_range_dereference)
2066 << Range->getType() << FixItHint::CreateInsertion(RangeLoc, "*");
2067 return SemaRef.ActOnCXXForRangeStmt(ForLoc, LoopVarDecl, ColonLoc,
2068 AdjustedRange.get(), RParenLoc,
2069 Sema::BFRK_Rebuild);
2070 }
2071
2072 namespace {
2073 /// RAII object to automatically invalidate a declaration if an error occurs.
2074 struct InvalidateOnErrorScope {
InvalidateOnErrorScope__anon199a60c30411::InvalidateOnErrorScope2075 InvalidateOnErrorScope(Sema &SemaRef, Decl *D, bool Enabled)
2076 : Trap(SemaRef.Diags), D(D), Enabled(Enabled) {}
~InvalidateOnErrorScope__anon199a60c30411::InvalidateOnErrorScope2077 ~InvalidateOnErrorScope() {
2078 if (Enabled && Trap.hasErrorOccurred())
2079 D->setInvalidDecl();
2080 }
2081
2082 DiagnosticErrorTrap Trap;
2083 Decl *D;
2084 bool Enabled;
2085 };
2086 }
2087
2088 /// BuildCXXForRangeStmt - Build or instantiate a C++11 for-range statement.
2089 StmtResult
BuildCXXForRangeStmt(SourceLocation ForLoc,SourceLocation ColonLoc,Stmt * RangeDecl,Stmt * BeginEnd,Expr * Cond,Expr * Inc,Stmt * LoopVarDecl,SourceLocation RParenLoc,BuildForRangeKind Kind)2090 Sema::BuildCXXForRangeStmt(SourceLocation ForLoc, SourceLocation ColonLoc,
2091 Stmt *RangeDecl, Stmt *BeginEnd, Expr *Cond,
2092 Expr *Inc, Stmt *LoopVarDecl,
2093 SourceLocation RParenLoc, BuildForRangeKind Kind) {
2094 Scope *S = getCurScope();
2095
2096 DeclStmt *RangeDS = cast<DeclStmt>(RangeDecl);
2097 VarDecl *RangeVar = cast<VarDecl>(RangeDS->getSingleDecl());
2098 QualType RangeVarType = RangeVar->getType();
2099
2100 DeclStmt *LoopVarDS = cast<DeclStmt>(LoopVarDecl);
2101 VarDecl *LoopVar = cast<VarDecl>(LoopVarDS->getSingleDecl());
2102
2103 // If we hit any errors, mark the loop variable as invalid if its type
2104 // contains 'auto'.
2105 InvalidateOnErrorScope Invalidate(*this, LoopVar,
2106 LoopVar->getType()->isUndeducedType());
2107
2108 StmtResult BeginEndDecl = BeginEnd;
2109 ExprResult NotEqExpr = Cond, IncrExpr = Inc;
2110
2111 if (RangeVarType->isDependentType()) {
2112 // The range is implicitly used as a placeholder when it is dependent.
2113 RangeVar->markUsed(Context);
2114
2115 // Deduce any 'auto's in the loop variable as 'DependentTy'. We'll fill
2116 // them in properly when we instantiate the loop.
2117 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check)
2118 LoopVar->setType(SubstAutoType(LoopVar->getType(), Context.DependentTy));
2119 } else if (!BeginEndDecl.get()) {
2120 SourceLocation RangeLoc = RangeVar->getLocation();
2121
2122 const QualType RangeVarNonRefType = RangeVarType.getNonReferenceType();
2123
2124 ExprResult BeginRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2125 VK_LValue, ColonLoc);
2126 if (BeginRangeRef.isInvalid())
2127 return StmtError();
2128
2129 ExprResult EndRangeRef = BuildDeclRefExpr(RangeVar, RangeVarNonRefType,
2130 VK_LValue, ColonLoc);
2131 if (EndRangeRef.isInvalid())
2132 return StmtError();
2133
2134 QualType AutoType = Context.getAutoDeductType();
2135 Expr *Range = RangeVar->getInit();
2136 if (!Range)
2137 return StmtError();
2138 QualType RangeType = Range->getType();
2139
2140 if (RequireCompleteType(RangeLoc, RangeType,
2141 diag::err_for_range_incomplete_type))
2142 return StmtError();
2143
2144 // Build auto __begin = begin-expr, __end = end-expr.
2145 VarDecl *BeginVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2146 "__begin");
2147 VarDecl *EndVar = BuildForRangeVarDecl(*this, ColonLoc, AutoType,
2148 "__end");
2149
2150 // Build begin-expr and end-expr and attach to __begin and __end variables.
2151 ExprResult BeginExpr, EndExpr;
2152 if (const ArrayType *UnqAT = RangeType->getAsArrayTypeUnsafe()) {
2153 // - if _RangeT is an array type, begin-expr and end-expr are __range and
2154 // __range + __bound, respectively, where __bound is the array bound. If
2155 // _RangeT is an array of unknown size or an array of incomplete type,
2156 // the program is ill-formed;
2157
2158 // begin-expr is __range.
2159 BeginExpr = BeginRangeRef;
2160 if (FinishForRangeVarDecl(*this, BeginVar, BeginRangeRef.get(), ColonLoc,
2161 diag::err_for_range_iter_deduction_failure)) {
2162 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2163 return StmtError();
2164 }
2165
2166 // Find the array bound.
2167 ExprResult BoundExpr;
2168 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(UnqAT))
2169 BoundExpr = IntegerLiteral::Create(
2170 Context, CAT->getSize(), Context.getPointerDiffType(), RangeLoc);
2171 else if (const VariableArrayType *VAT =
2172 dyn_cast<VariableArrayType>(UnqAT))
2173 BoundExpr = VAT->getSizeExpr();
2174 else {
2175 // Can't be a DependentSizedArrayType or an IncompleteArrayType since
2176 // UnqAT is not incomplete and Range is not type-dependent.
2177 llvm_unreachable("Unexpected array type in for-range");
2178 }
2179
2180 // end-expr is __range + __bound.
2181 EndExpr = ActOnBinOp(S, ColonLoc, tok::plus, EndRangeRef.get(),
2182 BoundExpr.get());
2183 if (EndExpr.isInvalid())
2184 return StmtError();
2185 if (FinishForRangeVarDecl(*this, EndVar, EndExpr.get(), ColonLoc,
2186 diag::err_for_range_iter_deduction_failure)) {
2187 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2188 return StmtError();
2189 }
2190 } else {
2191 OverloadCandidateSet CandidateSet(RangeLoc,
2192 OverloadCandidateSet::CSK_Normal);
2193 Sema::BeginEndFunction BEFFailure;
2194 ForRangeStatus RangeStatus =
2195 BuildNonArrayForRange(*this, S, BeginRangeRef.get(),
2196 EndRangeRef.get(), RangeType,
2197 BeginVar, EndVar, ColonLoc, &CandidateSet,
2198 &BeginExpr, &EndExpr, &BEFFailure);
2199
2200 if (Kind == BFRK_Build && RangeStatus == FRS_NoViableFunction &&
2201 BEFFailure == BEF_begin) {
2202 // If the range is being built from an array parameter, emit a
2203 // a diagnostic that it is being treated as a pointer.
2204 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Range)) {
2205 if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
2206 QualType ArrayTy = PVD->getOriginalType();
2207 QualType PointerTy = PVD->getType();
2208 if (PointerTy->isPointerType() && ArrayTy->isArrayType()) {
2209 Diag(Range->getLocStart(), diag::err_range_on_array_parameter)
2210 << RangeLoc << PVD << ArrayTy << PointerTy;
2211 Diag(PVD->getLocation(), diag::note_declared_at);
2212 return StmtError();
2213 }
2214 }
2215 }
2216
2217 // If building the range failed, try dereferencing the range expression
2218 // unless a diagnostic was issued or the end function is problematic.
2219 StmtResult SR = RebuildForRangeWithDereference(*this, S, ForLoc,
2220 LoopVarDecl, ColonLoc,
2221 Range, RangeLoc,
2222 RParenLoc);
2223 if (SR.isInvalid() || SR.isUsable())
2224 return SR;
2225 }
2226
2227 // Otherwise, emit diagnostics if we haven't already.
2228 if (RangeStatus == FRS_NoViableFunction) {
2229 Expr *Range = BEFFailure ? EndRangeRef.get() : BeginRangeRef.get();
2230 Diag(Range->getLocStart(), diag::err_for_range_invalid)
2231 << RangeLoc << Range->getType() << BEFFailure;
2232 CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Range);
2233 }
2234 // Return an error if no fix was discovered.
2235 if (RangeStatus != FRS_Success)
2236 return StmtError();
2237 }
2238
2239 assert(!BeginExpr.isInvalid() && !EndExpr.isInvalid() &&
2240 "invalid range expression in for loop");
2241
2242 // C++11 [dcl.spec.auto]p7: BeginType and EndType must be the same.
2243 QualType BeginType = BeginVar->getType(), EndType = EndVar->getType();
2244 if (!Context.hasSameType(BeginType, EndType)) {
2245 Diag(RangeLoc, diag::err_for_range_begin_end_types_differ)
2246 << BeginType << EndType;
2247 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2248 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2249 }
2250
2251 Decl *BeginEndDecls[] = { BeginVar, EndVar };
2252 // Claim the type doesn't contain auto: we've already done the checking.
2253 DeclGroupPtrTy BeginEndGroup =
2254 BuildDeclaratorGroup(MutableArrayRef<Decl *>(BeginEndDecls, 2),
2255 /*TypeMayContainAuto=*/ false);
2256 BeginEndDecl = ActOnDeclStmt(BeginEndGroup, ColonLoc, ColonLoc);
2257
2258 const QualType BeginRefNonRefType = BeginType.getNonReferenceType();
2259 ExprResult BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2260 VK_LValue, ColonLoc);
2261 if (BeginRef.isInvalid())
2262 return StmtError();
2263
2264 ExprResult EndRef = BuildDeclRefExpr(EndVar, EndType.getNonReferenceType(),
2265 VK_LValue, ColonLoc);
2266 if (EndRef.isInvalid())
2267 return StmtError();
2268
2269 // Build and check __begin != __end expression.
2270 NotEqExpr = ActOnBinOp(S, ColonLoc, tok::exclaimequal,
2271 BeginRef.get(), EndRef.get());
2272 NotEqExpr = ActOnBooleanCondition(S, ColonLoc, NotEqExpr.get());
2273 NotEqExpr = ActOnFinishFullExpr(NotEqExpr.get());
2274 if (NotEqExpr.isInvalid()) {
2275 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2276 << RangeLoc << 0 << BeginRangeRef.get()->getType();
2277 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2278 if (!Context.hasSameType(BeginType, EndType))
2279 NoteForRangeBeginEndFunction(*this, EndExpr.get(), BEF_end);
2280 return StmtError();
2281 }
2282
2283 // Build and check ++__begin expression.
2284 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2285 VK_LValue, ColonLoc);
2286 if (BeginRef.isInvalid())
2287 return StmtError();
2288
2289 IncrExpr = ActOnUnaryOp(S, ColonLoc, tok::plusplus, BeginRef.get());
2290 IncrExpr = ActOnFinishFullExpr(IncrExpr.get());
2291 if (IncrExpr.isInvalid()) {
2292 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2293 << RangeLoc << 2 << BeginRangeRef.get()->getType() ;
2294 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2295 return StmtError();
2296 }
2297
2298 // Build and check *__begin expression.
2299 BeginRef = BuildDeclRefExpr(BeginVar, BeginRefNonRefType,
2300 VK_LValue, ColonLoc);
2301 if (BeginRef.isInvalid())
2302 return StmtError();
2303
2304 ExprResult DerefExpr = ActOnUnaryOp(S, ColonLoc, tok::star, BeginRef.get());
2305 if (DerefExpr.isInvalid()) {
2306 Diag(RangeLoc, diag::note_for_range_invalid_iterator)
2307 << RangeLoc << 1 << BeginRangeRef.get()->getType();
2308 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2309 return StmtError();
2310 }
2311
2312 // Attach *__begin as initializer for VD. Don't touch it if we're just
2313 // trying to determine whether this would be a valid range.
2314 if (!LoopVar->isInvalidDecl() && Kind != BFRK_Check) {
2315 AddInitializerToDecl(LoopVar, DerefExpr.get(), /*DirectInit=*/false,
2316 /*TypeMayContainAuto=*/true);
2317 if (LoopVar->isInvalidDecl())
2318 NoteForRangeBeginEndFunction(*this, BeginExpr.get(), BEF_begin);
2319 }
2320 }
2321
2322 // Don't bother to actually allocate the result if we're just trying to
2323 // determine whether it would be valid.
2324 if (Kind == BFRK_Check)
2325 return StmtResult();
2326
2327 return new (Context) CXXForRangeStmt(
2328 RangeDS, cast_or_null<DeclStmt>(BeginEndDecl.get()), NotEqExpr.get(),
2329 IncrExpr.get(), LoopVarDS, /*Body=*/nullptr, ForLoc, ColonLoc, RParenLoc);
2330 }
2331
2332 /// FinishObjCForCollectionStmt - Attach the body to a objective-C foreach
2333 /// statement.
FinishObjCForCollectionStmt(Stmt * S,Stmt * B)2334 StmtResult Sema::FinishObjCForCollectionStmt(Stmt *S, Stmt *B) {
2335 if (!S || !B)
2336 return StmtError();
2337 ObjCForCollectionStmt * ForStmt = cast<ObjCForCollectionStmt>(S);
2338
2339 ForStmt->setBody(B);
2340 return S;
2341 }
2342
2343 /// FinishCXXForRangeStmt - Attach the body to a C++0x for-range statement.
2344 /// This is a separate step from ActOnCXXForRangeStmt because analysis of the
2345 /// body cannot be performed until after the type of the range variable is
2346 /// determined.
FinishCXXForRangeStmt(Stmt * S,Stmt * B)2347 StmtResult Sema::FinishCXXForRangeStmt(Stmt *S, Stmt *B) {
2348 if (!S || !B)
2349 return StmtError();
2350
2351 if (isa<ObjCForCollectionStmt>(S))
2352 return FinishObjCForCollectionStmt(S, B);
2353
2354 CXXForRangeStmt *ForStmt = cast<CXXForRangeStmt>(S);
2355 ForStmt->setBody(B);
2356
2357 DiagnoseEmptyStmtBody(ForStmt->getRParenLoc(), B,
2358 diag::warn_empty_range_based_for_body);
2359
2360 return S;
2361 }
2362
ActOnGotoStmt(SourceLocation GotoLoc,SourceLocation LabelLoc,LabelDecl * TheDecl)2363 StmtResult Sema::ActOnGotoStmt(SourceLocation GotoLoc,
2364 SourceLocation LabelLoc,
2365 LabelDecl *TheDecl) {
2366 getCurFunction()->setHasBranchIntoScope();
2367 TheDecl->markUsed(Context);
2368 return new (Context) GotoStmt(TheDecl, GotoLoc, LabelLoc);
2369 }
2370
2371 StmtResult
ActOnIndirectGotoStmt(SourceLocation GotoLoc,SourceLocation StarLoc,Expr * E)2372 Sema::ActOnIndirectGotoStmt(SourceLocation GotoLoc, SourceLocation StarLoc,
2373 Expr *E) {
2374 // Convert operand to void*
2375 if (!E->isTypeDependent()) {
2376 QualType ETy = E->getType();
2377 QualType DestTy = Context.getPointerType(Context.VoidTy.withConst());
2378 ExprResult ExprRes = E;
2379 AssignConvertType ConvTy =
2380 CheckSingleAssignmentConstraints(DestTy, ExprRes);
2381 if (ExprRes.isInvalid())
2382 return StmtError();
2383 E = ExprRes.get();
2384 if (DiagnoseAssignmentResult(ConvTy, StarLoc, DestTy, ETy, E, AA_Passing))
2385 return StmtError();
2386 }
2387
2388 ExprResult ExprRes = ActOnFinishFullExpr(E);
2389 if (ExprRes.isInvalid())
2390 return StmtError();
2391 E = ExprRes.get();
2392
2393 getCurFunction()->setHasIndirectGoto();
2394
2395 return new (Context) IndirectGotoStmt(GotoLoc, StarLoc, E);
2396 }
2397
2398 StmtResult
ActOnContinueStmt(SourceLocation ContinueLoc,Scope * CurScope)2399 Sema::ActOnContinueStmt(SourceLocation ContinueLoc, Scope *CurScope) {
2400 Scope *S = CurScope->getContinueParent();
2401 if (!S) {
2402 // C99 6.8.6.2p1: A break shall appear only in or as a loop body.
2403 return StmtError(Diag(ContinueLoc, diag::err_continue_not_in_loop));
2404 }
2405
2406 return new (Context) ContinueStmt(ContinueLoc);
2407 }
2408
2409 StmtResult
ActOnBreakStmt(SourceLocation BreakLoc,Scope * CurScope)2410 Sema::ActOnBreakStmt(SourceLocation BreakLoc, Scope *CurScope) {
2411 Scope *S = CurScope->getBreakParent();
2412 if (!S) {
2413 // C99 6.8.6.3p1: A break shall appear only in or as a switch/loop body.
2414 return StmtError(Diag(BreakLoc, diag::err_break_not_in_loop_or_switch));
2415 }
2416 if (S->isOpenMPLoopScope())
2417 return StmtError(Diag(BreakLoc, diag::err_omp_loop_cannot_use_stmt)
2418 << "break");
2419
2420 return new (Context) BreakStmt(BreakLoc);
2421 }
2422
2423 /// \brief Determine whether the given expression is a candidate for
2424 /// copy elision in either a return statement or a throw expression.
2425 ///
2426 /// \param ReturnType If we're determining the copy elision candidate for
2427 /// a return statement, this is the return type of the function. If we're
2428 /// determining the copy elision candidate for a throw expression, this will
2429 /// be a NULL type.
2430 ///
2431 /// \param E The expression being returned from the function or block, or
2432 /// being thrown.
2433 ///
2434 /// \param AllowFunctionParameter Whether we allow function parameters to
2435 /// be considered NRVO candidates. C++ prohibits this for NRVO itself, but
2436 /// we re-use this logic to determine whether we should try to move as part of
2437 /// a return or throw (which does allow function parameters).
2438 ///
2439 /// \returns The NRVO candidate variable, if the return statement may use the
2440 /// NRVO, or NULL if there is no such candidate.
getCopyElisionCandidate(QualType ReturnType,Expr * E,bool AllowFunctionParameter)2441 VarDecl *Sema::getCopyElisionCandidate(QualType ReturnType,
2442 Expr *E,
2443 bool AllowFunctionParameter) {
2444 if (!getLangOpts().CPlusPlus)
2445 return nullptr;
2446
2447 // - in a return statement in a function [where] ...
2448 // ... the expression is the name of a non-volatile automatic object ...
2449 DeclRefExpr *DR = dyn_cast<DeclRefExpr>(E->IgnoreParens());
2450 if (!DR || DR->refersToEnclosingLocal())
2451 return nullptr;
2452 VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl());
2453 if (!VD)
2454 return nullptr;
2455
2456 if (isCopyElisionCandidate(ReturnType, VD, AllowFunctionParameter))
2457 return VD;
2458 return nullptr;
2459 }
2460
isCopyElisionCandidate(QualType ReturnType,const VarDecl * VD,bool AllowFunctionParameter)2461 bool Sema::isCopyElisionCandidate(QualType ReturnType, const VarDecl *VD,
2462 bool AllowFunctionParameter) {
2463 QualType VDType = VD->getType();
2464 // - in a return statement in a function with ...
2465 // ... a class return type ...
2466 if (!ReturnType.isNull() && !ReturnType->isDependentType()) {
2467 if (!ReturnType->isRecordType())
2468 return false;
2469 // ... the same cv-unqualified type as the function return type ...
2470 if (!VDType->isDependentType() &&
2471 !Context.hasSameUnqualifiedType(ReturnType, VDType))
2472 return false;
2473 }
2474
2475 // ...object (other than a function or catch-clause parameter)...
2476 if (VD->getKind() != Decl::Var &&
2477 !(AllowFunctionParameter && VD->getKind() == Decl::ParmVar))
2478 return false;
2479 if (VD->isExceptionVariable()) return false;
2480
2481 // ...automatic...
2482 if (!VD->hasLocalStorage()) return false;
2483
2484 // ...non-volatile...
2485 if (VD->getType().isVolatileQualified()) return false;
2486
2487 // __block variables can't be allocated in a way that permits NRVO.
2488 if (VD->hasAttr<BlocksAttr>()) return false;
2489
2490 // Variables with higher required alignment than their type's ABI
2491 // alignment cannot use NRVO.
2492 if (!VD->getType()->isDependentType() && VD->hasAttr<AlignedAttr>() &&
2493 Context.getDeclAlign(VD) > Context.getTypeAlignInChars(VD->getType()))
2494 return false;
2495
2496 return true;
2497 }
2498
2499 /// \brief Perform the initialization of a potentially-movable value, which
2500 /// is the result of return value.
2501 ///
2502 /// This routine implements C++0x [class.copy]p33, which attempts to treat
2503 /// returned lvalues as rvalues in certain cases (to prefer move construction),
2504 /// then falls back to treating them as lvalues if that failed.
2505 ExprResult
PerformMoveOrCopyInitialization(const InitializedEntity & Entity,const VarDecl * NRVOCandidate,QualType ResultType,Expr * Value,bool AllowNRVO)2506 Sema::PerformMoveOrCopyInitialization(const InitializedEntity &Entity,
2507 const VarDecl *NRVOCandidate,
2508 QualType ResultType,
2509 Expr *Value,
2510 bool AllowNRVO) {
2511 // C++0x [class.copy]p33:
2512 // When the criteria for elision of a copy operation are met or would
2513 // be met save for the fact that the source object is a function
2514 // parameter, and the object to be copied is designated by an lvalue,
2515 // overload resolution to select the constructor for the copy is first
2516 // performed as if the object were designated by an rvalue.
2517 ExprResult Res = ExprError();
2518 if (AllowNRVO &&
2519 (NRVOCandidate || getCopyElisionCandidate(ResultType, Value, true))) {
2520 ImplicitCastExpr AsRvalue(ImplicitCastExpr::OnStack,
2521 Value->getType(), CK_NoOp, Value, VK_XValue);
2522
2523 Expr *InitExpr = &AsRvalue;
2524 InitializationKind Kind
2525 = InitializationKind::CreateCopy(Value->getLocStart(),
2526 Value->getLocStart());
2527 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
2528
2529 // [...] If overload resolution fails, or if the type of the first
2530 // parameter of the selected constructor is not an rvalue reference
2531 // to the object's type (possibly cv-qualified), overload resolution
2532 // is performed again, considering the object as an lvalue.
2533 if (Seq) {
2534 for (InitializationSequence::step_iterator Step = Seq.step_begin(),
2535 StepEnd = Seq.step_end();
2536 Step != StepEnd; ++Step) {
2537 if (Step->Kind != InitializationSequence::SK_ConstructorInitialization)
2538 continue;
2539
2540 CXXConstructorDecl *Constructor
2541 = cast<CXXConstructorDecl>(Step->Function.Function);
2542
2543 const RValueReferenceType *RRefType
2544 = Constructor->getParamDecl(0)->getType()
2545 ->getAs<RValueReferenceType>();
2546
2547 // If we don't meet the criteria, break out now.
2548 if (!RRefType ||
2549 !Context.hasSameUnqualifiedType(RRefType->getPointeeType(),
2550 Context.getTypeDeclType(Constructor->getParent())))
2551 break;
2552
2553 // Promote "AsRvalue" to the heap, since we now need this
2554 // expression node to persist.
2555 Value = ImplicitCastExpr::Create(Context, Value->getType(),
2556 CK_NoOp, Value, nullptr, VK_XValue);
2557
2558 // Complete type-checking the initialization of the return type
2559 // using the constructor we found.
2560 Res = Seq.Perform(*this, Entity, Kind, Value);
2561 }
2562 }
2563 }
2564
2565 // Either we didn't meet the criteria for treating an lvalue as an rvalue,
2566 // above, or overload resolution failed. Either way, we need to try
2567 // (again) now with the return value expression as written.
2568 if (Res.isInvalid())
2569 Res = PerformCopyInitialization(Entity, SourceLocation(), Value);
2570
2571 return Res;
2572 }
2573
2574 /// \brief Determine whether the declared return type of the specified function
2575 /// contains 'auto'.
hasDeducedReturnType(FunctionDecl * FD)2576 static bool hasDeducedReturnType(FunctionDecl *FD) {
2577 const FunctionProtoType *FPT =
2578 FD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
2579 return FPT->getReturnType()->isUndeducedType();
2580 }
2581
2582 /// ActOnCapScopeReturnStmt - Utility routine to type-check return statements
2583 /// for capturing scopes.
2584 ///
2585 StmtResult
ActOnCapScopeReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2586 Sema::ActOnCapScopeReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2587 // If this is the first return we've seen, infer the return type.
2588 // [expr.prim.lambda]p4 in C++11; block literals follow the same rules.
2589 CapturingScopeInfo *CurCap = cast<CapturingScopeInfo>(getCurFunction());
2590 QualType FnRetType = CurCap->ReturnType;
2591 LambdaScopeInfo *CurLambda = dyn_cast<LambdaScopeInfo>(CurCap);
2592
2593 if (CurLambda && hasDeducedReturnType(CurLambda->CallOperator)) {
2594 // In C++1y, the return type may involve 'auto'.
2595 // FIXME: Blocks might have a return type of 'auto' explicitly specified.
2596 FunctionDecl *FD = CurLambda->CallOperator;
2597 if (CurCap->ReturnType.isNull())
2598 CurCap->ReturnType = FD->getReturnType();
2599
2600 AutoType *AT = CurCap->ReturnType->getContainedAutoType();
2601 assert(AT && "lost auto type from lambda return type");
2602 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2603 FD->setInvalidDecl();
2604 return StmtError();
2605 }
2606 CurCap->ReturnType = FnRetType = FD->getReturnType();
2607 } else if (CurCap->HasImplicitReturnType) {
2608 // For blocks/lambdas with implicit return types, we check each return
2609 // statement individually, and deduce the common return type when the block
2610 // or lambda is completed.
2611 // FIXME: Fold this into the 'auto' codepath above.
2612 if (RetValExp && !isa<InitListExpr>(RetValExp)) {
2613 ExprResult Result = DefaultFunctionArrayLvalueConversion(RetValExp);
2614 if (Result.isInvalid())
2615 return StmtError();
2616 RetValExp = Result.get();
2617
2618 if (!CurContext->isDependentContext())
2619 FnRetType = RetValExp->getType();
2620 else
2621 FnRetType = CurCap->ReturnType = Context.DependentTy;
2622 } else {
2623 if (RetValExp) {
2624 // C++11 [expr.lambda.prim]p4 bans inferring the result from an
2625 // initializer list, because it is not an expression (even
2626 // though we represent it as one). We still deduce 'void'.
2627 Diag(ReturnLoc, diag::err_lambda_return_init_list)
2628 << RetValExp->getSourceRange();
2629 }
2630
2631 FnRetType = Context.VoidTy;
2632 }
2633
2634 // Although we'll properly infer the type of the block once it's completed,
2635 // make sure we provide a return type now for better error recovery.
2636 if (CurCap->ReturnType.isNull())
2637 CurCap->ReturnType = FnRetType;
2638 }
2639 assert(!FnRetType.isNull());
2640
2641 if (BlockScopeInfo *CurBlock = dyn_cast<BlockScopeInfo>(CurCap)) {
2642 if (CurBlock->FunctionType->getAs<FunctionType>()->getNoReturnAttr()) {
2643 Diag(ReturnLoc, diag::err_noreturn_block_has_return_expr);
2644 return StmtError();
2645 }
2646 } else if (CapturedRegionScopeInfo *CurRegion =
2647 dyn_cast<CapturedRegionScopeInfo>(CurCap)) {
2648 Diag(ReturnLoc, diag::err_return_in_captured_stmt) << CurRegion->getRegionName();
2649 return StmtError();
2650 } else {
2651 assert(CurLambda && "unknown kind of captured scope");
2652 if (CurLambda->CallOperator->getType()->getAs<FunctionType>()
2653 ->getNoReturnAttr()) {
2654 Diag(ReturnLoc, diag::err_noreturn_lambda_has_return_expr);
2655 return StmtError();
2656 }
2657 }
2658
2659 // Otherwise, verify that this result type matches the previous one. We are
2660 // pickier with blocks than for normal functions because we don't have GCC
2661 // compatibility to worry about here.
2662 const VarDecl *NRVOCandidate = nullptr;
2663 if (FnRetType->isDependentType()) {
2664 // Delay processing for now. TODO: there are lots of dependent
2665 // types we can conclusively prove aren't void.
2666 } else if (FnRetType->isVoidType()) {
2667 if (RetValExp && !isa<InitListExpr>(RetValExp) &&
2668 !(getLangOpts().CPlusPlus &&
2669 (RetValExp->isTypeDependent() ||
2670 RetValExp->getType()->isVoidType()))) {
2671 if (!getLangOpts().CPlusPlus &&
2672 RetValExp->getType()->isVoidType())
2673 Diag(ReturnLoc, diag::ext_return_has_void_expr) << "literal" << 2;
2674 else {
2675 Diag(ReturnLoc, diag::err_return_block_has_expr);
2676 RetValExp = nullptr;
2677 }
2678 }
2679 } else if (!RetValExp) {
2680 return StmtError(Diag(ReturnLoc, diag::err_block_return_missing_expr));
2681 } else if (!RetValExp->isTypeDependent()) {
2682 // we have a non-void block with an expression, continue checking
2683
2684 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2685 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2686 // function return.
2687
2688 // In C++ the return statement is handled via a copy initialization.
2689 // the C version of which boils down to CheckSingleAssignmentConstraints.
2690 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2691 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2692 FnRetType,
2693 NRVOCandidate != nullptr);
2694 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2695 FnRetType, RetValExp);
2696 if (Res.isInvalid()) {
2697 // FIXME: Cleanup temporaries here, anyway?
2698 return StmtError();
2699 }
2700 RetValExp = Res.get();
2701 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc);
2702 } else {
2703 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2704 }
2705
2706 if (RetValExp) {
2707 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2708 if (ER.isInvalid())
2709 return StmtError();
2710 RetValExp = ER.get();
2711 }
2712 ReturnStmt *Result = new (Context) ReturnStmt(ReturnLoc, RetValExp,
2713 NRVOCandidate);
2714
2715 // If we need to check for the named return value optimization,
2716 // or if we need to infer the return type,
2717 // save the return statement in our scope for later processing.
2718 if (CurCap->HasImplicitReturnType || NRVOCandidate)
2719 FunctionScopes.back()->Returns.push_back(Result);
2720
2721 return Result;
2722 }
2723
2724 /// Deduce the return type for a function from a returned expression, per
2725 /// C++1y [dcl.spec.auto]p6.
DeduceFunctionTypeFromReturnExpr(FunctionDecl * FD,SourceLocation ReturnLoc,Expr * & RetExpr,AutoType * AT)2726 bool Sema::DeduceFunctionTypeFromReturnExpr(FunctionDecl *FD,
2727 SourceLocation ReturnLoc,
2728 Expr *&RetExpr,
2729 AutoType *AT) {
2730 TypeLoc OrigResultType = FD->getTypeSourceInfo()->getTypeLoc().
2731 IgnoreParens().castAs<FunctionProtoTypeLoc>().getReturnLoc();
2732 QualType Deduced;
2733
2734 if (RetExpr && isa<InitListExpr>(RetExpr)) {
2735 // If the deduction is for a return statement and the initializer is
2736 // a braced-init-list, the program is ill-formed.
2737 Diag(RetExpr->getExprLoc(),
2738 getCurLambda() ? diag::err_lambda_return_init_list
2739 : diag::err_auto_fn_return_init_list)
2740 << RetExpr->getSourceRange();
2741 return true;
2742 }
2743
2744 if (FD->isDependentContext()) {
2745 // C++1y [dcl.spec.auto]p12:
2746 // Return type deduction [...] occurs when the definition is
2747 // instantiated even if the function body contains a return
2748 // statement with a non-type-dependent operand.
2749 assert(AT->isDeduced() && "should have deduced to dependent type");
2750 return false;
2751 } else if (RetExpr) {
2752 // If the deduction is for a return statement and the initializer is
2753 // a braced-init-list, the program is ill-formed.
2754 if (isa<InitListExpr>(RetExpr)) {
2755 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_return_init_list);
2756 return true;
2757 }
2758
2759 // Otherwise, [...] deduce a value for U using the rules of template
2760 // argument deduction.
2761 DeduceAutoResult DAR = DeduceAutoType(OrigResultType, RetExpr, Deduced);
2762
2763 if (DAR == DAR_Failed && !FD->isInvalidDecl())
2764 Diag(RetExpr->getExprLoc(), diag::err_auto_fn_deduction_failure)
2765 << OrigResultType.getType() << RetExpr->getType();
2766
2767 if (DAR != DAR_Succeeded)
2768 return true;
2769 } else {
2770 // In the case of a return with no operand, the initializer is considered
2771 // to be void().
2772 //
2773 // Deduction here can only succeed if the return type is exactly 'cv auto'
2774 // or 'decltype(auto)', so just check for that case directly.
2775 if (!OrigResultType.getType()->getAs<AutoType>()) {
2776 Diag(ReturnLoc, diag::err_auto_fn_return_void_but_not_auto)
2777 << OrigResultType.getType();
2778 return true;
2779 }
2780 // We always deduce U = void in this case.
2781 Deduced = SubstAutoType(OrigResultType.getType(), Context.VoidTy);
2782 if (Deduced.isNull())
2783 return true;
2784 }
2785
2786 // If a function with a declared return type that contains a placeholder type
2787 // has multiple return statements, the return type is deduced for each return
2788 // statement. [...] if the type deduced is not the same in each deduction,
2789 // the program is ill-formed.
2790 if (AT->isDeduced() && !FD->isInvalidDecl()) {
2791 AutoType *NewAT = Deduced->getContainedAutoType();
2792 if (!FD->isDependentContext() &&
2793 !Context.hasSameType(AT->getDeducedType(), NewAT->getDeducedType())) {
2794 const LambdaScopeInfo *LambdaSI = getCurLambda();
2795 if (LambdaSI && LambdaSI->HasImplicitReturnType) {
2796 Diag(ReturnLoc, diag::err_typecheck_missing_return_type_incompatible)
2797 << NewAT->getDeducedType() << AT->getDeducedType()
2798 << true /*IsLambda*/;
2799 } else {
2800 Diag(ReturnLoc, diag::err_auto_fn_different_deductions)
2801 << (AT->isDecltypeAuto() ? 1 : 0)
2802 << NewAT->getDeducedType() << AT->getDeducedType();
2803 }
2804 return true;
2805 }
2806 } else if (!FD->isInvalidDecl()) {
2807 // Update all declarations of the function to have the deduced return type.
2808 Context.adjustDeducedFunctionResultType(FD, Deduced);
2809 }
2810
2811 return false;
2812 }
2813
2814 StmtResult
ActOnReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp,Scope * CurScope)2815 Sema::ActOnReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp,
2816 Scope *CurScope) {
2817 StmtResult R = BuildReturnStmt(ReturnLoc, RetValExp);
2818 if (R.isInvalid()) {
2819 return R;
2820 }
2821
2822 if (VarDecl *VD =
2823 const_cast<VarDecl*>(cast<ReturnStmt>(R.get())->getNRVOCandidate())) {
2824 CurScope->addNRVOCandidate(VD);
2825 } else {
2826 CurScope->setNoNRVO();
2827 }
2828
2829 return R;
2830 }
2831
BuildReturnStmt(SourceLocation ReturnLoc,Expr * RetValExp)2832 StmtResult Sema::BuildReturnStmt(SourceLocation ReturnLoc, Expr *RetValExp) {
2833 // Check for unexpanded parameter packs.
2834 if (RetValExp && DiagnoseUnexpandedParameterPack(RetValExp))
2835 return StmtError();
2836
2837 if (isa<CapturingScopeInfo>(getCurFunction()))
2838 return ActOnCapScopeReturnStmt(ReturnLoc, RetValExp);
2839
2840 QualType FnRetType;
2841 QualType RelatedRetType;
2842 const AttrVec *Attrs = nullptr;
2843 bool isObjCMethod = false;
2844
2845 if (const FunctionDecl *FD = getCurFunctionDecl()) {
2846 FnRetType = FD->getReturnType();
2847 if (FD->hasAttrs())
2848 Attrs = &FD->getAttrs();
2849 if (FD->isNoReturn())
2850 Diag(ReturnLoc, diag::warn_noreturn_function_has_return_expr)
2851 << FD->getDeclName();
2852 } else if (ObjCMethodDecl *MD = getCurMethodDecl()) {
2853 FnRetType = MD->getReturnType();
2854 isObjCMethod = true;
2855 if (MD->hasAttrs())
2856 Attrs = &MD->getAttrs();
2857 if (MD->hasRelatedResultType() && MD->getClassInterface()) {
2858 // In the implementation of a method with a related return type, the
2859 // type used to type-check the validity of return statements within the
2860 // method body is a pointer to the type of the class being implemented.
2861 RelatedRetType = Context.getObjCInterfaceType(MD->getClassInterface());
2862 RelatedRetType = Context.getObjCObjectPointerType(RelatedRetType);
2863 }
2864 } else // If we don't have a function/method context, bail.
2865 return StmtError();
2866
2867 // FIXME: Add a flag to the ScopeInfo to indicate whether we're performing
2868 // deduction.
2869 if (getLangOpts().CPlusPlus1y) {
2870 if (AutoType *AT = FnRetType->getContainedAutoType()) {
2871 FunctionDecl *FD = cast<FunctionDecl>(CurContext);
2872 if (DeduceFunctionTypeFromReturnExpr(FD, ReturnLoc, RetValExp, AT)) {
2873 FD->setInvalidDecl();
2874 return StmtError();
2875 } else {
2876 FnRetType = FD->getReturnType();
2877 }
2878 }
2879 }
2880
2881 bool HasDependentReturnType = FnRetType->isDependentType();
2882
2883 ReturnStmt *Result = nullptr;
2884 if (FnRetType->isVoidType()) {
2885 if (RetValExp) {
2886 if (isa<InitListExpr>(RetValExp)) {
2887 // We simply never allow init lists as the return value of void
2888 // functions. This is compatible because this was never allowed before,
2889 // so there's no legacy code to deal with.
2890 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2891 int FunctionKind = 0;
2892 if (isa<ObjCMethodDecl>(CurDecl))
2893 FunctionKind = 1;
2894 else if (isa<CXXConstructorDecl>(CurDecl))
2895 FunctionKind = 2;
2896 else if (isa<CXXDestructorDecl>(CurDecl))
2897 FunctionKind = 3;
2898
2899 Diag(ReturnLoc, diag::err_return_init_list)
2900 << CurDecl->getDeclName() << FunctionKind
2901 << RetValExp->getSourceRange();
2902
2903 // Drop the expression.
2904 RetValExp = nullptr;
2905 } else if (!RetValExp->isTypeDependent()) {
2906 // C99 6.8.6.4p1 (ext_ since GCC warns)
2907 unsigned D = diag::ext_return_has_expr;
2908 if (RetValExp->getType()->isVoidType()) {
2909 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2910 if (isa<CXXConstructorDecl>(CurDecl) ||
2911 isa<CXXDestructorDecl>(CurDecl))
2912 D = diag::err_ctor_dtor_returns_void;
2913 else
2914 D = diag::ext_return_has_void_expr;
2915 }
2916 else {
2917 ExprResult Result = RetValExp;
2918 Result = IgnoredValueConversions(Result.get());
2919 if (Result.isInvalid())
2920 return StmtError();
2921 RetValExp = Result.get();
2922 RetValExp = ImpCastExprToType(RetValExp,
2923 Context.VoidTy, CK_ToVoid).get();
2924 }
2925 // return of void in constructor/destructor is illegal in C++.
2926 if (D == diag::err_ctor_dtor_returns_void) {
2927 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2928 Diag(ReturnLoc, D)
2929 << CurDecl->getDeclName() << isa<CXXDestructorDecl>(CurDecl)
2930 << RetValExp->getSourceRange();
2931 }
2932 // return (some void expression); is legal in C++.
2933 else if (D != diag::ext_return_has_void_expr ||
2934 !getLangOpts().CPlusPlus) {
2935 NamedDecl *CurDecl = getCurFunctionOrMethodDecl();
2936
2937 int FunctionKind = 0;
2938 if (isa<ObjCMethodDecl>(CurDecl))
2939 FunctionKind = 1;
2940 else if (isa<CXXConstructorDecl>(CurDecl))
2941 FunctionKind = 2;
2942 else if (isa<CXXDestructorDecl>(CurDecl))
2943 FunctionKind = 3;
2944
2945 Diag(ReturnLoc, D)
2946 << CurDecl->getDeclName() << FunctionKind
2947 << RetValExp->getSourceRange();
2948 }
2949 }
2950
2951 if (RetValExp) {
2952 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
2953 if (ER.isInvalid())
2954 return StmtError();
2955 RetValExp = ER.get();
2956 }
2957 }
2958
2959 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, nullptr);
2960 } else if (!RetValExp && !HasDependentReturnType) {
2961 unsigned DiagID = diag::warn_return_missing_expr; // C90 6.6.6.4p4
2962 // C99 6.8.6.4p1 (ext_ since GCC warns)
2963 if (getLangOpts().C99) DiagID = diag::ext_return_missing_expr;
2964
2965 if (FunctionDecl *FD = getCurFunctionDecl())
2966 Diag(ReturnLoc, DiagID) << FD->getIdentifier() << 0/*fn*/;
2967 else
2968 Diag(ReturnLoc, DiagID) << getCurMethodDecl()->getDeclName() << 1/*meth*/;
2969 Result = new (Context) ReturnStmt(ReturnLoc);
2970 } else {
2971 assert(RetValExp || HasDependentReturnType);
2972 const VarDecl *NRVOCandidate = nullptr;
2973
2974 QualType RetType = RelatedRetType.isNull() ? FnRetType : RelatedRetType;
2975
2976 // C99 6.8.6.4p3(136): The return statement is not an assignment. The
2977 // overlap restriction of subclause 6.5.16.1 does not apply to the case of
2978 // function return.
2979
2980 // In C++ the return statement is handled via a copy initialization,
2981 // the C version of which boils down to CheckSingleAssignmentConstraints.
2982 if (RetValExp)
2983 NRVOCandidate = getCopyElisionCandidate(FnRetType, RetValExp, false);
2984 if (!HasDependentReturnType && !RetValExp->isTypeDependent()) {
2985 // we have a non-void function with an expression, continue checking
2986 InitializedEntity Entity = InitializedEntity::InitializeResult(ReturnLoc,
2987 RetType,
2988 NRVOCandidate != nullptr);
2989 ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRVOCandidate,
2990 RetType, RetValExp);
2991 if (Res.isInvalid()) {
2992 // FIXME: Clean up temporaries here anyway?
2993 return StmtError();
2994 }
2995 RetValExp = Res.getAs<Expr>();
2996
2997 // If we have a related result type, we need to implicitly
2998 // convert back to the formal result type. We can't pretend to
2999 // initialize the result again --- we might end double-retaining
3000 // --- so instead we initialize a notional temporary.
3001 if (!RelatedRetType.isNull()) {
3002 Entity = InitializedEntity::InitializeRelatedResult(getCurMethodDecl(),
3003 FnRetType);
3004 Res = PerformCopyInitialization(Entity, ReturnLoc, RetValExp);
3005 if (Res.isInvalid()) {
3006 // FIXME: Clean up temporaries here anyway?
3007 return StmtError();
3008 }
3009 RetValExp = Res.getAs<Expr>();
3010 }
3011
3012 CheckReturnValExpr(RetValExp, FnRetType, ReturnLoc, isObjCMethod, Attrs,
3013 getCurFunctionDecl());
3014 }
3015
3016 if (RetValExp) {
3017 ExprResult ER = ActOnFinishFullExpr(RetValExp, ReturnLoc);
3018 if (ER.isInvalid())
3019 return StmtError();
3020 RetValExp = ER.get();
3021 }
3022 Result = new (Context) ReturnStmt(ReturnLoc, RetValExp, NRVOCandidate);
3023 }
3024
3025 // If we need to check for the named return value optimization, save the
3026 // return statement in our scope for later processing.
3027 if (Result->getNRVOCandidate())
3028 FunctionScopes.back()->Returns.push_back(Result);
3029
3030 return Result;
3031 }
3032
3033 StmtResult
ActOnObjCAtCatchStmt(SourceLocation AtLoc,SourceLocation RParen,Decl * Parm,Stmt * Body)3034 Sema::ActOnObjCAtCatchStmt(SourceLocation AtLoc,
3035 SourceLocation RParen, Decl *Parm,
3036 Stmt *Body) {
3037 VarDecl *Var = cast_or_null<VarDecl>(Parm);
3038 if (Var && Var->isInvalidDecl())
3039 return StmtError();
3040
3041 return new (Context) ObjCAtCatchStmt(AtLoc, RParen, Var, Body);
3042 }
3043
3044 StmtResult
ActOnObjCAtFinallyStmt(SourceLocation AtLoc,Stmt * Body)3045 Sema::ActOnObjCAtFinallyStmt(SourceLocation AtLoc, Stmt *Body) {
3046 return new (Context) ObjCAtFinallyStmt(AtLoc, Body);
3047 }
3048
3049 StmtResult
ActOnObjCAtTryStmt(SourceLocation AtLoc,Stmt * Try,MultiStmtArg CatchStmts,Stmt * Finally)3050 Sema::ActOnObjCAtTryStmt(SourceLocation AtLoc, Stmt *Try,
3051 MultiStmtArg CatchStmts, Stmt *Finally) {
3052 if (!getLangOpts().ObjCExceptions)
3053 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@try";
3054
3055 getCurFunction()->setHasBranchProtectedScope();
3056 unsigned NumCatchStmts = CatchStmts.size();
3057 return ObjCAtTryStmt::Create(Context, AtLoc, Try, CatchStmts.data(),
3058 NumCatchStmts, Finally);
3059 }
3060
BuildObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw)3061 StmtResult Sema::BuildObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw) {
3062 if (Throw) {
3063 ExprResult Result = DefaultLvalueConversion(Throw);
3064 if (Result.isInvalid())
3065 return StmtError();
3066
3067 Result = ActOnFinishFullExpr(Result.get());
3068 if (Result.isInvalid())
3069 return StmtError();
3070 Throw = Result.get();
3071
3072 QualType ThrowType = Throw->getType();
3073 // Make sure the expression type is an ObjC pointer or "void *".
3074 if (!ThrowType->isDependentType() &&
3075 !ThrowType->isObjCObjectPointerType()) {
3076 const PointerType *PT = ThrowType->getAs<PointerType>();
3077 if (!PT || !PT->getPointeeType()->isVoidType())
3078 return StmtError(Diag(AtLoc, diag::error_objc_throw_expects_object)
3079 << Throw->getType() << Throw->getSourceRange());
3080 }
3081 }
3082
3083 return new (Context) ObjCAtThrowStmt(AtLoc, Throw);
3084 }
3085
3086 StmtResult
ActOnObjCAtThrowStmt(SourceLocation AtLoc,Expr * Throw,Scope * CurScope)3087 Sema::ActOnObjCAtThrowStmt(SourceLocation AtLoc, Expr *Throw,
3088 Scope *CurScope) {
3089 if (!getLangOpts().ObjCExceptions)
3090 Diag(AtLoc, diag::err_objc_exceptions_disabled) << "@throw";
3091
3092 if (!Throw) {
3093 // @throw without an expression designates a rethrow (which much occur
3094 // in the context of an @catch clause).
3095 Scope *AtCatchParent = CurScope;
3096 while (AtCatchParent && !AtCatchParent->isAtCatchScope())
3097 AtCatchParent = AtCatchParent->getParent();
3098 if (!AtCatchParent)
3099 return StmtError(Diag(AtLoc, diag::error_rethrow_used_outside_catch));
3100 }
3101 return BuildObjCAtThrowStmt(AtLoc, Throw);
3102 }
3103
3104 ExprResult
ActOnObjCAtSynchronizedOperand(SourceLocation atLoc,Expr * operand)3105 Sema::ActOnObjCAtSynchronizedOperand(SourceLocation atLoc, Expr *operand) {
3106 ExprResult result = DefaultLvalueConversion(operand);
3107 if (result.isInvalid())
3108 return ExprError();
3109 operand = result.get();
3110
3111 // Make sure the expression type is an ObjC pointer or "void *".
3112 QualType type = operand->getType();
3113 if (!type->isDependentType() &&
3114 !type->isObjCObjectPointerType()) {
3115 const PointerType *pointerType = type->getAs<PointerType>();
3116 if (!pointerType || !pointerType->getPointeeType()->isVoidType())
3117 return Diag(atLoc, diag::error_objc_synchronized_expects_object)
3118 << type << operand->getSourceRange();
3119 }
3120
3121 // The operand to @synchronized is a full-expression.
3122 return ActOnFinishFullExpr(operand);
3123 }
3124
3125 StmtResult
ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,Expr * SyncExpr,Stmt * SyncBody)3126 Sema::ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc, Expr *SyncExpr,
3127 Stmt *SyncBody) {
3128 // We can't jump into or indirect-jump out of a @synchronized block.
3129 getCurFunction()->setHasBranchProtectedScope();
3130 return new (Context) ObjCAtSynchronizedStmt(AtLoc, SyncExpr, SyncBody);
3131 }
3132
3133 /// ActOnCXXCatchBlock - Takes an exception declaration and a handler block
3134 /// and creates a proper catch handler from them.
3135 StmtResult
ActOnCXXCatchBlock(SourceLocation CatchLoc,Decl * ExDecl,Stmt * HandlerBlock)3136 Sema::ActOnCXXCatchBlock(SourceLocation CatchLoc, Decl *ExDecl,
3137 Stmt *HandlerBlock) {
3138 // There's nothing to test that ActOnExceptionDecl didn't already test.
3139 return new (Context)
3140 CXXCatchStmt(CatchLoc, cast_or_null<VarDecl>(ExDecl), HandlerBlock);
3141 }
3142
3143 StmtResult
ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc,Stmt * Body)3144 Sema::ActOnObjCAutoreleasePoolStmt(SourceLocation AtLoc, Stmt *Body) {
3145 getCurFunction()->setHasBranchProtectedScope();
3146 return new (Context) ObjCAutoreleasePoolStmt(AtLoc, Body);
3147 }
3148
3149 namespace {
3150
3151 class TypeWithHandler {
3152 QualType t;
3153 CXXCatchStmt *stmt;
3154 public:
TypeWithHandler(const QualType & type,CXXCatchStmt * statement)3155 TypeWithHandler(const QualType &type, CXXCatchStmt *statement)
3156 : t(type), stmt(statement) {}
3157
3158 // An arbitrary order is fine as long as it places identical
3159 // types next to each other.
operator <(const TypeWithHandler & y) const3160 bool operator<(const TypeWithHandler &y) const {
3161 if (t.getAsOpaquePtr() < y.t.getAsOpaquePtr())
3162 return true;
3163 if (t.getAsOpaquePtr() > y.t.getAsOpaquePtr())
3164 return false;
3165 else
3166 return getTypeSpecStartLoc() < y.getTypeSpecStartLoc();
3167 }
3168
operator ==(const TypeWithHandler & other) const3169 bool operator==(const TypeWithHandler& other) const {
3170 return t == other.t;
3171 }
3172
getCatchStmt() const3173 CXXCatchStmt *getCatchStmt() const { return stmt; }
getTypeSpecStartLoc() const3174 SourceLocation getTypeSpecStartLoc() const {
3175 return stmt->getExceptionDecl()->getTypeSpecStartLoc();
3176 }
3177 };
3178
3179 }
3180
3181 /// ActOnCXXTryBlock - Takes a try compound-statement and a number of
3182 /// handlers and creates a try statement from them.
ActOnCXXTryBlock(SourceLocation TryLoc,Stmt * TryBlock,ArrayRef<Stmt * > Handlers)3183 StmtResult Sema::ActOnCXXTryBlock(SourceLocation TryLoc, Stmt *TryBlock,
3184 ArrayRef<Stmt *> Handlers) {
3185 // Don't report an error if 'try' is used in system headers.
3186 if (!getLangOpts().CXXExceptions &&
3187 !getSourceManager().isInSystemHeader(TryLoc))
3188 Diag(TryLoc, diag::err_exceptions_disabled) << "try";
3189
3190 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope())
3191 Diag(TryLoc, diag::err_omp_simd_region_cannot_use_stmt) << "try";
3192
3193 const unsigned NumHandlers = Handlers.size();
3194 assert(NumHandlers > 0 &&
3195 "The parser shouldn't call this if there are no handlers.");
3196
3197 SmallVector<TypeWithHandler, 8> TypesWithHandlers;
3198
3199 for (unsigned i = 0; i < NumHandlers; ++i) {
3200 CXXCatchStmt *Handler = cast<CXXCatchStmt>(Handlers[i]);
3201 if (!Handler->getExceptionDecl()) {
3202 if (i < NumHandlers - 1)
3203 return StmtError(Diag(Handler->getLocStart(),
3204 diag::err_early_catch_all));
3205
3206 continue;
3207 }
3208
3209 const QualType CaughtType = Handler->getCaughtType();
3210 const QualType CanonicalCaughtType = Context.getCanonicalType(CaughtType);
3211 TypesWithHandlers.push_back(TypeWithHandler(CanonicalCaughtType, Handler));
3212 }
3213
3214 // Detect handlers for the same type as an earlier one.
3215 if (NumHandlers > 1) {
3216 llvm::array_pod_sort(TypesWithHandlers.begin(), TypesWithHandlers.end());
3217
3218 TypeWithHandler prev = TypesWithHandlers[0];
3219 for (unsigned i = 1; i < TypesWithHandlers.size(); ++i) {
3220 TypeWithHandler curr = TypesWithHandlers[i];
3221
3222 if (curr == prev) {
3223 Diag(curr.getTypeSpecStartLoc(),
3224 diag::warn_exception_caught_by_earlier_handler)
3225 << curr.getCatchStmt()->getCaughtType().getAsString();
3226 Diag(prev.getTypeSpecStartLoc(),
3227 diag::note_previous_exception_handler)
3228 << prev.getCatchStmt()->getCaughtType().getAsString();
3229 }
3230
3231 prev = curr;
3232 }
3233 }
3234
3235 getCurFunction()->setHasBranchProtectedScope();
3236
3237 // FIXME: We should detect handlers that cannot catch anything because an
3238 // earlier handler catches a superclass. Need to find a method that is not
3239 // quadratic for this.
3240 // Neither of these are explicitly forbidden, but every compiler detects them
3241 // and warns.
3242
3243 return CXXTryStmt::Create(Context, TryLoc, TryBlock, Handlers);
3244 }
3245
3246 StmtResult
ActOnSEHTryBlock(bool IsCXXTry,SourceLocation TryLoc,Stmt * TryBlock,Stmt * Handler)3247 Sema::ActOnSEHTryBlock(bool IsCXXTry,
3248 SourceLocation TryLoc,
3249 Stmt *TryBlock,
3250 Stmt *Handler) {
3251 assert(TryBlock && Handler);
3252
3253 getCurFunction()->setHasBranchProtectedScope();
3254
3255 return SEHTryStmt::Create(Context,IsCXXTry,TryLoc,TryBlock,Handler);
3256 }
3257
3258 StmtResult
ActOnSEHExceptBlock(SourceLocation Loc,Expr * FilterExpr,Stmt * Block)3259 Sema::ActOnSEHExceptBlock(SourceLocation Loc,
3260 Expr *FilterExpr,
3261 Stmt *Block) {
3262 assert(FilterExpr && Block);
3263
3264 if(!FilterExpr->getType()->isIntegerType()) {
3265 return StmtError(Diag(FilterExpr->getExprLoc(),
3266 diag::err_filter_expression_integral)
3267 << FilterExpr->getType());
3268 }
3269
3270 return SEHExceptStmt::Create(Context,Loc,FilterExpr,Block);
3271 }
3272
3273 StmtResult
ActOnSEHFinallyBlock(SourceLocation Loc,Stmt * Block)3274 Sema::ActOnSEHFinallyBlock(SourceLocation Loc,
3275 Stmt *Block) {
3276 assert(Block);
3277 return SEHFinallyStmt::Create(Context,Loc,Block);
3278 }
3279
3280 StmtResult
ActOnSEHLeaveStmt(SourceLocation Loc,Scope * CurScope)3281 Sema::ActOnSEHLeaveStmt(SourceLocation Loc, Scope *CurScope) {
3282 Scope *SEHTryParent = CurScope;
3283 while (SEHTryParent && !SEHTryParent->isSEHTryScope())
3284 SEHTryParent = SEHTryParent->getParent();
3285 if (!SEHTryParent)
3286 return StmtError(Diag(Loc, diag::err_ms___leave_not_in___try));
3287
3288 return new (Context) SEHLeaveStmt(Loc);
3289 }
3290
BuildMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,NestedNameSpecifierLoc QualifierLoc,DeclarationNameInfo NameInfo,Stmt * Nested)3291 StmtResult Sema::BuildMSDependentExistsStmt(SourceLocation KeywordLoc,
3292 bool IsIfExists,
3293 NestedNameSpecifierLoc QualifierLoc,
3294 DeclarationNameInfo NameInfo,
3295 Stmt *Nested)
3296 {
3297 return new (Context) MSDependentExistsStmt(KeywordLoc, IsIfExists,
3298 QualifierLoc, NameInfo,
3299 cast<CompoundStmt>(Nested));
3300 }
3301
3302
ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,bool IsIfExists,CXXScopeSpec & SS,UnqualifiedId & Name,Stmt * Nested)3303 StmtResult Sema::ActOnMSDependentExistsStmt(SourceLocation KeywordLoc,
3304 bool IsIfExists,
3305 CXXScopeSpec &SS,
3306 UnqualifiedId &Name,
3307 Stmt *Nested) {
3308 return BuildMSDependentExistsStmt(KeywordLoc, IsIfExists,
3309 SS.getWithLocInContext(Context),
3310 GetNameFromUnqualifiedId(Name),
3311 Nested);
3312 }
3313
3314 RecordDecl*
CreateCapturedStmtRecordDecl(CapturedDecl * & CD,SourceLocation Loc,unsigned NumParams)3315 Sema::CreateCapturedStmtRecordDecl(CapturedDecl *&CD, SourceLocation Loc,
3316 unsigned NumParams) {
3317 DeclContext *DC = CurContext;
3318 while (!(DC->isFunctionOrMethod() || DC->isRecord() || DC->isFileContext()))
3319 DC = DC->getParent();
3320
3321 RecordDecl *RD = nullptr;
3322 if (getLangOpts().CPlusPlus)
3323 RD = CXXRecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc,
3324 /*Id=*/nullptr);
3325 else
3326 RD = RecordDecl::Create(Context, TTK_Struct, DC, Loc, Loc, /*Id=*/nullptr);
3327
3328 DC->addDecl(RD);
3329 RD->setImplicit();
3330 RD->startDefinition();
3331
3332 assert(NumParams > 0 && "CapturedStmt requires context parameter");
3333 CD = CapturedDecl::Create(Context, CurContext, NumParams);
3334 DC->addDecl(CD);
3335 return RD;
3336 }
3337
buildCapturedStmtCaptureList(SmallVectorImpl<CapturedStmt::Capture> & Captures,SmallVectorImpl<Expr * > & CaptureInits,ArrayRef<CapturingScopeInfo::Capture> Candidates)3338 static void buildCapturedStmtCaptureList(
3339 SmallVectorImpl<CapturedStmt::Capture> &Captures,
3340 SmallVectorImpl<Expr *> &CaptureInits,
3341 ArrayRef<CapturingScopeInfo::Capture> Candidates) {
3342
3343 typedef ArrayRef<CapturingScopeInfo::Capture>::const_iterator CaptureIter;
3344 for (CaptureIter Cap = Candidates.begin(); Cap != Candidates.end(); ++Cap) {
3345
3346 if (Cap->isThisCapture()) {
3347 Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3348 CapturedStmt::VCK_This));
3349 CaptureInits.push_back(Cap->getInitExpr());
3350 continue;
3351 }
3352
3353 assert(Cap->isReferenceCapture() &&
3354 "non-reference capture not yet implemented");
3355
3356 Captures.push_back(CapturedStmt::Capture(Cap->getLocation(),
3357 CapturedStmt::VCK_ByRef,
3358 Cap->getVariable()));
3359 CaptureInits.push_back(Cap->getInitExpr());
3360 }
3361 }
3362
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,unsigned NumParams)3363 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3364 CapturedRegionKind Kind,
3365 unsigned NumParams) {
3366 CapturedDecl *CD = nullptr;
3367 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, NumParams);
3368
3369 // Build the context parameter
3370 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3371 IdentifierInfo *ParamName = &Context.Idents.get("__context");
3372 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3373 ImplicitParamDecl *Param
3374 = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3375 DC->addDecl(Param);
3376
3377 CD->setContextParam(0, Param);
3378
3379 // Enter the capturing scope for this captured region.
3380 PushCapturedRegionScope(CurScope, CD, RD, Kind);
3381
3382 if (CurScope)
3383 PushDeclContext(CurScope, CD);
3384 else
3385 CurContext = CD;
3386
3387 PushExpressionEvaluationContext(PotentiallyEvaluated);
3388 }
3389
ActOnCapturedRegionStart(SourceLocation Loc,Scope * CurScope,CapturedRegionKind Kind,ArrayRef<CapturedParamNameType> Params)3390 void Sema::ActOnCapturedRegionStart(SourceLocation Loc, Scope *CurScope,
3391 CapturedRegionKind Kind,
3392 ArrayRef<CapturedParamNameType> Params) {
3393 CapturedDecl *CD = nullptr;
3394 RecordDecl *RD = CreateCapturedStmtRecordDecl(CD, Loc, Params.size());
3395
3396 // Build the context parameter
3397 DeclContext *DC = CapturedDecl::castToDeclContext(CD);
3398 bool ContextIsFound = false;
3399 unsigned ParamNum = 0;
3400 for (ArrayRef<CapturedParamNameType>::iterator I = Params.begin(),
3401 E = Params.end();
3402 I != E; ++I, ++ParamNum) {
3403 if (I->second.isNull()) {
3404 assert(!ContextIsFound &&
3405 "null type has been found already for '__context' parameter");
3406 IdentifierInfo *ParamName = &Context.Idents.get("__context");
3407 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3408 ImplicitParamDecl *Param
3409 = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3410 DC->addDecl(Param);
3411 CD->setContextParam(ParamNum, Param);
3412 ContextIsFound = true;
3413 } else {
3414 IdentifierInfo *ParamName = &Context.Idents.get(I->first);
3415 ImplicitParamDecl *Param
3416 = ImplicitParamDecl::Create(Context, DC, Loc, ParamName, I->second);
3417 DC->addDecl(Param);
3418 CD->setParam(ParamNum, Param);
3419 }
3420 }
3421 assert(ContextIsFound && "no null type for '__context' parameter");
3422 if (!ContextIsFound) {
3423 // Add __context implicitly if it is not specified.
3424 IdentifierInfo *ParamName = &Context.Idents.get("__context");
3425 QualType ParamType = Context.getPointerType(Context.getTagDeclType(RD));
3426 ImplicitParamDecl *Param =
3427 ImplicitParamDecl::Create(Context, DC, Loc, ParamName, ParamType);
3428 DC->addDecl(Param);
3429 CD->setContextParam(ParamNum, Param);
3430 }
3431 // Enter the capturing scope for this captured region.
3432 PushCapturedRegionScope(CurScope, CD, RD, Kind);
3433
3434 if (CurScope)
3435 PushDeclContext(CurScope, CD);
3436 else
3437 CurContext = CD;
3438
3439 PushExpressionEvaluationContext(PotentiallyEvaluated);
3440 }
3441
ActOnCapturedRegionError()3442 void Sema::ActOnCapturedRegionError() {
3443 DiscardCleanupsInEvaluationContext();
3444 PopExpressionEvaluationContext();
3445
3446 CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3447 RecordDecl *Record = RSI->TheRecordDecl;
3448 Record->setInvalidDecl();
3449
3450 SmallVector<Decl*, 4> Fields(Record->fields());
3451 ActOnFields(/*Scope=*/nullptr, Record->getLocation(), Record, Fields,
3452 SourceLocation(), SourceLocation(), /*AttributeList=*/nullptr);
3453
3454 PopDeclContext();
3455 PopFunctionScopeInfo();
3456 }
3457
ActOnCapturedRegionEnd(Stmt * S)3458 StmtResult Sema::ActOnCapturedRegionEnd(Stmt *S) {
3459 CapturedRegionScopeInfo *RSI = getCurCapturedRegion();
3460
3461 SmallVector<CapturedStmt::Capture, 4> Captures;
3462 SmallVector<Expr *, 4> CaptureInits;
3463 buildCapturedStmtCaptureList(Captures, CaptureInits, RSI->Captures);
3464
3465 CapturedDecl *CD = RSI->TheCapturedDecl;
3466 RecordDecl *RD = RSI->TheRecordDecl;
3467
3468 CapturedStmt *Res = CapturedStmt::Create(getASTContext(), S,
3469 RSI->CapRegionKind, Captures,
3470 CaptureInits, CD, RD);
3471
3472 CD->setBody(Res->getCapturedStmt());
3473 RD->completeDefinition();
3474
3475 DiscardCleanupsInEvaluationContext();
3476 PopExpressionEvaluationContext();
3477
3478 PopDeclContext();
3479 PopFunctionScopeInfo();
3480
3481 return Res;
3482 }
3483