• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
11 //
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
14 //
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
17 
18 #include "media/base/yuv_convert.h"
19 
20 #include "base/cpu.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24 #include "build/build_config.h"
25 #include "media/base/simd/convert_rgb_to_yuv.h"
26 #include "media/base/simd/convert_yuv_to_rgb.h"
27 #include "media/base/simd/filter_yuv.h"
28 #include "media/base/simd/yuv_to_rgb_table.h"
29 
30 #if defined(ARCH_CPU_X86_FAMILY)
31 #if defined(COMPILER_MSVC)
32 #include <intrin.h>
33 #else
34 #include <mmintrin.h>
35 #endif
36 #endif
37 
38 // Assembly functions are declared without namespace.
39 extern "C" { void EmptyRegisterState_MMX(); }  // extern "C"
40 
41 namespace media {
42 
43 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
44 
45 typedef void (*ConvertRGBToYUVProc)(const uint8*,
46                                     uint8*,
47                                     uint8*,
48                                     uint8*,
49                                     int,
50                                     int,
51                                     int,
52                                     int,
53                                     int);
54 
55 typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
56                                       const uint8*,
57                                       const uint8*,
58                                       uint8*,
59                                       int,
60                                       int,
61                                       int,
62                                       int,
63                                       int,
64                                       YUVType);
65 
66 typedef void (*ConvertYUVAToARGBProc)(const uint8*,
67                                       const uint8*,
68                                       const uint8*,
69                                       const uint8*,
70                                       uint8*,
71                                       int,
72                                       int,
73                                       int,
74                                       int,
75                                       int,
76                                       int,
77                                       YUVType);
78 
79 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
80                                          const uint8*,
81                                          const uint8*,
82                                          uint8*,
83                                          ptrdiff_t,
84                                          const int16[1024][4]);
85 
86 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
87                                          const uint8*,
88                                          const uint8*,
89                                          const uint8*,
90                                          uint8*,
91                                          ptrdiff_t,
92                                          const int16[1024][4]);
93 
94 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
95                                        const uint8*,
96                                        const uint8*,
97                                        uint8*,
98                                        ptrdiff_t,
99                                        ptrdiff_t,
100                                        const int16[1024][4]);
101 
102 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
103 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
104 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
105 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
106 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
107 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
108 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
109 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
110 
111 // Empty SIMD registers state after using them.
EmptyRegisterStateStub()112 void EmptyRegisterStateStub() {}
113 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
EmptyRegisterStateIntrinsic()114 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
115 #endif
116 typedef void (*EmptyRegisterStateProc)();
117 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
118 
119 // Get the appropriate value to bitshift by for vertical indices.
GetVerticalShift(YUVType type)120 int GetVerticalShift(YUVType type) {
121   switch (type) {
122     case YV16:
123       return 0;
124     case YV12:
125     case YV12J:
126       return 1;
127   }
128   NOTREACHED();
129   return 0;
130 }
131 
GetLookupTable(YUVType type)132 const int16 (&GetLookupTable(YUVType type))[1024][4] {
133   switch (type) {
134     case YV12:
135     case YV16:
136       return kCoefficientsRgbY;
137     case YV12J:
138       return kCoefficientsRgbY_JPEG;
139   }
140   NOTREACHED();
141   return kCoefficientsRgbY;
142 }
143 
144 void InitializeCPUSpecificYUVConversions() {
145   CHECK(!g_filter_yuv_rows_proc_);
146   CHECK(!g_convert_yuv_to_rgb32_row_proc_);
147   CHECK(!g_scale_yuv_to_rgb32_row_proc_);
148   CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
149   CHECK(!g_convert_rgb32_to_yuv_proc_);
150   CHECK(!g_convert_rgb24_to_yuv_proc_);
151   CHECK(!g_convert_yuv_to_rgb32_proc_);
152   CHECK(!g_convert_yuva_to_argb_proc_);
153   CHECK(!g_empty_register_state_proc_);
154 
155   g_filter_yuv_rows_proc_ = FilterYUVRows_C;
156   g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
157   g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
158   g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
159   g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
160   g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
161   g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
162   g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
163   g_empty_register_state_proc_ = EmptyRegisterStateStub;
164 
165   // Assembly code confuses MemorySanitizer.
166 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
167   base::CPU cpu;
168   if (cpu.has_mmx()) {
169     g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_MMX;
170     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_MMX;
171     g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_MMX;
172     g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
173     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX;
174 
175 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
176     g_filter_yuv_rows_proc_ = FilterYUVRows_MMX;
177     g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
178 #else
179     g_empty_register_state_proc_ = EmptyRegisterState_MMX;
180 #endif
181   }
182 
183   if (cpu.has_sse()) {
184     g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
185     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
186     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
187     g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
188   }
189 
190   if (cpu.has_sse2()) {
191     g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
192     g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
193 
194 #if defined(ARCH_CPU_X86_64)
195     g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
196 
197     // Technically this should be in the MMX section, but MSVC will optimize out
198     // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
199     // tests, if that decision can be made at compile time.  Since all X64 CPUs
200     // have SSE2, we can hack around this by making the selection here.
201     g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
202 #endif
203   }
204 
205   if (cpu.has_ssse3()) {
206     g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
207 
208     // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
209     // See: crbug.com/100462
210   }
211 #endif
212 }
213 
214 // Empty SIMD registers state after using them.
EmptyRegisterState()215 void EmptyRegisterState() { g_empty_register_state_proc_(); }
216 
217 // 16.16 fixed point arithmetic
218 const int kFractionBits = 16;
219 const int kFractionMax = 1 << kFractionBits;
220 const int kFractionMask = ((1 << kFractionBits) - 1);
221 
222 // Scale a frame of YUV to 32 bit ARGB.
ScaleYUVToRGB32(const uint8 * y_buf,const uint8 * u_buf,const uint8 * v_buf,uint8 * rgb_buf,int source_width,int source_height,int width,int height,int y_pitch,int uv_pitch,int rgb_pitch,YUVType yuv_type,Rotate view_rotate,ScaleFilter filter)223 void ScaleYUVToRGB32(const uint8* y_buf,
224                      const uint8* u_buf,
225                      const uint8* v_buf,
226                      uint8* rgb_buf,
227                      int source_width,
228                      int source_height,
229                      int width,
230                      int height,
231                      int y_pitch,
232                      int uv_pitch,
233                      int rgb_pitch,
234                      YUVType yuv_type,
235                      Rotate view_rotate,
236                      ScaleFilter filter) {
237   // Handle zero sized sources and destinations.
238   if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
239       (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
240       width == 0 || height == 0)
241     return;
242 
243   // 4096 allows 3 buffers to fit in 12k.
244   // Helps performance on CPU with 16K L1 cache.
245   // Large enough for 3830x2160 and 30" displays which are 2560x1600.
246   const int kFilterBufferSize = 4096;
247   // Disable filtering if the screen is too big (to avoid buffer overflows).
248   // This should never happen to regular users: they don't have monitors
249   // wider than 4096 pixels.
250   // TODO(fbarchard): Allow rotated videos to filter.
251   if (source_width > kFilterBufferSize || view_rotate)
252     filter = FILTER_NONE;
253 
254   unsigned int y_shift = GetVerticalShift(yuv_type);
255   // Diagram showing origin and direction of source sampling.
256   // ->0   4<-
257   // 7       3
258   //
259   // 6       5
260   // ->1   2<-
261   // Rotations that start at right side of image.
262   if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
263       (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
264     y_buf += source_width - 1;
265     u_buf += source_width / 2 - 1;
266     v_buf += source_width / 2 - 1;
267     source_width = -source_width;
268   }
269   // Rotations that start at bottom of image.
270   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
271       (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
272     y_buf += (source_height - 1) * y_pitch;
273     u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
274     v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
275     source_height = -source_height;
276   }
277 
278   int source_dx = source_width * kFractionMax / width;
279 
280   if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
281     int tmp = height;
282     height = width;
283     width = tmp;
284     tmp = source_height;
285     source_height = source_width;
286     source_width = tmp;
287     int source_dy = source_height * kFractionMax / height;
288     source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
289     if (view_rotate == ROTATE_90) {
290       y_pitch = -1;
291       uv_pitch = -1;
292       source_height = -source_height;
293     } else {
294       y_pitch = 1;
295       uv_pitch = 1;
296     }
297   }
298 
299   // Need padding because FilterRows() will write 1 to 16 extra pixels
300   // after the end for SSE2 version.
301   uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
302   uint8* ybuf =
303       reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
304   uint8* ubuf = ybuf + kFilterBufferSize;
305   uint8* vbuf = ubuf + kFilterBufferSize;
306 
307   // TODO(fbarchard): Fixed point math is off by 1 on negatives.
308 
309   // We take a y-coordinate in [0,1] space in the source image space, and
310   // transform to a y-coordinate in [0,1] space in the destination image space.
311   // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
312   // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
313   // 0.75.  The formula is as follows (in fixed-point arithmetic):
314   //   y_dst = dst_height * ((y_src + 0.5) / src_height)
315   //   dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
316   // Implement this here as an accumulator + delta, to avoid expensive math
317   // in the loop.
318   int source_y_subpixel_accum =
319       ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
320   int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
321 
322   // TODO(fbarchard): Split this into separate function for better efficiency.
323   for (int y = 0; y < height; ++y) {
324     uint8* dest_pixel = rgb_buf + y * rgb_pitch;
325     int source_y_subpixel = source_y_subpixel_accum;
326     source_y_subpixel_accum += source_y_subpixel_delta;
327     if (source_y_subpixel < 0)
328       source_y_subpixel = 0;
329     else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
330       source_y_subpixel = (source_height - 1) << kFractionBits;
331 
332     const uint8* y_ptr = NULL;
333     const uint8* u_ptr = NULL;
334     const uint8* v_ptr = NULL;
335     // Apply vertical filtering if necessary.
336     // TODO(fbarchard): Remove memcpy when not necessary.
337     if (filter & media::FILTER_BILINEAR_V) {
338       int source_y = source_y_subpixel >> kFractionBits;
339       y_ptr = y_buf + source_y * y_pitch;
340       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
341       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
342 
343       // Vertical scaler uses 16.8 fixed point.
344       int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
345       if (source_y_fraction != 0) {
346         g_filter_yuv_rows_proc_(
347             ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
348       } else {
349         memcpy(ybuf, y_ptr, source_width);
350       }
351       y_ptr = ybuf;
352       ybuf[source_width] = ybuf[source_width - 1];
353 
354       int uv_source_width = (source_width + 1) / 2;
355       int source_uv_fraction;
356 
357       // For formats with half-height UV planes, each even-numbered pixel row
358       // should not interpolate, since the next row to interpolate from should
359       // be a duplicate of the current row.
360       if (y_shift && (source_y & 0x1) == 0)
361         source_uv_fraction = 0;
362       else
363         source_uv_fraction = source_y_fraction;
364 
365       if (source_uv_fraction != 0) {
366         g_filter_yuv_rows_proc_(
367             ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
368         g_filter_yuv_rows_proc_(
369             vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
370       } else {
371         memcpy(ubuf, u_ptr, uv_source_width);
372         memcpy(vbuf, v_ptr, uv_source_width);
373       }
374       u_ptr = ubuf;
375       v_ptr = vbuf;
376       ubuf[uv_source_width] = ubuf[uv_source_width - 1];
377       vbuf[uv_source_width] = vbuf[uv_source_width - 1];
378     } else {
379       // Offset by 1/2 pixel for center sampling.
380       int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
381       y_ptr = y_buf + source_y * y_pitch;
382       u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
383       v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
384     }
385     if (source_dx == kFractionMax) {  // Not scaled
386       g_convert_yuv_to_rgb32_row_proc_(
387           y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY);
388     } else {
389       if (filter & FILTER_BILINEAR_H) {
390         g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr,
391                                               u_ptr,
392                                               v_ptr,
393                                               dest_pixel,
394                                               width,
395                                               source_dx,
396                                               kCoefficientsRgbY);
397       } else {
398         g_scale_yuv_to_rgb32_row_proc_(y_ptr,
399                                        u_ptr,
400                                        v_ptr,
401                                        dest_pixel,
402                                        width,
403                                        source_dx,
404                                        kCoefficientsRgbY);
405       }
406     }
407   }
408 
409   g_empty_register_state_proc_();
410 }
411 
412 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
ScaleYUVToRGB32WithRect(const uint8 * y_buf,const uint8 * u_buf,const uint8 * v_buf,uint8 * rgb_buf,int source_width,int source_height,int dest_width,int dest_height,int dest_rect_left,int dest_rect_top,int dest_rect_right,int dest_rect_bottom,int y_pitch,int uv_pitch,int rgb_pitch)413 void ScaleYUVToRGB32WithRect(const uint8* y_buf,
414                              const uint8* u_buf,
415                              const uint8* v_buf,
416                              uint8* rgb_buf,
417                              int source_width,
418                              int source_height,
419                              int dest_width,
420                              int dest_height,
421                              int dest_rect_left,
422                              int dest_rect_top,
423                              int dest_rect_right,
424                              int dest_rect_bottom,
425                              int y_pitch,
426                              int uv_pitch,
427                              int rgb_pitch) {
428   // This routine doesn't currently support up-scaling.
429   CHECK_LE(dest_width, source_width);
430   CHECK_LE(dest_height, source_height);
431 
432   // Sanity-check the destination rectangle.
433   DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
434   DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
435   DCHECK(dest_rect_right > dest_rect_left);
436   DCHECK(dest_rect_bottom > dest_rect_top);
437 
438   // Fixed-point value of vertical and horizontal scale down factor.
439   // Values are in the format 16.16.
440   int y_step = kFractionMax * source_height / dest_height;
441   int x_step = kFractionMax * source_width / dest_width;
442 
443   // Determine the coordinates of the rectangle in 16.16 coords.
444   // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
445   // If we're down-scaling by more than a factor of two, we start with a 50%
446   // fraction to avoid degenerating to point-sampling - we should really just
447   // fix the fraction at 50% for all pixels in that case.
448   int source_left = dest_rect_left * x_step;
449   int source_right = (dest_rect_right - 1) * x_step;
450   if (x_step < kFractionMax * 2) {
451     source_left += ((x_step - kFractionMax) / 2);
452     source_right += ((x_step - kFractionMax) / 2);
453   } else {
454     source_left += kFractionMax / 2;
455     source_right += kFractionMax / 2;
456   }
457   int source_top = dest_rect_top * y_step;
458   if (y_step < kFractionMax * 2) {
459     source_top += ((y_step - kFractionMax) / 2);
460   } else {
461     source_top += kFractionMax / 2;
462   }
463 
464   // Determine the parts of the Y, U and V buffers to interpolate.
465   int source_y_left = source_left >> kFractionBits;
466   int source_y_right =
467       std::min((source_right >> kFractionBits) + 2, source_width + 1);
468 
469   int source_uv_left = source_y_left / 2;
470   int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
471                                  (source_width + 1) / 2);
472 
473   int source_y_width = source_y_right - source_y_left;
474   int source_uv_width = source_uv_right - source_uv_left;
475 
476   // Determine number of pixels in each output row.
477   int dest_rect_width = dest_rect_right - dest_rect_left;
478 
479   // Intermediate buffer for vertical interpolation.
480   // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
481   // and is bigger than most users will generally need.
482   // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
483   // FilterYUVRowProcs have alignment requirements, and the SSE version can
484   // write up to 16 bytes past the end of the buffer.
485   const int kFilterBufferSize = 4096;
486   const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
487   uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
488   // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
489   if (RunningOnValgrind())
490     memset(yuv_temp, 0, sizeof(yuv_temp));
491   uint8* y_temp = reinterpret_cast<uint8*>(
492       reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
493   uint8* u_temp = y_temp + kFilterBufferSize;
494   uint8* v_temp = u_temp + kFilterBufferSize;
495 
496   // Move to the top-left pixel of output.
497   rgb_buf += dest_rect_top * rgb_pitch;
498   rgb_buf += dest_rect_left * 4;
499 
500   // For each destination row perform interpolation and color space
501   // conversion to produce the output.
502   for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
503     // Round the fixed-point y position to get the current row.
504     int source_row = source_top >> kFractionBits;
505     int source_uv_row = source_row / 2;
506     DCHECK(source_row < source_height);
507 
508     // Locate the first row for each plane for interpolation.
509     const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
510     const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
511     const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
512     const uint8* y1_ptr = NULL;
513     const uint8* u1_ptr = NULL;
514     const uint8* v1_ptr = NULL;
515 
516     // Locate the second row for interpolation, being careful not to overrun.
517     if (source_row + 1 >= source_height) {
518       y1_ptr = y0_ptr;
519     } else {
520       y1_ptr = y0_ptr + y_pitch;
521     }
522     if (source_uv_row + 1 >= (source_height + 1) / 2) {
523       u1_ptr = u0_ptr;
524       v1_ptr = v0_ptr;
525     } else {
526       u1_ptr = u0_ptr + uv_pitch;
527       v1_ptr = v0_ptr + uv_pitch;
528     }
529 
530     if (!kAvoidUsingOptimizedFilter) {
531       // Vertical scaler uses 16.8 fixed point.
532       int fraction = (source_top & kFractionMask) >> 8;
533       g_filter_yuv_rows_proc_(
534           y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
535       g_filter_yuv_rows_proc_(
536           u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
537       g_filter_yuv_rows_proc_(
538           v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
539 
540       // Perform horizontal interpolation and color space conversion.
541       // TODO(hclam): Use the MMX version after more testing.
542       LinearScaleYUVToRGB32RowWithRange_C(y_temp,
543                                           u_temp,
544                                           v_temp,
545                                           rgb_buf,
546                                           dest_rect_width,
547                                           source_left,
548                                           x_step,
549                                           kCoefficientsRgbY);
550     } else {
551       // If the frame is too large then we linear scale a single row.
552       LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
553                                           u0_ptr,
554                                           v0_ptr,
555                                           rgb_buf,
556                                           dest_rect_width,
557                                           source_left,
558                                           x_step,
559                                           kCoefficientsRgbY);
560     }
561 
562     // Advance vertically in the source and destination image.
563     source_top += y_step;
564     rgb_buf += rgb_pitch;
565   }
566 
567   g_empty_register_state_proc_();
568 }
569 
ConvertRGB32ToYUV(const uint8 * rgbframe,uint8 * yplane,uint8 * uplane,uint8 * vplane,int width,int height,int rgbstride,int ystride,int uvstride)570 void ConvertRGB32ToYUV(const uint8* rgbframe,
571                        uint8* yplane,
572                        uint8* uplane,
573                        uint8* vplane,
574                        int width,
575                        int height,
576                        int rgbstride,
577                        int ystride,
578                        int uvstride) {
579   g_convert_rgb32_to_yuv_proc_(rgbframe,
580                                yplane,
581                                uplane,
582                                vplane,
583                                width,
584                                height,
585                                rgbstride,
586                                ystride,
587                                uvstride);
588 }
589 
ConvertRGB24ToYUV(const uint8 * rgbframe,uint8 * yplane,uint8 * uplane,uint8 * vplane,int width,int height,int rgbstride,int ystride,int uvstride)590 void ConvertRGB24ToYUV(const uint8* rgbframe,
591                        uint8* yplane,
592                        uint8* uplane,
593                        uint8* vplane,
594                        int width,
595                        int height,
596                        int rgbstride,
597                        int ystride,
598                        int uvstride) {
599   g_convert_rgb24_to_yuv_proc_(rgbframe,
600                                yplane,
601                                uplane,
602                                vplane,
603                                width,
604                                height,
605                                rgbstride,
606                                ystride,
607                                uvstride);
608 }
609 
ConvertYUY2ToYUV(const uint8 * src,uint8 * yplane,uint8 * uplane,uint8 * vplane,int width,int height)610 void ConvertYUY2ToYUV(const uint8* src,
611                       uint8* yplane,
612                       uint8* uplane,
613                       uint8* vplane,
614                       int width,
615                       int height) {
616   for (int i = 0; i < height / 2; ++i) {
617     for (int j = 0; j < (width / 2); ++j) {
618       yplane[0] = src[0];
619       *uplane = src[1];
620       yplane[1] = src[2];
621       *vplane = src[3];
622       src += 4;
623       yplane += 2;
624       uplane++;
625       vplane++;
626     }
627     for (int j = 0; j < (width / 2); ++j) {
628       yplane[0] = src[0];
629       yplane[1] = src[2];
630       src += 4;
631       yplane += 2;
632     }
633   }
634 }
635 
ConvertNV21ToYUV(const uint8 * src,uint8 * yplane,uint8 * uplane,uint8 * vplane,int width,int height)636 void ConvertNV21ToYUV(const uint8* src,
637                       uint8* yplane,
638                       uint8* uplane,
639                       uint8* vplane,
640                       int width,
641                       int height) {
642   int y_plane_size = width * height;
643   memcpy(yplane, src, y_plane_size);
644 
645   src += y_plane_size;
646   int u_plane_size = y_plane_size >> 2;
647   for (int i = 0; i < u_plane_size; ++i) {
648     *vplane++ = *src++;
649     *uplane++ = *src++;
650   }
651 }
652 
ConvertYUVToRGB32(const uint8 * yplane,const uint8 * uplane,const uint8 * vplane,uint8 * rgbframe,int width,int height,int ystride,int uvstride,int rgbstride,YUVType yuv_type)653 void ConvertYUVToRGB32(const uint8* yplane,
654                        const uint8* uplane,
655                        const uint8* vplane,
656                        uint8* rgbframe,
657                        int width,
658                        int height,
659                        int ystride,
660                        int uvstride,
661                        int rgbstride,
662                        YUVType yuv_type) {
663   g_convert_yuv_to_rgb32_proc_(yplane,
664                                uplane,
665                                vplane,
666                                rgbframe,
667                                width,
668                                height,
669                                ystride,
670                                uvstride,
671                                rgbstride,
672                                yuv_type);
673 }
674 
ConvertYUVAToARGB(const uint8 * yplane,const uint8 * uplane,const uint8 * vplane,const uint8 * aplane,uint8 * rgbframe,int width,int height,int ystride,int uvstride,int astride,int rgbstride,YUVType yuv_type)675 void ConvertYUVAToARGB(const uint8* yplane,
676                        const uint8* uplane,
677                        const uint8* vplane,
678                        const uint8* aplane,
679                        uint8* rgbframe,
680                        int width,
681                        int height,
682                        int ystride,
683                        int uvstride,
684                        int astride,
685                        int rgbstride,
686                        YUVType yuv_type) {
687   g_convert_yuva_to_argb_proc_(yplane,
688                                uplane,
689                                vplane,
690                                aplane,
691                                rgbframe,
692                                width,
693                                height,
694                                ystride,
695                                uvstride,
696                                astride,
697                                rgbstride,
698                                yuv_type);
699 }
700 
701 }  // namespace media
702