1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveVariables.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SlotIndexes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/LeakDetector.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include <algorithm>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "codegen"
39
MachineBasicBlock(MachineFunction & mf,const BasicBlock * bb)40 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
41 : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
42 AddressTaken(false), CachedMCSymbol(nullptr) {
43 Insts.Parent = this;
44 }
45
~MachineBasicBlock()46 MachineBasicBlock::~MachineBasicBlock() {
47 LeakDetector::removeGarbageObject(this);
48 }
49
50 /// getSymbol - Return the MCSymbol for this basic block.
51 ///
getSymbol() const52 MCSymbol *MachineBasicBlock::getSymbol() const {
53 if (!CachedMCSymbol) {
54 const MachineFunction *MF = getParent();
55 MCContext &Ctx = MF->getContext();
56 const TargetMachine &TM = MF->getTarget();
57 const char *Prefix = TM.getDataLayout()->getPrivateGlobalPrefix();
58 CachedMCSymbol = Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
59 Twine(MF->getFunctionNumber()) +
60 "_" + Twine(getNumber()));
61 }
62
63 return CachedMCSymbol;
64 }
65
66
operator <<(raw_ostream & OS,const MachineBasicBlock & MBB)67 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
68 MBB.print(OS);
69 return OS;
70 }
71
72 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the
73 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
74 /// MBB to be on the right operand list for registers.
75 ///
76 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
77 /// gets the next available unique MBB number. If it is removed from a
78 /// MachineFunction, it goes back to being #-1.
addNodeToList(MachineBasicBlock * N)79 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
80 MachineFunction &MF = *N->getParent();
81 N->Number = MF.addToMBBNumbering(N);
82
83 // Make sure the instructions have their operands in the reginfo lists.
84 MachineRegisterInfo &RegInfo = MF.getRegInfo();
85 for (MachineBasicBlock::instr_iterator
86 I = N->instr_begin(), E = N->instr_end(); I != E; ++I)
87 I->AddRegOperandsToUseLists(RegInfo);
88
89 LeakDetector::removeGarbageObject(N);
90 }
91
removeNodeFromList(MachineBasicBlock * N)92 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
93 N->getParent()->removeFromMBBNumbering(N->Number);
94 N->Number = -1;
95 LeakDetector::addGarbageObject(N);
96 }
97
98
99 /// addNodeToList (MI) - When we add an instruction to a basic block
100 /// list, we update its parent pointer and add its operands from reg use/def
101 /// lists if appropriate.
addNodeToList(MachineInstr * N)102 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
103 assert(!N->getParent() && "machine instruction already in a basic block");
104 N->setParent(Parent);
105
106 // Add the instruction's register operands to their corresponding
107 // use/def lists.
108 MachineFunction *MF = Parent->getParent();
109 N->AddRegOperandsToUseLists(MF->getRegInfo());
110
111 LeakDetector::removeGarbageObject(N);
112 }
113
114 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
115 /// list, we update its parent pointer and remove its operands from reg use/def
116 /// lists if appropriate.
removeNodeFromList(MachineInstr * N)117 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
118 assert(N->getParent() && "machine instruction not in a basic block");
119
120 // Remove from the use/def lists.
121 if (MachineFunction *MF = N->getParent()->getParent())
122 N->RemoveRegOperandsFromUseLists(MF->getRegInfo());
123
124 N->setParent(nullptr);
125
126 LeakDetector::addGarbageObject(N);
127 }
128
129 /// transferNodesFromList (MI) - When moving a range of instructions from one
130 /// MBB list to another, we need to update the parent pointers and the use/def
131 /// lists.
132 void ilist_traits<MachineInstr>::
transferNodesFromList(ilist_traits<MachineInstr> & fromList,ilist_iterator<MachineInstr> first,ilist_iterator<MachineInstr> last)133 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
134 ilist_iterator<MachineInstr> first,
135 ilist_iterator<MachineInstr> last) {
136 assert(Parent->getParent() == fromList.Parent->getParent() &&
137 "MachineInstr parent mismatch!");
138
139 // Splice within the same MBB -> no change.
140 if (Parent == fromList.Parent) return;
141
142 // If splicing between two blocks within the same function, just update the
143 // parent pointers.
144 for (; first != last; ++first)
145 first->setParent(Parent);
146 }
147
deleteNode(MachineInstr * MI)148 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
149 assert(!MI->getParent() && "MI is still in a block!");
150 Parent->getParent()->DeleteMachineInstr(MI);
151 }
152
getFirstNonPHI()153 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
154 instr_iterator I = instr_begin(), E = instr_end();
155 while (I != E && I->isPHI())
156 ++I;
157 assert((I == E || !I->isInsideBundle()) &&
158 "First non-phi MI cannot be inside a bundle!");
159 return I;
160 }
161
162 MachineBasicBlock::iterator
SkipPHIsAndLabels(MachineBasicBlock::iterator I)163 MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) {
164 iterator E = end();
165 while (I != E && (I->isPHI() || I->isPosition() || I->isDebugValue()))
166 ++I;
167 // FIXME: This needs to change if we wish to bundle labels / dbg_values
168 // inside the bundle.
169 assert((I == E || !I->isInsideBundle()) &&
170 "First non-phi / non-label instruction is inside a bundle!");
171 return I;
172 }
173
getFirstTerminator()174 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
175 iterator B = begin(), E = end(), I = E;
176 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
177 ; /*noop */
178 while (I != E && !I->isTerminator())
179 ++I;
180 return I;
181 }
182
183 MachineBasicBlock::const_iterator
getFirstTerminator() const184 MachineBasicBlock::getFirstTerminator() const {
185 const_iterator B = begin(), E = end(), I = E;
186 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
187 ; /*noop */
188 while (I != E && !I->isTerminator())
189 ++I;
190 return I;
191 }
192
getFirstInstrTerminator()193 MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() {
194 instr_iterator B = instr_begin(), E = instr_end(), I = E;
195 while (I != B && ((--I)->isTerminator() || I->isDebugValue()))
196 ; /*noop */
197 while (I != E && !I->isTerminator())
198 ++I;
199 return I;
200 }
201
getLastNonDebugInstr()202 MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr() {
203 // Skip over end-of-block dbg_value instructions.
204 instr_iterator B = instr_begin(), I = instr_end();
205 while (I != B) {
206 --I;
207 // Return instruction that starts a bundle.
208 if (I->isDebugValue() || I->isInsideBundle())
209 continue;
210 return I;
211 }
212 // The block is all debug values.
213 return end();
214 }
215
216 MachineBasicBlock::const_iterator
getLastNonDebugInstr() const217 MachineBasicBlock::getLastNonDebugInstr() const {
218 // Skip over end-of-block dbg_value instructions.
219 const_instr_iterator B = instr_begin(), I = instr_end();
220 while (I != B) {
221 --I;
222 // Return instruction that starts a bundle.
223 if (I->isDebugValue() || I->isInsideBundle())
224 continue;
225 return I;
226 }
227 // The block is all debug values.
228 return end();
229 }
230
getLandingPadSuccessor() const231 const MachineBasicBlock *MachineBasicBlock::getLandingPadSuccessor() const {
232 // A block with a landing pad successor only has one other successor.
233 if (succ_size() > 2)
234 return nullptr;
235 for (const_succ_iterator I = succ_begin(), E = succ_end(); I != E; ++I)
236 if ((*I)->isLandingPad())
237 return *I;
238 return nullptr;
239 }
240
241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const242 void MachineBasicBlock::dump() const {
243 print(dbgs());
244 }
245 #endif
246
getName() const247 StringRef MachineBasicBlock::getName() const {
248 if (const BasicBlock *LBB = getBasicBlock())
249 return LBB->getName();
250 else
251 return "(null)";
252 }
253
254 /// Return a hopefully unique identifier for this block.
getFullName() const255 std::string MachineBasicBlock::getFullName() const {
256 std::string Name;
257 if (getParent())
258 Name = (getParent()->getName() + ":").str();
259 if (getBasicBlock())
260 Name += getBasicBlock()->getName();
261 else
262 Name += (Twine("BB") + Twine(getNumber())).str();
263 return Name;
264 }
265
print(raw_ostream & OS,SlotIndexes * Indexes) const266 void MachineBasicBlock::print(raw_ostream &OS, SlotIndexes *Indexes) const {
267 const MachineFunction *MF = getParent();
268 if (!MF) {
269 OS << "Can't print out MachineBasicBlock because parent MachineFunction"
270 << " is null\n";
271 return;
272 }
273
274 if (Indexes)
275 OS << Indexes->getMBBStartIdx(this) << '\t';
276
277 OS << "BB#" << getNumber() << ": ";
278
279 const char *Comma = "";
280 if (const BasicBlock *LBB = getBasicBlock()) {
281 OS << Comma << "derived from LLVM BB ";
282 LBB->printAsOperand(OS, /*PrintType=*/false);
283 Comma = ", ";
284 }
285 if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
286 if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
287 if (Alignment)
288 OS << Comma << "Align " << Alignment << " (" << (1u << Alignment)
289 << " bytes)";
290
291 OS << '\n';
292
293 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
294 if (!livein_empty()) {
295 if (Indexes) OS << '\t';
296 OS << " Live Ins:";
297 for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
298 OS << ' ' << PrintReg(*I, TRI);
299 OS << '\n';
300 }
301 // Print the preds of this block according to the CFG.
302 if (!pred_empty()) {
303 if (Indexes) OS << '\t';
304 OS << " Predecessors according to CFG:";
305 for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
306 OS << " BB#" << (*PI)->getNumber();
307 OS << '\n';
308 }
309
310 for (const_instr_iterator I = instr_begin(); I != instr_end(); ++I) {
311 if (Indexes) {
312 if (Indexes->hasIndex(I))
313 OS << Indexes->getInstructionIndex(I);
314 OS << '\t';
315 }
316 OS << '\t';
317 if (I->isInsideBundle())
318 OS << " * ";
319 I->print(OS, &getParent()->getTarget());
320 }
321
322 // Print the successors of this block according to the CFG.
323 if (!succ_empty()) {
324 if (Indexes) OS << '\t';
325 OS << " Successors according to CFG:";
326 for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI) {
327 OS << " BB#" << (*SI)->getNumber();
328 if (!Weights.empty())
329 OS << '(' << *getWeightIterator(SI) << ')';
330 }
331 OS << '\n';
332 }
333 }
334
printAsOperand(raw_ostream & OS,bool) const335 void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const {
336 OS << "BB#" << getNumber();
337 }
338
removeLiveIn(unsigned Reg)339 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
340 std::vector<unsigned>::iterator I =
341 std::find(LiveIns.begin(), LiveIns.end(), Reg);
342 if (I != LiveIns.end())
343 LiveIns.erase(I);
344 }
345
isLiveIn(unsigned Reg) const346 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
347 livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
348 return I != livein_end();
349 }
350
351 unsigned
addLiveIn(unsigned PhysReg,const TargetRegisterClass * RC)352 MachineBasicBlock::addLiveIn(unsigned PhysReg, const TargetRegisterClass *RC) {
353 assert(getParent() && "MBB must be inserted in function");
354 assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) && "Expected physreg");
355 assert(RC && "Register class is required");
356 assert((isLandingPad() || this == &getParent()->front()) &&
357 "Only the entry block and landing pads can have physreg live ins");
358
359 bool LiveIn = isLiveIn(PhysReg);
360 iterator I = SkipPHIsAndLabels(begin()), E = end();
361 MachineRegisterInfo &MRI = getParent()->getRegInfo();
362 const TargetInstrInfo &TII = *getParent()->getTarget().getInstrInfo();
363
364 // Look for an existing copy.
365 if (LiveIn)
366 for (;I != E && I->isCopy(); ++I)
367 if (I->getOperand(1).getReg() == PhysReg) {
368 unsigned VirtReg = I->getOperand(0).getReg();
369 if (!MRI.constrainRegClass(VirtReg, RC))
370 llvm_unreachable("Incompatible live-in register class.");
371 return VirtReg;
372 }
373
374 // No luck, create a virtual register.
375 unsigned VirtReg = MRI.createVirtualRegister(RC);
376 BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg)
377 .addReg(PhysReg, RegState::Kill);
378 if (!LiveIn)
379 addLiveIn(PhysReg);
380 return VirtReg;
381 }
382
moveBefore(MachineBasicBlock * NewAfter)383 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
384 getParent()->splice(NewAfter, this);
385 }
386
moveAfter(MachineBasicBlock * NewBefore)387 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
388 MachineFunction::iterator BBI = NewBefore;
389 getParent()->splice(++BBI, this);
390 }
391
updateTerminator()392 void MachineBasicBlock::updateTerminator() {
393 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
394 // A block with no successors has no concerns with fall-through edges.
395 if (this->succ_empty()) return;
396
397 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
398 SmallVector<MachineOperand, 4> Cond;
399 DebugLoc dl; // FIXME: this is nowhere
400 bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
401 (void) B;
402 assert(!B && "UpdateTerminators requires analyzable predecessors!");
403 if (Cond.empty()) {
404 if (TBB) {
405 // The block has an unconditional branch. If its successor is now
406 // its layout successor, delete the branch.
407 if (isLayoutSuccessor(TBB))
408 TII->RemoveBranch(*this);
409 } else {
410 // The block has an unconditional fallthrough. If its successor is not
411 // its layout successor, insert a branch. First we have to locate the
412 // only non-landing-pad successor, as that is the fallthrough block.
413 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
414 if ((*SI)->isLandingPad())
415 continue;
416 assert(!TBB && "Found more than one non-landing-pad successor!");
417 TBB = *SI;
418 }
419
420 // If there is no non-landing-pad successor, the block has no
421 // fall-through edges to be concerned with.
422 if (!TBB)
423 return;
424
425 // Finally update the unconditional successor to be reached via a branch
426 // if it would not be reached by fallthrough.
427 if (!isLayoutSuccessor(TBB))
428 TII->InsertBranch(*this, TBB, nullptr, Cond, dl);
429 }
430 } else {
431 if (FBB) {
432 // The block has a non-fallthrough conditional branch. If one of its
433 // successors is its layout successor, rewrite it to a fallthrough
434 // conditional branch.
435 if (isLayoutSuccessor(TBB)) {
436 if (TII->ReverseBranchCondition(Cond))
437 return;
438 TII->RemoveBranch(*this);
439 TII->InsertBranch(*this, FBB, nullptr, Cond, dl);
440 } else if (isLayoutSuccessor(FBB)) {
441 TII->RemoveBranch(*this);
442 TII->InsertBranch(*this, TBB, nullptr, Cond, dl);
443 }
444 } else {
445 // Walk through the successors and find the successor which is not
446 // a landing pad and is not the conditional branch destination (in TBB)
447 // as the fallthrough successor.
448 MachineBasicBlock *FallthroughBB = nullptr;
449 for (succ_iterator SI = succ_begin(), SE = succ_end(); SI != SE; ++SI) {
450 if ((*SI)->isLandingPad() || *SI == TBB)
451 continue;
452 assert(!FallthroughBB && "Found more than one fallthrough successor.");
453 FallthroughBB = *SI;
454 }
455 if (!FallthroughBB && canFallThrough()) {
456 // We fallthrough to the same basic block as the conditional jump
457 // targets. Remove the conditional jump, leaving unconditional
458 // fallthrough.
459 // FIXME: This does not seem like a reasonable pattern to support, but it
460 // has been seen in the wild coming out of degenerate ARM test cases.
461 TII->RemoveBranch(*this);
462
463 // Finally update the unconditional successor to be reached via a branch
464 // if it would not be reached by fallthrough.
465 if (!isLayoutSuccessor(TBB))
466 TII->InsertBranch(*this, TBB, nullptr, Cond, dl);
467 return;
468 }
469
470 // The block has a fallthrough conditional branch.
471 if (isLayoutSuccessor(TBB)) {
472 if (TII->ReverseBranchCondition(Cond)) {
473 // We can't reverse the condition, add an unconditional branch.
474 Cond.clear();
475 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl);
476 return;
477 }
478 TII->RemoveBranch(*this);
479 TII->InsertBranch(*this, FallthroughBB, nullptr, Cond, dl);
480 } else if (!isLayoutSuccessor(FallthroughBB)) {
481 TII->RemoveBranch(*this);
482 TII->InsertBranch(*this, TBB, FallthroughBB, Cond, dl);
483 }
484 }
485 }
486 }
487
addSuccessor(MachineBasicBlock * succ,uint32_t weight)488 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ, uint32_t weight) {
489
490 // If we see non-zero value for the first time it means we actually use Weight
491 // list, so we fill all Weights with 0's.
492 if (weight != 0 && Weights.empty())
493 Weights.resize(Successors.size());
494
495 if (weight != 0 || !Weights.empty())
496 Weights.push_back(weight);
497
498 Successors.push_back(succ);
499 succ->addPredecessor(this);
500 }
501
removeSuccessor(MachineBasicBlock * succ)502 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
503 succ->removePredecessor(this);
504 succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
505 assert(I != Successors.end() && "Not a current successor!");
506
507 // If Weight list is empty it means we don't use it (disabled optimization).
508 if (!Weights.empty()) {
509 weight_iterator WI = getWeightIterator(I);
510 Weights.erase(WI);
511 }
512
513 Successors.erase(I);
514 }
515
516 MachineBasicBlock::succ_iterator
removeSuccessor(succ_iterator I)517 MachineBasicBlock::removeSuccessor(succ_iterator I) {
518 assert(I != Successors.end() && "Not a current successor!");
519
520 // If Weight list is empty it means we don't use it (disabled optimization).
521 if (!Weights.empty()) {
522 weight_iterator WI = getWeightIterator(I);
523 Weights.erase(WI);
524 }
525
526 (*I)->removePredecessor(this);
527 return Successors.erase(I);
528 }
529
replaceSuccessor(MachineBasicBlock * Old,MachineBasicBlock * New)530 void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old,
531 MachineBasicBlock *New) {
532 if (Old == New)
533 return;
534
535 succ_iterator E = succ_end();
536 succ_iterator NewI = E;
537 succ_iterator OldI = E;
538 for (succ_iterator I = succ_begin(); I != E; ++I) {
539 if (*I == Old) {
540 OldI = I;
541 if (NewI != E)
542 break;
543 }
544 if (*I == New) {
545 NewI = I;
546 if (OldI != E)
547 break;
548 }
549 }
550 assert(OldI != E && "Old is not a successor of this block");
551 Old->removePredecessor(this);
552
553 // If New isn't already a successor, let it take Old's place.
554 if (NewI == E) {
555 New->addPredecessor(this);
556 *OldI = New;
557 return;
558 }
559
560 // New is already a successor.
561 // Update its weight instead of adding a duplicate edge.
562 if (!Weights.empty()) {
563 weight_iterator OldWI = getWeightIterator(OldI);
564 *getWeightIterator(NewI) += *OldWI;
565 Weights.erase(OldWI);
566 }
567 Successors.erase(OldI);
568 }
569
addPredecessor(MachineBasicBlock * pred)570 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
571 Predecessors.push_back(pred);
572 }
573
removePredecessor(MachineBasicBlock * pred)574 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
575 pred_iterator I = std::find(Predecessors.begin(), Predecessors.end(), pred);
576 assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
577 Predecessors.erase(I);
578 }
579
transferSuccessors(MachineBasicBlock * fromMBB)580 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
581 if (this == fromMBB)
582 return;
583
584 while (!fromMBB->succ_empty()) {
585 MachineBasicBlock *Succ = *fromMBB->succ_begin();
586 uint32_t Weight = 0;
587
588 // If Weight list is empty it means we don't use it (disabled optimization).
589 if (!fromMBB->Weights.empty())
590 Weight = *fromMBB->Weights.begin();
591
592 addSuccessor(Succ, Weight);
593 fromMBB->removeSuccessor(Succ);
594 }
595 }
596
597 void
transferSuccessorsAndUpdatePHIs(MachineBasicBlock * fromMBB)598 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
599 if (this == fromMBB)
600 return;
601
602 while (!fromMBB->succ_empty()) {
603 MachineBasicBlock *Succ = *fromMBB->succ_begin();
604 uint32_t Weight = 0;
605 if (!fromMBB->Weights.empty())
606 Weight = *fromMBB->Weights.begin();
607 addSuccessor(Succ, Weight);
608 fromMBB->removeSuccessor(Succ);
609
610 // Fix up any PHI nodes in the successor.
611 for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
612 ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
613 for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
614 MachineOperand &MO = MI->getOperand(i);
615 if (MO.getMBB() == fromMBB)
616 MO.setMBB(this);
617 }
618 }
619 }
620
isPredecessor(const MachineBasicBlock * MBB) const621 bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const {
622 return std::find(pred_begin(), pred_end(), MBB) != pred_end();
623 }
624
isSuccessor(const MachineBasicBlock * MBB) const625 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
626 return std::find(succ_begin(), succ_end(), MBB) != succ_end();
627 }
628
isLayoutSuccessor(const MachineBasicBlock * MBB) const629 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
630 MachineFunction::const_iterator I(this);
631 return std::next(I) == MachineFunction::const_iterator(MBB);
632 }
633
canFallThrough()634 bool MachineBasicBlock::canFallThrough() {
635 MachineFunction::iterator Fallthrough = this;
636 ++Fallthrough;
637 // If FallthroughBlock is off the end of the function, it can't fall through.
638 if (Fallthrough == getParent()->end())
639 return false;
640
641 // If FallthroughBlock isn't a successor, no fallthrough is possible.
642 if (!isSuccessor(Fallthrough))
643 return false;
644
645 // Analyze the branches, if any, at the end of the block.
646 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
647 SmallVector<MachineOperand, 4> Cond;
648 const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
649 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
650 // If we couldn't analyze the branch, examine the last instruction.
651 // If the block doesn't end in a known control barrier, assume fallthrough
652 // is possible. The isPredicated check is needed because this code can be
653 // called during IfConversion, where an instruction which is normally a
654 // Barrier is predicated and thus no longer an actual control barrier.
655 return empty() || !back().isBarrier() || TII->isPredicated(&back());
656 }
657
658 // If there is no branch, control always falls through.
659 if (!TBB) return true;
660
661 // If there is some explicit branch to the fallthrough block, it can obviously
662 // reach, even though the branch should get folded to fall through implicitly.
663 if (MachineFunction::iterator(TBB) == Fallthrough ||
664 MachineFunction::iterator(FBB) == Fallthrough)
665 return true;
666
667 // If it's an unconditional branch to some block not the fall through, it
668 // doesn't fall through.
669 if (Cond.empty()) return false;
670
671 // Otherwise, if it is conditional and has no explicit false block, it falls
672 // through.
673 return FBB == nullptr;
674 }
675
676 MachineBasicBlock *
SplitCriticalEdge(MachineBasicBlock * Succ,Pass * P)677 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
678 // Splitting the critical edge to a landing pad block is non-trivial. Don't do
679 // it in this generic function.
680 if (Succ->isLandingPad())
681 return nullptr;
682
683 MachineFunction *MF = getParent();
684 DebugLoc dl; // FIXME: this is nowhere
685
686 // Performance might be harmed on HW that implements branching using exec mask
687 // where both sides of the branches are always executed.
688 if (MF->getTarget().requiresStructuredCFG())
689 return nullptr;
690
691 // We may need to update this's terminator, but we can't do that if
692 // AnalyzeBranch fails. If this uses a jump table, we won't touch it.
693 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
694 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
695 SmallVector<MachineOperand, 4> Cond;
696 if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
697 return nullptr;
698
699 // Avoid bugpoint weirdness: A block may end with a conditional branch but
700 // jumps to the same MBB is either case. We have duplicate CFG edges in that
701 // case that we can't handle. Since this never happens in properly optimized
702 // code, just skip those edges.
703 if (TBB && TBB == FBB) {
704 DEBUG(dbgs() << "Won't split critical edge after degenerate BB#"
705 << getNumber() << '\n');
706 return nullptr;
707 }
708
709 MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
710 MF->insert(std::next(MachineFunction::iterator(this)), NMBB);
711 DEBUG(dbgs() << "Splitting critical edge:"
712 " BB#" << getNumber()
713 << " -- BB#" << NMBB->getNumber()
714 << " -- BB#" << Succ->getNumber() << '\n');
715
716 LiveIntervals *LIS = P->getAnalysisIfAvailable<LiveIntervals>();
717 SlotIndexes *Indexes = P->getAnalysisIfAvailable<SlotIndexes>();
718 if (LIS)
719 LIS->insertMBBInMaps(NMBB);
720 else if (Indexes)
721 Indexes->insertMBBInMaps(NMBB);
722
723 // On some targets like Mips, branches may kill virtual registers. Make sure
724 // that LiveVariables is properly updated after updateTerminator replaces the
725 // terminators.
726 LiveVariables *LV = P->getAnalysisIfAvailable<LiveVariables>();
727
728 // Collect a list of virtual registers killed by the terminators.
729 SmallVector<unsigned, 4> KilledRegs;
730 if (LV)
731 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
732 I != E; ++I) {
733 MachineInstr *MI = I;
734 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
735 OE = MI->operands_end(); OI != OE; ++OI) {
736 if (!OI->isReg() || OI->getReg() == 0 ||
737 !OI->isUse() || !OI->isKill() || OI->isUndef())
738 continue;
739 unsigned Reg = OI->getReg();
740 if (TargetRegisterInfo::isPhysicalRegister(Reg) ||
741 LV->getVarInfo(Reg).removeKill(MI)) {
742 KilledRegs.push_back(Reg);
743 DEBUG(dbgs() << "Removing terminator kill: " << *MI);
744 OI->setIsKill(false);
745 }
746 }
747 }
748
749 SmallVector<unsigned, 4> UsedRegs;
750 if (LIS) {
751 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
752 I != E; ++I) {
753 MachineInstr *MI = I;
754
755 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
756 OE = MI->operands_end(); OI != OE; ++OI) {
757 if (!OI->isReg() || OI->getReg() == 0)
758 continue;
759
760 unsigned Reg = OI->getReg();
761 if (std::find(UsedRegs.begin(), UsedRegs.end(), Reg) == UsedRegs.end())
762 UsedRegs.push_back(Reg);
763 }
764 }
765 }
766
767 ReplaceUsesOfBlockWith(Succ, NMBB);
768
769 // If updateTerminator() removes instructions, we need to remove them from
770 // SlotIndexes.
771 SmallVector<MachineInstr*, 4> Terminators;
772 if (Indexes) {
773 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
774 I != E; ++I)
775 Terminators.push_back(I);
776 }
777
778 updateTerminator();
779
780 if (Indexes) {
781 SmallVector<MachineInstr*, 4> NewTerminators;
782 for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
783 I != E; ++I)
784 NewTerminators.push_back(I);
785
786 for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
787 E = Terminators.end(); I != E; ++I) {
788 if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
789 NewTerminators.end())
790 Indexes->removeMachineInstrFromMaps(*I);
791 }
792 }
793
794 // Insert unconditional "jump Succ" instruction in NMBB if necessary.
795 NMBB->addSuccessor(Succ);
796 if (!NMBB->isLayoutSuccessor(Succ)) {
797 Cond.clear();
798 MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond, dl);
799
800 if (Indexes) {
801 for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
802 I != E; ++I) {
803 // Some instructions may have been moved to NMBB by updateTerminator(),
804 // so we first remove any instruction that already has an index.
805 if (Indexes->hasIndex(I))
806 Indexes->removeMachineInstrFromMaps(I);
807 Indexes->insertMachineInstrInMaps(I);
808 }
809 }
810 }
811
812 // Fix PHI nodes in Succ so they refer to NMBB instead of this
813 for (MachineBasicBlock::instr_iterator
814 i = Succ->instr_begin(),e = Succ->instr_end();
815 i != e && i->isPHI(); ++i)
816 for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
817 if (i->getOperand(ni+1).getMBB() == this)
818 i->getOperand(ni+1).setMBB(NMBB);
819
820 // Inherit live-ins from the successor
821 for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
822 E = Succ->livein_end(); I != E; ++I)
823 NMBB->addLiveIn(*I);
824
825 // Update LiveVariables.
826 const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();
827 if (LV) {
828 // Restore kills of virtual registers that were killed by the terminators.
829 while (!KilledRegs.empty()) {
830 unsigned Reg = KilledRegs.pop_back_val();
831 for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) {
832 if (!(--I)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
833 continue;
834 if (TargetRegisterInfo::isVirtualRegister(Reg))
835 LV->getVarInfo(Reg).Kills.push_back(I);
836 DEBUG(dbgs() << "Restored terminator kill: " << *I);
837 break;
838 }
839 }
840 // Update relevant live-through information.
841 LV->addNewBlock(NMBB, this, Succ);
842 }
843
844 if (LIS) {
845 // After splitting the edge and updating SlotIndexes, live intervals may be
846 // in one of two situations, depending on whether this block was the last in
847 // the function. If the original block was the last in the function, all live
848 // intervals will end prior to the beginning of the new split block. If the
849 // original block was not at the end of the function, all live intervals will
850 // extend to the end of the new split block.
851
852 bool isLastMBB =
853 std::next(MachineFunction::iterator(NMBB)) == getParent()->end();
854
855 SlotIndex StartIndex = Indexes->getMBBEndIdx(this);
856 SlotIndex PrevIndex = StartIndex.getPrevSlot();
857 SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB);
858
859 // Find the registers used from NMBB in PHIs in Succ.
860 SmallSet<unsigned, 8> PHISrcRegs;
861 for (MachineBasicBlock::instr_iterator
862 I = Succ->instr_begin(), E = Succ->instr_end();
863 I != E && I->isPHI(); ++I) {
864 for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) {
865 if (I->getOperand(ni+1).getMBB() == NMBB) {
866 MachineOperand &MO = I->getOperand(ni);
867 unsigned Reg = MO.getReg();
868 PHISrcRegs.insert(Reg);
869 if (MO.isUndef())
870 continue;
871
872 LiveInterval &LI = LIS->getInterval(Reg);
873 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
874 assert(VNI && "PHI sources should be live out of their predecessors.");
875 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
876 }
877 }
878 }
879
880 MachineRegisterInfo *MRI = &getParent()->getRegInfo();
881 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
882 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
883 if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg))
884 continue;
885
886 LiveInterval &LI = LIS->getInterval(Reg);
887 if (!LI.liveAt(PrevIndex))
888 continue;
889
890 bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ));
891 if (isLiveOut && isLastMBB) {
892 VNInfo *VNI = LI.getVNInfoAt(PrevIndex);
893 assert(VNI && "LiveInterval should have VNInfo where it is live.");
894 LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI));
895 } else if (!isLiveOut && !isLastMBB) {
896 LI.removeSegment(StartIndex, EndIndex);
897 }
898 }
899
900 // Update all intervals for registers whose uses may have been modified by
901 // updateTerminator().
902 LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs);
903 }
904
905 if (MachineDominatorTree *MDT =
906 P->getAnalysisIfAvailable<MachineDominatorTree>()) {
907 // Update dominator information.
908 MachineDomTreeNode *SucccDTNode = MDT->getNode(Succ);
909
910 bool IsNewIDom = true;
911 for (const_pred_iterator PI = Succ->pred_begin(), E = Succ->pred_end();
912 PI != E; ++PI) {
913 MachineBasicBlock *PredBB = *PI;
914 if (PredBB == NMBB)
915 continue;
916 if (!MDT->dominates(SucccDTNode, MDT->getNode(PredBB))) {
917 IsNewIDom = false;
918 break;
919 }
920 }
921
922 // We know "this" dominates the newly created basic block.
923 MachineDomTreeNode *NewDTNode = MDT->addNewBlock(NMBB, this);
924
925 // If all the other predecessors of "Succ" are dominated by "Succ" itself
926 // then the new block is the new immediate dominator of "Succ". Otherwise,
927 // the new block doesn't dominate anything.
928 if (IsNewIDom)
929 MDT->changeImmediateDominator(SucccDTNode, NewDTNode);
930 }
931
932 if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
933 if (MachineLoop *TIL = MLI->getLoopFor(this)) {
934 // If one or the other blocks were not in a loop, the new block is not
935 // either, and thus LI doesn't need to be updated.
936 if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
937 if (TIL == DestLoop) {
938 // Both in the same loop, the NMBB joins loop.
939 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
940 } else if (TIL->contains(DestLoop)) {
941 // Edge from an outer loop to an inner loop. Add to the outer loop.
942 TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
943 } else if (DestLoop->contains(TIL)) {
944 // Edge from an inner loop to an outer loop. Add to the outer loop.
945 DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
946 } else {
947 // Edge from two loops with no containment relation. Because these
948 // are natural loops, we know that the destination block must be the
949 // header of its loop (adding a branch into a loop elsewhere would
950 // create an irreducible loop).
951 assert(DestLoop->getHeader() == Succ &&
952 "Should not create irreducible loops!");
953 if (MachineLoop *P = DestLoop->getParentLoop())
954 P->addBasicBlockToLoop(NMBB, MLI->getBase());
955 }
956 }
957 }
958
959 return NMBB;
960 }
961
962 /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's
963 /// neighboring instructions so the bundle won't be broken by removing MI.
unbundleSingleMI(MachineInstr * MI)964 static void unbundleSingleMI(MachineInstr *MI) {
965 // Removing the first instruction in a bundle.
966 if (MI->isBundledWithSucc() && !MI->isBundledWithPred())
967 MI->unbundleFromSucc();
968 // Removing the last instruction in a bundle.
969 if (MI->isBundledWithPred() && !MI->isBundledWithSucc())
970 MI->unbundleFromPred();
971 // If MI is not bundled, or if it is internal to a bundle, the neighbor flags
972 // are already fine.
973 }
974
975 MachineBasicBlock::instr_iterator
erase(MachineBasicBlock::instr_iterator I)976 MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) {
977 unbundleSingleMI(I);
978 return Insts.erase(I);
979 }
980
remove_instr(MachineInstr * MI)981 MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) {
982 unbundleSingleMI(MI);
983 MI->clearFlag(MachineInstr::BundledPred);
984 MI->clearFlag(MachineInstr::BundledSucc);
985 return Insts.remove(MI);
986 }
987
988 MachineBasicBlock::instr_iterator
insert(instr_iterator I,MachineInstr * MI)989 MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) {
990 assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() &&
991 "Cannot insert instruction with bundle flags");
992 // Set the bundle flags when inserting inside a bundle.
993 if (I != instr_end() && I->isBundledWithPred()) {
994 MI->setFlag(MachineInstr::BundledPred);
995 MI->setFlag(MachineInstr::BundledSucc);
996 }
997 return Insts.insert(I, MI);
998 }
999
1000 /// removeFromParent - This method unlinks 'this' from the containing function,
1001 /// and returns it, but does not delete it.
removeFromParent()1002 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
1003 assert(getParent() && "Not embedded in a function!");
1004 getParent()->remove(this);
1005 return this;
1006 }
1007
1008
1009 /// eraseFromParent - This method unlinks 'this' from the containing function,
1010 /// and deletes it.
eraseFromParent()1011 void MachineBasicBlock::eraseFromParent() {
1012 assert(getParent() && "Not embedded in a function!");
1013 getParent()->erase(this);
1014 }
1015
1016
1017 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
1018 /// 'Old', change the code and CFG so that it branches to 'New' instead.
ReplaceUsesOfBlockWith(MachineBasicBlock * Old,MachineBasicBlock * New)1019 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
1020 MachineBasicBlock *New) {
1021 assert(Old != New && "Cannot replace self with self!");
1022
1023 MachineBasicBlock::instr_iterator I = instr_end();
1024 while (I != instr_begin()) {
1025 --I;
1026 if (!I->isTerminator()) break;
1027
1028 // Scan the operands of this machine instruction, replacing any uses of Old
1029 // with New.
1030 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1031 if (I->getOperand(i).isMBB() &&
1032 I->getOperand(i).getMBB() == Old)
1033 I->getOperand(i).setMBB(New);
1034 }
1035
1036 // Update the successor information.
1037 replaceSuccessor(Old, New);
1038 }
1039
1040 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
1041 /// CFG to be inserted. If we have proven that MBB can only branch to DestA and
1042 /// DestB, remove any other MBB successors from the CFG. DestA and DestB can be
1043 /// null.
1044 ///
1045 /// Besides DestA and DestB, retain other edges leading to LandingPads
1046 /// (currently there can be only one; we don't check or require that here).
1047 /// Note it is possible that DestA and/or DestB are LandingPads.
CorrectExtraCFGEdges(MachineBasicBlock * DestA,MachineBasicBlock * DestB,bool isCond)1048 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
1049 MachineBasicBlock *DestB,
1050 bool isCond) {
1051 // The values of DestA and DestB frequently come from a call to the
1052 // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
1053 // values from there.
1054 //
1055 // 1. If both DestA and DestB are null, then the block ends with no branches
1056 // (it falls through to its successor).
1057 // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
1058 // with only an unconditional branch.
1059 // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
1060 // with a conditional branch that falls through to a successor (DestB).
1061 // 4. If DestA and DestB is set and isCond is true, then the block ends with a
1062 // conditional branch followed by an unconditional branch. DestA is the
1063 // 'true' destination and DestB is the 'false' destination.
1064
1065 bool Changed = false;
1066
1067 MachineFunction::iterator FallThru =
1068 std::next(MachineFunction::iterator(this));
1069
1070 if (!DestA && !DestB) {
1071 // Block falls through to successor.
1072 DestA = FallThru;
1073 DestB = FallThru;
1074 } else if (DestA && !DestB) {
1075 if (isCond)
1076 // Block ends in conditional jump that falls through to successor.
1077 DestB = FallThru;
1078 } else {
1079 assert(DestA && DestB && isCond &&
1080 "CFG in a bad state. Cannot correct CFG edges");
1081 }
1082
1083 // Remove superfluous edges. I.e., those which aren't destinations of this
1084 // basic block, duplicate edges, or landing pads.
1085 SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
1086 MachineBasicBlock::succ_iterator SI = succ_begin();
1087 while (SI != succ_end()) {
1088 const MachineBasicBlock *MBB = *SI;
1089 if (!SeenMBBs.insert(MBB) ||
1090 (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
1091 // This is a superfluous edge, remove it.
1092 SI = removeSuccessor(SI);
1093 Changed = true;
1094 } else {
1095 ++SI;
1096 }
1097 }
1098
1099 return Changed;
1100 }
1101
1102 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
1103 /// any DBG_VALUE instructions. Return UnknownLoc if there is none.
1104 DebugLoc
findDebugLoc(instr_iterator MBBI)1105 MachineBasicBlock::findDebugLoc(instr_iterator MBBI) {
1106 DebugLoc DL;
1107 instr_iterator E = instr_end();
1108 if (MBBI == E)
1109 return DL;
1110
1111 // Skip debug declarations, we don't want a DebugLoc from them.
1112 while (MBBI != E && MBBI->isDebugValue())
1113 MBBI++;
1114 if (MBBI != E)
1115 DL = MBBI->getDebugLoc();
1116 return DL;
1117 }
1118
1119 /// getSuccWeight - Return weight of the edge from this block to MBB.
1120 ///
getSuccWeight(const_succ_iterator Succ) const1121 uint32_t MachineBasicBlock::getSuccWeight(const_succ_iterator Succ) const {
1122 if (Weights.empty())
1123 return 0;
1124
1125 return *getWeightIterator(Succ);
1126 }
1127
1128 /// Set successor weight of a given iterator.
setSuccWeight(succ_iterator I,uint32_t weight)1129 void MachineBasicBlock::setSuccWeight(succ_iterator I, uint32_t weight) {
1130 if (Weights.empty())
1131 return;
1132 *getWeightIterator(I) = weight;
1133 }
1134
1135 /// getWeightIterator - Return wight iterator corresonding to the I successor
1136 /// iterator
1137 MachineBasicBlock::weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::succ_iterator I)1138 getWeightIterator(MachineBasicBlock::succ_iterator I) {
1139 assert(Weights.size() == Successors.size() && "Async weight list!");
1140 size_t index = std::distance(Successors.begin(), I);
1141 assert(index < Weights.size() && "Not a current successor!");
1142 return Weights.begin() + index;
1143 }
1144
1145 /// getWeightIterator - Return wight iterator corresonding to the I successor
1146 /// iterator
1147 MachineBasicBlock::const_weight_iterator MachineBasicBlock::
getWeightIterator(MachineBasicBlock::const_succ_iterator I) const1148 getWeightIterator(MachineBasicBlock::const_succ_iterator I) const {
1149 assert(Weights.size() == Successors.size() && "Async weight list!");
1150 const size_t index = std::distance(Successors.begin(), I);
1151 assert(index < Weights.size() && "Not a current successor!");
1152 return Weights.begin() + index;
1153 }
1154
1155 /// Return whether (physical) register "Reg" has been <def>ined and not <kill>ed
1156 /// as of just before "MI".
1157 ///
1158 /// Search is localised to a neighborhood of
1159 /// Neighborhood instructions before (searching for defs or kills) and N
1160 /// instructions after (searching just for defs) MI.
1161 MachineBasicBlock::LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo * TRI,unsigned Reg,MachineInstr * MI,unsigned Neighborhood)1162 MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI,
1163 unsigned Reg, MachineInstr *MI,
1164 unsigned Neighborhood) {
1165 unsigned N = Neighborhood;
1166 MachineBasicBlock *MBB = MI->getParent();
1167
1168 // Start by searching backwards from MI, looking for kills, reads or defs.
1169
1170 MachineBasicBlock::iterator I(MI);
1171 // If this is the first insn in the block, don't search backwards.
1172 if (I != MBB->begin()) {
1173 do {
1174 --I;
1175
1176 MachineOperandIteratorBase::PhysRegInfo Analysis =
1177 MIOperands(I).analyzePhysReg(Reg, TRI);
1178
1179 if (Analysis.Defines)
1180 // Outputs happen after inputs so they take precedence if both are
1181 // present.
1182 return Analysis.DefinesDead ? LQR_Dead : LQR_Live;
1183
1184 if (Analysis.Kills || Analysis.Clobbers)
1185 // Register killed, so isn't live.
1186 return LQR_Dead;
1187
1188 else if (Analysis.ReadsOverlap)
1189 // Defined or read without a previous kill - live.
1190 return Analysis.Reads ? LQR_Live : LQR_OverlappingLive;
1191
1192 } while (I != MBB->begin() && --N > 0);
1193 }
1194
1195 // Did we get to the start of the block?
1196 if (I == MBB->begin()) {
1197 // If so, the register's state is definitely defined by the live-in state.
1198 for (MCRegAliasIterator RAI(Reg, TRI, /*IncludeSelf=*/true);
1199 RAI.isValid(); ++RAI) {
1200 if (MBB->isLiveIn(*RAI))
1201 return (*RAI == Reg) ? LQR_Live : LQR_OverlappingLive;
1202 }
1203
1204 return LQR_Dead;
1205 }
1206
1207 N = Neighborhood;
1208
1209 // Try searching forwards from MI, looking for reads or defs.
1210 I = MachineBasicBlock::iterator(MI);
1211 // If this is the last insn in the block, don't search forwards.
1212 if (I != MBB->end()) {
1213 for (++I; I != MBB->end() && N > 0; ++I, --N) {
1214 MachineOperandIteratorBase::PhysRegInfo Analysis =
1215 MIOperands(I).analyzePhysReg(Reg, TRI);
1216
1217 if (Analysis.ReadsOverlap)
1218 // Used, therefore must have been live.
1219 return (Analysis.Reads) ?
1220 LQR_Live : LQR_OverlappingLive;
1221
1222 else if (Analysis.Clobbers || Analysis.Defines)
1223 // Defined (but not read) therefore cannot have been live.
1224 return LQR_Dead;
1225 }
1226 }
1227
1228 // At this point we have no idea of the liveness of the register.
1229 return LQR_Unknown;
1230 }
1231