1 //== RegionStore.cpp - Field-sensitive store model --------------*- C++ -*--==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a basic region store model. In this model, we do have field
11 // sensitivity. But we assume nothing about the heap shape. So recursive data
12 // structures are largely ignored. Basically we do 1-limiting analysis.
13 // Parameter pointers are assumed with no aliasing. Pointee objects of
14 // parameters are created lazily.
15 //
16 //===----------------------------------------------------------------------===//
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/Analysis/Analyses/LiveVariables.h"
20 #include "clang/Analysis/AnalysisContext.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h"
23 #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
24 #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
25 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
26 #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h"
27 #include "clang/StaticAnalyzer/Core/PathSensitive/SubEngine.h"
28 #include "llvm/ADT/ImmutableList.h"
29 #include "llvm/ADT/ImmutableMap.h"
30 #include "llvm/ADT/Optional.h"
31 #include "llvm/Support/raw_ostream.h"
32
33 using namespace clang;
34 using namespace ento;
35
36 //===----------------------------------------------------------------------===//
37 // Representation of binding keys.
38 //===----------------------------------------------------------------------===//
39
40 namespace {
41 class BindingKey {
42 public:
43 enum Kind { Default = 0x0, Direct = 0x1 };
44 private:
45 enum { Symbolic = 0x2 };
46
47 llvm::PointerIntPair<const MemRegion *, 2> P;
48 uint64_t Data;
49
50 /// Create a key for a binding to region \p r, which has a symbolic offset
51 /// from region \p Base.
BindingKey(const SubRegion * r,const SubRegion * Base,Kind k)52 explicit BindingKey(const SubRegion *r, const SubRegion *Base, Kind k)
53 : P(r, k | Symbolic), Data(reinterpret_cast<uintptr_t>(Base)) {
54 assert(r && Base && "Must have known regions.");
55 assert(getConcreteOffsetRegion() == Base && "Failed to store base region");
56 }
57
58 /// Create a key for a binding at \p offset from base region \p r.
BindingKey(const MemRegion * r,uint64_t offset,Kind k)59 explicit BindingKey(const MemRegion *r, uint64_t offset, Kind k)
60 : P(r, k), Data(offset) {
61 assert(r && "Must have known regions.");
62 assert(getOffset() == offset && "Failed to store offset");
63 assert((r == r->getBaseRegion() || isa<ObjCIvarRegion>(r)) && "Not a base");
64 }
65 public:
66
isDirect() const67 bool isDirect() const { return P.getInt() & Direct; }
hasSymbolicOffset() const68 bool hasSymbolicOffset() const { return P.getInt() & Symbolic; }
69
getRegion() const70 const MemRegion *getRegion() const { return P.getPointer(); }
getOffset() const71 uint64_t getOffset() const {
72 assert(!hasSymbolicOffset());
73 return Data;
74 }
75
getConcreteOffsetRegion() const76 const SubRegion *getConcreteOffsetRegion() const {
77 assert(hasSymbolicOffset());
78 return reinterpret_cast<const SubRegion *>(static_cast<uintptr_t>(Data));
79 }
80
getBaseRegion() const81 const MemRegion *getBaseRegion() const {
82 if (hasSymbolicOffset())
83 return getConcreteOffsetRegion()->getBaseRegion();
84 return getRegion()->getBaseRegion();
85 }
86
Profile(llvm::FoldingSetNodeID & ID) const87 void Profile(llvm::FoldingSetNodeID& ID) const {
88 ID.AddPointer(P.getOpaqueValue());
89 ID.AddInteger(Data);
90 }
91
92 static BindingKey Make(const MemRegion *R, Kind k);
93
operator <(const BindingKey & X) const94 bool operator<(const BindingKey &X) const {
95 if (P.getOpaqueValue() < X.P.getOpaqueValue())
96 return true;
97 if (P.getOpaqueValue() > X.P.getOpaqueValue())
98 return false;
99 return Data < X.Data;
100 }
101
operator ==(const BindingKey & X) const102 bool operator==(const BindingKey &X) const {
103 return P.getOpaqueValue() == X.P.getOpaqueValue() &&
104 Data == X.Data;
105 }
106
107 void dump() const;
108 };
109 } // end anonymous namespace
110
Make(const MemRegion * R,Kind k)111 BindingKey BindingKey::Make(const MemRegion *R, Kind k) {
112 const RegionOffset &RO = R->getAsOffset();
113 if (RO.hasSymbolicOffset())
114 return BindingKey(cast<SubRegion>(R), cast<SubRegion>(RO.getRegion()), k);
115
116 return BindingKey(RO.getRegion(), RO.getOffset(), k);
117 }
118
119 namespace llvm {
120 static inline
operator <<(raw_ostream & os,BindingKey K)121 raw_ostream &operator<<(raw_ostream &os, BindingKey K) {
122 os << '(' << K.getRegion();
123 if (!K.hasSymbolicOffset())
124 os << ',' << K.getOffset();
125 os << ',' << (K.isDirect() ? "direct" : "default")
126 << ')';
127 return os;
128 }
129
130 template <typename T> struct isPodLike;
131 template <> struct isPodLike<BindingKey> {
132 static const bool value = true;
133 };
134 } // end llvm namespace
135
dump() const136 LLVM_DUMP_METHOD void BindingKey::dump() const { llvm::errs() << *this; }
137
138 //===----------------------------------------------------------------------===//
139 // Actual Store type.
140 //===----------------------------------------------------------------------===//
141
142 typedef llvm::ImmutableMap<BindingKey, SVal> ClusterBindings;
143 typedef llvm::ImmutableMapRef<BindingKey, SVal> ClusterBindingsRef;
144 typedef std::pair<BindingKey, SVal> BindingPair;
145
146 typedef llvm::ImmutableMap<const MemRegion *, ClusterBindings>
147 RegionBindings;
148
149 namespace {
150 class RegionBindingsRef : public llvm::ImmutableMapRef<const MemRegion *,
151 ClusterBindings> {
152 ClusterBindings::Factory &CBFactory;
153 public:
154 typedef llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>
155 ParentTy;
156
RegionBindingsRef(ClusterBindings::Factory & CBFactory,const RegionBindings::TreeTy * T,RegionBindings::TreeTy::Factory * F)157 RegionBindingsRef(ClusterBindings::Factory &CBFactory,
158 const RegionBindings::TreeTy *T,
159 RegionBindings::TreeTy::Factory *F)
160 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(T, F),
161 CBFactory(CBFactory) {}
162
RegionBindingsRef(const ParentTy & P,ClusterBindings::Factory & CBFactory)163 RegionBindingsRef(const ParentTy &P, ClusterBindings::Factory &CBFactory)
164 : llvm::ImmutableMapRef<const MemRegion *, ClusterBindings>(P),
165 CBFactory(CBFactory) {}
166
add(key_type_ref K,data_type_ref D) const167 RegionBindingsRef add(key_type_ref K, data_type_ref D) const {
168 return RegionBindingsRef(static_cast<const ParentTy*>(this)->add(K, D),
169 CBFactory);
170 }
171
remove(key_type_ref K) const172 RegionBindingsRef remove(key_type_ref K) const {
173 return RegionBindingsRef(static_cast<const ParentTy*>(this)->remove(K),
174 CBFactory);
175 }
176
177 RegionBindingsRef addBinding(BindingKey K, SVal V) const;
178
179 RegionBindingsRef addBinding(const MemRegion *R,
180 BindingKey::Kind k, SVal V) const;
181
operator =(const RegionBindingsRef & X)182 RegionBindingsRef &operator=(const RegionBindingsRef &X) {
183 *static_cast<ParentTy*>(this) = X;
184 return *this;
185 }
186
187 const SVal *lookup(BindingKey K) const;
188 const SVal *lookup(const MemRegion *R, BindingKey::Kind k) const;
lookup(const MemRegion * R) const189 const ClusterBindings *lookup(const MemRegion *R) const {
190 return static_cast<const ParentTy*>(this)->lookup(R);
191 }
192
193 RegionBindingsRef removeBinding(BindingKey K);
194
195 RegionBindingsRef removeBinding(const MemRegion *R,
196 BindingKey::Kind k);
197
removeBinding(const MemRegion * R)198 RegionBindingsRef removeBinding(const MemRegion *R) {
199 return removeBinding(R, BindingKey::Direct).
200 removeBinding(R, BindingKey::Default);
201 }
202
203 Optional<SVal> getDirectBinding(const MemRegion *R) const;
204
205 /// getDefaultBinding - Returns an SVal* representing an optional default
206 /// binding associated with a region and its subregions.
207 Optional<SVal> getDefaultBinding(const MemRegion *R) const;
208
209 /// Return the internal tree as a Store.
asStore() const210 Store asStore() const {
211 return asImmutableMap().getRootWithoutRetain();
212 }
213
dump(raw_ostream & OS,const char * nl) const214 void dump(raw_ostream &OS, const char *nl) const {
215 for (iterator I = begin(), E = end(); I != E; ++I) {
216 const ClusterBindings &Cluster = I.getData();
217 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
218 CI != CE; ++CI) {
219 OS << ' ' << CI.getKey() << " : " << CI.getData() << nl;
220 }
221 OS << nl;
222 }
223 }
224
dump() const225 LLVM_DUMP_METHOD void dump() const { dump(llvm::errs(), "\n"); }
226 };
227 } // end anonymous namespace
228
229 typedef const RegionBindingsRef& RegionBindingsConstRef;
230
getDirectBinding(const MemRegion * R) const231 Optional<SVal> RegionBindingsRef::getDirectBinding(const MemRegion *R) const {
232 return Optional<SVal>::create(lookup(R, BindingKey::Direct));
233 }
234
getDefaultBinding(const MemRegion * R) const235 Optional<SVal> RegionBindingsRef::getDefaultBinding(const MemRegion *R) const {
236 if (R->isBoundable())
237 if (const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R))
238 if (TR->getValueType()->isUnionType())
239 return UnknownVal();
240
241 return Optional<SVal>::create(lookup(R, BindingKey::Default));
242 }
243
addBinding(BindingKey K,SVal V) const244 RegionBindingsRef RegionBindingsRef::addBinding(BindingKey K, SVal V) const {
245 const MemRegion *Base = K.getBaseRegion();
246
247 const ClusterBindings *ExistingCluster = lookup(Base);
248 ClusterBindings Cluster = (ExistingCluster ? *ExistingCluster
249 : CBFactory.getEmptyMap());
250
251 ClusterBindings NewCluster = CBFactory.add(Cluster, K, V);
252 return add(Base, NewCluster);
253 }
254
255
addBinding(const MemRegion * R,BindingKey::Kind k,SVal V) const256 RegionBindingsRef RegionBindingsRef::addBinding(const MemRegion *R,
257 BindingKey::Kind k,
258 SVal V) const {
259 return addBinding(BindingKey::Make(R, k), V);
260 }
261
lookup(BindingKey K) const262 const SVal *RegionBindingsRef::lookup(BindingKey K) const {
263 const ClusterBindings *Cluster = lookup(K.getBaseRegion());
264 if (!Cluster)
265 return nullptr;
266 return Cluster->lookup(K);
267 }
268
lookup(const MemRegion * R,BindingKey::Kind k) const269 const SVal *RegionBindingsRef::lookup(const MemRegion *R,
270 BindingKey::Kind k) const {
271 return lookup(BindingKey::Make(R, k));
272 }
273
removeBinding(BindingKey K)274 RegionBindingsRef RegionBindingsRef::removeBinding(BindingKey K) {
275 const MemRegion *Base = K.getBaseRegion();
276 const ClusterBindings *Cluster = lookup(Base);
277 if (!Cluster)
278 return *this;
279
280 ClusterBindings NewCluster = CBFactory.remove(*Cluster, K);
281 if (NewCluster.isEmpty())
282 return remove(Base);
283 return add(Base, NewCluster);
284 }
285
removeBinding(const MemRegion * R,BindingKey::Kind k)286 RegionBindingsRef RegionBindingsRef::removeBinding(const MemRegion *R,
287 BindingKey::Kind k){
288 return removeBinding(BindingKey::Make(R, k));
289 }
290
291 //===----------------------------------------------------------------------===//
292 // Fine-grained control of RegionStoreManager.
293 //===----------------------------------------------------------------------===//
294
295 namespace {
296 struct minimal_features_tag {};
297 struct maximal_features_tag {};
298
299 class RegionStoreFeatures {
300 bool SupportsFields;
301 public:
RegionStoreFeatures(minimal_features_tag)302 RegionStoreFeatures(minimal_features_tag) :
303 SupportsFields(false) {}
304
RegionStoreFeatures(maximal_features_tag)305 RegionStoreFeatures(maximal_features_tag) :
306 SupportsFields(true) {}
307
enableFields(bool t)308 void enableFields(bool t) { SupportsFields = t; }
309
supportsFields() const310 bool supportsFields() const { return SupportsFields; }
311 };
312 }
313
314 //===----------------------------------------------------------------------===//
315 // Main RegionStore logic.
316 //===----------------------------------------------------------------------===//
317
318 namespace {
319 class invalidateRegionsWorker;
320
321 class RegionStoreManager : public StoreManager {
322 public:
323 const RegionStoreFeatures Features;
324
325 RegionBindings::Factory RBFactory;
326 mutable ClusterBindings::Factory CBFactory;
327
328 typedef std::vector<SVal> SValListTy;
329 private:
330 typedef llvm::DenseMap<const LazyCompoundValData *,
331 SValListTy> LazyBindingsMapTy;
332 LazyBindingsMapTy LazyBindingsMap;
333
334 /// The largest number of fields a struct can have and still be
335 /// considered "small".
336 ///
337 /// This is currently used to decide whether or not it is worth "forcing" a
338 /// LazyCompoundVal on bind.
339 ///
340 /// This is controlled by 'region-store-small-struct-limit' option.
341 /// To disable all small-struct-dependent behavior, set the option to "0".
342 unsigned SmallStructLimit;
343
344 /// \brief A helper used to populate the work list with the given set of
345 /// regions.
346 void populateWorkList(invalidateRegionsWorker &W,
347 ArrayRef<SVal> Values,
348 InvalidatedRegions *TopLevelRegions);
349
350 public:
RegionStoreManager(ProgramStateManager & mgr,const RegionStoreFeatures & f)351 RegionStoreManager(ProgramStateManager& mgr, const RegionStoreFeatures &f)
352 : StoreManager(mgr), Features(f),
353 RBFactory(mgr.getAllocator()), CBFactory(mgr.getAllocator()),
354 SmallStructLimit(0) {
355 if (SubEngine *Eng = StateMgr.getOwningEngine()) {
356 AnalyzerOptions &Options = Eng->getAnalysisManager().options;
357 SmallStructLimit =
358 Options.getOptionAsInteger("region-store-small-struct-limit", 2);
359 }
360 }
361
362
363 /// setImplicitDefaultValue - Set the default binding for the provided
364 /// MemRegion to the value implicitly defined for compound literals when
365 /// the value is not specified.
366 RegionBindingsRef setImplicitDefaultValue(RegionBindingsConstRef B,
367 const MemRegion *R, QualType T);
368
369 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
370 /// type. 'Array' represents the lvalue of the array being decayed
371 /// to a pointer, and the returned SVal represents the decayed
372 /// version of that lvalue (i.e., a pointer to the first element of
373 /// the array). This is called by ExprEngine when evaluating
374 /// casts from arrays to pointers.
375 SVal ArrayToPointer(Loc Array, QualType ElementTy) override;
376
getInitialStore(const LocationContext * InitLoc)377 StoreRef getInitialStore(const LocationContext *InitLoc) override {
378 return StoreRef(RBFactory.getEmptyMap().getRootWithoutRetain(), *this);
379 }
380
381 //===-------------------------------------------------------------------===//
382 // Binding values to regions.
383 //===-------------------------------------------------------------------===//
384 RegionBindingsRef invalidateGlobalRegion(MemRegion::Kind K,
385 const Expr *Ex,
386 unsigned Count,
387 const LocationContext *LCtx,
388 RegionBindingsRef B,
389 InvalidatedRegions *Invalidated);
390
391 StoreRef invalidateRegions(Store store,
392 ArrayRef<SVal> Values,
393 const Expr *E, unsigned Count,
394 const LocationContext *LCtx,
395 const CallEvent *Call,
396 InvalidatedSymbols &IS,
397 RegionAndSymbolInvalidationTraits &ITraits,
398 InvalidatedRegions *Invalidated,
399 InvalidatedRegions *InvalidatedTopLevel) override;
400
401 bool scanReachableSymbols(Store S, const MemRegion *R,
402 ScanReachableSymbols &Callbacks) override;
403
404 RegionBindingsRef removeSubRegionBindings(RegionBindingsConstRef B,
405 const SubRegion *R);
406
407 public: // Part of public interface to class.
408
Bind(Store store,Loc LV,SVal V)409 StoreRef Bind(Store store, Loc LV, SVal V) override {
410 return StoreRef(bind(getRegionBindings(store), LV, V).asStore(), *this);
411 }
412
413 RegionBindingsRef bind(RegionBindingsConstRef B, Loc LV, SVal V);
414
415 // BindDefault is only used to initialize a region with a default value.
BindDefault(Store store,const MemRegion * R,SVal V)416 StoreRef BindDefault(Store store, const MemRegion *R, SVal V) override {
417 RegionBindingsRef B = getRegionBindings(store);
418 assert(!B.lookup(R, BindingKey::Direct));
419
420 BindingKey Key = BindingKey::Make(R, BindingKey::Default);
421 if (B.lookup(Key)) {
422 const SubRegion *SR = cast<SubRegion>(R);
423 assert(SR->getAsOffset().getOffset() ==
424 SR->getSuperRegion()->getAsOffset().getOffset() &&
425 "A default value must come from a super-region");
426 B = removeSubRegionBindings(B, SR);
427 } else {
428 B = B.addBinding(Key, V);
429 }
430
431 return StoreRef(B.asImmutableMap().getRootWithoutRetain(), *this);
432 }
433
434 /// Attempt to extract the fields of \p LCV and bind them to the struct region
435 /// \p R.
436 ///
437 /// This path is used when it seems advantageous to "force" loading the values
438 /// within a LazyCompoundVal to bind memberwise to the struct region, rather
439 /// than using a Default binding at the base of the entire region. This is a
440 /// heuristic attempting to avoid building long chains of LazyCompoundVals.
441 ///
442 /// \returns The updated store bindings, or \c None if binding non-lazily
443 /// would be too expensive.
444 Optional<RegionBindingsRef> tryBindSmallStruct(RegionBindingsConstRef B,
445 const TypedValueRegion *R,
446 const RecordDecl *RD,
447 nonloc::LazyCompoundVal LCV);
448
449 /// BindStruct - Bind a compound value to a structure.
450 RegionBindingsRef bindStruct(RegionBindingsConstRef B,
451 const TypedValueRegion* R, SVal V);
452
453 /// BindVector - Bind a compound value to a vector.
454 RegionBindingsRef bindVector(RegionBindingsConstRef B,
455 const TypedValueRegion* R, SVal V);
456
457 RegionBindingsRef bindArray(RegionBindingsConstRef B,
458 const TypedValueRegion* R,
459 SVal V);
460
461 /// Clears out all bindings in the given region and assigns a new value
462 /// as a Default binding.
463 RegionBindingsRef bindAggregate(RegionBindingsConstRef B,
464 const TypedRegion *R,
465 SVal DefaultVal);
466
467 /// \brief Create a new store with the specified binding removed.
468 /// \param ST the original store, that is the basis for the new store.
469 /// \param L the location whose binding should be removed.
470 StoreRef killBinding(Store ST, Loc L) override;
471
incrementReferenceCount(Store store)472 void incrementReferenceCount(Store store) override {
473 getRegionBindings(store).manualRetain();
474 }
475
476 /// If the StoreManager supports it, decrement the reference count of
477 /// the specified Store object. If the reference count hits 0, the memory
478 /// associated with the object is recycled.
decrementReferenceCount(Store store)479 void decrementReferenceCount(Store store) override {
480 getRegionBindings(store).manualRelease();
481 }
482
483 bool includedInBindings(Store store, const MemRegion *region) const override;
484
485 /// \brief Return the value bound to specified location in a given state.
486 ///
487 /// The high level logic for this method is this:
488 /// getBinding (L)
489 /// if L has binding
490 /// return L's binding
491 /// else if L is in killset
492 /// return unknown
493 /// else
494 /// if L is on stack or heap
495 /// return undefined
496 /// else
497 /// return symbolic
getBinding(Store S,Loc L,QualType T)498 SVal getBinding(Store S, Loc L, QualType T) override {
499 return getBinding(getRegionBindings(S), L, T);
500 }
501
502 SVal getBinding(RegionBindingsConstRef B, Loc L, QualType T = QualType());
503
504 SVal getBindingForElement(RegionBindingsConstRef B, const ElementRegion *R);
505
506 SVal getBindingForField(RegionBindingsConstRef B, const FieldRegion *R);
507
508 SVal getBindingForObjCIvar(RegionBindingsConstRef B, const ObjCIvarRegion *R);
509
510 SVal getBindingForVar(RegionBindingsConstRef B, const VarRegion *R);
511
512 SVal getBindingForLazySymbol(const TypedValueRegion *R);
513
514 SVal getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
515 const TypedValueRegion *R,
516 QualType Ty);
517
518 SVal getLazyBinding(const SubRegion *LazyBindingRegion,
519 RegionBindingsRef LazyBinding);
520
521 /// Get bindings for the values in a struct and return a CompoundVal, used
522 /// when doing struct copy:
523 /// struct s x, y;
524 /// x = y;
525 /// y's value is retrieved by this method.
526 SVal getBindingForStruct(RegionBindingsConstRef B, const TypedValueRegion *R);
527 SVal getBindingForArray(RegionBindingsConstRef B, const TypedValueRegion *R);
528 NonLoc createLazyBinding(RegionBindingsConstRef B, const TypedValueRegion *R);
529
530 /// Used to lazily generate derived symbols for bindings that are defined
531 /// implicitly by default bindings in a super region.
532 ///
533 /// Note that callers may need to specially handle LazyCompoundVals, which
534 /// are returned as is in case the caller needs to treat them differently.
535 Optional<SVal> getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
536 const MemRegion *superR,
537 const TypedValueRegion *R,
538 QualType Ty);
539
540 /// Get the state and region whose binding this region \p R corresponds to.
541 ///
542 /// If there is no lazy binding for \p R, the returned value will have a null
543 /// \c second. Note that a null pointer can represents a valid Store.
544 std::pair<Store, const SubRegion *>
545 findLazyBinding(RegionBindingsConstRef B, const SubRegion *R,
546 const SubRegion *originalRegion);
547
548 /// Returns the cached set of interesting SVals contained within a lazy
549 /// binding.
550 ///
551 /// The precise value of "interesting" is determined for the purposes of
552 /// RegionStore's internal analysis. It must always contain all regions and
553 /// symbols, but may omit constants and other kinds of SVal.
554 const SValListTy &getInterestingValues(nonloc::LazyCompoundVal LCV);
555
556 //===------------------------------------------------------------------===//
557 // State pruning.
558 //===------------------------------------------------------------------===//
559
560 /// removeDeadBindings - Scans the RegionStore of 'state' for dead values.
561 /// It returns a new Store with these values removed.
562 StoreRef removeDeadBindings(Store store, const StackFrameContext *LCtx,
563 SymbolReaper& SymReaper) override;
564
565 //===------------------------------------------------------------------===//
566 // Region "extents".
567 //===------------------------------------------------------------------===//
568
569 // FIXME: This method will soon be eliminated; see the note in Store.h.
570 DefinedOrUnknownSVal getSizeInElements(ProgramStateRef state,
571 const MemRegion* R,
572 QualType EleTy) override;
573
574 //===------------------------------------------------------------------===//
575 // Utility methods.
576 //===------------------------------------------------------------------===//
577
getRegionBindings(Store store) const578 RegionBindingsRef getRegionBindings(Store store) const {
579 return RegionBindingsRef(CBFactory,
580 static_cast<const RegionBindings::TreeTy*>(store),
581 RBFactory.getTreeFactory());
582 }
583
584 void print(Store store, raw_ostream &Out, const char* nl,
585 const char *sep) override;
586
iterBindings(Store store,BindingsHandler & f)587 void iterBindings(Store store, BindingsHandler& f) override {
588 RegionBindingsRef B = getRegionBindings(store);
589 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
590 const ClusterBindings &Cluster = I.getData();
591 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
592 CI != CE; ++CI) {
593 const BindingKey &K = CI.getKey();
594 if (!K.isDirect())
595 continue;
596 if (const SubRegion *R = dyn_cast<SubRegion>(K.getRegion())) {
597 // FIXME: Possibly incorporate the offset?
598 if (!f.HandleBinding(*this, store, R, CI.getData()))
599 return;
600 }
601 }
602 }
603 }
604 };
605
606 } // end anonymous namespace
607
608 //===----------------------------------------------------------------------===//
609 // RegionStore creation.
610 //===----------------------------------------------------------------------===//
611
CreateRegionStoreManager(ProgramStateManager & StMgr)612 StoreManager *ento::CreateRegionStoreManager(ProgramStateManager& StMgr) {
613 RegionStoreFeatures F = maximal_features_tag();
614 return new RegionStoreManager(StMgr, F);
615 }
616
617 StoreManager *
CreateFieldsOnlyRegionStoreManager(ProgramStateManager & StMgr)618 ento::CreateFieldsOnlyRegionStoreManager(ProgramStateManager &StMgr) {
619 RegionStoreFeatures F = minimal_features_tag();
620 F.enableFields(true);
621 return new RegionStoreManager(StMgr, F);
622 }
623
624
625 //===----------------------------------------------------------------------===//
626 // Region Cluster analysis.
627 //===----------------------------------------------------------------------===//
628
629 namespace {
630 /// Used to determine which global regions are automatically included in the
631 /// initial worklist of a ClusterAnalysis.
632 enum GlobalsFilterKind {
633 /// Don't include any global regions.
634 GFK_None,
635 /// Only include system globals.
636 GFK_SystemOnly,
637 /// Include all global regions.
638 GFK_All
639 };
640
641 template <typename DERIVED>
642 class ClusterAnalysis {
643 protected:
644 typedef llvm::DenseMap<const MemRegion *, const ClusterBindings *> ClusterMap;
645 typedef const MemRegion * WorkListElement;
646 typedef SmallVector<WorkListElement, 10> WorkList;
647
648 llvm::SmallPtrSet<const ClusterBindings *, 16> Visited;
649
650 WorkList WL;
651
652 RegionStoreManager &RM;
653 ASTContext &Ctx;
654 SValBuilder &svalBuilder;
655
656 RegionBindingsRef B;
657
658 private:
659 GlobalsFilterKind GlobalsFilter;
660
661 protected:
getCluster(const MemRegion * R)662 const ClusterBindings *getCluster(const MemRegion *R) {
663 return B.lookup(R);
664 }
665
666 /// Returns true if the memory space of the given region is one of the global
667 /// regions specially included at the start of analysis.
isInitiallyIncludedGlobalRegion(const MemRegion * R)668 bool isInitiallyIncludedGlobalRegion(const MemRegion *R) {
669 switch (GlobalsFilter) {
670 case GFK_None:
671 return false;
672 case GFK_SystemOnly:
673 return isa<GlobalSystemSpaceRegion>(R->getMemorySpace());
674 case GFK_All:
675 return isa<NonStaticGlobalSpaceRegion>(R->getMemorySpace());
676 }
677
678 llvm_unreachable("unknown globals filter");
679 }
680
681 public:
ClusterAnalysis(RegionStoreManager & rm,ProgramStateManager & StateMgr,RegionBindingsRef b,GlobalsFilterKind GFK)682 ClusterAnalysis(RegionStoreManager &rm, ProgramStateManager &StateMgr,
683 RegionBindingsRef b, GlobalsFilterKind GFK)
684 : RM(rm), Ctx(StateMgr.getContext()),
685 svalBuilder(StateMgr.getSValBuilder()),
686 B(b), GlobalsFilter(GFK) {}
687
getRegionBindings() const688 RegionBindingsRef getRegionBindings() const { return B; }
689
isVisited(const MemRegion * R)690 bool isVisited(const MemRegion *R) {
691 return Visited.count(getCluster(R));
692 }
693
GenerateClusters()694 void GenerateClusters() {
695 // Scan the entire set of bindings and record the region clusters.
696 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end();
697 RI != RE; ++RI){
698 const MemRegion *Base = RI.getKey();
699
700 const ClusterBindings &Cluster = RI.getData();
701 assert(!Cluster.isEmpty() && "Empty clusters should be removed");
702 static_cast<DERIVED*>(this)->VisitAddedToCluster(Base, Cluster);
703
704 // If this is an interesting global region, add it the work list up front.
705 if (isInitiallyIncludedGlobalRegion(Base))
706 AddToWorkList(WorkListElement(Base), &Cluster);
707 }
708 }
709
AddToWorkList(WorkListElement E,const ClusterBindings * C)710 bool AddToWorkList(WorkListElement E, const ClusterBindings *C) {
711 if (C && !Visited.insert(C))
712 return false;
713 WL.push_back(E);
714 return true;
715 }
716
AddToWorkList(const MemRegion * R)717 bool AddToWorkList(const MemRegion *R) {
718 const MemRegion *BaseR = R->getBaseRegion();
719 return AddToWorkList(WorkListElement(BaseR), getCluster(BaseR));
720 }
721
RunWorkList()722 void RunWorkList() {
723 while (!WL.empty()) {
724 WorkListElement E = WL.pop_back_val();
725 const MemRegion *BaseR = E;
726
727 static_cast<DERIVED*>(this)->VisitCluster(BaseR, getCluster(BaseR));
728 }
729 }
730
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)731 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C) {}
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)732 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C) {}
733
VisitCluster(const MemRegion * BaseR,const ClusterBindings * C,bool Flag)734 void VisitCluster(const MemRegion *BaseR, const ClusterBindings *C,
735 bool Flag) {
736 static_cast<DERIVED*>(this)->VisitCluster(BaseR, C);
737 }
738 };
739 }
740
741 //===----------------------------------------------------------------------===//
742 // Binding invalidation.
743 //===----------------------------------------------------------------------===//
744
scanReachableSymbols(Store S,const MemRegion * R,ScanReachableSymbols & Callbacks)745 bool RegionStoreManager::scanReachableSymbols(Store S, const MemRegion *R,
746 ScanReachableSymbols &Callbacks) {
747 assert(R == R->getBaseRegion() && "Should only be called for base regions");
748 RegionBindingsRef B = getRegionBindings(S);
749 const ClusterBindings *Cluster = B.lookup(R);
750
751 if (!Cluster)
752 return true;
753
754 for (ClusterBindings::iterator RI = Cluster->begin(), RE = Cluster->end();
755 RI != RE; ++RI) {
756 if (!Callbacks.scan(RI.getData()))
757 return false;
758 }
759
760 return true;
761 }
762
isUnionField(const FieldRegion * FR)763 static inline bool isUnionField(const FieldRegion *FR) {
764 return FR->getDecl()->getParent()->isUnion();
765 }
766
767 typedef SmallVector<const FieldDecl *, 8> FieldVector;
768
getSymbolicOffsetFields(BindingKey K,FieldVector & Fields)769 void getSymbolicOffsetFields(BindingKey K, FieldVector &Fields) {
770 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
771
772 const MemRegion *Base = K.getConcreteOffsetRegion();
773 const MemRegion *R = K.getRegion();
774
775 while (R != Base) {
776 if (const FieldRegion *FR = dyn_cast<FieldRegion>(R))
777 if (!isUnionField(FR))
778 Fields.push_back(FR->getDecl());
779
780 R = cast<SubRegion>(R)->getSuperRegion();
781 }
782 }
783
isCompatibleWithFields(BindingKey K,const FieldVector & Fields)784 static bool isCompatibleWithFields(BindingKey K, const FieldVector &Fields) {
785 assert(K.hasSymbolicOffset() && "Not implemented for concrete offset keys");
786
787 if (Fields.empty())
788 return true;
789
790 FieldVector FieldsInBindingKey;
791 getSymbolicOffsetFields(K, FieldsInBindingKey);
792
793 ptrdiff_t Delta = FieldsInBindingKey.size() - Fields.size();
794 if (Delta >= 0)
795 return std::equal(FieldsInBindingKey.begin() + Delta,
796 FieldsInBindingKey.end(),
797 Fields.begin());
798 else
799 return std::equal(FieldsInBindingKey.begin(), FieldsInBindingKey.end(),
800 Fields.begin() - Delta);
801 }
802
803 /// Collects all bindings in \p Cluster that may refer to bindings within
804 /// \p Top.
805 ///
806 /// Each binding is a pair whose \c first is the key (a BindingKey) and whose
807 /// \c second is the value (an SVal).
808 ///
809 /// The \p IncludeAllDefaultBindings parameter specifies whether to include
810 /// default bindings that may extend beyond \p Top itself, e.g. if \p Top is
811 /// an aggregate within a larger aggregate with a default binding.
812 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,BindingKey TopKey,bool IncludeAllDefaultBindings)813 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
814 SValBuilder &SVB, const ClusterBindings &Cluster,
815 const SubRegion *Top, BindingKey TopKey,
816 bool IncludeAllDefaultBindings) {
817 FieldVector FieldsInSymbolicSubregions;
818 if (TopKey.hasSymbolicOffset()) {
819 getSymbolicOffsetFields(TopKey, FieldsInSymbolicSubregions);
820 Top = cast<SubRegion>(TopKey.getConcreteOffsetRegion());
821 TopKey = BindingKey::Make(Top, BindingKey::Default);
822 }
823
824 // Find the length (in bits) of the region being invalidated.
825 uint64_t Length = UINT64_MAX;
826 SVal Extent = Top->getExtent(SVB);
827 if (Optional<nonloc::ConcreteInt> ExtentCI =
828 Extent.getAs<nonloc::ConcreteInt>()) {
829 const llvm::APSInt &ExtentInt = ExtentCI->getValue();
830 assert(ExtentInt.isNonNegative() || ExtentInt.isUnsigned());
831 // Extents are in bytes but region offsets are in bits. Be careful!
832 Length = ExtentInt.getLimitedValue() * SVB.getContext().getCharWidth();
833 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(Top)) {
834 if (FR->getDecl()->isBitField())
835 Length = FR->getDecl()->getBitWidthValue(SVB.getContext());
836 }
837
838 for (ClusterBindings::iterator I = Cluster.begin(), E = Cluster.end();
839 I != E; ++I) {
840 BindingKey NextKey = I.getKey();
841 if (NextKey.getRegion() == TopKey.getRegion()) {
842 // FIXME: This doesn't catch the case where we're really invalidating a
843 // region with a symbolic offset. Example:
844 // R: points[i].y
845 // Next: points[0].x
846
847 if (NextKey.getOffset() > TopKey.getOffset() &&
848 NextKey.getOffset() - TopKey.getOffset() < Length) {
849 // Case 1: The next binding is inside the region we're invalidating.
850 // Include it.
851 Bindings.push_back(*I);
852
853 } else if (NextKey.getOffset() == TopKey.getOffset()) {
854 // Case 2: The next binding is at the same offset as the region we're
855 // invalidating. In this case, we need to leave default bindings alone,
856 // since they may be providing a default value for a regions beyond what
857 // we're invalidating.
858 // FIXME: This is probably incorrect; consider invalidating an outer
859 // struct whose first field is bound to a LazyCompoundVal.
860 if (IncludeAllDefaultBindings || NextKey.isDirect())
861 Bindings.push_back(*I);
862 }
863
864 } else if (NextKey.hasSymbolicOffset()) {
865 const MemRegion *Base = NextKey.getConcreteOffsetRegion();
866 if (Top->isSubRegionOf(Base)) {
867 // Case 3: The next key is symbolic and we just changed something within
868 // its concrete region. We don't know if the binding is still valid, so
869 // we'll be conservative and include it.
870 if (IncludeAllDefaultBindings || NextKey.isDirect())
871 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
872 Bindings.push_back(*I);
873 } else if (const SubRegion *BaseSR = dyn_cast<SubRegion>(Base)) {
874 // Case 4: The next key is symbolic, but we changed a known
875 // super-region. In this case the binding is certainly included.
876 if (Top == Base || BaseSR->isSubRegionOf(Top))
877 if (isCompatibleWithFields(NextKey, FieldsInSymbolicSubregions))
878 Bindings.push_back(*I);
879 }
880 }
881 }
882 }
883
884 static void
collectSubRegionBindings(SmallVectorImpl<BindingPair> & Bindings,SValBuilder & SVB,const ClusterBindings & Cluster,const SubRegion * Top,bool IncludeAllDefaultBindings)885 collectSubRegionBindings(SmallVectorImpl<BindingPair> &Bindings,
886 SValBuilder &SVB, const ClusterBindings &Cluster,
887 const SubRegion *Top, bool IncludeAllDefaultBindings) {
888 collectSubRegionBindings(Bindings, SVB, Cluster, Top,
889 BindingKey::Make(Top, BindingKey::Default),
890 IncludeAllDefaultBindings);
891 }
892
893 RegionBindingsRef
removeSubRegionBindings(RegionBindingsConstRef B,const SubRegion * Top)894 RegionStoreManager::removeSubRegionBindings(RegionBindingsConstRef B,
895 const SubRegion *Top) {
896 BindingKey TopKey = BindingKey::Make(Top, BindingKey::Default);
897 const MemRegion *ClusterHead = TopKey.getBaseRegion();
898
899 if (Top == ClusterHead) {
900 // We can remove an entire cluster's bindings all in one go.
901 return B.remove(Top);
902 }
903
904 const ClusterBindings *Cluster = B.lookup(ClusterHead);
905 if (!Cluster) {
906 // If we're invalidating a region with a symbolic offset, we need to make
907 // sure we don't treat the base region as uninitialized anymore.
908 if (TopKey.hasSymbolicOffset()) {
909 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
910 return B.addBinding(Concrete, BindingKey::Default, UnknownVal());
911 }
912 return B;
913 }
914
915 SmallVector<BindingPair, 32> Bindings;
916 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, Top, TopKey,
917 /*IncludeAllDefaultBindings=*/false);
918
919 ClusterBindingsRef Result(*Cluster, CBFactory);
920 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
921 E = Bindings.end();
922 I != E; ++I)
923 Result = Result.remove(I->first);
924
925 // If we're invalidating a region with a symbolic offset, we need to make sure
926 // we don't treat the base region as uninitialized anymore.
927 // FIXME: This isn't very precise; see the example in
928 // collectSubRegionBindings.
929 if (TopKey.hasSymbolicOffset()) {
930 const SubRegion *Concrete = TopKey.getConcreteOffsetRegion();
931 Result = Result.add(BindingKey::Make(Concrete, BindingKey::Default),
932 UnknownVal());
933 }
934
935 if (Result.isEmpty())
936 return B.remove(ClusterHead);
937 return B.add(ClusterHead, Result.asImmutableMap());
938 }
939
940 namespace {
941 class invalidateRegionsWorker : public ClusterAnalysis<invalidateRegionsWorker>
942 {
943 const Expr *Ex;
944 unsigned Count;
945 const LocationContext *LCtx;
946 InvalidatedSymbols &IS;
947 RegionAndSymbolInvalidationTraits &ITraits;
948 StoreManager::InvalidatedRegions *Regions;
949 public:
invalidateRegionsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,const Expr * ex,unsigned count,const LocationContext * lctx,InvalidatedSymbols & is,RegionAndSymbolInvalidationTraits & ITraitsIn,StoreManager::InvalidatedRegions * r,GlobalsFilterKind GFK)950 invalidateRegionsWorker(RegionStoreManager &rm,
951 ProgramStateManager &stateMgr,
952 RegionBindingsRef b,
953 const Expr *ex, unsigned count,
954 const LocationContext *lctx,
955 InvalidatedSymbols &is,
956 RegionAndSymbolInvalidationTraits &ITraitsIn,
957 StoreManager::InvalidatedRegions *r,
958 GlobalsFilterKind GFK)
959 : ClusterAnalysis<invalidateRegionsWorker>(rm, stateMgr, b, GFK),
960 Ex(ex), Count(count), LCtx(lctx), IS(is), ITraits(ITraitsIn), Regions(r){}
961
962 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
963 void VisitBinding(SVal V);
964 };
965 }
966
VisitBinding(SVal V)967 void invalidateRegionsWorker::VisitBinding(SVal V) {
968 // A symbol? Mark it touched by the invalidation.
969 if (SymbolRef Sym = V.getAsSymbol())
970 IS.insert(Sym);
971
972 if (const MemRegion *R = V.getAsRegion()) {
973 AddToWorkList(R);
974 return;
975 }
976
977 // Is it a LazyCompoundVal? All references get invalidated as well.
978 if (Optional<nonloc::LazyCompoundVal> LCS =
979 V.getAs<nonloc::LazyCompoundVal>()) {
980
981 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
982
983 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
984 E = Vals.end();
985 I != E; ++I)
986 VisitBinding(*I);
987
988 return;
989 }
990 }
991
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)992 void invalidateRegionsWorker::VisitCluster(const MemRegion *baseR,
993 const ClusterBindings *C) {
994
995 bool PreserveRegionsContents =
996 ITraits.hasTrait(baseR,
997 RegionAndSymbolInvalidationTraits::TK_PreserveContents);
998
999 if (C) {
1000 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
1001 VisitBinding(I.getData());
1002
1003 // Invalidate regions contents.
1004 if (!PreserveRegionsContents)
1005 B = B.remove(baseR);
1006 }
1007
1008 // BlockDataRegion? If so, invalidate captured variables that are passed
1009 // by reference.
1010 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(baseR)) {
1011 for (BlockDataRegion::referenced_vars_iterator
1012 BI = BR->referenced_vars_begin(), BE = BR->referenced_vars_end() ;
1013 BI != BE; ++BI) {
1014 const VarRegion *VR = BI.getCapturedRegion();
1015 const VarDecl *VD = VR->getDecl();
1016 if (VD->hasAttr<BlocksAttr>() || !VD->hasLocalStorage()) {
1017 AddToWorkList(VR);
1018 }
1019 else if (Loc::isLocType(VR->getValueType())) {
1020 // Map the current bindings to a Store to retrieve the value
1021 // of the binding. If that binding itself is a region, we should
1022 // invalidate that region. This is because a block may capture
1023 // a pointer value, but the thing pointed by that pointer may
1024 // get invalidated.
1025 SVal V = RM.getBinding(B, loc::MemRegionVal(VR));
1026 if (Optional<Loc> L = V.getAs<Loc>()) {
1027 if (const MemRegion *LR = L->getAsRegion())
1028 AddToWorkList(LR);
1029 }
1030 }
1031 }
1032 return;
1033 }
1034
1035 // Symbolic region?
1036 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR))
1037 IS.insert(SR->getSymbol());
1038
1039 // Nothing else should be done in the case when we preserve regions context.
1040 if (PreserveRegionsContents)
1041 return;
1042
1043 // Otherwise, we have a normal data region. Record that we touched the region.
1044 if (Regions)
1045 Regions->push_back(baseR);
1046
1047 if (isa<AllocaRegion>(baseR) || isa<SymbolicRegion>(baseR)) {
1048 // Invalidate the region by setting its default value to
1049 // conjured symbol. The type of the symbol is irrelevant.
1050 DefinedOrUnknownSVal V =
1051 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx, Ctx.IntTy, Count);
1052 B = B.addBinding(baseR, BindingKey::Default, V);
1053 return;
1054 }
1055
1056 if (!baseR->isBoundable())
1057 return;
1058
1059 const TypedValueRegion *TR = cast<TypedValueRegion>(baseR);
1060 QualType T = TR->getValueType();
1061
1062 if (isInitiallyIncludedGlobalRegion(baseR)) {
1063 // If the region is a global and we are invalidating all globals,
1064 // erasing the entry is good enough. This causes all globals to be lazily
1065 // symbolicated from the same base symbol.
1066 return;
1067 }
1068
1069 if (T->isStructureOrClassType()) {
1070 // Invalidate the region by setting its default value to
1071 // conjured symbol. The type of the symbol is irrelevant.
1072 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1073 Ctx.IntTy, Count);
1074 B = B.addBinding(baseR, BindingKey::Default, V);
1075 return;
1076 }
1077
1078 if (const ArrayType *AT = Ctx.getAsArrayType(T)) {
1079 // Set the default value of the array to conjured symbol.
1080 DefinedOrUnknownSVal V =
1081 svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1082 AT->getElementType(), Count);
1083 B = B.addBinding(baseR, BindingKey::Default, V);
1084 return;
1085 }
1086
1087 DefinedOrUnknownSVal V = svalBuilder.conjureSymbolVal(baseR, Ex, LCtx,
1088 T,Count);
1089 assert(SymbolManager::canSymbolicate(T) || V.isUnknown());
1090 B = B.addBinding(baseR, BindingKey::Direct, V);
1091 }
1092
1093 RegionBindingsRef
invalidateGlobalRegion(MemRegion::Kind K,const Expr * Ex,unsigned Count,const LocationContext * LCtx,RegionBindingsRef B,InvalidatedRegions * Invalidated)1094 RegionStoreManager::invalidateGlobalRegion(MemRegion::Kind K,
1095 const Expr *Ex,
1096 unsigned Count,
1097 const LocationContext *LCtx,
1098 RegionBindingsRef B,
1099 InvalidatedRegions *Invalidated) {
1100 // Bind the globals memory space to a new symbol that we will use to derive
1101 // the bindings for all globals.
1102 const GlobalsSpaceRegion *GS = MRMgr.getGlobalsRegion(K);
1103 SVal V = svalBuilder.conjureSymbolVal(/* SymbolTag = */ (const void*) GS, Ex, LCtx,
1104 /* type does not matter */ Ctx.IntTy,
1105 Count);
1106
1107 B = B.removeBinding(GS)
1108 .addBinding(BindingKey::Make(GS, BindingKey::Default), V);
1109
1110 // Even if there are no bindings in the global scope, we still need to
1111 // record that we touched it.
1112 if (Invalidated)
1113 Invalidated->push_back(GS);
1114
1115 return B;
1116 }
1117
populateWorkList(invalidateRegionsWorker & W,ArrayRef<SVal> Values,InvalidatedRegions * TopLevelRegions)1118 void RegionStoreManager::populateWorkList(invalidateRegionsWorker &W,
1119 ArrayRef<SVal> Values,
1120 InvalidatedRegions *TopLevelRegions) {
1121 for (ArrayRef<SVal>::iterator I = Values.begin(),
1122 E = Values.end(); I != E; ++I) {
1123 SVal V = *I;
1124 if (Optional<nonloc::LazyCompoundVal> LCS =
1125 V.getAs<nonloc::LazyCompoundVal>()) {
1126
1127 const SValListTy &Vals = getInterestingValues(*LCS);
1128
1129 for (SValListTy::const_iterator I = Vals.begin(),
1130 E = Vals.end(); I != E; ++I) {
1131 // Note: the last argument is false here because these are
1132 // non-top-level regions.
1133 if (const MemRegion *R = (*I).getAsRegion())
1134 W.AddToWorkList(R);
1135 }
1136 continue;
1137 }
1138
1139 if (const MemRegion *R = V.getAsRegion()) {
1140 if (TopLevelRegions)
1141 TopLevelRegions->push_back(R);
1142 W.AddToWorkList(R);
1143 continue;
1144 }
1145 }
1146 }
1147
1148 StoreRef
invalidateRegions(Store store,ArrayRef<SVal> Values,const Expr * Ex,unsigned Count,const LocationContext * LCtx,const CallEvent * Call,InvalidatedSymbols & IS,RegionAndSymbolInvalidationTraits & ITraits,InvalidatedRegions * TopLevelRegions,InvalidatedRegions * Invalidated)1149 RegionStoreManager::invalidateRegions(Store store,
1150 ArrayRef<SVal> Values,
1151 const Expr *Ex, unsigned Count,
1152 const LocationContext *LCtx,
1153 const CallEvent *Call,
1154 InvalidatedSymbols &IS,
1155 RegionAndSymbolInvalidationTraits &ITraits,
1156 InvalidatedRegions *TopLevelRegions,
1157 InvalidatedRegions *Invalidated) {
1158 GlobalsFilterKind GlobalsFilter;
1159 if (Call) {
1160 if (Call->isInSystemHeader())
1161 GlobalsFilter = GFK_SystemOnly;
1162 else
1163 GlobalsFilter = GFK_All;
1164 } else {
1165 GlobalsFilter = GFK_None;
1166 }
1167
1168 RegionBindingsRef B = getRegionBindings(store);
1169 invalidateRegionsWorker W(*this, StateMgr, B, Ex, Count, LCtx, IS, ITraits,
1170 Invalidated, GlobalsFilter);
1171
1172 // Scan the bindings and generate the clusters.
1173 W.GenerateClusters();
1174
1175 // Add the regions to the worklist.
1176 populateWorkList(W, Values, TopLevelRegions);
1177
1178 W.RunWorkList();
1179
1180 // Return the new bindings.
1181 B = W.getRegionBindings();
1182
1183 // For calls, determine which global regions should be invalidated and
1184 // invalidate them. (Note that function-static and immutable globals are never
1185 // invalidated by this.)
1186 // TODO: This could possibly be more precise with modules.
1187 switch (GlobalsFilter) {
1188 case GFK_All:
1189 B = invalidateGlobalRegion(MemRegion::GlobalInternalSpaceRegionKind,
1190 Ex, Count, LCtx, B, Invalidated);
1191 // FALLTHROUGH
1192 case GFK_SystemOnly:
1193 B = invalidateGlobalRegion(MemRegion::GlobalSystemSpaceRegionKind,
1194 Ex, Count, LCtx, B, Invalidated);
1195 // FALLTHROUGH
1196 case GFK_None:
1197 break;
1198 }
1199
1200 return StoreRef(B.asStore(), *this);
1201 }
1202
1203 //===----------------------------------------------------------------------===//
1204 // Extents for regions.
1205 //===----------------------------------------------------------------------===//
1206
1207 DefinedOrUnknownSVal
getSizeInElements(ProgramStateRef state,const MemRegion * R,QualType EleTy)1208 RegionStoreManager::getSizeInElements(ProgramStateRef state,
1209 const MemRegion *R,
1210 QualType EleTy) {
1211 SVal Size = cast<SubRegion>(R)->getExtent(svalBuilder);
1212 const llvm::APSInt *SizeInt = svalBuilder.getKnownValue(state, Size);
1213 if (!SizeInt)
1214 return UnknownVal();
1215
1216 CharUnits RegionSize = CharUnits::fromQuantity(SizeInt->getSExtValue());
1217
1218 if (Ctx.getAsVariableArrayType(EleTy)) {
1219 // FIXME: We need to track extra state to properly record the size
1220 // of VLAs. Returning UnknownVal here, however, is a stop-gap so that
1221 // we don't have a divide-by-zero below.
1222 return UnknownVal();
1223 }
1224
1225 CharUnits EleSize = Ctx.getTypeSizeInChars(EleTy);
1226
1227 // If a variable is reinterpreted as a type that doesn't fit into a larger
1228 // type evenly, round it down.
1229 // This is a signed value, since it's used in arithmetic with signed indices.
1230 return svalBuilder.makeIntVal(RegionSize / EleSize, false);
1231 }
1232
1233 //===----------------------------------------------------------------------===//
1234 // Location and region casting.
1235 //===----------------------------------------------------------------------===//
1236
1237 /// ArrayToPointer - Emulates the "decay" of an array to a pointer
1238 /// type. 'Array' represents the lvalue of the array being decayed
1239 /// to a pointer, and the returned SVal represents the decayed
1240 /// version of that lvalue (i.e., a pointer to the first element of
1241 /// the array). This is called by ExprEngine when evaluating casts
1242 /// from arrays to pointers.
ArrayToPointer(Loc Array,QualType T)1243 SVal RegionStoreManager::ArrayToPointer(Loc Array, QualType T) {
1244 if (!Array.getAs<loc::MemRegionVal>())
1245 return UnknownVal();
1246
1247 const MemRegion* R = Array.castAs<loc::MemRegionVal>().getRegion();
1248 NonLoc ZeroIdx = svalBuilder.makeZeroArrayIndex();
1249 return loc::MemRegionVal(MRMgr.getElementRegion(T, ZeroIdx, R, Ctx));
1250 }
1251
1252 //===----------------------------------------------------------------------===//
1253 // Loading values from regions.
1254 //===----------------------------------------------------------------------===//
1255
getBinding(RegionBindingsConstRef B,Loc L,QualType T)1256 SVal RegionStoreManager::getBinding(RegionBindingsConstRef B, Loc L, QualType T) {
1257 assert(!L.getAs<UnknownVal>() && "location unknown");
1258 assert(!L.getAs<UndefinedVal>() && "location undefined");
1259
1260 // For access to concrete addresses, return UnknownVal. Checks
1261 // for null dereferences (and similar errors) are done by checkers, not
1262 // the Store.
1263 // FIXME: We can consider lazily symbolicating such memory, but we really
1264 // should defer this when we can reason easily about symbolicating arrays
1265 // of bytes.
1266 if (L.getAs<loc::ConcreteInt>()) {
1267 return UnknownVal();
1268 }
1269 if (!L.getAs<loc::MemRegionVal>()) {
1270 return UnknownVal();
1271 }
1272
1273 const MemRegion *MR = L.castAs<loc::MemRegionVal>().getRegion();
1274
1275 if (isa<AllocaRegion>(MR) ||
1276 isa<SymbolicRegion>(MR) ||
1277 isa<CodeTextRegion>(MR)) {
1278 if (T.isNull()) {
1279 if (const TypedRegion *TR = dyn_cast<TypedRegion>(MR))
1280 T = TR->getLocationType();
1281 else {
1282 const SymbolicRegion *SR = cast<SymbolicRegion>(MR);
1283 T = SR->getSymbol()->getType();
1284 }
1285 }
1286 MR = GetElementZeroRegion(MR, T);
1287 }
1288
1289 // FIXME: Perhaps this method should just take a 'const MemRegion*' argument
1290 // instead of 'Loc', and have the other Loc cases handled at a higher level.
1291 const TypedValueRegion *R = cast<TypedValueRegion>(MR);
1292 QualType RTy = R->getValueType();
1293
1294 // FIXME: we do not yet model the parts of a complex type, so treat the
1295 // whole thing as "unknown".
1296 if (RTy->isAnyComplexType())
1297 return UnknownVal();
1298
1299 // FIXME: We should eventually handle funny addressing. e.g.:
1300 //
1301 // int x = ...;
1302 // int *p = &x;
1303 // char *q = (char*) p;
1304 // char c = *q; // returns the first byte of 'x'.
1305 //
1306 // Such funny addressing will occur due to layering of regions.
1307 if (RTy->isStructureOrClassType())
1308 return getBindingForStruct(B, R);
1309
1310 // FIXME: Handle unions.
1311 if (RTy->isUnionType())
1312 return createLazyBinding(B, R);
1313
1314 if (RTy->isArrayType()) {
1315 if (RTy->isConstantArrayType())
1316 return getBindingForArray(B, R);
1317 else
1318 return UnknownVal();
1319 }
1320
1321 // FIXME: handle Vector types.
1322 if (RTy->isVectorType())
1323 return UnknownVal();
1324
1325 if (const FieldRegion* FR = dyn_cast<FieldRegion>(R))
1326 return CastRetrievedVal(getBindingForField(B, FR), FR, T, false);
1327
1328 if (const ElementRegion* ER = dyn_cast<ElementRegion>(R)) {
1329 // FIXME: Here we actually perform an implicit conversion from the loaded
1330 // value to the element type. Eventually we want to compose these values
1331 // more intelligently. For example, an 'element' can encompass multiple
1332 // bound regions (e.g., several bound bytes), or could be a subset of
1333 // a larger value.
1334 return CastRetrievedVal(getBindingForElement(B, ER), ER, T, false);
1335 }
1336
1337 if (const ObjCIvarRegion *IVR = dyn_cast<ObjCIvarRegion>(R)) {
1338 // FIXME: Here we actually perform an implicit conversion from the loaded
1339 // value to the ivar type. What we should model is stores to ivars
1340 // that blow past the extent of the ivar. If the address of the ivar is
1341 // reinterpretted, it is possible we stored a different value that could
1342 // fit within the ivar. Either we need to cast these when storing them
1343 // or reinterpret them lazily (as we do here).
1344 return CastRetrievedVal(getBindingForObjCIvar(B, IVR), IVR, T, false);
1345 }
1346
1347 if (const VarRegion *VR = dyn_cast<VarRegion>(R)) {
1348 // FIXME: Here we actually perform an implicit conversion from the loaded
1349 // value to the variable type. What we should model is stores to variables
1350 // that blow past the extent of the variable. If the address of the
1351 // variable is reinterpretted, it is possible we stored a different value
1352 // that could fit within the variable. Either we need to cast these when
1353 // storing them or reinterpret them lazily (as we do here).
1354 return CastRetrievedVal(getBindingForVar(B, VR), VR, T, false);
1355 }
1356
1357 const SVal *V = B.lookup(R, BindingKey::Direct);
1358
1359 // Check if the region has a binding.
1360 if (V)
1361 return *V;
1362
1363 // The location does not have a bound value. This means that it has
1364 // the value it had upon its creation and/or entry to the analyzed
1365 // function/method. These are either symbolic values or 'undefined'.
1366 if (R->hasStackNonParametersStorage()) {
1367 // All stack variables are considered to have undefined values
1368 // upon creation. All heap allocated blocks are considered to
1369 // have undefined values as well unless they are explicitly bound
1370 // to specific values.
1371 return UndefinedVal();
1372 }
1373
1374 // All other values are symbolic.
1375 return svalBuilder.getRegionValueSymbolVal(R);
1376 }
1377
getUnderlyingType(const SubRegion * R)1378 static QualType getUnderlyingType(const SubRegion *R) {
1379 QualType RegionTy;
1380 if (const TypedValueRegion *TVR = dyn_cast<TypedValueRegion>(R))
1381 RegionTy = TVR->getValueType();
1382
1383 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R))
1384 RegionTy = SR->getSymbol()->getType();
1385
1386 return RegionTy;
1387 }
1388
1389 /// Checks to see if store \p B has a lazy binding for region \p R.
1390 ///
1391 /// If \p AllowSubregionBindings is \c false, a lazy binding will be rejected
1392 /// if there are additional bindings within \p R.
1393 ///
1394 /// Note that unlike RegionStoreManager::findLazyBinding, this will not search
1395 /// for lazy bindings for super-regions of \p R.
1396 static Optional<nonloc::LazyCompoundVal>
getExistingLazyBinding(SValBuilder & SVB,RegionBindingsConstRef B,const SubRegion * R,bool AllowSubregionBindings)1397 getExistingLazyBinding(SValBuilder &SVB, RegionBindingsConstRef B,
1398 const SubRegion *R, bool AllowSubregionBindings) {
1399 Optional<SVal> V = B.getDefaultBinding(R);
1400 if (!V)
1401 return None;
1402
1403 Optional<nonloc::LazyCompoundVal> LCV = V->getAs<nonloc::LazyCompoundVal>();
1404 if (!LCV)
1405 return None;
1406
1407 // If the LCV is for a subregion, the types might not match, and we shouldn't
1408 // reuse the binding.
1409 QualType RegionTy = getUnderlyingType(R);
1410 if (!RegionTy.isNull() &&
1411 !RegionTy->isVoidPointerType()) {
1412 QualType SourceRegionTy = LCV->getRegion()->getValueType();
1413 if (!SVB.getContext().hasSameUnqualifiedType(RegionTy, SourceRegionTy))
1414 return None;
1415 }
1416
1417 if (!AllowSubregionBindings) {
1418 // If there are any other bindings within this region, we shouldn't reuse
1419 // the top-level binding.
1420 SmallVector<BindingPair, 16> Bindings;
1421 collectSubRegionBindings(Bindings, SVB, *B.lookup(R->getBaseRegion()), R,
1422 /*IncludeAllDefaultBindings=*/true);
1423 if (Bindings.size() > 1)
1424 return None;
1425 }
1426
1427 return *LCV;
1428 }
1429
1430
1431 std::pair<Store, const SubRegion *>
findLazyBinding(RegionBindingsConstRef B,const SubRegion * R,const SubRegion * originalRegion)1432 RegionStoreManager::findLazyBinding(RegionBindingsConstRef B,
1433 const SubRegion *R,
1434 const SubRegion *originalRegion) {
1435 if (originalRegion != R) {
1436 if (Optional<nonloc::LazyCompoundVal> V =
1437 getExistingLazyBinding(svalBuilder, B, R, true))
1438 return std::make_pair(V->getStore(), V->getRegion());
1439 }
1440
1441 typedef std::pair<Store, const SubRegion *> StoreRegionPair;
1442 StoreRegionPair Result = StoreRegionPair();
1443
1444 if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
1445 Result = findLazyBinding(B, cast<SubRegion>(ER->getSuperRegion()),
1446 originalRegion);
1447
1448 if (Result.second)
1449 Result.second = MRMgr.getElementRegionWithSuper(ER, Result.second);
1450
1451 } else if (const FieldRegion *FR = dyn_cast<FieldRegion>(R)) {
1452 Result = findLazyBinding(B, cast<SubRegion>(FR->getSuperRegion()),
1453 originalRegion);
1454
1455 if (Result.second)
1456 Result.second = MRMgr.getFieldRegionWithSuper(FR, Result.second);
1457
1458 } else if (const CXXBaseObjectRegion *BaseReg =
1459 dyn_cast<CXXBaseObjectRegion>(R)) {
1460 // C++ base object region is another kind of region that we should blast
1461 // through to look for lazy compound value. It is like a field region.
1462 Result = findLazyBinding(B, cast<SubRegion>(BaseReg->getSuperRegion()),
1463 originalRegion);
1464
1465 if (Result.second)
1466 Result.second = MRMgr.getCXXBaseObjectRegionWithSuper(BaseReg,
1467 Result.second);
1468 }
1469
1470 return Result;
1471 }
1472
getBindingForElement(RegionBindingsConstRef B,const ElementRegion * R)1473 SVal RegionStoreManager::getBindingForElement(RegionBindingsConstRef B,
1474 const ElementRegion* R) {
1475 // We do not currently model bindings of the CompoundLiteralregion.
1476 if (isa<CompoundLiteralRegion>(R->getBaseRegion()))
1477 return UnknownVal();
1478
1479 // Check if the region has a binding.
1480 if (const Optional<SVal> &V = B.getDirectBinding(R))
1481 return *V;
1482
1483 const MemRegion* superR = R->getSuperRegion();
1484
1485 // Check if the region is an element region of a string literal.
1486 if (const StringRegion *StrR=dyn_cast<StringRegion>(superR)) {
1487 // FIXME: Handle loads from strings where the literal is treated as
1488 // an integer, e.g., *((unsigned int*)"hello")
1489 QualType T = Ctx.getAsArrayType(StrR->getValueType())->getElementType();
1490 if (!Ctx.hasSameUnqualifiedType(T, R->getElementType()))
1491 return UnknownVal();
1492
1493 const StringLiteral *Str = StrR->getStringLiteral();
1494 SVal Idx = R->getIndex();
1495 if (Optional<nonloc::ConcreteInt> CI = Idx.getAs<nonloc::ConcreteInt>()) {
1496 int64_t i = CI->getValue().getSExtValue();
1497 // Abort on string underrun. This can be possible by arbitrary
1498 // clients of getBindingForElement().
1499 if (i < 0)
1500 return UndefinedVal();
1501 int64_t length = Str->getLength();
1502 // Technically, only i == length is guaranteed to be null.
1503 // However, such overflows should be caught before reaching this point;
1504 // the only time such an access would be made is if a string literal was
1505 // used to initialize a larger array.
1506 char c = (i >= length) ? '\0' : Str->getCodeUnit(i);
1507 return svalBuilder.makeIntVal(c, T);
1508 }
1509 }
1510
1511 // Check for loads from a code text region. For such loads, just give up.
1512 if (isa<CodeTextRegion>(superR))
1513 return UnknownVal();
1514
1515 // Handle the case where we are indexing into a larger scalar object.
1516 // For example, this handles:
1517 // int x = ...
1518 // char *y = &x;
1519 // return *y;
1520 // FIXME: This is a hack, and doesn't do anything really intelligent yet.
1521 const RegionRawOffset &O = R->getAsArrayOffset();
1522
1523 // If we cannot reason about the offset, return an unknown value.
1524 if (!O.getRegion())
1525 return UnknownVal();
1526
1527 if (const TypedValueRegion *baseR =
1528 dyn_cast_or_null<TypedValueRegion>(O.getRegion())) {
1529 QualType baseT = baseR->getValueType();
1530 if (baseT->isScalarType()) {
1531 QualType elemT = R->getElementType();
1532 if (elemT->isScalarType()) {
1533 if (Ctx.getTypeSizeInChars(baseT) >= Ctx.getTypeSizeInChars(elemT)) {
1534 if (const Optional<SVal> &V = B.getDirectBinding(superR)) {
1535 if (SymbolRef parentSym = V->getAsSymbol())
1536 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1537
1538 if (V->isUnknownOrUndef())
1539 return *V;
1540 // Other cases: give up. We are indexing into a larger object
1541 // that has some value, but we don't know how to handle that yet.
1542 return UnknownVal();
1543 }
1544 }
1545 }
1546 }
1547 }
1548 return getBindingForFieldOrElementCommon(B, R, R->getElementType());
1549 }
1550
getBindingForField(RegionBindingsConstRef B,const FieldRegion * R)1551 SVal RegionStoreManager::getBindingForField(RegionBindingsConstRef B,
1552 const FieldRegion* R) {
1553
1554 // Check if the region has a binding.
1555 if (const Optional<SVal> &V = B.getDirectBinding(R))
1556 return *V;
1557
1558 QualType Ty = R->getValueType();
1559 return getBindingForFieldOrElementCommon(B, R, Ty);
1560 }
1561
1562 Optional<SVal>
getBindingForDerivedDefaultValue(RegionBindingsConstRef B,const MemRegion * superR,const TypedValueRegion * R,QualType Ty)1563 RegionStoreManager::getBindingForDerivedDefaultValue(RegionBindingsConstRef B,
1564 const MemRegion *superR,
1565 const TypedValueRegion *R,
1566 QualType Ty) {
1567
1568 if (const Optional<SVal> &D = B.getDefaultBinding(superR)) {
1569 const SVal &val = D.getValue();
1570 if (SymbolRef parentSym = val.getAsSymbol())
1571 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1572
1573 if (val.isZeroConstant())
1574 return svalBuilder.makeZeroVal(Ty);
1575
1576 if (val.isUnknownOrUndef())
1577 return val;
1578
1579 // Lazy bindings are usually handled through getExistingLazyBinding().
1580 // We should unify these two code paths at some point.
1581 if (val.getAs<nonloc::LazyCompoundVal>())
1582 return val;
1583
1584 llvm_unreachable("Unknown default value");
1585 }
1586
1587 return None;
1588 }
1589
getLazyBinding(const SubRegion * LazyBindingRegion,RegionBindingsRef LazyBinding)1590 SVal RegionStoreManager::getLazyBinding(const SubRegion *LazyBindingRegion,
1591 RegionBindingsRef LazyBinding) {
1592 SVal Result;
1593 if (const ElementRegion *ER = dyn_cast<ElementRegion>(LazyBindingRegion))
1594 Result = getBindingForElement(LazyBinding, ER);
1595 else
1596 Result = getBindingForField(LazyBinding,
1597 cast<FieldRegion>(LazyBindingRegion));
1598
1599 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1600 // default value for /part/ of an aggregate from a default value for the
1601 // /entire/ aggregate. The most common case of this is when struct Outer
1602 // has as its first member a struct Inner, which is copied in from a stack
1603 // variable. In this case, even if the Outer's default value is symbolic, 0,
1604 // or unknown, it gets overridden by the Inner's default value of undefined.
1605 //
1606 // This is a general problem -- if the Inner is zero-initialized, the Outer
1607 // will now look zero-initialized. The proper way to solve this is with a
1608 // new version of RegionStore that tracks the extent of a binding as well
1609 // as the offset.
1610 //
1611 // This hack only takes care of the undefined case because that can very
1612 // quickly result in a warning.
1613 if (Result.isUndef())
1614 Result = UnknownVal();
1615
1616 return Result;
1617 }
1618
1619 SVal
getBindingForFieldOrElementCommon(RegionBindingsConstRef B,const TypedValueRegion * R,QualType Ty)1620 RegionStoreManager::getBindingForFieldOrElementCommon(RegionBindingsConstRef B,
1621 const TypedValueRegion *R,
1622 QualType Ty) {
1623
1624 // At this point we have already checked in either getBindingForElement or
1625 // getBindingForField if 'R' has a direct binding.
1626
1627 // Lazy binding?
1628 Store lazyBindingStore = nullptr;
1629 const SubRegion *lazyBindingRegion = nullptr;
1630 std::tie(lazyBindingStore, lazyBindingRegion) = findLazyBinding(B, R, R);
1631 if (lazyBindingRegion)
1632 return getLazyBinding(lazyBindingRegion,
1633 getRegionBindings(lazyBindingStore));
1634
1635 // Record whether or not we see a symbolic index. That can completely
1636 // be out of scope of our lookup.
1637 bool hasSymbolicIndex = false;
1638
1639 // FIXME: This is a hack to deal with RegionStore's inability to distinguish a
1640 // default value for /part/ of an aggregate from a default value for the
1641 // /entire/ aggregate. The most common case of this is when struct Outer
1642 // has as its first member a struct Inner, which is copied in from a stack
1643 // variable. In this case, even if the Outer's default value is symbolic, 0,
1644 // or unknown, it gets overridden by the Inner's default value of undefined.
1645 //
1646 // This is a general problem -- if the Inner is zero-initialized, the Outer
1647 // will now look zero-initialized. The proper way to solve this is with a
1648 // new version of RegionStore that tracks the extent of a binding as well
1649 // as the offset.
1650 //
1651 // This hack only takes care of the undefined case because that can very
1652 // quickly result in a warning.
1653 bool hasPartialLazyBinding = false;
1654
1655 const SubRegion *SR = dyn_cast<SubRegion>(R);
1656 while (SR) {
1657 const MemRegion *Base = SR->getSuperRegion();
1658 if (Optional<SVal> D = getBindingForDerivedDefaultValue(B, Base, R, Ty)) {
1659 if (D->getAs<nonloc::LazyCompoundVal>()) {
1660 hasPartialLazyBinding = true;
1661 break;
1662 }
1663
1664 return *D;
1665 }
1666
1667 if (const ElementRegion *ER = dyn_cast<ElementRegion>(Base)) {
1668 NonLoc index = ER->getIndex();
1669 if (!index.isConstant())
1670 hasSymbolicIndex = true;
1671 }
1672
1673 // If our super region is a field or element itself, walk up the region
1674 // hierarchy to see if there is a default value installed in an ancestor.
1675 SR = dyn_cast<SubRegion>(Base);
1676 }
1677
1678 if (R->hasStackNonParametersStorage()) {
1679 if (isa<ElementRegion>(R)) {
1680 // Currently we don't reason specially about Clang-style vectors. Check
1681 // if superR is a vector and if so return Unknown.
1682 if (const TypedValueRegion *typedSuperR =
1683 dyn_cast<TypedValueRegion>(R->getSuperRegion())) {
1684 if (typedSuperR->getValueType()->isVectorType())
1685 return UnknownVal();
1686 }
1687 }
1688
1689 // FIXME: We also need to take ElementRegions with symbolic indexes into
1690 // account. This case handles both directly accessing an ElementRegion
1691 // with a symbolic offset, but also fields within an element with
1692 // a symbolic offset.
1693 if (hasSymbolicIndex)
1694 return UnknownVal();
1695
1696 if (!hasPartialLazyBinding)
1697 return UndefinedVal();
1698 }
1699
1700 // All other values are symbolic.
1701 return svalBuilder.getRegionValueSymbolVal(R);
1702 }
1703
getBindingForObjCIvar(RegionBindingsConstRef B,const ObjCIvarRegion * R)1704 SVal RegionStoreManager::getBindingForObjCIvar(RegionBindingsConstRef B,
1705 const ObjCIvarRegion* R) {
1706 // Check if the region has a binding.
1707 if (const Optional<SVal> &V = B.getDirectBinding(R))
1708 return *V;
1709
1710 const MemRegion *superR = R->getSuperRegion();
1711
1712 // Check if the super region has a default binding.
1713 if (const Optional<SVal> &V = B.getDefaultBinding(superR)) {
1714 if (SymbolRef parentSym = V->getAsSymbol())
1715 return svalBuilder.getDerivedRegionValueSymbolVal(parentSym, R);
1716
1717 // Other cases: give up.
1718 return UnknownVal();
1719 }
1720
1721 return getBindingForLazySymbol(R);
1722 }
1723
getBindingForVar(RegionBindingsConstRef B,const VarRegion * R)1724 SVal RegionStoreManager::getBindingForVar(RegionBindingsConstRef B,
1725 const VarRegion *R) {
1726
1727 // Check if the region has a binding.
1728 if (const Optional<SVal> &V = B.getDirectBinding(R))
1729 return *V;
1730
1731 // Lazily derive a value for the VarRegion.
1732 const VarDecl *VD = R->getDecl();
1733 const MemSpaceRegion *MS = R->getMemorySpace();
1734
1735 // Arguments are always symbolic.
1736 if (isa<StackArgumentsSpaceRegion>(MS))
1737 return svalBuilder.getRegionValueSymbolVal(R);
1738
1739 // Is 'VD' declared constant? If so, retrieve the constant value.
1740 if (VD->getType().isConstQualified())
1741 if (const Expr *Init = VD->getInit())
1742 if (Optional<SVal> V = svalBuilder.getConstantVal(Init))
1743 return *V;
1744
1745 // This must come after the check for constants because closure-captured
1746 // constant variables may appear in UnknownSpaceRegion.
1747 if (isa<UnknownSpaceRegion>(MS))
1748 return svalBuilder.getRegionValueSymbolVal(R);
1749
1750 if (isa<GlobalsSpaceRegion>(MS)) {
1751 QualType T = VD->getType();
1752
1753 // Function-scoped static variables are default-initialized to 0; if they
1754 // have an initializer, it would have been processed by now.
1755 if (isa<StaticGlobalSpaceRegion>(MS))
1756 return svalBuilder.makeZeroVal(T);
1757
1758 if (Optional<SVal> V = getBindingForDerivedDefaultValue(B, MS, R, T)) {
1759 assert(!V->getAs<nonloc::LazyCompoundVal>());
1760 return V.getValue();
1761 }
1762
1763 return svalBuilder.getRegionValueSymbolVal(R);
1764 }
1765
1766 return UndefinedVal();
1767 }
1768
getBindingForLazySymbol(const TypedValueRegion * R)1769 SVal RegionStoreManager::getBindingForLazySymbol(const TypedValueRegion *R) {
1770 // All other values are symbolic.
1771 return svalBuilder.getRegionValueSymbolVal(R);
1772 }
1773
1774 const RegionStoreManager::SValListTy &
getInterestingValues(nonloc::LazyCompoundVal LCV)1775 RegionStoreManager::getInterestingValues(nonloc::LazyCompoundVal LCV) {
1776 // First, check the cache.
1777 LazyBindingsMapTy::iterator I = LazyBindingsMap.find(LCV.getCVData());
1778 if (I != LazyBindingsMap.end())
1779 return I->second;
1780
1781 // If we don't have a list of values cached, start constructing it.
1782 SValListTy List;
1783
1784 const SubRegion *LazyR = LCV.getRegion();
1785 RegionBindingsRef B = getRegionBindings(LCV.getStore());
1786
1787 // If this region had /no/ bindings at the time, there are no interesting
1788 // values to return.
1789 const ClusterBindings *Cluster = B.lookup(LazyR->getBaseRegion());
1790 if (!Cluster)
1791 return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1792
1793 SmallVector<BindingPair, 32> Bindings;
1794 collectSubRegionBindings(Bindings, svalBuilder, *Cluster, LazyR,
1795 /*IncludeAllDefaultBindings=*/true);
1796 for (SmallVectorImpl<BindingPair>::const_iterator I = Bindings.begin(),
1797 E = Bindings.end();
1798 I != E; ++I) {
1799 SVal V = I->second;
1800 if (V.isUnknownOrUndef() || V.isConstant())
1801 continue;
1802
1803 if (Optional<nonloc::LazyCompoundVal> InnerLCV =
1804 V.getAs<nonloc::LazyCompoundVal>()) {
1805 const SValListTy &InnerList = getInterestingValues(*InnerLCV);
1806 List.insert(List.end(), InnerList.begin(), InnerList.end());
1807 continue;
1808 }
1809
1810 List.push_back(V);
1811 }
1812
1813 return (LazyBindingsMap[LCV.getCVData()] = std::move(List));
1814 }
1815
createLazyBinding(RegionBindingsConstRef B,const TypedValueRegion * R)1816 NonLoc RegionStoreManager::createLazyBinding(RegionBindingsConstRef B,
1817 const TypedValueRegion *R) {
1818 if (Optional<nonloc::LazyCompoundVal> V =
1819 getExistingLazyBinding(svalBuilder, B, R, false))
1820 return *V;
1821
1822 return svalBuilder.makeLazyCompoundVal(StoreRef(B.asStore(), *this), R);
1823 }
1824
isRecordEmpty(const RecordDecl * RD)1825 static bool isRecordEmpty(const RecordDecl *RD) {
1826 if (!RD->field_empty())
1827 return false;
1828 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD))
1829 return CRD->getNumBases() == 0;
1830 return true;
1831 }
1832
getBindingForStruct(RegionBindingsConstRef B,const TypedValueRegion * R)1833 SVal RegionStoreManager::getBindingForStruct(RegionBindingsConstRef B,
1834 const TypedValueRegion *R) {
1835 const RecordDecl *RD = R->getValueType()->castAs<RecordType>()->getDecl();
1836 if (!RD->getDefinition() || isRecordEmpty(RD))
1837 return UnknownVal();
1838
1839 return createLazyBinding(B, R);
1840 }
1841
getBindingForArray(RegionBindingsConstRef B,const TypedValueRegion * R)1842 SVal RegionStoreManager::getBindingForArray(RegionBindingsConstRef B,
1843 const TypedValueRegion *R) {
1844 assert(Ctx.getAsConstantArrayType(R->getValueType()) &&
1845 "Only constant array types can have compound bindings.");
1846
1847 return createLazyBinding(B, R);
1848 }
1849
includedInBindings(Store store,const MemRegion * region) const1850 bool RegionStoreManager::includedInBindings(Store store,
1851 const MemRegion *region) const {
1852 RegionBindingsRef B = getRegionBindings(store);
1853 region = region->getBaseRegion();
1854
1855 // Quick path: if the base is the head of a cluster, the region is live.
1856 if (B.lookup(region))
1857 return true;
1858
1859 // Slow path: if the region is the VALUE of any binding, it is live.
1860 for (RegionBindingsRef::iterator RI = B.begin(), RE = B.end(); RI != RE; ++RI) {
1861 const ClusterBindings &Cluster = RI.getData();
1862 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
1863 CI != CE; ++CI) {
1864 const SVal &D = CI.getData();
1865 if (const MemRegion *R = D.getAsRegion())
1866 if (R->getBaseRegion() == region)
1867 return true;
1868 }
1869 }
1870
1871 return false;
1872 }
1873
1874 //===----------------------------------------------------------------------===//
1875 // Binding values to regions.
1876 //===----------------------------------------------------------------------===//
1877
killBinding(Store ST,Loc L)1878 StoreRef RegionStoreManager::killBinding(Store ST, Loc L) {
1879 if (Optional<loc::MemRegionVal> LV = L.getAs<loc::MemRegionVal>())
1880 if (const MemRegion* R = LV->getRegion())
1881 return StoreRef(getRegionBindings(ST).removeBinding(R)
1882 .asImmutableMap()
1883 .getRootWithoutRetain(),
1884 *this);
1885
1886 return StoreRef(ST, *this);
1887 }
1888
1889 RegionBindingsRef
bind(RegionBindingsConstRef B,Loc L,SVal V)1890 RegionStoreManager::bind(RegionBindingsConstRef B, Loc L, SVal V) {
1891 if (L.getAs<loc::ConcreteInt>())
1892 return B;
1893
1894 // If we get here, the location should be a region.
1895 const MemRegion *R = L.castAs<loc::MemRegionVal>().getRegion();
1896
1897 // Check if the region is a struct region.
1898 if (const TypedValueRegion* TR = dyn_cast<TypedValueRegion>(R)) {
1899 QualType Ty = TR->getValueType();
1900 if (Ty->isArrayType())
1901 return bindArray(B, TR, V);
1902 if (Ty->isStructureOrClassType())
1903 return bindStruct(B, TR, V);
1904 if (Ty->isVectorType())
1905 return bindVector(B, TR, V);
1906 if (Ty->isUnionType())
1907 return bindAggregate(B, TR, V);
1908 }
1909
1910 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(R)) {
1911 // Binding directly to a symbolic region should be treated as binding
1912 // to element 0.
1913 QualType T = SR->getSymbol()->getType();
1914 if (T->isAnyPointerType() || T->isReferenceType())
1915 T = T->getPointeeType();
1916
1917 R = GetElementZeroRegion(SR, T);
1918 }
1919
1920 // Clear out bindings that may overlap with this binding.
1921 RegionBindingsRef NewB = removeSubRegionBindings(B, cast<SubRegion>(R));
1922 return NewB.addBinding(BindingKey::Make(R, BindingKey::Direct), V);
1923 }
1924
1925 RegionBindingsRef
setImplicitDefaultValue(RegionBindingsConstRef B,const MemRegion * R,QualType T)1926 RegionStoreManager::setImplicitDefaultValue(RegionBindingsConstRef B,
1927 const MemRegion *R,
1928 QualType T) {
1929 SVal V;
1930
1931 if (Loc::isLocType(T))
1932 V = svalBuilder.makeNull();
1933 else if (T->isIntegralOrEnumerationType())
1934 V = svalBuilder.makeZeroVal(T);
1935 else if (T->isStructureOrClassType() || T->isArrayType()) {
1936 // Set the default value to a zero constant when it is a structure
1937 // or array. The type doesn't really matter.
1938 V = svalBuilder.makeZeroVal(Ctx.IntTy);
1939 }
1940 else {
1941 // We can't represent values of this type, but we still need to set a value
1942 // to record that the region has been initialized.
1943 // If this assertion ever fires, a new case should be added above -- we
1944 // should know how to default-initialize any value we can symbolicate.
1945 assert(!SymbolManager::canSymbolicate(T) && "This type is representable");
1946 V = UnknownVal();
1947 }
1948
1949 return B.addBinding(R, BindingKey::Default, V);
1950 }
1951
1952 RegionBindingsRef
bindArray(RegionBindingsConstRef B,const TypedValueRegion * R,SVal Init)1953 RegionStoreManager::bindArray(RegionBindingsConstRef B,
1954 const TypedValueRegion* R,
1955 SVal Init) {
1956
1957 const ArrayType *AT =cast<ArrayType>(Ctx.getCanonicalType(R->getValueType()));
1958 QualType ElementTy = AT->getElementType();
1959 Optional<uint64_t> Size;
1960
1961 if (const ConstantArrayType* CAT = dyn_cast<ConstantArrayType>(AT))
1962 Size = CAT->getSize().getZExtValue();
1963
1964 // Check if the init expr is a string literal.
1965 if (Optional<loc::MemRegionVal> MRV = Init.getAs<loc::MemRegionVal>()) {
1966 const StringRegion *S = cast<StringRegion>(MRV->getRegion());
1967
1968 // Treat the string as a lazy compound value.
1969 StoreRef store(B.asStore(), *this);
1970 nonloc::LazyCompoundVal LCV = svalBuilder.makeLazyCompoundVal(store, S)
1971 .castAs<nonloc::LazyCompoundVal>();
1972 return bindAggregate(B, R, LCV);
1973 }
1974
1975 // Handle lazy compound values.
1976 if (Init.getAs<nonloc::LazyCompoundVal>())
1977 return bindAggregate(B, R, Init);
1978
1979 // Remaining case: explicit compound values.
1980
1981 if (Init.isUnknown())
1982 return setImplicitDefaultValue(B, R, ElementTy);
1983
1984 const nonloc::CompoundVal& CV = Init.castAs<nonloc::CompoundVal>();
1985 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
1986 uint64_t i = 0;
1987
1988 RegionBindingsRef NewB(B);
1989
1990 for (; Size.hasValue() ? i < Size.getValue() : true ; ++i, ++VI) {
1991 // The init list might be shorter than the array length.
1992 if (VI == VE)
1993 break;
1994
1995 const NonLoc &Idx = svalBuilder.makeArrayIndex(i);
1996 const ElementRegion *ER = MRMgr.getElementRegion(ElementTy, Idx, R, Ctx);
1997
1998 if (ElementTy->isStructureOrClassType())
1999 NewB = bindStruct(NewB, ER, *VI);
2000 else if (ElementTy->isArrayType())
2001 NewB = bindArray(NewB, ER, *VI);
2002 else
2003 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2004 }
2005
2006 // If the init list is shorter than the array length, set the
2007 // array default value.
2008 if (Size.hasValue() && i < Size.getValue())
2009 NewB = setImplicitDefaultValue(NewB, R, ElementTy);
2010
2011 return NewB;
2012 }
2013
bindVector(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2014 RegionBindingsRef RegionStoreManager::bindVector(RegionBindingsConstRef B,
2015 const TypedValueRegion* R,
2016 SVal V) {
2017 QualType T = R->getValueType();
2018 assert(T->isVectorType());
2019 const VectorType *VT = T->getAs<VectorType>(); // Use getAs for typedefs.
2020
2021 // Handle lazy compound values and symbolic values.
2022 if (V.getAs<nonloc::LazyCompoundVal>() || V.getAs<nonloc::SymbolVal>())
2023 return bindAggregate(B, R, V);
2024
2025 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2026 // that we are binding symbolic struct value. Kill the field values, and if
2027 // the value is symbolic go and bind it as a "default" binding.
2028 if (!V.getAs<nonloc::CompoundVal>()) {
2029 return bindAggregate(B, R, UnknownVal());
2030 }
2031
2032 QualType ElemType = VT->getElementType();
2033 nonloc::CompoundVal CV = V.castAs<nonloc::CompoundVal>();
2034 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2035 unsigned index = 0, numElements = VT->getNumElements();
2036 RegionBindingsRef NewB(B);
2037
2038 for ( ; index != numElements ; ++index) {
2039 if (VI == VE)
2040 break;
2041
2042 NonLoc Idx = svalBuilder.makeArrayIndex(index);
2043 const ElementRegion *ER = MRMgr.getElementRegion(ElemType, Idx, R, Ctx);
2044
2045 if (ElemType->isArrayType())
2046 NewB = bindArray(NewB, ER, *VI);
2047 else if (ElemType->isStructureOrClassType())
2048 NewB = bindStruct(NewB, ER, *VI);
2049 else
2050 NewB = bind(NewB, loc::MemRegionVal(ER), *VI);
2051 }
2052 return NewB;
2053 }
2054
2055 Optional<RegionBindingsRef>
tryBindSmallStruct(RegionBindingsConstRef B,const TypedValueRegion * R,const RecordDecl * RD,nonloc::LazyCompoundVal LCV)2056 RegionStoreManager::tryBindSmallStruct(RegionBindingsConstRef B,
2057 const TypedValueRegion *R,
2058 const RecordDecl *RD,
2059 nonloc::LazyCompoundVal LCV) {
2060 FieldVector Fields;
2061
2062 if (const CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(RD))
2063 if (Class->getNumBases() != 0 || Class->getNumVBases() != 0)
2064 return None;
2065
2066 for (const auto *FD : RD->fields()) {
2067 if (FD->isUnnamedBitfield())
2068 continue;
2069
2070 // If there are too many fields, or if any of the fields are aggregates,
2071 // just use the LCV as a default binding.
2072 if (Fields.size() == SmallStructLimit)
2073 return None;
2074
2075 QualType Ty = FD->getType();
2076 if (!(Ty->isScalarType() || Ty->isReferenceType()))
2077 return None;
2078
2079 Fields.push_back(FD);
2080 }
2081
2082 RegionBindingsRef NewB = B;
2083
2084 for (FieldVector::iterator I = Fields.begin(), E = Fields.end(); I != E; ++I){
2085 const FieldRegion *SourceFR = MRMgr.getFieldRegion(*I, LCV.getRegion());
2086 SVal V = getBindingForField(getRegionBindings(LCV.getStore()), SourceFR);
2087
2088 const FieldRegion *DestFR = MRMgr.getFieldRegion(*I, R);
2089 NewB = bind(NewB, loc::MemRegionVal(DestFR), V);
2090 }
2091
2092 return NewB;
2093 }
2094
bindStruct(RegionBindingsConstRef B,const TypedValueRegion * R,SVal V)2095 RegionBindingsRef RegionStoreManager::bindStruct(RegionBindingsConstRef B,
2096 const TypedValueRegion* R,
2097 SVal V) {
2098 if (!Features.supportsFields())
2099 return B;
2100
2101 QualType T = R->getValueType();
2102 assert(T->isStructureOrClassType());
2103
2104 const RecordType* RT = T->getAs<RecordType>();
2105 const RecordDecl *RD = RT->getDecl();
2106
2107 if (!RD->isCompleteDefinition())
2108 return B;
2109
2110 // Handle lazy compound values and symbolic values.
2111 if (Optional<nonloc::LazyCompoundVal> LCV =
2112 V.getAs<nonloc::LazyCompoundVal>()) {
2113 if (Optional<RegionBindingsRef> NewB = tryBindSmallStruct(B, R, RD, *LCV))
2114 return *NewB;
2115 return bindAggregate(B, R, V);
2116 }
2117 if (V.getAs<nonloc::SymbolVal>())
2118 return bindAggregate(B, R, V);
2119
2120 // We may get non-CompoundVal accidentally due to imprecise cast logic or
2121 // that we are binding symbolic struct value. Kill the field values, and if
2122 // the value is symbolic go and bind it as a "default" binding.
2123 if (V.isUnknown() || !V.getAs<nonloc::CompoundVal>())
2124 return bindAggregate(B, R, UnknownVal());
2125
2126 const nonloc::CompoundVal& CV = V.castAs<nonloc::CompoundVal>();
2127 nonloc::CompoundVal::iterator VI = CV.begin(), VE = CV.end();
2128
2129 RecordDecl::field_iterator FI, FE;
2130 RegionBindingsRef NewB(B);
2131
2132 for (FI = RD->field_begin(), FE = RD->field_end(); FI != FE; ++FI) {
2133
2134 if (VI == VE)
2135 break;
2136
2137 // Skip any unnamed bitfields to stay in sync with the initializers.
2138 if (FI->isUnnamedBitfield())
2139 continue;
2140
2141 QualType FTy = FI->getType();
2142 const FieldRegion* FR = MRMgr.getFieldRegion(*FI, R);
2143
2144 if (FTy->isArrayType())
2145 NewB = bindArray(NewB, FR, *VI);
2146 else if (FTy->isStructureOrClassType())
2147 NewB = bindStruct(NewB, FR, *VI);
2148 else
2149 NewB = bind(NewB, loc::MemRegionVal(FR), *VI);
2150 ++VI;
2151 }
2152
2153 // There may be fewer values in the initialize list than the fields of struct.
2154 if (FI != FE) {
2155 NewB = NewB.addBinding(R, BindingKey::Default,
2156 svalBuilder.makeIntVal(0, false));
2157 }
2158
2159 return NewB;
2160 }
2161
2162 RegionBindingsRef
bindAggregate(RegionBindingsConstRef B,const TypedRegion * R,SVal Val)2163 RegionStoreManager::bindAggregate(RegionBindingsConstRef B,
2164 const TypedRegion *R,
2165 SVal Val) {
2166 // Remove the old bindings, using 'R' as the root of all regions
2167 // we will invalidate. Then add the new binding.
2168 return removeSubRegionBindings(B, R).addBinding(R, BindingKey::Default, Val);
2169 }
2170
2171 //===----------------------------------------------------------------------===//
2172 // State pruning.
2173 //===----------------------------------------------------------------------===//
2174
2175 namespace {
2176 class removeDeadBindingsWorker :
2177 public ClusterAnalysis<removeDeadBindingsWorker> {
2178 SmallVector<const SymbolicRegion*, 12> Postponed;
2179 SymbolReaper &SymReaper;
2180 const StackFrameContext *CurrentLCtx;
2181
2182 public:
removeDeadBindingsWorker(RegionStoreManager & rm,ProgramStateManager & stateMgr,RegionBindingsRef b,SymbolReaper & symReaper,const StackFrameContext * LCtx)2183 removeDeadBindingsWorker(RegionStoreManager &rm,
2184 ProgramStateManager &stateMgr,
2185 RegionBindingsRef b, SymbolReaper &symReaper,
2186 const StackFrameContext *LCtx)
2187 : ClusterAnalysis<removeDeadBindingsWorker>(rm, stateMgr, b, GFK_None),
2188 SymReaper(symReaper), CurrentLCtx(LCtx) {}
2189
2190 // Called by ClusterAnalysis.
2191 void VisitAddedToCluster(const MemRegion *baseR, const ClusterBindings &C);
2192 void VisitCluster(const MemRegion *baseR, const ClusterBindings *C);
2193 using ClusterAnalysis<removeDeadBindingsWorker>::VisitCluster;
2194
2195 bool UpdatePostponed();
2196 void VisitBinding(SVal V);
2197 };
2198 }
2199
VisitAddedToCluster(const MemRegion * baseR,const ClusterBindings & C)2200 void removeDeadBindingsWorker::VisitAddedToCluster(const MemRegion *baseR,
2201 const ClusterBindings &C) {
2202
2203 if (const VarRegion *VR = dyn_cast<VarRegion>(baseR)) {
2204 if (SymReaper.isLive(VR))
2205 AddToWorkList(baseR, &C);
2206
2207 return;
2208 }
2209
2210 if (const SymbolicRegion *SR = dyn_cast<SymbolicRegion>(baseR)) {
2211 if (SymReaper.isLive(SR->getSymbol()))
2212 AddToWorkList(SR, &C);
2213 else
2214 Postponed.push_back(SR);
2215
2216 return;
2217 }
2218
2219 if (isa<NonStaticGlobalSpaceRegion>(baseR)) {
2220 AddToWorkList(baseR, &C);
2221 return;
2222 }
2223
2224 // CXXThisRegion in the current or parent location context is live.
2225 if (const CXXThisRegion *TR = dyn_cast<CXXThisRegion>(baseR)) {
2226 const StackArgumentsSpaceRegion *StackReg =
2227 cast<StackArgumentsSpaceRegion>(TR->getSuperRegion());
2228 const StackFrameContext *RegCtx = StackReg->getStackFrame();
2229 if (CurrentLCtx &&
2230 (RegCtx == CurrentLCtx || RegCtx->isParentOf(CurrentLCtx)))
2231 AddToWorkList(TR, &C);
2232 }
2233 }
2234
VisitCluster(const MemRegion * baseR,const ClusterBindings * C)2235 void removeDeadBindingsWorker::VisitCluster(const MemRegion *baseR,
2236 const ClusterBindings *C) {
2237 if (!C)
2238 return;
2239
2240 // Mark the symbol for any SymbolicRegion with live bindings as live itself.
2241 // This means we should continue to track that symbol.
2242 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(baseR))
2243 SymReaper.markLive(SymR->getSymbol());
2244
2245 for (ClusterBindings::iterator I = C->begin(), E = C->end(); I != E; ++I)
2246 VisitBinding(I.getData());
2247 }
2248
VisitBinding(SVal V)2249 void removeDeadBindingsWorker::VisitBinding(SVal V) {
2250 // Is it a LazyCompoundVal? All referenced regions are live as well.
2251 if (Optional<nonloc::LazyCompoundVal> LCS =
2252 V.getAs<nonloc::LazyCompoundVal>()) {
2253
2254 const RegionStoreManager::SValListTy &Vals = RM.getInterestingValues(*LCS);
2255
2256 for (RegionStoreManager::SValListTy::const_iterator I = Vals.begin(),
2257 E = Vals.end();
2258 I != E; ++I)
2259 VisitBinding(*I);
2260
2261 return;
2262 }
2263
2264 // If V is a region, then add it to the worklist.
2265 if (const MemRegion *R = V.getAsRegion()) {
2266 AddToWorkList(R);
2267
2268 // All regions captured by a block are also live.
2269 if (const BlockDataRegion *BR = dyn_cast<BlockDataRegion>(R)) {
2270 BlockDataRegion::referenced_vars_iterator I = BR->referenced_vars_begin(),
2271 E = BR->referenced_vars_end();
2272 for ( ; I != E; ++I)
2273 AddToWorkList(I.getCapturedRegion());
2274 }
2275 }
2276
2277
2278 // Update the set of live symbols.
2279 for (SymExpr::symbol_iterator SI = V.symbol_begin(), SE = V.symbol_end();
2280 SI!=SE; ++SI)
2281 SymReaper.markLive(*SI);
2282 }
2283
UpdatePostponed()2284 bool removeDeadBindingsWorker::UpdatePostponed() {
2285 // See if any postponed SymbolicRegions are actually live now, after
2286 // having done a scan.
2287 bool changed = false;
2288
2289 for (SmallVectorImpl<const SymbolicRegion*>::iterator
2290 I = Postponed.begin(), E = Postponed.end() ; I != E ; ++I) {
2291 if (const SymbolicRegion *SR = *I) {
2292 if (SymReaper.isLive(SR->getSymbol())) {
2293 changed |= AddToWorkList(SR);
2294 *I = nullptr;
2295 }
2296 }
2297 }
2298
2299 return changed;
2300 }
2301
removeDeadBindings(Store store,const StackFrameContext * LCtx,SymbolReaper & SymReaper)2302 StoreRef RegionStoreManager::removeDeadBindings(Store store,
2303 const StackFrameContext *LCtx,
2304 SymbolReaper& SymReaper) {
2305 RegionBindingsRef B = getRegionBindings(store);
2306 removeDeadBindingsWorker W(*this, StateMgr, B, SymReaper, LCtx);
2307 W.GenerateClusters();
2308
2309 // Enqueue the region roots onto the worklist.
2310 for (SymbolReaper::region_iterator I = SymReaper.region_begin(),
2311 E = SymReaper.region_end(); I != E; ++I) {
2312 W.AddToWorkList(*I);
2313 }
2314
2315 do W.RunWorkList(); while (W.UpdatePostponed());
2316
2317 // We have now scanned the store, marking reachable regions and symbols
2318 // as live. We now remove all the regions that are dead from the store
2319 // as well as update DSymbols with the set symbols that are now dead.
2320 for (RegionBindingsRef::iterator I = B.begin(), E = B.end(); I != E; ++I) {
2321 const MemRegion *Base = I.getKey();
2322
2323 // If the cluster has been visited, we know the region has been marked.
2324 if (W.isVisited(Base))
2325 continue;
2326
2327 // Remove the dead entry.
2328 B = B.remove(Base);
2329
2330 if (const SymbolicRegion *SymR = dyn_cast<SymbolicRegion>(Base))
2331 SymReaper.maybeDead(SymR->getSymbol());
2332
2333 // Mark all non-live symbols that this binding references as dead.
2334 const ClusterBindings &Cluster = I.getData();
2335 for (ClusterBindings::iterator CI = Cluster.begin(), CE = Cluster.end();
2336 CI != CE; ++CI) {
2337 SVal X = CI.getData();
2338 SymExpr::symbol_iterator SI = X.symbol_begin(), SE = X.symbol_end();
2339 for (; SI != SE; ++SI)
2340 SymReaper.maybeDead(*SI);
2341 }
2342 }
2343
2344 return StoreRef(B.asStore(), *this);
2345 }
2346
2347 //===----------------------------------------------------------------------===//
2348 // Utility methods.
2349 //===----------------------------------------------------------------------===//
2350
print(Store store,raw_ostream & OS,const char * nl,const char * sep)2351 void RegionStoreManager::print(Store store, raw_ostream &OS,
2352 const char* nl, const char *sep) {
2353 RegionBindingsRef B = getRegionBindings(store);
2354 OS << "Store (direct and default bindings), "
2355 << B.asStore()
2356 << " :" << nl;
2357 B.dump(OS, nl);
2358 }
2359