1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "dex/compiler_internals.h"
18 #include "dex_file-inl.h"
19 #include "gc_map.h"
20 #include "gc_map_builder.h"
21 #include "mapping_table.h"
22 #include "mir_to_lir-inl.h"
23 #include "dex/quick/dex_file_method_inliner.h"
24 #include "dex/quick/dex_file_to_method_inliner_map.h"
25 #include "dex/verification_results.h"
26 #include "dex/verified_method.h"
27 #include "verifier/dex_gc_map.h"
28 #include "verifier/method_verifier.h"
29 #include "vmap_table.h"
30
31 namespace art {
32
33 namespace {
34
35 /* Dump a mapping table */
36 template <typename It>
DumpMappingTable(const char * table_name,const char * descriptor,const char * name,const Signature & signature,uint32_t size,It first)37 void DumpMappingTable(const char* table_name, const char* descriptor, const char* name,
38 const Signature& signature, uint32_t size, It first) {
39 if (size != 0) {
40 std::string line(StringPrintf("\n %s %s%s_%s_table[%u] = {", table_name,
41 descriptor, name, signature.ToString().c_str(), size));
42 std::replace(line.begin(), line.end(), ';', '_');
43 LOG(INFO) << line;
44 for (uint32_t i = 0; i != size; ++i) {
45 line = StringPrintf(" {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc());
46 ++first;
47 LOG(INFO) << line;
48 }
49 LOG(INFO) <<" };\n\n";
50 }
51 }
52
53 } // anonymous namespace
54
IsInexpensiveConstant(RegLocation rl_src)55 bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) {
56 bool res = false;
57 if (rl_src.is_const) {
58 if (rl_src.wide) {
59 // For wide registers, check whether we're the high partner. In that case we need to switch
60 // to the lower one for the correct value.
61 if (rl_src.high_word) {
62 rl_src.high_word = false;
63 rl_src.s_reg_low--;
64 rl_src.orig_sreg--;
65 }
66 if (rl_src.fp) {
67 res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src));
68 } else {
69 res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src));
70 }
71 } else {
72 if (rl_src.fp) {
73 res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src));
74 } else {
75 res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src));
76 }
77 }
78 }
79 return res;
80 }
81
MarkSafepointPC(LIR * inst)82 void Mir2Lir::MarkSafepointPC(LIR* inst) {
83 DCHECK(!inst->flags.use_def_invalid);
84 inst->u.m.def_mask = &kEncodeAll;
85 LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC);
86 DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
87 }
88
MarkSafepointPCAfter(LIR * after)89 void Mir2Lir::MarkSafepointPCAfter(LIR* after) {
90 DCHECK(!after->flags.use_def_invalid);
91 after->u.m.def_mask = &kEncodeAll;
92 // As NewLIR0 uses Append, we need to create the LIR by hand.
93 LIR* safepoint_pc = RawLIR(current_dalvik_offset_, kPseudoSafepointPC);
94 if (after->next == nullptr) {
95 DCHECK_EQ(after, last_lir_insn_);
96 AppendLIR(safepoint_pc);
97 } else {
98 InsertLIRAfter(after, safepoint_pc);
99 }
100 DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
101 }
102
103 /* Remove a LIR from the list. */
UnlinkLIR(LIR * lir)104 void Mir2Lir::UnlinkLIR(LIR* lir) {
105 if (UNLIKELY(lir == first_lir_insn_)) {
106 first_lir_insn_ = lir->next;
107 if (lir->next != NULL) {
108 lir->next->prev = NULL;
109 } else {
110 DCHECK(lir->next == NULL);
111 DCHECK(lir == last_lir_insn_);
112 last_lir_insn_ = NULL;
113 }
114 } else if (lir == last_lir_insn_) {
115 last_lir_insn_ = lir->prev;
116 lir->prev->next = NULL;
117 } else if ((lir->prev != NULL) && (lir->next != NULL)) {
118 lir->prev->next = lir->next;
119 lir->next->prev = lir->prev;
120 }
121 }
122
123 /* Convert an instruction to a NOP */
NopLIR(LIR * lir)124 void Mir2Lir::NopLIR(LIR* lir) {
125 lir->flags.is_nop = true;
126 if (!cu_->verbose) {
127 UnlinkLIR(lir);
128 }
129 }
130
SetMemRefType(LIR * lir,bool is_load,int mem_type)131 void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) {
132 DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
133 DCHECK(!lir->flags.use_def_invalid);
134 // TODO: Avoid the extra Arena allocation!
135 const ResourceMask** mask_ptr;
136 ResourceMask mask;
137 if (is_load) {
138 mask_ptr = &lir->u.m.use_mask;
139 } else {
140 mask_ptr = &lir->u.m.def_mask;
141 }
142 mask = **mask_ptr;
143 /* Clear out the memref flags */
144 mask.ClearBits(kEncodeMem);
145 /* ..and then add back the one we need */
146 switch (mem_type) {
147 case ResourceMask::kLiteral:
148 DCHECK(is_load);
149 mask.SetBit(ResourceMask::kLiteral);
150 break;
151 case ResourceMask::kDalvikReg:
152 mask.SetBit(ResourceMask::kDalvikReg);
153 break;
154 case ResourceMask::kHeapRef:
155 mask.SetBit(ResourceMask::kHeapRef);
156 break;
157 case ResourceMask::kMustNotAlias:
158 /* Currently only loads can be marked as kMustNotAlias */
159 DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE));
160 mask.SetBit(ResourceMask::kMustNotAlias);
161 break;
162 default:
163 LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
164 }
165 *mask_ptr = mask_cache_.GetMask(mask);
166 }
167
168 /*
169 * Mark load/store instructions that access Dalvik registers through the stack.
170 */
AnnotateDalvikRegAccess(LIR * lir,int reg_id,bool is_load,bool is64bit)171 void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load,
172 bool is64bit) {
173 DCHECK((is_load ? lir->u.m.use_mask : lir->u.m.def_mask)->Intersection(kEncodeMem).Equals(
174 kEncodeDalvikReg));
175
176 /*
177 * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
178 * access.
179 */
180 lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
181 }
182
183 /*
184 * Debugging macros
185 */
186 #define DUMP_RESOURCE_MASK(X)
187
188 /* Pretty-print a LIR instruction */
DumpLIRInsn(LIR * lir,unsigned char * base_addr)189 void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) {
190 int offset = lir->offset;
191 int dest = lir->operands[0];
192 const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops));
193
194 /* Handle pseudo-ops individually, and all regular insns as a group */
195 switch (lir->opcode) {
196 case kPseudoMethodEntry:
197 LOG(INFO) << "-------- method entry "
198 << PrettyMethod(cu_->method_idx, *cu_->dex_file);
199 break;
200 case kPseudoMethodExit:
201 LOG(INFO) << "-------- Method_Exit";
202 break;
203 case kPseudoBarrier:
204 LOG(INFO) << "-------- BARRIER";
205 break;
206 case kPseudoEntryBlock:
207 LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
208 break;
209 case kPseudoDalvikByteCodeBoundary:
210 if (lir->operands[0] == 0) {
211 // NOTE: only used for debug listings.
212 lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string"));
213 }
214 LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
215 << lir->dalvik_offset << " @ "
216 << reinterpret_cast<char*>(UnwrapPointer(lir->operands[0]));
217 break;
218 case kPseudoExitBlock:
219 LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
220 break;
221 case kPseudoPseudoAlign4:
222 LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
223 << offset << "): .align4";
224 break;
225 case kPseudoEHBlockLabel:
226 LOG(INFO) << "Exception_Handling:";
227 break;
228 case kPseudoTargetLabel:
229 case kPseudoNormalBlockLabel:
230 LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
231 break;
232 case kPseudoThrowTarget:
233 LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
234 break;
235 case kPseudoIntrinsicRetry:
236 LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
237 break;
238 case kPseudoSuspendTarget:
239 LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
240 break;
241 case kPseudoSafepointPC:
242 LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
243 break;
244 case kPseudoExportedPC:
245 LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
246 break;
247 case kPseudoCaseLabel:
248 LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
249 << std::hex << lir->operands[0] << "|" << std::dec <<
250 lir->operands[0];
251 break;
252 default:
253 if (lir->flags.is_nop && !dump_nop) {
254 break;
255 } else {
256 std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode),
257 lir, base_addr));
258 std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode),
259 lir, base_addr));
260 LOG(INFO) << StringPrintf("%5p: %-9s%s%s",
261 base_addr + offset,
262 op_name.c_str(), op_operands.c_str(),
263 lir->flags.is_nop ? "(nop)" : "");
264 }
265 break;
266 }
267
268 if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) {
269 DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.use_mask, "use"));
270 }
271 if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) {
272 DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.def_mask, "def"));
273 }
274 }
275
DumpPromotionMap()276 void Mir2Lir::DumpPromotionMap() {
277 int num_regs = cu_->num_dalvik_registers + mir_graph_->GetNumUsedCompilerTemps();
278 for (int i = 0; i < num_regs; i++) {
279 PromotionMap v_reg_map = promotion_map_[i];
280 std::string buf;
281 if (v_reg_map.fp_location == kLocPhysReg) {
282 StringAppendF(&buf, " : s%d", RegStorage::RegNum(v_reg_map.fp_reg));
283 }
284
285 std::string buf3;
286 if (i < cu_->num_dalvik_registers) {
287 StringAppendF(&buf3, "%02d", i);
288 } else if (i == mir_graph_->GetMethodSReg()) {
289 buf3 = "Method*";
290 } else {
291 StringAppendF(&buf3, "ct%d", i - cu_->num_dalvik_registers);
292 }
293
294 LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
295 v_reg_map.core_location == kLocPhysReg ?
296 "r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
297 v_reg_map.core_reg : SRegOffset(i),
298 buf.c_str());
299 }
300 }
301
UpdateLIROffsets()302 void Mir2Lir::UpdateLIROffsets() {
303 // Only used for code listings.
304 size_t offset = 0;
305 for (LIR* lir = first_lir_insn_; lir != nullptr; lir = lir->next) {
306 lir->offset = offset;
307 if (!lir->flags.is_nop && !IsPseudoLirOp(lir->opcode)) {
308 offset += GetInsnSize(lir);
309 } else if (lir->opcode == kPseudoPseudoAlign4) {
310 offset += (offset & 0x2);
311 }
312 }
313 }
314
315 /* Dump instructions and constant pool contents */
CodegenDump()316 void Mir2Lir::CodegenDump() {
317 LOG(INFO) << "Dumping LIR insns for "
318 << PrettyMethod(cu_->method_idx, *cu_->dex_file);
319 LIR* lir_insn;
320 int insns_size = cu_->code_item->insns_size_in_code_units_;
321
322 LOG(INFO) << "Regs (excluding ins) : " << cu_->num_regs;
323 LOG(INFO) << "Ins : " << cu_->num_ins;
324 LOG(INFO) << "Outs : " << cu_->num_outs;
325 LOG(INFO) << "CoreSpills : " << num_core_spills_;
326 LOG(INFO) << "FPSpills : " << num_fp_spills_;
327 LOG(INFO) << "CompilerTemps : " << mir_graph_->GetNumUsedCompilerTemps();
328 LOG(INFO) << "Frame size : " << frame_size_;
329 LOG(INFO) << "code size is " << total_size_ <<
330 " bytes, Dalvik size is " << insns_size * 2;
331 LOG(INFO) << "expansion factor: "
332 << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2);
333 DumpPromotionMap();
334 UpdateLIROffsets();
335 for (lir_insn = first_lir_insn_; lir_insn != NULL; lir_insn = lir_insn->next) {
336 DumpLIRInsn(lir_insn, 0);
337 }
338 for (lir_insn = literal_list_; lir_insn != NULL; lir_insn = lir_insn->next) {
339 LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
340 lir_insn->operands[0]);
341 }
342
343 const DexFile::MethodId& method_id =
344 cu_->dex_file->GetMethodId(cu_->method_idx);
345 const Signature signature = cu_->dex_file->GetMethodSignature(method_id);
346 const char* name = cu_->dex_file->GetMethodName(method_id);
347 const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id));
348
349 // Dump mapping tables
350 if (!encoded_mapping_table_.empty()) {
351 MappingTable table(&encoded_mapping_table_[0]);
352 DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature,
353 table.PcToDexSize(), table.PcToDexBegin());
354 DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature,
355 table.DexToPcSize(), table.DexToPcBegin());
356 }
357 }
358
359 /*
360 * Search the existing constants in the literal pool for an exact or close match
361 * within specified delta (greater or equal to 0).
362 */
ScanLiteralPool(LIR * data_target,int value,unsigned int delta)363 LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) {
364 while (data_target) {
365 if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
366 return data_target;
367 data_target = data_target->next;
368 }
369 return NULL;
370 }
371
372 /* Search the existing constants in the literal pool for an exact wide match */
ScanLiteralPoolWide(LIR * data_target,int val_lo,int val_hi)373 LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) {
374 bool lo_match = false;
375 LIR* lo_target = NULL;
376 while (data_target) {
377 if (lo_match && (data_target->operands[0] == val_hi)) {
378 // Record high word in case we need to expand this later.
379 lo_target->operands[1] = val_hi;
380 return lo_target;
381 }
382 lo_match = false;
383 if (data_target->operands[0] == val_lo) {
384 lo_match = true;
385 lo_target = data_target;
386 }
387 data_target = data_target->next;
388 }
389 return NULL;
390 }
391
392 /* Search the existing constants in the literal pool for an exact method match */
ScanLiteralPoolMethod(LIR * data_target,const MethodReference & method)393 LIR* Mir2Lir::ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method) {
394 while (data_target) {
395 if (static_cast<uint32_t>(data_target->operands[0]) == method.dex_method_index &&
396 UnwrapPointer(data_target->operands[1]) == method.dex_file) {
397 return data_target;
398 }
399 data_target = data_target->next;
400 }
401 return nullptr;
402 }
403
404 /*
405 * The following are building blocks to insert constants into the pool or
406 * instruction streams.
407 */
408
409 /* Add a 32-bit constant to the constant pool */
AddWordData(LIR ** constant_list_p,int value)410 LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) {
411 /* Add the constant to the literal pool */
412 if (constant_list_p) {
413 LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
414 new_value->operands[0] = value;
415 new_value->next = *constant_list_p;
416 *constant_list_p = new_value;
417 estimated_native_code_size_ += sizeof(value);
418 return new_value;
419 }
420 return NULL;
421 }
422
423 /* Add a 64-bit constant to the constant pool or mixed with code */
AddWideData(LIR ** constant_list_p,int val_lo,int val_hi)424 LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) {
425 AddWordData(constant_list_p, val_hi);
426 return AddWordData(constant_list_p, val_lo);
427 }
428
Push32(std::vector<uint8_t> & buf,int data)429 static void Push32(std::vector<uint8_t>&buf, int data) {
430 buf.push_back(data & 0xff);
431 buf.push_back((data >> 8) & 0xff);
432 buf.push_back((data >> 16) & 0xff);
433 buf.push_back((data >> 24) & 0xff);
434 }
435
436 // Push 8 bytes on 64-bit target systems; 4 on 32-bit target systems.
PushPointer(std::vector<uint8_t> & buf,const void * pointer,bool target64)437 static void PushPointer(std::vector<uint8_t>&buf, const void* pointer, bool target64) {
438 uint64_t data = reinterpret_cast<uintptr_t>(pointer);
439 if (target64) {
440 Push32(buf, data & 0xFFFFFFFF);
441 Push32(buf, (data >> 32) & 0xFFFFFFFF);
442 } else {
443 Push32(buf, static_cast<uint32_t>(data));
444 }
445 }
446
AlignBuffer(std::vector<uint8_t> & buf,size_t offset)447 static void AlignBuffer(std::vector<uint8_t>&buf, size_t offset) {
448 while (buf.size() < offset) {
449 buf.push_back(0);
450 }
451 }
452
453 /* Write the literal pool to the output stream */
InstallLiteralPools()454 void Mir2Lir::InstallLiteralPools() {
455 AlignBuffer(code_buffer_, data_offset_);
456 LIR* data_lir = literal_list_;
457 while (data_lir != NULL) {
458 Push32(code_buffer_, data_lir->operands[0]);
459 data_lir = NEXT_LIR(data_lir);
460 }
461 // Push code and method literals, record offsets for the compiler to patch.
462 data_lir = code_literal_list_;
463 while (data_lir != NULL) {
464 uint32_t target_method_idx = data_lir->operands[0];
465 const DexFile* target_dex_file =
466 reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1]));
467 cu_->compiler_driver->AddCodePatch(cu_->dex_file,
468 cu_->class_def_idx,
469 cu_->method_idx,
470 cu_->invoke_type,
471 target_method_idx,
472 target_dex_file,
473 static_cast<InvokeType>(data_lir->operands[2]),
474 code_buffer_.size());
475 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
476 // unique value based on target to ensure code deduplication works
477 PushPointer(code_buffer_, &target_method_id, cu_->target64);
478 data_lir = NEXT_LIR(data_lir);
479 }
480 data_lir = method_literal_list_;
481 while (data_lir != NULL) {
482 uint32_t target_method_idx = data_lir->operands[0];
483 const DexFile* target_dex_file =
484 reinterpret_cast<const DexFile*>(UnwrapPointer(data_lir->operands[1]));
485 cu_->compiler_driver->AddMethodPatch(cu_->dex_file,
486 cu_->class_def_idx,
487 cu_->method_idx,
488 cu_->invoke_type,
489 target_method_idx,
490 target_dex_file,
491 static_cast<InvokeType>(data_lir->operands[2]),
492 code_buffer_.size());
493 const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
494 // unique value based on target to ensure code deduplication works
495 PushPointer(code_buffer_, &target_method_id, cu_->target64);
496 data_lir = NEXT_LIR(data_lir);
497 }
498 // Push class literals.
499 data_lir = class_literal_list_;
500 while (data_lir != NULL) {
501 uint32_t target_method_idx = data_lir->operands[0];
502 cu_->compiler_driver->AddClassPatch(cu_->dex_file,
503 cu_->class_def_idx,
504 cu_->method_idx,
505 target_method_idx,
506 code_buffer_.size());
507 const DexFile::TypeId& target_method_id = cu_->dex_file->GetTypeId(target_method_idx);
508 // unique value based on target to ensure code deduplication works
509 PushPointer(code_buffer_, &target_method_id, cu_->target64);
510 data_lir = NEXT_LIR(data_lir);
511 }
512 }
513
514 /* Write the switch tables to the output stream */
InstallSwitchTables()515 void Mir2Lir::InstallSwitchTables() {
516 GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
517 while (true) {
518 Mir2Lir::SwitchTable* tab_rec = iterator.Next();
519 if (tab_rec == NULL) break;
520 AlignBuffer(code_buffer_, tab_rec->offset);
521 /*
522 * For Arm, our reference point is the address of the bx
523 * instruction that does the launch, so we have to subtract
524 * the auto pc-advance. For other targets the reference point
525 * is a label, so we can use the offset as-is.
526 */
527 int bx_offset = INVALID_OFFSET;
528 switch (cu_->instruction_set) {
529 case kThumb2:
530 DCHECK(tab_rec->anchor->flags.fixup != kFixupNone);
531 bx_offset = tab_rec->anchor->offset + 4;
532 break;
533 case kX86:
534 case kX86_64:
535 bx_offset = 0;
536 break;
537 case kArm64:
538 case kMips:
539 bx_offset = tab_rec->anchor->offset;
540 break;
541 default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
542 }
543 if (cu_->verbose) {
544 LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
545 }
546 if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
547 const int32_t* keys = reinterpret_cast<const int32_t*>(&(tab_rec->table[2]));
548 for (int elems = 0; elems < tab_rec->table[1]; elems++) {
549 int disp = tab_rec->targets[elems]->offset - bx_offset;
550 if (cu_->verbose) {
551 LOG(INFO) << " Case[" << elems << "] key: 0x"
552 << std::hex << keys[elems] << ", disp: 0x"
553 << std::hex << disp;
554 }
555 Push32(code_buffer_, keys[elems]);
556 Push32(code_buffer_,
557 tab_rec->targets[elems]->offset - bx_offset);
558 }
559 } else {
560 DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
561 static_cast<int>(Instruction::kPackedSwitchSignature));
562 for (int elems = 0; elems < tab_rec->table[1]; elems++) {
563 int disp = tab_rec->targets[elems]->offset - bx_offset;
564 if (cu_->verbose) {
565 LOG(INFO) << " Case[" << elems << "] disp: 0x"
566 << std::hex << disp;
567 }
568 Push32(code_buffer_, tab_rec->targets[elems]->offset - bx_offset);
569 }
570 }
571 }
572 }
573
574 /* Write the fill array dta to the output stream */
InstallFillArrayData()575 void Mir2Lir::InstallFillArrayData() {
576 GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_);
577 while (true) {
578 Mir2Lir::FillArrayData *tab_rec = iterator.Next();
579 if (tab_rec == NULL) break;
580 AlignBuffer(code_buffer_, tab_rec->offset);
581 for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
582 code_buffer_.push_back(tab_rec->table[i] & 0xFF);
583 code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF);
584 }
585 }
586 }
587
AssignLiteralOffsetCommon(LIR * lir,CodeOffset offset)588 static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) {
589 for (; lir != NULL; lir = lir->next) {
590 lir->offset = offset;
591 offset += 4;
592 }
593 return offset;
594 }
595
AssignLiteralPointerOffsetCommon(LIR * lir,CodeOffset offset,unsigned int element_size)596 static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset,
597 unsigned int element_size) {
598 // Align to natural pointer size.
599 offset = RoundUp(offset, element_size);
600 for (; lir != NULL; lir = lir->next) {
601 lir->offset = offset;
602 offset += element_size;
603 }
604 return offset;
605 }
606
607 // Make sure we have a code address for every declared catch entry
VerifyCatchEntries()608 bool Mir2Lir::VerifyCatchEntries() {
609 MappingTable table(&encoded_mapping_table_[0]);
610 std::vector<uint32_t> dex_pcs;
611 dex_pcs.reserve(table.DexToPcSize());
612 for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) {
613 dex_pcs.push_back(it.DexPc());
614 }
615 // Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_.
616 std::sort(dex_pcs.begin(), dex_pcs.end());
617
618 bool success = true;
619 auto it = dex_pcs.begin(), end = dex_pcs.end();
620 for (uint32_t dex_pc : mir_graph_->catches_) {
621 while (it != end && *it < dex_pc) {
622 LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it;
623 ++it;
624 success = false;
625 }
626 if (it == end || *it > dex_pc) {
627 LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
628 success = false;
629 } else {
630 ++it;
631 }
632 }
633 if (!success) {
634 LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
635 LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: "
636 << table.DexToPcSize();
637 }
638 return success;
639 }
640
641
CreateMappingTables()642 void Mir2Lir::CreateMappingTables() {
643 uint32_t pc2dex_data_size = 0u;
644 uint32_t pc2dex_entries = 0u;
645 uint32_t pc2dex_offset = 0u;
646 uint32_t pc2dex_dalvik_offset = 0u;
647 uint32_t dex2pc_data_size = 0u;
648 uint32_t dex2pc_entries = 0u;
649 uint32_t dex2pc_offset = 0u;
650 uint32_t dex2pc_dalvik_offset = 0u;
651 for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
652 if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
653 pc2dex_entries += 1;
654 DCHECK(pc2dex_offset <= tgt_lir->offset);
655 pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset);
656 pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
657 static_cast<int32_t>(pc2dex_dalvik_offset));
658 pc2dex_offset = tgt_lir->offset;
659 pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
660 }
661 if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
662 dex2pc_entries += 1;
663 DCHECK(dex2pc_offset <= tgt_lir->offset);
664 dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset);
665 dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
666 static_cast<int32_t>(dex2pc_dalvik_offset));
667 dex2pc_offset = tgt_lir->offset;
668 dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
669 }
670 }
671
672 uint32_t total_entries = pc2dex_entries + dex2pc_entries;
673 uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries);
674 uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size;
675 encoded_mapping_table_.resize(data_size);
676 uint8_t* write_pos = &encoded_mapping_table_[0];
677 write_pos = EncodeUnsignedLeb128(write_pos, total_entries);
678 write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries);
679 DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size);
680 uint8_t* write_pos2 = write_pos + pc2dex_data_size;
681
682 pc2dex_offset = 0u;
683 pc2dex_dalvik_offset = 0u;
684 dex2pc_offset = 0u;
685 dex2pc_dalvik_offset = 0u;
686 for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
687 if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
688 DCHECK(pc2dex_offset <= tgt_lir->offset);
689 write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset);
690 write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) -
691 static_cast<int32_t>(pc2dex_dalvik_offset));
692 pc2dex_offset = tgt_lir->offset;
693 pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
694 }
695 if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
696 DCHECK(dex2pc_offset <= tgt_lir->offset);
697 write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset);
698 write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) -
699 static_cast<int32_t>(dex2pc_dalvik_offset));
700 dex2pc_offset = tgt_lir->offset;
701 dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
702 }
703 }
704 DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]),
705 hdr_data_size + pc2dex_data_size);
706 DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size);
707
708 if (kIsDebugBuild) {
709 CHECK(VerifyCatchEntries());
710
711 // Verify the encoded table holds the expected data.
712 MappingTable table(&encoded_mapping_table_[0]);
713 CHECK_EQ(table.TotalSize(), total_entries);
714 CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
715 auto it = table.PcToDexBegin();
716 auto it2 = table.DexToPcBegin();
717 for (LIR* tgt_lir = first_lir_insn_; tgt_lir != NULL; tgt_lir = NEXT_LIR(tgt_lir)) {
718 if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
719 CHECK_EQ(tgt_lir->offset, it.NativePcOffset());
720 CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc());
721 ++it;
722 }
723 if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
724 CHECK_EQ(tgt_lir->offset, it2.NativePcOffset());
725 CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc());
726 ++it2;
727 }
728 }
729 CHECK(it == table.PcToDexEnd());
730 CHECK(it2 == table.DexToPcEnd());
731 }
732 }
733
CreateNativeGcMap()734 void Mir2Lir::CreateNativeGcMap() {
735 DCHECK(!encoded_mapping_table_.empty());
736 MappingTable mapping_table(&encoded_mapping_table_[0]);
737 uint32_t max_native_offset = 0;
738 for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
739 uint32_t native_offset = it.NativePcOffset();
740 if (native_offset > max_native_offset) {
741 max_native_offset = native_offset;
742 }
743 }
744 MethodReference method_ref(cu_->dex_file, cu_->method_idx);
745 const std::vector<uint8_t>& gc_map_raw =
746 mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap();
747 verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]);
748 DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize());
749 // Compute native offset to references size.
750 GcMapBuilder native_gc_map_builder(&native_gc_map_,
751 mapping_table.PcToDexSize(),
752 max_native_offset, dex_gc_map.RegWidth());
753
754 for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
755 uint32_t native_offset = it.NativePcOffset();
756 uint32_t dex_pc = it.DexPc();
757 const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
758 CHECK(references != NULL) << "Missing ref for dex pc 0x" << std::hex << dex_pc <<
759 ": " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
760 native_gc_map_builder.AddEntry(native_offset, references);
761 }
762 }
763
764 /* Determine the offset of each literal field */
AssignLiteralOffset(CodeOffset offset)765 int Mir2Lir::AssignLiteralOffset(CodeOffset offset) {
766 offset = AssignLiteralOffsetCommon(literal_list_, offset);
767 unsigned int ptr_size = GetInstructionSetPointerSize(cu_->instruction_set);
768 offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset, ptr_size);
769 offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset, ptr_size);
770 offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset, ptr_size);
771 return offset;
772 }
773
AssignSwitchTablesOffset(CodeOffset offset)774 int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) {
775 GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
776 while (true) {
777 Mir2Lir::SwitchTable* tab_rec = iterator.Next();
778 if (tab_rec == NULL) break;
779 tab_rec->offset = offset;
780 if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
781 offset += tab_rec->table[1] * (sizeof(int) * 2);
782 } else {
783 DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
784 static_cast<int>(Instruction::kPackedSwitchSignature));
785 offset += tab_rec->table[1] * sizeof(int);
786 }
787 }
788 return offset;
789 }
790
AssignFillArrayDataOffset(CodeOffset offset)791 int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) {
792 GrowableArray<FillArrayData*>::Iterator iterator(&fill_array_data_);
793 while (true) {
794 Mir2Lir::FillArrayData *tab_rec = iterator.Next();
795 if (tab_rec == NULL) break;
796 tab_rec->offset = offset;
797 offset += tab_rec->size;
798 // word align
799 offset = RoundUp(offset, 4);
800 }
801 return offset;
802 }
803
804 /*
805 * Insert a kPseudoCaseLabel at the beginning of the Dalvik
806 * offset vaddr if pretty-printing, otherise use the standard block
807 * label. The selected label will be used to fix up the case
808 * branch table during the assembly phase. All resource flags
809 * are set to prevent code motion. KeyVal is just there for debugging.
810 */
InsertCaseLabel(DexOffset vaddr,int keyVal)811 LIR* Mir2Lir::InsertCaseLabel(DexOffset vaddr, int keyVal) {
812 LIR* boundary_lir = &block_label_list_[mir_graph_->FindBlock(vaddr)->id];
813 LIR* res = boundary_lir;
814 if (cu_->verbose) {
815 // Only pay the expense if we're pretty-printing.
816 LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocLIR));
817 new_label->dalvik_offset = vaddr;
818 new_label->opcode = kPseudoCaseLabel;
819 new_label->operands[0] = keyVal;
820 new_label->flags.fixup = kFixupLabel;
821 DCHECK(!new_label->flags.use_def_invalid);
822 new_label->u.m.def_mask = &kEncodeAll;
823 InsertLIRAfter(boundary_lir, new_label);
824 res = new_label;
825 }
826 return res;
827 }
828
MarkPackedCaseLabels(Mir2Lir::SwitchTable * tab_rec)829 void Mir2Lir::MarkPackedCaseLabels(Mir2Lir::SwitchTable* tab_rec) {
830 const uint16_t* table = tab_rec->table;
831 DexOffset base_vaddr = tab_rec->vaddr;
832 const int32_t *targets = reinterpret_cast<const int32_t*>(&table[4]);
833 int entries = table[1];
834 int low_key = s4FromSwitchData(&table[2]);
835 for (int i = 0; i < entries; i++) {
836 tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], i + low_key);
837 }
838 }
839
MarkSparseCaseLabels(Mir2Lir::SwitchTable * tab_rec)840 void Mir2Lir::MarkSparseCaseLabels(Mir2Lir::SwitchTable* tab_rec) {
841 const uint16_t* table = tab_rec->table;
842 DexOffset base_vaddr = tab_rec->vaddr;
843 int entries = table[1];
844 const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
845 const int32_t* targets = &keys[entries];
846 for (int i = 0; i < entries; i++) {
847 tab_rec->targets[i] = InsertCaseLabel(base_vaddr + targets[i], keys[i]);
848 }
849 }
850
ProcessSwitchTables()851 void Mir2Lir::ProcessSwitchTables() {
852 GrowableArray<SwitchTable*>::Iterator iterator(&switch_tables_);
853 while (true) {
854 Mir2Lir::SwitchTable *tab_rec = iterator.Next();
855 if (tab_rec == NULL) break;
856 if (tab_rec->table[0] == Instruction::kPackedSwitchSignature) {
857 MarkPackedCaseLabels(tab_rec);
858 } else if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
859 MarkSparseCaseLabels(tab_rec);
860 } else {
861 LOG(FATAL) << "Invalid switch table";
862 }
863 }
864 }
865
DumpSparseSwitchTable(const uint16_t * table)866 void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) {
867 /*
868 * Sparse switch data format:
869 * ushort ident = 0x0200 magic value
870 * ushort size number of entries in the table; > 0
871 * int keys[size] keys, sorted low-to-high; 32-bit aligned
872 * int targets[size] branch targets, relative to switch opcode
873 *
874 * Total size is (2+size*4) 16-bit code units.
875 */
876 uint16_t ident = table[0];
877 int entries = table[1];
878 const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
879 const int32_t* targets = &keys[entries];
880 LOG(INFO) << "Sparse switch table - ident:0x" << std::hex << ident
881 << ", entries: " << std::dec << entries;
882 for (int i = 0; i < entries; i++) {
883 LOG(INFO) << " Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
884 }
885 }
886
DumpPackedSwitchTable(const uint16_t * table)887 void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) {
888 /*
889 * Packed switch data format:
890 * ushort ident = 0x0100 magic value
891 * ushort size number of entries in the table
892 * int first_key first (and lowest) switch case value
893 * int targets[size] branch targets, relative to switch opcode
894 *
895 * Total size is (4+size*2) 16-bit code units.
896 */
897 uint16_t ident = table[0];
898 const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]);
899 int entries = table[1];
900 int low_key = s4FromSwitchData(&table[2]);
901 LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
902 << ", entries: " << std::dec << entries << ", low_key: " << low_key;
903 for (int i = 0; i < entries; i++) {
904 LOG(INFO) << " Key[" << (i + low_key) << "] -> 0x" << std::hex
905 << targets[i];
906 }
907 }
908
909 /* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */
MarkBoundary(DexOffset offset,const char * inst_str)910 void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) {
911 // NOTE: only used for debug listings.
912 NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str)));
913 }
914
EvaluateBranch(Instruction::Code opcode,int32_t src1,int32_t src2)915 bool Mir2Lir::EvaluateBranch(Instruction::Code opcode, int32_t src1, int32_t src2) {
916 bool is_taken;
917 switch (opcode) {
918 case Instruction::IF_EQ: is_taken = (src1 == src2); break;
919 case Instruction::IF_NE: is_taken = (src1 != src2); break;
920 case Instruction::IF_LT: is_taken = (src1 < src2); break;
921 case Instruction::IF_GE: is_taken = (src1 >= src2); break;
922 case Instruction::IF_GT: is_taken = (src1 > src2); break;
923 case Instruction::IF_LE: is_taken = (src1 <= src2); break;
924 case Instruction::IF_EQZ: is_taken = (src1 == 0); break;
925 case Instruction::IF_NEZ: is_taken = (src1 != 0); break;
926 case Instruction::IF_LTZ: is_taken = (src1 < 0); break;
927 case Instruction::IF_GEZ: is_taken = (src1 >= 0); break;
928 case Instruction::IF_GTZ: is_taken = (src1 > 0); break;
929 case Instruction::IF_LEZ: is_taken = (src1 <= 0); break;
930 default:
931 LOG(FATAL) << "Unexpected opcode " << opcode;
932 is_taken = false;
933 }
934 return is_taken;
935 }
936
937 // Convert relation of src1/src2 to src2/src1
FlipComparisonOrder(ConditionCode before)938 ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) {
939 ConditionCode res;
940 switch (before) {
941 case kCondEq: res = kCondEq; break;
942 case kCondNe: res = kCondNe; break;
943 case kCondLt: res = kCondGt; break;
944 case kCondGt: res = kCondLt; break;
945 case kCondLe: res = kCondGe; break;
946 case kCondGe: res = kCondLe; break;
947 default:
948 res = static_cast<ConditionCode>(0);
949 LOG(FATAL) << "Unexpected ccode " << before;
950 }
951 return res;
952 }
953
NegateComparison(ConditionCode before)954 ConditionCode Mir2Lir::NegateComparison(ConditionCode before) {
955 ConditionCode res;
956 switch (before) {
957 case kCondEq: res = kCondNe; break;
958 case kCondNe: res = kCondEq; break;
959 case kCondLt: res = kCondGe; break;
960 case kCondGt: res = kCondLe; break;
961 case kCondLe: res = kCondGt; break;
962 case kCondGe: res = kCondLt; break;
963 default:
964 res = static_cast<ConditionCode>(0);
965 LOG(FATAL) << "Unexpected ccode " << before;
966 }
967 return res;
968 }
969
970 // TODO: move to mir_to_lir.cc
Mir2Lir(CompilationUnit * cu,MIRGraph * mir_graph,ArenaAllocator * arena)971 Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
972 : Backend(arena),
973 literal_list_(NULL),
974 method_literal_list_(NULL),
975 class_literal_list_(NULL),
976 code_literal_list_(NULL),
977 first_fixup_(NULL),
978 cu_(cu),
979 mir_graph_(mir_graph),
980 switch_tables_(arena, 4, kGrowableArraySwitchTables),
981 fill_array_data_(arena, 4, kGrowableArrayFillArrayData),
982 tempreg_info_(arena, 20, kGrowableArrayMisc),
983 reginfo_map_(arena, RegStorage::kMaxRegs, kGrowableArrayMisc),
984 pointer_storage_(arena, 128, kGrowableArrayMisc),
985 data_offset_(0),
986 total_size_(0),
987 block_label_list_(NULL),
988 promotion_map_(NULL),
989 current_dalvik_offset_(0),
990 estimated_native_code_size_(0),
991 reg_pool_(NULL),
992 live_sreg_(0),
993 core_vmap_table_(mir_graph->GetArena()->Adapter()),
994 fp_vmap_table_(mir_graph->GetArena()->Adapter()),
995 num_core_spills_(0),
996 num_fp_spills_(0),
997 frame_size_(0),
998 core_spill_mask_(0),
999 fp_spill_mask_(0),
1000 first_lir_insn_(NULL),
1001 last_lir_insn_(NULL),
1002 slow_paths_(arena, 32, kGrowableArraySlowPaths),
1003 mem_ref_type_(ResourceMask::kHeapRef),
1004 mask_cache_(arena) {
1005 // Reserve pointer id 0 for NULL.
1006 size_t null_idx = WrapPointer(NULL);
1007 DCHECK_EQ(null_idx, 0U);
1008 }
1009
Materialize()1010 void Mir2Lir::Materialize() {
1011 cu_->NewTimingSplit("RegisterAllocation");
1012 CompilerInitializeRegAlloc(); // Needs to happen after SSA naming
1013
1014 /* Allocate Registers using simple local allocation scheme */
1015 SimpleRegAlloc();
1016
1017 /* First try the custom light codegen for special cases. */
1018 DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
1019 bool special_worked = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
1020 ->GenSpecial(this, cu_->method_idx);
1021
1022 /* Take normal path for converting MIR to LIR only if the special codegen did not succeed. */
1023 if (special_worked == false) {
1024 MethodMIR2LIR();
1025 }
1026
1027 /* Method is not empty */
1028 if (first_lir_insn_) {
1029 // mark the targets of switch statement case labels
1030 ProcessSwitchTables();
1031
1032 /* Convert LIR into machine code. */
1033 AssembleLIR();
1034
1035 if ((cu_->enable_debug & (1 << kDebugCodegenDump)) != 0) {
1036 CodegenDump();
1037 }
1038 }
1039 }
1040
GetCompiledMethod()1041 CompiledMethod* Mir2Lir::GetCompiledMethod() {
1042 // Combine vmap tables - core regs, then fp regs - into vmap_table.
1043 Leb128EncodingVector vmap_encoder;
1044 if (frame_size_ > 0) {
1045 // Prefix the encoded data with its size.
1046 size_t size = core_vmap_table_.size() + 1 /* marker */ + fp_vmap_table_.size();
1047 vmap_encoder.Reserve(size + 1u); // All values are likely to be one byte in ULEB128 (<128).
1048 vmap_encoder.PushBackUnsigned(size);
1049 // Core regs may have been inserted out of order - sort first.
1050 std::sort(core_vmap_table_.begin(), core_vmap_table_.end());
1051 for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) {
1052 // Copy, stripping out the phys register sort key.
1053 vmap_encoder.PushBackUnsigned(
1054 ~(-1 << VREG_NUM_WIDTH) & (core_vmap_table_[i] + VmapTable::kEntryAdjustment));
1055 }
1056 // Push a marker to take place of lr.
1057 vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker);
1058 if (cu_->instruction_set == kThumb2) {
1059 // fp regs already sorted.
1060 for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) {
1061 vmap_encoder.PushBackUnsigned(fp_vmap_table_[i] + VmapTable::kEntryAdjustment);
1062 }
1063 } else {
1064 // For other platforms regs may have been inserted out of order - sort first.
1065 std::sort(fp_vmap_table_.begin(), fp_vmap_table_.end());
1066 for (size_t i = 0 ; i < fp_vmap_table_.size(); ++i) {
1067 // Copy, stripping out the phys register sort key.
1068 vmap_encoder.PushBackUnsigned(
1069 ~(-1 << VREG_NUM_WIDTH) & (fp_vmap_table_[i] + VmapTable::kEntryAdjustment));
1070 }
1071 }
1072 } else {
1073 DCHECK_EQ(POPCOUNT(core_spill_mask_), 0);
1074 DCHECK_EQ(POPCOUNT(fp_spill_mask_), 0);
1075 DCHECK_EQ(core_vmap_table_.size(), 0u);
1076 DCHECK_EQ(fp_vmap_table_.size(), 0u);
1077 vmap_encoder.PushBackUnsigned(0u); // Size is 0.
1078 }
1079
1080 std::unique_ptr<std::vector<uint8_t>> cfi_info(ReturnCallFrameInformation());
1081 CompiledMethod* result =
1082 new CompiledMethod(cu_->compiler_driver, cu_->instruction_set, code_buffer_, frame_size_,
1083 core_spill_mask_, fp_spill_mask_, encoded_mapping_table_,
1084 vmap_encoder.GetData(), native_gc_map_, cfi_info.get());
1085 return result;
1086 }
1087
GetMaxPossibleCompilerTemps() const1088 size_t Mir2Lir::GetMaxPossibleCompilerTemps() const {
1089 // Chose a reasonably small value in order to contain stack growth.
1090 // Backends that are smarter about spill region can return larger values.
1091 const size_t max_compiler_temps = 10;
1092 return max_compiler_temps;
1093 }
1094
GetNumBytesForCompilerTempSpillRegion()1095 size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() {
1096 // By default assume that the Mir2Lir will need one slot for each temporary.
1097 // If the backend can better determine temps that have non-overlapping ranges and
1098 // temps that do not need spilled, it can actually provide a small region.
1099 return (mir_graph_->GetNumUsedCompilerTemps() * sizeof(uint32_t));
1100 }
1101
ComputeFrameSize()1102 int Mir2Lir::ComputeFrameSize() {
1103 /* Figure out the frame size */
1104 uint32_t size = num_core_spills_ * GetBytesPerGprSpillLocation(cu_->instruction_set)
1105 + num_fp_spills_ * GetBytesPerFprSpillLocation(cu_->instruction_set)
1106 + sizeof(uint32_t) // Filler.
1107 + (cu_->num_regs + cu_->num_outs) * sizeof(uint32_t)
1108 + GetNumBytesForCompilerTempSpillRegion();
1109 /* Align and set */
1110 return RoundUp(size, kStackAlignment);
1111 }
1112
1113 /*
1114 * Append an LIR instruction to the LIR list maintained by a compilation
1115 * unit
1116 */
AppendLIR(LIR * lir)1117 void Mir2Lir::AppendLIR(LIR* lir) {
1118 if (first_lir_insn_ == NULL) {
1119 DCHECK(last_lir_insn_ == NULL);
1120 last_lir_insn_ = first_lir_insn_ = lir;
1121 lir->prev = lir->next = NULL;
1122 } else {
1123 last_lir_insn_->next = lir;
1124 lir->prev = last_lir_insn_;
1125 lir->next = NULL;
1126 last_lir_insn_ = lir;
1127 }
1128 }
1129
1130 /*
1131 * Insert an LIR instruction before the current instruction, which cannot be the
1132 * first instruction.
1133 *
1134 * prev_lir <-> new_lir <-> current_lir
1135 */
InsertLIRBefore(LIR * current_lir,LIR * new_lir)1136 void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) {
1137 DCHECK(current_lir->prev != NULL);
1138 LIR *prev_lir = current_lir->prev;
1139
1140 prev_lir->next = new_lir;
1141 new_lir->prev = prev_lir;
1142 new_lir->next = current_lir;
1143 current_lir->prev = new_lir;
1144 }
1145
1146 /*
1147 * Insert an LIR instruction after the current instruction, which cannot be the
1148 * last instruction.
1149 *
1150 * current_lir -> new_lir -> old_next
1151 */
InsertLIRAfter(LIR * current_lir,LIR * new_lir)1152 void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) {
1153 new_lir->prev = current_lir;
1154 new_lir->next = current_lir->next;
1155 current_lir->next = new_lir;
1156 new_lir->next->prev = new_lir;
1157 }
1158
IsPowerOfTwo(uint64_t x)1159 bool Mir2Lir::IsPowerOfTwo(uint64_t x) {
1160 return (x & (x - 1)) == 0;
1161 }
1162
1163 // Returns the index of the lowest set bit in 'x'.
LowestSetBit(uint64_t x)1164 int32_t Mir2Lir::LowestSetBit(uint64_t x) {
1165 int bit_posn = 0;
1166 while ((x & 0xf) == 0) {
1167 bit_posn += 4;
1168 x >>= 4;
1169 }
1170 while ((x & 1) == 0) {
1171 bit_posn++;
1172 x >>= 1;
1173 }
1174 return bit_posn;
1175 }
1176
BadOverlap(RegLocation rl_src,RegLocation rl_dest)1177 bool Mir2Lir::BadOverlap(RegLocation rl_src, RegLocation rl_dest) {
1178 DCHECK(rl_src.wide);
1179 DCHECK(rl_dest.wide);
1180 return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1);
1181 }
1182
OpCmpMemImmBranch(ConditionCode cond,RegStorage temp_reg,RegStorage base_reg,int offset,int check_value,LIR * target,LIR ** compare)1183 LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
1184 int offset, int check_value, LIR* target, LIR** compare) {
1185 // Handle this for architectures that can't compare to memory.
1186 LIR* inst = Load32Disp(base_reg, offset, temp_reg);
1187 if (compare != nullptr) {
1188 *compare = inst;
1189 }
1190 LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target);
1191 return branch;
1192 }
1193
AddSlowPath(LIRSlowPath * slowpath)1194 void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) {
1195 slow_paths_.Insert(slowpath);
1196 }
1197
LoadCodeAddress(const MethodReference & target_method,InvokeType type,SpecialTargetRegister symbolic_reg)1198 void Mir2Lir::LoadCodeAddress(const MethodReference& target_method, InvokeType type,
1199 SpecialTargetRegister symbolic_reg) {
1200 LIR* data_target = ScanLiteralPoolMethod(code_literal_list_, target_method);
1201 if (data_target == NULL) {
1202 data_target = AddWordData(&code_literal_list_, target_method.dex_method_index);
1203 data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
1204 // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
1205 // the same method invoked with kVirtual, kSuper and kInterface but the class linker will
1206 // resolve these invokes to the same method, so we don't care which one we record here.
1207 data_target->operands[2] = type;
1208 }
1209 // Loads a code pointer. Code from oat file can be mapped anywhere.
1210 LIR* load_pc_rel = OpPcRelLoad(TargetPtrReg(symbolic_reg), data_target);
1211 AppendLIR(load_pc_rel);
1212 DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
1213 }
1214
LoadMethodAddress(const MethodReference & target_method,InvokeType type,SpecialTargetRegister symbolic_reg)1215 void Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
1216 SpecialTargetRegister symbolic_reg) {
1217 LIR* data_target = ScanLiteralPoolMethod(method_literal_list_, target_method);
1218 if (data_target == NULL) {
1219 data_target = AddWordData(&method_literal_list_, target_method.dex_method_index);
1220 data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
1221 // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
1222 // the same method invoked with kVirtual, kSuper and kInterface but the class linker will
1223 // resolve these invokes to the same method, so we don't care which one we record here.
1224 data_target->operands[2] = type;
1225 }
1226 // Loads an ArtMethod pointer, which is a reference as it lives in the heap.
1227 LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target);
1228 AppendLIR(load_pc_rel);
1229 DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
1230 }
1231
LoadClassType(uint32_t type_idx,SpecialTargetRegister symbolic_reg)1232 void Mir2Lir::LoadClassType(uint32_t type_idx, SpecialTargetRegister symbolic_reg) {
1233 // Use the literal pool and a PC-relative load from a data word.
1234 LIR* data_target = ScanLiteralPool(class_literal_list_, type_idx, 0);
1235 if (data_target == nullptr) {
1236 data_target = AddWordData(&class_literal_list_, type_idx);
1237 }
1238 // Loads a Class pointer, which is a reference as it lives in the heap.
1239 LIR* load_pc_rel = OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target);
1240 AppendLIR(load_pc_rel);
1241 }
1242
ReturnCallFrameInformation()1243 std::vector<uint8_t>* Mir2Lir::ReturnCallFrameInformation() {
1244 // Default case is to do nothing.
1245 return nullptr;
1246 }
1247
NarrowRegLoc(RegLocation loc)1248 RegLocation Mir2Lir::NarrowRegLoc(RegLocation loc) {
1249 if (loc.location == kLocPhysReg) {
1250 DCHECK(!loc.reg.Is32Bit());
1251 if (loc.reg.IsPair()) {
1252 RegisterInfo* info_lo = GetRegInfo(loc.reg.GetLow());
1253 RegisterInfo* info_hi = GetRegInfo(loc.reg.GetHigh());
1254 info_lo->SetIsWide(false);
1255 info_hi->SetIsWide(false);
1256 loc.reg = info_lo->GetReg();
1257 } else {
1258 RegisterInfo* info = GetRegInfo(loc.reg);
1259 RegisterInfo* info_new = info->FindMatchingView(RegisterInfo::k32SoloStorageMask);
1260 DCHECK(info_new != nullptr);
1261 if (info->IsLive() && (info->SReg() == loc.s_reg_low)) {
1262 info->MarkDead();
1263 info_new->MarkLive(loc.s_reg_low);
1264 }
1265 loc.reg = info_new->GetReg();
1266 }
1267 DCHECK(loc.reg.Valid());
1268 }
1269 loc.wide = false;
1270 return loc;
1271 }
1272
GenMachineSpecificExtendedMethodMIR(BasicBlock * bb,MIR * mir)1273 void Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
1274 LOG(FATAL) << "Unknown MIR opcode not supported on this architecture";
1275 }
1276
1277 } // namespace art
1278