• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* -*- Mode: C; tab-width: 4 -*-
2  *
3  * Copyright (c) 2002-2003 Apple Computer, Inc. All rights reserved.
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  *     http://www.apache.org/licenses/LICENSE-2.0
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  */
17 
18 
19 #ifdef __cplusplus
20 extern "C" {
21 #endif
22 
23 #include "mDNSEmbeddedAPI.h"
24 #include "DNSCommon.h"
25 
26 // Disable certain benign warnings with Microsoft compilers
27 #if(defined(_MSC_VER))
28 	// Disable "conditional expression is constant" warning for debug macros.
29 	// Otherwise, this generates warnings for the perfectly natural construct "while(1)"
30 	// If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
31 	#pragma warning(disable:4127)
32 #endif
33 
34 
35  // ***************************************************************************
36 #if COMPILER_LIKES_PRAGMA_MARK
37 #pragma mark - Byte Swapping Functions
38 #endif
39 
NToH16(mDNSu8 * bytes)40 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
41 	{
42 	return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
43 	}
44 
NToH32(mDNSu8 * bytes)45 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
46 	{
47 	return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
48 	}
49 
50  // ***************************************************************************
51 #if COMPILER_LIKES_PRAGMA_MARK
52 #pragma mark - MD5 Hash Functions
53 #endif
54 
55 
56 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
57  * The following changes have been made to the original sources:
58  *    replaced CC_LONG w/ mDNSu32
59  *    replaced CC_MD5* with MD5*
60  *    replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
61  *    removed extern decls for MD5_Init/Update/Final from CommonDigest.h
62  *    removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
63  *
64  * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
65  * to aid in platform-specific optimizations and debugging.
66  * Sources originally distributed under the following license headers:
67  * CommonDigest.h - APSL
68  *
69  * md32_Common.h
70  * ====================================================================
71  * Copyright (c) 1999-2002 The OpenSSL Project.  All rights reserved.
72  *
73  * Redistribution and use in source and binary forms, with or without
74  * modification, are permitted provided that the following conditions
75  * are met:
76  *
77  * 1. Redistributions of source code must retain the above copyright
78  *    notice, this list of conditions and the following disclaimer.
79  *
80  * 2. Redistributions in binary form must reproduce the above copyright
81  *    notice, this list of conditions and the following disclaimer in
82  *    the documentation and/or other materials provided with the
83  *    distribution.
84  *
85  * 3. All advertising materials mentioning features or use of this
86  *    software must display the following acknowledgment:
87  *    "This product includes software developed by the OpenSSL Project
88  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
89  *
90  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
91  *    endorse or promote products derived from this software without
92  *    prior written permission. For written permission, please contact
93  *    licensing@OpenSSL.org.
94  *
95  * 5. Products derived from this software may not be called "OpenSSL"
96  *    nor may "OpenSSL" appear in their names without prior written
97  *    permission of the OpenSSL Project.
98  *
99  * 6. Redistributions of any form whatsoever must retain the following
100  *    acknowledgment:
101  *    "This product includes software developed by the OpenSSL Project
102  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
103  *
104  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
105  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
106  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
107  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
108  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
109  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
110  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
111  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
112  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
113  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
114  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
115  * OF THE POSSIBILITY OF SUCH DAMAGE.
116  *
117  *
118  * md5_dgst.c, md5_locl.h
119  * ====================================================================
120  *
121  * This product includes cryptographic software written by Eric Young
122  * (eay@cryptsoft.com).  This product includes software written by Tim
123  * Hudson (tjh@cryptsoft.com).
124  *
125  * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
126  * All rights reserved.
127  *
128  * This package is an SSL implementation written
129  * by Eric Young (eay@cryptsoft.com).
130  * The implementation was written so as to conform with Netscapes SSL.
131  *
132  * This library is free for commercial and non-commercial use as long as
133  * the following conditions are aheared to.  The following conditions
134  * apply to all code found in this distribution, be it the RC4, RSA,
135  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
136  * included with this distribution is covered by the same copyright terms
137  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
138  *
139  * Copyright remains Eric Young's, and as such any Copyright notices in
140  * the code are not to be removed.
141  * If this package is used in a product, Eric Young should be given attribution
142  * as the author of the parts of the library used.
143  * This can be in the form of a textual message at program startup or
144  * in documentation (online or textual) provided with the package.
145  *
146  * Redistribution and use in source and binary forms, with or without
147  * modification, are permitted provided that the following conditions
148  * are met:
149  * 1. Redistributions of source code must retain the copyright
150  *    notice, this list of conditions and the following disclaimer.
151  * 2. Redistributions in binary form must reproduce the above copyright
152  *    notice, this list of conditions and the following disclaimer in the
153  *    documentation and/or other materials provided with the distribution.
154  * 3. All advertising materials mentioning features or use of this software
155  *    must display the following acknowledgement:
156  *    "This product includes cryptographic software written by
157  *     Eric Young (eay@cryptsoft.com)"
158  *    The word 'cryptographic' can be left out if the rouines from the library
159  *    being used are not cryptographic related :-).
160  * 4. If you include any Windows specific code (or a derivative thereof) from
161  *    the apps directory (application code) you must include an acknowledgement:
162  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
163  *
164  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
165  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
166  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
167  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
168  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
169  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
170  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
171  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
172  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
173  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
174  * SUCH DAMAGE.
175  *
176  * The licence and distribution terms for any publically available version or
177  * derivative of this code cannot be changed.  i.e. this code cannot simply be
178  * copied and put under another distribution licence
179  * [including the GNU Public Licence.]
180  *
181  */
182 
183 //from CommonDigest.h
184 
185 #define MD5_DIGEST_LENGTH	16			/* digest length in bytes */
186 #define MD5_BLOCK_BYTES		64			/* block size in bytes */
187 #define MD5_BLOCK_LONG       (MD5_BLOCK_BYTES / sizeof(mDNSu32))
188 
189 typedef struct MD5state_st
190 {
191 	mDNSu32 A,B,C,D;
192 	mDNSu32 Nl,Nh;
193 	mDNSu32 data[MD5_BLOCK_LONG];
194 	int num;
195 } MD5_CTX;
196 
197 
198 // from openssl/md5.h
199 
200 #define MD5_CBLOCK	64
201 #define MD5_LBLOCK	(MD5_CBLOCK/4)
202 #define MD5_DIGEST_LENGTH 16
203 
204 int MD5_Init(MD5_CTX *c);
205 int MD5_Update(MD5_CTX *c, const void *data, unsigned long len);
206 int MD5_Final(unsigned char *md, MD5_CTX *c);
207 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
208 
209 // From md5_locl.h
210 
211 #ifndef MD5_LONG_LOG2
212 #define MD5_LONG_LOG2 2 /* default to 32 bits */
213 #endif
214 
215 #ifdef MD5_ASM
216 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
217 #  define md5_block_host_order md5_block_asm_host_order
218 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
219    void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
220 #  define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
221 # endif
222 #endif
223 
224 void md5_block_host_order (MD5_CTX *c, const void *p,int num);
225 void md5_block_data_order (MD5_CTX *c, const void *p,int num);
226 
227 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
228 /*
229  * *_block_host_order is expected to handle aligned data while
230  * *_block_data_order - unaligned. As algorithm and host (x86)
231  * are in this case of the same "endianness" these two are
232  * otherwise indistinguishable. But normally you don't want to
233  * call the same function because unaligned access in places
234  * where alignment is expected is usually a "Bad Thing". Indeed,
235  * on RISCs you get punished with BUS ERROR signal or *severe*
236  * performance degradation. Intel CPUs are in turn perfectly
237  * capable of loading unaligned data without such drastic side
238  * effect. Yes, they say it's slower than aligned load, but no
239  * exception is generated and therefore performance degradation
240  * is *incomparable* with RISCs. What we should weight here is
241  * costs of unaligned access against costs of aligning data.
242  * According to my measurements allowing unaligned access results
243  * in ~9% performance improvement on Pentium II operating at
244  * 266MHz. I won't be surprised if the difference will be higher
245  * on faster systems:-)
246  *
247  *				<appro@fy.chalmers.se>
248  */
249 #define md5_block_data_order md5_block_host_order
250 #endif
251 
252 #define DATA_ORDER_IS_LITTLE_ENDIAN
253 
254 #define HASH_LONG		mDNSu32
255 #define HASH_LONG_LOG2	MD5_LONG_LOG2
256 #define HASH_CTX		MD5_CTX
257 #define HASH_CBLOCK		MD5_CBLOCK
258 #define HASH_LBLOCK		MD5_LBLOCK
259 
260 #define HASH_UPDATE		MD5_Update
261 #define HASH_TRANSFORM	MD5_Transform
262 #define HASH_FINAL		MD5_Final
263 
264 #define	HASH_MAKE_STRING(c,s)	do {	\
265 	unsigned long ll;		\
266 	ll=(c)->A; HOST_l2c(ll,(s));	\
267 	ll=(c)->B; HOST_l2c(ll,(s));	\
268 	ll=(c)->C; HOST_l2c(ll,(s));	\
269 	ll=(c)->D; HOST_l2c(ll,(s));	\
270 	} while (0)
271 #define HASH_BLOCK_HOST_ORDER	md5_block_host_order
272 #if !defined(L_ENDIAN) || defined(md5_block_data_order)
273 #define	HASH_BLOCK_DATA_ORDER	md5_block_data_order
274 /*
275  * Little-endians (Intel and Alpha) feel better without this.
276  * It looks like memcpy does better job than generic
277  * md5_block_data_order on copying-n-aligning input data.
278  * But frankly speaking I didn't expect such result on Alpha.
279  * On the other hand I've got this with egcs-1.0.2 and if
280  * program is compiled with another (better?) compiler it
281  * might turn out other way around.
282  *
283  *				<appro@fy.chalmers.se>
284  */
285 #endif
286 
287 
288 // from md32_common.h
289 
290 /*
291  * This is a generic 32 bit "collector" for message digest algorithms.
292  * Whenever needed it collects input character stream into chunks of
293  * 32 bit values and invokes a block function that performs actual hash
294  * calculations.
295  *
296  * Porting guide.
297  *
298  * Obligatory macros:
299  *
300  * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
301  *	this macro defines byte order of input stream.
302  * HASH_CBLOCK
303  *	size of a unit chunk HASH_BLOCK operates on.
304  * HASH_LONG
305  *	has to be at lest 32 bit wide, if it's wider, then
306  *	HASH_LONG_LOG2 *has to* be defined along
307  * HASH_CTX
308  *	context structure that at least contains following
309  *	members:
310  *		typedef struct {
311  *			...
312  *			HASH_LONG	Nl,Nh;
313  *			HASH_LONG	data[HASH_LBLOCK];
314  *			int		num;
315  *			...
316  *			} HASH_CTX;
317  * HASH_UPDATE
318  *	name of "Update" function, implemented here.
319  * HASH_TRANSFORM
320  *	name of "Transform" function, implemented here.
321  * HASH_FINAL
322  *	name of "Final" function, implemented here.
323  * HASH_BLOCK_HOST_ORDER
324  *	name of "block" function treating *aligned* input message
325  *	in host byte order, implemented externally.
326  * HASH_BLOCK_DATA_ORDER
327  *	name of "block" function treating *unaligned* input message
328  *	in original (data) byte order, implemented externally (it
329  *	actually is optional if data and host are of the same
330  *	"endianess").
331  * HASH_MAKE_STRING
332  *	macro convering context variables to an ASCII hash string.
333  *
334  * Optional macros:
335  *
336  * B_ENDIAN or L_ENDIAN
337  *	defines host byte-order.
338  * HASH_LONG_LOG2
339  *	defaults to 2 if not states otherwise.
340  * HASH_LBLOCK
341  *	assumed to be HASH_CBLOCK/4 if not stated otherwise.
342  * HASH_BLOCK_DATA_ORDER_ALIGNED
343  *	alternative "block" function capable of treating
344  *	aligned input message in original (data) order,
345  *	implemented externally.
346  *
347  * MD5 example:
348  *
349  *	#define DATA_ORDER_IS_LITTLE_ENDIAN
350  *
351  *	#define HASH_LONG		mDNSu32
352  *	#define HASH_LONG_LOG2	mDNSu32_LOG2
353  *	#define HASH_CTX		MD5_CTX
354  *	#define HASH_CBLOCK		MD5_CBLOCK
355  *	#define HASH_LBLOCK		MD5_LBLOCK
356  *	#define HASH_UPDATE		MD5_Update
357  *	#define HASH_TRANSFORM		MD5_Transform
358  *	#define HASH_FINAL		MD5_Final
359  *	#define HASH_BLOCK_HOST_ORDER	md5_block_host_order
360  *	#define HASH_BLOCK_DATA_ORDER	md5_block_data_order
361  *
362  *					<appro@fy.chalmers.se>
363  */
364 
365 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
366 #error "DATA_ORDER must be defined!"
367 #endif
368 
369 #ifndef HASH_CBLOCK
370 #error "HASH_CBLOCK must be defined!"
371 #endif
372 #ifndef HASH_LONG
373 #error "HASH_LONG must be defined!"
374 #endif
375 #ifndef HASH_CTX
376 #error "HASH_CTX must be defined!"
377 #endif
378 
379 #ifndef HASH_UPDATE
380 #error "HASH_UPDATE must be defined!"
381 #endif
382 #ifndef HASH_TRANSFORM
383 #error "HASH_TRANSFORM must be defined!"
384 #endif
385 #ifndef HASH_FINAL
386 #error "HASH_FINAL must be defined!"
387 #endif
388 
389 #ifndef HASH_BLOCK_HOST_ORDER
390 #error "HASH_BLOCK_HOST_ORDER must be defined!"
391 #endif
392 
393 #if 0
394 /*
395  * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
396  * isn't defined.
397  */
398 #ifndef HASH_BLOCK_DATA_ORDER
399 #error "HASH_BLOCK_DATA_ORDER must be defined!"
400 #endif
401 #endif
402 
403 #ifndef HASH_LBLOCK
404 #define HASH_LBLOCK	(HASH_CBLOCK/4)
405 #endif
406 
407 #ifndef HASH_LONG_LOG2
408 #define HASH_LONG_LOG2	2
409 #endif
410 
411 /*
412  * Engage compiler specific rotate intrinsic function if available.
413  */
414 #undef ROTATE
415 #ifndef PEDANTIC
416 # if 0 /* defined(_MSC_VER) */
417 #  define ROTATE(a,n)	_lrotl(a,n)
418 # elif defined(__MWERKS__)
419 #  if defined(__POWERPC__)
420 #   define ROTATE(a,n)	(unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
421 #  elif defined(__MC68K__)
422     /* Motorola specific tweak. <appro@fy.chalmers.se> */
423 #   define ROTATE(a,n)	(n<24 ? __rol(a,n) : __ror(a,32-n))
424 #  else
425 #   define ROTATE(a,n)	__rol(a,n)
426 #  endif
427 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
428   /*
429    * Some GNU C inline assembler templates. Note that these are
430    * rotates by *constant* number of bits! But that's exactly
431    * what we need here...
432    *
433    * 					<appro@fy.chalmers.se>
434    */
435   /*
436    * LLVM is more strict about compatibility of types between input & output constraints,
437    * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
438    * most significant bytes by casting to an unsigned int.
439    */
440 #  if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
441 #   define ROTATE(a,n)	({ register unsigned int ret;	\
442 				asm (			\
443 				"roll %1,%0"		\
444 				: "=r"(ret)		\
445 				: "I"(n), "0"((unsigned int)a)	\
446 				: "cc");		\
447 			   ret;				\
448 			})
449 #  elif defined(__powerpc) || defined(__ppc)
450 #   define ROTATE(a,n)	({ register unsigned int ret;	\
451 				asm (			\
452 				"rlwinm %0,%1,%2,0,31"	\
453 				: "=r"(ret)		\
454 				: "r"(a), "I"(n));	\
455 			   ret;				\
456 			})
457 #  endif
458 # endif
459 
460 /*
461  * Engage compiler specific "fetch in reverse byte order"
462  * intrinsic function if available.
463  */
464 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
465   /* some GNU C inline assembler templates by <appro@fy.chalmers.se> */
466 #  if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
467 #   define BE_FETCH32(a)	({ register unsigned int l=(a);\
468 				asm (			\
469 				"bswapl %0"		\
470 				: "=r"(l) : "0"(l));	\
471 			  l;				\
472 			})
473 #  elif defined(__powerpc)
474 #   define LE_FETCH32(a)	({ register unsigned int l;	\
475 				asm (			\
476 				"lwbrx %0,0,%1"		\
477 				: "=r"(l)		\
478 				: "r"(a));		\
479 			   l;				\
480 			})
481 
482 #  elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
483 #  define LE_FETCH32(a)	({ register unsigned int l;		\
484 				asm (				\
485 				"lda [%1]#ASI_PRIMARY_LITTLE,%0"\
486 				: "=r"(l)			\
487 				: "r"(a));			\
488 			   l;					\
489 			})
490 #  endif
491 # endif
492 #endif /* PEDANTIC */
493 
494 #if HASH_LONG_LOG2==2	/* Engage only if sizeof(HASH_LONG)== 4 */
495 /* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
496 #ifdef ROTATE
497 /* 5 instructions with rotate instruction, else 9 */
498 #define REVERSE_FETCH32(a,l)	(					\
499 		l=*(const HASH_LONG *)(a),				\
500 		((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24)))	\
501 				)
502 #else
503 /* 6 instructions with rotate instruction, else 8 */
504 #define REVERSE_FETCH32(a,l)	(				\
505 		l=*(const HASH_LONG *)(a),			\
506 		l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)),	\
507 		ROTATE(l,16)					\
508 				)
509 /*
510  * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
511  * It's rewritten as above for two reasons:
512  *	- RISCs aren't good at long constants and have to explicitely
513  *	  compose 'em with several (well, usually 2) instructions in a
514  *	  register before performing the actual operation and (as you
515  *	  already realized:-) having same constant should inspire the
516  *	  compiler to permanently allocate the only register for it;
517  *	- most modern CPUs have two ALUs, but usually only one has
518  *	  circuitry for shifts:-( this minor tweak inspires compiler
519  *	  to schedule shift instructions in a better way...
520  *
521  *				<appro@fy.chalmers.se>
522  */
523 #endif
524 #endif
525 
526 #ifndef ROTATE
527 #define ROTATE(a,n)     (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
528 #endif
529 
530 /*
531  * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
532  * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
533  * and host are of the same "endianess". It's possible to mask
534  * this with blank #define HASH_BLOCK_DATA_ORDER though...
535  *
536  *				<appro@fy.chalmers.se>
537  */
538 #if defined(B_ENDIAN)
539 #  if defined(DATA_ORDER_IS_BIG_ENDIAN)
540 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
541 #      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
542 #    endif
543 #  elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
544 #    ifndef HOST_FETCH32
545 #      ifdef LE_FETCH32
546 #        define HOST_FETCH32(p,l)	LE_FETCH32(p)
547 #      elif defined(REVERSE_FETCH32)
548 #        define HOST_FETCH32(p,l)	REVERSE_FETCH32(p,l)
549 #      endif
550 #    endif
551 #  endif
552 #elif defined(L_ENDIAN)
553 #  if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
554 #    if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
555 #      define HASH_BLOCK_DATA_ORDER_ALIGNED	HASH_BLOCK_HOST_ORDER
556 #    endif
557 #  elif defined(DATA_ORDER_IS_BIG_ENDIAN)
558 #    ifndef HOST_FETCH32
559 #      ifdef BE_FETCH32
560 #        define HOST_FETCH32(p,l)	BE_FETCH32(p)
561 #      elif defined(REVERSE_FETCH32)
562 #        define HOST_FETCH32(p,l)	REVERSE_FETCH32(p,l)
563 #      endif
564 #    endif
565 #  endif
566 #endif
567 
568 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
569 #ifndef HASH_BLOCK_DATA_ORDER
570 #error "HASH_BLOCK_DATA_ORDER must be defined!"
571 #endif
572 #endif
573 
574 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
575 
576 #define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))<<24),		\
577 			 l|=(((unsigned long)(*((c)++)))<<16),		\
578 			 l|=(((unsigned long)(*((c)++)))<< 8),		\
579 			 l|=(((unsigned long)(*((c)++)))    ),		\
580 			 l)
581 #define HOST_p_c2l(c,l,n)	{					\
582 			switch (n) {					\
583 			case 0: l =((unsigned long)(*((c)++)))<<24;	\
584 			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
585 			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
586 			case 3: l|=((unsigned long)(*((c)++)));		\
587 				} }
588 #define HOST_p_c2l_p(c,l,sc,len) {					\
589 			switch (sc) {					\
590 			case 0: l =((unsigned long)(*((c)++)))<<24;	\
591 				if (--len == 0) break;			\
592 			case 1: l|=((unsigned long)(*((c)++)))<<16;	\
593 				if (--len == 0) break;			\
594 			case 2: l|=((unsigned long)(*((c)++)))<< 8;	\
595 				} }
596 /* NOTE the pointer is not incremented at the end of this */
597 #define HOST_c2l_p(c,l,n)	{					\
598 			l=0; (c)+=n;					\
599 			switch (n) {					\
600 			case 3: l =((unsigned long)(*(--(c))))<< 8;	\
601 			case 2: l|=((unsigned long)(*(--(c))))<<16;	\
602 			case 1: l|=((unsigned long)(*(--(c))))<<24;	\
603 				} }
604 #define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)>>24)&0xff),	\
605 			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
606 			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
607 			 *((c)++)=(unsigned char)(((l)    )&0xff),	\
608 			 l)
609 
610 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
611 
612 #define HOST_c2l(c,l)	(l =(((unsigned long)(*((c)++)))    ),		\
613 			 l|=(((unsigned long)(*((c)++)))<< 8),		\
614 			 l|=(((unsigned long)(*((c)++)))<<16),		\
615 			 l|=(((unsigned long)(*((c)++)))<<24),		\
616 			 l)
617 #define HOST_p_c2l(c,l,n)	{					\
618 			switch (n) {					\
619 			case 0: l =((unsigned long)(*((c)++)));		\
620 			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
621 			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
622 			case 3: l|=((unsigned long)(*((c)++)))<<24;	\
623 				} }
624 #define HOST_p_c2l_p(c,l,sc,len) {					\
625 			switch (sc) {					\
626 			case 0: l =((unsigned long)(*((c)++)));		\
627 				if (--len == 0) break;			\
628 			case 1: l|=((unsigned long)(*((c)++)))<< 8;	\
629 				if (--len == 0) break;			\
630 			case 2: l|=((unsigned long)(*((c)++)))<<16;	\
631 				} }
632 /* NOTE the pointer is not incremented at the end of this */
633 #define HOST_c2l_p(c,l,n)	{					\
634 			l=0; (c)+=n;					\
635 			switch (n) {					\
636 			case 3: l =((unsigned long)(*(--(c))))<<16;	\
637 			case 2: l|=((unsigned long)(*(--(c))))<< 8;	\
638 			case 1: l|=((unsigned long)(*(--(c))));		\
639 				} }
640 #define HOST_l2c(l,c)	(*((c)++)=(unsigned char)(((l)    )&0xff),	\
641 			 *((c)++)=(unsigned char)(((l)>> 8)&0xff),	\
642 			 *((c)++)=(unsigned char)(((l)>>16)&0xff),	\
643 			 *((c)++)=(unsigned char)(((l)>>24)&0xff),	\
644 			 l)
645 
646 #endif
647 
648 /*
649  * Time for some action:-)
650  */
651 
HASH_UPDATE(HASH_CTX * c,const void * data_,unsigned long len)652 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
653 	{
654 	const unsigned char *data=(const unsigned char *)data_;
655 	register HASH_LONG * p;
656 	register unsigned long l;
657 	int sw,sc,ew,ec;
658 
659 	if (len==0) return 1;
660 
661 	l=(c->Nl+(len<<3))&0xffffffffL;
662 	/* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
663 	 * Wei Dai <weidai@eskimo.com> for pointing it out. */
664 	if (l < c->Nl) /* overflow */
665 		c->Nh++;
666 	c->Nh+=(len>>29);
667 	c->Nl=l;
668 
669 	if (c->num != 0)
670 		{
671 		p=c->data;
672 		sw=c->num>>2;
673 		sc=c->num&0x03;
674 
675 		if ((c->num+len) >= HASH_CBLOCK)
676 			{
677 			l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
678 			for (; sw<HASH_LBLOCK; sw++)
679 				{
680 				HOST_c2l(data,l); p[sw]=l;
681 				}
682 			HASH_BLOCK_HOST_ORDER (c,p,1);
683 			len-=(HASH_CBLOCK-c->num);
684 			c->num=0;
685 			/* drop through and do the rest */
686 			}
687 		else
688 			{
689 			c->num+=len;
690 			if ((sc+len) < 4) /* ugly, add char's to a word */
691 				{
692 				l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
693 				}
694 			else
695 				{
696 				ew=(c->num>>2);
697 				ec=(c->num&0x03);
698 				if (sc)
699 					l=p[sw];
700 				HOST_p_c2l(data,l,sc);
701 				p[sw++]=l;
702 				for (; sw < ew; sw++)
703 					{
704 					HOST_c2l(data,l); p[sw]=l;
705 					}
706 				if (ec)
707 					{
708 					HOST_c2l_p(data,l,ec); p[sw]=l;
709 					}
710 				}
711 			return 1;
712 			}
713 		}
714 
715 	sw=(int)(len/HASH_CBLOCK);
716 	if (sw > 0)
717 		{
718 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
719 		/*
720 		 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
721 		 * only if sizeof(HASH_LONG)==4.
722 		 */
723 		if ((((unsigned long)data)%4) == 0)
724 			{
725 			/* data is properly aligned so that we can cast it: */
726 			HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
727 			sw*=HASH_CBLOCK;
728 			data+=sw;
729 			len-=sw;
730 			}
731 		else
732 #if !defined(HASH_BLOCK_DATA_ORDER)
733 			while (sw--)
734 				{
735 				mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
736 				HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
737 				data+=HASH_CBLOCK;
738 				len-=HASH_CBLOCK;
739 				}
740 #endif
741 #endif
742 #if defined(HASH_BLOCK_DATA_ORDER)
743 			{
744 			HASH_BLOCK_DATA_ORDER(c,data,sw);
745 			sw*=HASH_CBLOCK;
746 			data+=sw;
747 			len-=sw;
748 			}
749 #endif
750 		}
751 
752 	if (len!=0)
753 		{
754 		p = c->data;
755 		c->num = (int)len;
756 		ew=(int)(len>>2);	/* words to copy */
757 		ec=(int)(len&0x03);
758 		for (; ew; ew--,p++)
759 			{
760 			HOST_c2l(data,l); *p=l;
761 			}
762 		HOST_c2l_p(data,l,ec);
763 		*p=l;
764 		}
765 	return 1;
766 	}
767 
768 
HASH_TRANSFORM(HASH_CTX * c,const unsigned char * data)769 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
770 	{
771 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
772 	if ((((unsigned long)data)%4) == 0)
773 		/* data is properly aligned so that we can cast it: */
774 		HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
775 	else
776 #if !defined(HASH_BLOCK_DATA_ORDER)
777 		{
778 		mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
779 		HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
780 		}
781 #endif
782 #endif
783 #if defined(HASH_BLOCK_DATA_ORDER)
784 	HASH_BLOCK_DATA_ORDER (c,data,1);
785 #endif
786 	}
787 
788 
HASH_FINAL(unsigned char * md,HASH_CTX * c)789 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
790 	{
791 	register HASH_LONG *p;
792 	register unsigned long l;
793 	register int i,j;
794 	static const unsigned char end[4]={0x80,0x00,0x00,0x00};
795 	const unsigned char *cp=end;
796 
797 	/* c->num should definitly have room for at least one more byte. */
798 	p=c->data;
799 	i=c->num>>2;
800 	j=c->num&0x03;
801 
802 #if 0
803 	/* purify often complains about the following line as an
804 	 * Uninitialized Memory Read.  While this can be true, the
805 	 * following p_c2l macro will reset l when that case is true.
806 	 * This is because j&0x03 contains the number of 'valid' bytes
807 	 * already in p[i].  If and only if j&0x03 == 0, the UMR will
808 	 * occur but this is also the only time p_c2l will do
809 	 * l= *(cp++) instead of l|= *(cp++)
810 	 * Many thanks to Alex Tang <altitude@cic.net> for pickup this
811 	 * 'potential bug' */
812 #ifdef PURIFY
813 	if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
814 #endif
815 	l=p[i];
816 #else
817 	l = (j==0) ? 0 : p[i];
818 #endif
819 	HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
820 
821 	if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
822 		{
823 		if (i<HASH_LBLOCK) p[i]=0;
824 		HASH_BLOCK_HOST_ORDER (c,p,1);
825 		i=0;
826 		}
827 	for (; i<(HASH_LBLOCK-2); i++)
828 		p[i]=0;
829 
830 #if   defined(DATA_ORDER_IS_BIG_ENDIAN)
831 	p[HASH_LBLOCK-2]=c->Nh;
832 	p[HASH_LBLOCK-1]=c->Nl;
833 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
834 	p[HASH_LBLOCK-2]=c->Nl;
835 	p[HASH_LBLOCK-1]=c->Nh;
836 #endif
837 	HASH_BLOCK_HOST_ORDER (c,p,1);
838 
839 #ifndef HASH_MAKE_STRING
840 #error "HASH_MAKE_STRING must be defined!"
841 #else
842 	HASH_MAKE_STRING(c,md);
843 #endif
844 
845 	c->num=0;
846 	/* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
847 	 * but I'm not worried :-)
848 	OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
849 	 */
850 	return 1;
851 	}
852 
853 #ifndef MD32_REG_T
854 #define MD32_REG_T long
855 /*
856  * This comment was originaly written for MD5, which is why it
857  * discusses A-D. But it basically applies to all 32-bit digests,
858  * which is why it was moved to common header file.
859  *
860  * In case you wonder why A-D are declared as long and not
861  * as mDNSu32. Doing so results in slight performance
862  * boost on LP64 architectures. The catch is we don't
863  * really care if 32 MSBs of a 64-bit register get polluted
864  * with eventual overflows as we *save* only 32 LSBs in
865  * *either* case. Now declaring 'em long excuses the compiler
866  * from keeping 32 MSBs zeroed resulting in 13% performance
867  * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
868  * Well, to be honest it should say that this *prevents*
869  * performance degradation.
870  *				<appro@fy.chalmers.se>
871  * Apparently there're LP64 compilers that generate better
872  * code if A-D are declared int. Most notably GCC-x86_64
873  * generates better code.
874  *				<appro@fy.chalmers.se>
875  */
876 #endif
877 
878 
879 // from md5_locl.h (continued)
880 
881 /*
882 #define	F(x,y,z)	(((x) & (y))  |  ((~(x)) & (z)))
883 #define	G(x,y,z)	(((x) & (z))  |  ((y) & (~(z))))
884 */
885 
886 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
887  * simplified to the code below.  Wei attributes these optimizations
888  * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
889  */
890 #define	F(b,c,d)	((((c) ^ (d)) & (b)) ^ (d))
891 #define	G(b,c,d)	((((b) ^ (c)) & (d)) ^ (c))
892 #define	H(b,c,d)	((b) ^ (c) ^ (d))
893 #define	I(b,c,d)	(((~(d)) | (b)) ^ (c))
894 
895 #define R0(a,b,c,d,k,s,t) { \
896 	a+=((k)+(t)+F((b),(c),(d))); \
897 	a=ROTATE(a,s); \
898 	a+=b; };\
899 
900 #define R1(a,b,c,d,k,s,t) { \
901 	a+=((k)+(t)+G((b),(c),(d))); \
902 	a=ROTATE(a,s); \
903 	a+=b; };
904 
905 #define R2(a,b,c,d,k,s,t) { \
906 	a+=((k)+(t)+H((b),(c),(d))); \
907 	a=ROTATE(a,s); \
908 	a+=b; };
909 
910 #define R3(a,b,c,d,k,s,t) { \
911 	a+=((k)+(t)+I((b),(c),(d))); \
912 	a=ROTATE(a,s); \
913 	a+=b; };
914 
915 // from md5_dgst.c
916 
917 
918 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
919  */
920 
921 #define INIT_DATA_A (unsigned long)0x67452301L
922 #define INIT_DATA_B (unsigned long)0xefcdab89L
923 #define INIT_DATA_C (unsigned long)0x98badcfeL
924 #define INIT_DATA_D (unsigned long)0x10325476L
925 
MD5_Init(MD5_CTX * c)926 int MD5_Init(MD5_CTX *c)
927 	{
928 	c->A=INIT_DATA_A;
929 	c->B=INIT_DATA_B;
930 	c->C=INIT_DATA_C;
931 	c->D=INIT_DATA_D;
932 	c->Nl=0;
933 	c->Nh=0;
934 	c->num=0;
935 	return 1;
936 	}
937 
938 #ifndef md5_block_host_order
md5_block_host_order(MD5_CTX * c,const void * data,int num)939 void md5_block_host_order (MD5_CTX *c, const void *data, int num)
940 	{
941 	const mDNSu32 *X=(const mDNSu32 *)data;
942 	register unsigned MD32_REG_T A,B,C,D;
943 
944 	A=c->A;
945 	B=c->B;
946 	C=c->C;
947 	D=c->D;
948 
949 	for (;num--;X+=HASH_LBLOCK)
950 		{
951 	/* Round 0 */
952 	R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
953 	R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
954 	R0(C,D,A,B,X[ 2],17,0x242070dbL);
955 	R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
956 	R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
957 	R0(D,A,B,C,X[ 5],12,0x4787c62aL);
958 	R0(C,D,A,B,X[ 6],17,0xa8304613L);
959 	R0(B,C,D,A,X[ 7],22,0xfd469501L);
960 	R0(A,B,C,D,X[ 8], 7,0x698098d8L);
961 	R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
962 	R0(C,D,A,B,X[10],17,0xffff5bb1L);
963 	R0(B,C,D,A,X[11],22,0x895cd7beL);
964 	R0(A,B,C,D,X[12], 7,0x6b901122L);
965 	R0(D,A,B,C,X[13],12,0xfd987193L);
966 	R0(C,D,A,B,X[14],17,0xa679438eL);
967 	R0(B,C,D,A,X[15],22,0x49b40821L);
968 	/* Round 1 */
969 	R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
970 	R1(D,A,B,C,X[ 6], 9,0xc040b340L);
971 	R1(C,D,A,B,X[11],14,0x265e5a51L);
972 	R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
973 	R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
974 	R1(D,A,B,C,X[10], 9,0x02441453L);
975 	R1(C,D,A,B,X[15],14,0xd8a1e681L);
976 	R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
977 	R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
978 	R1(D,A,B,C,X[14], 9,0xc33707d6L);
979 	R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
980 	R1(B,C,D,A,X[ 8],20,0x455a14edL);
981 	R1(A,B,C,D,X[13], 5,0xa9e3e905L);
982 	R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
983 	R1(C,D,A,B,X[ 7],14,0x676f02d9L);
984 	R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
985 	/* Round 2 */
986 	R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
987 	R2(D,A,B,C,X[ 8],11,0x8771f681L);
988 	R2(C,D,A,B,X[11],16,0x6d9d6122L);
989 	R2(B,C,D,A,X[14],23,0xfde5380cL);
990 	R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
991 	R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
992 	R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
993 	R2(B,C,D,A,X[10],23,0xbebfbc70L);
994 	R2(A,B,C,D,X[13], 4,0x289b7ec6L);
995 	R2(D,A,B,C,X[ 0],11,0xeaa127faL);
996 	R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
997 	R2(B,C,D,A,X[ 6],23,0x04881d05L);
998 	R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
999 	R2(D,A,B,C,X[12],11,0xe6db99e5L);
1000 	R2(C,D,A,B,X[15],16,0x1fa27cf8L);
1001 	R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
1002 	/* Round 3 */
1003 	R3(A,B,C,D,X[ 0], 6,0xf4292244L);
1004 	R3(D,A,B,C,X[ 7],10,0x432aff97L);
1005 	R3(C,D,A,B,X[14],15,0xab9423a7L);
1006 	R3(B,C,D,A,X[ 5],21,0xfc93a039L);
1007 	R3(A,B,C,D,X[12], 6,0x655b59c3L);
1008 	R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
1009 	R3(C,D,A,B,X[10],15,0xffeff47dL);
1010 	R3(B,C,D,A,X[ 1],21,0x85845dd1L);
1011 	R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
1012 	R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
1013 	R3(C,D,A,B,X[ 6],15,0xa3014314L);
1014 	R3(B,C,D,A,X[13],21,0x4e0811a1L);
1015 	R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
1016 	R3(D,A,B,C,X[11],10,0xbd3af235L);
1017 	R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
1018 	R3(B,C,D,A,X[ 9],21,0xeb86d391L);
1019 
1020 	A = c->A += A;
1021 	B = c->B += B;
1022 	C = c->C += C;
1023 	D = c->D += D;
1024 		}
1025 	}
1026 #endif
1027 
1028 #ifndef md5_block_data_order
1029 #ifdef X
1030 #undef X
1031 #endif
md5_block_data_order(MD5_CTX * c,const void * data_,int num)1032 void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
1033 	{
1034 	const unsigned char *data=data_;
1035 	register unsigned MD32_REG_T A,B,C,D,l;
1036 #ifndef MD32_XARRAY
1037 	/* See comment in crypto/sha/sha_locl.h for details. */
1038 	unsigned MD32_REG_T	XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
1039 				XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
1040 # define X(i)	XX##i
1041 #else
1042 	mDNSu32 XX[MD5_LBLOCK];
1043 # define X(i)	XX[i]
1044 #endif
1045 
1046 	A=c->A;
1047 	B=c->B;
1048 	C=c->C;
1049 	D=c->D;
1050 
1051 	for (;num--;)
1052 		{
1053 	HOST_c2l(data,l); X( 0)=l;		HOST_c2l(data,l); X( 1)=l;
1054 	/* Round 0 */
1055 	R0(A,B,C,D,X( 0), 7,0xd76aa478L);	HOST_c2l(data,l); X( 2)=l;
1056 	R0(D,A,B,C,X( 1),12,0xe8c7b756L);	HOST_c2l(data,l); X( 3)=l;
1057 	R0(C,D,A,B,X( 2),17,0x242070dbL);	HOST_c2l(data,l); X( 4)=l;
1058 	R0(B,C,D,A,X( 3),22,0xc1bdceeeL);	HOST_c2l(data,l); X( 5)=l;
1059 	R0(A,B,C,D,X( 4), 7,0xf57c0fafL);	HOST_c2l(data,l); X( 6)=l;
1060 	R0(D,A,B,C,X( 5),12,0x4787c62aL);	HOST_c2l(data,l); X( 7)=l;
1061 	R0(C,D,A,B,X( 6),17,0xa8304613L);	HOST_c2l(data,l); X( 8)=l;
1062 	R0(B,C,D,A,X( 7),22,0xfd469501L);	HOST_c2l(data,l); X( 9)=l;
1063 	R0(A,B,C,D,X( 8), 7,0x698098d8L);	HOST_c2l(data,l); X(10)=l;
1064 	R0(D,A,B,C,X( 9),12,0x8b44f7afL);	HOST_c2l(data,l); X(11)=l;
1065 	R0(C,D,A,B,X(10),17,0xffff5bb1L);	HOST_c2l(data,l); X(12)=l;
1066 	R0(B,C,D,A,X(11),22,0x895cd7beL);	HOST_c2l(data,l); X(13)=l;
1067 	R0(A,B,C,D,X(12), 7,0x6b901122L);	HOST_c2l(data,l); X(14)=l;
1068 	R0(D,A,B,C,X(13),12,0xfd987193L);	HOST_c2l(data,l); X(15)=l;
1069 	R0(C,D,A,B,X(14),17,0xa679438eL);
1070 	R0(B,C,D,A,X(15),22,0x49b40821L);
1071 	/* Round 1 */
1072 	R1(A,B,C,D,X( 1), 5,0xf61e2562L);
1073 	R1(D,A,B,C,X( 6), 9,0xc040b340L);
1074 	R1(C,D,A,B,X(11),14,0x265e5a51L);
1075 	R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
1076 	R1(A,B,C,D,X( 5), 5,0xd62f105dL);
1077 	R1(D,A,B,C,X(10), 9,0x02441453L);
1078 	R1(C,D,A,B,X(15),14,0xd8a1e681L);
1079 	R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
1080 	R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
1081 	R1(D,A,B,C,X(14), 9,0xc33707d6L);
1082 	R1(C,D,A,B,X( 3),14,0xf4d50d87L);
1083 	R1(B,C,D,A,X( 8),20,0x455a14edL);
1084 	R1(A,B,C,D,X(13), 5,0xa9e3e905L);
1085 	R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
1086 	R1(C,D,A,B,X( 7),14,0x676f02d9L);
1087 	R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
1088 	/* Round 2 */
1089 	R2(A,B,C,D,X( 5), 4,0xfffa3942L);
1090 	R2(D,A,B,C,X( 8),11,0x8771f681L);
1091 	R2(C,D,A,B,X(11),16,0x6d9d6122L);
1092 	R2(B,C,D,A,X(14),23,0xfde5380cL);
1093 	R2(A,B,C,D,X( 1), 4,0xa4beea44L);
1094 	R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
1095 	R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
1096 	R2(B,C,D,A,X(10),23,0xbebfbc70L);
1097 	R2(A,B,C,D,X(13), 4,0x289b7ec6L);
1098 	R2(D,A,B,C,X( 0),11,0xeaa127faL);
1099 	R2(C,D,A,B,X( 3),16,0xd4ef3085L);
1100 	R2(B,C,D,A,X( 6),23,0x04881d05L);
1101 	R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
1102 	R2(D,A,B,C,X(12),11,0xe6db99e5L);
1103 	R2(C,D,A,B,X(15),16,0x1fa27cf8L);
1104 	R2(B,C,D,A,X( 2),23,0xc4ac5665L);
1105 	/* Round 3 */
1106 	R3(A,B,C,D,X( 0), 6,0xf4292244L);
1107 	R3(D,A,B,C,X( 7),10,0x432aff97L);
1108 	R3(C,D,A,B,X(14),15,0xab9423a7L);
1109 	R3(B,C,D,A,X( 5),21,0xfc93a039L);
1110 	R3(A,B,C,D,X(12), 6,0x655b59c3L);
1111 	R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
1112 	R3(C,D,A,B,X(10),15,0xffeff47dL);
1113 	R3(B,C,D,A,X( 1),21,0x85845dd1L);
1114 	R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
1115 	R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
1116 	R3(C,D,A,B,X( 6),15,0xa3014314L);
1117 	R3(B,C,D,A,X(13),21,0x4e0811a1L);
1118 	R3(A,B,C,D,X( 4), 6,0xf7537e82L);
1119 	R3(D,A,B,C,X(11),10,0xbd3af235L);
1120 	R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
1121 	R3(B,C,D,A,X( 9),21,0xeb86d391L);
1122 
1123 	A = c->A += A;
1124 	B = c->B += B;
1125 	C = c->C += C;
1126 	D = c->D += D;
1127 		}
1128 	}
1129 #endif
1130 
1131 
1132  // ***************************************************************************
1133 #if COMPILER_LIKES_PRAGMA_MARK
1134 #pragma mark - base64 -> binary conversion
1135 #endif
1136 
1137 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
1138 static const char Pad64 = '=';
1139 
1140 
1141 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
1142 
mDNSstrchr(const char * s,int c)1143 mDNSlocal const char *mDNSstrchr(const char *s, int c)
1144 	{
1145 	while (1)
1146 		{
1147 		if (c == *s) return s;
1148 		if (!*s) return mDNSNULL;
1149 		s++;
1150 		}
1151 	}
1152 
1153 // skips all whitespace anywhere.
1154 // converts characters, four at a time, starting at (or after)
1155 // src from base - 64 numbers into three 8 bit bytes in the target area.
1156 // it returns the number of data bytes stored at the target, or -1 on error.
1157 // adapted from BIND sources
1158 
DNSDigest_Base64ToBin(const char * src,mDNSu8 * target,mDNSu32 targsize)1159 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
1160 	{
1161 	int tarindex, state, ch;
1162 	const char *pos;
1163 
1164 	state = 0;
1165 	tarindex = 0;
1166 
1167 	while ((ch = *src++) != '\0') {
1168 		if (mDNSisspace(ch))	/* Skip whitespace anywhere. */
1169 			continue;
1170 
1171 		if (ch == Pad64)
1172 			break;
1173 
1174 		pos = mDNSstrchr(Base64, ch);
1175 		if (pos == 0) 		/* A non-base64 character. */
1176 			return (-1);
1177 
1178 		switch (state) {
1179 		case 0:
1180 			if (target) {
1181 				if ((mDNSu32)tarindex >= targsize)
1182 					return (-1);
1183 				target[tarindex] = (mDNSu8)((pos - Base64) << 2);
1184 			}
1185 			state = 1;
1186 			break;
1187 		case 1:
1188 			if (target) {
1189 				if ((mDNSu32)tarindex + 1 >= targsize)
1190 					return (-1);
1191 				target[tarindex]   |=  (pos - Base64) >> 4;
1192 				target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
1193 			}
1194 			tarindex++;
1195 			state = 2;
1196 			break;
1197 		case 2:
1198 			if (target) {
1199 				if ((mDNSu32)tarindex + 1 >= targsize)
1200 					return (-1);
1201 				target[tarindex]   |=  (pos - Base64) >> 2;
1202 				target[tarindex+1]  = (mDNSu8)(((pos - Base64) & 0x03) << 6);
1203 			}
1204 			tarindex++;
1205 			state = 3;
1206 			break;
1207 		case 3:
1208 			if (target) {
1209 				if ((mDNSu32)tarindex >= targsize)
1210 					return (-1);
1211 				target[tarindex] |= (pos - Base64);
1212 			}
1213 			tarindex++;
1214 			state = 0;
1215 			break;
1216 		default:
1217 			return -1;
1218 		}
1219 	}
1220 
1221 	/*
1222 	 * We are done decoding Base-64 chars.  Let's see if we ended
1223 	 * on a byte boundary, and/or with erroneous trailing characters.
1224 	 */
1225 
1226 	if (ch == Pad64) {		/* We got a pad char. */
1227 		ch = *src++;		/* Skip it, get next. */
1228 		switch (state) {
1229 		case 0:		/* Invalid = in first position */
1230 		case 1:		/* Invalid = in second position */
1231 			return (-1);
1232 
1233 		case 2:		/* Valid, means one byte of info */
1234 			/* Skip any number of spaces. */
1235 			for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1236 				if (!mDNSisspace(ch))
1237 					break;
1238 			/* Make sure there is another trailing = sign. */
1239 			if (ch != Pad64)
1240 				return (-1);
1241 			ch = *src++;		/* Skip the = */
1242 			/* Fall through to "single trailing =" case. */
1243 			/* FALLTHROUGH */
1244 
1245 		case 3:		/* Valid, means two bytes of info */
1246 			/*
1247 			 * We know this char is an =.  Is there anything but
1248 			 * whitespace after it?
1249 			 */
1250 			for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1251 				if (!mDNSisspace(ch))
1252 					return (-1);
1253 
1254 			/*
1255 			 * Now make sure for cases 2 and 3 that the "extra"
1256 			 * bits that slopped past the last full byte were
1257 			 * zeros.  If we don't check them, they become a
1258 			 * subliminal channel.
1259 			 */
1260 			if (target && target[tarindex] != 0)
1261 				return (-1);
1262 		}
1263 	} else {
1264 		/*
1265 		 * We ended by seeing the end of the string.  Make sure we
1266 		 * have no partial bytes lying around.
1267 		 */
1268 		if (state != 0)
1269 			return (-1);
1270 		}
1271 
1272 	return (tarindex);
1273 	}
1274 
1275 
1276  // ***************************************************************************
1277 #if COMPILER_LIKES_PRAGMA_MARK
1278 #pragma mark - API exported to mDNS Core
1279 #endif
1280 
1281 // Constants
1282 #define HMAC_IPAD   0x36
1283 #define HMAC_OPAD   0x5c
1284 #define MD5_LEN     16
1285 
1286 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int")
1287 
1288 // Adapted from Appendix, RFC 2104
DNSDigest_ConstructHMACKey(DomainAuthInfo * info,const mDNSu8 * key,mDNSu32 len)1289 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
1290 	{
1291 	MD5_CTX k;
1292 	mDNSu8 buf[MD5_LEN];
1293 	int i;
1294 
1295 	// If key is longer than HMAC_LEN reset it to MD5(key)
1296 	if (len > HMAC_LEN)
1297 		{
1298 		MD5_Init(&k);
1299 		MD5_Update(&k, key, len);
1300 		MD5_Final(buf, &k);
1301 		key = buf;
1302 		len = MD5_LEN;
1303 		}
1304 
1305 	// store key in pads
1306 	mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
1307 	mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
1308 	mDNSPlatformMemCopy(info->keydata_ipad, key, len);
1309 	mDNSPlatformMemCopy(info->keydata_opad, key, len);
1310 
1311 	// XOR key with ipad and opad values
1312 	for (i = 0; i < HMAC_LEN; i++)
1313 		{
1314 		info->keydata_ipad[i] ^= HMAC_IPAD;
1315 		info->keydata_opad[i] ^= HMAC_OPAD;
1316 		}
1317 
1318 	}
1319 
DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo * info,const char * b64key)1320 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
1321 	{
1322 	mDNSu8 keybuf[1024];
1323 	mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
1324 	if (keylen < 0) return(keylen);
1325 	DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
1326 	return(keylen);
1327 	}
1328 
DNSDigest_SignMessage(DNSMessage * msg,mDNSu8 ** end,DomainAuthInfo * info,mDNSu16 tcode)1329 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
1330 	{
1331 	AuthRecord tsig;
1332 	mDNSu8  *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals;	// Get existing numAdditionals value
1333 	mDNSu32 utc32;
1334 	mDNSu8 utc48[6];
1335 	mDNSu8 digest[MD5_LEN];
1336 	mDNSu8 *ptr = *end;
1337 	mDNSu32 len;
1338 	mDNSOpaque16 buf;
1339 	MD5_CTX c;
1340 	mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
1341 
1342 	// Init MD5 context, digest inner key pad and message
1343     MD5_Init(&c);
1344     MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1345 	MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
1346 
1347 	// Construct TSIG RR, digesting variables as apporpriate
1348 	mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1349 
1350 	// key name
1351 	AssignDomainName(&tsig.namestorage, &info->keyname);
1352 	MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
1353 
1354 	// class
1355 	tsig.resrec.rrclass = kDNSQClass_ANY;
1356 	buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
1357 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1358 
1359 	// ttl
1360 	tsig.resrec.rroriginalttl = 0;
1361 	MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
1362 
1363 	// alg name
1364 	AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName);
1365 	len = DomainNameLength(&HMAC_MD5_AlgName);
1366 	rdata = tsig.resrec.rdata->u.data + len;
1367 	MD5_Update(&c, HMAC_MD5_AlgName.c, len);
1368 
1369 	// time
1370 	// get UTC (universal time), convert to 48-bit unsigned in network byte order
1371 	utc32 = (mDNSu32)mDNSPlatformUTC();
1372 	if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
1373 	utc48[0] = 0;
1374 	utc48[1] = 0;
1375 	utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
1376 	utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
1377 	utc48[4] = (mDNSu8)((utc32 >>  8) & 0xff);
1378 	utc48[5] = (mDNSu8)( utc32        & 0xff);
1379 
1380 	mDNSPlatformMemCopy(rdata, utc48, 6);
1381 	rdata += 6;
1382 	MD5_Update(&c, utc48, 6);
1383 
1384 	// 300 sec is fudge recommended in RFC 2485
1385 	rdata[0] = (mDNSu8)((300 >> 8)  & 0xff);
1386 	rdata[1] = (mDNSu8)( 300        & 0xff);
1387 	MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
1388 	rdata += sizeof(mDNSOpaque16);
1389 
1390 	// digest error (tcode) and other data len (zero) - we'll add them to the rdata later
1391 	buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
1392 	buf.b[1] = (mDNSu8)( tcode       & 0xff);
1393 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
1394 	buf.NotAnInteger = 0;
1395 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
1396 
1397 	// finish the message & tsig var hash
1398     MD5_Final(digest, &c);
1399 
1400 	// perform outer MD5 (outer key pad, inner digest)
1401 	MD5_Init(&c);
1402 	MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1403 	MD5_Update(&c, digest, MD5_LEN);
1404 	MD5_Final(digest, &c);
1405 
1406 	// set remaining rdata fields
1407 	rdata[0] = (mDNSu8)((MD5_LEN >> 8)  & 0xff);
1408 	rdata[1] = (mDNSu8)( MD5_LEN        & 0xff);
1409 	rdata += sizeof(mDNSOpaque16);
1410 	mDNSPlatformMemCopy(rdata, digest, MD5_LEN);                          // MAC
1411 	rdata += MD5_LEN;
1412 	rdata[0] = msg->h.id.b[0];                                            // original ID
1413 	rdata[1] = msg->h.id.b[1];
1414 	rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
1415 	rdata[3] = (mDNSu8)( tcode       & 0xff);
1416 	rdata[4] = 0;                                                         // other data len
1417 	rdata[5] = 0;
1418 	rdata += 6;
1419 
1420 	tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
1421 	*end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
1422 	if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
1423 
1424 	// Write back updated numAdditionals value
1425 	countPtr[0] = (mDNSu8)(numAdditionals >> 8);
1426 	countPtr[1] = (mDNSu8)(numAdditionals &  0xFF);
1427 	}
1428 
DNSDigest_VerifyMessage(DNSMessage * msg,mDNSu8 * end,LargeCacheRecord * lcr,DomainAuthInfo * info,mDNSu16 * rcode,mDNSu16 * tcode)1429 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode)
1430 	{
1431 	mDNSu8			*	ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
1432 	mDNSs32				now;
1433 	mDNSs32				then;
1434 	mDNSu8				thisDigest[MD5_LEN];
1435 	mDNSu8				thatDigest[MD5_LEN];
1436 	mDNSu32				macsize;
1437 	mDNSOpaque16 		buf;
1438 	mDNSu8				utc48[6];
1439 	mDNSs32				delta;
1440 	mDNSu16				fudge;
1441 	domainname		*	algo;
1442 	MD5_CTX				c;
1443 	mDNSBool			ok = mDNSfalse;
1444 
1445 	// We only support HMAC-MD5 for now
1446 
1447 	algo = (domainname*) ptr;
1448 
1449 	if (!SameDomainName(algo, &HMAC_MD5_AlgName))
1450 		{
1451 		LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c);
1452 		*rcode = kDNSFlag1_RC_NotAuth;
1453 		*tcode = TSIG_ErrBadKey;
1454 		ok = mDNSfalse;
1455 		goto exit;
1456 		}
1457 
1458 	ptr += DomainNameLength(algo);
1459 
1460 	// Check the times
1461 
1462 	now = mDNSPlatformUTC();
1463 	if (now == -1)
1464 		{
1465 		LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
1466 		*rcode = kDNSFlag1_RC_NotAuth;
1467 		*tcode = TSIG_ErrBadTime;
1468 		ok = mDNSfalse;
1469 		goto exit;
1470 		}
1471 
1472 	// Get the 48 bit time field, skipping over the first word
1473 
1474 	utc48[0] = *ptr++;
1475 	utc48[1] = *ptr++;
1476 	utc48[2] = *ptr++;
1477 	utc48[3] = *ptr++;
1478 	utc48[4] = *ptr++;
1479 	utc48[5] = *ptr++;
1480 
1481 	then  = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
1482 
1483 	fudge = NToH16(ptr);
1484 
1485 	ptr += sizeof(mDNSu16);
1486 
1487 	delta = (now > then) ? now - then : then - now;
1488 
1489 	if (delta > fudge)
1490 		{
1491 		LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
1492 		*rcode = kDNSFlag1_RC_NotAuth;
1493 		*tcode = TSIG_ErrBadTime;
1494 		ok = mDNSfalse;
1495 		goto exit;
1496 		}
1497 
1498 	// MAC size
1499 
1500 	macsize = (mDNSu32) NToH16(ptr);
1501 
1502 	ptr += sizeof(mDNSu16);
1503 
1504 	// MAC
1505 
1506 	mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN);
1507 
1508 	// Init MD5 context, digest inner key pad and message
1509 
1510 	MD5_Init(&c);
1511 	MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1512 	MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
1513 
1514 	// Key name
1515 
1516 	MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
1517 
1518 	// Class name
1519 
1520 	buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
1521 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1522 
1523 	// TTL
1524 
1525 	MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
1526 
1527 	// Algorithm
1528 
1529 	MD5_Update(&c, algo->c, DomainNameLength(algo));
1530 
1531 	// Time
1532 
1533 	MD5_Update(&c, utc48, 6);
1534 
1535 	// Fudge
1536 
1537 	buf = mDNSOpaque16fromIntVal(fudge);
1538 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1539 
1540 	// Digest error and other data len (both zero) - we'll add them to the rdata later
1541 
1542 	buf.NotAnInteger = 0;
1543 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // error
1544 	MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));  // other data len
1545 
1546 	// Finish the message & tsig var hash
1547 
1548     MD5_Final(thisDigest, &c);
1549 
1550 	// perform outer MD5 (outer key pad, inner digest)
1551 
1552 	MD5_Init(&c);
1553 	MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1554 	MD5_Update(&c, thisDigest, MD5_LEN);
1555 	MD5_Final(thisDigest, &c);
1556 
1557 	if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
1558 		{
1559 		LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature");
1560 		*rcode = kDNSFlag1_RC_NotAuth;
1561 		*tcode = TSIG_ErrBadSig;
1562 		ok = mDNSfalse;
1563 		goto exit;
1564 		}
1565 
1566 	// set remaining rdata fields
1567 	ok = mDNStrue;
1568 
1569 exit:
1570 
1571 	return ok;
1572 	}
1573 
1574 
1575 #ifdef __cplusplus
1576 }
1577 #endif
1578