• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_CONVERSIONS_INL_H_
6 #define V8_CONVERSIONS_INL_H_
7 
8 #include <limits.h>        // Required for INT_MAX etc.
9 #include <float.h>         // Required for DBL_MAX and on Win32 for finite()
10 #include <stdarg.h>
11 #include <cmath>
12 #include "src/globals.h"       // Required for V8_INFINITY
13 
14 // ----------------------------------------------------------------------------
15 // Extra POSIX/ANSI functions for Win32/MSVC.
16 
17 #include "src/conversions.h"
18 #include "src/double.h"
19 #include "src/platform.h"
20 #include "src/scanner.h"
21 #include "src/strtod.h"
22 
23 namespace v8 {
24 namespace internal {
25 
JunkStringValue()26 inline double JunkStringValue() {
27   return BitCast<double, uint64_t>(kQuietNaNMask);
28 }
29 
30 
SignedZero(bool negative)31 inline double SignedZero(bool negative) {
32   return negative ? uint64_to_double(Double::kSignMask) : 0.0;
33 }
34 
35 
36 // The fast double-to-unsigned-int conversion routine does not guarantee
37 // rounding towards zero, or any reasonable value if the argument is larger
38 // than what fits in an unsigned 32-bit integer.
FastD2UI(double x)39 inline unsigned int FastD2UI(double x) {
40   // There is no unsigned version of lrint, so there is no fast path
41   // in this function as there is in FastD2I. Using lrint doesn't work
42   // for values of 2^31 and above.
43 
44   // Convert "small enough" doubles to uint32_t by fixing the 32
45   // least significant non-fractional bits in the low 32 bits of the
46   // double, and reading them from there.
47   const double k2Pow52 = 4503599627370496.0;
48   bool negative = x < 0;
49   if (negative) {
50     x = -x;
51   }
52   if (x < k2Pow52) {
53     x += k2Pow52;
54     uint32_t result;
55 #ifndef V8_TARGET_BIG_ENDIAN
56     Address mantissa_ptr = reinterpret_cast<Address>(&x);
57 #else
58     Address mantissa_ptr = reinterpret_cast<Address>(&x) + kIntSize;
59 #endif
60     // Copy least significant 32 bits of mantissa.
61     memcpy(&result, mantissa_ptr, sizeof(result));
62     return negative ? ~result + 1 : result;
63   }
64   // Large number (outside uint32 range), Infinity or NaN.
65   return 0x80000000u;  // Return integer indefinite.
66 }
67 
68 
DoubleToInteger(double x)69 inline double DoubleToInteger(double x) {
70   if (std::isnan(x)) return 0;
71   if (!std::isfinite(x) || x == 0) return x;
72   return (x >= 0) ? std::floor(x) : std::ceil(x);
73 }
74 
75 
DoubleToInt32(double x)76 int32_t DoubleToInt32(double x) {
77   int32_t i = FastD2I(x);
78   if (FastI2D(i) == x) return i;
79   Double d(x);
80   int exponent = d.Exponent();
81   if (exponent < 0) {
82     if (exponent <= -Double::kSignificandSize) return 0;
83     return d.Sign() * static_cast<int32_t>(d.Significand() >> -exponent);
84   } else {
85     if (exponent > 31) return 0;
86     return d.Sign() * static_cast<int32_t>(d.Significand() << exponent);
87   }
88 }
89 
90 
91 template <class Iterator, class EndMark>
SubStringEquals(Iterator * current,EndMark end,const char * substring)92 bool SubStringEquals(Iterator* current,
93                      EndMark end,
94                      const char* substring) {
95   ASSERT(**current == *substring);
96   for (substring++; *substring != '\0'; substring++) {
97     ++*current;
98     if (*current == end || **current != *substring) return false;
99   }
100   ++*current;
101   return true;
102 }
103 
104 
105 // Returns true if a nonspace character has been found and false if the
106 // end was been reached before finding a nonspace character.
107 template <class Iterator, class EndMark>
AdvanceToNonspace(UnicodeCache * unicode_cache,Iterator * current,EndMark end)108 inline bool AdvanceToNonspace(UnicodeCache* unicode_cache,
109                               Iterator* current,
110                               EndMark end) {
111   while (*current != end) {
112     if (!unicode_cache->IsWhiteSpaceOrLineTerminator(**current)) return true;
113     ++*current;
114   }
115   return false;
116 }
117 
118 
119 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
120 template <int radix_log_2, class Iterator, class EndMark>
InternalStringToIntDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,bool negative,bool allow_trailing_junk)121 double InternalStringToIntDouble(UnicodeCache* unicode_cache,
122                                  Iterator current,
123                                  EndMark end,
124                                  bool negative,
125                                  bool allow_trailing_junk) {
126   ASSERT(current != end);
127 
128   // Skip leading 0s.
129   while (*current == '0') {
130     ++current;
131     if (current == end) return SignedZero(negative);
132   }
133 
134   int64_t number = 0;
135   int exponent = 0;
136   const int radix = (1 << radix_log_2);
137 
138   do {
139     int digit;
140     if (*current >= '0' && *current <= '9' && *current < '0' + radix) {
141       digit = static_cast<char>(*current) - '0';
142     } else if (radix > 10 && *current >= 'a' && *current < 'a' + radix - 10) {
143       digit = static_cast<char>(*current) - 'a' + 10;
144     } else if (radix > 10 && *current >= 'A' && *current < 'A' + radix - 10) {
145       digit = static_cast<char>(*current) - 'A' + 10;
146     } else {
147       if (allow_trailing_junk ||
148           !AdvanceToNonspace(unicode_cache, &current, end)) {
149         break;
150       } else {
151         return JunkStringValue();
152       }
153     }
154 
155     number = number * radix + digit;
156     int overflow = static_cast<int>(number >> 53);
157     if (overflow != 0) {
158       // Overflow occurred. Need to determine which direction to round the
159       // result.
160       int overflow_bits_count = 1;
161       while (overflow > 1) {
162         overflow_bits_count++;
163         overflow >>= 1;
164       }
165 
166       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
167       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
168       number >>= overflow_bits_count;
169       exponent = overflow_bits_count;
170 
171       bool zero_tail = true;
172       while (true) {
173         ++current;
174         if (current == end || !isDigit(*current, radix)) break;
175         zero_tail = zero_tail && *current == '0';
176         exponent += radix_log_2;
177       }
178 
179       if (!allow_trailing_junk &&
180           AdvanceToNonspace(unicode_cache, &current, end)) {
181         return JunkStringValue();
182       }
183 
184       int middle_value = (1 << (overflow_bits_count - 1));
185       if (dropped_bits > middle_value) {
186         number++;  // Rounding up.
187       } else if (dropped_bits == middle_value) {
188         // Rounding to even to consistency with decimals: half-way case rounds
189         // up if significant part is odd and down otherwise.
190         if ((number & 1) != 0 || !zero_tail) {
191           number++;  // Rounding up.
192         }
193       }
194 
195       // Rounding up may cause overflow.
196       if ((number & (static_cast<int64_t>(1) << 53)) != 0) {
197         exponent++;
198         number >>= 1;
199       }
200       break;
201     }
202     ++current;
203   } while (current != end);
204 
205   ASSERT(number < ((int64_t)1 << 53));
206   ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
207 
208   if (exponent == 0) {
209     if (negative) {
210       if (number == 0) return -0.0;
211       number = -number;
212     }
213     return static_cast<double>(number);
214   }
215 
216   ASSERT(number != 0);
217   return std::ldexp(static_cast<double>(negative ? -number : number), exponent);
218 }
219 
220 
221 template <class Iterator, class EndMark>
InternalStringToInt(UnicodeCache * unicode_cache,Iterator current,EndMark end,int radix)222 double InternalStringToInt(UnicodeCache* unicode_cache,
223                            Iterator current,
224                            EndMark end,
225                            int radix) {
226   const bool allow_trailing_junk = true;
227   const double empty_string_val = JunkStringValue();
228 
229   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
230     return empty_string_val;
231   }
232 
233   bool negative = false;
234   bool leading_zero = false;
235 
236   if (*current == '+') {
237     // Ignore leading sign; skip following spaces.
238     ++current;
239     if (current == end) {
240       return JunkStringValue();
241     }
242   } else if (*current == '-') {
243     ++current;
244     if (current == end) {
245       return JunkStringValue();
246     }
247     negative = true;
248   }
249 
250   if (radix == 0) {
251     // Radix detection.
252     radix = 10;
253     if (*current == '0') {
254       ++current;
255       if (current == end) return SignedZero(negative);
256       if (*current == 'x' || *current == 'X') {
257         radix = 16;
258         ++current;
259         if (current == end) return JunkStringValue();
260       } else {
261         leading_zero = true;
262       }
263     }
264   } else if (radix == 16) {
265     if (*current == '0') {
266       // Allow "0x" prefix.
267       ++current;
268       if (current == end) return SignedZero(negative);
269       if (*current == 'x' || *current == 'X') {
270         ++current;
271         if (current == end) return JunkStringValue();
272       } else {
273         leading_zero = true;
274       }
275     }
276   }
277 
278   if (radix < 2 || radix > 36) return JunkStringValue();
279 
280   // Skip leading zeros.
281   while (*current == '0') {
282     leading_zero = true;
283     ++current;
284     if (current == end) return SignedZero(negative);
285   }
286 
287   if (!leading_zero && !isDigit(*current, radix)) {
288     return JunkStringValue();
289   }
290 
291   if (IsPowerOf2(radix)) {
292     switch (radix) {
293       case 2:
294         return InternalStringToIntDouble<1>(
295             unicode_cache, current, end, negative, allow_trailing_junk);
296       case 4:
297         return InternalStringToIntDouble<2>(
298             unicode_cache, current, end, negative, allow_trailing_junk);
299       case 8:
300         return InternalStringToIntDouble<3>(
301             unicode_cache, current, end, negative, allow_trailing_junk);
302 
303       case 16:
304         return InternalStringToIntDouble<4>(
305             unicode_cache, current, end, negative, allow_trailing_junk);
306 
307       case 32:
308         return InternalStringToIntDouble<5>(
309             unicode_cache, current, end, negative, allow_trailing_junk);
310       default:
311         UNREACHABLE();
312     }
313   }
314 
315   if (radix == 10) {
316     // Parsing with strtod.
317     const int kMaxSignificantDigits = 309;  // Doubles are less than 1.8e308.
318     // The buffer may contain up to kMaxSignificantDigits + 1 digits and a zero
319     // end.
320     const int kBufferSize = kMaxSignificantDigits + 2;
321     char buffer[kBufferSize];
322     int buffer_pos = 0;
323     while (*current >= '0' && *current <= '9') {
324       if (buffer_pos <= kMaxSignificantDigits) {
325         // If the number has more than kMaxSignificantDigits it will be parsed
326         // as infinity.
327         ASSERT(buffer_pos < kBufferSize);
328         buffer[buffer_pos++] = static_cast<char>(*current);
329       }
330       ++current;
331       if (current == end) break;
332     }
333 
334     if (!allow_trailing_junk &&
335         AdvanceToNonspace(unicode_cache, &current, end)) {
336       return JunkStringValue();
337     }
338 
339     SLOW_ASSERT(buffer_pos < kBufferSize);
340     buffer[buffer_pos] = '\0';
341     Vector<const char> buffer_vector(buffer, buffer_pos);
342     return negative ? -Strtod(buffer_vector, 0) : Strtod(buffer_vector, 0);
343   }
344 
345   // The following code causes accumulating rounding error for numbers greater
346   // than ~2^56. It's explicitly allowed in the spec: "if R is not 2, 4, 8, 10,
347   // 16, or 32, then mathInt may be an implementation-dependent approximation to
348   // the mathematical integer value" (15.1.2.2).
349 
350   int lim_0 = '0' + (radix < 10 ? radix : 10);
351   int lim_a = 'a' + (radix - 10);
352   int lim_A = 'A' + (radix - 10);
353 
354   // NOTE: The code for computing the value may seem a bit complex at
355   // first glance. It is structured to use 32-bit multiply-and-add
356   // loops as long as possible to avoid loosing precision.
357 
358   double v = 0.0;
359   bool done = false;
360   do {
361     // Parse the longest part of the string starting at index j
362     // possible while keeping the multiplier, and thus the part
363     // itself, within 32 bits.
364     unsigned int part = 0, multiplier = 1;
365     while (true) {
366       int d;
367       if (*current >= '0' && *current < lim_0) {
368         d = *current - '0';
369       } else if (*current >= 'a' && *current < lim_a) {
370         d = *current - 'a' + 10;
371       } else if (*current >= 'A' && *current < lim_A) {
372         d = *current - 'A' + 10;
373       } else {
374         done = true;
375         break;
376       }
377 
378       // Update the value of the part as long as the multiplier fits
379       // in 32 bits. When we can't guarantee that the next iteration
380       // will not overflow the multiplier, we stop parsing the part
381       // by leaving the loop.
382       const unsigned int kMaximumMultiplier = 0xffffffffU / 36;
383       uint32_t m = multiplier * radix;
384       if (m > kMaximumMultiplier) break;
385       part = part * radix + d;
386       multiplier = m;
387       ASSERT(multiplier > part);
388 
389       ++current;
390       if (current == end) {
391         done = true;
392         break;
393       }
394     }
395 
396     // Update the value and skip the part in the string.
397     v = v * multiplier + part;
398   } while (!done);
399 
400   if (!allow_trailing_junk &&
401       AdvanceToNonspace(unicode_cache, &current, end)) {
402     return JunkStringValue();
403   }
404 
405   return negative ? -v : v;
406 }
407 
408 
409 // Converts a string to a double value. Assumes the Iterator supports
410 // the following operations:
411 // 1. current == end (other ops are not allowed), current != end.
412 // 2. *current - gets the current character in the sequence.
413 // 3. ++current (advances the position).
414 template <class Iterator, class EndMark>
InternalStringToDouble(UnicodeCache * unicode_cache,Iterator current,EndMark end,int flags,double empty_string_val)415 double InternalStringToDouble(UnicodeCache* unicode_cache,
416                               Iterator current,
417                               EndMark end,
418                               int flags,
419                               double empty_string_val) {
420   // To make sure that iterator dereferencing is valid the following
421   // convention is used:
422   // 1. Each '++current' statement is followed by check for equality to 'end'.
423   // 2. If AdvanceToNonspace returned false then current == end.
424   // 3. If 'current' becomes be equal to 'end' the function returns or goes to
425   // 'parsing_done'.
426   // 4. 'current' is not dereferenced after the 'parsing_done' label.
427   // 5. Code before 'parsing_done' may rely on 'current != end'.
428   if (!AdvanceToNonspace(unicode_cache, &current, end)) {
429     return empty_string_val;
430   }
431 
432   const bool allow_trailing_junk = (flags & ALLOW_TRAILING_JUNK) != 0;
433 
434   // The longest form of simplified number is: "-<significant digits>'.1eXXX\0".
435   const int kBufferSize = kMaxSignificantDigits + 10;
436   char buffer[kBufferSize];  // NOLINT: size is known at compile time.
437   int buffer_pos = 0;
438 
439   // Exponent will be adjusted if insignificant digits of the integer part
440   // or insignificant leading zeros of the fractional part are dropped.
441   int exponent = 0;
442   int significant_digits = 0;
443   int insignificant_digits = 0;
444   bool nonzero_digit_dropped = false;
445 
446   enum Sign {
447     NONE,
448     NEGATIVE,
449     POSITIVE
450   };
451 
452   Sign sign = NONE;
453 
454   if (*current == '+') {
455     // Ignore leading sign.
456     ++current;
457     if (current == end) return JunkStringValue();
458     sign = POSITIVE;
459   } else if (*current == '-') {
460     ++current;
461     if (current == end) return JunkStringValue();
462     sign = NEGATIVE;
463   }
464 
465   static const char kInfinityString[] = "Infinity";
466   if (*current == kInfinityString[0]) {
467     if (!SubStringEquals(&current, end, kInfinityString)) {
468       return JunkStringValue();
469     }
470 
471     if (!allow_trailing_junk &&
472         AdvanceToNonspace(unicode_cache, &current, end)) {
473       return JunkStringValue();
474     }
475 
476     ASSERT(buffer_pos == 0);
477     return (sign == NEGATIVE) ? -V8_INFINITY : V8_INFINITY;
478   }
479 
480   bool leading_zero = false;
481   if (*current == '0') {
482     ++current;
483     if (current == end) return SignedZero(sign == NEGATIVE);
484 
485     leading_zero = true;
486 
487     // It could be hexadecimal value.
488     if ((flags & ALLOW_HEX) && (*current == 'x' || *current == 'X')) {
489       ++current;
490       if (current == end || !isDigit(*current, 16) || sign != NONE) {
491         return JunkStringValue();  // "0x".
492       }
493 
494       return InternalStringToIntDouble<4>(unicode_cache,
495                                           current,
496                                           end,
497                                           false,
498                                           allow_trailing_junk);
499 
500     // It could be an explicit octal value.
501     } else if ((flags & ALLOW_OCTAL) && (*current == 'o' || *current == 'O')) {
502       ++current;
503       if (current == end || !isDigit(*current, 8) || sign != NONE) {
504         return JunkStringValue();  // "0o".
505       }
506 
507       return InternalStringToIntDouble<3>(unicode_cache,
508                                           current,
509                                           end,
510                                           false,
511                                           allow_trailing_junk);
512 
513     // It could be a binary value.
514     } else if ((flags & ALLOW_BINARY) && (*current == 'b' || *current == 'B')) {
515       ++current;
516       if (current == end || !isBinaryDigit(*current) || sign != NONE) {
517         return JunkStringValue();  // "0b".
518       }
519 
520       return InternalStringToIntDouble<1>(unicode_cache,
521                                           current,
522                                           end,
523                                           false,
524                                           allow_trailing_junk);
525     }
526 
527     // Ignore leading zeros in the integer part.
528     while (*current == '0') {
529       ++current;
530       if (current == end) return SignedZero(sign == NEGATIVE);
531     }
532   }
533 
534   bool octal = leading_zero && (flags & ALLOW_IMPLICIT_OCTAL) != 0;
535 
536   // Copy significant digits of the integer part (if any) to the buffer.
537   while (*current >= '0' && *current <= '9') {
538     if (significant_digits < kMaxSignificantDigits) {
539       ASSERT(buffer_pos < kBufferSize);
540       buffer[buffer_pos++] = static_cast<char>(*current);
541       significant_digits++;
542       // Will later check if it's an octal in the buffer.
543     } else {
544       insignificant_digits++;  // Move the digit into the exponential part.
545       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
546     }
547     octal = octal && *current < '8';
548     ++current;
549     if (current == end) goto parsing_done;
550   }
551 
552   if (significant_digits == 0) {
553     octal = false;
554   }
555 
556   if (*current == '.') {
557     if (octal && !allow_trailing_junk) return JunkStringValue();
558     if (octal) goto parsing_done;
559 
560     ++current;
561     if (current == end) {
562       if (significant_digits == 0 && !leading_zero) {
563         return JunkStringValue();
564       } else {
565         goto parsing_done;
566       }
567     }
568 
569     if (significant_digits == 0) {
570       // octal = false;
571       // Integer part consists of 0 or is absent. Significant digits start after
572       // leading zeros (if any).
573       while (*current == '0') {
574         ++current;
575         if (current == end) return SignedZero(sign == NEGATIVE);
576         exponent--;  // Move this 0 into the exponent.
577       }
578     }
579 
580     // There is a fractional part.  We don't emit a '.', but adjust the exponent
581     // instead.
582     while (*current >= '0' && *current <= '9') {
583       if (significant_digits < kMaxSignificantDigits) {
584         ASSERT(buffer_pos < kBufferSize);
585         buffer[buffer_pos++] = static_cast<char>(*current);
586         significant_digits++;
587         exponent--;
588       } else {
589         // Ignore insignificant digits in the fractional part.
590         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
591       }
592       ++current;
593       if (current == end) goto parsing_done;
594     }
595   }
596 
597   if (!leading_zero && exponent == 0 && significant_digits == 0) {
598     // If leading_zeros is true then the string contains zeros.
599     // If exponent < 0 then string was [+-]\.0*...
600     // If significant_digits != 0 the string is not equal to 0.
601     // Otherwise there are no digits in the string.
602     return JunkStringValue();
603   }
604 
605   // Parse exponential part.
606   if (*current == 'e' || *current == 'E') {
607     if (octal) return JunkStringValue();
608     ++current;
609     if (current == end) {
610       if (allow_trailing_junk) {
611         goto parsing_done;
612       } else {
613         return JunkStringValue();
614       }
615     }
616     char sign = '+';
617     if (*current == '+' || *current == '-') {
618       sign = static_cast<char>(*current);
619       ++current;
620       if (current == end) {
621         if (allow_trailing_junk) {
622           goto parsing_done;
623         } else {
624           return JunkStringValue();
625         }
626       }
627     }
628 
629     if (current == end || *current < '0' || *current > '9') {
630       if (allow_trailing_junk) {
631         goto parsing_done;
632       } else {
633         return JunkStringValue();
634       }
635     }
636 
637     const int max_exponent = INT_MAX / 2;
638     ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
639     int num = 0;
640     do {
641       // Check overflow.
642       int digit = *current - '0';
643       if (num >= max_exponent / 10
644           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
645         num = max_exponent;
646       } else {
647         num = num * 10 + digit;
648       }
649       ++current;
650     } while (current != end && *current >= '0' && *current <= '9');
651 
652     exponent += (sign == '-' ? -num : num);
653   }
654 
655   if (!allow_trailing_junk &&
656       AdvanceToNonspace(unicode_cache, &current, end)) {
657     return JunkStringValue();
658   }
659 
660   parsing_done:
661   exponent += insignificant_digits;
662 
663   if (octal) {
664     return InternalStringToIntDouble<3>(unicode_cache,
665                                         buffer,
666                                         buffer + buffer_pos,
667                                         sign == NEGATIVE,
668                                         allow_trailing_junk);
669   }
670 
671   if (nonzero_digit_dropped) {
672     buffer[buffer_pos++] = '1';
673     exponent--;
674   }
675 
676   SLOW_ASSERT(buffer_pos < kBufferSize);
677   buffer[buffer_pos] = '\0';
678 
679   double converted = Strtod(Vector<const char>(buffer, buffer_pos), exponent);
680   return (sign == NEGATIVE) ? -converted : converted;
681 }
682 
683 } }  // namespace v8::internal
684 
685 #endif  // V8_CONVERSIONS_INL_H_
686