1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/ConvertUTF.h"
32
33 using namespace clang;
34 using namespace CodeGen;
35
36 //===--------------------------------------------------------------------===//
37 // Miscellaneous Helper Methods
38 //===--------------------------------------------------------------------===//
39
EmitCastToVoidPtr(llvm::Value * value)40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41 unsigned addressSpace =
42 cast<llvm::PointerType>(value->getType())->getAddressSpace();
43
44 llvm::PointerType *destType = Int8PtrTy;
45 if (addressSpace)
46 destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47
48 if (value->getType() == destType) return value;
49 return Builder.CreateBitCast(value, destType);
50 }
51
52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
53 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55 const Twine &Name) {
56 if (!Builder.isNamePreserving())
57 return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
58 return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
59 }
60
InitTempAlloca(llvm::AllocaInst * Var,llvm::Value * Init)61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62 llvm::Value *Init) {
63 auto *Store = new llvm::StoreInst(Init, Var);
64 llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65 Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66 }
67
CreateIRTemp(QualType Ty,const Twine & Name)68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69 const Twine &Name) {
70 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71 // FIXME: Should we prefer the preferred type alignment here?
72 CharUnits Align = getContext().getTypeAlignInChars(Ty);
73 Alloc->setAlignment(Align.getQuantity());
74 return Alloc;
75 }
76
CreateMemTemp(QualType Ty,const Twine & Name)77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78 const Twine &Name) {
79 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80 // FIXME: Should we prefer the preferred type alignment here?
81 CharUnits Align = getContext().getTypeAlignInChars(Ty);
82 Alloc->setAlignment(Align.getQuantity());
83 return Alloc;
84 }
85
86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89 PGO.setCurrentStmt(E);
90 if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91 llvm::Value *MemPtr = EmitScalarExpr(E);
92 return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93 }
94
95 QualType BoolTy = getContext().BoolTy;
96 if (!E->getType()->isAnyComplexType())
97 return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98
99 return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100 }
101
102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
103 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105 if (E->isRValue())
106 return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107
108 // Just emit it as an l-value and drop the result.
109 EmitLValue(E);
110 }
111
112 /// EmitAnyExpr - Emit code to compute the specified expression which
113 /// can have any type. The result is returned as an RValue struct.
114 /// If this is an aggregate expression, AggSlot indicates where the
115 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117 AggValueSlot aggSlot,
118 bool ignoreResult) {
119 switch (getEvaluationKind(E->getType())) {
120 case TEK_Scalar:
121 return RValue::get(EmitScalarExpr(E, ignoreResult));
122 case TEK_Complex:
123 return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124 case TEK_Aggregate:
125 if (!ignoreResult && aggSlot.isIgnored())
126 aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127 EmitAggExpr(E, aggSlot);
128 return aggSlot.asRValue();
129 }
130 llvm_unreachable("bad evaluation kind");
131 }
132
133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136 AggValueSlot AggSlot = AggValueSlot::ignored();
137
138 if (hasAggregateEvaluationKind(E->getType()))
139 AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140 return EmitAnyExpr(E, AggSlot);
141 }
142
143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
144 /// location.
EmitAnyExprToMem(const Expr * E,llvm::Value * Location,Qualifiers Quals,bool IsInit)145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146 llvm::Value *Location,
147 Qualifiers Quals,
148 bool IsInit) {
149 // FIXME: This function should take an LValue as an argument.
150 switch (getEvaluationKind(E->getType())) {
151 case TEK_Complex:
152 EmitComplexExprIntoLValue(E,
153 MakeNaturalAlignAddrLValue(Location, E->getType()),
154 /*isInit*/ false);
155 return;
156
157 case TEK_Aggregate: {
158 CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159 EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160 AggValueSlot::IsDestructed_t(IsInit),
161 AggValueSlot::DoesNotNeedGCBarriers,
162 AggValueSlot::IsAliased_t(!IsInit)));
163 return;
164 }
165
166 case TEK_Scalar: {
167 RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168 LValue LV = MakeAddrLValue(Location, E->getType());
169 EmitStoreThroughLValue(RV, LV);
170 return;
171 }
172 }
173 llvm_unreachable("bad evaluation kind");
174 }
175
176 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,llvm::Value * ReferenceTemporary)177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178 const Expr *E, llvm::Value *ReferenceTemporary) {
179 // Objective-C++ ARC:
180 // If we are binding a reference to a temporary that has ownership, we
181 // need to perform retain/release operations on the temporary.
182 //
183 // FIXME: This should be looking at E, not M.
184 if (CGF.getLangOpts().ObjCAutoRefCount &&
185 M->getType()->isObjCLifetimeType()) {
186 QualType ObjCARCReferenceLifetimeType = M->getType();
187 switch (Qualifiers::ObjCLifetime Lifetime =
188 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189 case Qualifiers::OCL_None:
190 case Qualifiers::OCL_ExplicitNone:
191 // Carry on to normal cleanup handling.
192 break;
193
194 case Qualifiers::OCL_Autoreleasing:
195 // Nothing to do; cleaned up by an autorelease pool.
196 return;
197
198 case Qualifiers::OCL_Strong:
199 case Qualifiers::OCL_Weak:
200 switch (StorageDuration Duration = M->getStorageDuration()) {
201 case SD_Static:
202 // Note: we intentionally do not register a cleanup to release
203 // the object on program termination.
204 return;
205
206 case SD_Thread:
207 // FIXME: We should probably register a cleanup in this case.
208 return;
209
210 case SD_Automatic:
211 case SD_FullExpression:
212 assert(!ObjCARCReferenceLifetimeType->isArrayType());
213 CodeGenFunction::Destroyer *Destroy;
214 CleanupKind CleanupKind;
215 if (Lifetime == Qualifiers::OCL_Strong) {
216 const ValueDecl *VD = M->getExtendingDecl();
217 bool Precise =
218 VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219 CleanupKind = CGF.getARCCleanupKind();
220 Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221 : &CodeGenFunction::destroyARCStrongImprecise;
222 } else {
223 // __weak objects always get EH cleanups; otherwise, exceptions
224 // could cause really nasty crashes instead of mere leaks.
225 CleanupKind = NormalAndEHCleanup;
226 Destroy = &CodeGenFunction::destroyARCWeak;
227 }
228 if (Duration == SD_FullExpression)
229 CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230 ObjCARCReferenceLifetimeType, *Destroy,
231 CleanupKind & EHCleanup);
232 else
233 CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234 ObjCARCReferenceLifetimeType,
235 *Destroy, CleanupKind & EHCleanup);
236 return;
237
238 case SD_Dynamic:
239 llvm_unreachable("temporary cannot have dynamic storage duration");
240 }
241 llvm_unreachable("unknown storage duration");
242 }
243 }
244
245 CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
246 if (const RecordType *RT =
247 E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248 // Get the destructor for the reference temporary.
249 auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250 if (!ClassDecl->hasTrivialDestructor())
251 ReferenceTemporaryDtor = ClassDecl->getDestructor();
252 }
253
254 if (!ReferenceTemporaryDtor)
255 return;
256
257 // Call the destructor for the temporary.
258 switch (M->getStorageDuration()) {
259 case SD_Static:
260 case SD_Thread: {
261 llvm::Constant *CleanupFn;
262 llvm::Constant *CleanupArg;
263 if (E->getType()->isArrayType()) {
264 CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265 cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266 CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267 dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268 CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269 } else {
270 CleanupFn =
271 CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272 CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273 }
274 CGF.CGM.getCXXABI().registerGlobalDtor(
275 CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276 break;
277 }
278
279 case SD_FullExpression:
280 CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281 CodeGenFunction::destroyCXXObject,
282 CGF.getLangOpts().Exceptions);
283 break;
284
285 case SD_Automatic:
286 CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287 ReferenceTemporary, E->getType(),
288 CodeGenFunction::destroyCXXObject,
289 CGF.getLangOpts().Exceptions);
290 break;
291
292 case SD_Dynamic:
293 llvm_unreachable("temporary cannot have dynamic storage duration");
294 }
295 }
296
297 static llvm::Value *
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner)298 createReferenceTemporary(CodeGenFunction &CGF,
299 const MaterializeTemporaryExpr *M, const Expr *Inner) {
300 switch (M->getStorageDuration()) {
301 case SD_FullExpression:
302 case SD_Automatic:
303 return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304
305 case SD_Thread:
306 case SD_Static:
307 return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308
309 case SD_Dynamic:
310 llvm_unreachable("temporary can't have dynamic storage duration");
311 }
312 llvm_unreachable("unknown storage duration");
313 }
314
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316 const MaterializeTemporaryExpr *M) {
317 const Expr *E = M->GetTemporaryExpr();
318
319 if (getLangOpts().ObjCAutoRefCount &&
320 M->getType()->isObjCLifetimeType() &&
321 M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322 M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323 // FIXME: Fold this into the general case below.
324 llvm::Value *Object = createReferenceTemporary(*this, M, E);
325 LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326
327 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328 // We should not have emitted the initializer for this temporary as a
329 // constant.
330 assert(!Var->hasInitializer());
331 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332 }
333
334 EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335
336 pushTemporaryCleanup(*this, M, E, Object);
337 return RefTempDst;
338 }
339
340 SmallVector<const Expr *, 2> CommaLHSs;
341 SmallVector<SubobjectAdjustment, 2> Adjustments;
342 E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343
344 for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345 EmitIgnoredExpr(CommaLHSs[I]);
346
347 if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348 if (opaque->getType()->isRecordType()) {
349 assert(Adjustments.empty());
350 return EmitOpaqueValueLValue(opaque);
351 }
352 }
353
354 // Create and initialize the reference temporary.
355 llvm::Value *Object = createReferenceTemporary(*this, M, E);
356 if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357 // If the temporary is a global and has a constant initializer, we may
358 // have already initialized it.
359 if (!Var->hasInitializer()) {
360 Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362 }
363 } else {
364 EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365 }
366 pushTemporaryCleanup(*this, M, E, Object);
367
368 // Perform derived-to-base casts and/or field accesses, to get from the
369 // temporary object we created (and, potentially, for which we extended
370 // the lifetime) to the subobject we're binding the reference to.
371 for (unsigned I = Adjustments.size(); I != 0; --I) {
372 SubobjectAdjustment &Adjustment = Adjustments[I-1];
373 switch (Adjustment.Kind) {
374 case SubobjectAdjustment::DerivedToBaseAdjustment:
375 Object =
376 GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377 Adjustment.DerivedToBase.BasePath->path_begin(),
378 Adjustment.DerivedToBase.BasePath->path_end(),
379 /*NullCheckValue=*/ false);
380 break;
381
382 case SubobjectAdjustment::FieldAdjustment: {
383 LValue LV = MakeAddrLValue(Object, E->getType());
384 LV = EmitLValueForField(LV, Adjustment.Field);
385 assert(LV.isSimple() &&
386 "materialized temporary field is not a simple lvalue");
387 Object = LV.getAddress();
388 break;
389 }
390
391 case SubobjectAdjustment::MemberPointerAdjustment: {
392 llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393 Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394 *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395 break;
396 }
397 }
398 }
399
400 return MakeAddrLValue(Object, M->getType());
401 }
402
403 RValue
EmitReferenceBindingToExpr(const Expr * E)404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405 // Emit the expression as an lvalue.
406 LValue LV = EmitLValue(E);
407 assert(LV.isSimple());
408 llvm::Value *Value = LV.getAddress();
409
410 if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
411 // C++11 [dcl.ref]p5 (as amended by core issue 453):
412 // If a glvalue to which a reference is directly bound designates neither
413 // an existing object or function of an appropriate type nor a region of
414 // storage of suitable size and alignment to contain an object of the
415 // reference's type, the behavior is undefined.
416 QualType Ty = E->getType();
417 EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418 }
419
420 return RValue::get(Value);
421 }
422
423
424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
425 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427 const llvm::Constant *Elts) {
428 return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429 ->getZExtValue();
430 }
431
432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434 llvm::Value *High) {
435 llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436 llvm::Value *K47 = Builder.getInt64(47);
437 llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438 llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439 llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440 llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441 return Builder.CreateMul(B1, KMul);
442 }
443
sanitizePerformTypeCheck() const444 bool CodeGenFunction::sanitizePerformTypeCheck() const {
445 return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize |
446 SanOpts->Vptr;
447 }
448
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Address,QualType Ty,CharUnits Alignment)449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
450 llvm::Value *Address,
451 QualType Ty, CharUnits Alignment) {
452 if (!sanitizePerformTypeCheck())
453 return;
454
455 // Don't check pointers outside the default address space. The null check
456 // isn't correct, the object-size check isn't supported by LLVM, and we can't
457 // communicate the addresses to the runtime handler for the vptr check.
458 if (Address->getType()->getPointerAddressSpace())
459 return;
460
461 llvm::Value *Cond = nullptr;
462 llvm::BasicBlock *Done = nullptr;
463
464 if (SanOpts->Null) {
465 // The glvalue must not be an empty glvalue.
466 Cond = Builder.CreateICmpNE(
467 Address, llvm::Constant::getNullValue(Address->getType()));
468
469 if (TCK == TCK_DowncastPointer) {
470 // When performing a pointer downcast, it's OK if the value is null.
471 // Skip the remaining checks in that case.
472 Done = createBasicBlock("null");
473 llvm::BasicBlock *Rest = createBasicBlock("not.null");
474 Builder.CreateCondBr(Cond, Rest, Done);
475 EmitBlock(Rest);
476 Cond = nullptr;
477 }
478 }
479
480 if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
481 uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
482
483 // The glvalue must refer to a large enough storage region.
484 // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
485 // to check this.
486 // FIXME: Get object address space
487 llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
488 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
489 llvm::Value *Min = Builder.getFalse();
490 llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
491 llvm::Value *LargeEnough =
492 Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
493 llvm::ConstantInt::get(IntPtrTy, Size));
494 Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
495 }
496
497 uint64_t AlignVal = 0;
498
499 if (SanOpts->Alignment) {
500 AlignVal = Alignment.getQuantity();
501 if (!Ty->isIncompleteType() && !AlignVal)
502 AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
503
504 // The glvalue must be suitably aligned.
505 if (AlignVal) {
506 llvm::Value *Align =
507 Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
508 llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
509 llvm::Value *Aligned =
510 Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
511 Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
512 }
513 }
514
515 if (Cond) {
516 llvm::Constant *StaticData[] = {
517 EmitCheckSourceLocation(Loc),
518 EmitCheckTypeDescriptor(Ty),
519 llvm::ConstantInt::get(SizeTy, AlignVal),
520 llvm::ConstantInt::get(Int8Ty, TCK)
521 };
522 EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
523 }
524
525 // If possible, check that the vptr indicates that there is a subobject of
526 // type Ty at offset zero within this object.
527 //
528 // C++11 [basic.life]p5,6:
529 // [For storage which does not refer to an object within its lifetime]
530 // The program has undefined behavior if:
531 // -- the [pointer or glvalue] is used to access a non-static data member
532 // or call a non-static member function
533 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
534 if (SanOpts->Vptr &&
535 (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
536 TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
537 RD && RD->hasDefinition() && RD->isDynamicClass()) {
538 // Compute a hash of the mangled name of the type.
539 //
540 // FIXME: This is not guaranteed to be deterministic! Move to a
541 // fingerprinting mechanism once LLVM provides one. For the time
542 // being the implementation happens to be deterministic.
543 SmallString<64> MangledName;
544 llvm::raw_svector_ostream Out(MangledName);
545 CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
546 Out);
547 llvm::hash_code TypeHash = hash_value(Out.str());
548
549 // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
550 llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
551 llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
552 llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
553 llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
554 llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
555
556 llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
557 Hash = Builder.CreateTrunc(Hash, IntPtrTy);
558
559 // Look the hash up in our cache.
560 const int CacheSize = 128;
561 llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
562 llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
563 "__ubsan_vptr_type_cache");
564 llvm::Value *Slot = Builder.CreateAnd(Hash,
565 llvm::ConstantInt::get(IntPtrTy,
566 CacheSize-1));
567 llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
568 llvm::Value *CacheVal =
569 Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
570
571 // If the hash isn't in the cache, call a runtime handler to perform the
572 // hard work of checking whether the vptr is for an object of the right
573 // type. This will either fill in the cache and return, or produce a
574 // diagnostic.
575 llvm::Constant *StaticData[] = {
576 EmitCheckSourceLocation(Loc),
577 EmitCheckTypeDescriptor(Ty),
578 CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
579 llvm::ConstantInt::get(Int8Ty, TCK)
580 };
581 llvm::Value *DynamicData[] = { Address, Hash };
582 EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
583 "dynamic_type_cache_miss", StaticData, DynamicData,
584 CRK_AlwaysRecoverable);
585 }
586
587 if (Done) {
588 Builder.CreateBr(Done);
589 EmitBlock(Done);
590 }
591 }
592
593 /// Determine whether this expression refers to a flexible array member in a
594 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E)595 static bool isFlexibleArrayMemberExpr(const Expr *E) {
596 // For compatibility with existing code, we treat arrays of length 0 or
597 // 1 as flexible array members.
598 const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
599 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
600 if (CAT->getSize().ugt(1))
601 return false;
602 } else if (!isa<IncompleteArrayType>(AT))
603 return false;
604
605 E = E->IgnoreParens();
606
607 // A flexible array member must be the last member in the class.
608 if (const auto *ME = dyn_cast<MemberExpr>(E)) {
609 // FIXME: If the base type of the member expr is not FD->getParent(),
610 // this should not be treated as a flexible array member access.
611 if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
612 RecordDecl::field_iterator FI(
613 DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
614 return ++FI == FD->getParent()->field_end();
615 }
616 }
617
618 return false;
619 }
620
621 /// If Base is known to point to the start of an array, return the length of
622 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType)623 static llvm::Value *getArrayIndexingBound(
624 CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
625 // For the vector indexing extension, the bound is the number of elements.
626 if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
627 IndexedType = Base->getType();
628 return CGF.Builder.getInt32(VT->getNumElements());
629 }
630
631 Base = Base->IgnoreParens();
632
633 if (const auto *CE = dyn_cast<CastExpr>(Base)) {
634 if (CE->getCastKind() == CK_ArrayToPointerDecay &&
635 !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
636 IndexedType = CE->getSubExpr()->getType();
637 const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
638 if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
639 return CGF.Builder.getInt(CAT->getSize());
640 else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
641 return CGF.getVLASize(VAT).first;
642 }
643 }
644
645 return nullptr;
646 }
647
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)648 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
649 llvm::Value *Index, QualType IndexType,
650 bool Accessed) {
651 assert(SanOpts->ArrayBounds &&
652 "should not be called unless adding bounds checks");
653
654 QualType IndexedType;
655 llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
656 if (!Bound)
657 return;
658
659 bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
660 llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
661 llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
662
663 llvm::Constant *StaticData[] = {
664 EmitCheckSourceLocation(E->getExprLoc()),
665 EmitCheckTypeDescriptor(IndexedType),
666 EmitCheckTypeDescriptor(IndexType)
667 };
668 llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
669 : Builder.CreateICmpULE(IndexVal, BoundVal);
670 EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
671 }
672
673
674 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)675 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
676 bool isInc, bool isPre) {
677 ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
678
679 llvm::Value *NextVal;
680 if (isa<llvm::IntegerType>(InVal.first->getType())) {
681 uint64_t AmountVal = isInc ? 1 : -1;
682 NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
683
684 // Add the inc/dec to the real part.
685 NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
686 } else {
687 QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
688 llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
689 if (!isInc)
690 FVal.changeSign();
691 NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
692
693 // Add the inc/dec to the real part.
694 NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
695 }
696
697 ComplexPairTy IncVal(NextVal, InVal.second);
698
699 // Store the updated result through the lvalue.
700 EmitStoreOfComplex(IncVal, LV, /*init*/ false);
701
702 // If this is a postinc, return the value read from memory, otherwise use the
703 // updated value.
704 return isPre ? IncVal : InVal;
705 }
706
707
708 //===----------------------------------------------------------------------===//
709 // LValue Expression Emission
710 //===----------------------------------------------------------------------===//
711
GetUndefRValue(QualType Ty)712 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
713 if (Ty->isVoidType())
714 return RValue::get(nullptr);
715
716 switch (getEvaluationKind(Ty)) {
717 case TEK_Complex: {
718 llvm::Type *EltTy =
719 ConvertType(Ty->castAs<ComplexType>()->getElementType());
720 llvm::Value *U = llvm::UndefValue::get(EltTy);
721 return RValue::getComplex(std::make_pair(U, U));
722 }
723
724 // If this is a use of an undefined aggregate type, the aggregate must have an
725 // identifiable address. Just because the contents of the value are undefined
726 // doesn't mean that the address can't be taken and compared.
727 case TEK_Aggregate: {
728 llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
729 return RValue::getAggregate(DestPtr);
730 }
731
732 case TEK_Scalar:
733 return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
734 }
735 llvm_unreachable("bad evaluation kind");
736 }
737
EmitUnsupportedRValue(const Expr * E,const char * Name)738 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
739 const char *Name) {
740 ErrorUnsupported(E, Name);
741 return GetUndefRValue(E->getType());
742 }
743
EmitUnsupportedLValue(const Expr * E,const char * Name)744 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
745 const char *Name) {
746 ErrorUnsupported(E, Name);
747 llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
748 return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
749 }
750
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)751 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
752 LValue LV;
753 if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
754 LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
755 else
756 LV = EmitLValue(E);
757 if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
758 EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
759 E->getType(), LV.getAlignment());
760 return LV;
761 }
762
763 /// EmitLValue - Emit code to compute a designator that specifies the location
764 /// of the expression.
765 ///
766 /// This can return one of two things: a simple address or a bitfield reference.
767 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
768 /// an LLVM pointer type.
769 ///
770 /// If this returns a bitfield reference, nothing about the pointee type of the
771 /// LLVM value is known: For example, it may not be a pointer to an integer.
772 ///
773 /// If this returns a normal address, and if the lvalue's C type is fixed size,
774 /// this method guarantees that the returned pointer type will point to an LLVM
775 /// type of the same size of the lvalue's type. If the lvalue has a variable
776 /// length type, this is not possible.
777 ///
EmitLValue(const Expr * E)778 LValue CodeGenFunction::EmitLValue(const Expr *E) {
779 switch (E->getStmtClass()) {
780 default: return EmitUnsupportedLValue(E, "l-value expression");
781
782 case Expr::ObjCPropertyRefExprClass:
783 llvm_unreachable("cannot emit a property reference directly");
784
785 case Expr::ObjCSelectorExprClass:
786 return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
787 case Expr::ObjCIsaExprClass:
788 return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
789 case Expr::BinaryOperatorClass:
790 return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
791 case Expr::CompoundAssignOperatorClass:
792 if (!E->getType()->isAnyComplexType())
793 return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
794 return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
795 case Expr::CallExprClass:
796 case Expr::CXXMemberCallExprClass:
797 case Expr::CXXOperatorCallExprClass:
798 case Expr::UserDefinedLiteralClass:
799 return EmitCallExprLValue(cast<CallExpr>(E));
800 case Expr::VAArgExprClass:
801 return EmitVAArgExprLValue(cast<VAArgExpr>(E));
802 case Expr::DeclRefExprClass:
803 return EmitDeclRefLValue(cast<DeclRefExpr>(E));
804 case Expr::ParenExprClass:
805 return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
806 case Expr::GenericSelectionExprClass:
807 return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
808 case Expr::PredefinedExprClass:
809 return EmitPredefinedLValue(cast<PredefinedExpr>(E));
810 case Expr::StringLiteralClass:
811 return EmitStringLiteralLValue(cast<StringLiteral>(E));
812 case Expr::ObjCEncodeExprClass:
813 return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
814 case Expr::PseudoObjectExprClass:
815 return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
816 case Expr::InitListExprClass:
817 return EmitInitListLValue(cast<InitListExpr>(E));
818 case Expr::CXXTemporaryObjectExprClass:
819 case Expr::CXXConstructExprClass:
820 return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
821 case Expr::CXXBindTemporaryExprClass:
822 return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
823 case Expr::CXXUuidofExprClass:
824 return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
825 case Expr::LambdaExprClass:
826 return EmitLambdaLValue(cast<LambdaExpr>(E));
827
828 case Expr::ExprWithCleanupsClass: {
829 const auto *cleanups = cast<ExprWithCleanups>(E);
830 enterFullExpression(cleanups);
831 RunCleanupsScope Scope(*this);
832 return EmitLValue(cleanups->getSubExpr());
833 }
834
835 case Expr::CXXDefaultArgExprClass:
836 return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
837 case Expr::CXXDefaultInitExprClass: {
838 CXXDefaultInitExprScope Scope(*this);
839 return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
840 }
841 case Expr::CXXTypeidExprClass:
842 return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
843
844 case Expr::ObjCMessageExprClass:
845 return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
846 case Expr::ObjCIvarRefExprClass:
847 return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
848 case Expr::StmtExprClass:
849 return EmitStmtExprLValue(cast<StmtExpr>(E));
850 case Expr::UnaryOperatorClass:
851 return EmitUnaryOpLValue(cast<UnaryOperator>(E));
852 case Expr::ArraySubscriptExprClass:
853 return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
854 case Expr::ExtVectorElementExprClass:
855 return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
856 case Expr::MemberExprClass:
857 return EmitMemberExpr(cast<MemberExpr>(E));
858 case Expr::CompoundLiteralExprClass:
859 return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
860 case Expr::ConditionalOperatorClass:
861 return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
862 case Expr::BinaryConditionalOperatorClass:
863 return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
864 case Expr::ChooseExprClass:
865 return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
866 case Expr::OpaqueValueExprClass:
867 return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
868 case Expr::SubstNonTypeTemplateParmExprClass:
869 return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
870 case Expr::ImplicitCastExprClass:
871 case Expr::CStyleCastExprClass:
872 case Expr::CXXFunctionalCastExprClass:
873 case Expr::CXXStaticCastExprClass:
874 case Expr::CXXDynamicCastExprClass:
875 case Expr::CXXReinterpretCastExprClass:
876 case Expr::CXXConstCastExprClass:
877 case Expr::ObjCBridgedCastExprClass:
878 return EmitCastLValue(cast<CastExpr>(E));
879
880 case Expr::MaterializeTemporaryExprClass:
881 return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
882 }
883 }
884
885 /// Given an object of the given canonical type, can we safely copy a
886 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)887 static bool isConstantEmittableObjectType(QualType type) {
888 assert(type.isCanonical());
889 assert(!type->isReferenceType());
890
891 // Must be const-qualified but non-volatile.
892 Qualifiers qs = type.getLocalQualifiers();
893 if (!qs.hasConst() || qs.hasVolatile()) return false;
894
895 // Otherwise, all object types satisfy this except C++ classes with
896 // mutable subobjects or non-trivial copy/destroy behavior.
897 if (const auto *RT = dyn_cast<RecordType>(type))
898 if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
899 if (RD->hasMutableFields() || !RD->isTrivial())
900 return false;
901
902 return true;
903 }
904
905 /// Can we constant-emit a load of a reference to a variable of the
906 /// given type? This is different from predicates like
907 /// Decl::isUsableInConstantExpressions because we do want it to apply
908 /// in situations that don't necessarily satisfy the language's rules
909 /// for this (e.g. C++'s ODR-use rules). For example, we want to able
910 /// to do this with const float variables even if those variables
911 /// aren't marked 'constexpr'.
912 enum ConstantEmissionKind {
913 CEK_None,
914 CEK_AsReferenceOnly,
915 CEK_AsValueOrReference,
916 CEK_AsValueOnly
917 };
checkVarTypeForConstantEmission(QualType type)918 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
919 type = type.getCanonicalType();
920 if (const auto *ref = dyn_cast<ReferenceType>(type)) {
921 if (isConstantEmittableObjectType(ref->getPointeeType()))
922 return CEK_AsValueOrReference;
923 return CEK_AsReferenceOnly;
924 }
925 if (isConstantEmittableObjectType(type))
926 return CEK_AsValueOnly;
927 return CEK_None;
928 }
929
930 /// Try to emit a reference to the given value without producing it as
931 /// an l-value. This is actually more than an optimization: we can't
932 /// produce an l-value for variables that we never actually captured
933 /// in a block or lambda, which means const int variables or constexpr
934 /// literals or similar.
935 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)936 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
937 ValueDecl *value = refExpr->getDecl();
938
939 // The value needs to be an enum constant or a constant variable.
940 ConstantEmissionKind CEK;
941 if (isa<ParmVarDecl>(value)) {
942 CEK = CEK_None;
943 } else if (auto *var = dyn_cast<VarDecl>(value)) {
944 CEK = checkVarTypeForConstantEmission(var->getType());
945 } else if (isa<EnumConstantDecl>(value)) {
946 CEK = CEK_AsValueOnly;
947 } else {
948 CEK = CEK_None;
949 }
950 if (CEK == CEK_None) return ConstantEmission();
951
952 Expr::EvalResult result;
953 bool resultIsReference;
954 QualType resultType;
955
956 // It's best to evaluate all the way as an r-value if that's permitted.
957 if (CEK != CEK_AsReferenceOnly &&
958 refExpr->EvaluateAsRValue(result, getContext())) {
959 resultIsReference = false;
960 resultType = refExpr->getType();
961
962 // Otherwise, try to evaluate as an l-value.
963 } else if (CEK != CEK_AsValueOnly &&
964 refExpr->EvaluateAsLValue(result, getContext())) {
965 resultIsReference = true;
966 resultType = value->getType();
967
968 // Failure.
969 } else {
970 return ConstantEmission();
971 }
972
973 // In any case, if the initializer has side-effects, abandon ship.
974 if (result.HasSideEffects)
975 return ConstantEmission();
976
977 // Emit as a constant.
978 llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
979
980 // Make sure we emit a debug reference to the global variable.
981 // This should probably fire even for
982 if (isa<VarDecl>(value)) {
983 if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
984 EmitDeclRefExprDbgValue(refExpr, C);
985 } else {
986 assert(isa<EnumConstantDecl>(value));
987 EmitDeclRefExprDbgValue(refExpr, C);
988 }
989
990 // If we emitted a reference constant, we need to dereference that.
991 if (resultIsReference)
992 return ConstantEmission::forReference(C);
993
994 return ConstantEmission::forValue(C);
995 }
996
EmitLoadOfScalar(LValue lvalue,SourceLocation Loc)997 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
998 SourceLocation Loc) {
999 return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1000 lvalue.getAlignment().getQuantity(),
1001 lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1002 lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1003 }
1004
hasBooleanRepresentation(QualType Ty)1005 static bool hasBooleanRepresentation(QualType Ty) {
1006 if (Ty->isBooleanType())
1007 return true;
1008
1009 if (const EnumType *ET = Ty->getAs<EnumType>())
1010 return ET->getDecl()->getIntegerType()->isBooleanType();
1011
1012 if (const AtomicType *AT = Ty->getAs<AtomicType>())
1013 return hasBooleanRepresentation(AT->getValueType());
1014
1015 return false;
1016 }
1017
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums)1018 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1019 llvm::APInt &Min, llvm::APInt &End,
1020 bool StrictEnums) {
1021 const EnumType *ET = Ty->getAs<EnumType>();
1022 bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1023 ET && !ET->getDecl()->isFixed();
1024 bool IsBool = hasBooleanRepresentation(Ty);
1025 if (!IsBool && !IsRegularCPlusPlusEnum)
1026 return false;
1027
1028 if (IsBool) {
1029 Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1030 End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1031 } else {
1032 const EnumDecl *ED = ET->getDecl();
1033 llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1034 unsigned Bitwidth = LTy->getScalarSizeInBits();
1035 unsigned NumNegativeBits = ED->getNumNegativeBits();
1036 unsigned NumPositiveBits = ED->getNumPositiveBits();
1037
1038 if (NumNegativeBits) {
1039 unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1040 assert(NumBits <= Bitwidth);
1041 End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1042 Min = -End;
1043 } else {
1044 assert(NumPositiveBits <= Bitwidth);
1045 End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1046 Min = llvm::APInt(Bitwidth, 0);
1047 }
1048 }
1049 return true;
1050 }
1051
getRangeForLoadFromType(QualType Ty)1052 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1053 llvm::APInt Min, End;
1054 if (!getRangeForType(*this, Ty, Min, End,
1055 CGM.getCodeGenOpts().StrictEnums))
1056 return nullptr;
1057
1058 llvm::MDBuilder MDHelper(getLLVMContext());
1059 return MDHelper.createRange(Min, End);
1060 }
1061
EmitLoadOfScalar(llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,SourceLocation Loc,llvm::MDNode * TBAAInfo,QualType TBAABaseType,uint64_t TBAAOffset)1062 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1063 unsigned Alignment, QualType Ty,
1064 SourceLocation Loc,
1065 llvm::MDNode *TBAAInfo,
1066 QualType TBAABaseType,
1067 uint64_t TBAAOffset) {
1068 // For better performance, handle vector loads differently.
1069 if (Ty->isVectorType()) {
1070 llvm::Value *V;
1071 const llvm::Type *EltTy =
1072 cast<llvm::PointerType>(Addr->getType())->getElementType();
1073
1074 const auto *VTy = cast<llvm::VectorType>(EltTy);
1075
1076 // Handle vectors of size 3, like size 4 for better performance.
1077 if (VTy->getNumElements() == 3) {
1078
1079 // Bitcast to vec4 type.
1080 llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1081 4);
1082 llvm::PointerType *ptVec4Ty =
1083 llvm::PointerType::get(vec4Ty,
1084 (cast<llvm::PointerType>(
1085 Addr->getType()))->getAddressSpace());
1086 llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1087 "castToVec4");
1088 // Now load value.
1089 llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1090
1091 // Shuffle vector to get vec3.
1092 llvm::Constant *Mask[] = {
1093 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1094 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1095 llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1096 };
1097
1098 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1099 V = Builder.CreateShuffleVector(LoadVal,
1100 llvm::UndefValue::get(vec4Ty),
1101 MaskV, "extractVec");
1102 return EmitFromMemory(V, Ty);
1103 }
1104 }
1105
1106 // Atomic operations have to be done on integral types.
1107 if (Ty->isAtomicType()) {
1108 LValue lvalue = LValue::MakeAddr(Addr, Ty,
1109 CharUnits::fromQuantity(Alignment),
1110 getContext(), TBAAInfo);
1111 return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1112 }
1113
1114 llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1115 if (Volatile)
1116 Load->setVolatile(true);
1117 if (Alignment)
1118 Load->setAlignment(Alignment);
1119 if (TBAAInfo) {
1120 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1121 TBAAOffset);
1122 if (TBAAPath)
1123 CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1124 }
1125
1126 if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1127 (SanOpts->Enum && Ty->getAs<EnumType>())) {
1128 llvm::APInt Min, End;
1129 if (getRangeForType(*this, Ty, Min, End, true)) {
1130 --End;
1131 llvm::Value *Check;
1132 if (!Min)
1133 Check = Builder.CreateICmpULE(
1134 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1135 else {
1136 llvm::Value *Upper = Builder.CreateICmpSLE(
1137 Load, llvm::ConstantInt::get(getLLVMContext(), End));
1138 llvm::Value *Lower = Builder.CreateICmpSGE(
1139 Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1140 Check = Builder.CreateAnd(Upper, Lower);
1141 }
1142 llvm::Constant *StaticArgs[] = {
1143 EmitCheckSourceLocation(Loc),
1144 EmitCheckTypeDescriptor(Ty)
1145 };
1146 EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1147 CRK_Recoverable);
1148 }
1149 } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1150 if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1151 Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1152
1153 return EmitFromMemory(Load, Ty);
1154 }
1155
EmitToMemory(llvm::Value * Value,QualType Ty)1156 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1157 // Bool has a different representation in memory than in registers.
1158 if (hasBooleanRepresentation(Ty)) {
1159 // This should really always be an i1, but sometimes it's already
1160 // an i8, and it's awkward to track those cases down.
1161 if (Value->getType()->isIntegerTy(1))
1162 return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1163 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1164 "wrong value rep of bool");
1165 }
1166
1167 return Value;
1168 }
1169
EmitFromMemory(llvm::Value * Value,QualType Ty)1170 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1171 // Bool has a different representation in memory than in registers.
1172 if (hasBooleanRepresentation(Ty)) {
1173 assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1174 "wrong value rep of bool");
1175 return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1176 }
1177
1178 return Value;
1179 }
1180
EmitStoreOfScalar(llvm::Value * Value,llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,bool isInit,QualType TBAABaseType,uint64_t TBAAOffset)1181 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1182 bool Volatile, unsigned Alignment,
1183 QualType Ty, llvm::MDNode *TBAAInfo,
1184 bool isInit, QualType TBAABaseType,
1185 uint64_t TBAAOffset) {
1186
1187 // Handle vectors differently to get better performance.
1188 if (Ty->isVectorType()) {
1189 llvm::Type *SrcTy = Value->getType();
1190 auto *VecTy = cast<llvm::VectorType>(SrcTy);
1191 // Handle vec3 special.
1192 if (VecTy->getNumElements() == 3) {
1193 llvm::LLVMContext &VMContext = getLLVMContext();
1194
1195 // Our source is a vec3, do a shuffle vector to make it a vec4.
1196 SmallVector<llvm::Constant*, 4> Mask;
1197 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1198 0));
1199 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1200 1));
1201 Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1202 2));
1203 Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1204
1205 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1206 Value = Builder.CreateShuffleVector(Value,
1207 llvm::UndefValue::get(VecTy),
1208 MaskV, "extractVec");
1209 SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1210 }
1211 auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1212 if (DstPtr->getElementType() != SrcTy) {
1213 llvm::Type *MemTy =
1214 llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1215 Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1216 }
1217 }
1218
1219 Value = EmitToMemory(Value, Ty);
1220
1221 if (Ty->isAtomicType()) {
1222 EmitAtomicStore(RValue::get(Value),
1223 LValue::MakeAddr(Addr, Ty,
1224 CharUnits::fromQuantity(Alignment),
1225 getContext(), TBAAInfo),
1226 isInit);
1227 return;
1228 }
1229
1230 llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1231 if (Alignment)
1232 Store->setAlignment(Alignment);
1233 if (TBAAInfo) {
1234 llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1235 TBAAOffset);
1236 if (TBAAPath)
1237 CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1238 }
1239 }
1240
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1241 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1242 bool isInit) {
1243 EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1244 lvalue.getAlignment().getQuantity(), lvalue.getType(),
1245 lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1246 lvalue.getTBAAOffset());
1247 }
1248
1249 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1250 /// method emits the address of the lvalue, then loads the result as an rvalue,
1251 /// returning the rvalue.
EmitLoadOfLValue(LValue LV,SourceLocation Loc)1252 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1253 if (LV.isObjCWeak()) {
1254 // load of a __weak object.
1255 llvm::Value *AddrWeakObj = LV.getAddress();
1256 return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1257 AddrWeakObj));
1258 }
1259 if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1260 llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1261 Object = EmitObjCConsumeObject(LV.getType(), Object);
1262 return RValue::get(Object);
1263 }
1264
1265 if (LV.isSimple()) {
1266 assert(!LV.getType()->isFunctionType());
1267
1268 // Everything needs a load.
1269 return RValue::get(EmitLoadOfScalar(LV, Loc));
1270 }
1271
1272 if (LV.isVectorElt()) {
1273 llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1274 LV.isVolatileQualified());
1275 Load->setAlignment(LV.getAlignment().getQuantity());
1276 return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1277 "vecext"));
1278 }
1279
1280 // If this is a reference to a subset of the elements of a vector, either
1281 // shuffle the input or extract/insert them as appropriate.
1282 if (LV.isExtVectorElt())
1283 return EmitLoadOfExtVectorElementLValue(LV);
1284
1285 // Global Register variables always invoke intrinsics
1286 if (LV.isGlobalReg())
1287 return EmitLoadOfGlobalRegLValue(LV);
1288
1289 assert(LV.isBitField() && "Unknown LValue type!");
1290 return EmitLoadOfBitfieldLValue(LV);
1291 }
1292
EmitLoadOfBitfieldLValue(LValue LV)1293 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1294 const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1295
1296 // Get the output type.
1297 llvm::Type *ResLTy = ConvertType(LV.getType());
1298
1299 llvm::Value *Ptr = LV.getBitFieldAddr();
1300 llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1301 "bf.load");
1302 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1303
1304 if (Info.IsSigned) {
1305 assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1306 unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1307 if (HighBits)
1308 Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1309 if (Info.Offset + HighBits)
1310 Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1311 } else {
1312 if (Info.Offset)
1313 Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1314 if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1315 Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1316 Info.Size),
1317 "bf.clear");
1318 }
1319 Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1320
1321 return RValue::get(Val);
1322 }
1323
1324 // If this is a reference to a subset of the elements of a vector, create an
1325 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1326 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1327 llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1328 LV.isVolatileQualified());
1329 Load->setAlignment(LV.getAlignment().getQuantity());
1330 llvm::Value *Vec = Load;
1331
1332 const llvm::Constant *Elts = LV.getExtVectorElts();
1333
1334 // If the result of the expression is a non-vector type, we must be extracting
1335 // a single element. Just codegen as an extractelement.
1336 const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1337 if (!ExprVT) {
1338 unsigned InIdx = getAccessedFieldNo(0, Elts);
1339 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1340 return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1341 }
1342
1343 // Always use shuffle vector to try to retain the original program structure
1344 unsigned NumResultElts = ExprVT->getNumElements();
1345
1346 SmallVector<llvm::Constant*, 4> Mask;
1347 for (unsigned i = 0; i != NumResultElts; ++i)
1348 Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1349
1350 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1351 Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1352 MaskV);
1353 return RValue::get(Vec);
1354 }
1355
1356 /// @brief Load of global gamed gegisters are always calls to intrinsics.
EmitLoadOfGlobalRegLValue(LValue LV)1357 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1358 assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1359 "Bad type for register variable");
1360 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1361 assert(RegName && "Register LValue is not metadata");
1362
1363 // We accept integer and pointer types only
1364 llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1365 llvm::Type *Ty = OrigTy;
1366 if (OrigTy->isPointerTy())
1367 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1368 llvm::Type *Types[] = { Ty };
1369
1370 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1371 llvm::Value *Call = Builder.CreateCall(F, RegName);
1372 if (OrigTy->isPointerTy())
1373 Call = Builder.CreateIntToPtr(Call, OrigTy);
1374 return RValue::get(Call);
1375 }
1376
1377
1378 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1379 /// lvalue, where both are guaranteed to the have the same type, and that type
1380 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1381 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1382 bool isInit) {
1383 if (!Dst.isSimple()) {
1384 if (Dst.isVectorElt()) {
1385 // Read/modify/write the vector, inserting the new element.
1386 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1387 Dst.isVolatileQualified());
1388 Load->setAlignment(Dst.getAlignment().getQuantity());
1389 llvm::Value *Vec = Load;
1390 Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1391 Dst.getVectorIdx(), "vecins");
1392 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1393 Dst.isVolatileQualified());
1394 Store->setAlignment(Dst.getAlignment().getQuantity());
1395 return;
1396 }
1397
1398 // If this is an update of extended vector elements, insert them as
1399 // appropriate.
1400 if (Dst.isExtVectorElt())
1401 return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1402
1403 if (Dst.isGlobalReg())
1404 return EmitStoreThroughGlobalRegLValue(Src, Dst);
1405
1406 assert(Dst.isBitField() && "Unknown LValue type");
1407 return EmitStoreThroughBitfieldLValue(Src, Dst);
1408 }
1409
1410 // There's special magic for assigning into an ARC-qualified l-value.
1411 if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1412 switch (Lifetime) {
1413 case Qualifiers::OCL_None:
1414 llvm_unreachable("present but none");
1415
1416 case Qualifiers::OCL_ExplicitNone:
1417 // nothing special
1418 break;
1419
1420 case Qualifiers::OCL_Strong:
1421 EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1422 return;
1423
1424 case Qualifiers::OCL_Weak:
1425 EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1426 return;
1427
1428 case Qualifiers::OCL_Autoreleasing:
1429 Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1430 Src.getScalarVal()));
1431 // fall into the normal path
1432 break;
1433 }
1434 }
1435
1436 if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1437 // load of a __weak object.
1438 llvm::Value *LvalueDst = Dst.getAddress();
1439 llvm::Value *src = Src.getScalarVal();
1440 CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1441 return;
1442 }
1443
1444 if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1445 // load of a __strong object.
1446 llvm::Value *LvalueDst = Dst.getAddress();
1447 llvm::Value *src = Src.getScalarVal();
1448 if (Dst.isObjCIvar()) {
1449 assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1450 llvm::Type *ResultType = ConvertType(getContext().LongTy);
1451 llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1452 llvm::Value *dst = RHS;
1453 RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1454 llvm::Value *LHS =
1455 Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1456 llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1457 CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1458 BytesBetween);
1459 } else if (Dst.isGlobalObjCRef()) {
1460 CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1461 Dst.isThreadLocalRef());
1462 }
1463 else
1464 CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1465 return;
1466 }
1467
1468 assert(Src.isScalar() && "Can't emit an agg store with this method");
1469 EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1470 }
1471
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1472 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1473 llvm::Value **Result) {
1474 const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1475 llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1476 llvm::Value *Ptr = Dst.getBitFieldAddr();
1477
1478 // Get the source value, truncated to the width of the bit-field.
1479 llvm::Value *SrcVal = Src.getScalarVal();
1480
1481 // Cast the source to the storage type and shift it into place.
1482 SrcVal = Builder.CreateIntCast(SrcVal,
1483 Ptr->getType()->getPointerElementType(),
1484 /*IsSigned=*/false);
1485 llvm::Value *MaskedVal = SrcVal;
1486
1487 // See if there are other bits in the bitfield's storage we'll need to load
1488 // and mask together with source before storing.
1489 if (Info.StorageSize != Info.Size) {
1490 assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1491 llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1492 "bf.load");
1493 cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1494
1495 // Mask the source value as needed.
1496 if (!hasBooleanRepresentation(Dst.getType()))
1497 SrcVal = Builder.CreateAnd(SrcVal,
1498 llvm::APInt::getLowBitsSet(Info.StorageSize,
1499 Info.Size),
1500 "bf.value");
1501 MaskedVal = SrcVal;
1502 if (Info.Offset)
1503 SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1504
1505 // Mask out the original value.
1506 Val = Builder.CreateAnd(Val,
1507 ~llvm::APInt::getBitsSet(Info.StorageSize,
1508 Info.Offset,
1509 Info.Offset + Info.Size),
1510 "bf.clear");
1511
1512 // Or together the unchanged values and the source value.
1513 SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1514 } else {
1515 assert(Info.Offset == 0);
1516 }
1517
1518 // Write the new value back out.
1519 llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1520 Dst.isVolatileQualified());
1521 Store->setAlignment(Info.StorageAlignment);
1522
1523 // Return the new value of the bit-field, if requested.
1524 if (Result) {
1525 llvm::Value *ResultVal = MaskedVal;
1526
1527 // Sign extend the value if needed.
1528 if (Info.IsSigned) {
1529 assert(Info.Size <= Info.StorageSize);
1530 unsigned HighBits = Info.StorageSize - Info.Size;
1531 if (HighBits) {
1532 ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1533 ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1534 }
1535 }
1536
1537 ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1538 "bf.result.cast");
1539 *Result = EmitFromMemory(ResultVal, Dst.getType());
1540 }
1541 }
1542
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1543 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1544 LValue Dst) {
1545 // This access turns into a read/modify/write of the vector. Load the input
1546 // value now.
1547 llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1548 Dst.isVolatileQualified());
1549 Load->setAlignment(Dst.getAlignment().getQuantity());
1550 llvm::Value *Vec = Load;
1551 const llvm::Constant *Elts = Dst.getExtVectorElts();
1552
1553 llvm::Value *SrcVal = Src.getScalarVal();
1554
1555 if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1556 unsigned NumSrcElts = VTy->getNumElements();
1557 unsigned NumDstElts =
1558 cast<llvm::VectorType>(Vec->getType())->getNumElements();
1559 if (NumDstElts == NumSrcElts) {
1560 // Use shuffle vector is the src and destination are the same number of
1561 // elements and restore the vector mask since it is on the side it will be
1562 // stored.
1563 SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1564 for (unsigned i = 0; i != NumSrcElts; ++i)
1565 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1566
1567 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1568 Vec = Builder.CreateShuffleVector(SrcVal,
1569 llvm::UndefValue::get(Vec->getType()),
1570 MaskV);
1571 } else if (NumDstElts > NumSrcElts) {
1572 // Extended the source vector to the same length and then shuffle it
1573 // into the destination.
1574 // FIXME: since we're shuffling with undef, can we just use the indices
1575 // into that? This could be simpler.
1576 SmallVector<llvm::Constant*, 4> ExtMask;
1577 for (unsigned i = 0; i != NumSrcElts; ++i)
1578 ExtMask.push_back(Builder.getInt32(i));
1579 ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1580 llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1581 llvm::Value *ExtSrcVal =
1582 Builder.CreateShuffleVector(SrcVal,
1583 llvm::UndefValue::get(SrcVal->getType()),
1584 ExtMaskV);
1585 // build identity
1586 SmallVector<llvm::Constant*, 4> Mask;
1587 for (unsigned i = 0; i != NumDstElts; ++i)
1588 Mask.push_back(Builder.getInt32(i));
1589
1590 // When the vector size is odd and .odd or .hi is used, the last element
1591 // of the Elts constant array will be one past the size of the vector.
1592 // Ignore the last element here, if it is greater than the mask size.
1593 if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1594 NumSrcElts--;
1595
1596 // modify when what gets shuffled in
1597 for (unsigned i = 0; i != NumSrcElts; ++i)
1598 Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1599 llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1600 Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1601 } else {
1602 // We should never shorten the vector
1603 llvm_unreachable("unexpected shorten vector length");
1604 }
1605 } else {
1606 // If the Src is a scalar (not a vector) it must be updating one element.
1607 unsigned InIdx = getAccessedFieldNo(0, Elts);
1608 llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1609 Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1610 }
1611
1612 llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1613 Dst.isVolatileQualified());
1614 Store->setAlignment(Dst.getAlignment().getQuantity());
1615 }
1616
1617 /// @brief Store of global named registers are always calls to intrinsics.
EmitStoreThroughGlobalRegLValue(RValue Src,LValue Dst)1618 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1619 assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1620 "Bad type for register variable");
1621 llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1622 assert(RegName && "Register LValue is not metadata");
1623
1624 // We accept integer and pointer types only
1625 llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1626 llvm::Type *Ty = OrigTy;
1627 if (OrigTy->isPointerTy())
1628 Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1629 llvm::Type *Types[] = { Ty };
1630
1631 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1632 llvm::Value *Value = Src.getScalarVal();
1633 if (OrigTy->isPointerTy())
1634 Value = Builder.CreatePtrToInt(Value, Ty);
1635 Builder.CreateCall2(F, RegName, Value);
1636 }
1637
1638 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1639 // generating write-barries API. It is currently a global, ivar,
1640 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1641 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1642 LValue &LV,
1643 bool IsMemberAccess=false) {
1644 if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1645 return;
1646
1647 if (isa<ObjCIvarRefExpr>(E)) {
1648 QualType ExpTy = E->getType();
1649 if (IsMemberAccess && ExpTy->isPointerType()) {
1650 // If ivar is a structure pointer, assigning to field of
1651 // this struct follows gcc's behavior and makes it a non-ivar
1652 // writer-barrier conservatively.
1653 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1654 if (ExpTy->isRecordType()) {
1655 LV.setObjCIvar(false);
1656 return;
1657 }
1658 }
1659 LV.setObjCIvar(true);
1660 auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1661 LV.setBaseIvarExp(Exp->getBase());
1662 LV.setObjCArray(E->getType()->isArrayType());
1663 return;
1664 }
1665
1666 if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1667 if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1668 if (VD->hasGlobalStorage()) {
1669 LV.setGlobalObjCRef(true);
1670 LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1671 }
1672 }
1673 LV.setObjCArray(E->getType()->isArrayType());
1674 return;
1675 }
1676
1677 if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1678 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1679 return;
1680 }
1681
1682 if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1683 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1684 if (LV.isObjCIvar()) {
1685 // If cast is to a structure pointer, follow gcc's behavior and make it
1686 // a non-ivar write-barrier.
1687 QualType ExpTy = E->getType();
1688 if (ExpTy->isPointerType())
1689 ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1690 if (ExpTy->isRecordType())
1691 LV.setObjCIvar(false);
1692 }
1693 return;
1694 }
1695
1696 if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1697 setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1698 return;
1699 }
1700
1701 if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1702 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1703 return;
1704 }
1705
1706 if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1707 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1708 return;
1709 }
1710
1711 if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1712 setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1713 return;
1714 }
1715
1716 if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1717 setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1718 if (LV.isObjCIvar() && !LV.isObjCArray())
1719 // Using array syntax to assigning to what an ivar points to is not
1720 // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1721 LV.setObjCIvar(false);
1722 else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1723 // Using array syntax to assigning to what global points to is not
1724 // same as assigning to the global itself. {id *G;} G[i] = 0;
1725 LV.setGlobalObjCRef(false);
1726 return;
1727 }
1728
1729 if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1730 setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1731 // We don't know if member is an 'ivar', but this flag is looked at
1732 // only in the context of LV.isObjCIvar().
1733 LV.setObjCArray(E->getType()->isArrayType());
1734 return;
1735 }
1736 }
1737
1738 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1739 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1740 llvm::Value *V, llvm::Type *IRType,
1741 StringRef Name = StringRef()) {
1742 unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1743 return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1744 }
1745
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1746 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1747 const Expr *E, const VarDecl *VD) {
1748 QualType T = E->getType();
1749
1750 // If it's thread_local, emit a call to its wrapper function instead.
1751 if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1752 return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1753
1754 llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1755 llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1756 V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1757 CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1758 LValue LV;
1759 if (VD->getType()->isReferenceType()) {
1760 llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1761 LI->setAlignment(Alignment.getQuantity());
1762 V = LI;
1763 LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1764 } else {
1765 LV = CGF.MakeAddrLValue(V, T, Alignment);
1766 }
1767 setObjCGCLValueClass(CGF.getContext(), E, LV);
1768 return LV;
1769 }
1770
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1771 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1772 const Expr *E, const FunctionDecl *FD) {
1773 llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1774 if (!FD->hasPrototype()) {
1775 if (const FunctionProtoType *Proto =
1776 FD->getType()->getAs<FunctionProtoType>()) {
1777 // Ugly case: for a K&R-style definition, the type of the definition
1778 // isn't the same as the type of a use. Correct for this with a
1779 // bitcast.
1780 QualType NoProtoType =
1781 CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1782 NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1783 V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1784 }
1785 }
1786 CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1787 return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1788 }
1789
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)1790 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1791 llvm::Value *ThisValue) {
1792 QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1793 LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1794 return CGF.EmitLValueForField(LV, FD);
1795 }
1796
1797 /// Named Registers are named metadata pointing to the register name
1798 /// which will be read from/written to as an argument to the intrinsic
1799 /// @llvm.read/write_register.
1800 /// So far, only the name is being passed down, but other options such as
1801 /// register type, allocation type or even optimization options could be
1802 /// passed down via the metadata node.
EmitGlobalNamedRegister(const VarDecl * VD,CodeGenModule & CGM,CharUnits Alignment)1803 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1804 CodeGenModule &CGM,
1805 CharUnits Alignment) {
1806 SmallString<64> Name("llvm.named.register.");
1807 AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1808 assert(Asm->getLabel().size() < 64-Name.size() &&
1809 "Register name too big");
1810 Name.append(Asm->getLabel());
1811 llvm::NamedMDNode *M =
1812 CGM.getModule().getOrInsertNamedMetadata(Name);
1813 if (M->getNumOperands() == 0) {
1814 llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1815 Asm->getLabel());
1816 llvm::Value *Ops[] = { Str };
1817 M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1818 }
1819 return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1820 }
1821
EmitDeclRefLValue(const DeclRefExpr * E)1822 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1823 const NamedDecl *ND = E->getDecl();
1824 CharUnits Alignment = getContext().getDeclAlign(ND);
1825 QualType T = E->getType();
1826
1827 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1828 // Global Named registers access via intrinsics only
1829 if (VD->getStorageClass() == SC_Register &&
1830 VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1831 return EmitGlobalNamedRegister(VD, CGM, Alignment);
1832
1833 // A DeclRefExpr for a reference initialized by a constant expression can
1834 // appear without being odr-used. Directly emit the constant initializer.
1835 const Expr *Init = VD->getAnyInitializer(VD);
1836 if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1837 VD->isUsableInConstantExpressions(getContext()) &&
1838 VD->checkInitIsICE()) {
1839 llvm::Constant *Val =
1840 CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1841 assert(Val && "failed to emit reference constant expression");
1842 // FIXME: Eventually we will want to emit vector element references.
1843 return MakeAddrLValue(Val, T, Alignment);
1844 }
1845 }
1846
1847 // FIXME: We should be able to assert this for FunctionDecls as well!
1848 // FIXME: We should be able to assert this for all DeclRefExprs, not just
1849 // those with a valid source location.
1850 assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1851 !E->getLocation().isValid()) &&
1852 "Should not use decl without marking it used!");
1853
1854 if (ND->hasAttr<WeakRefAttr>()) {
1855 const auto *VD = cast<ValueDecl>(ND);
1856 llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1857 return MakeAddrLValue(Aliasee, T, Alignment);
1858 }
1859
1860 if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1861 // Check if this is a global variable.
1862 if (VD->hasLinkage() || VD->isStaticDataMember())
1863 return EmitGlobalVarDeclLValue(*this, E, VD);
1864
1865 bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1866
1867 llvm::Value *V = LocalDeclMap.lookup(VD);
1868 if (!V && VD->isStaticLocal())
1869 V = CGM.getStaticLocalDeclAddress(VD);
1870
1871 // Use special handling for lambdas.
1872 if (!V) {
1873 if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1874 return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1875 } else if (CapturedStmtInfo) {
1876 if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1877 return EmitCapturedFieldLValue(*this, FD,
1878 CapturedStmtInfo->getContextValue());
1879 }
1880
1881 assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1882 return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1883 T, Alignment);
1884 }
1885
1886 assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1887
1888 if (isBlockVariable)
1889 V = BuildBlockByrefAddress(V, VD);
1890
1891 LValue LV;
1892 if (VD->getType()->isReferenceType()) {
1893 llvm::LoadInst *LI = Builder.CreateLoad(V);
1894 LI->setAlignment(Alignment.getQuantity());
1895 V = LI;
1896 LV = MakeNaturalAlignAddrLValue(V, T);
1897 } else {
1898 LV = MakeAddrLValue(V, T, Alignment);
1899 }
1900
1901 bool isLocalStorage = VD->hasLocalStorage();
1902
1903 bool NonGCable = isLocalStorage &&
1904 !VD->getType()->isReferenceType() &&
1905 !isBlockVariable;
1906 if (NonGCable) {
1907 LV.getQuals().removeObjCGCAttr();
1908 LV.setNonGC(true);
1909 }
1910
1911 bool isImpreciseLifetime =
1912 (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1913 if (isImpreciseLifetime)
1914 LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1915 setObjCGCLValueClass(getContext(), E, LV);
1916 return LV;
1917 }
1918
1919 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1920 return EmitFunctionDeclLValue(*this, E, FD);
1921
1922 llvm_unreachable("Unhandled DeclRefExpr");
1923 }
1924
EmitUnaryOpLValue(const UnaryOperator * E)1925 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1926 // __extension__ doesn't affect lvalue-ness.
1927 if (E->getOpcode() == UO_Extension)
1928 return EmitLValue(E->getSubExpr());
1929
1930 QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1931 switch (E->getOpcode()) {
1932 default: llvm_unreachable("Unknown unary operator lvalue!");
1933 case UO_Deref: {
1934 QualType T = E->getSubExpr()->getType()->getPointeeType();
1935 assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1936
1937 LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1938 LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1939
1940 // We should not generate __weak write barrier on indirect reference
1941 // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1942 // But, we continue to generate __strong write barrier on indirect write
1943 // into a pointer to object.
1944 if (getLangOpts().ObjC1 &&
1945 getLangOpts().getGC() != LangOptions::NonGC &&
1946 LV.isObjCWeak())
1947 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1948 return LV;
1949 }
1950 case UO_Real:
1951 case UO_Imag: {
1952 LValue LV = EmitLValue(E->getSubExpr());
1953 assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1954 llvm::Value *Addr = LV.getAddress();
1955
1956 // __real is valid on scalars. This is a faster way of testing that.
1957 // __imag can only produce an rvalue on scalars.
1958 if (E->getOpcode() == UO_Real &&
1959 !cast<llvm::PointerType>(Addr->getType())
1960 ->getElementType()->isStructTy()) {
1961 assert(E->getSubExpr()->getType()->isArithmeticType());
1962 return LV;
1963 }
1964
1965 assert(E->getSubExpr()->getType()->isAnyComplexType());
1966
1967 unsigned Idx = E->getOpcode() == UO_Imag;
1968 return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1969 Idx, "idx"),
1970 ExprTy);
1971 }
1972 case UO_PreInc:
1973 case UO_PreDec: {
1974 LValue LV = EmitLValue(E->getSubExpr());
1975 bool isInc = E->getOpcode() == UO_PreInc;
1976
1977 if (E->getType()->isAnyComplexType())
1978 EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1979 else
1980 EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1981 return LV;
1982 }
1983 }
1984 }
1985
EmitStringLiteralLValue(const StringLiteral * E)1986 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1987 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1988 E->getType());
1989 }
1990
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)1991 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1992 return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1993 E->getType());
1994 }
1995
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)1996 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1997 SmallString<32>& Target) {
1998 Target.resize(CharByteWidth * (Source.size() + 1));
1999 char *ResultPtr = &Target[0];
2000 const UTF8 *ErrorPtr;
2001 bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2002 (void)success;
2003 assert(success);
2004 Target.resize(ResultPtr - &Target[0]);
2005 }
2006
EmitPredefinedLValue(const PredefinedExpr * E)2007 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2008 switch (E->getIdentType()) {
2009 default:
2010 return EmitUnsupportedLValue(E, "predefined expression");
2011
2012 case PredefinedExpr::Func:
2013 case PredefinedExpr::Function:
2014 case PredefinedExpr::LFunction:
2015 case PredefinedExpr::FuncDName:
2016 case PredefinedExpr::FuncSig:
2017 case PredefinedExpr::PrettyFunction: {
2018 PredefinedExpr::IdentType IdentType = E->getIdentType();
2019 std::string GVName;
2020
2021 // FIXME: We should use the string literal mangling for the Microsoft C++
2022 // ABI so that strings get merged.
2023 switch (IdentType) {
2024 default: llvm_unreachable("Invalid type");
2025 case PredefinedExpr::Func: GVName = "__func__."; break;
2026 case PredefinedExpr::Function: GVName = "__FUNCTION__."; break;
2027 case PredefinedExpr::FuncDName: GVName = "__FUNCDNAME__."; break;
2028 case PredefinedExpr::FuncSig: GVName = "__FUNCSIG__."; break;
2029 case PredefinedExpr::LFunction: GVName = "L__FUNCTION__."; break;
2030 case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2031 }
2032
2033 StringRef FnName = CurFn->getName();
2034 if (FnName.startswith("\01"))
2035 FnName = FnName.substr(1);
2036 GVName += FnName;
2037
2038 // If this is outside of a function use the top level decl.
2039 const Decl *CurDecl = CurCodeDecl;
2040 if (!CurDecl || isa<VarDecl>(CurDecl))
2041 CurDecl = getContext().getTranslationUnitDecl();
2042
2043 const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2044 std::string FunctionName;
2045 if (isa<BlockDecl>(CurDecl)) {
2046 // Blocks use the mangled function name.
2047 // FIXME: ComputeName should handle blocks.
2048 FunctionName = FnName.str();
2049 } else if (isa<CapturedDecl>(CurDecl)) {
2050 // For a captured statement, the function name is its enclosing
2051 // function name not the one compiler generated.
2052 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2053 } else {
2054 FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2055 assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2056 FunctionName.size() &&
2057 "Computed __func__ length differs from type!");
2058 }
2059
2060 llvm::Constant *C;
2061 if (ElemType->isWideCharType()) {
2062 SmallString<32> RawChars;
2063 ConvertUTF8ToWideString(
2064 getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
2065 RawChars);
2066 StringLiteral *SL = StringLiteral::Create(
2067 getContext(), RawChars, StringLiteral::Wide,
2068 /*Pascal = */ false, E->getType(), E->getLocation());
2069 C = CGM.GetAddrOfConstantStringFromLiteral(SL);
2070 } else {
2071 C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2072 }
2073 return MakeAddrLValue(C, E->getType());
2074 }
2075 }
2076 }
2077
2078 /// Emit a type description suitable for use by a runtime sanitizer library. The
2079 /// format of a type descriptor is
2080 ///
2081 /// \code
2082 /// { i16 TypeKind, i16 TypeInfo }
2083 /// \endcode
2084 ///
2085 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2086 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)2087 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2088 // Only emit each type's descriptor once.
2089 if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2090 return C;
2091
2092 uint16_t TypeKind = -1;
2093 uint16_t TypeInfo = 0;
2094
2095 if (T->isIntegerType()) {
2096 TypeKind = 0;
2097 TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2098 (T->isSignedIntegerType() ? 1 : 0);
2099 } else if (T->isFloatingType()) {
2100 TypeKind = 1;
2101 TypeInfo = getContext().getTypeSize(T);
2102 }
2103
2104 // Format the type name as if for a diagnostic, including quotes and
2105 // optionally an 'aka'.
2106 SmallString<32> Buffer;
2107 CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2108 (intptr_t)T.getAsOpaquePtr(),
2109 StringRef(), StringRef(), None, Buffer,
2110 ArrayRef<intptr_t>());
2111
2112 llvm::Constant *Components[] = {
2113 Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2114 llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2115 };
2116 llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2117
2118 auto *GV = new llvm::GlobalVariable(
2119 CGM.getModule(), Descriptor->getType(),
2120 /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2121 GV->setUnnamedAddr(true);
2122
2123 // Remember the descriptor for this type.
2124 CGM.setTypeDescriptorInMap(T, GV);
2125
2126 return GV;
2127 }
2128
EmitCheckValue(llvm::Value * V)2129 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2130 llvm::Type *TargetTy = IntPtrTy;
2131
2132 // Floating-point types which fit into intptr_t are bitcast to integers
2133 // and then passed directly (after zero-extension, if necessary).
2134 if (V->getType()->isFloatingPointTy()) {
2135 unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2136 if (Bits <= TargetTy->getIntegerBitWidth())
2137 V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2138 Bits));
2139 }
2140
2141 // Integers which fit in intptr_t are zero-extended and passed directly.
2142 if (V->getType()->isIntegerTy() &&
2143 V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2144 return Builder.CreateZExt(V, TargetTy);
2145
2146 // Pointers are passed directly, everything else is passed by address.
2147 if (!V->getType()->isPointerTy()) {
2148 llvm::Value *Ptr = CreateTempAlloca(V->getType());
2149 Builder.CreateStore(V, Ptr);
2150 V = Ptr;
2151 }
2152 return Builder.CreatePtrToInt(V, TargetTy);
2153 }
2154
2155 /// \brief Emit a representation of a SourceLocation for passing to a handler
2156 /// in a sanitizer runtime library. The format for this data is:
2157 /// \code
2158 /// struct SourceLocation {
2159 /// const char *Filename;
2160 /// int32_t Line, Column;
2161 /// };
2162 /// \endcode
2163 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)2164 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2165 PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2166
2167 llvm::Constant *Data[] = {
2168 PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2169 : llvm::Constant::getNullValue(Int8PtrTy),
2170 Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2171 Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2172 };
2173
2174 return llvm::ConstantStruct::getAnon(Data);
2175 }
2176
EmitCheck(llvm::Value * Checked,StringRef CheckName,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs,CheckRecoverableKind RecoverKind)2177 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2178 ArrayRef<llvm::Constant *> StaticArgs,
2179 ArrayRef<llvm::Value *> DynamicArgs,
2180 CheckRecoverableKind RecoverKind) {
2181 assert(SanOpts != &SanitizerOptions::Disabled);
2182
2183 if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2184 assert (RecoverKind != CRK_AlwaysRecoverable &&
2185 "Runtime call required for AlwaysRecoverable kind!");
2186 return EmitTrapCheck(Checked);
2187 }
2188
2189 llvm::BasicBlock *Cont = createBasicBlock("cont");
2190
2191 llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2192
2193 llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2194
2195 // Give hint that we very much don't expect to execute the handler
2196 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2197 llvm::MDBuilder MDHelper(getLLVMContext());
2198 llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2199 Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2200
2201 EmitBlock(Handler);
2202
2203 llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2204 auto *InfoPtr =
2205 new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2206 llvm::GlobalVariable::PrivateLinkage, Info);
2207 InfoPtr->setUnnamedAddr(true);
2208
2209 SmallVector<llvm::Value *, 4> Args;
2210 SmallVector<llvm::Type *, 4> ArgTypes;
2211 Args.reserve(DynamicArgs.size() + 1);
2212 ArgTypes.reserve(DynamicArgs.size() + 1);
2213
2214 // Handler functions take an i8* pointing to the (handler-specific) static
2215 // information block, followed by a sequence of intptr_t arguments
2216 // representing operand values.
2217 Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2218 ArgTypes.push_back(Int8PtrTy);
2219 for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2220 Args.push_back(EmitCheckValue(DynamicArgs[i]));
2221 ArgTypes.push_back(IntPtrTy);
2222 }
2223
2224 bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
2225 (RecoverKind == CRK_Recoverable &&
2226 CGM.getCodeGenOpts().SanitizeRecover);
2227
2228 llvm::FunctionType *FnType =
2229 llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2230 llvm::AttrBuilder B;
2231 if (!Recover) {
2232 B.addAttribute(llvm::Attribute::NoReturn)
2233 .addAttribute(llvm::Attribute::NoUnwind);
2234 }
2235 B.addAttribute(llvm::Attribute::UWTable);
2236
2237 // Checks that have two variants use a suffix to differentiate them
2238 bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
2239 !CGM.getCodeGenOpts().SanitizeRecover;
2240 std::string FunctionName = ("__ubsan_handle_" + CheckName +
2241 (NeedsAbortSuffix? "_abort" : "")).str();
2242 llvm::Value *Fn = CGM.CreateRuntimeFunction(
2243 FnType, FunctionName,
2244 llvm::AttributeSet::get(getLLVMContext(),
2245 llvm::AttributeSet::FunctionIndex, B));
2246 llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2247 if (Recover) {
2248 Builder.CreateBr(Cont);
2249 } else {
2250 HandlerCall->setDoesNotReturn();
2251 Builder.CreateUnreachable();
2252 }
2253
2254 EmitBlock(Cont);
2255 }
2256
EmitTrapCheck(llvm::Value * Checked)2257 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2258 llvm::BasicBlock *Cont = createBasicBlock("cont");
2259
2260 // If we're optimizing, collapse all calls to trap down to just one per
2261 // function to save on code size.
2262 if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2263 TrapBB = createBasicBlock("trap");
2264 Builder.CreateCondBr(Checked, Cont, TrapBB);
2265 EmitBlock(TrapBB);
2266 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2267 llvm::CallInst *TrapCall = Builder.CreateCall(F);
2268 TrapCall->setDoesNotReturn();
2269 TrapCall->setDoesNotThrow();
2270 Builder.CreateUnreachable();
2271 } else {
2272 Builder.CreateCondBr(Checked, Cont, TrapBB);
2273 }
2274
2275 EmitBlock(Cont);
2276 }
2277
2278 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2279 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)2280 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2281 // If this isn't just an array->pointer decay, bail out.
2282 const auto *CE = dyn_cast<CastExpr>(E);
2283 if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2284 return nullptr;
2285
2286 // If this is a decay from variable width array, bail out.
2287 const Expr *SubExpr = CE->getSubExpr();
2288 if (SubExpr->getType()->isVariableArrayType())
2289 return nullptr;
2290
2291 return SubExpr;
2292 }
2293
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)2294 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2295 bool Accessed) {
2296 // The index must always be an integer, which is not an aggregate. Emit it.
2297 llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2298 QualType IdxTy = E->getIdx()->getType();
2299 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2300
2301 if (SanOpts->ArrayBounds)
2302 EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2303
2304 // If the base is a vector type, then we are forming a vector element lvalue
2305 // with this subscript.
2306 if (E->getBase()->getType()->isVectorType()) {
2307 // Emit the vector as an lvalue to get its address.
2308 LValue LHS = EmitLValue(E->getBase());
2309 assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2310 return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2311 E->getBase()->getType(), LHS.getAlignment());
2312 }
2313
2314 // Extend or truncate the index type to 32 or 64-bits.
2315 if (Idx->getType() != IntPtrTy)
2316 Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2317
2318 // We know that the pointer points to a type of the correct size, unless the
2319 // size is a VLA or Objective-C interface.
2320 llvm::Value *Address = nullptr;
2321 CharUnits ArrayAlignment;
2322 if (const VariableArrayType *vla =
2323 getContext().getAsVariableArrayType(E->getType())) {
2324 // The base must be a pointer, which is not an aggregate. Emit
2325 // it. It needs to be emitted first in case it's what captures
2326 // the VLA bounds.
2327 Address = EmitScalarExpr(E->getBase());
2328
2329 // The element count here is the total number of non-VLA elements.
2330 llvm::Value *numElements = getVLASize(vla).first;
2331
2332 // Effectively, the multiply by the VLA size is part of the GEP.
2333 // GEP indexes are signed, and scaling an index isn't permitted to
2334 // signed-overflow, so we use the same semantics for our explicit
2335 // multiply. We suppress this if overflow is not undefined behavior.
2336 if (getLangOpts().isSignedOverflowDefined()) {
2337 Idx = Builder.CreateMul(Idx, numElements);
2338 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2339 } else {
2340 Idx = Builder.CreateNSWMul(Idx, numElements);
2341 Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2342 }
2343 } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2344 // Indexing over an interface, as in "NSString *P; P[4];"
2345 llvm::Value *InterfaceSize =
2346 llvm::ConstantInt::get(Idx->getType(),
2347 getContext().getTypeSizeInChars(OIT).getQuantity());
2348
2349 Idx = Builder.CreateMul(Idx, InterfaceSize);
2350
2351 // The base must be a pointer, which is not an aggregate. Emit it.
2352 llvm::Value *Base = EmitScalarExpr(E->getBase());
2353 Address = EmitCastToVoidPtr(Base);
2354 Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2355 Address = Builder.CreateBitCast(Address, Base->getType());
2356 } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2357 // If this is A[i] where A is an array, the frontend will have decayed the
2358 // base to be a ArrayToPointerDecay implicit cast. While correct, it is
2359 // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2360 // "gep x, i" here. Emit one "gep A, 0, i".
2361 assert(Array->getType()->isArrayType() &&
2362 "Array to pointer decay must have array source type!");
2363 LValue ArrayLV;
2364 // For simple multidimensional array indexing, set the 'accessed' flag for
2365 // better bounds-checking of the base expression.
2366 if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2367 ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2368 else
2369 ArrayLV = EmitLValue(Array);
2370 llvm::Value *ArrayPtr = ArrayLV.getAddress();
2371 llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2372 llvm::Value *Args[] = { Zero, Idx };
2373
2374 // Propagate the alignment from the array itself to the result.
2375 ArrayAlignment = ArrayLV.getAlignment();
2376
2377 if (getLangOpts().isSignedOverflowDefined())
2378 Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2379 else
2380 Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2381 } else {
2382 // The base must be a pointer, which is not an aggregate. Emit it.
2383 llvm::Value *Base = EmitScalarExpr(E->getBase());
2384 if (getLangOpts().isSignedOverflowDefined())
2385 Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2386 else
2387 Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2388 }
2389
2390 QualType T = E->getBase()->getType()->getPointeeType();
2391 assert(!T.isNull() &&
2392 "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2393
2394
2395 // Limit the alignment to that of the result type.
2396 LValue LV;
2397 if (!ArrayAlignment.isZero()) {
2398 CharUnits Align = getContext().getTypeAlignInChars(T);
2399 ArrayAlignment = std::min(Align, ArrayAlignment);
2400 LV = MakeAddrLValue(Address, T, ArrayAlignment);
2401 } else {
2402 LV = MakeNaturalAlignAddrLValue(Address, T);
2403 }
2404
2405 LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2406
2407 if (getLangOpts().ObjC1 &&
2408 getLangOpts().getGC() != LangOptions::NonGC) {
2409 LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2410 setObjCGCLValueClass(getContext(), E, LV);
2411 }
2412 return LV;
2413 }
2414
2415 static
GenerateConstantVector(CGBuilderTy & Builder,SmallVectorImpl<unsigned> & Elts)2416 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2417 SmallVectorImpl<unsigned> &Elts) {
2418 SmallVector<llvm::Constant*, 4> CElts;
2419 for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2420 CElts.push_back(Builder.getInt32(Elts[i]));
2421
2422 return llvm::ConstantVector::get(CElts);
2423 }
2424
2425 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2426 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2427 // Emit the base vector as an l-value.
2428 LValue Base;
2429
2430 // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2431 if (E->isArrow()) {
2432 // If it is a pointer to a vector, emit the address and form an lvalue with
2433 // it.
2434 llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2435 const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2436 Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2437 Base.getQuals().removeObjCGCAttr();
2438 } else if (E->getBase()->isGLValue()) {
2439 // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2440 // emit the base as an lvalue.
2441 assert(E->getBase()->getType()->isVectorType());
2442 Base = EmitLValue(E->getBase());
2443 } else {
2444 // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2445 assert(E->getBase()->getType()->isVectorType() &&
2446 "Result must be a vector");
2447 llvm::Value *Vec = EmitScalarExpr(E->getBase());
2448
2449 // Store the vector to memory (because LValue wants an address).
2450 llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2451 Builder.CreateStore(Vec, VecMem);
2452 Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2453 }
2454
2455 QualType type =
2456 E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2457
2458 // Encode the element access list into a vector of unsigned indices.
2459 SmallVector<unsigned, 4> Indices;
2460 E->getEncodedElementAccess(Indices);
2461
2462 if (Base.isSimple()) {
2463 llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2464 return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2465 Base.getAlignment());
2466 }
2467 assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2468
2469 llvm::Constant *BaseElts = Base.getExtVectorElts();
2470 SmallVector<llvm::Constant *, 4> CElts;
2471
2472 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2473 CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2474 llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2475 return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2476 Base.getAlignment());
2477 }
2478
EmitMemberExpr(const MemberExpr * E)2479 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2480 Expr *BaseExpr = E->getBase();
2481
2482 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2483 LValue BaseLV;
2484 if (E->isArrow()) {
2485 llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2486 QualType PtrTy = BaseExpr->getType()->getPointeeType();
2487 EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2488 BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2489 } else
2490 BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2491
2492 NamedDecl *ND = E->getMemberDecl();
2493 if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2494 LValue LV = EmitLValueForField(BaseLV, Field);
2495 setObjCGCLValueClass(getContext(), E, LV);
2496 return LV;
2497 }
2498
2499 if (auto *VD = dyn_cast<VarDecl>(ND))
2500 return EmitGlobalVarDeclLValue(*this, E, VD);
2501
2502 if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2503 return EmitFunctionDeclLValue(*this, E, FD);
2504
2505 llvm_unreachable("Unhandled member declaration!");
2506 }
2507
2508 /// Given that we are currently emitting a lambda, emit an l-value for
2509 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)2510 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2511 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2512 assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2513 QualType LambdaTagType =
2514 getContext().getTagDeclType(Field->getParent());
2515 LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2516 return EmitLValueForField(LambdaLV, Field);
2517 }
2518
EmitLValueForField(LValue base,const FieldDecl * field)2519 LValue CodeGenFunction::EmitLValueForField(LValue base,
2520 const FieldDecl *field) {
2521 if (field->isBitField()) {
2522 const CGRecordLayout &RL =
2523 CGM.getTypes().getCGRecordLayout(field->getParent());
2524 const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2525 llvm::Value *Addr = base.getAddress();
2526 unsigned Idx = RL.getLLVMFieldNo(field);
2527 if (Idx != 0)
2528 // For structs, we GEP to the field that the record layout suggests.
2529 Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2530 // Get the access type.
2531 llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2532 getLLVMContext(), Info.StorageSize,
2533 CGM.getContext().getTargetAddressSpace(base.getType()));
2534 if (Addr->getType() != PtrTy)
2535 Addr = Builder.CreateBitCast(Addr, PtrTy);
2536
2537 QualType fieldType =
2538 field->getType().withCVRQualifiers(base.getVRQualifiers());
2539 return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2540 }
2541
2542 const RecordDecl *rec = field->getParent();
2543 QualType type = field->getType();
2544 CharUnits alignment = getContext().getDeclAlign(field);
2545
2546 // FIXME: It should be impossible to have an LValue without alignment for a
2547 // complete type.
2548 if (!base.getAlignment().isZero())
2549 alignment = std::min(alignment, base.getAlignment());
2550
2551 bool mayAlias = rec->hasAttr<MayAliasAttr>();
2552
2553 llvm::Value *addr = base.getAddress();
2554 unsigned cvr = base.getVRQualifiers();
2555 bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2556 if (rec->isUnion()) {
2557 // For unions, there is no pointer adjustment.
2558 assert(!type->isReferenceType() && "union has reference member");
2559 // TODO: handle path-aware TBAA for union.
2560 TBAAPath = false;
2561 } else {
2562 // For structs, we GEP to the field that the record layout suggests.
2563 unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2564 addr = Builder.CreateStructGEP(addr, idx, field->getName());
2565
2566 // If this is a reference field, load the reference right now.
2567 if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2568 llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2569 if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2570 load->setAlignment(alignment.getQuantity());
2571
2572 // Loading the reference will disable path-aware TBAA.
2573 TBAAPath = false;
2574 if (CGM.shouldUseTBAA()) {
2575 llvm::MDNode *tbaa;
2576 if (mayAlias)
2577 tbaa = CGM.getTBAAInfo(getContext().CharTy);
2578 else
2579 tbaa = CGM.getTBAAInfo(type);
2580 if (tbaa)
2581 CGM.DecorateInstruction(load, tbaa);
2582 }
2583
2584 addr = load;
2585 mayAlias = false;
2586 type = refType->getPointeeType();
2587 if (type->isIncompleteType())
2588 alignment = CharUnits();
2589 else
2590 alignment = getContext().getTypeAlignInChars(type);
2591 cvr = 0; // qualifiers don't recursively apply to referencee
2592 }
2593 }
2594
2595 // Make sure that the address is pointing to the right type. This is critical
2596 // for both unions and structs. A union needs a bitcast, a struct element
2597 // will need a bitcast if the LLVM type laid out doesn't match the desired
2598 // type.
2599 addr = EmitBitCastOfLValueToProperType(*this, addr,
2600 CGM.getTypes().ConvertTypeForMem(type),
2601 field->getName());
2602
2603 if (field->hasAttr<AnnotateAttr>())
2604 addr = EmitFieldAnnotations(field, addr);
2605
2606 LValue LV = MakeAddrLValue(addr, type, alignment);
2607 LV.getQuals().addCVRQualifiers(cvr);
2608 if (TBAAPath) {
2609 const ASTRecordLayout &Layout =
2610 getContext().getASTRecordLayout(field->getParent());
2611 // Set the base type to be the base type of the base LValue and
2612 // update offset to be relative to the base type.
2613 LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2614 LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2615 Layout.getFieldOffset(field->getFieldIndex()) /
2616 getContext().getCharWidth());
2617 }
2618
2619 // __weak attribute on a field is ignored.
2620 if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2621 LV.getQuals().removeObjCGCAttr();
2622
2623 // Fields of may_alias structs act like 'char' for TBAA purposes.
2624 // FIXME: this should get propagated down through anonymous structs
2625 // and unions.
2626 if (mayAlias && LV.getTBAAInfo())
2627 LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2628
2629 return LV;
2630 }
2631
2632 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)2633 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2634 const FieldDecl *Field) {
2635 QualType FieldType = Field->getType();
2636
2637 if (!FieldType->isReferenceType())
2638 return EmitLValueForField(Base, Field);
2639
2640 const CGRecordLayout &RL =
2641 CGM.getTypes().getCGRecordLayout(Field->getParent());
2642 unsigned idx = RL.getLLVMFieldNo(Field);
2643 llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2644 assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2645
2646 // Make sure that the address is pointing to the right type. This is critical
2647 // for both unions and structs. A union needs a bitcast, a struct element
2648 // will need a bitcast if the LLVM type laid out doesn't match the desired
2649 // type.
2650 llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2651 V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2652
2653 CharUnits Alignment = getContext().getDeclAlign(Field);
2654
2655 // FIXME: It should be impossible to have an LValue without alignment for a
2656 // complete type.
2657 if (!Base.getAlignment().isZero())
2658 Alignment = std::min(Alignment, Base.getAlignment());
2659
2660 return MakeAddrLValue(V, FieldType, Alignment);
2661 }
2662
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)2663 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2664 if (E->isFileScope()) {
2665 llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2666 return MakeAddrLValue(GlobalPtr, E->getType());
2667 }
2668 if (E->getType()->isVariablyModifiedType())
2669 // make sure to emit the VLA size.
2670 EmitVariablyModifiedType(E->getType());
2671
2672 llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2673 const Expr *InitExpr = E->getInitializer();
2674 LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2675
2676 EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2677 /*Init*/ true);
2678
2679 return Result;
2680 }
2681
EmitInitListLValue(const InitListExpr * E)2682 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2683 if (!E->isGLValue())
2684 // Initializing an aggregate temporary in C++11: T{...}.
2685 return EmitAggExprToLValue(E);
2686
2687 // An lvalue initializer list must be initializing a reference.
2688 assert(E->getNumInits() == 1 && "reference init with multiple values");
2689 return EmitLValue(E->getInit(0));
2690 }
2691
2692 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2693 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2694 /// LValue is returned and the current block has been terminated.
EmitLValueOrThrowExpression(CodeGenFunction & CGF,const Expr * Operand)2695 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2696 const Expr *Operand) {
2697 if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2698 CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2699 return None;
2700 }
2701
2702 return CGF.EmitLValue(Operand);
2703 }
2704
2705 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)2706 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2707 if (!expr->isGLValue()) {
2708 // ?: here should be an aggregate.
2709 assert(hasAggregateEvaluationKind(expr->getType()) &&
2710 "Unexpected conditional operator!");
2711 return EmitAggExprToLValue(expr);
2712 }
2713
2714 OpaqueValueMapping binding(*this, expr);
2715 RegionCounter Cnt = getPGORegionCounter(expr);
2716
2717 const Expr *condExpr = expr->getCond();
2718 bool CondExprBool;
2719 if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2720 const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2721 if (!CondExprBool) std::swap(live, dead);
2722
2723 if (!ContainsLabel(dead)) {
2724 // If the true case is live, we need to track its region.
2725 if (CondExprBool)
2726 Cnt.beginRegion(Builder);
2727 return EmitLValue(live);
2728 }
2729 }
2730
2731 llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2732 llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2733 llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2734
2735 ConditionalEvaluation eval(*this);
2736 EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2737
2738 // Any temporaries created here are conditional.
2739 EmitBlock(lhsBlock);
2740 Cnt.beginRegion(Builder);
2741 eval.begin(*this);
2742 Optional<LValue> lhs =
2743 EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2744 eval.end(*this);
2745
2746 if (lhs && !lhs->isSimple())
2747 return EmitUnsupportedLValue(expr, "conditional operator");
2748
2749 lhsBlock = Builder.GetInsertBlock();
2750 if (lhs)
2751 Builder.CreateBr(contBlock);
2752
2753 // Any temporaries created here are conditional.
2754 EmitBlock(rhsBlock);
2755 eval.begin(*this);
2756 Optional<LValue> rhs =
2757 EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2758 eval.end(*this);
2759 if (rhs && !rhs->isSimple())
2760 return EmitUnsupportedLValue(expr, "conditional operator");
2761 rhsBlock = Builder.GetInsertBlock();
2762
2763 EmitBlock(contBlock);
2764
2765 if (lhs && rhs) {
2766 llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2767 2, "cond-lvalue");
2768 phi->addIncoming(lhs->getAddress(), lhsBlock);
2769 phi->addIncoming(rhs->getAddress(), rhsBlock);
2770 return MakeAddrLValue(phi, expr->getType());
2771 } else {
2772 assert((lhs || rhs) &&
2773 "both operands of glvalue conditional are throw-expressions?");
2774 return lhs ? *lhs : *rhs;
2775 }
2776 }
2777
2778 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2779 /// type. If the cast is to a reference, we can have the usual lvalue result,
2780 /// otherwise if a cast is needed by the code generator in an lvalue context,
2781 /// then it must mean that we need the address of an aggregate in order to
2782 /// access one of its members. This can happen for all the reasons that casts
2783 /// are permitted with aggregate result, including noop aggregate casts, and
2784 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)2785 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2786 switch (E->getCastKind()) {
2787 case CK_ToVoid:
2788 case CK_BitCast:
2789 case CK_ArrayToPointerDecay:
2790 case CK_FunctionToPointerDecay:
2791 case CK_NullToMemberPointer:
2792 case CK_NullToPointer:
2793 case CK_IntegralToPointer:
2794 case CK_PointerToIntegral:
2795 case CK_PointerToBoolean:
2796 case CK_VectorSplat:
2797 case CK_IntegralCast:
2798 case CK_IntegralToBoolean:
2799 case CK_IntegralToFloating:
2800 case CK_FloatingToIntegral:
2801 case CK_FloatingToBoolean:
2802 case CK_FloatingCast:
2803 case CK_FloatingRealToComplex:
2804 case CK_FloatingComplexToReal:
2805 case CK_FloatingComplexToBoolean:
2806 case CK_FloatingComplexCast:
2807 case CK_FloatingComplexToIntegralComplex:
2808 case CK_IntegralRealToComplex:
2809 case CK_IntegralComplexToReal:
2810 case CK_IntegralComplexToBoolean:
2811 case CK_IntegralComplexCast:
2812 case CK_IntegralComplexToFloatingComplex:
2813 case CK_DerivedToBaseMemberPointer:
2814 case CK_BaseToDerivedMemberPointer:
2815 case CK_MemberPointerToBoolean:
2816 case CK_ReinterpretMemberPointer:
2817 case CK_AnyPointerToBlockPointerCast:
2818 case CK_ARCProduceObject:
2819 case CK_ARCConsumeObject:
2820 case CK_ARCReclaimReturnedObject:
2821 case CK_ARCExtendBlockObject:
2822 case CK_CopyAndAutoreleaseBlockObject:
2823 case CK_AddressSpaceConversion:
2824 return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2825
2826 case CK_Dependent:
2827 llvm_unreachable("dependent cast kind in IR gen!");
2828
2829 case CK_BuiltinFnToFnPtr:
2830 llvm_unreachable("builtin functions are handled elsewhere");
2831
2832 // These are never l-values; just use the aggregate emission code.
2833 case CK_NonAtomicToAtomic:
2834 case CK_AtomicToNonAtomic:
2835 return EmitAggExprToLValue(E);
2836
2837 case CK_Dynamic: {
2838 LValue LV = EmitLValue(E->getSubExpr());
2839 llvm::Value *V = LV.getAddress();
2840 const auto *DCE = cast<CXXDynamicCastExpr>(E);
2841 return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2842 }
2843
2844 case CK_ConstructorConversion:
2845 case CK_UserDefinedConversion:
2846 case CK_CPointerToObjCPointerCast:
2847 case CK_BlockPointerToObjCPointerCast:
2848 case CK_NoOp:
2849 case CK_LValueToRValue:
2850 return EmitLValue(E->getSubExpr());
2851
2852 case CK_UncheckedDerivedToBase:
2853 case CK_DerivedToBase: {
2854 const RecordType *DerivedClassTy =
2855 E->getSubExpr()->getType()->getAs<RecordType>();
2856 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2857
2858 LValue LV = EmitLValue(E->getSubExpr());
2859 llvm::Value *This = LV.getAddress();
2860
2861 // Perform the derived-to-base conversion
2862 llvm::Value *Base =
2863 GetAddressOfBaseClass(This, DerivedClassDecl,
2864 E->path_begin(), E->path_end(),
2865 /*NullCheckValue=*/false);
2866
2867 return MakeAddrLValue(Base, E->getType());
2868 }
2869 case CK_ToUnion:
2870 return EmitAggExprToLValue(E);
2871 case CK_BaseToDerived: {
2872 const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2873 auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2874
2875 LValue LV = EmitLValue(E->getSubExpr());
2876
2877 // Perform the base-to-derived conversion
2878 llvm::Value *Derived =
2879 GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2880 E->path_begin(), E->path_end(),
2881 /*NullCheckValue=*/false);
2882
2883 // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2884 // performed and the object is not of the derived type.
2885 if (sanitizePerformTypeCheck())
2886 EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2887 Derived, E->getType());
2888
2889 return MakeAddrLValue(Derived, E->getType());
2890 }
2891 case CK_LValueBitCast: {
2892 // This must be a reinterpret_cast (or c-style equivalent).
2893 const auto *CE = cast<ExplicitCastExpr>(E);
2894
2895 LValue LV = EmitLValue(E->getSubExpr());
2896 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2897 ConvertType(CE->getTypeAsWritten()));
2898 return MakeAddrLValue(V, E->getType());
2899 }
2900 case CK_ObjCObjectLValueCast: {
2901 LValue LV = EmitLValue(E->getSubExpr());
2902 QualType ToType = getContext().getLValueReferenceType(E->getType());
2903 llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2904 ConvertType(ToType));
2905 return MakeAddrLValue(V, E->getType());
2906 }
2907 case CK_ZeroToOCLEvent:
2908 llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2909 }
2910
2911 llvm_unreachable("Unhandled lvalue cast kind?");
2912 }
2913
EmitOpaqueValueLValue(const OpaqueValueExpr * e)2914 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2915 assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2916 return getOpaqueLValueMapping(e);
2917 }
2918
EmitRValueForField(LValue LV,const FieldDecl * FD,SourceLocation Loc)2919 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2920 const FieldDecl *FD,
2921 SourceLocation Loc) {
2922 QualType FT = FD->getType();
2923 LValue FieldLV = EmitLValueForField(LV, FD);
2924 switch (getEvaluationKind(FT)) {
2925 case TEK_Complex:
2926 return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2927 case TEK_Aggregate:
2928 return FieldLV.asAggregateRValue();
2929 case TEK_Scalar:
2930 return EmitLoadOfLValue(FieldLV, Loc);
2931 }
2932 llvm_unreachable("bad evaluation kind");
2933 }
2934
2935 //===--------------------------------------------------------------------===//
2936 // Expression Emission
2937 //===--------------------------------------------------------------------===//
2938
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)2939 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2940 ReturnValueSlot ReturnValue) {
2941 if (CGDebugInfo *DI = getDebugInfo()) {
2942 SourceLocation Loc = E->getLocStart();
2943 // Force column info to be generated so we can differentiate
2944 // multiple call sites on the same line in the debug info.
2945 // FIXME: This is insufficient. Two calls coming from the same macro
2946 // expansion will still get the same line/column and break debug info. It's
2947 // possible that LLVM can be fixed to not rely on this uniqueness, at which
2948 // point this workaround can be removed.
2949 const FunctionDecl* Callee = E->getDirectCallee();
2950 bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2951 DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2952 }
2953
2954 // Builtins never have block type.
2955 if (E->getCallee()->getType()->isBlockPointerType())
2956 return EmitBlockCallExpr(E, ReturnValue);
2957
2958 if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
2959 return EmitCXXMemberCallExpr(CE, ReturnValue);
2960
2961 if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
2962 return EmitCUDAKernelCallExpr(CE, ReturnValue);
2963
2964 const Decl *TargetDecl = E->getCalleeDecl();
2965 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2966 if (unsigned builtinID = FD->getBuiltinID())
2967 return EmitBuiltinExpr(FD, builtinID, E);
2968 }
2969
2970 if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
2971 if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2972 return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2973
2974 if (const auto *PseudoDtor =
2975 dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2976 QualType DestroyedType = PseudoDtor->getDestroyedType();
2977 if (getLangOpts().ObjCAutoRefCount &&
2978 DestroyedType->isObjCLifetimeType() &&
2979 (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2980 DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2981 // Automatic Reference Counting:
2982 // If the pseudo-expression names a retainable object with weak or
2983 // strong lifetime, the object shall be released.
2984 Expr *BaseExpr = PseudoDtor->getBase();
2985 llvm::Value *BaseValue = nullptr;
2986 Qualifiers BaseQuals;
2987
2988 // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2989 if (PseudoDtor->isArrow()) {
2990 BaseValue = EmitScalarExpr(BaseExpr);
2991 const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2992 BaseQuals = PTy->getPointeeType().getQualifiers();
2993 } else {
2994 LValue BaseLV = EmitLValue(BaseExpr);
2995 BaseValue = BaseLV.getAddress();
2996 QualType BaseTy = BaseExpr->getType();
2997 BaseQuals = BaseTy.getQualifiers();
2998 }
2999
3000 switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3001 case Qualifiers::OCL_None:
3002 case Qualifiers::OCL_ExplicitNone:
3003 case Qualifiers::OCL_Autoreleasing:
3004 break;
3005
3006 case Qualifiers::OCL_Strong:
3007 EmitARCRelease(Builder.CreateLoad(BaseValue,
3008 PseudoDtor->getDestroyedType().isVolatileQualified()),
3009 ARCPreciseLifetime);
3010 break;
3011
3012 case Qualifiers::OCL_Weak:
3013 EmitARCDestroyWeak(BaseValue);
3014 break;
3015 }
3016 } else {
3017 // C++ [expr.pseudo]p1:
3018 // The result shall only be used as the operand for the function call
3019 // operator (), and the result of such a call has type void. The only
3020 // effect is the evaluation of the postfix-expression before the dot or
3021 // arrow.
3022 EmitScalarExpr(E->getCallee());
3023 }
3024
3025 return RValue::get(nullptr);
3026 }
3027
3028 llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3029 return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
3030 ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
3031 }
3032
EmitBinaryOperatorLValue(const BinaryOperator * E)3033 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3034 // Comma expressions just emit their LHS then their RHS as an l-value.
3035 if (E->getOpcode() == BO_Comma) {
3036 EmitIgnoredExpr(E->getLHS());
3037 EnsureInsertPoint();
3038 return EmitLValue(E->getRHS());
3039 }
3040
3041 if (E->getOpcode() == BO_PtrMemD ||
3042 E->getOpcode() == BO_PtrMemI)
3043 return EmitPointerToDataMemberBinaryExpr(E);
3044
3045 assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3046
3047 // Note that in all of these cases, __block variables need the RHS
3048 // evaluated first just in case the variable gets moved by the RHS.
3049
3050 switch (getEvaluationKind(E->getType())) {
3051 case TEK_Scalar: {
3052 switch (E->getLHS()->getType().getObjCLifetime()) {
3053 case Qualifiers::OCL_Strong:
3054 return EmitARCStoreStrong(E, /*ignored*/ false).first;
3055
3056 case Qualifiers::OCL_Autoreleasing:
3057 return EmitARCStoreAutoreleasing(E).first;
3058
3059 // No reason to do any of these differently.
3060 case Qualifiers::OCL_None:
3061 case Qualifiers::OCL_ExplicitNone:
3062 case Qualifiers::OCL_Weak:
3063 break;
3064 }
3065
3066 RValue RV = EmitAnyExpr(E->getRHS());
3067 LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3068 EmitStoreThroughLValue(RV, LV);
3069 return LV;
3070 }
3071
3072 case TEK_Complex:
3073 return EmitComplexAssignmentLValue(E);
3074
3075 case TEK_Aggregate:
3076 return EmitAggExprToLValue(E);
3077 }
3078 llvm_unreachable("bad evaluation kind");
3079 }
3080
EmitCallExprLValue(const CallExpr * E)3081 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3082 RValue RV = EmitCallExpr(E);
3083
3084 if (!RV.isScalar())
3085 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3086
3087 assert(E->getCallReturnType()->isReferenceType() &&
3088 "Can't have a scalar return unless the return type is a "
3089 "reference type!");
3090
3091 return MakeAddrLValue(RV.getScalarVal(), E->getType());
3092 }
3093
EmitVAArgExprLValue(const VAArgExpr * E)3094 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3095 // FIXME: This shouldn't require another copy.
3096 return EmitAggExprToLValue(E);
3097 }
3098
EmitCXXConstructLValue(const CXXConstructExpr * E)3099 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3100 assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3101 && "binding l-value to type which needs a temporary");
3102 AggValueSlot Slot = CreateAggTemp(E->getType());
3103 EmitCXXConstructExpr(E, Slot);
3104 return MakeAddrLValue(Slot.getAddr(), E->getType());
3105 }
3106
3107 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)3108 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3109 return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3110 }
3111
EmitCXXUuidofExpr(const CXXUuidofExpr * E)3112 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3113 return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3114 ConvertType(E->getType())->getPointerTo());
3115 }
3116
EmitCXXUuidofLValue(const CXXUuidofExpr * E)3117 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3118 return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3119 }
3120
3121 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)3122 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3123 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3124 Slot.setExternallyDestructed();
3125 EmitAggExpr(E->getSubExpr(), Slot);
3126 EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3127 return MakeAddrLValue(Slot.getAddr(), E->getType());
3128 }
3129
3130 LValue
EmitLambdaLValue(const LambdaExpr * E)3131 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3132 AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3133 EmitLambdaExpr(E, Slot);
3134 return MakeAddrLValue(Slot.getAddr(), E->getType());
3135 }
3136
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)3137 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3138 RValue RV = EmitObjCMessageExpr(E);
3139
3140 if (!RV.isScalar())
3141 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3142
3143 assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3144 "Can't have a scalar return unless the return type is a "
3145 "reference type!");
3146
3147 return MakeAddrLValue(RV.getScalarVal(), E->getType());
3148 }
3149
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)3150 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3151 llvm::Value *V =
3152 CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3153 return MakeAddrLValue(V, E->getType());
3154 }
3155
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)3156 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3157 const ObjCIvarDecl *Ivar) {
3158 return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3159 }
3160
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)3161 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3162 llvm::Value *BaseValue,
3163 const ObjCIvarDecl *Ivar,
3164 unsigned CVRQualifiers) {
3165 return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3166 Ivar, CVRQualifiers);
3167 }
3168
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)3169 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3170 // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3171 llvm::Value *BaseValue = nullptr;
3172 const Expr *BaseExpr = E->getBase();
3173 Qualifiers BaseQuals;
3174 QualType ObjectTy;
3175 if (E->isArrow()) {
3176 BaseValue = EmitScalarExpr(BaseExpr);
3177 ObjectTy = BaseExpr->getType()->getPointeeType();
3178 BaseQuals = ObjectTy.getQualifiers();
3179 } else {
3180 LValue BaseLV = EmitLValue(BaseExpr);
3181 // FIXME: this isn't right for bitfields.
3182 BaseValue = BaseLV.getAddress();
3183 ObjectTy = BaseExpr->getType();
3184 BaseQuals = ObjectTy.getQualifiers();
3185 }
3186
3187 LValue LV =
3188 EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3189 BaseQuals.getCVRQualifiers());
3190 setObjCGCLValueClass(getContext(), E, LV);
3191 return LV;
3192 }
3193
EmitStmtExprLValue(const StmtExpr * E)3194 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3195 // Can only get l-value for message expression returning aggregate type
3196 RValue RV = EmitAnyExprToTemp(E);
3197 return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3198 }
3199
EmitCall(QualType CalleeType,llvm::Value * Callee,SourceLocation CallLoc,ReturnValueSlot ReturnValue,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,const Decl * TargetDecl)3200 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3201 SourceLocation CallLoc,
3202 ReturnValueSlot ReturnValue,
3203 CallExpr::const_arg_iterator ArgBeg,
3204 CallExpr::const_arg_iterator ArgEnd,
3205 const Decl *TargetDecl) {
3206 // Get the actual function type. The callee type will always be a pointer to
3207 // function type or a block pointer type.
3208 assert(CalleeType->isFunctionPointerType() &&
3209 "Call must have function pointer type!");
3210
3211 CalleeType = getContext().getCanonicalType(CalleeType);
3212
3213 const auto *FnType =
3214 cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3215
3216 // Force column info to differentiate multiple inlined call sites on
3217 // the same line, analoguous to EmitCallExpr.
3218 // FIXME: This is insufficient. Two calls coming from the same macro expansion
3219 // will still get the same line/column and break debug info. It's possible
3220 // that LLVM can be fixed to not rely on this uniqueness, at which point this
3221 // workaround can be removed.
3222 bool ForceColumnInfo = false;
3223 if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3224 ForceColumnInfo = FD->isInlineSpecified();
3225
3226 if (getLangOpts().CPlusPlus && SanOpts->Function &&
3227 (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3228 if (llvm::Constant *PrefixSig =
3229 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3230 llvm::Constant *FTRTTIConst =
3231 CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3232 llvm::Type *PrefixStructTyElems[] = {
3233 PrefixSig->getType(),
3234 FTRTTIConst->getType()
3235 };
3236 llvm::StructType *PrefixStructTy = llvm::StructType::get(
3237 CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3238
3239 llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3240 Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3241 llvm::Value *CalleeSigPtr =
3242 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3243 llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3244 llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3245
3246 llvm::BasicBlock *Cont = createBasicBlock("cont");
3247 llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3248 Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3249
3250 EmitBlock(TypeCheck);
3251 llvm::Value *CalleeRTTIPtr =
3252 Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3253 llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3254 llvm::Value *CalleeRTTIMatch =
3255 Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3256 llvm::Constant *StaticData[] = {
3257 EmitCheckSourceLocation(CallLoc),
3258 EmitCheckTypeDescriptor(CalleeType)
3259 };
3260 EmitCheck(CalleeRTTIMatch,
3261 "function_type_mismatch",
3262 StaticData,
3263 Callee,
3264 CRK_Recoverable);
3265
3266 Builder.CreateBr(Cont);
3267 EmitBlock(Cont);
3268 }
3269 }
3270
3271 CallArgList Args;
3272 EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3273 ForceColumnInfo);
3274
3275 const CGFunctionInfo &FnInfo =
3276 CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3277
3278 // C99 6.5.2.2p6:
3279 // If the expression that denotes the called function has a type
3280 // that does not include a prototype, [the default argument
3281 // promotions are performed]. If the number of arguments does not
3282 // equal the number of parameters, the behavior is undefined. If
3283 // the function is defined with a type that includes a prototype,
3284 // and either the prototype ends with an ellipsis (, ...) or the
3285 // types of the arguments after promotion are not compatible with
3286 // the types of the parameters, the behavior is undefined. If the
3287 // function is defined with a type that does not include a
3288 // prototype, and the types of the arguments after promotion are
3289 // not compatible with those of the parameters after promotion,
3290 // the behavior is undefined [except in some trivial cases].
3291 // That is, in the general case, we should assume that a call
3292 // through an unprototyped function type works like a *non-variadic*
3293 // call. The way we make this work is to cast to the exact type
3294 // of the promoted arguments.
3295 if (isa<FunctionNoProtoType>(FnType)) {
3296 llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3297 CalleeTy = CalleeTy->getPointerTo();
3298 Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3299 }
3300
3301 return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3302 }
3303
3304 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)3305 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3306 llvm::Value *BaseV;
3307 if (E->getOpcode() == BO_PtrMemI)
3308 BaseV = EmitScalarExpr(E->getLHS());
3309 else
3310 BaseV = EmitLValue(E->getLHS()).getAddress();
3311
3312 llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3313
3314 const MemberPointerType *MPT
3315 = E->getRHS()->getType()->getAs<MemberPointerType>();
3316
3317 llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3318 *this, E, BaseV, OffsetV, MPT);
3319
3320 return MakeAddrLValue(AddV, MPT->getPointeeType());
3321 }
3322
3323 /// Given the address of a temporary variable, produce an r-value of
3324 /// its type.
convertTempToRValue(llvm::Value * addr,QualType type,SourceLocation loc)3325 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3326 QualType type,
3327 SourceLocation loc) {
3328 LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3329 switch (getEvaluationKind(type)) {
3330 case TEK_Complex:
3331 return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3332 case TEK_Aggregate:
3333 return lvalue.asAggregateRValue();
3334 case TEK_Scalar:
3335 return RValue::get(EmitLoadOfScalar(lvalue, loc));
3336 }
3337 llvm_unreachable("bad evaluation kind");
3338 }
3339
SetFPAccuracy(llvm::Value * Val,float Accuracy)3340 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3341 assert(Val->getType()->isFPOrFPVectorTy());
3342 if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3343 return;
3344
3345 llvm::MDBuilder MDHelper(getLLVMContext());
3346 llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3347
3348 cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3349 }
3350
3351 namespace {
3352 struct LValueOrRValue {
3353 LValue LV;
3354 RValue RV;
3355 };
3356 }
3357
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3358 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3359 const PseudoObjectExpr *E,
3360 bool forLValue,
3361 AggValueSlot slot) {
3362 SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3363
3364 // Find the result expression, if any.
3365 const Expr *resultExpr = E->getResultExpr();
3366 LValueOrRValue result;
3367
3368 for (PseudoObjectExpr::const_semantics_iterator
3369 i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3370 const Expr *semantic = *i;
3371
3372 // If this semantic expression is an opaque value, bind it
3373 // to the result of its source expression.
3374 if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3375
3376 // If this is the result expression, we may need to evaluate
3377 // directly into the slot.
3378 typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3379 OVMA opaqueData;
3380 if (ov == resultExpr && ov->isRValue() && !forLValue &&
3381 CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3382 CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3383
3384 LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3385 opaqueData = OVMA::bind(CGF, ov, LV);
3386 result.RV = slot.asRValue();
3387
3388 // Otherwise, emit as normal.
3389 } else {
3390 opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3391
3392 // If this is the result, also evaluate the result now.
3393 if (ov == resultExpr) {
3394 if (forLValue)
3395 result.LV = CGF.EmitLValue(ov);
3396 else
3397 result.RV = CGF.EmitAnyExpr(ov, slot);
3398 }
3399 }
3400
3401 opaques.push_back(opaqueData);
3402
3403 // Otherwise, if the expression is the result, evaluate it
3404 // and remember the result.
3405 } else if (semantic == resultExpr) {
3406 if (forLValue)
3407 result.LV = CGF.EmitLValue(semantic);
3408 else
3409 result.RV = CGF.EmitAnyExpr(semantic, slot);
3410
3411 // Otherwise, evaluate the expression in an ignored context.
3412 } else {
3413 CGF.EmitIgnoredExpr(semantic);
3414 }
3415 }
3416
3417 // Unbind all the opaques now.
3418 for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3419 opaques[i].unbind(CGF);
3420
3421 return result;
3422 }
3423
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)3424 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3425 AggValueSlot slot) {
3426 return emitPseudoObjectExpr(*this, E, false, slot).RV;
3427 }
3428
EmitPseudoObjectLValue(const PseudoObjectExpr * E)3429 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3430 return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3431 }
3432