• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGCall.h"
17 #include "CGDebugInfo.h"
18 #include "CGObjCRuntime.h"
19 #include "CGRecordLayout.h"
20 #include "CodeGenModule.h"
21 #include "TargetInfo.h"
22 #include "clang/AST/ASTContext.h"
23 #include "clang/AST/DeclObjC.h"
24 #include "clang/AST/Attr.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Intrinsics.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/MDBuilder.h"
31 #include "llvm/Support/ConvertUTF.h"
32 
33 using namespace clang;
34 using namespace CodeGen;
35 
36 //===--------------------------------------------------------------------===//
37 //                        Miscellaneous Helper Methods
38 //===--------------------------------------------------------------------===//
39 
EmitCastToVoidPtr(llvm::Value * value)40 llvm::Value *CodeGenFunction::EmitCastToVoidPtr(llvm::Value *value) {
41   unsigned addressSpace =
42     cast<llvm::PointerType>(value->getType())->getAddressSpace();
43 
44   llvm::PointerType *destType = Int8PtrTy;
45   if (addressSpace)
46     destType = llvm::Type::getInt8PtrTy(getLLVMContext(), addressSpace);
47 
48   if (value->getType() == destType) return value;
49   return Builder.CreateBitCast(value, destType);
50 }
51 
52 /// CreateTempAlloca - This creates a alloca and inserts it into the entry
53 /// block.
CreateTempAlloca(llvm::Type * Ty,const Twine & Name)54 llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
55                                                     const Twine &Name) {
56   if (!Builder.isNamePreserving())
57     return new llvm::AllocaInst(Ty, nullptr, "", AllocaInsertPt);
58   return new llvm::AllocaInst(Ty, nullptr, Name, AllocaInsertPt);
59 }
60 
InitTempAlloca(llvm::AllocaInst * Var,llvm::Value * Init)61 void CodeGenFunction::InitTempAlloca(llvm::AllocaInst *Var,
62                                      llvm::Value *Init) {
63   auto *Store = new llvm::StoreInst(Init, Var);
64   llvm::BasicBlock *Block = AllocaInsertPt->getParent();
65   Block->getInstList().insertAfter(&*AllocaInsertPt, Store);
66 }
67 
CreateIRTemp(QualType Ty,const Twine & Name)68 llvm::AllocaInst *CodeGenFunction::CreateIRTemp(QualType Ty,
69                                                 const Twine &Name) {
70   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertType(Ty), Name);
71   // FIXME: Should we prefer the preferred type alignment here?
72   CharUnits Align = getContext().getTypeAlignInChars(Ty);
73   Alloc->setAlignment(Align.getQuantity());
74   return Alloc;
75 }
76 
CreateMemTemp(QualType Ty,const Twine & Name)77 llvm::AllocaInst *CodeGenFunction::CreateMemTemp(QualType Ty,
78                                                  const Twine &Name) {
79   llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty), Name);
80   // FIXME: Should we prefer the preferred type alignment here?
81   CharUnits Align = getContext().getTypeAlignInChars(Ty);
82   Alloc->setAlignment(Align.getQuantity());
83   return Alloc;
84 }
85 
86 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
87 /// expression and compare the result against zero, returning an Int1Ty value.
EvaluateExprAsBool(const Expr * E)88 llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
89   PGO.setCurrentStmt(E);
90   if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
91     llvm::Value *MemPtr = EmitScalarExpr(E);
92     return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
93   }
94 
95   QualType BoolTy = getContext().BoolTy;
96   if (!E->getType()->isAnyComplexType())
97     return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy);
98 
99   return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(),BoolTy);
100 }
101 
102 /// EmitIgnoredExpr - Emit code to compute the specified expression,
103 /// ignoring the result.
EmitIgnoredExpr(const Expr * E)104 void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
105   if (E->isRValue())
106     return (void) EmitAnyExpr(E, AggValueSlot::ignored(), true);
107 
108   // Just emit it as an l-value and drop the result.
109   EmitLValue(E);
110 }
111 
112 /// EmitAnyExpr - Emit code to compute the specified expression which
113 /// can have any type.  The result is returned as an RValue struct.
114 /// If this is an aggregate expression, AggSlot indicates where the
115 /// result should be returned.
EmitAnyExpr(const Expr * E,AggValueSlot aggSlot,bool ignoreResult)116 RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
117                                     AggValueSlot aggSlot,
118                                     bool ignoreResult) {
119   switch (getEvaluationKind(E->getType())) {
120   case TEK_Scalar:
121     return RValue::get(EmitScalarExpr(E, ignoreResult));
122   case TEK_Complex:
123     return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
124   case TEK_Aggregate:
125     if (!ignoreResult && aggSlot.isIgnored())
126       aggSlot = CreateAggTemp(E->getType(), "agg-temp");
127     EmitAggExpr(E, aggSlot);
128     return aggSlot.asRValue();
129   }
130   llvm_unreachable("bad evaluation kind");
131 }
132 
133 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
134 /// always be accessible even if no aggregate location is provided.
EmitAnyExprToTemp(const Expr * E)135 RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
136   AggValueSlot AggSlot = AggValueSlot::ignored();
137 
138   if (hasAggregateEvaluationKind(E->getType()))
139     AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
140   return EmitAnyExpr(E, AggSlot);
141 }
142 
143 /// EmitAnyExprToMem - Evaluate an expression into a given memory
144 /// location.
EmitAnyExprToMem(const Expr * E,llvm::Value * Location,Qualifiers Quals,bool IsInit)145 void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
146                                        llvm::Value *Location,
147                                        Qualifiers Quals,
148                                        bool IsInit) {
149   // FIXME: This function should take an LValue as an argument.
150   switch (getEvaluationKind(E->getType())) {
151   case TEK_Complex:
152     EmitComplexExprIntoLValue(E,
153                          MakeNaturalAlignAddrLValue(Location, E->getType()),
154                               /*isInit*/ false);
155     return;
156 
157   case TEK_Aggregate: {
158     CharUnits Alignment = getContext().getTypeAlignInChars(E->getType());
159     EmitAggExpr(E, AggValueSlot::forAddr(Location, Alignment, Quals,
160                                          AggValueSlot::IsDestructed_t(IsInit),
161                                          AggValueSlot::DoesNotNeedGCBarriers,
162                                          AggValueSlot::IsAliased_t(!IsInit)));
163     return;
164   }
165 
166   case TEK_Scalar: {
167     RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
168     LValue LV = MakeAddrLValue(Location, E->getType());
169     EmitStoreThroughLValue(RV, LV);
170     return;
171   }
172   }
173   llvm_unreachable("bad evaluation kind");
174 }
175 
176 static void
pushTemporaryCleanup(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * E,llvm::Value * ReferenceTemporary)177 pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
178                      const Expr *E, llvm::Value *ReferenceTemporary) {
179   // Objective-C++ ARC:
180   //   If we are binding a reference to a temporary that has ownership, we
181   //   need to perform retain/release operations on the temporary.
182   //
183   // FIXME: This should be looking at E, not M.
184   if (CGF.getLangOpts().ObjCAutoRefCount &&
185       M->getType()->isObjCLifetimeType()) {
186     QualType ObjCARCReferenceLifetimeType = M->getType();
187     switch (Qualifiers::ObjCLifetime Lifetime =
188                 ObjCARCReferenceLifetimeType.getObjCLifetime()) {
189     case Qualifiers::OCL_None:
190     case Qualifiers::OCL_ExplicitNone:
191       // Carry on to normal cleanup handling.
192       break;
193 
194     case Qualifiers::OCL_Autoreleasing:
195       // Nothing to do; cleaned up by an autorelease pool.
196       return;
197 
198     case Qualifiers::OCL_Strong:
199     case Qualifiers::OCL_Weak:
200       switch (StorageDuration Duration = M->getStorageDuration()) {
201       case SD_Static:
202         // Note: we intentionally do not register a cleanup to release
203         // the object on program termination.
204         return;
205 
206       case SD_Thread:
207         // FIXME: We should probably register a cleanup in this case.
208         return;
209 
210       case SD_Automatic:
211       case SD_FullExpression:
212         assert(!ObjCARCReferenceLifetimeType->isArrayType());
213         CodeGenFunction::Destroyer *Destroy;
214         CleanupKind CleanupKind;
215         if (Lifetime == Qualifiers::OCL_Strong) {
216           const ValueDecl *VD = M->getExtendingDecl();
217           bool Precise =
218               VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
219           CleanupKind = CGF.getARCCleanupKind();
220           Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
221                             : &CodeGenFunction::destroyARCStrongImprecise;
222         } else {
223           // __weak objects always get EH cleanups; otherwise, exceptions
224           // could cause really nasty crashes instead of mere leaks.
225           CleanupKind = NormalAndEHCleanup;
226           Destroy = &CodeGenFunction::destroyARCWeak;
227         }
228         if (Duration == SD_FullExpression)
229           CGF.pushDestroy(CleanupKind, ReferenceTemporary,
230                           ObjCARCReferenceLifetimeType, *Destroy,
231                           CleanupKind & EHCleanup);
232         else
233           CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
234                                           ObjCARCReferenceLifetimeType,
235                                           *Destroy, CleanupKind & EHCleanup);
236         return;
237 
238       case SD_Dynamic:
239         llvm_unreachable("temporary cannot have dynamic storage duration");
240       }
241       llvm_unreachable("unknown storage duration");
242     }
243   }
244 
245   CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
246   if (const RecordType *RT =
247           E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
248     // Get the destructor for the reference temporary.
249     auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
250     if (!ClassDecl->hasTrivialDestructor())
251       ReferenceTemporaryDtor = ClassDecl->getDestructor();
252   }
253 
254   if (!ReferenceTemporaryDtor)
255     return;
256 
257   // Call the destructor for the temporary.
258   switch (M->getStorageDuration()) {
259   case SD_Static:
260   case SD_Thread: {
261     llvm::Constant *CleanupFn;
262     llvm::Constant *CleanupArg;
263     if (E->getType()->isArrayType()) {
264       CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
265           cast<llvm::Constant>(ReferenceTemporary), E->getType(),
266           CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
267           dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
268       CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
269     } else {
270       CleanupFn =
271         CGF.CGM.GetAddrOfCXXDestructor(ReferenceTemporaryDtor, Dtor_Complete);
272       CleanupArg = cast<llvm::Constant>(ReferenceTemporary);
273     }
274     CGF.CGM.getCXXABI().registerGlobalDtor(
275         CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
276     break;
277   }
278 
279   case SD_FullExpression:
280     CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
281                     CodeGenFunction::destroyCXXObject,
282                     CGF.getLangOpts().Exceptions);
283     break;
284 
285   case SD_Automatic:
286     CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
287                                     ReferenceTemporary, E->getType(),
288                                     CodeGenFunction::destroyCXXObject,
289                                     CGF.getLangOpts().Exceptions);
290     break;
291 
292   case SD_Dynamic:
293     llvm_unreachable("temporary cannot have dynamic storage duration");
294   }
295 }
296 
297 static llvm::Value *
createReferenceTemporary(CodeGenFunction & CGF,const MaterializeTemporaryExpr * M,const Expr * Inner)298 createReferenceTemporary(CodeGenFunction &CGF,
299                          const MaterializeTemporaryExpr *M, const Expr *Inner) {
300   switch (M->getStorageDuration()) {
301   case SD_FullExpression:
302   case SD_Automatic:
303     return CGF.CreateMemTemp(Inner->getType(), "ref.tmp");
304 
305   case SD_Thread:
306   case SD_Static:
307     return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
308 
309   case SD_Dynamic:
310     llvm_unreachable("temporary can't have dynamic storage duration");
311   }
312   llvm_unreachable("unknown storage duration");
313 }
314 
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * M)315 LValue CodeGenFunction::EmitMaterializeTemporaryExpr(
316                                            const MaterializeTemporaryExpr *M) {
317   const Expr *E = M->GetTemporaryExpr();
318 
319   if (getLangOpts().ObjCAutoRefCount &&
320       M->getType()->isObjCLifetimeType() &&
321       M->getType().getObjCLifetime() != Qualifiers::OCL_None &&
322       M->getType().getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
323     // FIXME: Fold this into the general case below.
324     llvm::Value *Object = createReferenceTemporary(*this, M, E);
325     LValue RefTempDst = MakeAddrLValue(Object, M->getType());
326 
327     if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
328       // We should not have emitted the initializer for this temporary as a
329       // constant.
330       assert(!Var->hasInitializer());
331       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
332     }
333 
334     EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
335 
336     pushTemporaryCleanup(*this, M, E, Object);
337     return RefTempDst;
338   }
339 
340   SmallVector<const Expr *, 2> CommaLHSs;
341   SmallVector<SubobjectAdjustment, 2> Adjustments;
342   E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
343 
344   for (unsigned I = 0, N = CommaLHSs.size(); I != N; ++I)
345     EmitIgnoredExpr(CommaLHSs[I]);
346 
347   if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
348     if (opaque->getType()->isRecordType()) {
349       assert(Adjustments.empty());
350       return EmitOpaqueValueLValue(opaque);
351     }
352   }
353 
354   // Create and initialize the reference temporary.
355   llvm::Value *Object = createReferenceTemporary(*this, M, E);
356   if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object)) {
357     // If the temporary is a global and has a constant initializer, we may
358     // have already initialized it.
359     if (!Var->hasInitializer()) {
360       Var->setInitializer(CGM.EmitNullConstant(E->getType()));
361       EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
362     }
363   } else {
364     EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
365   }
366   pushTemporaryCleanup(*this, M, E, Object);
367 
368   // Perform derived-to-base casts and/or field accesses, to get from the
369   // temporary object we created (and, potentially, for which we extended
370   // the lifetime) to the subobject we're binding the reference to.
371   for (unsigned I = Adjustments.size(); I != 0; --I) {
372     SubobjectAdjustment &Adjustment = Adjustments[I-1];
373     switch (Adjustment.Kind) {
374     case SubobjectAdjustment::DerivedToBaseAdjustment:
375       Object =
376           GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
377                                 Adjustment.DerivedToBase.BasePath->path_begin(),
378                                 Adjustment.DerivedToBase.BasePath->path_end(),
379                                 /*NullCheckValue=*/ false);
380       break;
381 
382     case SubobjectAdjustment::FieldAdjustment: {
383       LValue LV = MakeAddrLValue(Object, E->getType());
384       LV = EmitLValueForField(LV, Adjustment.Field);
385       assert(LV.isSimple() &&
386              "materialized temporary field is not a simple lvalue");
387       Object = LV.getAddress();
388       break;
389     }
390 
391     case SubobjectAdjustment::MemberPointerAdjustment: {
392       llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
393       Object = CGM.getCXXABI().EmitMemberDataPointerAddress(
394           *this, E, Object, Ptr, Adjustment.Ptr.MPT);
395       break;
396     }
397     }
398   }
399 
400   return MakeAddrLValue(Object, M->getType());
401 }
402 
403 RValue
EmitReferenceBindingToExpr(const Expr * E)404 CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
405   // Emit the expression as an lvalue.
406   LValue LV = EmitLValue(E);
407   assert(LV.isSimple());
408   llvm::Value *Value = LV.getAddress();
409 
410   if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
411     // C++11 [dcl.ref]p5 (as amended by core issue 453):
412     //   If a glvalue to which a reference is directly bound designates neither
413     //   an existing object or function of an appropriate type nor a region of
414     //   storage of suitable size and alignment to contain an object of the
415     //   reference's type, the behavior is undefined.
416     QualType Ty = E->getType();
417     EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
418   }
419 
420   return RValue::get(Value);
421 }
422 
423 
424 /// getAccessedFieldNo - Given an encoded value and a result number, return the
425 /// input field number being accessed.
getAccessedFieldNo(unsigned Idx,const llvm::Constant * Elts)426 unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
427                                              const llvm::Constant *Elts) {
428   return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
429       ->getZExtValue();
430 }
431 
432 /// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
emitHash16Bytes(CGBuilderTy & Builder,llvm::Value * Low,llvm::Value * High)433 static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
434                                     llvm::Value *High) {
435   llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
436   llvm::Value *K47 = Builder.getInt64(47);
437   llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
438   llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
439   llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
440   llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
441   return Builder.CreateMul(B1, KMul);
442 }
443 
sanitizePerformTypeCheck() const444 bool CodeGenFunction::sanitizePerformTypeCheck() const {
445   return SanOpts->Null | SanOpts->Alignment | SanOpts->ObjectSize |
446          SanOpts->Vptr;
447 }
448 
EmitTypeCheck(TypeCheckKind TCK,SourceLocation Loc,llvm::Value * Address,QualType Ty,CharUnits Alignment)449 void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
450                                     llvm::Value *Address,
451                                     QualType Ty, CharUnits Alignment) {
452   if (!sanitizePerformTypeCheck())
453     return;
454 
455   // Don't check pointers outside the default address space. The null check
456   // isn't correct, the object-size check isn't supported by LLVM, and we can't
457   // communicate the addresses to the runtime handler for the vptr check.
458   if (Address->getType()->getPointerAddressSpace())
459     return;
460 
461   llvm::Value *Cond = nullptr;
462   llvm::BasicBlock *Done = nullptr;
463 
464   if (SanOpts->Null) {
465     // The glvalue must not be an empty glvalue.
466     Cond = Builder.CreateICmpNE(
467         Address, llvm::Constant::getNullValue(Address->getType()));
468 
469     if (TCK == TCK_DowncastPointer) {
470       // When performing a pointer downcast, it's OK if the value is null.
471       // Skip the remaining checks in that case.
472       Done = createBasicBlock("null");
473       llvm::BasicBlock *Rest = createBasicBlock("not.null");
474       Builder.CreateCondBr(Cond, Rest, Done);
475       EmitBlock(Rest);
476       Cond = nullptr;
477     }
478   }
479 
480   if (SanOpts->ObjectSize && !Ty->isIncompleteType()) {
481     uint64_t Size = getContext().getTypeSizeInChars(Ty).getQuantity();
482 
483     // The glvalue must refer to a large enough storage region.
484     // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
485     //        to check this.
486     // FIXME: Get object address space
487     llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
488     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
489     llvm::Value *Min = Builder.getFalse();
490     llvm::Value *CastAddr = Builder.CreateBitCast(Address, Int8PtrTy);
491     llvm::Value *LargeEnough =
492         Builder.CreateICmpUGE(Builder.CreateCall2(F, CastAddr, Min),
493                               llvm::ConstantInt::get(IntPtrTy, Size));
494     Cond = Cond ? Builder.CreateAnd(Cond, LargeEnough) : LargeEnough;
495   }
496 
497   uint64_t AlignVal = 0;
498 
499   if (SanOpts->Alignment) {
500     AlignVal = Alignment.getQuantity();
501     if (!Ty->isIncompleteType() && !AlignVal)
502       AlignVal = getContext().getTypeAlignInChars(Ty).getQuantity();
503 
504     // The glvalue must be suitably aligned.
505     if (AlignVal) {
506       llvm::Value *Align =
507           Builder.CreateAnd(Builder.CreatePtrToInt(Address, IntPtrTy),
508                             llvm::ConstantInt::get(IntPtrTy, AlignVal - 1));
509       llvm::Value *Aligned =
510         Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
511       Cond = Cond ? Builder.CreateAnd(Cond, Aligned) : Aligned;
512     }
513   }
514 
515   if (Cond) {
516     llvm::Constant *StaticData[] = {
517       EmitCheckSourceLocation(Loc),
518       EmitCheckTypeDescriptor(Ty),
519       llvm::ConstantInt::get(SizeTy, AlignVal),
520       llvm::ConstantInt::get(Int8Ty, TCK)
521     };
522     EmitCheck(Cond, "type_mismatch", StaticData, Address, CRK_Recoverable);
523   }
524 
525   // If possible, check that the vptr indicates that there is a subobject of
526   // type Ty at offset zero within this object.
527   //
528   // C++11 [basic.life]p5,6:
529   //   [For storage which does not refer to an object within its lifetime]
530   //   The program has undefined behavior if:
531   //    -- the [pointer or glvalue] is used to access a non-static data member
532   //       or call a non-static member function
533   CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
534   if (SanOpts->Vptr &&
535       (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
536        TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference) &&
537       RD && RD->hasDefinition() && RD->isDynamicClass()) {
538     // Compute a hash of the mangled name of the type.
539     //
540     // FIXME: This is not guaranteed to be deterministic! Move to a
541     //        fingerprinting mechanism once LLVM provides one. For the time
542     //        being the implementation happens to be deterministic.
543     SmallString<64> MangledName;
544     llvm::raw_svector_ostream Out(MangledName);
545     CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
546                                                      Out);
547     llvm::hash_code TypeHash = hash_value(Out.str());
548 
549     // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
550     llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
551     llvm::Type *VPtrTy = llvm::PointerType::get(IntPtrTy, 0);
552     llvm::Value *VPtrAddr = Builder.CreateBitCast(Address, VPtrTy);
553     llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
554     llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
555 
556     llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
557     Hash = Builder.CreateTrunc(Hash, IntPtrTy);
558 
559     // Look the hash up in our cache.
560     const int CacheSize = 128;
561     llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
562     llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
563                                                    "__ubsan_vptr_type_cache");
564     llvm::Value *Slot = Builder.CreateAnd(Hash,
565                                           llvm::ConstantInt::get(IntPtrTy,
566                                                                  CacheSize-1));
567     llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
568     llvm::Value *CacheVal =
569       Builder.CreateLoad(Builder.CreateInBoundsGEP(Cache, Indices));
570 
571     // If the hash isn't in the cache, call a runtime handler to perform the
572     // hard work of checking whether the vptr is for an object of the right
573     // type. This will either fill in the cache and return, or produce a
574     // diagnostic.
575     llvm::Constant *StaticData[] = {
576       EmitCheckSourceLocation(Loc),
577       EmitCheckTypeDescriptor(Ty),
578       CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
579       llvm::ConstantInt::get(Int8Ty, TCK)
580     };
581     llvm::Value *DynamicData[] = { Address, Hash };
582     EmitCheck(Builder.CreateICmpEQ(CacheVal, Hash),
583               "dynamic_type_cache_miss", StaticData, DynamicData,
584               CRK_AlwaysRecoverable);
585   }
586 
587   if (Done) {
588     Builder.CreateBr(Done);
589     EmitBlock(Done);
590   }
591 }
592 
593 /// Determine whether this expression refers to a flexible array member in a
594 /// struct. We disable array bounds checks for such members.
isFlexibleArrayMemberExpr(const Expr * E)595 static bool isFlexibleArrayMemberExpr(const Expr *E) {
596   // For compatibility with existing code, we treat arrays of length 0 or
597   // 1 as flexible array members.
598   const ArrayType *AT = E->getType()->castAsArrayTypeUnsafe();
599   if (const auto *CAT = dyn_cast<ConstantArrayType>(AT)) {
600     if (CAT->getSize().ugt(1))
601       return false;
602   } else if (!isa<IncompleteArrayType>(AT))
603     return false;
604 
605   E = E->IgnoreParens();
606 
607   // A flexible array member must be the last member in the class.
608   if (const auto *ME = dyn_cast<MemberExpr>(E)) {
609     // FIXME: If the base type of the member expr is not FD->getParent(),
610     // this should not be treated as a flexible array member access.
611     if (const auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) {
612       RecordDecl::field_iterator FI(
613           DeclContext::decl_iterator(const_cast<FieldDecl *>(FD)));
614       return ++FI == FD->getParent()->field_end();
615     }
616   }
617 
618   return false;
619 }
620 
621 /// If Base is known to point to the start of an array, return the length of
622 /// that array. Return 0 if the length cannot be determined.
getArrayIndexingBound(CodeGenFunction & CGF,const Expr * Base,QualType & IndexedType)623 static llvm::Value *getArrayIndexingBound(
624     CodeGenFunction &CGF, const Expr *Base, QualType &IndexedType) {
625   // For the vector indexing extension, the bound is the number of elements.
626   if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
627     IndexedType = Base->getType();
628     return CGF.Builder.getInt32(VT->getNumElements());
629   }
630 
631   Base = Base->IgnoreParens();
632 
633   if (const auto *CE = dyn_cast<CastExpr>(Base)) {
634     if (CE->getCastKind() == CK_ArrayToPointerDecay &&
635         !isFlexibleArrayMemberExpr(CE->getSubExpr())) {
636       IndexedType = CE->getSubExpr()->getType();
637       const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
638       if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
639         return CGF.Builder.getInt(CAT->getSize());
640       else if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
641         return CGF.getVLASize(VAT).first;
642     }
643   }
644 
645   return nullptr;
646 }
647 
EmitBoundsCheck(const Expr * E,const Expr * Base,llvm::Value * Index,QualType IndexType,bool Accessed)648 void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
649                                       llvm::Value *Index, QualType IndexType,
650                                       bool Accessed) {
651   assert(SanOpts->ArrayBounds &&
652          "should not be called unless adding bounds checks");
653 
654   QualType IndexedType;
655   llvm::Value *Bound = getArrayIndexingBound(*this, Base, IndexedType);
656   if (!Bound)
657     return;
658 
659   bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
660   llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
661   llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
662 
663   llvm::Constant *StaticData[] = {
664     EmitCheckSourceLocation(E->getExprLoc()),
665     EmitCheckTypeDescriptor(IndexedType),
666     EmitCheckTypeDescriptor(IndexType)
667   };
668   llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
669                                 : Builder.CreateICmpULE(IndexVal, BoundVal);
670   EmitCheck(Check, "out_of_bounds", StaticData, Index, CRK_Recoverable);
671 }
672 
673 
674 CodeGenFunction::ComplexPairTy CodeGenFunction::
EmitComplexPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)675 EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
676                          bool isInc, bool isPre) {
677   ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
678 
679   llvm::Value *NextVal;
680   if (isa<llvm::IntegerType>(InVal.first->getType())) {
681     uint64_t AmountVal = isInc ? 1 : -1;
682     NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
683 
684     // Add the inc/dec to the real part.
685     NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
686   } else {
687     QualType ElemTy = E->getType()->getAs<ComplexType>()->getElementType();
688     llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
689     if (!isInc)
690       FVal.changeSign();
691     NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
692 
693     // Add the inc/dec to the real part.
694     NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
695   }
696 
697   ComplexPairTy IncVal(NextVal, InVal.second);
698 
699   // Store the updated result through the lvalue.
700   EmitStoreOfComplex(IncVal, LV, /*init*/ false);
701 
702   // If this is a postinc, return the value read from memory, otherwise use the
703   // updated value.
704   return isPre ? IncVal : InVal;
705 }
706 
707 
708 //===----------------------------------------------------------------------===//
709 //                         LValue Expression Emission
710 //===----------------------------------------------------------------------===//
711 
GetUndefRValue(QualType Ty)712 RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
713   if (Ty->isVoidType())
714     return RValue::get(nullptr);
715 
716   switch (getEvaluationKind(Ty)) {
717   case TEK_Complex: {
718     llvm::Type *EltTy =
719       ConvertType(Ty->castAs<ComplexType>()->getElementType());
720     llvm::Value *U = llvm::UndefValue::get(EltTy);
721     return RValue::getComplex(std::make_pair(U, U));
722   }
723 
724   // If this is a use of an undefined aggregate type, the aggregate must have an
725   // identifiable address.  Just because the contents of the value are undefined
726   // doesn't mean that the address can't be taken and compared.
727   case TEK_Aggregate: {
728     llvm::Value *DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
729     return RValue::getAggregate(DestPtr);
730   }
731 
732   case TEK_Scalar:
733     return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
734   }
735   llvm_unreachable("bad evaluation kind");
736 }
737 
EmitUnsupportedRValue(const Expr * E,const char * Name)738 RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
739                                               const char *Name) {
740   ErrorUnsupported(E, Name);
741   return GetUndefRValue(E->getType());
742 }
743 
EmitUnsupportedLValue(const Expr * E,const char * Name)744 LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
745                                               const char *Name) {
746   ErrorUnsupported(E, Name);
747   llvm::Type *Ty = llvm::PointerType::getUnqual(ConvertType(E->getType()));
748   return MakeAddrLValue(llvm::UndefValue::get(Ty), E->getType());
749 }
750 
EmitCheckedLValue(const Expr * E,TypeCheckKind TCK)751 LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
752   LValue LV;
753   if (SanOpts->ArrayBounds && isa<ArraySubscriptExpr>(E))
754     LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
755   else
756     LV = EmitLValue(E);
757   if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple())
758     EmitTypeCheck(TCK, E->getExprLoc(), LV.getAddress(),
759                   E->getType(), LV.getAlignment());
760   return LV;
761 }
762 
763 /// EmitLValue - Emit code to compute a designator that specifies the location
764 /// of the expression.
765 ///
766 /// This can return one of two things: a simple address or a bitfield reference.
767 /// In either case, the LLVM Value* in the LValue structure is guaranteed to be
768 /// an LLVM pointer type.
769 ///
770 /// If this returns a bitfield reference, nothing about the pointee type of the
771 /// LLVM value is known: For example, it may not be a pointer to an integer.
772 ///
773 /// If this returns a normal address, and if the lvalue's C type is fixed size,
774 /// this method guarantees that the returned pointer type will point to an LLVM
775 /// type of the same size of the lvalue's type.  If the lvalue has a variable
776 /// length type, this is not possible.
777 ///
EmitLValue(const Expr * E)778 LValue CodeGenFunction::EmitLValue(const Expr *E) {
779   switch (E->getStmtClass()) {
780   default: return EmitUnsupportedLValue(E, "l-value expression");
781 
782   case Expr::ObjCPropertyRefExprClass:
783     llvm_unreachable("cannot emit a property reference directly");
784 
785   case Expr::ObjCSelectorExprClass:
786     return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
787   case Expr::ObjCIsaExprClass:
788     return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
789   case Expr::BinaryOperatorClass:
790     return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
791   case Expr::CompoundAssignOperatorClass:
792     if (!E->getType()->isAnyComplexType())
793       return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
794     return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
795   case Expr::CallExprClass:
796   case Expr::CXXMemberCallExprClass:
797   case Expr::CXXOperatorCallExprClass:
798   case Expr::UserDefinedLiteralClass:
799     return EmitCallExprLValue(cast<CallExpr>(E));
800   case Expr::VAArgExprClass:
801     return EmitVAArgExprLValue(cast<VAArgExpr>(E));
802   case Expr::DeclRefExprClass:
803     return EmitDeclRefLValue(cast<DeclRefExpr>(E));
804   case Expr::ParenExprClass:
805     return EmitLValue(cast<ParenExpr>(E)->getSubExpr());
806   case Expr::GenericSelectionExprClass:
807     return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr());
808   case Expr::PredefinedExprClass:
809     return EmitPredefinedLValue(cast<PredefinedExpr>(E));
810   case Expr::StringLiteralClass:
811     return EmitStringLiteralLValue(cast<StringLiteral>(E));
812   case Expr::ObjCEncodeExprClass:
813     return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
814   case Expr::PseudoObjectExprClass:
815     return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
816   case Expr::InitListExprClass:
817     return EmitInitListLValue(cast<InitListExpr>(E));
818   case Expr::CXXTemporaryObjectExprClass:
819   case Expr::CXXConstructExprClass:
820     return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
821   case Expr::CXXBindTemporaryExprClass:
822     return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
823   case Expr::CXXUuidofExprClass:
824     return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
825   case Expr::LambdaExprClass:
826     return EmitLambdaLValue(cast<LambdaExpr>(E));
827 
828   case Expr::ExprWithCleanupsClass: {
829     const auto *cleanups = cast<ExprWithCleanups>(E);
830     enterFullExpression(cleanups);
831     RunCleanupsScope Scope(*this);
832     return EmitLValue(cleanups->getSubExpr());
833   }
834 
835   case Expr::CXXDefaultArgExprClass:
836     return EmitLValue(cast<CXXDefaultArgExpr>(E)->getExpr());
837   case Expr::CXXDefaultInitExprClass: {
838     CXXDefaultInitExprScope Scope(*this);
839     return EmitLValue(cast<CXXDefaultInitExpr>(E)->getExpr());
840   }
841   case Expr::CXXTypeidExprClass:
842     return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
843 
844   case Expr::ObjCMessageExprClass:
845     return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
846   case Expr::ObjCIvarRefExprClass:
847     return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
848   case Expr::StmtExprClass:
849     return EmitStmtExprLValue(cast<StmtExpr>(E));
850   case Expr::UnaryOperatorClass:
851     return EmitUnaryOpLValue(cast<UnaryOperator>(E));
852   case Expr::ArraySubscriptExprClass:
853     return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
854   case Expr::ExtVectorElementExprClass:
855     return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
856   case Expr::MemberExprClass:
857     return EmitMemberExpr(cast<MemberExpr>(E));
858   case Expr::CompoundLiteralExprClass:
859     return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
860   case Expr::ConditionalOperatorClass:
861     return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
862   case Expr::BinaryConditionalOperatorClass:
863     return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
864   case Expr::ChooseExprClass:
865     return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr());
866   case Expr::OpaqueValueExprClass:
867     return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
868   case Expr::SubstNonTypeTemplateParmExprClass:
869     return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement());
870   case Expr::ImplicitCastExprClass:
871   case Expr::CStyleCastExprClass:
872   case Expr::CXXFunctionalCastExprClass:
873   case Expr::CXXStaticCastExprClass:
874   case Expr::CXXDynamicCastExprClass:
875   case Expr::CXXReinterpretCastExprClass:
876   case Expr::CXXConstCastExprClass:
877   case Expr::ObjCBridgedCastExprClass:
878     return EmitCastLValue(cast<CastExpr>(E));
879 
880   case Expr::MaterializeTemporaryExprClass:
881     return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
882   }
883 }
884 
885 /// Given an object of the given canonical type, can we safely copy a
886 /// value out of it based on its initializer?
isConstantEmittableObjectType(QualType type)887 static bool isConstantEmittableObjectType(QualType type) {
888   assert(type.isCanonical());
889   assert(!type->isReferenceType());
890 
891   // Must be const-qualified but non-volatile.
892   Qualifiers qs = type.getLocalQualifiers();
893   if (!qs.hasConst() || qs.hasVolatile()) return false;
894 
895   // Otherwise, all object types satisfy this except C++ classes with
896   // mutable subobjects or non-trivial copy/destroy behavior.
897   if (const auto *RT = dyn_cast<RecordType>(type))
898     if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
899       if (RD->hasMutableFields() || !RD->isTrivial())
900         return false;
901 
902   return true;
903 }
904 
905 /// Can we constant-emit a load of a reference to a variable of the
906 /// given type?  This is different from predicates like
907 /// Decl::isUsableInConstantExpressions because we do want it to apply
908 /// in situations that don't necessarily satisfy the language's rules
909 /// for this (e.g. C++'s ODR-use rules).  For example, we want to able
910 /// to do this with const float variables even if those variables
911 /// aren't marked 'constexpr'.
912 enum ConstantEmissionKind {
913   CEK_None,
914   CEK_AsReferenceOnly,
915   CEK_AsValueOrReference,
916   CEK_AsValueOnly
917 };
checkVarTypeForConstantEmission(QualType type)918 static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
919   type = type.getCanonicalType();
920   if (const auto *ref = dyn_cast<ReferenceType>(type)) {
921     if (isConstantEmittableObjectType(ref->getPointeeType()))
922       return CEK_AsValueOrReference;
923     return CEK_AsReferenceOnly;
924   }
925   if (isConstantEmittableObjectType(type))
926     return CEK_AsValueOnly;
927   return CEK_None;
928 }
929 
930 /// Try to emit a reference to the given value without producing it as
931 /// an l-value.  This is actually more than an optimization: we can't
932 /// produce an l-value for variables that we never actually captured
933 /// in a block or lambda, which means const int variables or constexpr
934 /// literals or similar.
935 CodeGenFunction::ConstantEmission
tryEmitAsConstant(DeclRefExpr * refExpr)936 CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
937   ValueDecl *value = refExpr->getDecl();
938 
939   // The value needs to be an enum constant or a constant variable.
940   ConstantEmissionKind CEK;
941   if (isa<ParmVarDecl>(value)) {
942     CEK = CEK_None;
943   } else if (auto *var = dyn_cast<VarDecl>(value)) {
944     CEK = checkVarTypeForConstantEmission(var->getType());
945   } else if (isa<EnumConstantDecl>(value)) {
946     CEK = CEK_AsValueOnly;
947   } else {
948     CEK = CEK_None;
949   }
950   if (CEK == CEK_None) return ConstantEmission();
951 
952   Expr::EvalResult result;
953   bool resultIsReference;
954   QualType resultType;
955 
956   // It's best to evaluate all the way as an r-value if that's permitted.
957   if (CEK != CEK_AsReferenceOnly &&
958       refExpr->EvaluateAsRValue(result, getContext())) {
959     resultIsReference = false;
960     resultType = refExpr->getType();
961 
962   // Otherwise, try to evaluate as an l-value.
963   } else if (CEK != CEK_AsValueOnly &&
964              refExpr->EvaluateAsLValue(result, getContext())) {
965     resultIsReference = true;
966     resultType = value->getType();
967 
968   // Failure.
969   } else {
970     return ConstantEmission();
971   }
972 
973   // In any case, if the initializer has side-effects, abandon ship.
974   if (result.HasSideEffects)
975     return ConstantEmission();
976 
977   // Emit as a constant.
978   llvm::Constant *C = CGM.EmitConstantValue(result.Val, resultType, this);
979 
980   // Make sure we emit a debug reference to the global variable.
981   // This should probably fire even for
982   if (isa<VarDecl>(value)) {
983     if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
984       EmitDeclRefExprDbgValue(refExpr, C);
985   } else {
986     assert(isa<EnumConstantDecl>(value));
987     EmitDeclRefExprDbgValue(refExpr, C);
988   }
989 
990   // If we emitted a reference constant, we need to dereference that.
991   if (resultIsReference)
992     return ConstantEmission::forReference(C);
993 
994   return ConstantEmission::forValue(C);
995 }
996 
EmitLoadOfScalar(LValue lvalue,SourceLocation Loc)997 llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
998                                                SourceLocation Loc) {
999   return EmitLoadOfScalar(lvalue.getAddress(), lvalue.isVolatile(),
1000                           lvalue.getAlignment().getQuantity(),
1001                           lvalue.getType(), Loc, lvalue.getTBAAInfo(),
1002                           lvalue.getTBAABaseType(), lvalue.getTBAAOffset());
1003 }
1004 
hasBooleanRepresentation(QualType Ty)1005 static bool hasBooleanRepresentation(QualType Ty) {
1006   if (Ty->isBooleanType())
1007     return true;
1008 
1009   if (const EnumType *ET = Ty->getAs<EnumType>())
1010     return ET->getDecl()->getIntegerType()->isBooleanType();
1011 
1012   if (const AtomicType *AT = Ty->getAs<AtomicType>())
1013     return hasBooleanRepresentation(AT->getValueType());
1014 
1015   return false;
1016 }
1017 
getRangeForType(CodeGenFunction & CGF,QualType Ty,llvm::APInt & Min,llvm::APInt & End,bool StrictEnums)1018 static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1019                             llvm::APInt &Min, llvm::APInt &End,
1020                             bool StrictEnums) {
1021   const EnumType *ET = Ty->getAs<EnumType>();
1022   bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1023                                 ET && !ET->getDecl()->isFixed();
1024   bool IsBool = hasBooleanRepresentation(Ty);
1025   if (!IsBool && !IsRegularCPlusPlusEnum)
1026     return false;
1027 
1028   if (IsBool) {
1029     Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1030     End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1031   } else {
1032     const EnumDecl *ED = ET->getDecl();
1033     llvm::Type *LTy = CGF.ConvertTypeForMem(ED->getIntegerType());
1034     unsigned Bitwidth = LTy->getScalarSizeInBits();
1035     unsigned NumNegativeBits = ED->getNumNegativeBits();
1036     unsigned NumPositiveBits = ED->getNumPositiveBits();
1037 
1038     if (NumNegativeBits) {
1039       unsigned NumBits = std::max(NumNegativeBits, NumPositiveBits + 1);
1040       assert(NumBits <= Bitwidth);
1041       End = llvm::APInt(Bitwidth, 1) << (NumBits - 1);
1042       Min = -End;
1043     } else {
1044       assert(NumPositiveBits <= Bitwidth);
1045       End = llvm::APInt(Bitwidth, 1) << NumPositiveBits;
1046       Min = llvm::APInt(Bitwidth, 0);
1047     }
1048   }
1049   return true;
1050 }
1051 
getRangeForLoadFromType(QualType Ty)1052 llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1053   llvm::APInt Min, End;
1054   if (!getRangeForType(*this, Ty, Min, End,
1055                        CGM.getCodeGenOpts().StrictEnums))
1056     return nullptr;
1057 
1058   llvm::MDBuilder MDHelper(getLLVMContext());
1059   return MDHelper.createRange(Min, End);
1060 }
1061 
EmitLoadOfScalar(llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,SourceLocation Loc,llvm::MDNode * TBAAInfo,QualType TBAABaseType,uint64_t TBAAOffset)1062 llvm::Value *CodeGenFunction::EmitLoadOfScalar(llvm::Value *Addr, bool Volatile,
1063                                                unsigned Alignment, QualType Ty,
1064                                                SourceLocation Loc,
1065                                                llvm::MDNode *TBAAInfo,
1066                                                QualType TBAABaseType,
1067                                                uint64_t TBAAOffset) {
1068   // For better performance, handle vector loads differently.
1069   if (Ty->isVectorType()) {
1070     llvm::Value *V;
1071     const llvm::Type *EltTy =
1072     cast<llvm::PointerType>(Addr->getType())->getElementType();
1073 
1074     const auto *VTy = cast<llvm::VectorType>(EltTy);
1075 
1076     // Handle vectors of size 3, like size 4 for better performance.
1077     if (VTy->getNumElements() == 3) {
1078 
1079       // Bitcast to vec4 type.
1080       llvm::VectorType *vec4Ty = llvm::VectorType::get(VTy->getElementType(),
1081                                                          4);
1082       llvm::PointerType *ptVec4Ty =
1083       llvm::PointerType::get(vec4Ty,
1084                              (cast<llvm::PointerType>(
1085                                       Addr->getType()))->getAddressSpace());
1086       llvm::Value *Cast = Builder.CreateBitCast(Addr, ptVec4Ty,
1087                                                 "castToVec4");
1088       // Now load value.
1089       llvm::Value *LoadVal = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1090 
1091       // Shuffle vector to get vec3.
1092       llvm::Constant *Mask[] = {
1093         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 0),
1094         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 1),
1095         llvm::ConstantInt::get(llvm::Type::getInt32Ty(getLLVMContext()), 2)
1096       };
1097 
1098       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1099       V = Builder.CreateShuffleVector(LoadVal,
1100                                       llvm::UndefValue::get(vec4Ty),
1101                                       MaskV, "extractVec");
1102       return EmitFromMemory(V, Ty);
1103     }
1104   }
1105 
1106   // Atomic operations have to be done on integral types.
1107   if (Ty->isAtomicType()) {
1108     LValue lvalue = LValue::MakeAddr(Addr, Ty,
1109                                      CharUnits::fromQuantity(Alignment),
1110                                      getContext(), TBAAInfo);
1111     return EmitAtomicLoad(lvalue, Loc).getScalarVal();
1112   }
1113 
1114   llvm::LoadInst *Load = Builder.CreateLoad(Addr);
1115   if (Volatile)
1116     Load->setVolatile(true);
1117   if (Alignment)
1118     Load->setAlignment(Alignment);
1119   if (TBAAInfo) {
1120     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1121                                                       TBAAOffset);
1122     if (TBAAPath)
1123       CGM.DecorateInstruction(Load, TBAAPath, false/*ConvertTypeToTag*/);
1124   }
1125 
1126   if ((SanOpts->Bool && hasBooleanRepresentation(Ty)) ||
1127       (SanOpts->Enum && Ty->getAs<EnumType>())) {
1128     llvm::APInt Min, End;
1129     if (getRangeForType(*this, Ty, Min, End, true)) {
1130       --End;
1131       llvm::Value *Check;
1132       if (!Min)
1133         Check = Builder.CreateICmpULE(
1134           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1135       else {
1136         llvm::Value *Upper = Builder.CreateICmpSLE(
1137           Load, llvm::ConstantInt::get(getLLVMContext(), End));
1138         llvm::Value *Lower = Builder.CreateICmpSGE(
1139           Load, llvm::ConstantInt::get(getLLVMContext(), Min));
1140         Check = Builder.CreateAnd(Upper, Lower);
1141       }
1142       llvm::Constant *StaticArgs[] = {
1143         EmitCheckSourceLocation(Loc),
1144         EmitCheckTypeDescriptor(Ty)
1145       };
1146       EmitCheck(Check, "load_invalid_value", StaticArgs, EmitCheckValue(Load),
1147                 CRK_Recoverable);
1148     }
1149   } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
1150     if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty))
1151       Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
1152 
1153   return EmitFromMemory(Load, Ty);
1154 }
1155 
EmitToMemory(llvm::Value * Value,QualType Ty)1156 llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
1157   // Bool has a different representation in memory than in registers.
1158   if (hasBooleanRepresentation(Ty)) {
1159     // This should really always be an i1, but sometimes it's already
1160     // an i8, and it's awkward to track those cases down.
1161     if (Value->getType()->isIntegerTy(1))
1162       return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
1163     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1164            "wrong value rep of bool");
1165   }
1166 
1167   return Value;
1168 }
1169 
EmitFromMemory(llvm::Value * Value,QualType Ty)1170 llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
1171   // Bool has a different representation in memory than in registers.
1172   if (hasBooleanRepresentation(Ty)) {
1173     assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
1174            "wrong value rep of bool");
1175     return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
1176   }
1177 
1178   return Value;
1179 }
1180 
EmitStoreOfScalar(llvm::Value * Value,llvm::Value * Addr,bool Volatile,unsigned Alignment,QualType Ty,llvm::MDNode * TBAAInfo,bool isInit,QualType TBAABaseType,uint64_t TBAAOffset)1181 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, llvm::Value *Addr,
1182                                         bool Volatile, unsigned Alignment,
1183                                         QualType Ty, llvm::MDNode *TBAAInfo,
1184                                         bool isInit, QualType TBAABaseType,
1185                                         uint64_t TBAAOffset) {
1186 
1187   // Handle vectors differently to get better performance.
1188   if (Ty->isVectorType()) {
1189     llvm::Type *SrcTy = Value->getType();
1190     auto *VecTy = cast<llvm::VectorType>(SrcTy);
1191     // Handle vec3 special.
1192     if (VecTy->getNumElements() == 3) {
1193       llvm::LLVMContext &VMContext = getLLVMContext();
1194 
1195       // Our source is a vec3, do a shuffle vector to make it a vec4.
1196       SmallVector<llvm::Constant*, 4> Mask;
1197       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1198                                             0));
1199       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1200                                             1));
1201       Mask.push_back(llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext),
1202                                             2));
1203       Mask.push_back(llvm::UndefValue::get(llvm::Type::getInt32Ty(VMContext)));
1204 
1205       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1206       Value = Builder.CreateShuffleVector(Value,
1207                                           llvm::UndefValue::get(VecTy),
1208                                           MaskV, "extractVec");
1209       SrcTy = llvm::VectorType::get(VecTy->getElementType(), 4);
1210     }
1211     auto *DstPtr = cast<llvm::PointerType>(Addr->getType());
1212     if (DstPtr->getElementType() != SrcTy) {
1213       llvm::Type *MemTy =
1214       llvm::PointerType::get(SrcTy, DstPtr->getAddressSpace());
1215       Addr = Builder.CreateBitCast(Addr, MemTy, "storetmp");
1216     }
1217   }
1218 
1219   Value = EmitToMemory(Value, Ty);
1220 
1221   if (Ty->isAtomicType()) {
1222     EmitAtomicStore(RValue::get(Value),
1223                     LValue::MakeAddr(Addr, Ty,
1224                                      CharUnits::fromQuantity(Alignment),
1225                                      getContext(), TBAAInfo),
1226                     isInit);
1227     return;
1228   }
1229 
1230   llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
1231   if (Alignment)
1232     Store->setAlignment(Alignment);
1233   if (TBAAInfo) {
1234     llvm::MDNode *TBAAPath = CGM.getTBAAStructTagInfo(TBAABaseType, TBAAInfo,
1235                                                       TBAAOffset);
1236     if (TBAAPath)
1237       CGM.DecorateInstruction(Store, TBAAPath, false/*ConvertTypeToTag*/);
1238   }
1239 }
1240 
EmitStoreOfScalar(llvm::Value * value,LValue lvalue,bool isInit)1241 void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
1242                                         bool isInit) {
1243   EmitStoreOfScalar(value, lvalue.getAddress(), lvalue.isVolatile(),
1244                     lvalue.getAlignment().getQuantity(), lvalue.getType(),
1245                     lvalue.getTBAAInfo(), isInit, lvalue.getTBAABaseType(),
1246                     lvalue.getTBAAOffset());
1247 }
1248 
1249 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
1250 /// method emits the address of the lvalue, then loads the result as an rvalue,
1251 /// returning the rvalue.
EmitLoadOfLValue(LValue LV,SourceLocation Loc)1252 RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
1253   if (LV.isObjCWeak()) {
1254     // load of a __weak object.
1255     llvm::Value *AddrWeakObj = LV.getAddress();
1256     return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
1257                                                              AddrWeakObj));
1258   }
1259   if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
1260     llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress());
1261     Object = EmitObjCConsumeObject(LV.getType(), Object);
1262     return RValue::get(Object);
1263   }
1264 
1265   if (LV.isSimple()) {
1266     assert(!LV.getType()->isFunctionType());
1267 
1268     // Everything needs a load.
1269     return RValue::get(EmitLoadOfScalar(LV, Loc));
1270   }
1271 
1272   if (LV.isVectorElt()) {
1273     llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddr(),
1274                                               LV.isVolatileQualified());
1275     Load->setAlignment(LV.getAlignment().getQuantity());
1276     return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
1277                                                     "vecext"));
1278   }
1279 
1280   // If this is a reference to a subset of the elements of a vector, either
1281   // shuffle the input or extract/insert them as appropriate.
1282   if (LV.isExtVectorElt())
1283     return EmitLoadOfExtVectorElementLValue(LV);
1284 
1285   // Global Register variables always invoke intrinsics
1286   if (LV.isGlobalReg())
1287     return EmitLoadOfGlobalRegLValue(LV);
1288 
1289   assert(LV.isBitField() && "Unknown LValue type!");
1290   return EmitLoadOfBitfieldLValue(LV);
1291 }
1292 
EmitLoadOfBitfieldLValue(LValue LV)1293 RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV) {
1294   const CGBitFieldInfo &Info = LV.getBitFieldInfo();
1295 
1296   // Get the output type.
1297   llvm::Type *ResLTy = ConvertType(LV.getType());
1298 
1299   llvm::Value *Ptr = LV.getBitFieldAddr();
1300   llvm::Value *Val = Builder.CreateLoad(Ptr, LV.isVolatileQualified(),
1301                                         "bf.load");
1302   cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1303 
1304   if (Info.IsSigned) {
1305     assert(static_cast<unsigned>(Info.Offset + Info.Size) <= Info.StorageSize);
1306     unsigned HighBits = Info.StorageSize - Info.Offset - Info.Size;
1307     if (HighBits)
1308       Val = Builder.CreateShl(Val, HighBits, "bf.shl");
1309     if (Info.Offset + HighBits)
1310       Val = Builder.CreateAShr(Val, Info.Offset + HighBits, "bf.ashr");
1311   } else {
1312     if (Info.Offset)
1313       Val = Builder.CreateLShr(Val, Info.Offset, "bf.lshr");
1314     if (static_cast<unsigned>(Info.Offset) + Info.Size < Info.StorageSize)
1315       Val = Builder.CreateAnd(Val, llvm::APInt::getLowBitsSet(Info.StorageSize,
1316                                                               Info.Size),
1317                               "bf.clear");
1318   }
1319   Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
1320 
1321   return RValue::get(Val);
1322 }
1323 
1324 // If this is a reference to a subset of the elements of a vector, create an
1325 // appropriate shufflevector.
EmitLoadOfExtVectorElementLValue(LValue LV)1326 RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
1327   llvm::LoadInst *Load = Builder.CreateLoad(LV.getExtVectorAddr(),
1328                                             LV.isVolatileQualified());
1329   Load->setAlignment(LV.getAlignment().getQuantity());
1330   llvm::Value *Vec = Load;
1331 
1332   const llvm::Constant *Elts = LV.getExtVectorElts();
1333 
1334   // If the result of the expression is a non-vector type, we must be extracting
1335   // a single element.  Just codegen as an extractelement.
1336   const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
1337   if (!ExprVT) {
1338     unsigned InIdx = getAccessedFieldNo(0, Elts);
1339     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1340     return RValue::get(Builder.CreateExtractElement(Vec, Elt));
1341   }
1342 
1343   // Always use shuffle vector to try to retain the original program structure
1344   unsigned NumResultElts = ExprVT->getNumElements();
1345 
1346   SmallVector<llvm::Constant*, 4> Mask;
1347   for (unsigned i = 0; i != NumResultElts; ++i)
1348     Mask.push_back(Builder.getInt32(getAccessedFieldNo(i, Elts)));
1349 
1350   llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1351   Vec = Builder.CreateShuffleVector(Vec, llvm::UndefValue::get(Vec->getType()),
1352                                     MaskV);
1353   return RValue::get(Vec);
1354 }
1355 
1356 /// @brief Load of global gamed gegisters are always calls to intrinsics.
EmitLoadOfGlobalRegLValue(LValue LV)1357 RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
1358   assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
1359          "Bad type for register variable");
1360   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(LV.getGlobalReg());
1361   assert(RegName && "Register LValue is not metadata");
1362 
1363   // We accept integer and pointer types only
1364   llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
1365   llvm::Type *Ty = OrigTy;
1366   if (OrigTy->isPointerTy())
1367     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1368   llvm::Type *Types[] = { Ty };
1369 
1370   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
1371   llvm::Value *Call = Builder.CreateCall(F, RegName);
1372   if (OrigTy->isPointerTy())
1373     Call = Builder.CreateIntToPtr(Call, OrigTy);
1374   return RValue::get(Call);
1375 }
1376 
1377 
1378 /// EmitStoreThroughLValue - Store the specified rvalue into the specified
1379 /// lvalue, where both are guaranteed to the have the same type, and that type
1380 /// is 'Ty'.
EmitStoreThroughLValue(RValue Src,LValue Dst,bool isInit)1381 void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
1382                                              bool isInit) {
1383   if (!Dst.isSimple()) {
1384     if (Dst.isVectorElt()) {
1385       // Read/modify/write the vector, inserting the new element.
1386       llvm::LoadInst *Load = Builder.CreateLoad(Dst.getVectorAddr(),
1387                                                 Dst.isVolatileQualified());
1388       Load->setAlignment(Dst.getAlignment().getQuantity());
1389       llvm::Value *Vec = Load;
1390       Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
1391                                         Dst.getVectorIdx(), "vecins");
1392       llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getVectorAddr(),
1393                                                    Dst.isVolatileQualified());
1394       Store->setAlignment(Dst.getAlignment().getQuantity());
1395       return;
1396     }
1397 
1398     // If this is an update of extended vector elements, insert them as
1399     // appropriate.
1400     if (Dst.isExtVectorElt())
1401       return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
1402 
1403     if (Dst.isGlobalReg())
1404       return EmitStoreThroughGlobalRegLValue(Src, Dst);
1405 
1406     assert(Dst.isBitField() && "Unknown LValue type");
1407     return EmitStoreThroughBitfieldLValue(Src, Dst);
1408   }
1409 
1410   // There's special magic for assigning into an ARC-qualified l-value.
1411   if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
1412     switch (Lifetime) {
1413     case Qualifiers::OCL_None:
1414       llvm_unreachable("present but none");
1415 
1416     case Qualifiers::OCL_ExplicitNone:
1417       // nothing special
1418       break;
1419 
1420     case Qualifiers::OCL_Strong:
1421       EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
1422       return;
1423 
1424     case Qualifiers::OCL_Weak:
1425       EmitARCStoreWeak(Dst.getAddress(), Src.getScalarVal(), /*ignore*/ true);
1426       return;
1427 
1428     case Qualifiers::OCL_Autoreleasing:
1429       Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
1430                                                      Src.getScalarVal()));
1431       // fall into the normal path
1432       break;
1433     }
1434   }
1435 
1436   if (Dst.isObjCWeak() && !Dst.isNonGC()) {
1437     // load of a __weak object.
1438     llvm::Value *LvalueDst = Dst.getAddress();
1439     llvm::Value *src = Src.getScalarVal();
1440      CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
1441     return;
1442   }
1443 
1444   if (Dst.isObjCStrong() && !Dst.isNonGC()) {
1445     // load of a __strong object.
1446     llvm::Value *LvalueDst = Dst.getAddress();
1447     llvm::Value *src = Src.getScalarVal();
1448     if (Dst.isObjCIvar()) {
1449       assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
1450       llvm::Type *ResultType = ConvertType(getContext().LongTy);
1451       llvm::Value *RHS = EmitScalarExpr(Dst.getBaseIvarExp());
1452       llvm::Value *dst = RHS;
1453       RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1454       llvm::Value *LHS =
1455         Builder.CreatePtrToInt(LvalueDst, ResultType, "sub.ptr.lhs.cast");
1456       llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
1457       CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
1458                                               BytesBetween);
1459     } else if (Dst.isGlobalObjCRef()) {
1460       CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
1461                                                 Dst.isThreadLocalRef());
1462     }
1463     else
1464       CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
1465     return;
1466   }
1467 
1468   assert(Src.isScalar() && "Can't emit an agg store with this method");
1469   EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
1470 }
1471 
EmitStoreThroughBitfieldLValue(RValue Src,LValue Dst,llvm::Value ** Result)1472 void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
1473                                                      llvm::Value **Result) {
1474   const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
1475   llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
1476   llvm::Value *Ptr = Dst.getBitFieldAddr();
1477 
1478   // Get the source value, truncated to the width of the bit-field.
1479   llvm::Value *SrcVal = Src.getScalarVal();
1480 
1481   // Cast the source to the storage type and shift it into place.
1482   SrcVal = Builder.CreateIntCast(SrcVal,
1483                                  Ptr->getType()->getPointerElementType(),
1484                                  /*IsSigned=*/false);
1485   llvm::Value *MaskedVal = SrcVal;
1486 
1487   // See if there are other bits in the bitfield's storage we'll need to load
1488   // and mask together with source before storing.
1489   if (Info.StorageSize != Info.Size) {
1490     assert(Info.StorageSize > Info.Size && "Invalid bitfield size.");
1491     llvm::Value *Val = Builder.CreateLoad(Ptr, Dst.isVolatileQualified(),
1492                                           "bf.load");
1493     cast<llvm::LoadInst>(Val)->setAlignment(Info.StorageAlignment);
1494 
1495     // Mask the source value as needed.
1496     if (!hasBooleanRepresentation(Dst.getType()))
1497       SrcVal = Builder.CreateAnd(SrcVal,
1498                                  llvm::APInt::getLowBitsSet(Info.StorageSize,
1499                                                             Info.Size),
1500                                  "bf.value");
1501     MaskedVal = SrcVal;
1502     if (Info.Offset)
1503       SrcVal = Builder.CreateShl(SrcVal, Info.Offset, "bf.shl");
1504 
1505     // Mask out the original value.
1506     Val = Builder.CreateAnd(Val,
1507                             ~llvm::APInt::getBitsSet(Info.StorageSize,
1508                                                      Info.Offset,
1509                                                      Info.Offset + Info.Size),
1510                             "bf.clear");
1511 
1512     // Or together the unchanged values and the source value.
1513     SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
1514   } else {
1515     assert(Info.Offset == 0);
1516   }
1517 
1518   // Write the new value back out.
1519   llvm::StoreInst *Store = Builder.CreateStore(SrcVal, Ptr,
1520                                                Dst.isVolatileQualified());
1521   Store->setAlignment(Info.StorageAlignment);
1522 
1523   // Return the new value of the bit-field, if requested.
1524   if (Result) {
1525     llvm::Value *ResultVal = MaskedVal;
1526 
1527     // Sign extend the value if needed.
1528     if (Info.IsSigned) {
1529       assert(Info.Size <= Info.StorageSize);
1530       unsigned HighBits = Info.StorageSize - Info.Size;
1531       if (HighBits) {
1532         ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
1533         ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
1534       }
1535     }
1536 
1537     ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
1538                                       "bf.result.cast");
1539     *Result = EmitFromMemory(ResultVal, Dst.getType());
1540   }
1541 }
1542 
EmitStoreThroughExtVectorComponentLValue(RValue Src,LValue Dst)1543 void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
1544                                                                LValue Dst) {
1545   // This access turns into a read/modify/write of the vector.  Load the input
1546   // value now.
1547   llvm::LoadInst *Load = Builder.CreateLoad(Dst.getExtVectorAddr(),
1548                                             Dst.isVolatileQualified());
1549   Load->setAlignment(Dst.getAlignment().getQuantity());
1550   llvm::Value *Vec = Load;
1551   const llvm::Constant *Elts = Dst.getExtVectorElts();
1552 
1553   llvm::Value *SrcVal = Src.getScalarVal();
1554 
1555   if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
1556     unsigned NumSrcElts = VTy->getNumElements();
1557     unsigned NumDstElts =
1558        cast<llvm::VectorType>(Vec->getType())->getNumElements();
1559     if (NumDstElts == NumSrcElts) {
1560       // Use shuffle vector is the src and destination are the same number of
1561       // elements and restore the vector mask since it is on the side it will be
1562       // stored.
1563       SmallVector<llvm::Constant*, 4> Mask(NumDstElts);
1564       for (unsigned i = 0; i != NumSrcElts; ++i)
1565         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i);
1566 
1567       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1568       Vec = Builder.CreateShuffleVector(SrcVal,
1569                                         llvm::UndefValue::get(Vec->getType()),
1570                                         MaskV);
1571     } else if (NumDstElts > NumSrcElts) {
1572       // Extended the source vector to the same length and then shuffle it
1573       // into the destination.
1574       // FIXME: since we're shuffling with undef, can we just use the indices
1575       //        into that?  This could be simpler.
1576       SmallVector<llvm::Constant*, 4> ExtMask;
1577       for (unsigned i = 0; i != NumSrcElts; ++i)
1578         ExtMask.push_back(Builder.getInt32(i));
1579       ExtMask.resize(NumDstElts, llvm::UndefValue::get(Int32Ty));
1580       llvm::Value *ExtMaskV = llvm::ConstantVector::get(ExtMask);
1581       llvm::Value *ExtSrcVal =
1582         Builder.CreateShuffleVector(SrcVal,
1583                                     llvm::UndefValue::get(SrcVal->getType()),
1584                                     ExtMaskV);
1585       // build identity
1586       SmallVector<llvm::Constant*, 4> Mask;
1587       for (unsigned i = 0; i != NumDstElts; ++i)
1588         Mask.push_back(Builder.getInt32(i));
1589 
1590       // When the vector size is odd and .odd or .hi is used, the last element
1591       // of the Elts constant array will be one past the size of the vector.
1592       // Ignore the last element here, if it is greater than the mask size.
1593       if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
1594         NumSrcElts--;
1595 
1596       // modify when what gets shuffled in
1597       for (unsigned i = 0; i != NumSrcElts; ++i)
1598         Mask[getAccessedFieldNo(i, Elts)] = Builder.getInt32(i+NumDstElts);
1599       llvm::Value *MaskV = llvm::ConstantVector::get(Mask);
1600       Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, MaskV);
1601     } else {
1602       // We should never shorten the vector
1603       llvm_unreachable("unexpected shorten vector length");
1604     }
1605   } else {
1606     // If the Src is a scalar (not a vector) it must be updating one element.
1607     unsigned InIdx = getAccessedFieldNo(0, Elts);
1608     llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
1609     Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
1610   }
1611 
1612   llvm::StoreInst *Store = Builder.CreateStore(Vec, Dst.getExtVectorAddr(),
1613                                                Dst.isVolatileQualified());
1614   Store->setAlignment(Dst.getAlignment().getQuantity());
1615 }
1616 
1617 /// @brief Store of global named registers are always calls to intrinsics.
EmitStoreThroughGlobalRegLValue(RValue Src,LValue Dst)1618 void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
1619   assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
1620          "Bad type for register variable");
1621   llvm::MDNode *RegName = dyn_cast<llvm::MDNode>(Dst.getGlobalReg());
1622   assert(RegName && "Register LValue is not metadata");
1623 
1624   // We accept integer and pointer types only
1625   llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
1626   llvm::Type *Ty = OrigTy;
1627   if (OrigTy->isPointerTy())
1628     Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
1629   llvm::Type *Types[] = { Ty };
1630 
1631   llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
1632   llvm::Value *Value = Src.getScalarVal();
1633   if (OrigTy->isPointerTy())
1634     Value = Builder.CreatePtrToInt(Value, Ty);
1635   Builder.CreateCall2(F, RegName, Value);
1636 }
1637 
1638 // setObjCGCLValueClass - sets class of the lvalue for the purpose of
1639 // generating write-barries API. It is currently a global, ivar,
1640 // or neither.
setObjCGCLValueClass(const ASTContext & Ctx,const Expr * E,LValue & LV,bool IsMemberAccess=false)1641 static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
1642                                  LValue &LV,
1643                                  bool IsMemberAccess=false) {
1644   if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
1645     return;
1646 
1647   if (isa<ObjCIvarRefExpr>(E)) {
1648     QualType ExpTy = E->getType();
1649     if (IsMemberAccess && ExpTy->isPointerType()) {
1650       // If ivar is a structure pointer, assigning to field of
1651       // this struct follows gcc's behavior and makes it a non-ivar
1652       // writer-barrier conservatively.
1653       ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1654       if (ExpTy->isRecordType()) {
1655         LV.setObjCIvar(false);
1656         return;
1657       }
1658     }
1659     LV.setObjCIvar(true);
1660     auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
1661     LV.setBaseIvarExp(Exp->getBase());
1662     LV.setObjCArray(E->getType()->isArrayType());
1663     return;
1664   }
1665 
1666   if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
1667     if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
1668       if (VD->hasGlobalStorage()) {
1669         LV.setGlobalObjCRef(true);
1670         LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
1671       }
1672     }
1673     LV.setObjCArray(E->getType()->isArrayType());
1674     return;
1675   }
1676 
1677   if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
1678     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1679     return;
1680   }
1681 
1682   if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
1683     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1684     if (LV.isObjCIvar()) {
1685       // If cast is to a structure pointer, follow gcc's behavior and make it
1686       // a non-ivar write-barrier.
1687       QualType ExpTy = E->getType();
1688       if (ExpTy->isPointerType())
1689         ExpTy = ExpTy->getAs<PointerType>()->getPointeeType();
1690       if (ExpTy->isRecordType())
1691         LV.setObjCIvar(false);
1692     }
1693     return;
1694   }
1695 
1696   if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
1697     setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
1698     return;
1699   }
1700 
1701   if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
1702     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1703     return;
1704   }
1705 
1706   if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
1707     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1708     return;
1709   }
1710 
1711   if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
1712     setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
1713     return;
1714   }
1715 
1716   if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
1717     setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
1718     if (LV.isObjCIvar() && !LV.isObjCArray())
1719       // Using array syntax to assigning to what an ivar points to is not
1720       // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
1721       LV.setObjCIvar(false);
1722     else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
1723       // Using array syntax to assigning to what global points to is not
1724       // same as assigning to the global itself. {id *G;} G[i] = 0;
1725       LV.setGlobalObjCRef(false);
1726     return;
1727   }
1728 
1729   if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
1730     setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
1731     // We don't know if member is an 'ivar', but this flag is looked at
1732     // only in the context of LV.isObjCIvar().
1733     LV.setObjCArray(E->getType()->isArrayType());
1734     return;
1735   }
1736 }
1737 
1738 static llvm::Value *
EmitBitCastOfLValueToProperType(CodeGenFunction & CGF,llvm::Value * V,llvm::Type * IRType,StringRef Name=StringRef ())1739 EmitBitCastOfLValueToProperType(CodeGenFunction &CGF,
1740                                 llvm::Value *V, llvm::Type *IRType,
1741                                 StringRef Name = StringRef()) {
1742   unsigned AS = cast<llvm::PointerType>(V->getType())->getAddressSpace();
1743   return CGF.Builder.CreateBitCast(V, IRType->getPointerTo(AS), Name);
1744 }
1745 
EmitGlobalVarDeclLValue(CodeGenFunction & CGF,const Expr * E,const VarDecl * VD)1746 static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
1747                                       const Expr *E, const VarDecl *VD) {
1748   QualType T = E->getType();
1749 
1750   // If it's thread_local, emit a call to its wrapper function instead.
1751   if (VD->getTLSKind() == VarDecl::TLS_Dynamic)
1752     return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
1753 
1754   llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
1755   llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
1756   V = EmitBitCastOfLValueToProperType(CGF, V, RealVarTy);
1757   CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
1758   LValue LV;
1759   if (VD->getType()->isReferenceType()) {
1760     llvm::LoadInst *LI = CGF.Builder.CreateLoad(V);
1761     LI->setAlignment(Alignment.getQuantity());
1762     V = LI;
1763     LV = CGF.MakeNaturalAlignAddrLValue(V, T);
1764   } else {
1765     LV = CGF.MakeAddrLValue(V, T, Alignment);
1766   }
1767   setObjCGCLValueClass(CGF.getContext(), E, LV);
1768   return LV;
1769 }
1770 
EmitFunctionDeclLValue(CodeGenFunction & CGF,const Expr * E,const FunctionDecl * FD)1771 static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF,
1772                                      const Expr *E, const FunctionDecl *FD) {
1773   llvm::Value *V = CGF.CGM.GetAddrOfFunction(FD);
1774   if (!FD->hasPrototype()) {
1775     if (const FunctionProtoType *Proto =
1776             FD->getType()->getAs<FunctionProtoType>()) {
1777       // Ugly case: for a K&R-style definition, the type of the definition
1778       // isn't the same as the type of a use.  Correct for this with a
1779       // bitcast.
1780       QualType NoProtoType =
1781           CGF.getContext().getFunctionNoProtoType(Proto->getReturnType());
1782       NoProtoType = CGF.getContext().getPointerType(NoProtoType);
1783       V = CGF.Builder.CreateBitCast(V, CGF.ConvertType(NoProtoType));
1784     }
1785   }
1786   CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
1787   return CGF.MakeAddrLValue(V, E->getType(), Alignment);
1788 }
1789 
EmitCapturedFieldLValue(CodeGenFunction & CGF,const FieldDecl * FD,llvm::Value * ThisValue)1790 static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
1791                                       llvm::Value *ThisValue) {
1792   QualType TagType = CGF.getContext().getTagDeclType(FD->getParent());
1793   LValue LV = CGF.MakeNaturalAlignAddrLValue(ThisValue, TagType);
1794   return CGF.EmitLValueForField(LV, FD);
1795 }
1796 
1797 /// Named Registers are named metadata pointing to the register name
1798 /// which will be read from/written to as an argument to the intrinsic
1799 /// @llvm.read/write_register.
1800 /// So far, only the name is being passed down, but other options such as
1801 /// register type, allocation type or even optimization options could be
1802 /// passed down via the metadata node.
EmitGlobalNamedRegister(const VarDecl * VD,CodeGenModule & CGM,CharUnits Alignment)1803 static LValue EmitGlobalNamedRegister(const VarDecl *VD,
1804                                       CodeGenModule &CGM,
1805                                       CharUnits Alignment) {
1806   SmallString<64> Name("llvm.named.register.");
1807   AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
1808   assert(Asm->getLabel().size() < 64-Name.size() &&
1809       "Register name too big");
1810   Name.append(Asm->getLabel());
1811   llvm::NamedMDNode *M =
1812     CGM.getModule().getOrInsertNamedMetadata(Name);
1813   if (M->getNumOperands() == 0) {
1814     llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
1815                                               Asm->getLabel());
1816     llvm::Value *Ops[] = { Str };
1817     M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
1818   }
1819   return LValue::MakeGlobalReg(M->getOperand(0), VD->getType(), Alignment);
1820 }
1821 
EmitDeclRefLValue(const DeclRefExpr * E)1822 LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
1823   const NamedDecl *ND = E->getDecl();
1824   CharUnits Alignment = getContext().getDeclAlign(ND);
1825   QualType T = E->getType();
1826 
1827   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1828     // Global Named registers access via intrinsics only
1829     if (VD->getStorageClass() == SC_Register &&
1830         VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
1831       return EmitGlobalNamedRegister(VD, CGM, Alignment);
1832 
1833     // A DeclRefExpr for a reference initialized by a constant expression can
1834     // appear without being odr-used. Directly emit the constant initializer.
1835     const Expr *Init = VD->getAnyInitializer(VD);
1836     if (Init && !isa<ParmVarDecl>(VD) && VD->getType()->isReferenceType() &&
1837         VD->isUsableInConstantExpressions(getContext()) &&
1838         VD->checkInitIsICE()) {
1839       llvm::Constant *Val =
1840         CGM.EmitConstantValue(*VD->evaluateValue(), VD->getType(), this);
1841       assert(Val && "failed to emit reference constant expression");
1842       // FIXME: Eventually we will want to emit vector element references.
1843       return MakeAddrLValue(Val, T, Alignment);
1844     }
1845   }
1846 
1847   // FIXME: We should be able to assert this for FunctionDecls as well!
1848   // FIXME: We should be able to assert this for all DeclRefExprs, not just
1849   // those with a valid source location.
1850   assert((ND->isUsed(false) || !isa<VarDecl>(ND) ||
1851           !E->getLocation().isValid()) &&
1852          "Should not use decl without marking it used!");
1853 
1854   if (ND->hasAttr<WeakRefAttr>()) {
1855     const auto *VD = cast<ValueDecl>(ND);
1856     llvm::Constant *Aliasee = CGM.GetWeakRefReference(VD);
1857     return MakeAddrLValue(Aliasee, T, Alignment);
1858   }
1859 
1860   if (const auto *VD = dyn_cast<VarDecl>(ND)) {
1861     // Check if this is a global variable.
1862     if (VD->hasLinkage() || VD->isStaticDataMember())
1863       return EmitGlobalVarDeclLValue(*this, E, VD);
1864 
1865     bool isBlockVariable = VD->hasAttr<BlocksAttr>();
1866 
1867     llvm::Value *V = LocalDeclMap.lookup(VD);
1868     if (!V && VD->isStaticLocal())
1869       V = CGM.getStaticLocalDeclAddress(VD);
1870 
1871     // Use special handling for lambdas.
1872     if (!V) {
1873       if (FieldDecl *FD = LambdaCaptureFields.lookup(VD)) {
1874         return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
1875       } else if (CapturedStmtInfo) {
1876         if (const FieldDecl *FD = CapturedStmtInfo->lookup(VD))
1877           return EmitCapturedFieldLValue(*this, FD,
1878                                          CapturedStmtInfo->getContextValue());
1879       }
1880 
1881       assert(isa<BlockDecl>(CurCodeDecl) && E->refersToEnclosingLocal());
1882       return MakeAddrLValue(GetAddrOfBlockDecl(VD, isBlockVariable),
1883                             T, Alignment);
1884     }
1885 
1886     assert(V && "DeclRefExpr not entered in LocalDeclMap?");
1887 
1888     if (isBlockVariable)
1889       V = BuildBlockByrefAddress(V, VD);
1890 
1891     LValue LV;
1892     if (VD->getType()->isReferenceType()) {
1893       llvm::LoadInst *LI = Builder.CreateLoad(V);
1894       LI->setAlignment(Alignment.getQuantity());
1895       V = LI;
1896       LV = MakeNaturalAlignAddrLValue(V, T);
1897     } else {
1898       LV = MakeAddrLValue(V, T, Alignment);
1899     }
1900 
1901     bool isLocalStorage = VD->hasLocalStorage();
1902 
1903     bool NonGCable = isLocalStorage &&
1904                      !VD->getType()->isReferenceType() &&
1905                      !isBlockVariable;
1906     if (NonGCable) {
1907       LV.getQuals().removeObjCGCAttr();
1908       LV.setNonGC(true);
1909     }
1910 
1911     bool isImpreciseLifetime =
1912       (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
1913     if (isImpreciseLifetime)
1914       LV.setARCPreciseLifetime(ARCImpreciseLifetime);
1915     setObjCGCLValueClass(getContext(), E, LV);
1916     return LV;
1917   }
1918 
1919   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1920     return EmitFunctionDeclLValue(*this, E, FD);
1921 
1922   llvm_unreachable("Unhandled DeclRefExpr");
1923 }
1924 
EmitUnaryOpLValue(const UnaryOperator * E)1925 LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
1926   // __extension__ doesn't affect lvalue-ness.
1927   if (E->getOpcode() == UO_Extension)
1928     return EmitLValue(E->getSubExpr());
1929 
1930   QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
1931   switch (E->getOpcode()) {
1932   default: llvm_unreachable("Unknown unary operator lvalue!");
1933   case UO_Deref: {
1934     QualType T = E->getSubExpr()->getType()->getPointeeType();
1935     assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
1936 
1937     LValue LV = MakeNaturalAlignAddrLValue(EmitScalarExpr(E->getSubExpr()), T);
1938     LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
1939 
1940     // We should not generate __weak write barrier on indirect reference
1941     // of a pointer to object; as in void foo (__weak id *param); *param = 0;
1942     // But, we continue to generate __strong write barrier on indirect write
1943     // into a pointer to object.
1944     if (getLangOpts().ObjC1 &&
1945         getLangOpts().getGC() != LangOptions::NonGC &&
1946         LV.isObjCWeak())
1947       LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
1948     return LV;
1949   }
1950   case UO_Real:
1951   case UO_Imag: {
1952     LValue LV = EmitLValue(E->getSubExpr());
1953     assert(LV.isSimple() && "real/imag on non-ordinary l-value");
1954     llvm::Value *Addr = LV.getAddress();
1955 
1956     // __real is valid on scalars.  This is a faster way of testing that.
1957     // __imag can only produce an rvalue on scalars.
1958     if (E->getOpcode() == UO_Real &&
1959         !cast<llvm::PointerType>(Addr->getType())
1960            ->getElementType()->isStructTy()) {
1961       assert(E->getSubExpr()->getType()->isArithmeticType());
1962       return LV;
1963     }
1964 
1965     assert(E->getSubExpr()->getType()->isAnyComplexType());
1966 
1967     unsigned Idx = E->getOpcode() == UO_Imag;
1968     return MakeAddrLValue(Builder.CreateStructGEP(LV.getAddress(),
1969                                                   Idx, "idx"),
1970                           ExprTy);
1971   }
1972   case UO_PreInc:
1973   case UO_PreDec: {
1974     LValue LV = EmitLValue(E->getSubExpr());
1975     bool isInc = E->getOpcode() == UO_PreInc;
1976 
1977     if (E->getType()->isAnyComplexType())
1978       EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
1979     else
1980       EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
1981     return LV;
1982   }
1983   }
1984 }
1985 
EmitStringLiteralLValue(const StringLiteral * E)1986 LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
1987   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
1988                         E->getType());
1989 }
1990 
EmitObjCEncodeExprLValue(const ObjCEncodeExpr * E)1991 LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
1992   return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
1993                         E->getType());
1994 }
1995 
ConvertUTF8ToWideString(unsigned CharByteWidth,StringRef Source,SmallString<32> & Target)1996 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
1997                                     SmallString<32>& Target) {
1998   Target.resize(CharByteWidth * (Source.size() + 1));
1999   char *ResultPtr = &Target[0];
2000   const UTF8 *ErrorPtr;
2001   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
2002   (void)success;
2003   assert(success);
2004   Target.resize(ResultPtr - &Target[0]);
2005 }
2006 
EmitPredefinedLValue(const PredefinedExpr * E)2007 LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
2008   switch (E->getIdentType()) {
2009   default:
2010     return EmitUnsupportedLValue(E, "predefined expression");
2011 
2012   case PredefinedExpr::Func:
2013   case PredefinedExpr::Function:
2014   case PredefinedExpr::LFunction:
2015   case PredefinedExpr::FuncDName:
2016   case PredefinedExpr::FuncSig:
2017   case PredefinedExpr::PrettyFunction: {
2018     PredefinedExpr::IdentType IdentType = E->getIdentType();
2019     std::string GVName;
2020 
2021     // FIXME: We should use the string literal mangling for the Microsoft C++
2022     // ABI so that strings get merged.
2023     switch (IdentType) {
2024     default: llvm_unreachable("Invalid type");
2025     case PredefinedExpr::Func:           GVName = "__func__."; break;
2026     case PredefinedExpr::Function:       GVName = "__FUNCTION__."; break;
2027     case PredefinedExpr::FuncDName:      GVName = "__FUNCDNAME__."; break;
2028     case PredefinedExpr::FuncSig:        GVName = "__FUNCSIG__."; break;
2029     case PredefinedExpr::LFunction:      GVName = "L__FUNCTION__."; break;
2030     case PredefinedExpr::PrettyFunction: GVName = "__PRETTY_FUNCTION__."; break;
2031     }
2032 
2033     StringRef FnName = CurFn->getName();
2034     if (FnName.startswith("\01"))
2035       FnName = FnName.substr(1);
2036     GVName += FnName;
2037 
2038     // If this is outside of a function use the top level decl.
2039     const Decl *CurDecl = CurCodeDecl;
2040     if (!CurDecl || isa<VarDecl>(CurDecl))
2041       CurDecl = getContext().getTranslationUnitDecl();
2042 
2043     const Type *ElemType = E->getType()->getArrayElementTypeNoTypeQual();
2044     std::string FunctionName;
2045     if (isa<BlockDecl>(CurDecl)) {
2046       // Blocks use the mangled function name.
2047       // FIXME: ComputeName should handle blocks.
2048       FunctionName = FnName.str();
2049     } else if (isa<CapturedDecl>(CurDecl)) {
2050       // For a captured statement, the function name is its enclosing
2051       // function name not the one compiler generated.
2052       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2053     } else {
2054       FunctionName = PredefinedExpr::ComputeName(IdentType, CurDecl);
2055       assert(cast<ConstantArrayType>(E->getType())->getSize() - 1 ==
2056                  FunctionName.size() &&
2057              "Computed __func__ length differs from type!");
2058     }
2059 
2060     llvm::Constant *C;
2061     if (ElemType->isWideCharType()) {
2062       SmallString<32> RawChars;
2063       ConvertUTF8ToWideString(
2064           getContext().getTypeSizeInChars(ElemType).getQuantity(), FunctionName,
2065           RawChars);
2066       StringLiteral *SL = StringLiteral::Create(
2067           getContext(), RawChars, StringLiteral::Wide,
2068           /*Pascal = */ false, E->getType(), E->getLocation());
2069       C = CGM.GetAddrOfConstantStringFromLiteral(SL);
2070     } else {
2071       C = CGM.GetAddrOfConstantCString(FunctionName, GVName.c_str(), 1);
2072     }
2073     return MakeAddrLValue(C, E->getType());
2074   }
2075   }
2076 }
2077 
2078 /// Emit a type description suitable for use by a runtime sanitizer library. The
2079 /// format of a type descriptor is
2080 ///
2081 /// \code
2082 ///   { i16 TypeKind, i16 TypeInfo }
2083 /// \endcode
2084 ///
2085 /// followed by an array of i8 containing the type name. TypeKind is 0 for an
2086 /// integer, 1 for a floating point value, and -1 for anything else.
EmitCheckTypeDescriptor(QualType T)2087 llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
2088   // Only emit each type's descriptor once.
2089   if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
2090     return C;
2091 
2092   uint16_t TypeKind = -1;
2093   uint16_t TypeInfo = 0;
2094 
2095   if (T->isIntegerType()) {
2096     TypeKind = 0;
2097     TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
2098                (T->isSignedIntegerType() ? 1 : 0);
2099   } else if (T->isFloatingType()) {
2100     TypeKind = 1;
2101     TypeInfo = getContext().getTypeSize(T);
2102   }
2103 
2104   // Format the type name as if for a diagnostic, including quotes and
2105   // optionally an 'aka'.
2106   SmallString<32> Buffer;
2107   CGM.getDiags().ConvertArgToString(DiagnosticsEngine::ak_qualtype,
2108                                     (intptr_t)T.getAsOpaquePtr(),
2109                                     StringRef(), StringRef(), None, Buffer,
2110                                     ArrayRef<intptr_t>());
2111 
2112   llvm::Constant *Components[] = {
2113     Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
2114     llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
2115   };
2116   llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
2117 
2118   auto *GV = new llvm::GlobalVariable(
2119       CGM.getModule(), Descriptor->getType(),
2120       /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
2121   GV->setUnnamedAddr(true);
2122 
2123   // Remember the descriptor for this type.
2124   CGM.setTypeDescriptorInMap(T, GV);
2125 
2126   return GV;
2127 }
2128 
EmitCheckValue(llvm::Value * V)2129 llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
2130   llvm::Type *TargetTy = IntPtrTy;
2131 
2132   // Floating-point types which fit into intptr_t are bitcast to integers
2133   // and then passed directly (after zero-extension, if necessary).
2134   if (V->getType()->isFloatingPointTy()) {
2135     unsigned Bits = V->getType()->getPrimitiveSizeInBits();
2136     if (Bits <= TargetTy->getIntegerBitWidth())
2137       V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
2138                                                          Bits));
2139   }
2140 
2141   // Integers which fit in intptr_t are zero-extended and passed directly.
2142   if (V->getType()->isIntegerTy() &&
2143       V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
2144     return Builder.CreateZExt(V, TargetTy);
2145 
2146   // Pointers are passed directly, everything else is passed by address.
2147   if (!V->getType()->isPointerTy()) {
2148     llvm::Value *Ptr = CreateTempAlloca(V->getType());
2149     Builder.CreateStore(V, Ptr);
2150     V = Ptr;
2151   }
2152   return Builder.CreatePtrToInt(V, TargetTy);
2153 }
2154 
2155 /// \brief Emit a representation of a SourceLocation for passing to a handler
2156 /// in a sanitizer runtime library. The format for this data is:
2157 /// \code
2158 ///   struct SourceLocation {
2159 ///     const char *Filename;
2160 ///     int32_t Line, Column;
2161 ///   };
2162 /// \endcode
2163 /// For an invalid SourceLocation, the Filename pointer is null.
EmitCheckSourceLocation(SourceLocation Loc)2164 llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
2165   PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
2166 
2167   llvm::Constant *Data[] = {
2168     PLoc.isValid() ? CGM.GetAddrOfConstantCString(PLoc.getFilename(), ".src")
2169                    : llvm::Constant::getNullValue(Int8PtrTy),
2170     Builder.getInt32(PLoc.isValid() ? PLoc.getLine() : 0),
2171     Builder.getInt32(PLoc.isValid() ? PLoc.getColumn() : 0)
2172   };
2173 
2174   return llvm::ConstantStruct::getAnon(Data);
2175 }
2176 
EmitCheck(llvm::Value * Checked,StringRef CheckName,ArrayRef<llvm::Constant * > StaticArgs,ArrayRef<llvm::Value * > DynamicArgs,CheckRecoverableKind RecoverKind)2177 void CodeGenFunction::EmitCheck(llvm::Value *Checked, StringRef CheckName,
2178                                 ArrayRef<llvm::Constant *> StaticArgs,
2179                                 ArrayRef<llvm::Value *> DynamicArgs,
2180                                 CheckRecoverableKind RecoverKind) {
2181   assert(SanOpts != &SanitizerOptions::Disabled);
2182 
2183   if (CGM.getCodeGenOpts().SanitizeUndefinedTrapOnError) {
2184     assert (RecoverKind != CRK_AlwaysRecoverable &&
2185             "Runtime call required for AlwaysRecoverable kind!");
2186     return EmitTrapCheck(Checked);
2187   }
2188 
2189   llvm::BasicBlock *Cont = createBasicBlock("cont");
2190 
2191   llvm::BasicBlock *Handler = createBasicBlock("handler." + CheckName);
2192 
2193   llvm::Instruction *Branch = Builder.CreateCondBr(Checked, Cont, Handler);
2194 
2195   // Give hint that we very much don't expect to execute the handler
2196   // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
2197   llvm::MDBuilder MDHelper(getLLVMContext());
2198   llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
2199   Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
2200 
2201   EmitBlock(Handler);
2202 
2203   llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
2204   auto *InfoPtr =
2205       new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
2206                                llvm::GlobalVariable::PrivateLinkage, Info);
2207   InfoPtr->setUnnamedAddr(true);
2208 
2209   SmallVector<llvm::Value *, 4> Args;
2210   SmallVector<llvm::Type *, 4> ArgTypes;
2211   Args.reserve(DynamicArgs.size() + 1);
2212   ArgTypes.reserve(DynamicArgs.size() + 1);
2213 
2214   // Handler functions take an i8* pointing to the (handler-specific) static
2215   // information block, followed by a sequence of intptr_t arguments
2216   // representing operand values.
2217   Args.push_back(Builder.CreateBitCast(InfoPtr, Int8PtrTy));
2218   ArgTypes.push_back(Int8PtrTy);
2219   for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
2220     Args.push_back(EmitCheckValue(DynamicArgs[i]));
2221     ArgTypes.push_back(IntPtrTy);
2222   }
2223 
2224   bool Recover = RecoverKind == CRK_AlwaysRecoverable ||
2225                  (RecoverKind == CRK_Recoverable &&
2226                   CGM.getCodeGenOpts().SanitizeRecover);
2227 
2228   llvm::FunctionType *FnType =
2229     llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
2230   llvm::AttrBuilder B;
2231   if (!Recover) {
2232     B.addAttribute(llvm::Attribute::NoReturn)
2233      .addAttribute(llvm::Attribute::NoUnwind);
2234   }
2235   B.addAttribute(llvm::Attribute::UWTable);
2236 
2237   // Checks that have two variants use a suffix to differentiate them
2238   bool NeedsAbortSuffix = RecoverKind != CRK_Unrecoverable &&
2239                           !CGM.getCodeGenOpts().SanitizeRecover;
2240   std::string FunctionName = ("__ubsan_handle_" + CheckName +
2241                               (NeedsAbortSuffix? "_abort" : "")).str();
2242   llvm::Value *Fn = CGM.CreateRuntimeFunction(
2243       FnType, FunctionName,
2244       llvm::AttributeSet::get(getLLVMContext(),
2245                               llvm::AttributeSet::FunctionIndex, B));
2246   llvm::CallInst *HandlerCall = EmitNounwindRuntimeCall(Fn, Args);
2247   if (Recover) {
2248     Builder.CreateBr(Cont);
2249   } else {
2250     HandlerCall->setDoesNotReturn();
2251     Builder.CreateUnreachable();
2252   }
2253 
2254   EmitBlock(Cont);
2255 }
2256 
EmitTrapCheck(llvm::Value * Checked)2257 void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked) {
2258   llvm::BasicBlock *Cont = createBasicBlock("cont");
2259 
2260   // If we're optimizing, collapse all calls to trap down to just one per
2261   // function to save on code size.
2262   if (!CGM.getCodeGenOpts().OptimizationLevel || !TrapBB) {
2263     TrapBB = createBasicBlock("trap");
2264     Builder.CreateCondBr(Checked, Cont, TrapBB);
2265     EmitBlock(TrapBB);
2266     llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::trap);
2267     llvm::CallInst *TrapCall = Builder.CreateCall(F);
2268     TrapCall->setDoesNotReturn();
2269     TrapCall->setDoesNotThrow();
2270     Builder.CreateUnreachable();
2271   } else {
2272     Builder.CreateCondBr(Checked, Cont, TrapBB);
2273   }
2274 
2275   EmitBlock(Cont);
2276 }
2277 
2278 /// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
2279 /// array to pointer, return the array subexpression.
isSimpleArrayDecayOperand(const Expr * E)2280 static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
2281   // If this isn't just an array->pointer decay, bail out.
2282   const auto *CE = dyn_cast<CastExpr>(E);
2283   if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
2284     return nullptr;
2285 
2286   // If this is a decay from variable width array, bail out.
2287   const Expr *SubExpr = CE->getSubExpr();
2288   if (SubExpr->getType()->isVariableArrayType())
2289     return nullptr;
2290 
2291   return SubExpr;
2292 }
2293 
EmitArraySubscriptExpr(const ArraySubscriptExpr * E,bool Accessed)2294 LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
2295                                                bool Accessed) {
2296   // The index must always be an integer, which is not an aggregate.  Emit it.
2297   llvm::Value *Idx = EmitScalarExpr(E->getIdx());
2298   QualType IdxTy  = E->getIdx()->getType();
2299   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
2300 
2301   if (SanOpts->ArrayBounds)
2302     EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
2303 
2304   // If the base is a vector type, then we are forming a vector element lvalue
2305   // with this subscript.
2306   if (E->getBase()->getType()->isVectorType()) {
2307     // Emit the vector as an lvalue to get its address.
2308     LValue LHS = EmitLValue(E->getBase());
2309     assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
2310     return LValue::MakeVectorElt(LHS.getAddress(), Idx,
2311                                  E->getBase()->getType(), LHS.getAlignment());
2312   }
2313 
2314   // Extend or truncate the index type to 32 or 64-bits.
2315   if (Idx->getType() != IntPtrTy)
2316     Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
2317 
2318   // We know that the pointer points to a type of the correct size, unless the
2319   // size is a VLA or Objective-C interface.
2320   llvm::Value *Address = nullptr;
2321   CharUnits ArrayAlignment;
2322   if (const VariableArrayType *vla =
2323         getContext().getAsVariableArrayType(E->getType())) {
2324     // The base must be a pointer, which is not an aggregate.  Emit
2325     // it.  It needs to be emitted first in case it's what captures
2326     // the VLA bounds.
2327     Address = EmitScalarExpr(E->getBase());
2328 
2329     // The element count here is the total number of non-VLA elements.
2330     llvm::Value *numElements = getVLASize(vla).first;
2331 
2332     // Effectively, the multiply by the VLA size is part of the GEP.
2333     // GEP indexes are signed, and scaling an index isn't permitted to
2334     // signed-overflow, so we use the same semantics for our explicit
2335     // multiply.  We suppress this if overflow is not undefined behavior.
2336     if (getLangOpts().isSignedOverflowDefined()) {
2337       Idx = Builder.CreateMul(Idx, numElements);
2338       Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2339     } else {
2340       Idx = Builder.CreateNSWMul(Idx, numElements);
2341       Address = Builder.CreateInBoundsGEP(Address, Idx, "arrayidx");
2342     }
2343   } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
2344     // Indexing over an interface, as in "NSString *P; P[4];"
2345     llvm::Value *InterfaceSize =
2346       llvm::ConstantInt::get(Idx->getType(),
2347           getContext().getTypeSizeInChars(OIT).getQuantity());
2348 
2349     Idx = Builder.CreateMul(Idx, InterfaceSize);
2350 
2351     // The base must be a pointer, which is not an aggregate.  Emit it.
2352     llvm::Value *Base = EmitScalarExpr(E->getBase());
2353     Address = EmitCastToVoidPtr(Base);
2354     Address = Builder.CreateGEP(Address, Idx, "arrayidx");
2355     Address = Builder.CreateBitCast(Address, Base->getType());
2356   } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
2357     // If this is A[i] where A is an array, the frontend will have decayed the
2358     // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
2359     // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
2360     // "gep x, i" here.  Emit one "gep A, 0, i".
2361     assert(Array->getType()->isArrayType() &&
2362            "Array to pointer decay must have array source type!");
2363     LValue ArrayLV;
2364     // For simple multidimensional array indexing, set the 'accessed' flag for
2365     // better bounds-checking of the base expression.
2366     if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
2367       ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
2368     else
2369       ArrayLV = EmitLValue(Array);
2370     llvm::Value *ArrayPtr = ArrayLV.getAddress();
2371     llvm::Value *Zero = llvm::ConstantInt::get(Int32Ty, 0);
2372     llvm::Value *Args[] = { Zero, Idx };
2373 
2374     // Propagate the alignment from the array itself to the result.
2375     ArrayAlignment = ArrayLV.getAlignment();
2376 
2377     if (getLangOpts().isSignedOverflowDefined())
2378       Address = Builder.CreateGEP(ArrayPtr, Args, "arrayidx");
2379     else
2380       Address = Builder.CreateInBoundsGEP(ArrayPtr, Args, "arrayidx");
2381   } else {
2382     // The base must be a pointer, which is not an aggregate.  Emit it.
2383     llvm::Value *Base = EmitScalarExpr(E->getBase());
2384     if (getLangOpts().isSignedOverflowDefined())
2385       Address = Builder.CreateGEP(Base, Idx, "arrayidx");
2386     else
2387       Address = Builder.CreateInBoundsGEP(Base, Idx, "arrayidx");
2388   }
2389 
2390   QualType T = E->getBase()->getType()->getPointeeType();
2391   assert(!T.isNull() &&
2392          "CodeGenFunction::EmitArraySubscriptExpr(): Illegal base type");
2393 
2394 
2395   // Limit the alignment to that of the result type.
2396   LValue LV;
2397   if (!ArrayAlignment.isZero()) {
2398     CharUnits Align = getContext().getTypeAlignInChars(T);
2399     ArrayAlignment = std::min(Align, ArrayAlignment);
2400     LV = MakeAddrLValue(Address, T, ArrayAlignment);
2401   } else {
2402     LV = MakeNaturalAlignAddrLValue(Address, T);
2403   }
2404 
2405   LV.getQuals().setAddressSpace(E->getBase()->getType().getAddressSpace());
2406 
2407   if (getLangOpts().ObjC1 &&
2408       getLangOpts().getGC() != LangOptions::NonGC) {
2409     LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
2410     setObjCGCLValueClass(getContext(), E, LV);
2411   }
2412   return LV;
2413 }
2414 
2415 static
GenerateConstantVector(CGBuilderTy & Builder,SmallVectorImpl<unsigned> & Elts)2416 llvm::Constant *GenerateConstantVector(CGBuilderTy &Builder,
2417                                        SmallVectorImpl<unsigned> &Elts) {
2418   SmallVector<llvm::Constant*, 4> CElts;
2419   for (unsigned i = 0, e = Elts.size(); i != e; ++i)
2420     CElts.push_back(Builder.getInt32(Elts[i]));
2421 
2422   return llvm::ConstantVector::get(CElts);
2423 }
2424 
2425 LValue CodeGenFunction::
EmitExtVectorElementExpr(const ExtVectorElementExpr * E)2426 EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
2427   // Emit the base vector as an l-value.
2428   LValue Base;
2429 
2430   // ExtVectorElementExpr's base can either be a vector or pointer to vector.
2431   if (E->isArrow()) {
2432     // If it is a pointer to a vector, emit the address and form an lvalue with
2433     // it.
2434     llvm::Value *Ptr = EmitScalarExpr(E->getBase());
2435     const PointerType *PT = E->getBase()->getType()->getAs<PointerType>();
2436     Base = MakeAddrLValue(Ptr, PT->getPointeeType());
2437     Base.getQuals().removeObjCGCAttr();
2438   } else if (E->getBase()->isGLValue()) {
2439     // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
2440     // emit the base as an lvalue.
2441     assert(E->getBase()->getType()->isVectorType());
2442     Base = EmitLValue(E->getBase());
2443   } else {
2444     // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
2445     assert(E->getBase()->getType()->isVectorType() &&
2446            "Result must be a vector");
2447     llvm::Value *Vec = EmitScalarExpr(E->getBase());
2448 
2449     // Store the vector to memory (because LValue wants an address).
2450     llvm::Value *VecMem = CreateMemTemp(E->getBase()->getType());
2451     Builder.CreateStore(Vec, VecMem);
2452     Base = MakeAddrLValue(VecMem, E->getBase()->getType());
2453   }
2454 
2455   QualType type =
2456     E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
2457 
2458   // Encode the element access list into a vector of unsigned indices.
2459   SmallVector<unsigned, 4> Indices;
2460   E->getEncodedElementAccess(Indices);
2461 
2462   if (Base.isSimple()) {
2463     llvm::Constant *CV = GenerateConstantVector(Builder, Indices);
2464     return LValue::MakeExtVectorElt(Base.getAddress(), CV, type,
2465                                     Base.getAlignment());
2466   }
2467   assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
2468 
2469   llvm::Constant *BaseElts = Base.getExtVectorElts();
2470   SmallVector<llvm::Constant *, 4> CElts;
2471 
2472   for (unsigned i = 0, e = Indices.size(); i != e; ++i)
2473     CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
2474   llvm::Constant *CV = llvm::ConstantVector::get(CElts);
2475   return LValue::MakeExtVectorElt(Base.getExtVectorAddr(), CV, type,
2476                                   Base.getAlignment());
2477 }
2478 
EmitMemberExpr(const MemberExpr * E)2479 LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
2480   Expr *BaseExpr = E->getBase();
2481 
2482   // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
2483   LValue BaseLV;
2484   if (E->isArrow()) {
2485     llvm::Value *Ptr = EmitScalarExpr(BaseExpr);
2486     QualType PtrTy = BaseExpr->getType()->getPointeeType();
2487     EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Ptr, PtrTy);
2488     BaseLV = MakeNaturalAlignAddrLValue(Ptr, PtrTy);
2489   } else
2490     BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
2491 
2492   NamedDecl *ND = E->getMemberDecl();
2493   if (auto *Field = dyn_cast<FieldDecl>(ND)) {
2494     LValue LV = EmitLValueForField(BaseLV, Field);
2495     setObjCGCLValueClass(getContext(), E, LV);
2496     return LV;
2497   }
2498 
2499   if (auto *VD = dyn_cast<VarDecl>(ND))
2500     return EmitGlobalVarDeclLValue(*this, E, VD);
2501 
2502   if (const auto *FD = dyn_cast<FunctionDecl>(ND))
2503     return EmitFunctionDeclLValue(*this, E, FD);
2504 
2505   llvm_unreachable("Unhandled member declaration!");
2506 }
2507 
2508 /// Given that we are currently emitting a lambda, emit an l-value for
2509 /// one of its members.
EmitLValueForLambdaField(const FieldDecl * Field)2510 LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
2511   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent()->isLambda());
2512   assert(cast<CXXMethodDecl>(CurCodeDecl)->getParent() == Field->getParent());
2513   QualType LambdaTagType =
2514     getContext().getTagDeclType(Field->getParent());
2515   LValue LambdaLV = MakeNaturalAlignAddrLValue(CXXABIThisValue, LambdaTagType);
2516   return EmitLValueForField(LambdaLV, Field);
2517 }
2518 
EmitLValueForField(LValue base,const FieldDecl * field)2519 LValue CodeGenFunction::EmitLValueForField(LValue base,
2520                                            const FieldDecl *field) {
2521   if (field->isBitField()) {
2522     const CGRecordLayout &RL =
2523       CGM.getTypes().getCGRecordLayout(field->getParent());
2524     const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
2525     llvm::Value *Addr = base.getAddress();
2526     unsigned Idx = RL.getLLVMFieldNo(field);
2527     if (Idx != 0)
2528       // For structs, we GEP to the field that the record layout suggests.
2529       Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
2530     // Get the access type.
2531     llvm::Type *PtrTy = llvm::Type::getIntNPtrTy(
2532       getLLVMContext(), Info.StorageSize,
2533       CGM.getContext().getTargetAddressSpace(base.getType()));
2534     if (Addr->getType() != PtrTy)
2535       Addr = Builder.CreateBitCast(Addr, PtrTy);
2536 
2537     QualType fieldType =
2538       field->getType().withCVRQualifiers(base.getVRQualifiers());
2539     return LValue::MakeBitfield(Addr, Info, fieldType, base.getAlignment());
2540   }
2541 
2542   const RecordDecl *rec = field->getParent();
2543   QualType type = field->getType();
2544   CharUnits alignment = getContext().getDeclAlign(field);
2545 
2546   // FIXME: It should be impossible to have an LValue without alignment for a
2547   // complete type.
2548   if (!base.getAlignment().isZero())
2549     alignment = std::min(alignment, base.getAlignment());
2550 
2551   bool mayAlias = rec->hasAttr<MayAliasAttr>();
2552 
2553   llvm::Value *addr = base.getAddress();
2554   unsigned cvr = base.getVRQualifiers();
2555   bool TBAAPath = CGM.getCodeGenOpts().StructPathTBAA;
2556   if (rec->isUnion()) {
2557     // For unions, there is no pointer adjustment.
2558     assert(!type->isReferenceType() && "union has reference member");
2559     // TODO: handle path-aware TBAA for union.
2560     TBAAPath = false;
2561   } else {
2562     // For structs, we GEP to the field that the record layout suggests.
2563     unsigned idx = CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
2564     addr = Builder.CreateStructGEP(addr, idx, field->getName());
2565 
2566     // If this is a reference field, load the reference right now.
2567     if (const ReferenceType *refType = type->getAs<ReferenceType>()) {
2568       llvm::LoadInst *load = Builder.CreateLoad(addr, "ref");
2569       if (cvr & Qualifiers::Volatile) load->setVolatile(true);
2570       load->setAlignment(alignment.getQuantity());
2571 
2572       // Loading the reference will disable path-aware TBAA.
2573       TBAAPath = false;
2574       if (CGM.shouldUseTBAA()) {
2575         llvm::MDNode *tbaa;
2576         if (mayAlias)
2577           tbaa = CGM.getTBAAInfo(getContext().CharTy);
2578         else
2579           tbaa = CGM.getTBAAInfo(type);
2580         if (tbaa)
2581           CGM.DecorateInstruction(load, tbaa);
2582       }
2583 
2584       addr = load;
2585       mayAlias = false;
2586       type = refType->getPointeeType();
2587       if (type->isIncompleteType())
2588         alignment = CharUnits();
2589       else
2590         alignment = getContext().getTypeAlignInChars(type);
2591       cvr = 0; // qualifiers don't recursively apply to referencee
2592     }
2593   }
2594 
2595   // Make sure that the address is pointing to the right type.  This is critical
2596   // for both unions and structs.  A union needs a bitcast, a struct element
2597   // will need a bitcast if the LLVM type laid out doesn't match the desired
2598   // type.
2599   addr = EmitBitCastOfLValueToProperType(*this, addr,
2600                                          CGM.getTypes().ConvertTypeForMem(type),
2601                                          field->getName());
2602 
2603   if (field->hasAttr<AnnotateAttr>())
2604     addr = EmitFieldAnnotations(field, addr);
2605 
2606   LValue LV = MakeAddrLValue(addr, type, alignment);
2607   LV.getQuals().addCVRQualifiers(cvr);
2608   if (TBAAPath) {
2609     const ASTRecordLayout &Layout =
2610         getContext().getASTRecordLayout(field->getParent());
2611     // Set the base type to be the base type of the base LValue and
2612     // update offset to be relative to the base type.
2613     LV.setTBAABaseType(mayAlias ? getContext().CharTy : base.getTBAABaseType());
2614     LV.setTBAAOffset(mayAlias ? 0 : base.getTBAAOffset() +
2615                      Layout.getFieldOffset(field->getFieldIndex()) /
2616                                            getContext().getCharWidth());
2617   }
2618 
2619   // __weak attribute on a field is ignored.
2620   if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
2621     LV.getQuals().removeObjCGCAttr();
2622 
2623   // Fields of may_alias structs act like 'char' for TBAA purposes.
2624   // FIXME: this should get propagated down through anonymous structs
2625   // and unions.
2626   if (mayAlias && LV.getTBAAInfo())
2627     LV.setTBAAInfo(CGM.getTBAAInfo(getContext().CharTy));
2628 
2629   return LV;
2630 }
2631 
2632 LValue
EmitLValueForFieldInitialization(LValue Base,const FieldDecl * Field)2633 CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
2634                                                   const FieldDecl *Field) {
2635   QualType FieldType = Field->getType();
2636 
2637   if (!FieldType->isReferenceType())
2638     return EmitLValueForField(Base, Field);
2639 
2640   const CGRecordLayout &RL =
2641     CGM.getTypes().getCGRecordLayout(Field->getParent());
2642   unsigned idx = RL.getLLVMFieldNo(Field);
2643   llvm::Value *V = Builder.CreateStructGEP(Base.getAddress(), idx);
2644   assert(!FieldType.getObjCGCAttr() && "fields cannot have GC attrs");
2645 
2646   // Make sure that the address is pointing to the right type.  This is critical
2647   // for both unions and structs.  A union needs a bitcast, a struct element
2648   // will need a bitcast if the LLVM type laid out doesn't match the desired
2649   // type.
2650   llvm::Type *llvmType = ConvertTypeForMem(FieldType);
2651   V = EmitBitCastOfLValueToProperType(*this, V, llvmType, Field->getName());
2652 
2653   CharUnits Alignment = getContext().getDeclAlign(Field);
2654 
2655   // FIXME: It should be impossible to have an LValue without alignment for a
2656   // complete type.
2657   if (!Base.getAlignment().isZero())
2658     Alignment = std::min(Alignment, Base.getAlignment());
2659 
2660   return MakeAddrLValue(V, FieldType, Alignment);
2661 }
2662 
EmitCompoundLiteralLValue(const CompoundLiteralExpr * E)2663 LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
2664   if (E->isFileScope()) {
2665     llvm::Value *GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
2666     return MakeAddrLValue(GlobalPtr, E->getType());
2667   }
2668   if (E->getType()->isVariablyModifiedType())
2669     // make sure to emit the VLA size.
2670     EmitVariablyModifiedType(E->getType());
2671 
2672   llvm::Value *DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
2673   const Expr *InitExpr = E->getInitializer();
2674   LValue Result = MakeAddrLValue(DeclPtr, E->getType());
2675 
2676   EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
2677                    /*Init*/ true);
2678 
2679   return Result;
2680 }
2681 
EmitInitListLValue(const InitListExpr * E)2682 LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
2683   if (!E->isGLValue())
2684     // Initializing an aggregate temporary in C++11: T{...}.
2685     return EmitAggExprToLValue(E);
2686 
2687   // An lvalue initializer list must be initializing a reference.
2688   assert(E->getNumInits() == 1 && "reference init with multiple values");
2689   return EmitLValue(E->getInit(0));
2690 }
2691 
2692 /// Emit the operand of a glvalue conditional operator. This is either a glvalue
2693 /// or a (possibly-parenthesized) throw-expression. If this is a throw, no
2694 /// LValue is returned and the current block has been terminated.
EmitLValueOrThrowExpression(CodeGenFunction & CGF,const Expr * Operand)2695 static Optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
2696                                                     const Expr *Operand) {
2697   if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
2698     CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
2699     return None;
2700   }
2701 
2702   return CGF.EmitLValue(Operand);
2703 }
2704 
2705 LValue CodeGenFunction::
EmitConditionalOperatorLValue(const AbstractConditionalOperator * expr)2706 EmitConditionalOperatorLValue(const AbstractConditionalOperator *expr) {
2707   if (!expr->isGLValue()) {
2708     // ?: here should be an aggregate.
2709     assert(hasAggregateEvaluationKind(expr->getType()) &&
2710            "Unexpected conditional operator!");
2711     return EmitAggExprToLValue(expr);
2712   }
2713 
2714   OpaqueValueMapping binding(*this, expr);
2715   RegionCounter Cnt = getPGORegionCounter(expr);
2716 
2717   const Expr *condExpr = expr->getCond();
2718   bool CondExprBool;
2719   if (ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2720     const Expr *live = expr->getTrueExpr(), *dead = expr->getFalseExpr();
2721     if (!CondExprBool) std::swap(live, dead);
2722 
2723     if (!ContainsLabel(dead)) {
2724       // If the true case is live, we need to track its region.
2725       if (CondExprBool)
2726         Cnt.beginRegion(Builder);
2727       return EmitLValue(live);
2728     }
2729   }
2730 
2731   llvm::BasicBlock *lhsBlock = createBasicBlock("cond.true");
2732   llvm::BasicBlock *rhsBlock = createBasicBlock("cond.false");
2733   llvm::BasicBlock *contBlock = createBasicBlock("cond.end");
2734 
2735   ConditionalEvaluation eval(*this);
2736   EmitBranchOnBoolExpr(condExpr, lhsBlock, rhsBlock, Cnt.getCount());
2737 
2738   // Any temporaries created here are conditional.
2739   EmitBlock(lhsBlock);
2740   Cnt.beginRegion(Builder);
2741   eval.begin(*this);
2742   Optional<LValue> lhs =
2743       EmitLValueOrThrowExpression(*this, expr->getTrueExpr());
2744   eval.end(*this);
2745 
2746   if (lhs && !lhs->isSimple())
2747     return EmitUnsupportedLValue(expr, "conditional operator");
2748 
2749   lhsBlock = Builder.GetInsertBlock();
2750   if (lhs)
2751     Builder.CreateBr(contBlock);
2752 
2753   // Any temporaries created here are conditional.
2754   EmitBlock(rhsBlock);
2755   eval.begin(*this);
2756   Optional<LValue> rhs =
2757       EmitLValueOrThrowExpression(*this, expr->getFalseExpr());
2758   eval.end(*this);
2759   if (rhs && !rhs->isSimple())
2760     return EmitUnsupportedLValue(expr, "conditional operator");
2761   rhsBlock = Builder.GetInsertBlock();
2762 
2763   EmitBlock(contBlock);
2764 
2765   if (lhs && rhs) {
2766     llvm::PHINode *phi = Builder.CreatePHI(lhs->getAddress()->getType(),
2767                                            2, "cond-lvalue");
2768     phi->addIncoming(lhs->getAddress(), lhsBlock);
2769     phi->addIncoming(rhs->getAddress(), rhsBlock);
2770     return MakeAddrLValue(phi, expr->getType());
2771   } else {
2772     assert((lhs || rhs) &&
2773            "both operands of glvalue conditional are throw-expressions?");
2774     return lhs ? *lhs : *rhs;
2775   }
2776 }
2777 
2778 /// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
2779 /// type. If the cast is to a reference, we can have the usual lvalue result,
2780 /// otherwise if a cast is needed by the code generator in an lvalue context,
2781 /// then it must mean that we need the address of an aggregate in order to
2782 /// access one of its members.  This can happen for all the reasons that casts
2783 /// are permitted with aggregate result, including noop aggregate casts, and
2784 /// cast from scalar to union.
EmitCastLValue(const CastExpr * E)2785 LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
2786   switch (E->getCastKind()) {
2787   case CK_ToVoid:
2788   case CK_BitCast:
2789   case CK_ArrayToPointerDecay:
2790   case CK_FunctionToPointerDecay:
2791   case CK_NullToMemberPointer:
2792   case CK_NullToPointer:
2793   case CK_IntegralToPointer:
2794   case CK_PointerToIntegral:
2795   case CK_PointerToBoolean:
2796   case CK_VectorSplat:
2797   case CK_IntegralCast:
2798   case CK_IntegralToBoolean:
2799   case CK_IntegralToFloating:
2800   case CK_FloatingToIntegral:
2801   case CK_FloatingToBoolean:
2802   case CK_FloatingCast:
2803   case CK_FloatingRealToComplex:
2804   case CK_FloatingComplexToReal:
2805   case CK_FloatingComplexToBoolean:
2806   case CK_FloatingComplexCast:
2807   case CK_FloatingComplexToIntegralComplex:
2808   case CK_IntegralRealToComplex:
2809   case CK_IntegralComplexToReal:
2810   case CK_IntegralComplexToBoolean:
2811   case CK_IntegralComplexCast:
2812   case CK_IntegralComplexToFloatingComplex:
2813   case CK_DerivedToBaseMemberPointer:
2814   case CK_BaseToDerivedMemberPointer:
2815   case CK_MemberPointerToBoolean:
2816   case CK_ReinterpretMemberPointer:
2817   case CK_AnyPointerToBlockPointerCast:
2818   case CK_ARCProduceObject:
2819   case CK_ARCConsumeObject:
2820   case CK_ARCReclaimReturnedObject:
2821   case CK_ARCExtendBlockObject:
2822   case CK_CopyAndAutoreleaseBlockObject:
2823   case CK_AddressSpaceConversion:
2824     return EmitUnsupportedLValue(E, "unexpected cast lvalue");
2825 
2826   case CK_Dependent:
2827     llvm_unreachable("dependent cast kind in IR gen!");
2828 
2829   case CK_BuiltinFnToFnPtr:
2830     llvm_unreachable("builtin functions are handled elsewhere");
2831 
2832   // These are never l-values; just use the aggregate emission code.
2833   case CK_NonAtomicToAtomic:
2834   case CK_AtomicToNonAtomic:
2835     return EmitAggExprToLValue(E);
2836 
2837   case CK_Dynamic: {
2838     LValue LV = EmitLValue(E->getSubExpr());
2839     llvm::Value *V = LV.getAddress();
2840     const auto *DCE = cast<CXXDynamicCastExpr>(E);
2841     return MakeAddrLValue(EmitDynamicCast(V, DCE), E->getType());
2842   }
2843 
2844   case CK_ConstructorConversion:
2845   case CK_UserDefinedConversion:
2846   case CK_CPointerToObjCPointerCast:
2847   case CK_BlockPointerToObjCPointerCast:
2848   case CK_NoOp:
2849   case CK_LValueToRValue:
2850     return EmitLValue(E->getSubExpr());
2851 
2852   case CK_UncheckedDerivedToBase:
2853   case CK_DerivedToBase: {
2854     const RecordType *DerivedClassTy =
2855       E->getSubExpr()->getType()->getAs<RecordType>();
2856     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2857 
2858     LValue LV = EmitLValue(E->getSubExpr());
2859     llvm::Value *This = LV.getAddress();
2860 
2861     // Perform the derived-to-base conversion
2862     llvm::Value *Base =
2863       GetAddressOfBaseClass(This, DerivedClassDecl,
2864                             E->path_begin(), E->path_end(),
2865                             /*NullCheckValue=*/false);
2866 
2867     return MakeAddrLValue(Base, E->getType());
2868   }
2869   case CK_ToUnion:
2870     return EmitAggExprToLValue(E);
2871   case CK_BaseToDerived: {
2872     const RecordType *DerivedClassTy = E->getType()->getAs<RecordType>();
2873     auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
2874 
2875     LValue LV = EmitLValue(E->getSubExpr());
2876 
2877     // Perform the base-to-derived conversion
2878     llvm::Value *Derived =
2879       GetAddressOfDerivedClass(LV.getAddress(), DerivedClassDecl,
2880                                E->path_begin(), E->path_end(),
2881                                /*NullCheckValue=*/false);
2882 
2883     // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
2884     // performed and the object is not of the derived type.
2885     if (sanitizePerformTypeCheck())
2886       EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
2887                     Derived, E->getType());
2888 
2889     return MakeAddrLValue(Derived, E->getType());
2890   }
2891   case CK_LValueBitCast: {
2892     // This must be a reinterpret_cast (or c-style equivalent).
2893     const auto *CE = cast<ExplicitCastExpr>(E);
2894 
2895     LValue LV = EmitLValue(E->getSubExpr());
2896     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2897                                            ConvertType(CE->getTypeAsWritten()));
2898     return MakeAddrLValue(V, E->getType());
2899   }
2900   case CK_ObjCObjectLValueCast: {
2901     LValue LV = EmitLValue(E->getSubExpr());
2902     QualType ToType = getContext().getLValueReferenceType(E->getType());
2903     llvm::Value *V = Builder.CreateBitCast(LV.getAddress(),
2904                                            ConvertType(ToType));
2905     return MakeAddrLValue(V, E->getType());
2906   }
2907   case CK_ZeroToOCLEvent:
2908     llvm_unreachable("NULL to OpenCL event lvalue cast is not valid");
2909   }
2910 
2911   llvm_unreachable("Unhandled lvalue cast kind?");
2912 }
2913 
EmitOpaqueValueLValue(const OpaqueValueExpr * e)2914 LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
2915   assert(OpaqueValueMappingData::shouldBindAsLValue(e));
2916   return getOpaqueLValueMapping(e);
2917 }
2918 
EmitRValueForField(LValue LV,const FieldDecl * FD,SourceLocation Loc)2919 RValue CodeGenFunction::EmitRValueForField(LValue LV,
2920                                            const FieldDecl *FD,
2921                                            SourceLocation Loc) {
2922   QualType FT = FD->getType();
2923   LValue FieldLV = EmitLValueForField(LV, FD);
2924   switch (getEvaluationKind(FT)) {
2925   case TEK_Complex:
2926     return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
2927   case TEK_Aggregate:
2928     return FieldLV.asAggregateRValue();
2929   case TEK_Scalar:
2930     return EmitLoadOfLValue(FieldLV, Loc);
2931   }
2932   llvm_unreachable("bad evaluation kind");
2933 }
2934 
2935 //===--------------------------------------------------------------------===//
2936 //                             Expression Emission
2937 //===--------------------------------------------------------------------===//
2938 
EmitCallExpr(const CallExpr * E,ReturnValueSlot ReturnValue)2939 RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
2940                                      ReturnValueSlot ReturnValue) {
2941   if (CGDebugInfo *DI = getDebugInfo()) {
2942     SourceLocation Loc = E->getLocStart();
2943     // Force column info to be generated so we can differentiate
2944     // multiple call sites on the same line in the debug info.
2945     // FIXME: This is insufficient. Two calls coming from the same macro
2946     // expansion will still get the same line/column and break debug info. It's
2947     // possible that LLVM can be fixed to not rely on this uniqueness, at which
2948     // point this workaround can be removed.
2949     const FunctionDecl* Callee = E->getDirectCallee();
2950     bool ForceColumnInfo = Callee && Callee->isInlineSpecified();
2951     DI->EmitLocation(Builder, Loc, ForceColumnInfo);
2952   }
2953 
2954   // Builtins never have block type.
2955   if (E->getCallee()->getType()->isBlockPointerType())
2956     return EmitBlockCallExpr(E, ReturnValue);
2957 
2958   if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
2959     return EmitCXXMemberCallExpr(CE, ReturnValue);
2960 
2961   if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
2962     return EmitCUDAKernelCallExpr(CE, ReturnValue);
2963 
2964   const Decl *TargetDecl = E->getCalleeDecl();
2965   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
2966     if (unsigned builtinID = FD->getBuiltinID())
2967       return EmitBuiltinExpr(FD, builtinID, E);
2968   }
2969 
2970   if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
2971     if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(TargetDecl))
2972       return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
2973 
2974   if (const auto *PseudoDtor =
2975           dyn_cast<CXXPseudoDestructorExpr>(E->getCallee()->IgnoreParens())) {
2976     QualType DestroyedType = PseudoDtor->getDestroyedType();
2977     if (getLangOpts().ObjCAutoRefCount &&
2978         DestroyedType->isObjCLifetimeType() &&
2979         (DestroyedType.getObjCLifetime() == Qualifiers::OCL_Strong ||
2980          DestroyedType.getObjCLifetime() == Qualifiers::OCL_Weak)) {
2981       // Automatic Reference Counting:
2982       //   If the pseudo-expression names a retainable object with weak or
2983       //   strong lifetime, the object shall be released.
2984       Expr *BaseExpr = PseudoDtor->getBase();
2985       llvm::Value *BaseValue = nullptr;
2986       Qualifiers BaseQuals;
2987 
2988       // If this is s.x, emit s as an lvalue. If it is s->x, emit s as a scalar.
2989       if (PseudoDtor->isArrow()) {
2990         BaseValue = EmitScalarExpr(BaseExpr);
2991         const PointerType *PTy = BaseExpr->getType()->getAs<PointerType>();
2992         BaseQuals = PTy->getPointeeType().getQualifiers();
2993       } else {
2994         LValue BaseLV = EmitLValue(BaseExpr);
2995         BaseValue = BaseLV.getAddress();
2996         QualType BaseTy = BaseExpr->getType();
2997         BaseQuals = BaseTy.getQualifiers();
2998       }
2999 
3000       switch (PseudoDtor->getDestroyedType().getObjCLifetime()) {
3001       case Qualifiers::OCL_None:
3002       case Qualifiers::OCL_ExplicitNone:
3003       case Qualifiers::OCL_Autoreleasing:
3004         break;
3005 
3006       case Qualifiers::OCL_Strong:
3007         EmitARCRelease(Builder.CreateLoad(BaseValue,
3008                           PseudoDtor->getDestroyedType().isVolatileQualified()),
3009                        ARCPreciseLifetime);
3010         break;
3011 
3012       case Qualifiers::OCL_Weak:
3013         EmitARCDestroyWeak(BaseValue);
3014         break;
3015       }
3016     } else {
3017       // C++ [expr.pseudo]p1:
3018       //   The result shall only be used as the operand for the function call
3019       //   operator (), and the result of such a call has type void. The only
3020       //   effect is the evaluation of the postfix-expression before the dot or
3021       //   arrow.
3022       EmitScalarExpr(E->getCallee());
3023     }
3024 
3025     return RValue::get(nullptr);
3026   }
3027 
3028   llvm::Value *Callee = EmitScalarExpr(E->getCallee());
3029   return EmitCall(E->getCallee()->getType(), Callee, E->getLocStart(),
3030                   ReturnValue, E->arg_begin(), E->arg_end(), TargetDecl);
3031 }
3032 
EmitBinaryOperatorLValue(const BinaryOperator * E)3033 LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
3034   // Comma expressions just emit their LHS then their RHS as an l-value.
3035   if (E->getOpcode() == BO_Comma) {
3036     EmitIgnoredExpr(E->getLHS());
3037     EnsureInsertPoint();
3038     return EmitLValue(E->getRHS());
3039   }
3040 
3041   if (E->getOpcode() == BO_PtrMemD ||
3042       E->getOpcode() == BO_PtrMemI)
3043     return EmitPointerToDataMemberBinaryExpr(E);
3044 
3045   assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
3046 
3047   // Note that in all of these cases, __block variables need the RHS
3048   // evaluated first just in case the variable gets moved by the RHS.
3049 
3050   switch (getEvaluationKind(E->getType())) {
3051   case TEK_Scalar: {
3052     switch (E->getLHS()->getType().getObjCLifetime()) {
3053     case Qualifiers::OCL_Strong:
3054       return EmitARCStoreStrong(E, /*ignored*/ false).first;
3055 
3056     case Qualifiers::OCL_Autoreleasing:
3057       return EmitARCStoreAutoreleasing(E).first;
3058 
3059     // No reason to do any of these differently.
3060     case Qualifiers::OCL_None:
3061     case Qualifiers::OCL_ExplicitNone:
3062     case Qualifiers::OCL_Weak:
3063       break;
3064     }
3065 
3066     RValue RV = EmitAnyExpr(E->getRHS());
3067     LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
3068     EmitStoreThroughLValue(RV, LV);
3069     return LV;
3070   }
3071 
3072   case TEK_Complex:
3073     return EmitComplexAssignmentLValue(E);
3074 
3075   case TEK_Aggregate:
3076     return EmitAggExprToLValue(E);
3077   }
3078   llvm_unreachable("bad evaluation kind");
3079 }
3080 
EmitCallExprLValue(const CallExpr * E)3081 LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
3082   RValue RV = EmitCallExpr(E);
3083 
3084   if (!RV.isScalar())
3085     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3086 
3087   assert(E->getCallReturnType()->isReferenceType() &&
3088          "Can't have a scalar return unless the return type is a "
3089          "reference type!");
3090 
3091   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3092 }
3093 
EmitVAArgExprLValue(const VAArgExpr * E)3094 LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
3095   // FIXME: This shouldn't require another copy.
3096   return EmitAggExprToLValue(E);
3097 }
3098 
EmitCXXConstructLValue(const CXXConstructExpr * E)3099 LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
3100   assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
3101          && "binding l-value to type which needs a temporary");
3102   AggValueSlot Slot = CreateAggTemp(E->getType());
3103   EmitCXXConstructExpr(E, Slot);
3104   return MakeAddrLValue(Slot.getAddr(), E->getType());
3105 }
3106 
3107 LValue
EmitCXXTypeidLValue(const CXXTypeidExpr * E)3108 CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
3109   return MakeAddrLValue(EmitCXXTypeidExpr(E), E->getType());
3110 }
3111 
EmitCXXUuidofExpr(const CXXUuidofExpr * E)3112 llvm::Value *CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
3113   return Builder.CreateBitCast(CGM.GetAddrOfUuidDescriptor(E),
3114                                ConvertType(E->getType())->getPointerTo());
3115 }
3116 
EmitCXXUuidofLValue(const CXXUuidofExpr * E)3117 LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
3118   return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType());
3119 }
3120 
3121 LValue
EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr * E)3122 CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
3123   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3124   Slot.setExternallyDestructed();
3125   EmitAggExpr(E->getSubExpr(), Slot);
3126   EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddr());
3127   return MakeAddrLValue(Slot.getAddr(), E->getType());
3128 }
3129 
3130 LValue
EmitLambdaLValue(const LambdaExpr * E)3131 CodeGenFunction::EmitLambdaLValue(const LambdaExpr *E) {
3132   AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
3133   EmitLambdaExpr(E, Slot);
3134   return MakeAddrLValue(Slot.getAddr(), E->getType());
3135 }
3136 
EmitObjCMessageExprLValue(const ObjCMessageExpr * E)3137 LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
3138   RValue RV = EmitObjCMessageExpr(E);
3139 
3140   if (!RV.isScalar())
3141     return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3142 
3143   assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
3144          "Can't have a scalar return unless the return type is a "
3145          "reference type!");
3146 
3147   return MakeAddrLValue(RV.getScalarVal(), E->getType());
3148 }
3149 
EmitObjCSelectorLValue(const ObjCSelectorExpr * E)3150 LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
3151   llvm::Value *V =
3152     CGM.getObjCRuntime().GetSelector(*this, E->getSelector(), true);
3153   return MakeAddrLValue(V, E->getType());
3154 }
3155 
EmitIvarOffset(const ObjCInterfaceDecl * Interface,const ObjCIvarDecl * Ivar)3156 llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
3157                                              const ObjCIvarDecl *Ivar) {
3158   return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
3159 }
3160 
EmitLValueForIvar(QualType ObjectTy,llvm::Value * BaseValue,const ObjCIvarDecl * Ivar,unsigned CVRQualifiers)3161 LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
3162                                           llvm::Value *BaseValue,
3163                                           const ObjCIvarDecl *Ivar,
3164                                           unsigned CVRQualifiers) {
3165   return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
3166                                                    Ivar, CVRQualifiers);
3167 }
3168 
EmitObjCIvarRefLValue(const ObjCIvarRefExpr * E)3169 LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
3170   // FIXME: A lot of the code below could be shared with EmitMemberExpr.
3171   llvm::Value *BaseValue = nullptr;
3172   const Expr *BaseExpr = E->getBase();
3173   Qualifiers BaseQuals;
3174   QualType ObjectTy;
3175   if (E->isArrow()) {
3176     BaseValue = EmitScalarExpr(BaseExpr);
3177     ObjectTy = BaseExpr->getType()->getPointeeType();
3178     BaseQuals = ObjectTy.getQualifiers();
3179   } else {
3180     LValue BaseLV = EmitLValue(BaseExpr);
3181     // FIXME: this isn't right for bitfields.
3182     BaseValue = BaseLV.getAddress();
3183     ObjectTy = BaseExpr->getType();
3184     BaseQuals = ObjectTy.getQualifiers();
3185   }
3186 
3187   LValue LV =
3188     EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
3189                       BaseQuals.getCVRQualifiers());
3190   setObjCGCLValueClass(getContext(), E, LV);
3191   return LV;
3192 }
3193 
EmitStmtExprLValue(const StmtExpr * E)3194 LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
3195   // Can only get l-value for message expression returning aggregate type
3196   RValue RV = EmitAnyExprToTemp(E);
3197   return MakeAddrLValue(RV.getAggregateAddr(), E->getType());
3198 }
3199 
EmitCall(QualType CalleeType,llvm::Value * Callee,SourceLocation CallLoc,ReturnValueSlot ReturnValue,CallExpr::const_arg_iterator ArgBeg,CallExpr::const_arg_iterator ArgEnd,const Decl * TargetDecl)3200 RValue CodeGenFunction::EmitCall(QualType CalleeType, llvm::Value *Callee,
3201                                  SourceLocation CallLoc,
3202                                  ReturnValueSlot ReturnValue,
3203                                  CallExpr::const_arg_iterator ArgBeg,
3204                                  CallExpr::const_arg_iterator ArgEnd,
3205                                  const Decl *TargetDecl) {
3206   // Get the actual function type. The callee type will always be a pointer to
3207   // function type or a block pointer type.
3208   assert(CalleeType->isFunctionPointerType() &&
3209          "Call must have function pointer type!");
3210 
3211   CalleeType = getContext().getCanonicalType(CalleeType);
3212 
3213   const auto *FnType =
3214       cast<FunctionType>(cast<PointerType>(CalleeType)->getPointeeType());
3215 
3216   // Force column info to differentiate multiple inlined call sites on
3217   // the same line, analoguous to EmitCallExpr.
3218   // FIXME: This is insufficient. Two calls coming from the same macro expansion
3219   // will still get the same line/column and break debug info. It's possible
3220   // that LLVM can be fixed to not rely on this uniqueness, at which point this
3221   // workaround can be removed.
3222   bool ForceColumnInfo = false;
3223   if (const FunctionDecl* FD = dyn_cast_or_null<const FunctionDecl>(TargetDecl))
3224     ForceColumnInfo = FD->isInlineSpecified();
3225 
3226   if (getLangOpts().CPlusPlus && SanOpts->Function &&
3227       (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
3228     if (llvm::Constant *PrefixSig =
3229             CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
3230       llvm::Constant *FTRTTIConst =
3231           CGM.GetAddrOfRTTIDescriptor(QualType(FnType, 0), /*ForEH=*/true);
3232       llvm::Type *PrefixStructTyElems[] = {
3233         PrefixSig->getType(),
3234         FTRTTIConst->getType()
3235       };
3236       llvm::StructType *PrefixStructTy = llvm::StructType::get(
3237           CGM.getLLVMContext(), PrefixStructTyElems, /*isPacked=*/true);
3238 
3239       llvm::Value *CalleePrefixStruct = Builder.CreateBitCast(
3240           Callee, llvm::PointerType::getUnqual(PrefixStructTy));
3241       llvm::Value *CalleeSigPtr =
3242           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 0);
3243       llvm::Value *CalleeSig = Builder.CreateLoad(CalleeSigPtr);
3244       llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
3245 
3246       llvm::BasicBlock *Cont = createBasicBlock("cont");
3247       llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
3248       Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
3249 
3250       EmitBlock(TypeCheck);
3251       llvm::Value *CalleeRTTIPtr =
3252           Builder.CreateConstGEP2_32(CalleePrefixStruct, 0, 1);
3253       llvm::Value *CalleeRTTI = Builder.CreateLoad(CalleeRTTIPtr);
3254       llvm::Value *CalleeRTTIMatch =
3255           Builder.CreateICmpEQ(CalleeRTTI, FTRTTIConst);
3256       llvm::Constant *StaticData[] = {
3257         EmitCheckSourceLocation(CallLoc),
3258         EmitCheckTypeDescriptor(CalleeType)
3259       };
3260       EmitCheck(CalleeRTTIMatch,
3261                 "function_type_mismatch",
3262                 StaticData,
3263                 Callee,
3264                 CRK_Recoverable);
3265 
3266       Builder.CreateBr(Cont);
3267       EmitBlock(Cont);
3268     }
3269   }
3270 
3271   CallArgList Args;
3272   EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), ArgBeg, ArgEnd,
3273                ForceColumnInfo);
3274 
3275   const CGFunctionInfo &FnInfo =
3276     CGM.getTypes().arrangeFreeFunctionCall(Args, FnType);
3277 
3278   // C99 6.5.2.2p6:
3279   //   If the expression that denotes the called function has a type
3280   //   that does not include a prototype, [the default argument
3281   //   promotions are performed]. If the number of arguments does not
3282   //   equal the number of parameters, the behavior is undefined. If
3283   //   the function is defined with a type that includes a prototype,
3284   //   and either the prototype ends with an ellipsis (, ...) or the
3285   //   types of the arguments after promotion are not compatible with
3286   //   the types of the parameters, the behavior is undefined. If the
3287   //   function is defined with a type that does not include a
3288   //   prototype, and the types of the arguments after promotion are
3289   //   not compatible with those of the parameters after promotion,
3290   //   the behavior is undefined [except in some trivial cases].
3291   // That is, in the general case, we should assume that a call
3292   // through an unprototyped function type works like a *non-variadic*
3293   // call.  The way we make this work is to cast to the exact type
3294   // of the promoted arguments.
3295   if (isa<FunctionNoProtoType>(FnType)) {
3296     llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
3297     CalleeTy = CalleeTy->getPointerTo();
3298     Callee = Builder.CreateBitCast(Callee, CalleeTy, "callee.knr.cast");
3299   }
3300 
3301   return EmitCall(FnInfo, Callee, ReturnValue, Args, TargetDecl);
3302 }
3303 
3304 LValue CodeGenFunction::
EmitPointerToDataMemberBinaryExpr(const BinaryOperator * E)3305 EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
3306   llvm::Value *BaseV;
3307   if (E->getOpcode() == BO_PtrMemI)
3308     BaseV = EmitScalarExpr(E->getLHS());
3309   else
3310     BaseV = EmitLValue(E->getLHS()).getAddress();
3311 
3312   llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
3313 
3314   const MemberPointerType *MPT
3315     = E->getRHS()->getType()->getAs<MemberPointerType>();
3316 
3317   llvm::Value *AddV = CGM.getCXXABI().EmitMemberDataPointerAddress(
3318       *this, E, BaseV, OffsetV, MPT);
3319 
3320   return MakeAddrLValue(AddV, MPT->getPointeeType());
3321 }
3322 
3323 /// Given the address of a temporary variable, produce an r-value of
3324 /// its type.
convertTempToRValue(llvm::Value * addr,QualType type,SourceLocation loc)3325 RValue CodeGenFunction::convertTempToRValue(llvm::Value *addr,
3326                                             QualType type,
3327                                             SourceLocation loc) {
3328   LValue lvalue = MakeNaturalAlignAddrLValue(addr, type);
3329   switch (getEvaluationKind(type)) {
3330   case TEK_Complex:
3331     return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
3332   case TEK_Aggregate:
3333     return lvalue.asAggregateRValue();
3334   case TEK_Scalar:
3335     return RValue::get(EmitLoadOfScalar(lvalue, loc));
3336   }
3337   llvm_unreachable("bad evaluation kind");
3338 }
3339 
SetFPAccuracy(llvm::Value * Val,float Accuracy)3340 void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
3341   assert(Val->getType()->isFPOrFPVectorTy());
3342   if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
3343     return;
3344 
3345   llvm::MDBuilder MDHelper(getLLVMContext());
3346   llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
3347 
3348   cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
3349 }
3350 
3351 namespace {
3352   struct LValueOrRValue {
3353     LValue LV;
3354     RValue RV;
3355   };
3356 }
3357 
emitPseudoObjectExpr(CodeGenFunction & CGF,const PseudoObjectExpr * E,bool forLValue,AggValueSlot slot)3358 static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
3359                                            const PseudoObjectExpr *E,
3360                                            bool forLValue,
3361                                            AggValueSlot slot) {
3362   SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
3363 
3364   // Find the result expression, if any.
3365   const Expr *resultExpr = E->getResultExpr();
3366   LValueOrRValue result;
3367 
3368   for (PseudoObjectExpr::const_semantics_iterator
3369          i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
3370     const Expr *semantic = *i;
3371 
3372     // If this semantic expression is an opaque value, bind it
3373     // to the result of its source expression.
3374     if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
3375 
3376       // If this is the result expression, we may need to evaluate
3377       // directly into the slot.
3378       typedef CodeGenFunction::OpaqueValueMappingData OVMA;
3379       OVMA opaqueData;
3380       if (ov == resultExpr && ov->isRValue() && !forLValue &&
3381           CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
3382         CGF.EmitAggExpr(ov->getSourceExpr(), slot);
3383 
3384         LValue LV = CGF.MakeAddrLValue(slot.getAddr(), ov->getType());
3385         opaqueData = OVMA::bind(CGF, ov, LV);
3386         result.RV = slot.asRValue();
3387 
3388       // Otherwise, emit as normal.
3389       } else {
3390         opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
3391 
3392         // If this is the result, also evaluate the result now.
3393         if (ov == resultExpr) {
3394           if (forLValue)
3395             result.LV = CGF.EmitLValue(ov);
3396           else
3397             result.RV = CGF.EmitAnyExpr(ov, slot);
3398         }
3399       }
3400 
3401       opaques.push_back(opaqueData);
3402 
3403     // Otherwise, if the expression is the result, evaluate it
3404     // and remember the result.
3405     } else if (semantic == resultExpr) {
3406       if (forLValue)
3407         result.LV = CGF.EmitLValue(semantic);
3408       else
3409         result.RV = CGF.EmitAnyExpr(semantic, slot);
3410 
3411     // Otherwise, evaluate the expression in an ignored context.
3412     } else {
3413       CGF.EmitIgnoredExpr(semantic);
3414     }
3415   }
3416 
3417   // Unbind all the opaques now.
3418   for (unsigned i = 0, e = opaques.size(); i != e; ++i)
3419     opaques[i].unbind(CGF);
3420 
3421   return result;
3422 }
3423 
EmitPseudoObjectRValue(const PseudoObjectExpr * E,AggValueSlot slot)3424 RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
3425                                                AggValueSlot slot) {
3426   return emitPseudoObjectExpr(*this, E, false, slot).RV;
3427 }
3428 
EmitPseudoObjectLValue(const PseudoObjectExpr * E)3429 LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
3430   return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
3431 }
3432