• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "sandbox/linux/seccomp-bpf/trap.h"
6 
7 #include <errno.h>
8 #include <signal.h>
9 #include <string.h>
10 #include <sys/prctl.h>
11 #include <sys/syscall.h>
12 
13 #include <limits>
14 
15 #include "base/logging.h"
16 #include "sandbox/linux/seccomp-bpf/codegen.h"
17 #include "sandbox/linux/seccomp-bpf/die.h"
18 #include "sandbox/linux/seccomp-bpf/syscall.h"
19 
20 // Android's signal.h doesn't define ucontext etc.
21 #if defined(OS_ANDROID)
22 #include "sandbox/linux/services/android_ucontext.h"
23 #endif
24 
25 namespace {
26 
27 const int kCapacityIncrement = 20;
28 
29 // Unsafe traps can only be turned on, if the user explicitly allowed them
30 // by setting the CHROME_SANDBOX_DEBUGGING environment variable.
31 const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING";
32 
33 // We need to tell whether we are performing a "normal" callback, or
34 // whether we were called recursively from within a UnsafeTrap() callback.
35 // This is a little tricky to do, because we need to somehow get access to
36 // per-thread data from within a signal context. Normal TLS storage is not
37 // safely accessible at this time. We could roll our own, but that involves
38 // a lot of complexity. Instead, we co-opt one bit in the signal mask.
39 // If BUS is blocked, we assume that we have been called recursively.
40 // There is a possibility for collision with other code that needs to do
41 // this, but in practice the risks are low.
42 // If SIGBUS turns out to be a problem, we could instead co-opt one of the
43 // realtime signals. There are plenty of them. Unfortunately, there is no
44 // way to mark a signal as allocated. So, the potential for collision is
45 // possibly even worse.
GetIsInSigHandler(const ucontext_t * ctx)46 bool GetIsInSigHandler(const ucontext_t* ctx) {
47   // Note: on Android, sigismember does not take a pointer to const.
48   return sigismember(const_cast<sigset_t*>(&ctx->uc_sigmask), SIGBUS);
49 }
50 
SetIsInSigHandler()51 void SetIsInSigHandler() {
52   sigset_t mask;
53   if (sigemptyset(&mask) || sigaddset(&mask, SIGBUS) ||
54       sigprocmask(SIG_BLOCK, &mask, NULL)) {
55     SANDBOX_DIE("Failed to block SIGBUS");
56   }
57 }
58 
IsDefaultSignalAction(const struct sigaction & sa)59 bool IsDefaultSignalAction(const struct sigaction& sa) {
60   if (sa.sa_flags & SA_SIGINFO || sa.sa_handler != SIG_DFL) {
61     return false;
62   }
63   return true;
64 }
65 
66 }  // namespace
67 
68 namespace sandbox {
69 
Trap()70 Trap::Trap()
71     : trap_array_(NULL),
72       trap_array_size_(0),
73       trap_array_capacity_(0),
74       has_unsafe_traps_(false) {
75   // Set new SIGSYS handler
76   struct sigaction sa = {};
77   sa.sa_sigaction = SigSysAction;
78   sa.sa_flags = SA_SIGINFO | SA_NODEFER;
79   struct sigaction old_sa;
80   if (sigaction(SIGSYS, &sa, &old_sa) < 0) {
81     SANDBOX_DIE("Failed to configure SIGSYS handler");
82   }
83 
84   if (!IsDefaultSignalAction(old_sa)) {
85     static const char kExistingSIGSYSMsg[] =
86         "Existing signal handler when trying to install SIGSYS. SIGSYS needs "
87         "to be reserved for seccomp-bpf.";
88     DLOG(FATAL) << kExistingSIGSYSMsg;
89     LOG(ERROR) << kExistingSIGSYSMsg;
90   }
91 
92   // Unmask SIGSYS
93   sigset_t mask;
94   if (sigemptyset(&mask) || sigaddset(&mask, SIGSYS) ||
95       sigprocmask(SIG_UNBLOCK, &mask, NULL)) {
96     SANDBOX_DIE("Failed to configure SIGSYS handler");
97   }
98 }
99 
GetInstance()100 Trap* Trap::GetInstance() {
101   // Note: This class is not thread safe. It is the caller's responsibility
102   // to avoid race conditions. Normally, this is a non-issue as the sandbox
103   // can only be initialized if there are no other threads present.
104   // Also, this is not a normal singleton. Once created, the global trap
105   // object must never be destroyed again.
106   if (!global_trap_) {
107     global_trap_ = new Trap();
108     if (!global_trap_) {
109       SANDBOX_DIE("Failed to allocate global trap handler");
110     }
111   }
112   return global_trap_;
113 }
114 
SigSysAction(int nr,siginfo_t * info,void * void_context)115 void Trap::SigSysAction(int nr, siginfo_t* info, void* void_context) {
116   if (!global_trap_) {
117     RAW_SANDBOX_DIE(
118         "This can't happen. Found no global singleton instance "
119         "for Trap() handling.");
120   }
121   global_trap_->SigSys(nr, info, void_context);
122 }
123 
SigSys(int nr,siginfo_t * info,void * void_context)124 void Trap::SigSys(int nr, siginfo_t* info, void* void_context) {
125   // Signal handlers should always preserve "errno". Otherwise, we could
126   // trigger really subtle bugs.
127   const int old_errno = errno;
128 
129   // Various sanity checks to make sure we actually received a signal
130   // triggered by a BPF filter. If something else triggered SIGSYS
131   // (e.g. kill()), there is really nothing we can do with this signal.
132   if (nr != SIGSYS || info->si_code != SYS_SECCOMP || !void_context ||
133       info->si_errno <= 0 ||
134       static_cast<size_t>(info->si_errno) > trap_array_size_) {
135     // ATI drivers seem to send SIGSYS, so this cannot be FATAL.
136     // See crbug.com/178166.
137     // TODO(jln): add a DCHECK or move back to FATAL.
138     RAW_LOG(ERROR, "Unexpected SIGSYS received.");
139     errno = old_errno;
140     return;
141   }
142 
143   // Obtain the signal context. This, most notably, gives us access to
144   // all CPU registers at the time of the signal.
145   ucontext_t* ctx = reinterpret_cast<ucontext_t*>(void_context);
146 
147   // Obtain the siginfo information that is specific to SIGSYS. Unfortunately,
148   // most versions of glibc don't include this information in siginfo_t. So,
149   // we need to explicitly copy it into a arch_sigsys structure.
150   struct arch_sigsys sigsys;
151   memcpy(&sigsys, &info->_sifields, sizeof(sigsys));
152 
153   // Some more sanity checks.
154   if (sigsys.ip != reinterpret_cast<void*>(SECCOMP_IP(ctx)) ||
155       sigsys.nr != static_cast<int>(SECCOMP_SYSCALL(ctx)) ||
156       sigsys.arch != SECCOMP_ARCH) {
157     // TODO(markus):
158     // SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal
159     // safe and can lead to bugs. We should eventually implement a different
160     // logging and reporting mechanism that is safe to be called from
161     // the sigSys() handler.
162     RAW_SANDBOX_DIE("Sanity checks are failing after receiving SIGSYS.");
163   }
164 
165   intptr_t rc;
166   if (has_unsafe_traps_ && GetIsInSigHandler(ctx)) {
167     errno = old_errno;
168     if (sigsys.nr == __NR_clone) {
169       RAW_SANDBOX_DIE("Cannot call clone() from an UnsafeTrap() handler.");
170     }
171     rc = Syscall::Call(sigsys.nr,
172                        SECCOMP_PARM1(ctx),
173                        SECCOMP_PARM2(ctx),
174                        SECCOMP_PARM3(ctx),
175                        SECCOMP_PARM4(ctx),
176                        SECCOMP_PARM5(ctx),
177                        SECCOMP_PARM6(ctx));
178   } else {
179     const ErrorCode& err = trap_array_[info->si_errno - 1];
180     if (!err.safe_) {
181       SetIsInSigHandler();
182     }
183 
184     // Copy the seccomp-specific data into a arch_seccomp_data structure. This
185     // is what we are showing to TrapFnc callbacks that the system call
186     // evaluator registered with the sandbox.
187     struct arch_seccomp_data data = {
188         sigsys.nr, SECCOMP_ARCH, reinterpret_cast<uint64_t>(sigsys.ip),
189         {static_cast<uint64_t>(SECCOMP_PARM1(ctx)),
190          static_cast<uint64_t>(SECCOMP_PARM2(ctx)),
191          static_cast<uint64_t>(SECCOMP_PARM3(ctx)),
192          static_cast<uint64_t>(SECCOMP_PARM4(ctx)),
193          static_cast<uint64_t>(SECCOMP_PARM5(ctx)),
194          static_cast<uint64_t>(SECCOMP_PARM6(ctx))}};
195 
196     // Now call the TrapFnc callback associated with this particular instance
197     // of SECCOMP_RET_TRAP.
198     rc = err.fnc_(data, err.aux_);
199   }
200 
201   // Update the CPU register that stores the return code of the system call
202   // that we just handled, and restore "errno" to the value that it had
203   // before entering the signal handler.
204   SECCOMP_RESULT(ctx) = static_cast<greg_t>(rc);
205   errno = old_errno;
206 
207   return;
208 }
209 
operator <(const TrapKey & o) const210 bool Trap::TrapKey::operator<(const TrapKey& o) const {
211   if (fnc != o.fnc) {
212     return fnc < o.fnc;
213   } else if (aux != o.aux) {
214     return aux < o.aux;
215   } else {
216     return safe < o.safe;
217   }
218 }
219 
MakeTrap(TrapFnc fnc,const void * aux,bool safe)220 ErrorCode Trap::MakeTrap(TrapFnc fnc, const void* aux, bool safe) {
221   return GetInstance()->MakeTrapImpl(fnc, aux, safe);
222 }
223 
MakeTrapImpl(TrapFnc fnc,const void * aux,bool safe)224 ErrorCode Trap::MakeTrapImpl(TrapFnc fnc, const void* aux, bool safe) {
225   if (!safe && !SandboxDebuggingAllowedByUser()) {
226     // Unless the user set the CHROME_SANDBOX_DEBUGGING environment variable,
227     // we never return an ErrorCode that is marked as "unsafe". This also
228     // means, the BPF compiler will never emit code that allow unsafe system
229     // calls to by-pass the filter (because they use the magic return address
230     // from Syscall::Call(-1)).
231 
232     // This SANDBOX_DIE() can optionally be removed. It won't break security,
233     // but it might make error messages from the BPF compiler a little harder
234     // to understand. Removing the SANDBOX_DIE() allows callers to easyly check
235     // whether unsafe traps are supported (by checking whether the returned
236     // ErrorCode is ET_INVALID).
237     SANDBOX_DIE(
238         "Cannot use unsafe traps unless CHROME_SANDBOX_DEBUGGING "
239         "is enabled");
240 
241     return ErrorCode();
242   }
243 
244   // Each unique pair of TrapFnc and auxiliary data make up a distinct instance
245   // of a SECCOMP_RET_TRAP.
246   TrapKey key(fnc, aux, safe);
247   TrapIds::const_iterator iter = trap_ids_.find(key);
248 
249   // We return unique identifiers together with SECCOMP_RET_TRAP. This allows
250   // us to associate trap with the appropriate handler. The kernel allows us
251   // identifiers in the range from 0 to SECCOMP_RET_DATA (0xFFFF). We want to
252   // avoid 0, as it could be confused for a trap without any specific id.
253   // The nice thing about sequentially numbered identifiers is that we can also
254   // trivially look them up from our signal handler without making any system
255   // calls that might be async-signal-unsafe.
256   // In order to do so, we store all of our traps in a C-style trap_array_.
257   uint16_t id;
258   if (iter != trap_ids_.end()) {
259     // We have seen this pair before. Return the same id that we assigned
260     // earlier.
261     id = iter->second;
262   } else {
263     // This is a new pair. Remember it and assign a new id.
264     if (trap_array_size_ >= SECCOMP_RET_DATA /* 0xFFFF */ ||
265         trap_array_size_ >= std::numeric_limits<typeof(id)>::max()) {
266       // In practice, this is pretty much impossible to trigger, as there
267       // are other kernel limitations that restrict overall BPF program sizes.
268       SANDBOX_DIE("Too many SECCOMP_RET_TRAP callback instances");
269     }
270     id = trap_array_size_ + 1;
271 
272     // Our callers ensure that there are no other threads accessing trap_array_
273     // concurrently (typically this is done by ensuring that we are single-
274     // threaded while the sandbox is being set up). But we nonetheless are
275     // modifying a life data structure that could be accessed any time a
276     // system call is made; as system calls could be triggering SIGSYS.
277     // So, we have to be extra careful that we update trap_array_ atomically.
278     // In particular, this means we shouldn't be using realloc() to resize it.
279     // Instead, we allocate a new array, copy the values, and then switch the
280     // pointer. We only really care about the pointer being updated atomically
281     // and the data that is pointed to being valid, as these are the only
282     // values accessed from the signal handler. It is OK if trap_array_size_
283     // is inconsistent with the pointer, as it is monotonously increasing.
284     // Also, we only care about compiler barriers, as the signal handler is
285     // triggered synchronously from a system call. We don't have to protect
286     // against issues with the memory model or with completely asynchronous
287     // events.
288     if (trap_array_size_ >= trap_array_capacity_) {
289       trap_array_capacity_ += kCapacityIncrement;
290       ErrorCode* old_trap_array = trap_array_;
291       ErrorCode* new_trap_array = new ErrorCode[trap_array_capacity_];
292 
293       // Language specs are unclear on whether the compiler is allowed to move
294       // the "delete[]" above our preceding assignments and/or memory moves,
295       // iff the compiler believes that "delete[]" doesn't have any other
296       // global side-effects.
297       // We insert optimization barriers to prevent this from happening.
298       // The first barrier is probably not needed, but better be explicit in
299       // what we want to tell the compiler.
300       // The clang developer mailing list couldn't answer whether this is a
301       // legitimate worry; but they at least thought that the barrier is
302       // sufficient to prevent the (so far hypothetical) problem of re-ordering
303       // of instructions by the compiler.
304       memcpy(new_trap_array, trap_array_, trap_array_size_ * sizeof(ErrorCode));
305       asm volatile("" : "=r"(new_trap_array) : "0"(new_trap_array) : "memory");
306       trap_array_ = new_trap_array;
307       asm volatile("" : "=r"(trap_array_) : "0"(trap_array_) : "memory");
308 
309       delete[] old_trap_array;
310     }
311     trap_ids_[key] = id;
312     trap_array_[trap_array_size_] = ErrorCode(fnc, aux, safe, id);
313     return trap_array_[trap_array_size_++];
314   }
315 
316   return ErrorCode(fnc, aux, safe, id);
317 }
318 
SandboxDebuggingAllowedByUser() const319 bool Trap::SandboxDebuggingAllowedByUser() const {
320   const char* debug_flag = getenv(kSandboxDebuggingEnv);
321   return debug_flag && *debug_flag;
322 }
323 
EnableUnsafeTrapsInSigSysHandler()324 bool Trap::EnableUnsafeTrapsInSigSysHandler() {
325   Trap* trap = GetInstance();
326   if (!trap->has_unsafe_traps_) {
327     // Unsafe traps are a one-way fuse. Once enabled, they can never be turned
328     // off again.
329     // We only allow enabling unsafe traps, if the user explicitly set an
330     // appropriate environment variable. This prevents bugs that accidentally
331     // disable all sandboxing for all users.
332     if (trap->SandboxDebuggingAllowedByUser()) {
333       // We only ever print this message once, when we enable unsafe traps the
334       // first time.
335       SANDBOX_INFO("WARNING! Disabling sandbox for debugging purposes");
336       trap->has_unsafe_traps_ = true;
337     } else {
338       SANDBOX_INFO(
339           "Cannot disable sandbox and use unsafe traps unless "
340           "CHROME_SANDBOX_DEBUGGING is turned on first");
341     }
342   }
343   // Returns the, possibly updated, value of has_unsafe_traps_.
344   return trap->has_unsafe_traps_;
345 }
346 
ErrorCodeFromTrapId(uint16_t id)347 ErrorCode Trap::ErrorCodeFromTrapId(uint16_t id) {
348   if (global_trap_ && id > 0 && id <= global_trap_->trap_array_size_) {
349     return global_trap_->trap_array_[id - 1];
350   } else {
351     return ErrorCode();
352   }
353 }
354 
355 Trap* Trap::global_trap_;
356 
357 }  // namespace sandbox
358