1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/v8.h"
6
7 #if V8_TARGET_ARCH_ARM64
8
9 #include "src/bootstrapper.h"
10 #include "src/codegen.h"
11 #include "src/cpu-profiler.h"
12 #include "src/debug.h"
13 #include "src/isolate-inl.h"
14 #include "src/runtime.h"
15
16 namespace v8 {
17 namespace internal {
18
19 // Define a fake double underscore to use with the ASM_UNIMPLEMENTED macros.
20 #define __
21
22
MacroAssembler(Isolate * arg_isolate,byte * buffer,unsigned buffer_size)23 MacroAssembler::MacroAssembler(Isolate* arg_isolate,
24 byte * buffer,
25 unsigned buffer_size)
26 : Assembler(arg_isolate, buffer, buffer_size),
27 generating_stub_(false),
28 #if DEBUG
29 allow_macro_instructions_(true),
30 #endif
31 has_frame_(false),
32 use_real_aborts_(true),
33 sp_(jssp),
34 tmp_list_(DefaultTmpList()),
35 fptmp_list_(DefaultFPTmpList()) {
36 if (isolate() != NULL) {
37 code_object_ = Handle<Object>(isolate()->heap()->undefined_value(),
38 isolate());
39 }
40 }
41
42
DefaultTmpList()43 CPURegList MacroAssembler::DefaultTmpList() {
44 return CPURegList(ip0, ip1);
45 }
46
47
DefaultFPTmpList()48 CPURegList MacroAssembler::DefaultFPTmpList() {
49 return CPURegList(fp_scratch1, fp_scratch2);
50 }
51
52
LogicalMacro(const Register & rd,const Register & rn,const Operand & operand,LogicalOp op)53 void MacroAssembler::LogicalMacro(const Register& rd,
54 const Register& rn,
55 const Operand& operand,
56 LogicalOp op) {
57 UseScratchRegisterScope temps(this);
58
59 if (operand.NeedsRelocation(this)) {
60 Register temp = temps.AcquireX();
61 Ldr(temp, operand.immediate());
62 Logical(rd, rn, temp, op);
63
64 } else if (operand.IsImmediate()) {
65 int64_t immediate = operand.ImmediateValue();
66 unsigned reg_size = rd.SizeInBits();
67 ASSERT(rd.Is64Bits() || is_uint32(immediate));
68
69 // If the operation is NOT, invert the operation and immediate.
70 if ((op & NOT) == NOT) {
71 op = static_cast<LogicalOp>(op & ~NOT);
72 immediate = ~immediate;
73 if (rd.Is32Bits()) {
74 immediate &= kWRegMask;
75 }
76 }
77
78 // Special cases for all set or all clear immediates.
79 if (immediate == 0) {
80 switch (op) {
81 case AND:
82 Mov(rd, 0);
83 return;
84 case ORR: // Fall through.
85 case EOR:
86 Mov(rd, rn);
87 return;
88 case ANDS: // Fall through.
89 case BICS:
90 break;
91 default:
92 UNREACHABLE();
93 }
94 } else if ((rd.Is64Bits() && (immediate == -1L)) ||
95 (rd.Is32Bits() && (immediate == 0xffffffffL))) {
96 switch (op) {
97 case AND:
98 Mov(rd, rn);
99 return;
100 case ORR:
101 Mov(rd, immediate);
102 return;
103 case EOR:
104 Mvn(rd, rn);
105 return;
106 case ANDS: // Fall through.
107 case BICS:
108 break;
109 default:
110 UNREACHABLE();
111 }
112 }
113
114 unsigned n, imm_s, imm_r;
115 if (IsImmLogical(immediate, reg_size, &n, &imm_s, &imm_r)) {
116 // Immediate can be encoded in the instruction.
117 LogicalImmediate(rd, rn, n, imm_s, imm_r, op);
118 } else {
119 // Immediate can't be encoded: synthesize using move immediate.
120 Register temp = temps.AcquireSameSizeAs(rn);
121 Mov(temp, immediate);
122 if (rd.Is(csp)) {
123 // If rd is the stack pointer we cannot use it as the destination
124 // register so we use the temp register as an intermediate again.
125 Logical(temp, rn, temp, op);
126 Mov(csp, temp);
127 AssertStackConsistency();
128 } else {
129 Logical(rd, rn, temp, op);
130 }
131 }
132
133 } else if (operand.IsExtendedRegister()) {
134 ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
135 // Add/sub extended supports shift <= 4. We want to support exactly the
136 // same modes here.
137 ASSERT(operand.shift_amount() <= 4);
138 ASSERT(operand.reg().Is64Bits() ||
139 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
140 Register temp = temps.AcquireSameSizeAs(rn);
141 EmitExtendShift(temp, operand.reg(), operand.extend(),
142 operand.shift_amount());
143 Logical(rd, rn, temp, op);
144
145 } else {
146 // The operand can be encoded in the instruction.
147 ASSERT(operand.IsShiftedRegister());
148 Logical(rd, rn, operand, op);
149 }
150 }
151
152
Mov(const Register & rd,uint64_t imm)153 void MacroAssembler::Mov(const Register& rd, uint64_t imm) {
154 ASSERT(allow_macro_instructions_);
155 ASSERT(is_uint32(imm) || is_int32(imm) || rd.Is64Bits());
156 ASSERT(!rd.IsZero());
157
158 // TODO(all) extend to support more immediates.
159 //
160 // Immediates on Aarch64 can be produced using an initial value, and zero to
161 // three move keep operations.
162 //
163 // Initial values can be generated with:
164 // 1. 64-bit move zero (movz).
165 // 2. 32-bit move inverted (movn).
166 // 3. 64-bit move inverted.
167 // 4. 32-bit orr immediate.
168 // 5. 64-bit orr immediate.
169 // Move-keep may then be used to modify each of the 16-bit half-words.
170 //
171 // The code below supports all five initial value generators, and
172 // applying move-keep operations to move-zero and move-inverted initial
173 // values.
174
175 unsigned reg_size = rd.SizeInBits();
176 unsigned n, imm_s, imm_r;
177 if (IsImmMovz(imm, reg_size) && !rd.IsSP()) {
178 // Immediate can be represented in a move zero instruction. Movz can't
179 // write to the stack pointer.
180 movz(rd, imm);
181 } else if (IsImmMovn(imm, reg_size) && !rd.IsSP()) {
182 // Immediate can be represented in a move inverted instruction. Movn can't
183 // write to the stack pointer.
184 movn(rd, rd.Is64Bits() ? ~imm : (~imm & kWRegMask));
185 } else if (IsImmLogical(imm, reg_size, &n, &imm_s, &imm_r)) {
186 // Immediate can be represented in a logical orr instruction.
187 LogicalImmediate(rd, AppropriateZeroRegFor(rd), n, imm_s, imm_r, ORR);
188 } else {
189 // Generic immediate case. Imm will be represented by
190 // [imm3, imm2, imm1, imm0], where each imm is 16 bits.
191 // A move-zero or move-inverted is generated for the first non-zero or
192 // non-0xffff immX, and a move-keep for subsequent non-zero immX.
193
194 uint64_t ignored_halfword = 0;
195 bool invert_move = false;
196 // If the number of 0xffff halfwords is greater than the number of 0x0000
197 // halfwords, it's more efficient to use move-inverted.
198 if (CountClearHalfWords(~imm, reg_size) >
199 CountClearHalfWords(imm, reg_size)) {
200 ignored_halfword = 0xffffL;
201 invert_move = true;
202 }
203
204 // Mov instructions can't move immediate values into the stack pointer, so
205 // set up a temporary register, if needed.
206 UseScratchRegisterScope temps(this);
207 Register temp = rd.IsSP() ? temps.AcquireSameSizeAs(rd) : rd;
208
209 // Iterate through the halfwords. Use movn/movz for the first non-ignored
210 // halfword, and movk for subsequent halfwords.
211 ASSERT((reg_size % 16) == 0);
212 bool first_mov_done = false;
213 for (unsigned i = 0; i < (rd.SizeInBits() / 16); i++) {
214 uint64_t imm16 = (imm >> (16 * i)) & 0xffffL;
215 if (imm16 != ignored_halfword) {
216 if (!first_mov_done) {
217 if (invert_move) {
218 movn(temp, (~imm16) & 0xffffL, 16 * i);
219 } else {
220 movz(temp, imm16, 16 * i);
221 }
222 first_mov_done = true;
223 } else {
224 // Construct a wider constant.
225 movk(temp, imm16, 16 * i);
226 }
227 }
228 }
229 ASSERT(first_mov_done);
230
231 // Move the temporary if the original destination register was the stack
232 // pointer.
233 if (rd.IsSP()) {
234 mov(rd, temp);
235 AssertStackConsistency();
236 }
237 }
238 }
239
240
Mov(const Register & rd,const Operand & operand,DiscardMoveMode discard_mode)241 void MacroAssembler::Mov(const Register& rd,
242 const Operand& operand,
243 DiscardMoveMode discard_mode) {
244 ASSERT(allow_macro_instructions_);
245 ASSERT(!rd.IsZero());
246
247 // Provide a swap register for instructions that need to write into the
248 // system stack pointer (and can't do this inherently).
249 UseScratchRegisterScope temps(this);
250 Register dst = (rd.IsSP()) ? temps.AcquireSameSizeAs(rd) : rd;
251
252 if (operand.NeedsRelocation(this)) {
253 Ldr(dst, operand.immediate());
254
255 } else if (operand.IsImmediate()) {
256 // Call the macro assembler for generic immediates.
257 Mov(dst, operand.ImmediateValue());
258
259 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
260 // Emit a shift instruction if moving a shifted register. This operation
261 // could also be achieved using an orr instruction (like orn used by Mvn),
262 // but using a shift instruction makes the disassembly clearer.
263 EmitShift(dst, operand.reg(), operand.shift(), operand.shift_amount());
264
265 } else if (operand.IsExtendedRegister()) {
266 // Emit an extend instruction if moving an extended register. This handles
267 // extend with post-shift operations, too.
268 EmitExtendShift(dst, operand.reg(), operand.extend(),
269 operand.shift_amount());
270
271 } else {
272 // Otherwise, emit a register move only if the registers are distinct, or
273 // if they are not X registers.
274 //
275 // Note that mov(w0, w0) is not a no-op because it clears the top word of
276 // x0. A flag is provided (kDiscardForSameWReg) if a move between the same W
277 // registers is not required to clear the top word of the X register. In
278 // this case, the instruction is discarded.
279 //
280 // If csp is an operand, add #0 is emitted, otherwise, orr #0.
281 if (!rd.Is(operand.reg()) || (rd.Is32Bits() &&
282 (discard_mode == kDontDiscardForSameWReg))) {
283 Assembler::mov(rd, operand.reg());
284 }
285 // This case can handle writes into the system stack pointer directly.
286 dst = rd;
287 }
288
289 // Copy the result to the system stack pointer.
290 if (!dst.Is(rd)) {
291 ASSERT(rd.IsSP());
292 Assembler::mov(rd, dst);
293 }
294 }
295
296
Mvn(const Register & rd,const Operand & operand)297 void MacroAssembler::Mvn(const Register& rd, const Operand& operand) {
298 ASSERT(allow_macro_instructions_);
299
300 if (operand.NeedsRelocation(this)) {
301 Ldr(rd, operand.immediate());
302 mvn(rd, rd);
303
304 } else if (operand.IsImmediate()) {
305 // Call the macro assembler for generic immediates.
306 Mov(rd, ~operand.ImmediateValue());
307
308 } else if (operand.IsExtendedRegister()) {
309 // Emit two instructions for the extend case. This differs from Mov, as
310 // the extend and invert can't be achieved in one instruction.
311 EmitExtendShift(rd, operand.reg(), operand.extend(),
312 operand.shift_amount());
313 mvn(rd, rd);
314
315 } else {
316 mvn(rd, operand);
317 }
318 }
319
320
CountClearHalfWords(uint64_t imm,unsigned reg_size)321 unsigned MacroAssembler::CountClearHalfWords(uint64_t imm, unsigned reg_size) {
322 ASSERT((reg_size % 8) == 0);
323 int count = 0;
324 for (unsigned i = 0; i < (reg_size / 16); i++) {
325 if ((imm & 0xffff) == 0) {
326 count++;
327 }
328 imm >>= 16;
329 }
330 return count;
331 }
332
333
334 // The movz instruction can generate immediates containing an arbitrary 16-bit
335 // half-word, with remaining bits clear, eg. 0x00001234, 0x0000123400000000.
IsImmMovz(uint64_t imm,unsigned reg_size)336 bool MacroAssembler::IsImmMovz(uint64_t imm, unsigned reg_size) {
337 ASSERT((reg_size == kXRegSizeInBits) || (reg_size == kWRegSizeInBits));
338 return CountClearHalfWords(imm, reg_size) >= ((reg_size / 16) - 1);
339 }
340
341
342 // The movn instruction can generate immediates containing an arbitrary 16-bit
343 // half-word, with remaining bits set, eg. 0xffff1234, 0xffff1234ffffffff.
IsImmMovn(uint64_t imm,unsigned reg_size)344 bool MacroAssembler::IsImmMovn(uint64_t imm, unsigned reg_size) {
345 return IsImmMovz(~imm, reg_size);
346 }
347
348
ConditionalCompareMacro(const Register & rn,const Operand & operand,StatusFlags nzcv,Condition cond,ConditionalCompareOp op)349 void MacroAssembler::ConditionalCompareMacro(const Register& rn,
350 const Operand& operand,
351 StatusFlags nzcv,
352 Condition cond,
353 ConditionalCompareOp op) {
354 ASSERT((cond != al) && (cond != nv));
355 if (operand.NeedsRelocation(this)) {
356 UseScratchRegisterScope temps(this);
357 Register temp = temps.AcquireX();
358 Ldr(temp, operand.immediate());
359 ConditionalCompareMacro(rn, temp, nzcv, cond, op);
360
361 } else if ((operand.IsShiftedRegister() && (operand.shift_amount() == 0)) ||
362 (operand.IsImmediate() &&
363 IsImmConditionalCompare(operand.ImmediateValue()))) {
364 // The immediate can be encoded in the instruction, or the operand is an
365 // unshifted register: call the assembler.
366 ConditionalCompare(rn, operand, nzcv, cond, op);
367
368 } else {
369 // The operand isn't directly supported by the instruction: perform the
370 // operation on a temporary register.
371 UseScratchRegisterScope temps(this);
372 Register temp = temps.AcquireSameSizeAs(rn);
373 Mov(temp, operand);
374 ConditionalCompare(rn, temp, nzcv, cond, op);
375 }
376 }
377
378
Csel(const Register & rd,const Register & rn,const Operand & operand,Condition cond)379 void MacroAssembler::Csel(const Register& rd,
380 const Register& rn,
381 const Operand& operand,
382 Condition cond) {
383 ASSERT(allow_macro_instructions_);
384 ASSERT(!rd.IsZero());
385 ASSERT((cond != al) && (cond != nv));
386 if (operand.IsImmediate()) {
387 // Immediate argument. Handle special cases of 0, 1 and -1 using zero
388 // register.
389 int64_t imm = operand.ImmediateValue();
390 Register zr = AppropriateZeroRegFor(rn);
391 if (imm == 0) {
392 csel(rd, rn, zr, cond);
393 } else if (imm == 1) {
394 csinc(rd, rn, zr, cond);
395 } else if (imm == -1) {
396 csinv(rd, rn, zr, cond);
397 } else {
398 UseScratchRegisterScope temps(this);
399 Register temp = temps.AcquireSameSizeAs(rn);
400 Mov(temp, imm);
401 csel(rd, rn, temp, cond);
402 }
403 } else if (operand.IsShiftedRegister() && (operand.shift_amount() == 0)) {
404 // Unshifted register argument.
405 csel(rd, rn, operand.reg(), cond);
406 } else {
407 // All other arguments.
408 UseScratchRegisterScope temps(this);
409 Register temp = temps.AcquireSameSizeAs(rn);
410 Mov(temp, operand);
411 csel(rd, rn, temp, cond);
412 }
413 }
414
415
AddSubMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubOp op)416 void MacroAssembler::AddSubMacro(const Register& rd,
417 const Register& rn,
418 const Operand& operand,
419 FlagsUpdate S,
420 AddSubOp op) {
421 if (operand.IsZero() && rd.Is(rn) && rd.Is64Bits() && rn.Is64Bits() &&
422 !operand.NeedsRelocation(this) && (S == LeaveFlags)) {
423 // The instruction would be a nop. Avoid generating useless code.
424 return;
425 }
426
427 if (operand.NeedsRelocation(this)) {
428 UseScratchRegisterScope temps(this);
429 Register temp = temps.AcquireX();
430 Ldr(temp, operand.immediate());
431 AddSubMacro(rd, rn, temp, S, op);
432 } else if ((operand.IsImmediate() &&
433 !IsImmAddSub(operand.ImmediateValue())) ||
434 (rn.IsZero() && !operand.IsShiftedRegister()) ||
435 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
436 UseScratchRegisterScope temps(this);
437 Register temp = temps.AcquireSameSizeAs(rn);
438 Mov(temp, operand);
439 AddSub(rd, rn, temp, S, op);
440 } else {
441 AddSub(rd, rn, operand, S, op);
442 }
443 }
444
445
AddSubWithCarryMacro(const Register & rd,const Register & rn,const Operand & operand,FlagsUpdate S,AddSubWithCarryOp op)446 void MacroAssembler::AddSubWithCarryMacro(const Register& rd,
447 const Register& rn,
448 const Operand& operand,
449 FlagsUpdate S,
450 AddSubWithCarryOp op) {
451 ASSERT(rd.SizeInBits() == rn.SizeInBits());
452 UseScratchRegisterScope temps(this);
453
454 if (operand.NeedsRelocation(this)) {
455 Register temp = temps.AcquireX();
456 Ldr(temp, operand.immediate());
457 AddSubWithCarryMacro(rd, rn, temp, S, op);
458
459 } else if (operand.IsImmediate() ||
460 (operand.IsShiftedRegister() && (operand.shift() == ROR))) {
461 // Add/sub with carry (immediate or ROR shifted register.)
462 Register temp = temps.AcquireSameSizeAs(rn);
463 Mov(temp, operand);
464 AddSubWithCarry(rd, rn, temp, S, op);
465
466 } else if (operand.IsShiftedRegister() && (operand.shift_amount() != 0)) {
467 // Add/sub with carry (shifted register).
468 ASSERT(operand.reg().SizeInBits() == rd.SizeInBits());
469 ASSERT(operand.shift() != ROR);
470 ASSERT(is_uintn(operand.shift_amount(),
471 rd.SizeInBits() == kXRegSizeInBits ? kXRegSizeInBitsLog2
472 : kWRegSizeInBitsLog2));
473 Register temp = temps.AcquireSameSizeAs(rn);
474 EmitShift(temp, operand.reg(), operand.shift(), operand.shift_amount());
475 AddSubWithCarry(rd, rn, temp, S, op);
476
477 } else if (operand.IsExtendedRegister()) {
478 // Add/sub with carry (extended register).
479 ASSERT(operand.reg().SizeInBits() <= rd.SizeInBits());
480 // Add/sub extended supports a shift <= 4. We want to support exactly the
481 // same modes.
482 ASSERT(operand.shift_amount() <= 4);
483 ASSERT(operand.reg().Is64Bits() ||
484 ((operand.extend() != UXTX) && (operand.extend() != SXTX)));
485 Register temp = temps.AcquireSameSizeAs(rn);
486 EmitExtendShift(temp, operand.reg(), operand.extend(),
487 operand.shift_amount());
488 AddSubWithCarry(rd, rn, temp, S, op);
489
490 } else {
491 // The addressing mode is directly supported by the instruction.
492 AddSubWithCarry(rd, rn, operand, S, op);
493 }
494 }
495
496
LoadStoreMacro(const CPURegister & rt,const MemOperand & addr,LoadStoreOp op)497 void MacroAssembler::LoadStoreMacro(const CPURegister& rt,
498 const MemOperand& addr,
499 LoadStoreOp op) {
500 int64_t offset = addr.offset();
501 LSDataSize size = CalcLSDataSize(op);
502
503 // Check if an immediate offset fits in the immediate field of the
504 // appropriate instruction. If not, emit two instructions to perform
505 // the operation.
506 if (addr.IsImmediateOffset() && !IsImmLSScaled(offset, size) &&
507 !IsImmLSUnscaled(offset)) {
508 // Immediate offset that can't be encoded using unsigned or unscaled
509 // addressing modes.
510 UseScratchRegisterScope temps(this);
511 Register temp = temps.AcquireSameSizeAs(addr.base());
512 Mov(temp, addr.offset());
513 LoadStore(rt, MemOperand(addr.base(), temp), op);
514 } else if (addr.IsPostIndex() && !IsImmLSUnscaled(offset)) {
515 // Post-index beyond unscaled addressing range.
516 LoadStore(rt, MemOperand(addr.base()), op);
517 add(addr.base(), addr.base(), offset);
518 } else if (addr.IsPreIndex() && !IsImmLSUnscaled(offset)) {
519 // Pre-index beyond unscaled addressing range.
520 add(addr.base(), addr.base(), offset);
521 LoadStore(rt, MemOperand(addr.base()), op);
522 } else {
523 // Encodable in one load/store instruction.
524 LoadStore(rt, addr, op);
525 }
526 }
527
528
Load(const Register & rt,const MemOperand & addr,Representation r)529 void MacroAssembler::Load(const Register& rt,
530 const MemOperand& addr,
531 Representation r) {
532 ASSERT(!r.IsDouble());
533
534 if (r.IsInteger8()) {
535 Ldrsb(rt, addr);
536 } else if (r.IsUInteger8()) {
537 Ldrb(rt, addr);
538 } else if (r.IsInteger16()) {
539 Ldrsh(rt, addr);
540 } else if (r.IsUInteger16()) {
541 Ldrh(rt, addr);
542 } else if (r.IsInteger32()) {
543 Ldr(rt.W(), addr);
544 } else {
545 ASSERT(rt.Is64Bits());
546 Ldr(rt, addr);
547 }
548 }
549
550
Store(const Register & rt,const MemOperand & addr,Representation r)551 void MacroAssembler::Store(const Register& rt,
552 const MemOperand& addr,
553 Representation r) {
554 ASSERT(!r.IsDouble());
555
556 if (r.IsInteger8() || r.IsUInteger8()) {
557 Strb(rt, addr);
558 } else if (r.IsInteger16() || r.IsUInteger16()) {
559 Strh(rt, addr);
560 } else if (r.IsInteger32()) {
561 Str(rt.W(), addr);
562 } else {
563 ASSERT(rt.Is64Bits());
564 if (r.IsHeapObject()) {
565 AssertNotSmi(rt);
566 } else if (r.IsSmi()) {
567 AssertSmi(rt);
568 }
569 Str(rt, addr);
570 }
571 }
572
573
NeedExtraInstructionsOrRegisterBranch(Label * label,ImmBranchType b_type)574 bool MacroAssembler::NeedExtraInstructionsOrRegisterBranch(
575 Label *label, ImmBranchType b_type) {
576 bool need_longer_range = false;
577 // There are two situations in which we care about the offset being out of
578 // range:
579 // - The label is bound but too far away.
580 // - The label is not bound but linked, and the previous branch
581 // instruction in the chain is too far away.
582 if (label->is_bound() || label->is_linked()) {
583 need_longer_range =
584 !Instruction::IsValidImmPCOffset(b_type, label->pos() - pc_offset());
585 }
586 if (!need_longer_range && !label->is_bound()) {
587 int max_reachable_pc = pc_offset() + Instruction::ImmBranchRange(b_type);
588 unresolved_branches_.insert(
589 std::pair<int, FarBranchInfo>(max_reachable_pc,
590 FarBranchInfo(pc_offset(), label)));
591 // Also maintain the next pool check.
592 next_veneer_pool_check_ =
593 Min(next_veneer_pool_check_,
594 max_reachable_pc - kVeneerDistanceCheckMargin);
595 }
596 return need_longer_range;
597 }
598
599
Adr(const Register & rd,Label * label,AdrHint hint)600 void MacroAssembler::Adr(const Register& rd, Label* label, AdrHint hint) {
601 ASSERT(allow_macro_instructions_);
602 ASSERT(!rd.IsZero());
603
604 if (hint == kAdrNear) {
605 adr(rd, label);
606 return;
607 }
608
609 ASSERT(hint == kAdrFar);
610 UseScratchRegisterScope temps(this);
611 Register scratch = temps.AcquireX();
612 ASSERT(!AreAliased(rd, scratch));
613
614 if (label->is_bound()) {
615 int label_offset = label->pos() - pc_offset();
616 if (Instruction::IsValidPCRelOffset(label_offset)) {
617 adr(rd, label);
618 } else {
619 ASSERT(label_offset <= 0);
620 int min_adr_offset = -(1 << (Instruction::ImmPCRelRangeBitwidth - 1));
621 adr(rd, min_adr_offset);
622 Add(rd, rd, label_offset - min_adr_offset);
623 }
624 } else {
625 InstructionAccurateScope scope(
626 this, PatchingAssembler::kAdrFarPatchableNInstrs);
627 adr(rd, label);
628 for (int i = 0; i < PatchingAssembler::kAdrFarPatchableNNops; ++i) {
629 nop(ADR_FAR_NOP);
630 }
631 movz(scratch, 0);
632 add(rd, rd, scratch);
633 }
634 }
635
636
B(Label * label,BranchType type,Register reg,int bit)637 void MacroAssembler::B(Label* label, BranchType type, Register reg, int bit) {
638 ASSERT((reg.Is(NoReg) || type >= kBranchTypeFirstUsingReg) &&
639 (bit == -1 || type >= kBranchTypeFirstUsingBit));
640 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) {
641 B(static_cast<Condition>(type), label);
642 } else {
643 switch (type) {
644 case always: B(label); break;
645 case never: break;
646 case reg_zero: Cbz(reg, label); break;
647 case reg_not_zero: Cbnz(reg, label); break;
648 case reg_bit_clear: Tbz(reg, bit, label); break;
649 case reg_bit_set: Tbnz(reg, bit, label); break;
650 default:
651 UNREACHABLE();
652 }
653 }
654 }
655
656
B(Label * label,Condition cond)657 void MacroAssembler::B(Label* label, Condition cond) {
658 ASSERT(allow_macro_instructions_);
659 ASSERT((cond != al) && (cond != nv));
660
661 Label done;
662 bool need_extra_instructions =
663 NeedExtraInstructionsOrRegisterBranch(label, CondBranchType);
664
665 if (need_extra_instructions) {
666 b(&done, NegateCondition(cond));
667 B(label);
668 } else {
669 b(label, cond);
670 }
671 bind(&done);
672 }
673
674
Tbnz(const Register & rt,unsigned bit_pos,Label * label)675 void MacroAssembler::Tbnz(const Register& rt, unsigned bit_pos, Label* label) {
676 ASSERT(allow_macro_instructions_);
677
678 Label done;
679 bool need_extra_instructions =
680 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
681
682 if (need_extra_instructions) {
683 tbz(rt, bit_pos, &done);
684 B(label);
685 } else {
686 tbnz(rt, bit_pos, label);
687 }
688 bind(&done);
689 }
690
691
Tbz(const Register & rt,unsigned bit_pos,Label * label)692 void MacroAssembler::Tbz(const Register& rt, unsigned bit_pos, Label* label) {
693 ASSERT(allow_macro_instructions_);
694
695 Label done;
696 bool need_extra_instructions =
697 NeedExtraInstructionsOrRegisterBranch(label, TestBranchType);
698
699 if (need_extra_instructions) {
700 tbnz(rt, bit_pos, &done);
701 B(label);
702 } else {
703 tbz(rt, bit_pos, label);
704 }
705 bind(&done);
706 }
707
708
Cbnz(const Register & rt,Label * label)709 void MacroAssembler::Cbnz(const Register& rt, Label* label) {
710 ASSERT(allow_macro_instructions_);
711
712 Label done;
713 bool need_extra_instructions =
714 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
715
716 if (need_extra_instructions) {
717 cbz(rt, &done);
718 B(label);
719 } else {
720 cbnz(rt, label);
721 }
722 bind(&done);
723 }
724
725
Cbz(const Register & rt,Label * label)726 void MacroAssembler::Cbz(const Register& rt, Label* label) {
727 ASSERT(allow_macro_instructions_);
728
729 Label done;
730 bool need_extra_instructions =
731 NeedExtraInstructionsOrRegisterBranch(label, CompareBranchType);
732
733 if (need_extra_instructions) {
734 cbnz(rt, &done);
735 B(label);
736 } else {
737 cbz(rt, label);
738 }
739 bind(&done);
740 }
741
742
743 // Pseudo-instructions.
744
745
Abs(const Register & rd,const Register & rm,Label * is_not_representable,Label * is_representable)746 void MacroAssembler::Abs(const Register& rd, const Register& rm,
747 Label* is_not_representable,
748 Label* is_representable) {
749 ASSERT(allow_macro_instructions_);
750 ASSERT(AreSameSizeAndType(rd, rm));
751
752 Cmp(rm, 1);
753 Cneg(rd, rm, lt);
754
755 // If the comparison sets the v flag, the input was the smallest value
756 // representable by rm, and the mathematical result of abs(rm) is not
757 // representable using two's complement.
758 if ((is_not_representable != NULL) && (is_representable != NULL)) {
759 B(is_not_representable, vs);
760 B(is_representable);
761 } else if (is_not_representable != NULL) {
762 B(is_not_representable, vs);
763 } else if (is_representable != NULL) {
764 B(is_representable, vc);
765 }
766 }
767
768
769 // Abstracted stack operations.
770
771
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)772 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
773 const CPURegister& src2, const CPURegister& src3) {
774 ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
775
776 int count = 1 + src1.IsValid() + src2.IsValid() + src3.IsValid();
777 int size = src0.SizeInBytes();
778
779 PushPreamble(count, size);
780 PushHelper(count, size, src0, src1, src2, src3);
781 }
782
783
Push(const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3,const CPURegister & src4,const CPURegister & src5,const CPURegister & src6,const CPURegister & src7)784 void MacroAssembler::Push(const CPURegister& src0, const CPURegister& src1,
785 const CPURegister& src2, const CPURegister& src3,
786 const CPURegister& src4, const CPURegister& src5,
787 const CPURegister& src6, const CPURegister& src7) {
788 ASSERT(AreSameSizeAndType(src0, src1, src2, src3, src4, src5, src6, src7));
789
790 int count = 5 + src5.IsValid() + src6.IsValid() + src6.IsValid();
791 int size = src0.SizeInBytes();
792
793 PushPreamble(count, size);
794 PushHelper(4, size, src0, src1, src2, src3);
795 PushHelper(count - 4, size, src4, src5, src6, src7);
796 }
797
798
Pop(const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)799 void MacroAssembler::Pop(const CPURegister& dst0, const CPURegister& dst1,
800 const CPURegister& dst2, const CPURegister& dst3) {
801 // It is not valid to pop into the same register more than once in one
802 // instruction, not even into the zero register.
803 ASSERT(!AreAliased(dst0, dst1, dst2, dst3));
804 ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
805 ASSERT(dst0.IsValid());
806
807 int count = 1 + dst1.IsValid() + dst2.IsValid() + dst3.IsValid();
808 int size = dst0.SizeInBytes();
809
810 PopHelper(count, size, dst0, dst1, dst2, dst3);
811 PopPostamble(count, size);
812 }
813
814
PushQueued(PreambleDirective preamble_directive)815 void MacroAssembler::PushPopQueue::PushQueued(
816 PreambleDirective preamble_directive) {
817 if (queued_.empty()) return;
818
819 if (preamble_directive == WITH_PREAMBLE) {
820 masm_->PushPreamble(size_);
821 }
822
823 int count = queued_.size();
824 int index = 0;
825 while (index < count) {
826 // PushHelper can only handle registers with the same size and type, and it
827 // can handle only four at a time. Batch them up accordingly.
828 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
829 int batch_index = 0;
830 do {
831 batch[batch_index++] = queued_[index++];
832 } while ((batch_index < 4) && (index < count) &&
833 batch[0].IsSameSizeAndType(queued_[index]));
834
835 masm_->PushHelper(batch_index, batch[0].SizeInBytes(),
836 batch[0], batch[1], batch[2], batch[3]);
837 }
838
839 queued_.clear();
840 }
841
842
PopQueued()843 void MacroAssembler::PushPopQueue::PopQueued() {
844 if (queued_.empty()) return;
845
846 int count = queued_.size();
847 int index = 0;
848 while (index < count) {
849 // PopHelper can only handle registers with the same size and type, and it
850 // can handle only four at a time. Batch them up accordingly.
851 CPURegister batch[4] = {NoReg, NoReg, NoReg, NoReg};
852 int batch_index = 0;
853 do {
854 batch[batch_index++] = queued_[index++];
855 } while ((batch_index < 4) && (index < count) &&
856 batch[0].IsSameSizeAndType(queued_[index]));
857
858 masm_->PopHelper(batch_index, batch[0].SizeInBytes(),
859 batch[0], batch[1], batch[2], batch[3]);
860 }
861
862 masm_->PopPostamble(size_);
863 queued_.clear();
864 }
865
866
PushCPURegList(CPURegList registers)867 void MacroAssembler::PushCPURegList(CPURegList registers) {
868 int size = registers.RegisterSizeInBytes();
869
870 PushPreamble(registers.Count(), size);
871 // Push up to four registers at a time because if the current stack pointer is
872 // csp and reg_size is 32, registers must be pushed in blocks of four in order
873 // to maintain the 16-byte alignment for csp.
874 while (!registers.IsEmpty()) {
875 int count_before = registers.Count();
876 const CPURegister& src0 = registers.PopHighestIndex();
877 const CPURegister& src1 = registers.PopHighestIndex();
878 const CPURegister& src2 = registers.PopHighestIndex();
879 const CPURegister& src3 = registers.PopHighestIndex();
880 int count = count_before - registers.Count();
881 PushHelper(count, size, src0, src1, src2, src3);
882 }
883 }
884
885
PopCPURegList(CPURegList registers)886 void MacroAssembler::PopCPURegList(CPURegList registers) {
887 int size = registers.RegisterSizeInBytes();
888
889 // Pop up to four registers at a time because if the current stack pointer is
890 // csp and reg_size is 32, registers must be pushed in blocks of four in
891 // order to maintain the 16-byte alignment for csp.
892 while (!registers.IsEmpty()) {
893 int count_before = registers.Count();
894 const CPURegister& dst0 = registers.PopLowestIndex();
895 const CPURegister& dst1 = registers.PopLowestIndex();
896 const CPURegister& dst2 = registers.PopLowestIndex();
897 const CPURegister& dst3 = registers.PopLowestIndex();
898 int count = count_before - registers.Count();
899 PopHelper(count, size, dst0, dst1, dst2, dst3);
900 }
901 PopPostamble(registers.Count(), size);
902 }
903
904
PushMultipleTimes(CPURegister src,int count)905 void MacroAssembler::PushMultipleTimes(CPURegister src, int count) {
906 int size = src.SizeInBytes();
907
908 PushPreamble(count, size);
909
910 if (FLAG_optimize_for_size && count > 8) {
911 UseScratchRegisterScope temps(this);
912 Register temp = temps.AcquireX();
913
914 Label loop;
915 __ Mov(temp, count / 2);
916 __ Bind(&loop);
917 PushHelper(2, size, src, src, NoReg, NoReg);
918 __ Subs(temp, temp, 1);
919 __ B(ne, &loop);
920
921 count %= 2;
922 }
923
924 // Push up to four registers at a time if possible because if the current
925 // stack pointer is csp and the register size is 32, registers must be pushed
926 // in blocks of four in order to maintain the 16-byte alignment for csp.
927 while (count >= 4) {
928 PushHelper(4, size, src, src, src, src);
929 count -= 4;
930 }
931 if (count >= 2) {
932 PushHelper(2, size, src, src, NoReg, NoReg);
933 count -= 2;
934 }
935 if (count == 1) {
936 PushHelper(1, size, src, NoReg, NoReg, NoReg);
937 count -= 1;
938 }
939 ASSERT(count == 0);
940 }
941
942
PushMultipleTimes(CPURegister src,Register count)943 void MacroAssembler::PushMultipleTimes(CPURegister src, Register count) {
944 PushPreamble(Operand(count, UXTW, WhichPowerOf2(src.SizeInBytes())));
945
946 UseScratchRegisterScope temps(this);
947 Register temp = temps.AcquireSameSizeAs(count);
948
949 if (FLAG_optimize_for_size) {
950 Label loop, done;
951
952 Subs(temp, count, 1);
953 B(mi, &done);
954
955 // Push all registers individually, to save code size.
956 Bind(&loop);
957 Subs(temp, temp, 1);
958 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
959 B(pl, &loop);
960
961 Bind(&done);
962 } else {
963 Label loop, leftover2, leftover1, done;
964
965 Subs(temp, count, 4);
966 B(mi, &leftover2);
967
968 // Push groups of four first.
969 Bind(&loop);
970 Subs(temp, temp, 4);
971 PushHelper(4, src.SizeInBytes(), src, src, src, src);
972 B(pl, &loop);
973
974 // Push groups of two.
975 Bind(&leftover2);
976 Tbz(count, 1, &leftover1);
977 PushHelper(2, src.SizeInBytes(), src, src, NoReg, NoReg);
978
979 // Push the last one (if required).
980 Bind(&leftover1);
981 Tbz(count, 0, &done);
982 PushHelper(1, src.SizeInBytes(), src, NoReg, NoReg, NoReg);
983
984 Bind(&done);
985 }
986 }
987
988
PushHelper(int count,int size,const CPURegister & src0,const CPURegister & src1,const CPURegister & src2,const CPURegister & src3)989 void MacroAssembler::PushHelper(int count, int size,
990 const CPURegister& src0,
991 const CPURegister& src1,
992 const CPURegister& src2,
993 const CPURegister& src3) {
994 // Ensure that we don't unintentially modify scratch or debug registers.
995 InstructionAccurateScope scope(this);
996
997 ASSERT(AreSameSizeAndType(src0, src1, src2, src3));
998 ASSERT(size == src0.SizeInBytes());
999
1000 // When pushing multiple registers, the store order is chosen such that
1001 // Push(a, b) is equivalent to Push(a) followed by Push(b).
1002 switch (count) {
1003 case 1:
1004 ASSERT(src1.IsNone() && src2.IsNone() && src3.IsNone());
1005 str(src0, MemOperand(StackPointer(), -1 * size, PreIndex));
1006 break;
1007 case 2:
1008 ASSERT(src2.IsNone() && src3.IsNone());
1009 stp(src1, src0, MemOperand(StackPointer(), -2 * size, PreIndex));
1010 break;
1011 case 3:
1012 ASSERT(src3.IsNone());
1013 stp(src2, src1, MemOperand(StackPointer(), -3 * size, PreIndex));
1014 str(src0, MemOperand(StackPointer(), 2 * size));
1015 break;
1016 case 4:
1017 // Skip over 4 * size, then fill in the gap. This allows four W registers
1018 // to be pushed using csp, whilst maintaining 16-byte alignment for csp
1019 // at all times.
1020 stp(src3, src2, MemOperand(StackPointer(), -4 * size, PreIndex));
1021 stp(src1, src0, MemOperand(StackPointer(), 2 * size));
1022 break;
1023 default:
1024 UNREACHABLE();
1025 }
1026 }
1027
1028
PopHelper(int count,int size,const CPURegister & dst0,const CPURegister & dst1,const CPURegister & dst2,const CPURegister & dst3)1029 void MacroAssembler::PopHelper(int count, int size,
1030 const CPURegister& dst0,
1031 const CPURegister& dst1,
1032 const CPURegister& dst2,
1033 const CPURegister& dst3) {
1034 // Ensure that we don't unintentially modify scratch or debug registers.
1035 InstructionAccurateScope scope(this);
1036
1037 ASSERT(AreSameSizeAndType(dst0, dst1, dst2, dst3));
1038 ASSERT(size == dst0.SizeInBytes());
1039
1040 // When popping multiple registers, the load order is chosen such that
1041 // Pop(a, b) is equivalent to Pop(a) followed by Pop(b).
1042 switch (count) {
1043 case 1:
1044 ASSERT(dst1.IsNone() && dst2.IsNone() && dst3.IsNone());
1045 ldr(dst0, MemOperand(StackPointer(), 1 * size, PostIndex));
1046 break;
1047 case 2:
1048 ASSERT(dst2.IsNone() && dst3.IsNone());
1049 ldp(dst0, dst1, MemOperand(StackPointer(), 2 * size, PostIndex));
1050 break;
1051 case 3:
1052 ASSERT(dst3.IsNone());
1053 ldr(dst2, MemOperand(StackPointer(), 2 * size));
1054 ldp(dst0, dst1, MemOperand(StackPointer(), 3 * size, PostIndex));
1055 break;
1056 case 4:
1057 // Load the higher addresses first, then load the lower addresses and
1058 // skip the whole block in the second instruction. This allows four W
1059 // registers to be popped using csp, whilst maintaining 16-byte alignment
1060 // for csp at all times.
1061 ldp(dst2, dst3, MemOperand(StackPointer(), 2 * size));
1062 ldp(dst0, dst1, MemOperand(StackPointer(), 4 * size, PostIndex));
1063 break;
1064 default:
1065 UNREACHABLE();
1066 }
1067 }
1068
1069
PushPreamble(Operand total_size)1070 void MacroAssembler::PushPreamble(Operand total_size) {
1071 if (csp.Is(StackPointer())) {
1072 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1073 // on entry and the total size of the specified registers must also be a
1074 // multiple of 16 bytes.
1075 if (total_size.IsImmediate()) {
1076 ASSERT((total_size.ImmediateValue() % 16) == 0);
1077 }
1078
1079 // Don't check access size for non-immediate sizes. It's difficult to do
1080 // well, and it will be caught by hardware (or the simulator) anyway.
1081 } else {
1082 // Even if the current stack pointer is not the system stack pointer (csp),
1083 // the system stack pointer will still be modified in order to comply with
1084 // ABI rules about accessing memory below the system stack pointer.
1085 BumpSystemStackPointer(total_size);
1086 }
1087 }
1088
1089
PopPostamble(Operand total_size)1090 void MacroAssembler::PopPostamble(Operand total_size) {
1091 if (csp.Is(StackPointer())) {
1092 // If the current stack pointer is csp, then it must be aligned to 16 bytes
1093 // on entry and the total size of the specified registers must also be a
1094 // multiple of 16 bytes.
1095 if (total_size.IsImmediate()) {
1096 ASSERT((total_size.ImmediateValue() % 16) == 0);
1097 }
1098
1099 // Don't check access size for non-immediate sizes. It's difficult to do
1100 // well, and it will be caught by hardware (or the simulator) anyway.
1101 } else if (emit_debug_code()) {
1102 // It is safe to leave csp where it is when unwinding the JavaScript stack,
1103 // but if we keep it matching StackPointer, the simulator can detect memory
1104 // accesses in the now-free part of the stack.
1105 SyncSystemStackPointer();
1106 }
1107 }
1108
1109
Poke(const CPURegister & src,const Operand & offset)1110 void MacroAssembler::Poke(const CPURegister& src, const Operand& offset) {
1111 if (offset.IsImmediate()) {
1112 ASSERT(offset.ImmediateValue() >= 0);
1113 } else if (emit_debug_code()) {
1114 Cmp(xzr, offset);
1115 Check(le, kStackAccessBelowStackPointer);
1116 }
1117
1118 Str(src, MemOperand(StackPointer(), offset));
1119 }
1120
1121
Peek(const CPURegister & dst,const Operand & offset)1122 void MacroAssembler::Peek(const CPURegister& dst, const Operand& offset) {
1123 if (offset.IsImmediate()) {
1124 ASSERT(offset.ImmediateValue() >= 0);
1125 } else if (emit_debug_code()) {
1126 Cmp(xzr, offset);
1127 Check(le, kStackAccessBelowStackPointer);
1128 }
1129
1130 Ldr(dst, MemOperand(StackPointer(), offset));
1131 }
1132
1133
PokePair(const CPURegister & src1,const CPURegister & src2,int offset)1134 void MacroAssembler::PokePair(const CPURegister& src1,
1135 const CPURegister& src2,
1136 int offset) {
1137 ASSERT(AreSameSizeAndType(src1, src2));
1138 ASSERT((offset >= 0) && ((offset % src1.SizeInBytes()) == 0));
1139 Stp(src1, src2, MemOperand(StackPointer(), offset));
1140 }
1141
1142
PeekPair(const CPURegister & dst1,const CPURegister & dst2,int offset)1143 void MacroAssembler::PeekPair(const CPURegister& dst1,
1144 const CPURegister& dst2,
1145 int offset) {
1146 ASSERT(AreSameSizeAndType(dst1, dst2));
1147 ASSERT((offset >= 0) && ((offset % dst1.SizeInBytes()) == 0));
1148 Ldp(dst1, dst2, MemOperand(StackPointer(), offset));
1149 }
1150
1151
PushCalleeSavedRegisters()1152 void MacroAssembler::PushCalleeSavedRegisters() {
1153 // Ensure that the macro-assembler doesn't use any scratch registers.
1154 InstructionAccurateScope scope(this);
1155
1156 // This method must not be called unless the current stack pointer is the
1157 // system stack pointer (csp).
1158 ASSERT(csp.Is(StackPointer()));
1159
1160 MemOperand tos(csp, -2 * kXRegSize, PreIndex);
1161
1162 stp(d14, d15, tos);
1163 stp(d12, d13, tos);
1164 stp(d10, d11, tos);
1165 stp(d8, d9, tos);
1166
1167 stp(x29, x30, tos);
1168 stp(x27, x28, tos); // x28 = jssp
1169 stp(x25, x26, tos);
1170 stp(x23, x24, tos);
1171 stp(x21, x22, tos);
1172 stp(x19, x20, tos);
1173 }
1174
1175
PopCalleeSavedRegisters()1176 void MacroAssembler::PopCalleeSavedRegisters() {
1177 // Ensure that the macro-assembler doesn't use any scratch registers.
1178 InstructionAccurateScope scope(this);
1179
1180 // This method must not be called unless the current stack pointer is the
1181 // system stack pointer (csp).
1182 ASSERT(csp.Is(StackPointer()));
1183
1184 MemOperand tos(csp, 2 * kXRegSize, PostIndex);
1185
1186 ldp(x19, x20, tos);
1187 ldp(x21, x22, tos);
1188 ldp(x23, x24, tos);
1189 ldp(x25, x26, tos);
1190 ldp(x27, x28, tos); // x28 = jssp
1191 ldp(x29, x30, tos);
1192
1193 ldp(d8, d9, tos);
1194 ldp(d10, d11, tos);
1195 ldp(d12, d13, tos);
1196 ldp(d14, d15, tos);
1197 }
1198
1199
AssertStackConsistency()1200 void MacroAssembler::AssertStackConsistency() {
1201 // Avoid emitting code when !use_real_abort() since non-real aborts cause too
1202 // much code to be generated.
1203 if (emit_debug_code() && use_real_aborts()) {
1204 if (csp.Is(StackPointer()) || CpuFeatures::IsSupported(ALWAYS_ALIGN_CSP)) {
1205 // Always check the alignment of csp if ALWAYS_ALIGN_CSP is true. We
1206 // can't check the alignment of csp without using a scratch register (or
1207 // clobbering the flags), but the processor (or simulator) will abort if
1208 // it is not properly aligned during a load.
1209 ldr(xzr, MemOperand(csp, 0));
1210 }
1211 if (FLAG_enable_slow_asserts && !csp.Is(StackPointer())) {
1212 Label ok;
1213 // Check that csp <= StackPointer(), preserving all registers and NZCV.
1214 sub(StackPointer(), csp, StackPointer());
1215 cbz(StackPointer(), &ok); // Ok if csp == StackPointer().
1216 tbnz(StackPointer(), kXSignBit, &ok); // Ok if csp < StackPointer().
1217
1218 // Avoid generating AssertStackConsistency checks for the Push in Abort.
1219 { DontEmitDebugCodeScope dont_emit_debug_code_scope(this);
1220 Abort(kTheCurrentStackPointerIsBelowCsp);
1221 }
1222
1223 bind(&ok);
1224 // Restore StackPointer().
1225 sub(StackPointer(), csp, StackPointer());
1226 }
1227 }
1228 }
1229
1230
AssertFPCRState(Register fpcr)1231 void MacroAssembler::AssertFPCRState(Register fpcr) {
1232 if (emit_debug_code()) {
1233 Label unexpected_mode, done;
1234 UseScratchRegisterScope temps(this);
1235 if (fpcr.IsNone()) {
1236 fpcr = temps.AcquireX();
1237 Mrs(fpcr, FPCR);
1238 }
1239
1240 // Settings overridden by ConfiugreFPCR():
1241 // - Assert that default-NaN mode is set.
1242 Tbz(fpcr, DN_offset, &unexpected_mode);
1243
1244 // Settings left to their default values:
1245 // - Assert that flush-to-zero is not set.
1246 Tbnz(fpcr, FZ_offset, &unexpected_mode);
1247 // - Assert that the rounding mode is nearest-with-ties-to-even.
1248 STATIC_ASSERT(FPTieEven == 0);
1249 Tst(fpcr, RMode_mask);
1250 B(eq, &done);
1251
1252 Bind(&unexpected_mode);
1253 Abort(kUnexpectedFPCRMode);
1254
1255 Bind(&done);
1256 }
1257 }
1258
1259
ConfigureFPCR()1260 void MacroAssembler::ConfigureFPCR() {
1261 UseScratchRegisterScope temps(this);
1262 Register fpcr = temps.AcquireX();
1263 Mrs(fpcr, FPCR);
1264
1265 // If necessary, enable default-NaN mode. The default values of the other FPCR
1266 // options should be suitable, and AssertFPCRState will verify that.
1267 Label no_write_required;
1268 Tbnz(fpcr, DN_offset, &no_write_required);
1269
1270 Orr(fpcr, fpcr, DN_mask);
1271 Msr(FPCR, fpcr);
1272
1273 Bind(&no_write_required);
1274 AssertFPCRState(fpcr);
1275 }
1276
1277
CanonicalizeNaN(const FPRegister & dst,const FPRegister & src)1278 void MacroAssembler::CanonicalizeNaN(const FPRegister& dst,
1279 const FPRegister& src) {
1280 AssertFPCRState();
1281
1282 // With DN=1 and RMode=FPTieEven, subtracting 0.0 preserves all inputs except
1283 // for NaNs, which become the default NaN. We use fsub rather than fadd
1284 // because sub preserves -0.0 inputs: -0.0 + 0.0 = 0.0, but -0.0 - 0.0 = -0.0.
1285 Fsub(dst, src, fp_zero);
1286 }
1287
1288
LoadRoot(CPURegister destination,Heap::RootListIndex index)1289 void MacroAssembler::LoadRoot(CPURegister destination,
1290 Heap::RootListIndex index) {
1291 // TODO(jbramley): Most root values are constants, and can be synthesized
1292 // without a load. Refer to the ARM back end for details.
1293 Ldr(destination, MemOperand(root, index << kPointerSizeLog2));
1294 }
1295
1296
StoreRoot(Register source,Heap::RootListIndex index)1297 void MacroAssembler::StoreRoot(Register source,
1298 Heap::RootListIndex index) {
1299 Str(source, MemOperand(root, index << kPointerSizeLog2));
1300 }
1301
1302
LoadTrueFalseRoots(Register true_root,Register false_root)1303 void MacroAssembler::LoadTrueFalseRoots(Register true_root,
1304 Register false_root) {
1305 STATIC_ASSERT((Heap::kTrueValueRootIndex + 1) == Heap::kFalseValueRootIndex);
1306 Ldp(true_root, false_root,
1307 MemOperand(root, Heap::kTrueValueRootIndex << kPointerSizeLog2));
1308 }
1309
1310
LoadHeapObject(Register result,Handle<HeapObject> object)1311 void MacroAssembler::LoadHeapObject(Register result,
1312 Handle<HeapObject> object) {
1313 AllowDeferredHandleDereference using_raw_address;
1314 if (isolate()->heap()->InNewSpace(*object)) {
1315 Handle<Cell> cell = isolate()->factory()->NewCell(object);
1316 Mov(result, Operand(cell));
1317 Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
1318 } else {
1319 Mov(result, Operand(object));
1320 }
1321 }
1322
1323
LoadInstanceDescriptors(Register map,Register descriptors)1324 void MacroAssembler::LoadInstanceDescriptors(Register map,
1325 Register descriptors) {
1326 Ldr(descriptors, FieldMemOperand(map, Map::kDescriptorsOffset));
1327 }
1328
1329
NumberOfOwnDescriptors(Register dst,Register map)1330 void MacroAssembler::NumberOfOwnDescriptors(Register dst, Register map) {
1331 Ldr(dst, FieldMemOperand(map, Map::kBitField3Offset));
1332 DecodeField<Map::NumberOfOwnDescriptorsBits>(dst);
1333 }
1334
1335
EnumLengthUntagged(Register dst,Register map)1336 void MacroAssembler::EnumLengthUntagged(Register dst, Register map) {
1337 STATIC_ASSERT(Map::EnumLengthBits::kShift == 0);
1338 Ldrsw(dst, FieldMemOperand(map, Map::kBitField3Offset));
1339 And(dst, dst, Map::EnumLengthBits::kMask);
1340 }
1341
1342
EnumLengthSmi(Register dst,Register map)1343 void MacroAssembler::EnumLengthSmi(Register dst, Register map) {
1344 EnumLengthUntagged(dst, map);
1345 SmiTag(dst, dst);
1346 }
1347
1348
CheckEnumCache(Register object,Register null_value,Register scratch0,Register scratch1,Register scratch2,Register scratch3,Label * call_runtime)1349 void MacroAssembler::CheckEnumCache(Register object,
1350 Register null_value,
1351 Register scratch0,
1352 Register scratch1,
1353 Register scratch2,
1354 Register scratch3,
1355 Label* call_runtime) {
1356 ASSERT(!AreAliased(object, null_value, scratch0, scratch1, scratch2,
1357 scratch3));
1358
1359 Register empty_fixed_array_value = scratch0;
1360 Register current_object = scratch1;
1361
1362 LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex);
1363 Label next, start;
1364
1365 Mov(current_object, object);
1366
1367 // Check if the enum length field is properly initialized, indicating that
1368 // there is an enum cache.
1369 Register map = scratch2;
1370 Register enum_length = scratch3;
1371 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1372
1373 EnumLengthUntagged(enum_length, map);
1374 Cmp(enum_length, kInvalidEnumCacheSentinel);
1375 B(eq, call_runtime);
1376
1377 B(&start);
1378
1379 Bind(&next);
1380 Ldr(map, FieldMemOperand(current_object, HeapObject::kMapOffset));
1381
1382 // For all objects but the receiver, check that the cache is empty.
1383 EnumLengthUntagged(enum_length, map);
1384 Cbnz(enum_length, call_runtime);
1385
1386 Bind(&start);
1387
1388 // Check that there are no elements. Register current_object contains the
1389 // current JS object we've reached through the prototype chain.
1390 Label no_elements;
1391 Ldr(current_object, FieldMemOperand(current_object,
1392 JSObject::kElementsOffset));
1393 Cmp(current_object, empty_fixed_array_value);
1394 B(eq, &no_elements);
1395
1396 // Second chance, the object may be using the empty slow element dictionary.
1397 CompareRoot(current_object, Heap::kEmptySlowElementDictionaryRootIndex);
1398 B(ne, call_runtime);
1399
1400 Bind(&no_elements);
1401 Ldr(current_object, FieldMemOperand(map, Map::kPrototypeOffset));
1402 Cmp(current_object, null_value);
1403 B(ne, &next);
1404 }
1405
1406
TestJSArrayForAllocationMemento(Register receiver,Register scratch1,Register scratch2,Label * no_memento_found)1407 void MacroAssembler::TestJSArrayForAllocationMemento(Register receiver,
1408 Register scratch1,
1409 Register scratch2,
1410 Label* no_memento_found) {
1411 ExternalReference new_space_start =
1412 ExternalReference::new_space_start(isolate());
1413 ExternalReference new_space_allocation_top =
1414 ExternalReference::new_space_allocation_top_address(isolate());
1415
1416 Add(scratch1, receiver,
1417 JSArray::kSize + AllocationMemento::kSize - kHeapObjectTag);
1418 Cmp(scratch1, new_space_start);
1419 B(lt, no_memento_found);
1420
1421 Mov(scratch2, new_space_allocation_top);
1422 Ldr(scratch2, MemOperand(scratch2));
1423 Cmp(scratch1, scratch2);
1424 B(gt, no_memento_found);
1425
1426 Ldr(scratch1, MemOperand(scratch1, -AllocationMemento::kSize));
1427 Cmp(scratch1,
1428 Operand(isolate()->factory()->allocation_memento_map()));
1429 }
1430
1431
JumpToHandlerEntry(Register exception,Register object,Register state,Register scratch1,Register scratch2)1432 void MacroAssembler::JumpToHandlerEntry(Register exception,
1433 Register object,
1434 Register state,
1435 Register scratch1,
1436 Register scratch2) {
1437 // Handler expects argument in x0.
1438 ASSERT(exception.Is(x0));
1439
1440 // Compute the handler entry address and jump to it. The handler table is
1441 // a fixed array of (smi-tagged) code offsets.
1442 Ldr(scratch1, FieldMemOperand(object, Code::kHandlerTableOffset));
1443 Add(scratch1, scratch1, FixedArray::kHeaderSize - kHeapObjectTag);
1444 STATIC_ASSERT(StackHandler::kKindWidth < kPointerSizeLog2);
1445 Lsr(scratch2, state, StackHandler::kKindWidth);
1446 Ldr(scratch2, MemOperand(scratch1, scratch2, LSL, kPointerSizeLog2));
1447 Add(scratch1, object, Code::kHeaderSize - kHeapObjectTag);
1448 Add(scratch1, scratch1, Operand::UntagSmi(scratch2));
1449 Br(scratch1);
1450 }
1451
1452
InNewSpace(Register object,Condition cond,Label * branch)1453 void MacroAssembler::InNewSpace(Register object,
1454 Condition cond,
1455 Label* branch) {
1456 ASSERT(cond == eq || cond == ne);
1457 UseScratchRegisterScope temps(this);
1458 Register temp = temps.AcquireX();
1459 And(temp, object, ExternalReference::new_space_mask(isolate()));
1460 Cmp(temp, ExternalReference::new_space_start(isolate()));
1461 B(cond, branch);
1462 }
1463
1464
Throw(Register value,Register scratch1,Register scratch2,Register scratch3,Register scratch4)1465 void MacroAssembler::Throw(Register value,
1466 Register scratch1,
1467 Register scratch2,
1468 Register scratch3,
1469 Register scratch4) {
1470 // Adjust this code if not the case.
1471 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1472 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
1473 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1474 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1475 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1476 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1477
1478 // The handler expects the exception in x0.
1479 ASSERT(value.Is(x0));
1480
1481 // Drop the stack pointer to the top of the top handler.
1482 ASSERT(jssp.Is(StackPointer()));
1483 Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1484 isolate())));
1485 Ldr(jssp, MemOperand(scratch1));
1486 // Restore the next handler.
1487 Pop(scratch2);
1488 Str(scratch2, MemOperand(scratch1));
1489
1490 // Get the code object and state. Restore the context and frame pointer.
1491 Register object = scratch1;
1492 Register state = scratch2;
1493 Pop(object, state, cp, fp);
1494
1495 // If the handler is a JS frame, restore the context to the frame.
1496 // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp
1497 // or cp.
1498 Label not_js_frame;
1499 Cbz(cp, ¬_js_frame);
1500 Str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
1501 Bind(¬_js_frame);
1502
1503 JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1504 }
1505
1506
ThrowUncatchable(Register value,Register scratch1,Register scratch2,Register scratch3,Register scratch4)1507 void MacroAssembler::ThrowUncatchable(Register value,
1508 Register scratch1,
1509 Register scratch2,
1510 Register scratch3,
1511 Register scratch4) {
1512 // Adjust this code if not the case.
1513 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
1514 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1515 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
1516 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
1517 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
1518 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
1519
1520 // The handler expects the exception in x0.
1521 ASSERT(value.Is(x0));
1522
1523 // Drop the stack pointer to the top of the top stack handler.
1524 ASSERT(jssp.Is(StackPointer()));
1525 Mov(scratch1, Operand(ExternalReference(Isolate::kHandlerAddress,
1526 isolate())));
1527 Ldr(jssp, MemOperand(scratch1));
1528
1529 // Unwind the handlers until the ENTRY handler is found.
1530 Label fetch_next, check_kind;
1531 B(&check_kind);
1532 Bind(&fetch_next);
1533 Peek(jssp, StackHandlerConstants::kNextOffset);
1534
1535 Bind(&check_kind);
1536 STATIC_ASSERT(StackHandler::JS_ENTRY == 0);
1537 Peek(scratch2, StackHandlerConstants::kStateOffset);
1538 TestAndBranchIfAnySet(scratch2, StackHandler::KindField::kMask, &fetch_next);
1539
1540 // Set the top handler address to next handler past the top ENTRY handler.
1541 Pop(scratch2);
1542 Str(scratch2, MemOperand(scratch1));
1543
1544 // Get the code object and state. Clear the context and frame pointer (0 was
1545 // saved in the handler).
1546 Register object = scratch1;
1547 Register state = scratch2;
1548 Pop(object, state, cp, fp);
1549
1550 JumpToHandlerEntry(value, object, state, scratch3, scratch4);
1551 }
1552
1553
SmiAbs(const Register & smi,Label * slow)1554 void MacroAssembler::SmiAbs(const Register& smi, Label* slow) {
1555 ASSERT(smi.Is64Bits());
1556 Abs(smi, smi, slow);
1557 }
1558
1559
AssertSmi(Register object,BailoutReason reason)1560 void MacroAssembler::AssertSmi(Register object, BailoutReason reason) {
1561 if (emit_debug_code()) {
1562 STATIC_ASSERT(kSmiTag == 0);
1563 Tst(object, kSmiTagMask);
1564 Check(eq, reason);
1565 }
1566 }
1567
1568
AssertNotSmi(Register object,BailoutReason reason)1569 void MacroAssembler::AssertNotSmi(Register object, BailoutReason reason) {
1570 if (emit_debug_code()) {
1571 STATIC_ASSERT(kSmiTag == 0);
1572 Tst(object, kSmiTagMask);
1573 Check(ne, reason);
1574 }
1575 }
1576
1577
AssertName(Register object)1578 void MacroAssembler::AssertName(Register object) {
1579 if (emit_debug_code()) {
1580 AssertNotSmi(object, kOperandIsASmiAndNotAName);
1581
1582 UseScratchRegisterScope temps(this);
1583 Register temp = temps.AcquireX();
1584
1585 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1586 CompareInstanceType(temp, temp, LAST_NAME_TYPE);
1587 Check(ls, kOperandIsNotAName);
1588 }
1589 }
1590
1591
AssertUndefinedOrAllocationSite(Register object,Register scratch)1592 void MacroAssembler::AssertUndefinedOrAllocationSite(Register object,
1593 Register scratch) {
1594 if (emit_debug_code()) {
1595 Label done_checking;
1596 AssertNotSmi(object);
1597 JumpIfRoot(object, Heap::kUndefinedValueRootIndex, &done_checking);
1598 Ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
1599 CompareRoot(scratch, Heap::kAllocationSiteMapRootIndex);
1600 Assert(eq, kExpectedUndefinedOrCell);
1601 Bind(&done_checking);
1602 }
1603 }
1604
1605
AssertString(Register object)1606 void MacroAssembler::AssertString(Register object) {
1607 if (emit_debug_code()) {
1608 UseScratchRegisterScope temps(this);
1609 Register temp = temps.AcquireX();
1610 STATIC_ASSERT(kSmiTag == 0);
1611 Tst(object, kSmiTagMask);
1612 Check(ne, kOperandIsASmiAndNotAString);
1613 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
1614 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
1615 Check(lo, kOperandIsNotAString);
1616 }
1617 }
1618
1619
CallStub(CodeStub * stub,TypeFeedbackId ast_id)1620 void MacroAssembler::CallStub(CodeStub* stub, TypeFeedbackId ast_id) {
1621 ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs.
1622 Call(stub->GetCode(), RelocInfo::CODE_TARGET, ast_id);
1623 }
1624
1625
TailCallStub(CodeStub * stub)1626 void MacroAssembler::TailCallStub(CodeStub* stub) {
1627 Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
1628 }
1629
1630
CallRuntime(const Runtime::Function * f,int num_arguments,SaveFPRegsMode save_doubles)1631 void MacroAssembler::CallRuntime(const Runtime::Function* f,
1632 int num_arguments,
1633 SaveFPRegsMode save_doubles) {
1634 // All arguments must be on the stack before this function is called.
1635 // x0 holds the return value after the call.
1636
1637 // Check that the number of arguments matches what the function expects.
1638 // If f->nargs is -1, the function can accept a variable number of arguments.
1639 CHECK(f->nargs < 0 || f->nargs == num_arguments);
1640
1641 // Place the necessary arguments.
1642 Mov(x0, num_arguments);
1643 Mov(x1, ExternalReference(f, isolate()));
1644
1645 CEntryStub stub(isolate(), 1, save_doubles);
1646 CallStub(&stub);
1647 }
1648
1649
AddressOffset(ExternalReference ref0,ExternalReference ref1)1650 static int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
1651 return ref0.address() - ref1.address();
1652 }
1653
1654
CallApiFunctionAndReturn(Register function_address,ExternalReference thunk_ref,int stack_space,int spill_offset,MemOperand return_value_operand,MemOperand * context_restore_operand)1655 void MacroAssembler::CallApiFunctionAndReturn(
1656 Register function_address,
1657 ExternalReference thunk_ref,
1658 int stack_space,
1659 int spill_offset,
1660 MemOperand return_value_operand,
1661 MemOperand* context_restore_operand) {
1662 ASM_LOCATION("CallApiFunctionAndReturn");
1663 ExternalReference next_address =
1664 ExternalReference::handle_scope_next_address(isolate());
1665 const int kNextOffset = 0;
1666 const int kLimitOffset = AddressOffset(
1667 ExternalReference::handle_scope_limit_address(isolate()),
1668 next_address);
1669 const int kLevelOffset = AddressOffset(
1670 ExternalReference::handle_scope_level_address(isolate()),
1671 next_address);
1672
1673 ASSERT(function_address.is(x1) || function_address.is(x2));
1674
1675 Label profiler_disabled;
1676 Label end_profiler_check;
1677 Mov(x10, ExternalReference::is_profiling_address(isolate()));
1678 Ldrb(w10, MemOperand(x10));
1679 Cbz(w10, &profiler_disabled);
1680 Mov(x3, thunk_ref);
1681 B(&end_profiler_check);
1682
1683 Bind(&profiler_disabled);
1684 Mov(x3, function_address);
1685 Bind(&end_profiler_check);
1686
1687 // Save the callee-save registers we are going to use.
1688 // TODO(all): Is this necessary? ARM doesn't do it.
1689 STATIC_ASSERT(kCallApiFunctionSpillSpace == 4);
1690 Poke(x19, (spill_offset + 0) * kXRegSize);
1691 Poke(x20, (spill_offset + 1) * kXRegSize);
1692 Poke(x21, (spill_offset + 2) * kXRegSize);
1693 Poke(x22, (spill_offset + 3) * kXRegSize);
1694
1695 // Allocate HandleScope in callee-save registers.
1696 // We will need to restore the HandleScope after the call to the API function,
1697 // by allocating it in callee-save registers they will be preserved by C code.
1698 Register handle_scope_base = x22;
1699 Register next_address_reg = x19;
1700 Register limit_reg = x20;
1701 Register level_reg = w21;
1702
1703 Mov(handle_scope_base, next_address);
1704 Ldr(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1705 Ldr(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1706 Ldr(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1707 Add(level_reg, level_reg, 1);
1708 Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1709
1710 if (FLAG_log_timer_events) {
1711 FrameScope frame(this, StackFrame::MANUAL);
1712 PushSafepointRegisters();
1713 Mov(x0, ExternalReference::isolate_address(isolate()));
1714 CallCFunction(ExternalReference::log_enter_external_function(isolate()), 1);
1715 PopSafepointRegisters();
1716 }
1717
1718 // Native call returns to the DirectCEntry stub which redirects to the
1719 // return address pushed on stack (could have moved after GC).
1720 // DirectCEntry stub itself is generated early and never moves.
1721 DirectCEntryStub stub(isolate());
1722 stub.GenerateCall(this, x3);
1723
1724 if (FLAG_log_timer_events) {
1725 FrameScope frame(this, StackFrame::MANUAL);
1726 PushSafepointRegisters();
1727 Mov(x0, ExternalReference::isolate_address(isolate()));
1728 CallCFunction(ExternalReference::log_leave_external_function(isolate()), 1);
1729 PopSafepointRegisters();
1730 }
1731
1732 Label promote_scheduled_exception;
1733 Label exception_handled;
1734 Label delete_allocated_handles;
1735 Label leave_exit_frame;
1736 Label return_value_loaded;
1737
1738 // Load value from ReturnValue.
1739 Ldr(x0, return_value_operand);
1740 Bind(&return_value_loaded);
1741 // No more valid handles (the result handle was the last one). Restore
1742 // previous handle scope.
1743 Str(next_address_reg, MemOperand(handle_scope_base, kNextOffset));
1744 if (emit_debug_code()) {
1745 Ldr(w1, MemOperand(handle_scope_base, kLevelOffset));
1746 Cmp(w1, level_reg);
1747 Check(eq, kUnexpectedLevelAfterReturnFromApiCall);
1748 }
1749 Sub(level_reg, level_reg, 1);
1750 Str(level_reg, MemOperand(handle_scope_base, kLevelOffset));
1751 Ldr(x1, MemOperand(handle_scope_base, kLimitOffset));
1752 Cmp(limit_reg, x1);
1753 B(ne, &delete_allocated_handles);
1754
1755 Bind(&leave_exit_frame);
1756 // Restore callee-saved registers.
1757 Peek(x19, (spill_offset + 0) * kXRegSize);
1758 Peek(x20, (spill_offset + 1) * kXRegSize);
1759 Peek(x21, (spill_offset + 2) * kXRegSize);
1760 Peek(x22, (spill_offset + 3) * kXRegSize);
1761
1762 // Check if the function scheduled an exception.
1763 Mov(x5, ExternalReference::scheduled_exception_address(isolate()));
1764 Ldr(x5, MemOperand(x5));
1765 JumpIfNotRoot(x5, Heap::kTheHoleValueRootIndex, &promote_scheduled_exception);
1766 Bind(&exception_handled);
1767
1768 bool restore_context = context_restore_operand != NULL;
1769 if (restore_context) {
1770 Ldr(cp, *context_restore_operand);
1771 }
1772
1773 LeaveExitFrame(false, x1, !restore_context);
1774 Drop(stack_space);
1775 Ret();
1776
1777 Bind(&promote_scheduled_exception);
1778 {
1779 FrameScope frame(this, StackFrame::INTERNAL);
1780 CallExternalReference(
1781 ExternalReference(
1782 Runtime::kHiddenPromoteScheduledException, isolate()), 0);
1783 }
1784 B(&exception_handled);
1785
1786 // HandleScope limit has changed. Delete allocated extensions.
1787 Bind(&delete_allocated_handles);
1788 Str(limit_reg, MemOperand(handle_scope_base, kLimitOffset));
1789 // Save the return value in a callee-save register.
1790 Register saved_result = x19;
1791 Mov(saved_result, x0);
1792 Mov(x0, ExternalReference::isolate_address(isolate()));
1793 CallCFunction(
1794 ExternalReference::delete_handle_scope_extensions(isolate()), 1);
1795 Mov(x0, saved_result);
1796 B(&leave_exit_frame);
1797 }
1798
1799
CallExternalReference(const ExternalReference & ext,int num_arguments)1800 void MacroAssembler::CallExternalReference(const ExternalReference& ext,
1801 int num_arguments) {
1802 Mov(x0, num_arguments);
1803 Mov(x1, ext);
1804
1805 CEntryStub stub(isolate(), 1);
1806 CallStub(&stub);
1807 }
1808
1809
JumpToExternalReference(const ExternalReference & builtin)1810 void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
1811 Mov(x1, builtin);
1812 CEntryStub stub(isolate(), 1);
1813 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
1814 }
1815
1816
GetBuiltinFunction(Register target,Builtins::JavaScript id)1817 void MacroAssembler::GetBuiltinFunction(Register target,
1818 Builtins::JavaScript id) {
1819 // Load the builtins object into target register.
1820 Ldr(target, GlobalObjectMemOperand());
1821 Ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
1822 // Load the JavaScript builtin function from the builtins object.
1823 Ldr(target, FieldMemOperand(target,
1824 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
1825 }
1826
1827
GetBuiltinEntry(Register target,Register function,Builtins::JavaScript id)1828 void MacroAssembler::GetBuiltinEntry(Register target,
1829 Register function,
1830 Builtins::JavaScript id) {
1831 ASSERT(!AreAliased(target, function));
1832 GetBuiltinFunction(function, id);
1833 // Load the code entry point from the builtins object.
1834 Ldr(target, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
1835 }
1836
1837
InvokeBuiltin(Builtins::JavaScript id,InvokeFlag flag,const CallWrapper & call_wrapper)1838 void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
1839 InvokeFlag flag,
1840 const CallWrapper& call_wrapper) {
1841 ASM_LOCATION("MacroAssembler::InvokeBuiltin");
1842 // You can't call a builtin without a valid frame.
1843 ASSERT(flag == JUMP_FUNCTION || has_frame());
1844
1845 // Get the builtin entry in x2 and setup the function object in x1.
1846 GetBuiltinEntry(x2, x1, id);
1847 if (flag == CALL_FUNCTION) {
1848 call_wrapper.BeforeCall(CallSize(x2));
1849 Call(x2);
1850 call_wrapper.AfterCall();
1851 } else {
1852 ASSERT(flag == JUMP_FUNCTION);
1853 Jump(x2);
1854 }
1855 }
1856
1857
TailCallExternalReference(const ExternalReference & ext,int num_arguments,int result_size)1858 void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
1859 int num_arguments,
1860 int result_size) {
1861 // TODO(1236192): Most runtime routines don't need the number of
1862 // arguments passed in because it is constant. At some point we
1863 // should remove this need and make the runtime routine entry code
1864 // smarter.
1865 Mov(x0, num_arguments);
1866 JumpToExternalReference(ext);
1867 }
1868
1869
TailCallRuntime(Runtime::FunctionId fid,int num_arguments,int result_size)1870 void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
1871 int num_arguments,
1872 int result_size) {
1873 TailCallExternalReference(ExternalReference(fid, isolate()),
1874 num_arguments,
1875 result_size);
1876 }
1877
1878
InitializeNewString(Register string,Register length,Heap::RootListIndex map_index,Register scratch1,Register scratch2)1879 void MacroAssembler::InitializeNewString(Register string,
1880 Register length,
1881 Heap::RootListIndex map_index,
1882 Register scratch1,
1883 Register scratch2) {
1884 ASSERT(!AreAliased(string, length, scratch1, scratch2));
1885 LoadRoot(scratch2, map_index);
1886 SmiTag(scratch1, length);
1887 Str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
1888
1889 Mov(scratch2, String::kEmptyHashField);
1890 Str(scratch1, FieldMemOperand(string, String::kLengthOffset));
1891 Str(scratch2, FieldMemOperand(string, String::kHashFieldOffset));
1892 }
1893
1894
ActivationFrameAlignment()1895 int MacroAssembler::ActivationFrameAlignment() {
1896 #if V8_HOST_ARCH_ARM64
1897 // Running on the real platform. Use the alignment as mandated by the local
1898 // environment.
1899 // Note: This will break if we ever start generating snapshots on one ARM
1900 // platform for another ARM platform with a different alignment.
1901 return OS::ActivationFrameAlignment();
1902 #else // V8_HOST_ARCH_ARM64
1903 // If we are using the simulator then we should always align to the expected
1904 // alignment. As the simulator is used to generate snapshots we do not know
1905 // if the target platform will need alignment, so this is controlled from a
1906 // flag.
1907 return FLAG_sim_stack_alignment;
1908 #endif // V8_HOST_ARCH_ARM64
1909 }
1910
1911
CallCFunction(ExternalReference function,int num_of_reg_args)1912 void MacroAssembler::CallCFunction(ExternalReference function,
1913 int num_of_reg_args) {
1914 CallCFunction(function, num_of_reg_args, 0);
1915 }
1916
1917
CallCFunction(ExternalReference function,int num_of_reg_args,int num_of_double_args)1918 void MacroAssembler::CallCFunction(ExternalReference function,
1919 int num_of_reg_args,
1920 int num_of_double_args) {
1921 UseScratchRegisterScope temps(this);
1922 Register temp = temps.AcquireX();
1923 Mov(temp, function);
1924 CallCFunction(temp, num_of_reg_args, num_of_double_args);
1925 }
1926
1927
CallCFunction(Register function,int num_of_reg_args,int num_of_double_args)1928 void MacroAssembler::CallCFunction(Register function,
1929 int num_of_reg_args,
1930 int num_of_double_args) {
1931 ASSERT(has_frame());
1932 // We can pass 8 integer arguments in registers. If we need to pass more than
1933 // that, we'll need to implement support for passing them on the stack.
1934 ASSERT(num_of_reg_args <= 8);
1935
1936 // If we're passing doubles, we're limited to the following prototypes
1937 // (defined by ExternalReference::Type):
1938 // BUILTIN_COMPARE_CALL: int f(double, double)
1939 // BUILTIN_FP_FP_CALL: double f(double, double)
1940 // BUILTIN_FP_CALL: double f(double)
1941 // BUILTIN_FP_INT_CALL: double f(double, int)
1942 if (num_of_double_args > 0) {
1943 ASSERT(num_of_reg_args <= 1);
1944 ASSERT((num_of_double_args + num_of_reg_args) <= 2);
1945 }
1946
1947
1948 // If the stack pointer is not csp, we need to derive an aligned csp from the
1949 // current stack pointer.
1950 const Register old_stack_pointer = StackPointer();
1951 if (!csp.Is(old_stack_pointer)) {
1952 AssertStackConsistency();
1953
1954 int sp_alignment = ActivationFrameAlignment();
1955 // The ABI mandates at least 16-byte alignment.
1956 ASSERT(sp_alignment >= 16);
1957 ASSERT(IsPowerOf2(sp_alignment));
1958
1959 // The current stack pointer is a callee saved register, and is preserved
1960 // across the call.
1961 ASSERT(kCalleeSaved.IncludesAliasOf(old_stack_pointer));
1962
1963 // Align and synchronize the system stack pointer with jssp.
1964 Bic(csp, old_stack_pointer, sp_alignment - 1);
1965 SetStackPointer(csp);
1966 }
1967
1968 // Call directly. The function called cannot cause a GC, or allow preemption,
1969 // so the return address in the link register stays correct.
1970 Call(function);
1971
1972 if (!csp.Is(old_stack_pointer)) {
1973 if (emit_debug_code()) {
1974 // Because the stack pointer must be aligned on a 16-byte boundary, the
1975 // aligned csp can be up to 12 bytes below the jssp. This is the case
1976 // where we only pushed one W register on top of an aligned jssp.
1977 UseScratchRegisterScope temps(this);
1978 Register temp = temps.AcquireX();
1979 ASSERT(ActivationFrameAlignment() == 16);
1980 Sub(temp, csp, old_stack_pointer);
1981 // We want temp <= 0 && temp >= -12.
1982 Cmp(temp, 0);
1983 Ccmp(temp, -12, NFlag, le);
1984 Check(ge, kTheStackWasCorruptedByMacroAssemblerCall);
1985 }
1986 SetStackPointer(old_stack_pointer);
1987 }
1988 }
1989
1990
Jump(Register target)1991 void MacroAssembler::Jump(Register target) {
1992 Br(target);
1993 }
1994
1995
Jump(intptr_t target,RelocInfo::Mode rmode)1996 void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode) {
1997 UseScratchRegisterScope temps(this);
1998 Register temp = temps.AcquireX();
1999 Mov(temp, Operand(target, rmode));
2000 Br(temp);
2001 }
2002
2003
Jump(Address target,RelocInfo::Mode rmode)2004 void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode) {
2005 ASSERT(!RelocInfo::IsCodeTarget(rmode));
2006 Jump(reinterpret_cast<intptr_t>(target), rmode);
2007 }
2008
2009
Jump(Handle<Code> code,RelocInfo::Mode rmode)2010 void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode) {
2011 ASSERT(RelocInfo::IsCodeTarget(rmode));
2012 AllowDeferredHandleDereference embedding_raw_address;
2013 Jump(reinterpret_cast<intptr_t>(code.location()), rmode);
2014 }
2015
2016
Call(Register target)2017 void MacroAssembler::Call(Register target) {
2018 BlockPoolsScope scope(this);
2019 #ifdef DEBUG
2020 Label start_call;
2021 Bind(&start_call);
2022 #endif
2023
2024 Blr(target);
2025
2026 #ifdef DEBUG
2027 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2028 #endif
2029 }
2030
2031
Call(Label * target)2032 void MacroAssembler::Call(Label* target) {
2033 BlockPoolsScope scope(this);
2034 #ifdef DEBUG
2035 Label start_call;
2036 Bind(&start_call);
2037 #endif
2038
2039 Bl(target);
2040
2041 #ifdef DEBUG
2042 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target));
2043 #endif
2044 }
2045
2046
2047 // MacroAssembler::CallSize is sensitive to changes in this function, as it
2048 // requires to know how many instructions are used to branch to the target.
Call(Address target,RelocInfo::Mode rmode)2049 void MacroAssembler::Call(Address target, RelocInfo::Mode rmode) {
2050 BlockPoolsScope scope(this);
2051 #ifdef DEBUG
2052 Label start_call;
2053 Bind(&start_call);
2054 #endif
2055 // Statement positions are expected to be recorded when the target
2056 // address is loaded.
2057 positions_recorder()->WriteRecordedPositions();
2058
2059 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2060 ASSERT(rmode != RelocInfo::NONE32);
2061
2062 UseScratchRegisterScope temps(this);
2063 Register temp = temps.AcquireX();
2064
2065 if (rmode == RelocInfo::NONE64) {
2066 // Addresses are 48 bits so we never need to load the upper 16 bits.
2067 uint64_t imm = reinterpret_cast<uint64_t>(target);
2068 // If we don't use ARM tagged addresses, the 16 higher bits must be 0.
2069 ASSERT(((imm >> 48) & 0xffff) == 0);
2070 movz(temp, (imm >> 0) & 0xffff, 0);
2071 movk(temp, (imm >> 16) & 0xffff, 16);
2072 movk(temp, (imm >> 32) & 0xffff, 32);
2073 } else {
2074 Ldr(temp, Immediate(reinterpret_cast<intptr_t>(target), rmode));
2075 }
2076 Blr(temp);
2077 #ifdef DEBUG
2078 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(target, rmode));
2079 #endif
2080 }
2081
2082
Call(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)2083 void MacroAssembler::Call(Handle<Code> code,
2084 RelocInfo::Mode rmode,
2085 TypeFeedbackId ast_id) {
2086 #ifdef DEBUG
2087 Label start_call;
2088 Bind(&start_call);
2089 #endif
2090
2091 if ((rmode == RelocInfo::CODE_TARGET) && (!ast_id.IsNone())) {
2092 SetRecordedAstId(ast_id);
2093 rmode = RelocInfo::CODE_TARGET_WITH_ID;
2094 }
2095
2096 AllowDeferredHandleDereference embedding_raw_address;
2097 Call(reinterpret_cast<Address>(code.location()), rmode);
2098
2099 #ifdef DEBUG
2100 // Check the size of the code generated.
2101 AssertSizeOfCodeGeneratedSince(&start_call, CallSize(code, rmode, ast_id));
2102 #endif
2103 }
2104
2105
CallSize(Register target)2106 int MacroAssembler::CallSize(Register target) {
2107 USE(target);
2108 return kInstructionSize;
2109 }
2110
2111
CallSize(Label * target)2112 int MacroAssembler::CallSize(Label* target) {
2113 USE(target);
2114 return kInstructionSize;
2115 }
2116
2117
CallSize(Address target,RelocInfo::Mode rmode)2118 int MacroAssembler::CallSize(Address target, RelocInfo::Mode rmode) {
2119 USE(target);
2120
2121 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2122 ASSERT(rmode != RelocInfo::NONE32);
2123
2124 if (rmode == RelocInfo::NONE64) {
2125 return kCallSizeWithoutRelocation;
2126 } else {
2127 return kCallSizeWithRelocation;
2128 }
2129 }
2130
2131
CallSize(Handle<Code> code,RelocInfo::Mode rmode,TypeFeedbackId ast_id)2132 int MacroAssembler::CallSize(Handle<Code> code,
2133 RelocInfo::Mode rmode,
2134 TypeFeedbackId ast_id) {
2135 USE(code);
2136 USE(ast_id);
2137
2138 // Addresses always have 64 bits, so we shouldn't encounter NONE32.
2139 ASSERT(rmode != RelocInfo::NONE32);
2140
2141 if (rmode == RelocInfo::NONE64) {
2142 return kCallSizeWithoutRelocation;
2143 } else {
2144 return kCallSizeWithRelocation;
2145 }
2146 }
2147
2148
2149
2150
2151
JumpForHeapNumber(Register object,Register heap_number_map,Label * on_heap_number,Label * on_not_heap_number)2152 void MacroAssembler::JumpForHeapNumber(Register object,
2153 Register heap_number_map,
2154 Label* on_heap_number,
2155 Label* on_not_heap_number) {
2156 ASSERT(on_heap_number || on_not_heap_number);
2157 AssertNotSmi(object);
2158
2159 UseScratchRegisterScope temps(this);
2160 Register temp = temps.AcquireX();
2161
2162 // Load the HeapNumber map if it is not passed.
2163 if (heap_number_map.Is(NoReg)) {
2164 heap_number_map = temps.AcquireX();
2165 LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2166 } else {
2167 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2168 }
2169
2170 ASSERT(!AreAliased(temp, heap_number_map));
2171
2172 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
2173 Cmp(temp, heap_number_map);
2174
2175 if (on_heap_number) {
2176 B(eq, on_heap_number);
2177 }
2178 if (on_not_heap_number) {
2179 B(ne, on_not_heap_number);
2180 }
2181 }
2182
2183
JumpIfHeapNumber(Register object,Label * on_heap_number,Register heap_number_map)2184 void MacroAssembler::JumpIfHeapNumber(Register object,
2185 Label* on_heap_number,
2186 Register heap_number_map) {
2187 JumpForHeapNumber(object,
2188 heap_number_map,
2189 on_heap_number,
2190 NULL);
2191 }
2192
2193
JumpIfNotHeapNumber(Register object,Label * on_not_heap_number,Register heap_number_map)2194 void MacroAssembler::JumpIfNotHeapNumber(Register object,
2195 Label* on_not_heap_number,
2196 Register heap_number_map) {
2197 JumpForHeapNumber(object,
2198 heap_number_map,
2199 NULL,
2200 on_not_heap_number);
2201 }
2202
2203
LookupNumberStringCache(Register object,Register result,Register scratch1,Register scratch2,Register scratch3,Label * not_found)2204 void MacroAssembler::LookupNumberStringCache(Register object,
2205 Register result,
2206 Register scratch1,
2207 Register scratch2,
2208 Register scratch3,
2209 Label* not_found) {
2210 ASSERT(!AreAliased(object, result, scratch1, scratch2, scratch3));
2211
2212 // Use of registers. Register result is used as a temporary.
2213 Register number_string_cache = result;
2214 Register mask = scratch3;
2215
2216 // Load the number string cache.
2217 LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
2218
2219 // Make the hash mask from the length of the number string cache. It
2220 // contains two elements (number and string) for each cache entry.
2221 Ldrsw(mask, UntagSmiFieldMemOperand(number_string_cache,
2222 FixedArray::kLengthOffset));
2223 Asr(mask, mask, 1); // Divide length by two.
2224 Sub(mask, mask, 1); // Make mask.
2225
2226 // Calculate the entry in the number string cache. The hash value in the
2227 // number string cache for smis is just the smi value, and the hash for
2228 // doubles is the xor of the upper and lower words. See
2229 // Heap::GetNumberStringCache.
2230 Label is_smi;
2231 Label load_result_from_cache;
2232
2233 JumpIfSmi(object, &is_smi);
2234 CheckMap(object, scratch1, Heap::kHeapNumberMapRootIndex, not_found,
2235 DONT_DO_SMI_CHECK);
2236
2237 STATIC_ASSERT(kDoubleSize == (kWRegSize * 2));
2238 Add(scratch1, object, HeapNumber::kValueOffset - kHeapObjectTag);
2239 Ldp(scratch1.W(), scratch2.W(), MemOperand(scratch1));
2240 Eor(scratch1, scratch1, scratch2);
2241 And(scratch1, scratch1, mask);
2242
2243 // Calculate address of entry in string cache: each entry consists of two
2244 // pointer sized fields.
2245 Add(scratch1, number_string_cache,
2246 Operand(scratch1, LSL, kPointerSizeLog2 + 1));
2247
2248 Register probe = mask;
2249 Ldr(probe, FieldMemOperand(scratch1, FixedArray::kHeaderSize));
2250 JumpIfSmi(probe, not_found);
2251 Ldr(d0, FieldMemOperand(object, HeapNumber::kValueOffset));
2252 Ldr(d1, FieldMemOperand(probe, HeapNumber::kValueOffset));
2253 Fcmp(d0, d1);
2254 B(ne, not_found);
2255 B(&load_result_from_cache);
2256
2257 Bind(&is_smi);
2258 Register scratch = scratch1;
2259 And(scratch, mask, Operand::UntagSmi(object));
2260 // Calculate address of entry in string cache: each entry consists
2261 // of two pointer sized fields.
2262 Add(scratch, number_string_cache,
2263 Operand(scratch, LSL, kPointerSizeLog2 + 1));
2264
2265 // Check if the entry is the smi we are looking for.
2266 Ldr(probe, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2267 Cmp(object, probe);
2268 B(ne, not_found);
2269
2270 // Get the result from the cache.
2271 Bind(&load_result_from_cache);
2272 Ldr(result, FieldMemOperand(scratch, FixedArray::kHeaderSize + kPointerSize));
2273 IncrementCounter(isolate()->counters()->number_to_string_native(), 1,
2274 scratch1, scratch2);
2275 }
2276
2277
TryRepresentDoubleAsInt(Register as_int,FPRegister value,FPRegister scratch_d,Label * on_successful_conversion,Label * on_failed_conversion)2278 void MacroAssembler::TryRepresentDoubleAsInt(Register as_int,
2279 FPRegister value,
2280 FPRegister scratch_d,
2281 Label* on_successful_conversion,
2282 Label* on_failed_conversion) {
2283 // Convert to an int and back again, then compare with the original value.
2284 Fcvtzs(as_int, value);
2285 Scvtf(scratch_d, as_int);
2286 Fcmp(value, scratch_d);
2287
2288 if (on_successful_conversion) {
2289 B(on_successful_conversion, eq);
2290 }
2291 if (on_failed_conversion) {
2292 B(on_failed_conversion, ne);
2293 }
2294 }
2295
2296
TestForMinusZero(DoubleRegister input)2297 void MacroAssembler::TestForMinusZero(DoubleRegister input) {
2298 UseScratchRegisterScope temps(this);
2299 Register temp = temps.AcquireX();
2300 // Floating point -0.0 is kMinInt as an integer, so subtracting 1 (cmp) will
2301 // cause overflow.
2302 Fmov(temp, input);
2303 Cmp(temp, 1);
2304 }
2305
2306
JumpIfMinusZero(DoubleRegister input,Label * on_negative_zero)2307 void MacroAssembler::JumpIfMinusZero(DoubleRegister input,
2308 Label* on_negative_zero) {
2309 TestForMinusZero(input);
2310 B(vs, on_negative_zero);
2311 }
2312
2313
JumpIfMinusZero(Register input,Label * on_negative_zero)2314 void MacroAssembler::JumpIfMinusZero(Register input,
2315 Label* on_negative_zero) {
2316 ASSERT(input.Is64Bits());
2317 // Floating point value is in an integer register. Detect -0.0 by subtracting
2318 // 1 (cmp), which will cause overflow.
2319 Cmp(input, 1);
2320 B(vs, on_negative_zero);
2321 }
2322
2323
ClampInt32ToUint8(Register output,Register input)2324 void MacroAssembler::ClampInt32ToUint8(Register output, Register input) {
2325 // Clamp the value to [0..255].
2326 Cmp(input.W(), Operand(input.W(), UXTB));
2327 // If input < input & 0xff, it must be < 0, so saturate to 0.
2328 Csel(output.W(), wzr, input.W(), lt);
2329 // If input <= input & 0xff, it must be <= 255. Otherwise, saturate to 255.
2330 Csel(output.W(), output.W(), 255, le);
2331 }
2332
2333
ClampInt32ToUint8(Register in_out)2334 void MacroAssembler::ClampInt32ToUint8(Register in_out) {
2335 ClampInt32ToUint8(in_out, in_out);
2336 }
2337
2338
ClampDoubleToUint8(Register output,DoubleRegister input,DoubleRegister dbl_scratch)2339 void MacroAssembler::ClampDoubleToUint8(Register output,
2340 DoubleRegister input,
2341 DoubleRegister dbl_scratch) {
2342 // This conversion follows the WebIDL "[Clamp]" rules for PIXEL types:
2343 // - Inputs lower than 0 (including -infinity) produce 0.
2344 // - Inputs higher than 255 (including +infinity) produce 255.
2345 // Also, it seems that PIXEL types use round-to-nearest rather than
2346 // round-towards-zero.
2347
2348 // Squash +infinity before the conversion, since Fcvtnu will normally
2349 // convert it to 0.
2350 Fmov(dbl_scratch, 255);
2351 Fmin(dbl_scratch, dbl_scratch, input);
2352
2353 // Convert double to unsigned integer. Values less than zero become zero.
2354 // Values greater than 255 have already been clamped to 255.
2355 Fcvtnu(output, dbl_scratch);
2356 }
2357
2358
CopyFieldsLoopPairsHelper(Register dst,Register src,unsigned count,Register scratch1,Register scratch2,Register scratch3,Register scratch4,Register scratch5)2359 void MacroAssembler::CopyFieldsLoopPairsHelper(Register dst,
2360 Register src,
2361 unsigned count,
2362 Register scratch1,
2363 Register scratch2,
2364 Register scratch3,
2365 Register scratch4,
2366 Register scratch5) {
2367 // Untag src and dst into scratch registers.
2368 // Copy src->dst in a tight loop.
2369 ASSERT(!AreAliased(dst, src,
2370 scratch1, scratch2, scratch3, scratch4, scratch5));
2371 ASSERT(count >= 2);
2372
2373 const Register& remaining = scratch3;
2374 Mov(remaining, count / 2);
2375
2376 const Register& dst_untagged = scratch1;
2377 const Register& src_untagged = scratch2;
2378 Sub(dst_untagged, dst, kHeapObjectTag);
2379 Sub(src_untagged, src, kHeapObjectTag);
2380
2381 // Copy fields in pairs.
2382 Label loop;
2383 Bind(&loop);
2384 Ldp(scratch4, scratch5,
2385 MemOperand(src_untagged, kXRegSize* 2, PostIndex));
2386 Stp(scratch4, scratch5,
2387 MemOperand(dst_untagged, kXRegSize* 2, PostIndex));
2388 Sub(remaining, remaining, 1);
2389 Cbnz(remaining, &loop);
2390
2391 // Handle the leftovers.
2392 if (count & 1) {
2393 Ldr(scratch4, MemOperand(src_untagged));
2394 Str(scratch4, MemOperand(dst_untagged));
2395 }
2396 }
2397
2398
CopyFieldsUnrolledPairsHelper(Register dst,Register src,unsigned count,Register scratch1,Register scratch2,Register scratch3,Register scratch4)2399 void MacroAssembler::CopyFieldsUnrolledPairsHelper(Register dst,
2400 Register src,
2401 unsigned count,
2402 Register scratch1,
2403 Register scratch2,
2404 Register scratch3,
2405 Register scratch4) {
2406 // Untag src and dst into scratch registers.
2407 // Copy src->dst in an unrolled loop.
2408 ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3, scratch4));
2409
2410 const Register& dst_untagged = scratch1;
2411 const Register& src_untagged = scratch2;
2412 sub(dst_untagged, dst, kHeapObjectTag);
2413 sub(src_untagged, src, kHeapObjectTag);
2414
2415 // Copy fields in pairs.
2416 for (unsigned i = 0; i < count / 2; i++) {
2417 Ldp(scratch3, scratch4, MemOperand(src_untagged, kXRegSize * 2, PostIndex));
2418 Stp(scratch3, scratch4, MemOperand(dst_untagged, kXRegSize * 2, PostIndex));
2419 }
2420
2421 // Handle the leftovers.
2422 if (count & 1) {
2423 Ldr(scratch3, MemOperand(src_untagged));
2424 Str(scratch3, MemOperand(dst_untagged));
2425 }
2426 }
2427
2428
CopyFieldsUnrolledHelper(Register dst,Register src,unsigned count,Register scratch1,Register scratch2,Register scratch3)2429 void MacroAssembler::CopyFieldsUnrolledHelper(Register dst,
2430 Register src,
2431 unsigned count,
2432 Register scratch1,
2433 Register scratch2,
2434 Register scratch3) {
2435 // Untag src and dst into scratch registers.
2436 // Copy src->dst in an unrolled loop.
2437 ASSERT(!AreAliased(dst, src, scratch1, scratch2, scratch3));
2438
2439 const Register& dst_untagged = scratch1;
2440 const Register& src_untagged = scratch2;
2441 Sub(dst_untagged, dst, kHeapObjectTag);
2442 Sub(src_untagged, src, kHeapObjectTag);
2443
2444 // Copy fields one by one.
2445 for (unsigned i = 0; i < count; i++) {
2446 Ldr(scratch3, MemOperand(src_untagged, kXRegSize, PostIndex));
2447 Str(scratch3, MemOperand(dst_untagged, kXRegSize, PostIndex));
2448 }
2449 }
2450
2451
CopyFields(Register dst,Register src,CPURegList temps,unsigned count)2452 void MacroAssembler::CopyFields(Register dst, Register src, CPURegList temps,
2453 unsigned count) {
2454 // One of two methods is used:
2455 //
2456 // For high 'count' values where many scratch registers are available:
2457 // Untag src and dst into scratch registers.
2458 // Copy src->dst in a tight loop.
2459 //
2460 // For low 'count' values or where few scratch registers are available:
2461 // Untag src and dst into scratch registers.
2462 // Copy src->dst in an unrolled loop.
2463 //
2464 // In both cases, fields are copied in pairs if possible, and left-overs are
2465 // handled separately.
2466 ASSERT(!AreAliased(dst, src));
2467 ASSERT(!temps.IncludesAliasOf(dst));
2468 ASSERT(!temps.IncludesAliasOf(src));
2469 ASSERT(!temps.IncludesAliasOf(xzr));
2470
2471 if (emit_debug_code()) {
2472 Cmp(dst, src);
2473 Check(ne, kTheSourceAndDestinationAreTheSame);
2474 }
2475
2476 // The value of 'count' at which a loop will be generated (if there are
2477 // enough scratch registers).
2478 static const unsigned kLoopThreshold = 8;
2479
2480 UseScratchRegisterScope masm_temps(this);
2481 if ((temps.Count() >= 3) && (count >= kLoopThreshold)) {
2482 CopyFieldsLoopPairsHelper(dst, src, count,
2483 Register(temps.PopLowestIndex()),
2484 Register(temps.PopLowestIndex()),
2485 Register(temps.PopLowestIndex()),
2486 masm_temps.AcquireX(),
2487 masm_temps.AcquireX());
2488 } else if (temps.Count() >= 2) {
2489 CopyFieldsUnrolledPairsHelper(dst, src, count,
2490 Register(temps.PopLowestIndex()),
2491 Register(temps.PopLowestIndex()),
2492 masm_temps.AcquireX(),
2493 masm_temps.AcquireX());
2494 } else if (temps.Count() == 1) {
2495 CopyFieldsUnrolledHelper(dst, src, count,
2496 Register(temps.PopLowestIndex()),
2497 masm_temps.AcquireX(),
2498 masm_temps.AcquireX());
2499 } else {
2500 UNREACHABLE();
2501 }
2502 }
2503
2504
CopyBytes(Register dst,Register src,Register length,Register scratch,CopyHint hint)2505 void MacroAssembler::CopyBytes(Register dst,
2506 Register src,
2507 Register length,
2508 Register scratch,
2509 CopyHint hint) {
2510 UseScratchRegisterScope temps(this);
2511 Register tmp1 = temps.AcquireX();
2512 Register tmp2 = temps.AcquireX();
2513 ASSERT(!AreAliased(src, dst, length, scratch, tmp1, tmp2));
2514 ASSERT(!AreAliased(src, dst, csp));
2515
2516 if (emit_debug_code()) {
2517 // Check copy length.
2518 Cmp(length, 0);
2519 Assert(ge, kUnexpectedNegativeValue);
2520
2521 // Check src and dst buffers don't overlap.
2522 Add(scratch, src, length); // Calculate end of src buffer.
2523 Cmp(scratch, dst);
2524 Add(scratch, dst, length); // Calculate end of dst buffer.
2525 Ccmp(scratch, src, ZFlag, gt);
2526 Assert(le, kCopyBuffersOverlap);
2527 }
2528
2529 Label short_copy, short_loop, bulk_loop, done;
2530
2531 if ((hint == kCopyLong || hint == kCopyUnknown) && !FLAG_optimize_for_size) {
2532 Register bulk_length = scratch;
2533 int pair_size = 2 * kXRegSize;
2534 int pair_mask = pair_size - 1;
2535
2536 Bic(bulk_length, length, pair_mask);
2537 Cbz(bulk_length, &short_copy);
2538 Bind(&bulk_loop);
2539 Sub(bulk_length, bulk_length, pair_size);
2540 Ldp(tmp1, tmp2, MemOperand(src, pair_size, PostIndex));
2541 Stp(tmp1, tmp2, MemOperand(dst, pair_size, PostIndex));
2542 Cbnz(bulk_length, &bulk_loop);
2543
2544 And(length, length, pair_mask);
2545 }
2546
2547 Bind(&short_copy);
2548 Cbz(length, &done);
2549 Bind(&short_loop);
2550 Sub(length, length, 1);
2551 Ldrb(tmp1, MemOperand(src, 1, PostIndex));
2552 Strb(tmp1, MemOperand(dst, 1, PostIndex));
2553 Cbnz(length, &short_loop);
2554
2555
2556 Bind(&done);
2557 }
2558
2559
FillFields(Register dst,Register field_count,Register filler)2560 void MacroAssembler::FillFields(Register dst,
2561 Register field_count,
2562 Register filler) {
2563 ASSERT(!dst.Is(csp));
2564 UseScratchRegisterScope temps(this);
2565 Register field_ptr = temps.AcquireX();
2566 Register counter = temps.AcquireX();
2567 Label done;
2568
2569 // Decrement count. If the result < zero, count was zero, and there's nothing
2570 // to do. If count was one, flags are set to fail the gt condition at the end
2571 // of the pairs loop.
2572 Subs(counter, field_count, 1);
2573 B(lt, &done);
2574
2575 // There's at least one field to fill, so do this unconditionally.
2576 Str(filler, MemOperand(dst, kPointerSize, PostIndex));
2577
2578 // If the bottom bit of counter is set, there are an even number of fields to
2579 // fill, so pull the start pointer back by one field, allowing the pairs loop
2580 // to overwrite the field that was stored above.
2581 And(field_ptr, counter, 1);
2582 Sub(field_ptr, dst, Operand(field_ptr, LSL, kPointerSizeLog2));
2583
2584 // Store filler to memory in pairs.
2585 Label entry, loop;
2586 B(&entry);
2587 Bind(&loop);
2588 Stp(filler, filler, MemOperand(field_ptr, 2 * kPointerSize, PostIndex));
2589 Subs(counter, counter, 2);
2590 Bind(&entry);
2591 B(gt, &loop);
2592
2593 Bind(&done);
2594 }
2595
2596
JumpIfEitherIsNotSequentialAsciiStrings(Register first,Register second,Register scratch1,Register scratch2,Label * failure,SmiCheckType smi_check)2597 void MacroAssembler::JumpIfEitherIsNotSequentialAsciiStrings(
2598 Register first,
2599 Register second,
2600 Register scratch1,
2601 Register scratch2,
2602 Label* failure,
2603 SmiCheckType smi_check) {
2604
2605 if (smi_check == DO_SMI_CHECK) {
2606 JumpIfEitherSmi(first, second, failure);
2607 } else if (emit_debug_code()) {
2608 ASSERT(smi_check == DONT_DO_SMI_CHECK);
2609 Label not_smi;
2610 JumpIfEitherSmi(first, second, NULL, ¬_smi);
2611
2612 // At least one input is a smi, but the flags indicated a smi check wasn't
2613 // needed.
2614 Abort(kUnexpectedSmi);
2615
2616 Bind(¬_smi);
2617 }
2618
2619 // Test that both first and second are sequential ASCII strings.
2620 Ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
2621 Ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
2622 Ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
2623 Ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
2624
2625 JumpIfEitherInstanceTypeIsNotSequentialAscii(scratch1,
2626 scratch2,
2627 scratch1,
2628 scratch2,
2629 failure);
2630 }
2631
2632
JumpIfEitherInstanceTypeIsNotSequentialAscii(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2633 void MacroAssembler::JumpIfEitherInstanceTypeIsNotSequentialAscii(
2634 Register first,
2635 Register second,
2636 Register scratch1,
2637 Register scratch2,
2638 Label* failure) {
2639 ASSERT(!AreAliased(scratch1, second));
2640 ASSERT(!AreAliased(scratch1, scratch2));
2641 static const int kFlatAsciiStringMask =
2642 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2643 static const int kFlatAsciiStringTag = ASCII_STRING_TYPE;
2644 And(scratch1, first, kFlatAsciiStringMask);
2645 And(scratch2, second, kFlatAsciiStringMask);
2646 Cmp(scratch1, kFlatAsciiStringTag);
2647 Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
2648 B(ne, failure);
2649 }
2650
2651
JumpIfInstanceTypeIsNotSequentialAscii(Register type,Register scratch,Label * failure)2652 void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
2653 Register scratch,
2654 Label* failure) {
2655 const int kFlatAsciiStringMask =
2656 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2657 const int kFlatAsciiStringTag =
2658 kStringTag | kOneByteStringTag | kSeqStringTag;
2659 And(scratch, type, kFlatAsciiStringMask);
2660 Cmp(scratch, kFlatAsciiStringTag);
2661 B(ne, failure);
2662 }
2663
2664
JumpIfBothInstanceTypesAreNotSequentialAscii(Register first,Register second,Register scratch1,Register scratch2,Label * failure)2665 void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
2666 Register first,
2667 Register second,
2668 Register scratch1,
2669 Register scratch2,
2670 Label* failure) {
2671 ASSERT(!AreAliased(first, second, scratch1, scratch2));
2672 const int kFlatAsciiStringMask =
2673 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
2674 const int kFlatAsciiStringTag =
2675 kStringTag | kOneByteStringTag | kSeqStringTag;
2676 And(scratch1, first, kFlatAsciiStringMask);
2677 And(scratch2, second, kFlatAsciiStringMask);
2678 Cmp(scratch1, kFlatAsciiStringTag);
2679 Ccmp(scratch2, kFlatAsciiStringTag, NoFlag, eq);
2680 B(ne, failure);
2681 }
2682
2683
JumpIfNotUniqueName(Register type,Label * not_unique_name)2684 void MacroAssembler::JumpIfNotUniqueName(Register type,
2685 Label* not_unique_name) {
2686 STATIC_ASSERT((kInternalizedTag == 0) && (kStringTag == 0));
2687 // if ((type is string && type is internalized) || type == SYMBOL_TYPE) {
2688 // continue
2689 // } else {
2690 // goto not_unique_name
2691 // }
2692 Tst(type, kIsNotStringMask | kIsNotInternalizedMask);
2693 Ccmp(type, SYMBOL_TYPE, ZFlag, ne);
2694 B(ne, not_unique_name);
2695 }
2696
2697
InvokePrologue(const ParameterCount & expected,const ParameterCount & actual,Handle<Code> code_constant,Register code_reg,Label * done,InvokeFlag flag,bool * definitely_mismatches,const CallWrapper & call_wrapper)2698 void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2699 const ParameterCount& actual,
2700 Handle<Code> code_constant,
2701 Register code_reg,
2702 Label* done,
2703 InvokeFlag flag,
2704 bool* definitely_mismatches,
2705 const CallWrapper& call_wrapper) {
2706 bool definitely_matches = false;
2707 *definitely_mismatches = false;
2708 Label regular_invoke;
2709
2710 // Check whether the expected and actual arguments count match. If not,
2711 // setup registers according to contract with ArgumentsAdaptorTrampoline:
2712 // x0: actual arguments count.
2713 // x1: function (passed through to callee).
2714 // x2: expected arguments count.
2715
2716 // The code below is made a lot easier because the calling code already sets
2717 // up actual and expected registers according to the contract if values are
2718 // passed in registers.
2719 ASSERT(actual.is_immediate() || actual.reg().is(x0));
2720 ASSERT(expected.is_immediate() || expected.reg().is(x2));
2721 ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(x3));
2722
2723 if (expected.is_immediate()) {
2724 ASSERT(actual.is_immediate());
2725 if (expected.immediate() == actual.immediate()) {
2726 definitely_matches = true;
2727
2728 } else {
2729 Mov(x0, actual.immediate());
2730 if (expected.immediate() ==
2731 SharedFunctionInfo::kDontAdaptArgumentsSentinel) {
2732 // Don't worry about adapting arguments for builtins that
2733 // don't want that done. Skip adaption code by making it look
2734 // like we have a match between expected and actual number of
2735 // arguments.
2736 definitely_matches = true;
2737 } else {
2738 *definitely_mismatches = true;
2739 // Set up x2 for the argument adaptor.
2740 Mov(x2, expected.immediate());
2741 }
2742 }
2743
2744 } else { // expected is a register.
2745 Operand actual_op = actual.is_immediate() ? Operand(actual.immediate())
2746 : Operand(actual.reg());
2747 // If actual == expected perform a regular invocation.
2748 Cmp(expected.reg(), actual_op);
2749 B(eq, ®ular_invoke);
2750 // Otherwise set up x0 for the argument adaptor.
2751 Mov(x0, actual_op);
2752 }
2753
2754 // If the argument counts may mismatch, generate a call to the argument
2755 // adaptor.
2756 if (!definitely_matches) {
2757 if (!code_constant.is_null()) {
2758 Mov(x3, Operand(code_constant));
2759 Add(x3, x3, Code::kHeaderSize - kHeapObjectTag);
2760 }
2761
2762 Handle<Code> adaptor =
2763 isolate()->builtins()->ArgumentsAdaptorTrampoline();
2764 if (flag == CALL_FUNCTION) {
2765 call_wrapper.BeforeCall(CallSize(adaptor));
2766 Call(adaptor);
2767 call_wrapper.AfterCall();
2768 if (!*definitely_mismatches) {
2769 // If the arg counts don't match, no extra code is emitted by
2770 // MAsm::InvokeCode and we can just fall through.
2771 B(done);
2772 }
2773 } else {
2774 Jump(adaptor, RelocInfo::CODE_TARGET);
2775 }
2776 }
2777 Bind(®ular_invoke);
2778 }
2779
2780
InvokeCode(Register code,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2781 void MacroAssembler::InvokeCode(Register code,
2782 const ParameterCount& expected,
2783 const ParameterCount& actual,
2784 InvokeFlag flag,
2785 const CallWrapper& call_wrapper) {
2786 // You can't call a function without a valid frame.
2787 ASSERT(flag == JUMP_FUNCTION || has_frame());
2788
2789 Label done;
2790
2791 bool definitely_mismatches = false;
2792 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
2793 &definitely_mismatches, call_wrapper);
2794
2795 // If we are certain that actual != expected, then we know InvokePrologue will
2796 // have handled the call through the argument adaptor mechanism.
2797 // The called function expects the call kind in x5.
2798 if (!definitely_mismatches) {
2799 if (flag == CALL_FUNCTION) {
2800 call_wrapper.BeforeCall(CallSize(code));
2801 Call(code);
2802 call_wrapper.AfterCall();
2803 } else {
2804 ASSERT(flag == JUMP_FUNCTION);
2805 Jump(code);
2806 }
2807 }
2808
2809 // Continue here if InvokePrologue does handle the invocation due to
2810 // mismatched parameter counts.
2811 Bind(&done);
2812 }
2813
2814
InvokeFunction(Register function,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2815 void MacroAssembler::InvokeFunction(Register function,
2816 const ParameterCount& actual,
2817 InvokeFlag flag,
2818 const CallWrapper& call_wrapper) {
2819 // You can't call a function without a valid frame.
2820 ASSERT(flag == JUMP_FUNCTION || has_frame());
2821
2822 // Contract with called JS functions requires that function is passed in x1.
2823 // (See FullCodeGenerator::Generate().)
2824 ASSERT(function.is(x1));
2825
2826 Register expected_reg = x2;
2827 Register code_reg = x3;
2828
2829 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2830 // The number of arguments is stored as an int32_t, and -1 is a marker
2831 // (SharedFunctionInfo::kDontAdaptArgumentsSentinel), so we need sign
2832 // extension to correctly handle it.
2833 Ldr(expected_reg, FieldMemOperand(function,
2834 JSFunction::kSharedFunctionInfoOffset));
2835 Ldrsw(expected_reg,
2836 FieldMemOperand(expected_reg,
2837 SharedFunctionInfo::kFormalParameterCountOffset));
2838 Ldr(code_reg,
2839 FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2840
2841 ParameterCount expected(expected_reg);
2842 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2843 }
2844
2845
InvokeFunction(Register function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2846 void MacroAssembler::InvokeFunction(Register function,
2847 const ParameterCount& expected,
2848 const ParameterCount& actual,
2849 InvokeFlag flag,
2850 const CallWrapper& call_wrapper) {
2851 // You can't call a function without a valid frame.
2852 ASSERT(flag == JUMP_FUNCTION || has_frame());
2853
2854 // Contract with called JS functions requires that function is passed in x1.
2855 // (See FullCodeGenerator::Generate().)
2856 ASSERT(function.Is(x1));
2857
2858 Register code_reg = x3;
2859
2860 // Set up the context.
2861 Ldr(cp, FieldMemOperand(function, JSFunction::kContextOffset));
2862
2863 // We call indirectly through the code field in the function to
2864 // allow recompilation to take effect without changing any of the
2865 // call sites.
2866 Ldr(code_reg, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
2867 InvokeCode(code_reg, expected, actual, flag, call_wrapper);
2868 }
2869
2870
InvokeFunction(Handle<JSFunction> function,const ParameterCount & expected,const ParameterCount & actual,InvokeFlag flag,const CallWrapper & call_wrapper)2871 void MacroAssembler::InvokeFunction(Handle<JSFunction> function,
2872 const ParameterCount& expected,
2873 const ParameterCount& actual,
2874 InvokeFlag flag,
2875 const CallWrapper& call_wrapper) {
2876 // Contract with called JS functions requires that function is passed in x1.
2877 // (See FullCodeGenerator::Generate().)
2878 __ LoadObject(x1, function);
2879 InvokeFunction(x1, expected, actual, flag, call_wrapper);
2880 }
2881
2882
TryConvertDoubleToInt64(Register result,DoubleRegister double_input,Label * done)2883 void MacroAssembler::TryConvertDoubleToInt64(Register result,
2884 DoubleRegister double_input,
2885 Label* done) {
2886 // Try to convert with an FPU convert instruction. It's trivial to compute
2887 // the modulo operation on an integer register so we convert to a 64-bit
2888 // integer.
2889 //
2890 // Fcvtzs will saturate to INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff)
2891 // when the double is out of range. NaNs and infinities will be converted to 0
2892 // (as ECMA-262 requires).
2893 Fcvtzs(result.X(), double_input);
2894
2895 // The values INT64_MIN (0x800...00) or INT64_MAX (0x7ff...ff) are not
2896 // representable using a double, so if the result is one of those then we know
2897 // that saturation occured, and we need to manually handle the conversion.
2898 //
2899 // It is easy to detect INT64_MIN and INT64_MAX because adding or subtracting
2900 // 1 will cause signed overflow.
2901 Cmp(result.X(), 1);
2902 Ccmp(result.X(), -1, VFlag, vc);
2903
2904 B(vc, done);
2905 }
2906
2907
TruncateDoubleToI(Register result,DoubleRegister double_input)2908 void MacroAssembler::TruncateDoubleToI(Register result,
2909 DoubleRegister double_input) {
2910 Label done;
2911 ASSERT(jssp.Is(StackPointer()));
2912
2913 // Try to convert the double to an int64. If successful, the bottom 32 bits
2914 // contain our truncated int32 result.
2915 TryConvertDoubleToInt64(result, double_input, &done);
2916
2917 // If we fell through then inline version didn't succeed - call stub instead.
2918 Push(lr);
2919 Push(double_input); // Put input on stack.
2920
2921 DoubleToIStub stub(isolate(),
2922 jssp,
2923 result,
2924 0,
2925 true, // is_truncating
2926 true); // skip_fastpath
2927 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
2928
2929 Drop(1, kDoubleSize); // Drop the double input on the stack.
2930 Pop(lr);
2931
2932 Bind(&done);
2933 }
2934
2935
TruncateHeapNumberToI(Register result,Register object)2936 void MacroAssembler::TruncateHeapNumberToI(Register result,
2937 Register object) {
2938 Label done;
2939 ASSERT(!result.is(object));
2940 ASSERT(jssp.Is(StackPointer()));
2941
2942 Ldr(fp_scratch, FieldMemOperand(object, HeapNumber::kValueOffset));
2943
2944 // Try to convert the double to an int64. If successful, the bottom 32 bits
2945 // contain our truncated int32 result.
2946 TryConvertDoubleToInt64(result, fp_scratch, &done);
2947
2948 // If we fell through then inline version didn't succeed - call stub instead.
2949 Push(lr);
2950 DoubleToIStub stub(isolate(),
2951 object,
2952 result,
2953 HeapNumber::kValueOffset - kHeapObjectTag,
2954 true, // is_truncating
2955 true); // skip_fastpath
2956 CallStub(&stub); // DoubleToIStub preserves any registers it needs to clobber
2957 Pop(lr);
2958
2959 Bind(&done);
2960 }
2961
2962
StubPrologue()2963 void MacroAssembler::StubPrologue() {
2964 ASSERT(StackPointer().Is(jssp));
2965 UseScratchRegisterScope temps(this);
2966 Register temp = temps.AcquireX();
2967 __ Mov(temp, Smi::FromInt(StackFrame::STUB));
2968 // Compiled stubs don't age, and so they don't need the predictable code
2969 // ageing sequence.
2970 __ Push(lr, fp, cp, temp);
2971 __ Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
2972 }
2973
2974
Prologue(bool code_pre_aging)2975 void MacroAssembler::Prologue(bool code_pre_aging) {
2976 if (code_pre_aging) {
2977 Code* stub = Code::GetPreAgedCodeAgeStub(isolate());
2978 __ EmitCodeAgeSequence(stub);
2979 } else {
2980 __ EmitFrameSetupForCodeAgePatching();
2981 }
2982 }
2983
2984
EnterFrame(StackFrame::Type type)2985 void MacroAssembler::EnterFrame(StackFrame::Type type) {
2986 ASSERT(jssp.Is(StackPointer()));
2987 UseScratchRegisterScope temps(this);
2988 Register type_reg = temps.AcquireX();
2989 Register code_reg = temps.AcquireX();
2990
2991 Push(lr, fp, cp);
2992 Mov(type_reg, Smi::FromInt(type));
2993 Mov(code_reg, Operand(CodeObject()));
2994 Push(type_reg, code_reg);
2995 // jssp[4] : lr
2996 // jssp[3] : fp
2997 // jssp[2] : cp
2998 // jssp[1] : type
2999 // jssp[0] : code object
3000
3001 // Adjust FP to point to saved FP.
3002 Add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize);
3003 }
3004
3005
LeaveFrame(StackFrame::Type type)3006 void MacroAssembler::LeaveFrame(StackFrame::Type type) {
3007 ASSERT(jssp.Is(StackPointer()));
3008 // Drop the execution stack down to the frame pointer and restore
3009 // the caller frame pointer and return address.
3010 Mov(jssp, fp);
3011 AssertStackConsistency();
3012 Pop(fp, lr);
3013 }
3014
3015
ExitFramePreserveFPRegs()3016 void MacroAssembler::ExitFramePreserveFPRegs() {
3017 PushCPURegList(kCallerSavedFP);
3018 }
3019
3020
ExitFrameRestoreFPRegs()3021 void MacroAssembler::ExitFrameRestoreFPRegs() {
3022 // Read the registers from the stack without popping them. The stack pointer
3023 // will be reset as part of the unwinding process.
3024 CPURegList saved_fp_regs = kCallerSavedFP;
3025 ASSERT(saved_fp_regs.Count() % 2 == 0);
3026
3027 int offset = ExitFrameConstants::kLastExitFrameField;
3028 while (!saved_fp_regs.IsEmpty()) {
3029 const CPURegister& dst0 = saved_fp_regs.PopHighestIndex();
3030 const CPURegister& dst1 = saved_fp_regs.PopHighestIndex();
3031 offset -= 2 * kDRegSize;
3032 Ldp(dst1, dst0, MemOperand(fp, offset));
3033 }
3034 }
3035
3036
EnterExitFrame(bool save_doubles,const Register & scratch,int extra_space)3037 void MacroAssembler::EnterExitFrame(bool save_doubles,
3038 const Register& scratch,
3039 int extra_space) {
3040 ASSERT(jssp.Is(StackPointer()));
3041
3042 // Set up the new stack frame.
3043 Mov(scratch, Operand(CodeObject()));
3044 Push(lr, fp);
3045 Mov(fp, StackPointer());
3046 Push(xzr, scratch);
3047 // fp[8]: CallerPC (lr)
3048 // fp -> fp[0]: CallerFP (old fp)
3049 // fp[-8]: Space reserved for SPOffset.
3050 // jssp -> fp[-16]: CodeObject()
3051 STATIC_ASSERT((2 * kPointerSize) ==
3052 ExitFrameConstants::kCallerSPDisplacement);
3053 STATIC_ASSERT((1 * kPointerSize) == ExitFrameConstants::kCallerPCOffset);
3054 STATIC_ASSERT((0 * kPointerSize) == ExitFrameConstants::kCallerFPOffset);
3055 STATIC_ASSERT((-1 * kPointerSize) == ExitFrameConstants::kSPOffset);
3056 STATIC_ASSERT((-2 * kPointerSize) == ExitFrameConstants::kCodeOffset);
3057
3058 // Save the frame pointer and context pointer in the top frame.
3059 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3060 isolate())));
3061 Str(fp, MemOperand(scratch));
3062 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3063 isolate())));
3064 Str(cp, MemOperand(scratch));
3065
3066 STATIC_ASSERT((-2 * kPointerSize) ==
3067 ExitFrameConstants::kLastExitFrameField);
3068 if (save_doubles) {
3069 ExitFramePreserveFPRegs();
3070 }
3071
3072 // Reserve space for the return address and for user requested memory.
3073 // We do this before aligning to make sure that we end up correctly
3074 // aligned with the minimum of wasted space.
3075 Claim(extra_space + 1, kXRegSize);
3076 // fp[8]: CallerPC (lr)
3077 // fp -> fp[0]: CallerFP (old fp)
3078 // fp[-8]: Space reserved for SPOffset.
3079 // fp[-16]: CodeObject()
3080 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3081 // jssp[8]: Extra space reserved for caller (if extra_space != 0).
3082 // jssp -> jssp[0]: Space reserved for the return address.
3083
3084 // Align and synchronize the system stack pointer with jssp.
3085 AlignAndSetCSPForFrame();
3086 ASSERT(csp.Is(StackPointer()));
3087
3088 // fp[8]: CallerPC (lr)
3089 // fp -> fp[0]: CallerFP (old fp)
3090 // fp[-8]: Space reserved for SPOffset.
3091 // fp[-16]: CodeObject()
3092 // fp[-16 - fp_size]: Saved doubles (if save_doubles is true).
3093 // csp[8]: Memory reserved for the caller if extra_space != 0.
3094 // Alignment padding, if necessary.
3095 // csp -> csp[0]: Space reserved for the return address.
3096
3097 // ExitFrame::GetStateForFramePointer expects to find the return address at
3098 // the memory address immediately below the pointer stored in SPOffset.
3099 // It is not safe to derive much else from SPOffset, because the size of the
3100 // padding can vary.
3101 Add(scratch, csp, kXRegSize);
3102 Str(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset));
3103 }
3104
3105
3106 // Leave the current exit frame.
LeaveExitFrame(bool restore_doubles,const Register & scratch,bool restore_context)3107 void MacroAssembler::LeaveExitFrame(bool restore_doubles,
3108 const Register& scratch,
3109 bool restore_context) {
3110 ASSERT(csp.Is(StackPointer()));
3111
3112 if (restore_doubles) {
3113 ExitFrameRestoreFPRegs();
3114 }
3115
3116 // Restore the context pointer from the top frame.
3117 if (restore_context) {
3118 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3119 isolate())));
3120 Ldr(cp, MemOperand(scratch));
3121 }
3122
3123 if (emit_debug_code()) {
3124 // Also emit debug code to clear the cp in the top frame.
3125 Mov(scratch, Operand(ExternalReference(Isolate::kContextAddress,
3126 isolate())));
3127 Str(xzr, MemOperand(scratch));
3128 }
3129 // Clear the frame pointer from the top frame.
3130 Mov(scratch, Operand(ExternalReference(Isolate::kCEntryFPAddress,
3131 isolate())));
3132 Str(xzr, MemOperand(scratch));
3133
3134 // Pop the exit frame.
3135 // fp[8]: CallerPC (lr)
3136 // fp -> fp[0]: CallerFP (old fp)
3137 // fp[...]: The rest of the frame.
3138 Mov(jssp, fp);
3139 SetStackPointer(jssp);
3140 AssertStackConsistency();
3141 Pop(fp, lr);
3142 }
3143
3144
SetCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)3145 void MacroAssembler::SetCounter(StatsCounter* counter, int value,
3146 Register scratch1, Register scratch2) {
3147 if (FLAG_native_code_counters && counter->Enabled()) {
3148 Mov(scratch1, value);
3149 Mov(scratch2, ExternalReference(counter));
3150 Str(scratch1, MemOperand(scratch2));
3151 }
3152 }
3153
3154
IncrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)3155 void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
3156 Register scratch1, Register scratch2) {
3157 ASSERT(value != 0);
3158 if (FLAG_native_code_counters && counter->Enabled()) {
3159 Mov(scratch2, ExternalReference(counter));
3160 Ldr(scratch1, MemOperand(scratch2));
3161 Add(scratch1, scratch1, value);
3162 Str(scratch1, MemOperand(scratch2));
3163 }
3164 }
3165
3166
DecrementCounter(StatsCounter * counter,int value,Register scratch1,Register scratch2)3167 void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
3168 Register scratch1, Register scratch2) {
3169 IncrementCounter(counter, -value, scratch1, scratch2);
3170 }
3171
3172
LoadContext(Register dst,int context_chain_length)3173 void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
3174 if (context_chain_length > 0) {
3175 // Move up the chain of contexts to the context containing the slot.
3176 Ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3177 for (int i = 1; i < context_chain_length; i++) {
3178 Ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX)));
3179 }
3180 } else {
3181 // Slot is in the current function context. Move it into the
3182 // destination register in case we store into it (the write barrier
3183 // cannot be allowed to destroy the context in cp).
3184 Mov(dst, cp);
3185 }
3186 }
3187
3188
DebugBreak()3189 void MacroAssembler::DebugBreak() {
3190 Mov(x0, 0);
3191 Mov(x1, ExternalReference(Runtime::kDebugBreak, isolate()));
3192 CEntryStub ces(isolate(), 1);
3193 ASSERT(AllowThisStubCall(&ces));
3194 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
3195 }
3196
3197
PushTryHandler(StackHandler::Kind kind,int handler_index)3198 void MacroAssembler::PushTryHandler(StackHandler::Kind kind,
3199 int handler_index) {
3200 ASSERT(jssp.Is(StackPointer()));
3201 // Adjust this code if the asserts don't hold.
3202 STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize);
3203 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize);
3204 STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize);
3205 STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize);
3206 STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize);
3207 STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize);
3208
3209 // For the JSEntry handler, we must preserve the live registers x0-x4.
3210 // (See JSEntryStub::GenerateBody().)
3211
3212 unsigned state =
3213 StackHandler::IndexField::encode(handler_index) |
3214 StackHandler::KindField::encode(kind);
3215
3216 // Set up the code object and the state for pushing.
3217 Mov(x10, Operand(CodeObject()));
3218 Mov(x11, state);
3219
3220 // Push the frame pointer, context, state, and code object.
3221 if (kind == StackHandler::JS_ENTRY) {
3222 ASSERT(Smi::FromInt(0) == 0);
3223 Push(xzr, xzr, x11, x10);
3224 } else {
3225 Push(fp, cp, x11, x10);
3226 }
3227
3228 // Link the current handler as the next handler.
3229 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3230 Ldr(x10, MemOperand(x11));
3231 Push(x10);
3232 // Set this new handler as the current one.
3233 Str(jssp, MemOperand(x11));
3234 }
3235
3236
PopTryHandler()3237 void MacroAssembler::PopTryHandler() {
3238 STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0);
3239 Pop(x10);
3240 Mov(x11, ExternalReference(Isolate::kHandlerAddress, isolate()));
3241 Drop(StackHandlerConstants::kSize - kXRegSize, kByteSizeInBytes);
3242 Str(x10, MemOperand(x11));
3243 }
3244
3245
Allocate(int object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)3246 void MacroAssembler::Allocate(int object_size,
3247 Register result,
3248 Register scratch1,
3249 Register scratch2,
3250 Label* gc_required,
3251 AllocationFlags flags) {
3252 ASSERT(object_size <= Page::kMaxRegularHeapObjectSize);
3253 if (!FLAG_inline_new) {
3254 if (emit_debug_code()) {
3255 // Trash the registers to simulate an allocation failure.
3256 // We apply salt to the original zap value to easily spot the values.
3257 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3258 Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3259 Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3260 }
3261 B(gc_required);
3262 return;
3263 }
3264
3265 UseScratchRegisterScope temps(this);
3266 Register scratch3 = temps.AcquireX();
3267
3268 ASSERT(!AreAliased(result, scratch1, scratch2, scratch3));
3269 ASSERT(result.Is64Bits() && scratch1.Is64Bits() && scratch2.Is64Bits());
3270
3271 // Make object size into bytes.
3272 if ((flags & SIZE_IN_WORDS) != 0) {
3273 object_size *= kPointerSize;
3274 }
3275 ASSERT(0 == (object_size & kObjectAlignmentMask));
3276
3277 // Check relative positions of allocation top and limit addresses.
3278 // The values must be adjacent in memory to allow the use of LDP.
3279 ExternalReference heap_allocation_top =
3280 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3281 ExternalReference heap_allocation_limit =
3282 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3283 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3284 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3285 ASSERT((limit - top) == kPointerSize);
3286
3287 // Set up allocation top address and object size registers.
3288 Register top_address = scratch1;
3289 Register allocation_limit = scratch2;
3290 Mov(top_address, Operand(heap_allocation_top));
3291
3292 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3293 // Load allocation top into result and the allocation limit.
3294 Ldp(result, allocation_limit, MemOperand(top_address));
3295 } else {
3296 if (emit_debug_code()) {
3297 // Assert that result actually contains top on entry.
3298 Ldr(scratch3, MemOperand(top_address));
3299 Cmp(result, scratch3);
3300 Check(eq, kUnexpectedAllocationTop);
3301 }
3302 // Load the allocation limit. 'result' already contains the allocation top.
3303 Ldr(allocation_limit, MemOperand(top_address, limit - top));
3304 }
3305
3306 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3307 // the same alignment on ARM64.
3308 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3309
3310 // Calculate new top and bail out if new space is exhausted.
3311 Adds(scratch3, result, object_size);
3312 Ccmp(scratch3, allocation_limit, CFlag, cc);
3313 B(hi, gc_required);
3314 Str(scratch3, MemOperand(top_address));
3315
3316 // Tag the object if requested.
3317 if ((flags & TAG_OBJECT) != 0) {
3318 ObjectTag(result, result);
3319 }
3320 }
3321
3322
Allocate(Register object_size,Register result,Register scratch1,Register scratch2,Label * gc_required,AllocationFlags flags)3323 void MacroAssembler::Allocate(Register object_size,
3324 Register result,
3325 Register scratch1,
3326 Register scratch2,
3327 Label* gc_required,
3328 AllocationFlags flags) {
3329 if (!FLAG_inline_new) {
3330 if (emit_debug_code()) {
3331 // Trash the registers to simulate an allocation failure.
3332 // We apply salt to the original zap value to easily spot the values.
3333 Mov(result, (kDebugZapValue & ~0xffL) | 0x11L);
3334 Mov(scratch1, (kDebugZapValue & ~0xffL) | 0x21L);
3335 Mov(scratch2, (kDebugZapValue & ~0xffL) | 0x21L);
3336 }
3337 B(gc_required);
3338 return;
3339 }
3340
3341 UseScratchRegisterScope temps(this);
3342 Register scratch3 = temps.AcquireX();
3343
3344 ASSERT(!AreAliased(object_size, result, scratch1, scratch2, scratch3));
3345 ASSERT(object_size.Is64Bits() && result.Is64Bits() &&
3346 scratch1.Is64Bits() && scratch2.Is64Bits());
3347
3348 // Check relative positions of allocation top and limit addresses.
3349 // The values must be adjacent in memory to allow the use of LDP.
3350 ExternalReference heap_allocation_top =
3351 AllocationUtils::GetAllocationTopReference(isolate(), flags);
3352 ExternalReference heap_allocation_limit =
3353 AllocationUtils::GetAllocationLimitReference(isolate(), flags);
3354 intptr_t top = reinterpret_cast<intptr_t>(heap_allocation_top.address());
3355 intptr_t limit = reinterpret_cast<intptr_t>(heap_allocation_limit.address());
3356 ASSERT((limit - top) == kPointerSize);
3357
3358 // Set up allocation top address and object size registers.
3359 Register top_address = scratch1;
3360 Register allocation_limit = scratch2;
3361 Mov(top_address, heap_allocation_top);
3362
3363 if ((flags & RESULT_CONTAINS_TOP) == 0) {
3364 // Load allocation top into result and the allocation limit.
3365 Ldp(result, allocation_limit, MemOperand(top_address));
3366 } else {
3367 if (emit_debug_code()) {
3368 // Assert that result actually contains top on entry.
3369 Ldr(scratch3, MemOperand(top_address));
3370 Cmp(result, scratch3);
3371 Check(eq, kUnexpectedAllocationTop);
3372 }
3373 // Load the allocation limit. 'result' already contains the allocation top.
3374 Ldr(allocation_limit, MemOperand(top_address, limit - top));
3375 }
3376
3377 // We can ignore DOUBLE_ALIGNMENT flags here because doubles and pointers have
3378 // the same alignment on ARM64.
3379 STATIC_ASSERT(kPointerAlignment == kDoubleAlignment);
3380
3381 // Calculate new top and bail out if new space is exhausted
3382 if ((flags & SIZE_IN_WORDS) != 0) {
3383 Adds(scratch3, result, Operand(object_size, LSL, kPointerSizeLog2));
3384 } else {
3385 Adds(scratch3, result, object_size);
3386 }
3387
3388 if (emit_debug_code()) {
3389 Tst(scratch3, kObjectAlignmentMask);
3390 Check(eq, kUnalignedAllocationInNewSpace);
3391 }
3392
3393 Ccmp(scratch3, allocation_limit, CFlag, cc);
3394 B(hi, gc_required);
3395 Str(scratch3, MemOperand(top_address));
3396
3397 // Tag the object if requested.
3398 if ((flags & TAG_OBJECT) != 0) {
3399 ObjectTag(result, result);
3400 }
3401 }
3402
3403
UndoAllocationInNewSpace(Register object,Register scratch)3404 void MacroAssembler::UndoAllocationInNewSpace(Register object,
3405 Register scratch) {
3406 ExternalReference new_space_allocation_top =
3407 ExternalReference::new_space_allocation_top_address(isolate());
3408
3409 // Make sure the object has no tag before resetting top.
3410 Bic(object, object, kHeapObjectTagMask);
3411 #ifdef DEBUG
3412 // Check that the object un-allocated is below the current top.
3413 Mov(scratch, new_space_allocation_top);
3414 Ldr(scratch, MemOperand(scratch));
3415 Cmp(object, scratch);
3416 Check(lt, kUndoAllocationOfNonAllocatedMemory);
3417 #endif
3418 // Write the address of the object to un-allocate as the current top.
3419 Mov(scratch, new_space_allocation_top);
3420 Str(object, MemOperand(scratch));
3421 }
3422
3423
AllocateTwoByteString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3424 void MacroAssembler::AllocateTwoByteString(Register result,
3425 Register length,
3426 Register scratch1,
3427 Register scratch2,
3428 Register scratch3,
3429 Label* gc_required) {
3430 ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
3431 // Calculate the number of bytes needed for the characters in the string while
3432 // observing object alignment.
3433 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3434 Add(scratch1, length, length); // Length in bytes, not chars.
3435 Add(scratch1, scratch1, kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
3436 Bic(scratch1, scratch1, kObjectAlignmentMask);
3437
3438 // Allocate two-byte string in new space.
3439 Allocate(scratch1,
3440 result,
3441 scratch2,
3442 scratch3,
3443 gc_required,
3444 TAG_OBJECT);
3445
3446 // Set the map, length and hash field.
3447 InitializeNewString(result,
3448 length,
3449 Heap::kStringMapRootIndex,
3450 scratch1,
3451 scratch2);
3452 }
3453
3454
AllocateAsciiString(Register result,Register length,Register scratch1,Register scratch2,Register scratch3,Label * gc_required)3455 void MacroAssembler::AllocateAsciiString(Register result,
3456 Register length,
3457 Register scratch1,
3458 Register scratch2,
3459 Register scratch3,
3460 Label* gc_required) {
3461 ASSERT(!AreAliased(result, length, scratch1, scratch2, scratch3));
3462 // Calculate the number of bytes needed for the characters in the string while
3463 // observing object alignment.
3464 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0);
3465 STATIC_ASSERT(kCharSize == 1);
3466 Add(scratch1, length, kObjectAlignmentMask + SeqOneByteString::kHeaderSize);
3467 Bic(scratch1, scratch1, kObjectAlignmentMask);
3468
3469 // Allocate ASCII string in new space.
3470 Allocate(scratch1,
3471 result,
3472 scratch2,
3473 scratch3,
3474 gc_required,
3475 TAG_OBJECT);
3476
3477 // Set the map, length and hash field.
3478 InitializeNewString(result,
3479 length,
3480 Heap::kAsciiStringMapRootIndex,
3481 scratch1,
3482 scratch2);
3483 }
3484
3485
AllocateTwoByteConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3486 void MacroAssembler::AllocateTwoByteConsString(Register result,
3487 Register length,
3488 Register scratch1,
3489 Register scratch2,
3490 Label* gc_required) {
3491 Allocate(ConsString::kSize, result, scratch1, scratch2, gc_required,
3492 TAG_OBJECT);
3493
3494 InitializeNewString(result,
3495 length,
3496 Heap::kConsStringMapRootIndex,
3497 scratch1,
3498 scratch2);
3499 }
3500
3501
AllocateAsciiConsString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3502 void MacroAssembler::AllocateAsciiConsString(Register result,
3503 Register length,
3504 Register scratch1,
3505 Register scratch2,
3506 Label* gc_required) {
3507 Allocate(ConsString::kSize,
3508 result,
3509 scratch1,
3510 scratch2,
3511 gc_required,
3512 TAG_OBJECT);
3513
3514 InitializeNewString(result,
3515 length,
3516 Heap::kConsAsciiStringMapRootIndex,
3517 scratch1,
3518 scratch2);
3519 }
3520
3521
AllocateTwoByteSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3522 void MacroAssembler::AllocateTwoByteSlicedString(Register result,
3523 Register length,
3524 Register scratch1,
3525 Register scratch2,
3526 Label* gc_required) {
3527 ASSERT(!AreAliased(result, length, scratch1, scratch2));
3528 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3529 TAG_OBJECT);
3530
3531 InitializeNewString(result,
3532 length,
3533 Heap::kSlicedStringMapRootIndex,
3534 scratch1,
3535 scratch2);
3536 }
3537
3538
AllocateAsciiSlicedString(Register result,Register length,Register scratch1,Register scratch2,Label * gc_required)3539 void MacroAssembler::AllocateAsciiSlicedString(Register result,
3540 Register length,
3541 Register scratch1,
3542 Register scratch2,
3543 Label* gc_required) {
3544 ASSERT(!AreAliased(result, length, scratch1, scratch2));
3545 Allocate(SlicedString::kSize, result, scratch1, scratch2, gc_required,
3546 TAG_OBJECT);
3547
3548 InitializeNewString(result,
3549 length,
3550 Heap::kSlicedAsciiStringMapRootIndex,
3551 scratch1,
3552 scratch2);
3553 }
3554
3555
3556 // Allocates a heap number or jumps to the need_gc label if the young space
3557 // is full and a scavenge is needed.
AllocateHeapNumber(Register result,Label * gc_required,Register scratch1,Register scratch2,CPURegister value,CPURegister heap_number_map)3558 void MacroAssembler::AllocateHeapNumber(Register result,
3559 Label* gc_required,
3560 Register scratch1,
3561 Register scratch2,
3562 CPURegister value,
3563 CPURegister heap_number_map) {
3564 ASSERT(!value.IsValid() || value.Is64Bits());
3565 UseScratchRegisterScope temps(this);
3566
3567 // Allocate an object in the heap for the heap number and tag it as a heap
3568 // object.
3569 Allocate(HeapNumber::kSize, result, scratch1, scratch2, gc_required,
3570 NO_ALLOCATION_FLAGS);
3571
3572 // Prepare the heap number map.
3573 if (!heap_number_map.IsValid()) {
3574 // If we have a valid value register, use the same type of register to store
3575 // the map so we can use STP to store both in one instruction.
3576 if (value.IsValid() && value.IsFPRegister()) {
3577 heap_number_map = temps.AcquireD();
3578 } else {
3579 heap_number_map = scratch1;
3580 }
3581 LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3582 }
3583 if (emit_debug_code()) {
3584 Register map;
3585 if (heap_number_map.IsFPRegister()) {
3586 map = scratch1;
3587 Fmov(map, DoubleRegister(heap_number_map));
3588 } else {
3589 map = Register(heap_number_map);
3590 }
3591 AssertRegisterIsRoot(map, Heap::kHeapNumberMapRootIndex);
3592 }
3593
3594 // Store the heap number map and the value in the allocated object.
3595 if (value.IsSameSizeAndType(heap_number_map)) {
3596 STATIC_ASSERT(HeapObject::kMapOffset + kPointerSize ==
3597 HeapNumber::kValueOffset);
3598 Stp(heap_number_map, value, MemOperand(result, HeapObject::kMapOffset));
3599 } else {
3600 Str(heap_number_map, MemOperand(result, HeapObject::kMapOffset));
3601 if (value.IsValid()) {
3602 Str(value, MemOperand(result, HeapNumber::kValueOffset));
3603 }
3604 }
3605 ObjectTag(result, result);
3606 }
3607
3608
JumpIfObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_cond_pass,Condition cond)3609 void MacroAssembler::JumpIfObjectType(Register object,
3610 Register map,
3611 Register type_reg,
3612 InstanceType type,
3613 Label* if_cond_pass,
3614 Condition cond) {
3615 CompareObjectType(object, map, type_reg, type);
3616 B(cond, if_cond_pass);
3617 }
3618
3619
JumpIfNotObjectType(Register object,Register map,Register type_reg,InstanceType type,Label * if_not_object)3620 void MacroAssembler::JumpIfNotObjectType(Register object,
3621 Register map,
3622 Register type_reg,
3623 InstanceType type,
3624 Label* if_not_object) {
3625 JumpIfObjectType(object, map, type_reg, type, if_not_object, ne);
3626 }
3627
3628
3629 // Sets condition flags based on comparison, and returns type in type_reg.
CompareObjectType(Register object,Register map,Register type_reg,InstanceType type)3630 void MacroAssembler::CompareObjectType(Register object,
3631 Register map,
3632 Register type_reg,
3633 InstanceType type) {
3634 Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3635 CompareInstanceType(map, type_reg, type);
3636 }
3637
3638
3639 // Sets condition flags based on comparison, and returns type in type_reg.
CompareInstanceType(Register map,Register type_reg,InstanceType type)3640 void MacroAssembler::CompareInstanceType(Register map,
3641 Register type_reg,
3642 InstanceType type) {
3643 Ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
3644 Cmp(type_reg, type);
3645 }
3646
3647
CompareMap(Register obj,Register scratch,Handle<Map> map)3648 void MacroAssembler::CompareMap(Register obj,
3649 Register scratch,
3650 Handle<Map> map) {
3651 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3652 CompareMap(scratch, map);
3653 }
3654
3655
CompareMap(Register obj_map,Handle<Map> map)3656 void MacroAssembler::CompareMap(Register obj_map,
3657 Handle<Map> map) {
3658 Cmp(obj_map, Operand(map));
3659 }
3660
3661
CheckMap(Register obj,Register scratch,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3662 void MacroAssembler::CheckMap(Register obj,
3663 Register scratch,
3664 Handle<Map> map,
3665 Label* fail,
3666 SmiCheckType smi_check_type) {
3667 if (smi_check_type == DO_SMI_CHECK) {
3668 JumpIfSmi(obj, fail);
3669 }
3670
3671 CompareMap(obj, scratch, map);
3672 B(ne, fail);
3673 }
3674
3675
CheckMap(Register obj,Register scratch,Heap::RootListIndex index,Label * fail,SmiCheckType smi_check_type)3676 void MacroAssembler::CheckMap(Register obj,
3677 Register scratch,
3678 Heap::RootListIndex index,
3679 Label* fail,
3680 SmiCheckType smi_check_type) {
3681 if (smi_check_type == DO_SMI_CHECK) {
3682 JumpIfSmi(obj, fail);
3683 }
3684 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3685 JumpIfNotRoot(scratch, index, fail);
3686 }
3687
3688
CheckMap(Register obj_map,Handle<Map> map,Label * fail,SmiCheckType smi_check_type)3689 void MacroAssembler::CheckMap(Register obj_map,
3690 Handle<Map> map,
3691 Label* fail,
3692 SmiCheckType smi_check_type) {
3693 if (smi_check_type == DO_SMI_CHECK) {
3694 JumpIfSmi(obj_map, fail);
3695 }
3696
3697 CompareMap(obj_map, map);
3698 B(ne, fail);
3699 }
3700
3701
DispatchMap(Register obj,Register scratch,Handle<Map> map,Handle<Code> success,SmiCheckType smi_check_type)3702 void MacroAssembler::DispatchMap(Register obj,
3703 Register scratch,
3704 Handle<Map> map,
3705 Handle<Code> success,
3706 SmiCheckType smi_check_type) {
3707 Label fail;
3708 if (smi_check_type == DO_SMI_CHECK) {
3709 JumpIfSmi(obj, &fail);
3710 }
3711 Ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
3712 Cmp(scratch, Operand(map));
3713 B(ne, &fail);
3714 Jump(success, RelocInfo::CODE_TARGET);
3715 Bind(&fail);
3716 }
3717
3718
TestMapBitfield(Register object,uint64_t mask)3719 void MacroAssembler::TestMapBitfield(Register object, uint64_t mask) {
3720 UseScratchRegisterScope temps(this);
3721 Register temp = temps.AcquireX();
3722 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
3723 Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3724 Tst(temp, mask);
3725 }
3726
3727
LoadElementsKindFromMap(Register result,Register map)3728 void MacroAssembler::LoadElementsKindFromMap(Register result, Register map) {
3729 // Load the map's "bit field 2".
3730 __ Ldrb(result, FieldMemOperand(map, Map::kBitField2Offset));
3731 // Retrieve elements_kind from bit field 2.
3732 DecodeField<Map::ElementsKindBits>(result);
3733 }
3734
3735
TryGetFunctionPrototype(Register function,Register result,Register scratch,Label * miss,BoundFunctionAction action)3736 void MacroAssembler::TryGetFunctionPrototype(Register function,
3737 Register result,
3738 Register scratch,
3739 Label* miss,
3740 BoundFunctionAction action) {
3741 ASSERT(!AreAliased(function, result, scratch));
3742
3743 // Check that the receiver isn't a smi.
3744 JumpIfSmi(function, miss);
3745
3746 // Check that the function really is a function. Load map into result reg.
3747 JumpIfNotObjectType(function, result, scratch, JS_FUNCTION_TYPE, miss);
3748
3749 if (action == kMissOnBoundFunction) {
3750 Register scratch_w = scratch.W();
3751 Ldr(scratch,
3752 FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset));
3753 // On 64-bit platforms, compiler hints field is not a smi. See definition of
3754 // kCompilerHintsOffset in src/objects.h.
3755 Ldr(scratch_w,
3756 FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset));
3757 Tbnz(scratch, SharedFunctionInfo::kBoundFunction, miss);
3758 }
3759
3760 // Make sure that the function has an instance prototype.
3761 Label non_instance;
3762 Ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
3763 Tbnz(scratch, Map::kHasNonInstancePrototype, &non_instance);
3764
3765 // Get the prototype or initial map from the function.
3766 Ldr(result,
3767 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
3768
3769 // If the prototype or initial map is the hole, don't return it and simply
3770 // miss the cache instead. This will allow us to allocate a prototype object
3771 // on-demand in the runtime system.
3772 JumpIfRoot(result, Heap::kTheHoleValueRootIndex, miss);
3773
3774 // If the function does not have an initial map, we're done.
3775 Label done;
3776 JumpIfNotObjectType(result, scratch, scratch, MAP_TYPE, &done);
3777
3778 // Get the prototype from the initial map.
3779 Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3780 B(&done);
3781
3782 // Non-instance prototype: fetch prototype from constructor field in initial
3783 // map.
3784 Bind(&non_instance);
3785 Ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
3786
3787 // All done.
3788 Bind(&done);
3789 }
3790
3791
CompareRoot(const Register & obj,Heap::RootListIndex index)3792 void MacroAssembler::CompareRoot(const Register& obj,
3793 Heap::RootListIndex index) {
3794 UseScratchRegisterScope temps(this);
3795 Register temp = temps.AcquireX();
3796 ASSERT(!AreAliased(obj, temp));
3797 LoadRoot(temp, index);
3798 Cmp(obj, temp);
3799 }
3800
3801
JumpIfRoot(const Register & obj,Heap::RootListIndex index,Label * if_equal)3802 void MacroAssembler::JumpIfRoot(const Register& obj,
3803 Heap::RootListIndex index,
3804 Label* if_equal) {
3805 CompareRoot(obj, index);
3806 B(eq, if_equal);
3807 }
3808
3809
JumpIfNotRoot(const Register & obj,Heap::RootListIndex index,Label * if_not_equal)3810 void MacroAssembler::JumpIfNotRoot(const Register& obj,
3811 Heap::RootListIndex index,
3812 Label* if_not_equal) {
3813 CompareRoot(obj, index);
3814 B(ne, if_not_equal);
3815 }
3816
3817
CompareAndSplit(const Register & lhs,const Operand & rhs,Condition cond,Label * if_true,Label * if_false,Label * fall_through)3818 void MacroAssembler::CompareAndSplit(const Register& lhs,
3819 const Operand& rhs,
3820 Condition cond,
3821 Label* if_true,
3822 Label* if_false,
3823 Label* fall_through) {
3824 if ((if_true == if_false) && (if_false == fall_through)) {
3825 // Fall through.
3826 } else if (if_true == if_false) {
3827 B(if_true);
3828 } else if (if_false == fall_through) {
3829 CompareAndBranch(lhs, rhs, cond, if_true);
3830 } else if (if_true == fall_through) {
3831 CompareAndBranch(lhs, rhs, NegateCondition(cond), if_false);
3832 } else {
3833 CompareAndBranch(lhs, rhs, cond, if_true);
3834 B(if_false);
3835 }
3836 }
3837
3838
TestAndSplit(const Register & reg,uint64_t bit_pattern,Label * if_all_clear,Label * if_any_set,Label * fall_through)3839 void MacroAssembler::TestAndSplit(const Register& reg,
3840 uint64_t bit_pattern,
3841 Label* if_all_clear,
3842 Label* if_any_set,
3843 Label* fall_through) {
3844 if ((if_all_clear == if_any_set) && (if_any_set == fall_through)) {
3845 // Fall through.
3846 } else if (if_all_clear == if_any_set) {
3847 B(if_all_clear);
3848 } else if (if_all_clear == fall_through) {
3849 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3850 } else if (if_any_set == fall_through) {
3851 TestAndBranchIfAllClear(reg, bit_pattern, if_all_clear);
3852 } else {
3853 TestAndBranchIfAnySet(reg, bit_pattern, if_any_set);
3854 B(if_all_clear);
3855 }
3856 }
3857
3858
CheckFastElements(Register map,Register scratch,Label * fail)3859 void MacroAssembler::CheckFastElements(Register map,
3860 Register scratch,
3861 Label* fail) {
3862 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3863 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3864 STATIC_ASSERT(FAST_ELEMENTS == 2);
3865 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3866 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3867 Cmp(scratch, Map::kMaximumBitField2FastHoleyElementValue);
3868 B(hi, fail);
3869 }
3870
3871
CheckFastObjectElements(Register map,Register scratch,Label * fail)3872 void MacroAssembler::CheckFastObjectElements(Register map,
3873 Register scratch,
3874 Label* fail) {
3875 STATIC_ASSERT(FAST_SMI_ELEMENTS == 0);
3876 STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1);
3877 STATIC_ASSERT(FAST_ELEMENTS == 2);
3878 STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3);
3879 Ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset));
3880 Cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue));
3881 // If cond==ls, set cond=hi, otherwise compare.
3882 Ccmp(scratch,
3883 Operand(Map::kMaximumBitField2FastHoleyElementValue), CFlag, hi);
3884 B(hi, fail);
3885 }
3886
3887
3888 // Note: The ARM version of this clobbers elements_reg, but this version does
3889 // not. Some uses of this in ARM64 assume that elements_reg will be preserved.
StoreNumberToDoubleElements(Register value_reg,Register key_reg,Register elements_reg,Register scratch1,FPRegister fpscratch1,Label * fail,int elements_offset)3890 void MacroAssembler::StoreNumberToDoubleElements(Register value_reg,
3891 Register key_reg,
3892 Register elements_reg,
3893 Register scratch1,
3894 FPRegister fpscratch1,
3895 Label* fail,
3896 int elements_offset) {
3897 ASSERT(!AreAliased(value_reg, key_reg, elements_reg, scratch1));
3898 Label store_num;
3899
3900 // Speculatively convert the smi to a double - all smis can be exactly
3901 // represented as a double.
3902 SmiUntagToDouble(fpscratch1, value_reg, kSpeculativeUntag);
3903
3904 // If value_reg is a smi, we're done.
3905 JumpIfSmi(value_reg, &store_num);
3906
3907 // Ensure that the object is a heap number.
3908 CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(),
3909 fail, DONT_DO_SMI_CHECK);
3910
3911 Ldr(fpscratch1, FieldMemOperand(value_reg, HeapNumber::kValueOffset));
3912
3913 // Canonicalize NaNs.
3914 CanonicalizeNaN(fpscratch1);
3915
3916 // Store the result.
3917 Bind(&store_num);
3918 Add(scratch1, elements_reg,
3919 Operand::UntagSmiAndScale(key_reg, kDoubleSizeLog2));
3920 Str(fpscratch1,
3921 FieldMemOperand(scratch1,
3922 FixedDoubleArray::kHeaderSize - elements_offset));
3923 }
3924
3925
AllowThisStubCall(CodeStub * stub)3926 bool MacroAssembler::AllowThisStubCall(CodeStub* stub) {
3927 return has_frame_ || !stub->SometimesSetsUpAFrame();
3928 }
3929
3930
IndexFromHash(Register hash,Register index)3931 void MacroAssembler::IndexFromHash(Register hash, Register index) {
3932 // If the hash field contains an array index pick it out. The assert checks
3933 // that the constants for the maximum number of digits for an array index
3934 // cached in the hash field and the number of bits reserved for it does not
3935 // conflict.
3936 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
3937 (1 << String::kArrayIndexValueBits));
3938 DecodeField<String::ArrayIndexValueBits>(index, hash);
3939 SmiTag(index, index);
3940 }
3941
3942
EmitSeqStringSetCharCheck(Register string,Register index,SeqStringSetCharCheckIndexType index_type,Register scratch,uint32_t encoding_mask)3943 void MacroAssembler::EmitSeqStringSetCharCheck(
3944 Register string,
3945 Register index,
3946 SeqStringSetCharCheckIndexType index_type,
3947 Register scratch,
3948 uint32_t encoding_mask) {
3949 ASSERT(!AreAliased(string, index, scratch));
3950
3951 if (index_type == kIndexIsSmi) {
3952 AssertSmi(index);
3953 }
3954
3955 // Check that string is an object.
3956 AssertNotSmi(string, kNonObject);
3957
3958 // Check that string has an appropriate map.
3959 Ldr(scratch, FieldMemOperand(string, HeapObject::kMapOffset));
3960 Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
3961
3962 And(scratch, scratch, kStringRepresentationMask | kStringEncodingMask);
3963 Cmp(scratch, encoding_mask);
3964 Check(eq, kUnexpectedStringType);
3965
3966 Ldr(scratch, FieldMemOperand(string, String::kLengthOffset));
3967 Cmp(index, index_type == kIndexIsSmi ? scratch : Operand::UntagSmi(scratch));
3968 Check(lt, kIndexIsTooLarge);
3969
3970 ASSERT_EQ(0, Smi::FromInt(0));
3971 Cmp(index, 0);
3972 Check(ge, kIndexIsNegative);
3973 }
3974
3975
CheckAccessGlobalProxy(Register holder_reg,Register scratch1,Register scratch2,Label * miss)3976 void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
3977 Register scratch1,
3978 Register scratch2,
3979 Label* miss) {
3980 ASSERT(!AreAliased(holder_reg, scratch1, scratch2));
3981 Label same_contexts;
3982
3983 // Load current lexical context from the stack frame.
3984 Ldr(scratch1, MemOperand(fp, StandardFrameConstants::kContextOffset));
3985 // In debug mode, make sure the lexical context is set.
3986 #ifdef DEBUG
3987 Cmp(scratch1, 0);
3988 Check(ne, kWeShouldNotHaveAnEmptyLexicalContext);
3989 #endif
3990
3991 // Load the native context of the current context.
3992 int offset =
3993 Context::kHeaderSize + Context::GLOBAL_OBJECT_INDEX * kPointerSize;
3994 Ldr(scratch1, FieldMemOperand(scratch1, offset));
3995 Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
3996
3997 // Check the context is a native context.
3998 if (emit_debug_code()) {
3999 // Read the first word and compare to the global_context_map.
4000 Ldr(scratch2, FieldMemOperand(scratch1, HeapObject::kMapOffset));
4001 CompareRoot(scratch2, Heap::kNativeContextMapRootIndex);
4002 Check(eq, kExpectedNativeContext);
4003 }
4004
4005 // Check if both contexts are the same.
4006 Ldr(scratch2, FieldMemOperand(holder_reg,
4007 JSGlobalProxy::kNativeContextOffset));
4008 Cmp(scratch1, scratch2);
4009 B(&same_contexts, eq);
4010
4011 // Check the context is a native context.
4012 if (emit_debug_code()) {
4013 // We're short on scratch registers here, so use holder_reg as a scratch.
4014 Push(holder_reg);
4015 Register scratch3 = holder_reg;
4016
4017 CompareRoot(scratch2, Heap::kNullValueRootIndex);
4018 Check(ne, kExpectedNonNullContext);
4019
4020 Ldr(scratch3, FieldMemOperand(scratch2, HeapObject::kMapOffset));
4021 CompareRoot(scratch3, Heap::kNativeContextMapRootIndex);
4022 Check(eq, kExpectedNativeContext);
4023 Pop(holder_reg);
4024 }
4025
4026 // Check that the security token in the calling global object is
4027 // compatible with the security token in the receiving global
4028 // object.
4029 int token_offset = Context::kHeaderSize +
4030 Context::SECURITY_TOKEN_INDEX * kPointerSize;
4031
4032 Ldr(scratch1, FieldMemOperand(scratch1, token_offset));
4033 Ldr(scratch2, FieldMemOperand(scratch2, token_offset));
4034 Cmp(scratch1, scratch2);
4035 B(miss, ne);
4036
4037 Bind(&same_contexts);
4038 }
4039
4040
4041 // Compute the hash code from the untagged key. This must be kept in sync with
4042 // ComputeIntegerHash in utils.h and KeyedLoadGenericElementStub in
4043 // code-stub-hydrogen.cc
GetNumberHash(Register key,Register scratch)4044 void MacroAssembler::GetNumberHash(Register key, Register scratch) {
4045 ASSERT(!AreAliased(key, scratch));
4046
4047 // Xor original key with a seed.
4048 LoadRoot(scratch, Heap::kHashSeedRootIndex);
4049 Eor(key, key, Operand::UntagSmi(scratch));
4050
4051 // The algorithm uses 32-bit integer values.
4052 key = key.W();
4053 scratch = scratch.W();
4054
4055 // Compute the hash code from the untagged key. This must be kept in sync
4056 // with ComputeIntegerHash in utils.h.
4057 //
4058 // hash = ~hash + (hash <<1 15);
4059 Mvn(scratch, key);
4060 Add(key, scratch, Operand(key, LSL, 15));
4061 // hash = hash ^ (hash >> 12);
4062 Eor(key, key, Operand(key, LSR, 12));
4063 // hash = hash + (hash << 2);
4064 Add(key, key, Operand(key, LSL, 2));
4065 // hash = hash ^ (hash >> 4);
4066 Eor(key, key, Operand(key, LSR, 4));
4067 // hash = hash * 2057;
4068 Mov(scratch, Operand(key, LSL, 11));
4069 Add(key, key, Operand(key, LSL, 3));
4070 Add(key, key, scratch);
4071 // hash = hash ^ (hash >> 16);
4072 Eor(key, key, Operand(key, LSR, 16));
4073 }
4074
4075
LoadFromNumberDictionary(Label * miss,Register elements,Register key,Register result,Register scratch0,Register scratch1,Register scratch2,Register scratch3)4076 void MacroAssembler::LoadFromNumberDictionary(Label* miss,
4077 Register elements,
4078 Register key,
4079 Register result,
4080 Register scratch0,
4081 Register scratch1,
4082 Register scratch2,
4083 Register scratch3) {
4084 ASSERT(!AreAliased(elements, key, scratch0, scratch1, scratch2, scratch3));
4085
4086 Label done;
4087
4088 SmiUntag(scratch0, key);
4089 GetNumberHash(scratch0, scratch1);
4090
4091 // Compute the capacity mask.
4092 Ldrsw(scratch1,
4093 UntagSmiFieldMemOperand(elements,
4094 SeededNumberDictionary::kCapacityOffset));
4095 Sub(scratch1, scratch1, 1);
4096
4097 // Generate an unrolled loop that performs a few probes before giving up.
4098 for (int i = 0; i < kNumberDictionaryProbes; i++) {
4099 // Compute the masked index: (hash + i + i * i) & mask.
4100 if (i > 0) {
4101 Add(scratch2, scratch0, SeededNumberDictionary::GetProbeOffset(i));
4102 } else {
4103 Mov(scratch2, scratch0);
4104 }
4105 And(scratch2, scratch2, scratch1);
4106
4107 // Scale the index by multiplying by the element size.
4108 ASSERT(SeededNumberDictionary::kEntrySize == 3);
4109 Add(scratch2, scratch2, Operand(scratch2, LSL, 1));
4110
4111 // Check if the key is identical to the name.
4112 Add(scratch2, elements, Operand(scratch2, LSL, kPointerSizeLog2));
4113 Ldr(scratch3,
4114 FieldMemOperand(scratch2,
4115 SeededNumberDictionary::kElementsStartOffset));
4116 Cmp(key, scratch3);
4117 if (i != (kNumberDictionaryProbes - 1)) {
4118 B(eq, &done);
4119 } else {
4120 B(ne, miss);
4121 }
4122 }
4123
4124 Bind(&done);
4125 // Check that the value is a normal property.
4126 const int kDetailsOffset =
4127 SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize;
4128 Ldrsw(scratch1, UntagSmiFieldMemOperand(scratch2, kDetailsOffset));
4129 TestAndBranchIfAnySet(scratch1, PropertyDetails::TypeField::kMask, miss);
4130
4131 // Get the value at the masked, scaled index and return.
4132 const int kValueOffset =
4133 SeededNumberDictionary::kElementsStartOffset + kPointerSize;
4134 Ldr(result, FieldMemOperand(scratch2, kValueOffset));
4135 }
4136
4137
RememberedSetHelper(Register object,Register address,Register scratch1,SaveFPRegsMode fp_mode,RememberedSetFinalAction and_then)4138 void MacroAssembler::RememberedSetHelper(Register object, // For debug tests.
4139 Register address,
4140 Register scratch1,
4141 SaveFPRegsMode fp_mode,
4142 RememberedSetFinalAction and_then) {
4143 ASSERT(!AreAliased(object, address, scratch1));
4144 Label done, store_buffer_overflow;
4145 if (emit_debug_code()) {
4146 Label ok;
4147 JumpIfNotInNewSpace(object, &ok);
4148 Abort(kRememberedSetPointerInNewSpace);
4149 bind(&ok);
4150 }
4151 UseScratchRegisterScope temps(this);
4152 Register scratch2 = temps.AcquireX();
4153
4154 // Load store buffer top.
4155 Mov(scratch2, ExternalReference::store_buffer_top(isolate()));
4156 Ldr(scratch1, MemOperand(scratch2));
4157 // Store pointer to buffer and increment buffer top.
4158 Str(address, MemOperand(scratch1, kPointerSize, PostIndex));
4159 // Write back new top of buffer.
4160 Str(scratch1, MemOperand(scratch2));
4161 // Call stub on end of buffer.
4162 // Check for end of buffer.
4163 ASSERT(StoreBuffer::kStoreBufferOverflowBit ==
4164 (1 << (14 + kPointerSizeLog2)));
4165 if (and_then == kFallThroughAtEnd) {
4166 Tbz(scratch1, (14 + kPointerSizeLog2), &done);
4167 } else {
4168 ASSERT(and_then == kReturnAtEnd);
4169 Tbnz(scratch1, (14 + kPointerSizeLog2), &store_buffer_overflow);
4170 Ret();
4171 }
4172
4173 Bind(&store_buffer_overflow);
4174 Push(lr);
4175 StoreBufferOverflowStub store_buffer_overflow_stub =
4176 StoreBufferOverflowStub(isolate(), fp_mode);
4177 CallStub(&store_buffer_overflow_stub);
4178 Pop(lr);
4179
4180 Bind(&done);
4181 if (and_then == kReturnAtEnd) {
4182 Ret();
4183 }
4184 }
4185
4186
PopSafepointRegisters()4187 void MacroAssembler::PopSafepointRegisters() {
4188 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4189 PopXRegList(kSafepointSavedRegisters);
4190 Drop(num_unsaved);
4191 }
4192
4193
PushSafepointRegisters()4194 void MacroAssembler::PushSafepointRegisters() {
4195 // Safepoints expect a block of kNumSafepointRegisters values on the stack, so
4196 // adjust the stack for unsaved registers.
4197 const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters;
4198 ASSERT(num_unsaved >= 0);
4199 Claim(num_unsaved);
4200 PushXRegList(kSafepointSavedRegisters);
4201 }
4202
4203
PushSafepointRegistersAndDoubles()4204 void MacroAssembler::PushSafepointRegistersAndDoubles() {
4205 PushSafepointRegisters();
4206 PushCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4207 FPRegister::kAllocatableFPRegisters));
4208 }
4209
4210
PopSafepointRegistersAndDoubles()4211 void MacroAssembler::PopSafepointRegistersAndDoubles() {
4212 PopCPURegList(CPURegList(CPURegister::kFPRegister, kDRegSizeInBits,
4213 FPRegister::kAllocatableFPRegisters));
4214 PopSafepointRegisters();
4215 }
4216
4217
SafepointRegisterStackIndex(int reg_code)4218 int MacroAssembler::SafepointRegisterStackIndex(int reg_code) {
4219 // Make sure the safepoint registers list is what we expect.
4220 ASSERT(CPURegList::GetSafepointSavedRegisters().list() == 0x6ffcffff);
4221
4222 // Safepoint registers are stored contiguously on the stack, but not all the
4223 // registers are saved. The following registers are excluded:
4224 // - x16 and x17 (ip0 and ip1) because they shouldn't be preserved outside of
4225 // the macro assembler.
4226 // - x28 (jssp) because JS stack pointer doesn't need to be included in
4227 // safepoint registers.
4228 // - x31 (csp) because the system stack pointer doesn't need to be included
4229 // in safepoint registers.
4230 //
4231 // This function implements the mapping of register code to index into the
4232 // safepoint register slots.
4233 if ((reg_code >= 0) && (reg_code <= 15)) {
4234 return reg_code;
4235 } else if ((reg_code >= 18) && (reg_code <= 27)) {
4236 // Skip ip0 and ip1.
4237 return reg_code - 2;
4238 } else if ((reg_code == 29) || (reg_code == 30)) {
4239 // Also skip jssp.
4240 return reg_code - 3;
4241 } else {
4242 // This register has no safepoint register slot.
4243 UNREACHABLE();
4244 return -1;
4245 }
4246 }
4247
4248
CheckPageFlagSet(const Register & object,const Register & scratch,int mask,Label * if_any_set)4249 void MacroAssembler::CheckPageFlagSet(const Register& object,
4250 const Register& scratch,
4251 int mask,
4252 Label* if_any_set) {
4253 And(scratch, object, ~Page::kPageAlignmentMask);
4254 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4255 TestAndBranchIfAnySet(scratch, mask, if_any_set);
4256 }
4257
4258
CheckPageFlagClear(const Register & object,const Register & scratch,int mask,Label * if_all_clear)4259 void MacroAssembler::CheckPageFlagClear(const Register& object,
4260 const Register& scratch,
4261 int mask,
4262 Label* if_all_clear) {
4263 And(scratch, object, ~Page::kPageAlignmentMask);
4264 Ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset));
4265 TestAndBranchIfAllClear(scratch, mask, if_all_clear);
4266 }
4267
4268
RecordWriteField(Register object,int offset,Register value,Register scratch,LinkRegisterStatus lr_status,SaveFPRegsMode save_fp,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)4269 void MacroAssembler::RecordWriteField(
4270 Register object,
4271 int offset,
4272 Register value,
4273 Register scratch,
4274 LinkRegisterStatus lr_status,
4275 SaveFPRegsMode save_fp,
4276 RememberedSetAction remembered_set_action,
4277 SmiCheck smi_check,
4278 PointersToHereCheck pointers_to_here_check_for_value) {
4279 // First, check if a write barrier is even needed. The tests below
4280 // catch stores of Smis.
4281 Label done;
4282
4283 // Skip the barrier if writing a smi.
4284 if (smi_check == INLINE_SMI_CHECK) {
4285 JumpIfSmi(value, &done);
4286 }
4287
4288 // Although the object register is tagged, the offset is relative to the start
4289 // of the object, so offset must be a multiple of kPointerSize.
4290 ASSERT(IsAligned(offset, kPointerSize));
4291
4292 Add(scratch, object, offset - kHeapObjectTag);
4293 if (emit_debug_code()) {
4294 Label ok;
4295 Tst(scratch, (1 << kPointerSizeLog2) - 1);
4296 B(eq, &ok);
4297 Abort(kUnalignedCellInWriteBarrier);
4298 Bind(&ok);
4299 }
4300
4301 RecordWrite(object,
4302 scratch,
4303 value,
4304 lr_status,
4305 save_fp,
4306 remembered_set_action,
4307 OMIT_SMI_CHECK,
4308 pointers_to_here_check_for_value);
4309
4310 Bind(&done);
4311
4312 // Clobber clobbered input registers when running with the debug-code flag
4313 // turned on to provoke errors.
4314 if (emit_debug_code()) {
4315 Mov(value, Operand(BitCast<int64_t>(kZapValue + 4)));
4316 Mov(scratch, Operand(BitCast<int64_t>(kZapValue + 8)));
4317 }
4318 }
4319
4320
4321 // Will clobber: object, map, dst.
4322 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
RecordWriteForMap(Register object,Register map,Register dst,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode)4323 void MacroAssembler::RecordWriteForMap(Register object,
4324 Register map,
4325 Register dst,
4326 LinkRegisterStatus lr_status,
4327 SaveFPRegsMode fp_mode) {
4328 ASM_LOCATION("MacroAssembler::RecordWrite");
4329 ASSERT(!AreAliased(object, map));
4330
4331 if (emit_debug_code()) {
4332 UseScratchRegisterScope temps(this);
4333 Register temp = temps.AcquireX();
4334
4335 CompareMap(map, temp, isolate()->factory()->meta_map());
4336 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4337 }
4338
4339 if (!FLAG_incremental_marking) {
4340 return;
4341 }
4342
4343 if (emit_debug_code()) {
4344 UseScratchRegisterScope temps(this);
4345 Register temp = temps.AcquireX();
4346
4347 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4348 Cmp(temp, map);
4349 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4350 }
4351
4352 // Count number of write barriers in generated code.
4353 isolate()->counters()->write_barriers_static()->Increment();
4354 // TODO(mstarzinger): Dynamic counter missing.
4355
4356 // First, check if a write barrier is even needed. The tests below
4357 // catch stores of smis and stores into the young generation.
4358 Label done;
4359
4360 // A single check of the map's pages interesting flag suffices, since it is
4361 // only set during incremental collection, and then it's also guaranteed that
4362 // the from object's page's interesting flag is also set. This optimization
4363 // relies on the fact that maps can never be in new space.
4364 CheckPageFlagClear(map,
4365 map, // Used as scratch.
4366 MemoryChunk::kPointersToHereAreInterestingMask,
4367 &done);
4368
4369 // Record the actual write.
4370 if (lr_status == kLRHasNotBeenSaved) {
4371 Push(lr);
4372 }
4373 Add(dst, object, HeapObject::kMapOffset - kHeapObjectTag);
4374 RecordWriteStub stub(isolate(), object, map, dst, OMIT_REMEMBERED_SET,
4375 fp_mode);
4376 CallStub(&stub);
4377 if (lr_status == kLRHasNotBeenSaved) {
4378 Pop(lr);
4379 }
4380
4381 Bind(&done);
4382
4383 // Clobber clobbered registers when running with the debug-code flag
4384 // turned on to provoke errors.
4385 if (emit_debug_code()) {
4386 Mov(dst, Operand(BitCast<int64_t>(kZapValue + 12)));
4387 Mov(map, Operand(BitCast<int64_t>(kZapValue + 16)));
4388 }
4389 }
4390
4391
4392 // Will clobber: object, address, value.
4393 // If lr_status is kLRHasBeenSaved, lr will also be clobbered.
4394 //
4395 // The register 'object' contains a heap object pointer. The heap object tag is
4396 // shifted away.
RecordWrite(Register object,Register address,Register value,LinkRegisterStatus lr_status,SaveFPRegsMode fp_mode,RememberedSetAction remembered_set_action,SmiCheck smi_check,PointersToHereCheck pointers_to_here_check_for_value)4397 void MacroAssembler::RecordWrite(
4398 Register object,
4399 Register address,
4400 Register value,
4401 LinkRegisterStatus lr_status,
4402 SaveFPRegsMode fp_mode,
4403 RememberedSetAction remembered_set_action,
4404 SmiCheck smi_check,
4405 PointersToHereCheck pointers_to_here_check_for_value) {
4406 ASM_LOCATION("MacroAssembler::RecordWrite");
4407 ASSERT(!AreAliased(object, value));
4408
4409 if (emit_debug_code()) {
4410 UseScratchRegisterScope temps(this);
4411 Register temp = temps.AcquireX();
4412
4413 Ldr(temp, MemOperand(address));
4414 Cmp(temp, value);
4415 Check(eq, kWrongAddressOrValuePassedToRecordWrite);
4416 }
4417
4418 // Count number of write barriers in generated code.
4419 isolate()->counters()->write_barriers_static()->Increment();
4420 // TODO(mstarzinger): Dynamic counter missing.
4421
4422 // First, check if a write barrier is even needed. The tests below
4423 // catch stores of smis and stores into the young generation.
4424 Label done;
4425
4426 if (smi_check == INLINE_SMI_CHECK) {
4427 ASSERT_EQ(0, kSmiTag);
4428 JumpIfSmi(value, &done);
4429 }
4430
4431 if (pointers_to_here_check_for_value != kPointersToHereAreAlwaysInteresting) {
4432 CheckPageFlagClear(value,
4433 value, // Used as scratch.
4434 MemoryChunk::kPointersToHereAreInterestingMask,
4435 &done);
4436 }
4437 CheckPageFlagClear(object,
4438 value, // Used as scratch.
4439 MemoryChunk::kPointersFromHereAreInterestingMask,
4440 &done);
4441
4442 // Record the actual write.
4443 if (lr_status == kLRHasNotBeenSaved) {
4444 Push(lr);
4445 }
4446 RecordWriteStub stub(isolate(), object, value, address, remembered_set_action,
4447 fp_mode);
4448 CallStub(&stub);
4449 if (lr_status == kLRHasNotBeenSaved) {
4450 Pop(lr);
4451 }
4452
4453 Bind(&done);
4454
4455 // Clobber clobbered registers when running with the debug-code flag
4456 // turned on to provoke errors.
4457 if (emit_debug_code()) {
4458 Mov(address, Operand(BitCast<int64_t>(kZapValue + 12)));
4459 Mov(value, Operand(BitCast<int64_t>(kZapValue + 16)));
4460 }
4461 }
4462
4463
AssertHasValidColor(const Register & reg)4464 void MacroAssembler::AssertHasValidColor(const Register& reg) {
4465 if (emit_debug_code()) {
4466 // The bit sequence is backward. The first character in the string
4467 // represents the least significant bit.
4468 ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0);
4469
4470 Label color_is_valid;
4471 Tbnz(reg, 0, &color_is_valid);
4472 Tbz(reg, 1, &color_is_valid);
4473 Abort(kUnexpectedColorFound);
4474 Bind(&color_is_valid);
4475 }
4476 }
4477
4478
GetMarkBits(Register addr_reg,Register bitmap_reg,Register shift_reg)4479 void MacroAssembler::GetMarkBits(Register addr_reg,
4480 Register bitmap_reg,
4481 Register shift_reg) {
4482 ASSERT(!AreAliased(addr_reg, bitmap_reg, shift_reg));
4483 ASSERT(addr_reg.Is64Bits() && bitmap_reg.Is64Bits() && shift_reg.Is64Bits());
4484 // addr_reg is divided into fields:
4485 // |63 page base 20|19 high 8|7 shift 3|2 0|
4486 // 'high' gives the index of the cell holding color bits for the object.
4487 // 'shift' gives the offset in the cell for this object's color.
4488 const int kShiftBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2;
4489 UseScratchRegisterScope temps(this);
4490 Register temp = temps.AcquireX();
4491 Ubfx(temp, addr_reg, kShiftBits, kPageSizeBits - kShiftBits);
4492 Bic(bitmap_reg, addr_reg, Page::kPageAlignmentMask);
4493 Add(bitmap_reg, bitmap_reg, Operand(temp, LSL, Bitmap::kBytesPerCellLog2));
4494 // bitmap_reg:
4495 // |63 page base 20|19 zeros 15|14 high 3|2 0|
4496 Ubfx(shift_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2);
4497 }
4498
4499
HasColor(Register object,Register bitmap_scratch,Register shift_scratch,Label * has_color,int first_bit,int second_bit)4500 void MacroAssembler::HasColor(Register object,
4501 Register bitmap_scratch,
4502 Register shift_scratch,
4503 Label* has_color,
4504 int first_bit,
4505 int second_bit) {
4506 // See mark-compact.h for color definitions.
4507 ASSERT(!AreAliased(object, bitmap_scratch, shift_scratch));
4508
4509 GetMarkBits(object, bitmap_scratch, shift_scratch);
4510 Ldr(bitmap_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4511 // Shift the bitmap down to get the color of the object in bits [1:0].
4512 Lsr(bitmap_scratch, bitmap_scratch, shift_scratch);
4513
4514 AssertHasValidColor(bitmap_scratch);
4515
4516 // These bit sequences are backwards. The first character in the string
4517 // represents the least significant bit.
4518 ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4519 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4520 ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
4521
4522 // Check for the color.
4523 if (first_bit == 0) {
4524 // Checking for white.
4525 ASSERT(second_bit == 0);
4526 // We only need to test the first bit.
4527 Tbz(bitmap_scratch, 0, has_color);
4528 } else {
4529 Label other_color;
4530 // Checking for grey or black.
4531 Tbz(bitmap_scratch, 0, &other_color);
4532 if (second_bit == 0) {
4533 Tbz(bitmap_scratch, 1, has_color);
4534 } else {
4535 Tbnz(bitmap_scratch, 1, has_color);
4536 }
4537 Bind(&other_color);
4538 }
4539
4540 // Fall through if it does not have the right color.
4541 }
4542
4543
CheckMapDeprecated(Handle<Map> map,Register scratch,Label * if_deprecated)4544 void MacroAssembler::CheckMapDeprecated(Handle<Map> map,
4545 Register scratch,
4546 Label* if_deprecated) {
4547 if (map->CanBeDeprecated()) {
4548 Mov(scratch, Operand(map));
4549 Ldrsw(scratch, FieldMemOperand(scratch, Map::kBitField3Offset));
4550 TestAndBranchIfAnySet(scratch, Map::Deprecated::kMask, if_deprecated);
4551 }
4552 }
4553
4554
JumpIfBlack(Register object,Register scratch0,Register scratch1,Label * on_black)4555 void MacroAssembler::JumpIfBlack(Register object,
4556 Register scratch0,
4557 Register scratch1,
4558 Label* on_black) {
4559 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4560 HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern.
4561 }
4562
4563
JumpIfDictionaryInPrototypeChain(Register object,Register scratch0,Register scratch1,Label * found)4564 void MacroAssembler::JumpIfDictionaryInPrototypeChain(
4565 Register object,
4566 Register scratch0,
4567 Register scratch1,
4568 Label* found) {
4569 ASSERT(!AreAliased(object, scratch0, scratch1));
4570 Factory* factory = isolate()->factory();
4571 Register current = scratch0;
4572 Label loop_again;
4573
4574 // Scratch contains elements pointer.
4575 Mov(current, object);
4576
4577 // Loop based on the map going up the prototype chain.
4578 Bind(&loop_again);
4579 Ldr(current, FieldMemOperand(current, HeapObject::kMapOffset));
4580 Ldrb(scratch1, FieldMemOperand(current, Map::kBitField2Offset));
4581 DecodeField<Map::ElementsKindBits>(scratch1);
4582 CompareAndBranch(scratch1, DICTIONARY_ELEMENTS, eq, found);
4583 Ldr(current, FieldMemOperand(current, Map::kPrototypeOffset));
4584 CompareAndBranch(current, Operand(factory->null_value()), ne, &loop_again);
4585 }
4586
4587
GetRelocatedValueLocation(Register ldr_location,Register result)4588 void MacroAssembler::GetRelocatedValueLocation(Register ldr_location,
4589 Register result) {
4590 ASSERT(!result.Is(ldr_location));
4591 const uint32_t kLdrLitOffset_lsb = 5;
4592 const uint32_t kLdrLitOffset_width = 19;
4593 Ldr(result, MemOperand(ldr_location));
4594 if (emit_debug_code()) {
4595 And(result, result, LoadLiteralFMask);
4596 Cmp(result, LoadLiteralFixed);
4597 Check(eq, kTheInstructionToPatchShouldBeAnLdrLiteral);
4598 // The instruction was clobbered. Reload it.
4599 Ldr(result, MemOperand(ldr_location));
4600 }
4601 Sbfx(result, result, kLdrLitOffset_lsb, kLdrLitOffset_width);
4602 Add(result, ldr_location, Operand(result, LSL, kWordSizeInBytesLog2));
4603 }
4604
4605
EnsureNotWhite(Register value,Register bitmap_scratch,Register shift_scratch,Register load_scratch,Register length_scratch,Label * value_is_white_and_not_data)4606 void MacroAssembler::EnsureNotWhite(
4607 Register value,
4608 Register bitmap_scratch,
4609 Register shift_scratch,
4610 Register load_scratch,
4611 Register length_scratch,
4612 Label* value_is_white_and_not_data) {
4613 ASSERT(!AreAliased(
4614 value, bitmap_scratch, shift_scratch, load_scratch, length_scratch));
4615
4616 // These bit sequences are backwards. The first character in the string
4617 // represents the least significant bit.
4618 ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0);
4619 ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0);
4620 ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0);
4621
4622 GetMarkBits(value, bitmap_scratch, shift_scratch);
4623 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4624 Lsr(load_scratch, load_scratch, shift_scratch);
4625
4626 AssertHasValidColor(load_scratch);
4627
4628 // If the value is black or grey we don't need to do anything.
4629 // Since both black and grey have a 1 in the first position and white does
4630 // not have a 1 there we only need to check one bit.
4631 Label done;
4632 Tbnz(load_scratch, 0, &done);
4633
4634 // Value is white. We check whether it is data that doesn't need scanning.
4635 Register map = load_scratch; // Holds map while checking type.
4636 Label is_data_object;
4637
4638 // Check for heap-number.
4639 Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
4640 Mov(length_scratch, HeapNumber::kSize);
4641 JumpIfRoot(map, Heap::kHeapNumberMapRootIndex, &is_data_object);
4642
4643 // Check for strings.
4644 ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1);
4645 ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80);
4646 // If it's a string and it's not a cons string then it's an object containing
4647 // no GC pointers.
4648 Register instance_type = load_scratch;
4649 Ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset));
4650 TestAndBranchIfAnySet(instance_type,
4651 kIsIndirectStringMask | kIsNotStringMask,
4652 value_is_white_and_not_data);
4653
4654 // It's a non-indirect (non-cons and non-slice) string.
4655 // If it's external, the length is just ExternalString::kSize.
4656 // Otherwise it's String::kHeaderSize + string->length() * (1 or 2).
4657 // External strings are the only ones with the kExternalStringTag bit
4658 // set.
4659 ASSERT_EQ(0, kSeqStringTag & kExternalStringTag);
4660 ASSERT_EQ(0, kConsStringTag & kExternalStringTag);
4661 Mov(length_scratch, ExternalString::kSize);
4662 TestAndBranchIfAnySet(instance_type, kExternalStringTag, &is_data_object);
4663
4664 // Sequential string, either ASCII or UC16.
4665 // For ASCII (char-size of 1) we shift the smi tag away to get the length.
4666 // For UC16 (char-size of 2) we just leave the smi tag in place, thereby
4667 // getting the length multiplied by 2.
4668 ASSERT(kOneByteStringTag == 4 && kStringEncodingMask == 4);
4669 Ldrsw(length_scratch, UntagSmiFieldMemOperand(value,
4670 String::kLengthOffset));
4671 Tst(instance_type, kStringEncodingMask);
4672 Cset(load_scratch, eq);
4673 Lsl(length_scratch, length_scratch, load_scratch);
4674 Add(length_scratch,
4675 length_scratch,
4676 SeqString::kHeaderSize + kObjectAlignmentMask);
4677 Bic(length_scratch, length_scratch, kObjectAlignmentMask);
4678
4679 Bind(&is_data_object);
4680 // Value is a data object, and it is white. Mark it black. Since we know
4681 // that the object is white we can make it black by flipping one bit.
4682 Register mask = shift_scratch;
4683 Mov(load_scratch, 1);
4684 Lsl(mask, load_scratch, shift_scratch);
4685
4686 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4687 Orr(load_scratch, load_scratch, mask);
4688 Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize));
4689
4690 Bic(bitmap_scratch, bitmap_scratch, Page::kPageAlignmentMask);
4691 Ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4692 Add(load_scratch, load_scratch, length_scratch);
4693 Str(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset));
4694
4695 Bind(&done);
4696 }
4697
4698
Assert(Condition cond,BailoutReason reason)4699 void MacroAssembler::Assert(Condition cond, BailoutReason reason) {
4700 if (emit_debug_code()) {
4701 Check(cond, reason);
4702 }
4703 }
4704
4705
4706
AssertRegisterIsClear(Register reg,BailoutReason reason)4707 void MacroAssembler::AssertRegisterIsClear(Register reg, BailoutReason reason) {
4708 if (emit_debug_code()) {
4709 CheckRegisterIsClear(reg, reason);
4710 }
4711 }
4712
4713
AssertRegisterIsRoot(Register reg,Heap::RootListIndex index,BailoutReason reason)4714 void MacroAssembler::AssertRegisterIsRoot(Register reg,
4715 Heap::RootListIndex index,
4716 BailoutReason reason) {
4717 if (emit_debug_code()) {
4718 CompareRoot(reg, index);
4719 Check(eq, reason);
4720 }
4721 }
4722
4723
AssertFastElements(Register elements)4724 void MacroAssembler::AssertFastElements(Register elements) {
4725 if (emit_debug_code()) {
4726 UseScratchRegisterScope temps(this);
4727 Register temp = temps.AcquireX();
4728 Label ok;
4729 Ldr(temp, FieldMemOperand(elements, HeapObject::kMapOffset));
4730 JumpIfRoot(temp, Heap::kFixedArrayMapRootIndex, &ok);
4731 JumpIfRoot(temp, Heap::kFixedDoubleArrayMapRootIndex, &ok);
4732 JumpIfRoot(temp, Heap::kFixedCOWArrayMapRootIndex, &ok);
4733 Abort(kJSObjectWithFastElementsMapHasSlowElements);
4734 Bind(&ok);
4735 }
4736 }
4737
4738
AssertIsString(const Register & object)4739 void MacroAssembler::AssertIsString(const Register& object) {
4740 if (emit_debug_code()) {
4741 UseScratchRegisterScope temps(this);
4742 Register temp = temps.AcquireX();
4743 STATIC_ASSERT(kSmiTag == 0);
4744 Tst(object, kSmiTagMask);
4745 Check(ne, kOperandIsNotAString);
4746 Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
4747 CompareInstanceType(temp, temp, FIRST_NONSTRING_TYPE);
4748 Check(lo, kOperandIsNotAString);
4749 }
4750 }
4751
4752
Check(Condition cond,BailoutReason reason)4753 void MacroAssembler::Check(Condition cond, BailoutReason reason) {
4754 Label ok;
4755 B(cond, &ok);
4756 Abort(reason);
4757 // Will not return here.
4758 Bind(&ok);
4759 }
4760
4761
CheckRegisterIsClear(Register reg,BailoutReason reason)4762 void MacroAssembler::CheckRegisterIsClear(Register reg, BailoutReason reason) {
4763 Label ok;
4764 Cbz(reg, &ok);
4765 Abort(reason);
4766 // Will not return here.
4767 Bind(&ok);
4768 }
4769
4770
Abort(BailoutReason reason)4771 void MacroAssembler::Abort(BailoutReason reason) {
4772 #ifdef DEBUG
4773 RecordComment("Abort message: ");
4774 RecordComment(GetBailoutReason(reason));
4775
4776 if (FLAG_trap_on_abort) {
4777 Brk(0);
4778 return;
4779 }
4780 #endif
4781
4782 // Abort is used in some contexts where csp is the stack pointer. In order to
4783 // simplify the CallRuntime code, make sure that jssp is the stack pointer.
4784 // There is no risk of register corruption here because Abort doesn't return.
4785 Register old_stack_pointer = StackPointer();
4786 SetStackPointer(jssp);
4787 Mov(jssp, old_stack_pointer);
4788
4789 // We need some scratch registers for the MacroAssembler, so make sure we have
4790 // some. This is safe here because Abort never returns.
4791 RegList old_tmp_list = TmpList()->list();
4792 TmpList()->Combine(MacroAssembler::DefaultTmpList());
4793
4794 if (use_real_aborts()) {
4795 // Avoid infinite recursion; Push contains some assertions that use Abort.
4796 NoUseRealAbortsScope no_real_aborts(this);
4797
4798 Mov(x0, Smi::FromInt(reason));
4799 Push(x0);
4800
4801 if (!has_frame_) {
4802 // We don't actually want to generate a pile of code for this, so just
4803 // claim there is a stack frame, without generating one.
4804 FrameScope scope(this, StackFrame::NONE);
4805 CallRuntime(Runtime::kAbort, 1);
4806 } else {
4807 CallRuntime(Runtime::kAbort, 1);
4808 }
4809 } else {
4810 // Load the string to pass to Printf.
4811 Label msg_address;
4812 Adr(x0, &msg_address);
4813
4814 // Call Printf directly to report the error.
4815 CallPrintf();
4816
4817 // We need a way to stop execution on both the simulator and real hardware,
4818 // and Unreachable() is the best option.
4819 Unreachable();
4820
4821 // Emit the message string directly in the instruction stream.
4822 {
4823 BlockPoolsScope scope(this);
4824 Bind(&msg_address);
4825 EmitStringData(GetBailoutReason(reason));
4826 }
4827 }
4828
4829 SetStackPointer(old_stack_pointer);
4830 TmpList()->set_list(old_tmp_list);
4831 }
4832
4833
LoadTransitionedArrayMapConditional(ElementsKind expected_kind,ElementsKind transitioned_kind,Register map_in_out,Register scratch1,Register scratch2,Label * no_map_match)4834 void MacroAssembler::LoadTransitionedArrayMapConditional(
4835 ElementsKind expected_kind,
4836 ElementsKind transitioned_kind,
4837 Register map_in_out,
4838 Register scratch1,
4839 Register scratch2,
4840 Label* no_map_match) {
4841 // Load the global or builtins object from the current context.
4842 Ldr(scratch1, GlobalObjectMemOperand());
4843 Ldr(scratch1, FieldMemOperand(scratch1, GlobalObject::kNativeContextOffset));
4844
4845 // Check that the function's map is the same as the expected cached map.
4846 Ldr(scratch1, ContextMemOperand(scratch1, Context::JS_ARRAY_MAPS_INDEX));
4847 size_t offset = (expected_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4848 Ldr(scratch2, FieldMemOperand(scratch1, offset));
4849 Cmp(map_in_out, scratch2);
4850 B(ne, no_map_match);
4851
4852 // Use the transitioned cached map.
4853 offset = (transitioned_kind * kPointerSize) + FixedArrayBase::kHeaderSize;
4854 Ldr(map_in_out, FieldMemOperand(scratch1, offset));
4855 }
4856
4857
LoadGlobalFunction(int index,Register function)4858 void MacroAssembler::LoadGlobalFunction(int index, Register function) {
4859 // Load the global or builtins object from the current context.
4860 Ldr(function, GlobalObjectMemOperand());
4861 // Load the native context from the global or builtins object.
4862 Ldr(function, FieldMemOperand(function,
4863 GlobalObject::kNativeContextOffset));
4864 // Load the function from the native context.
4865 Ldr(function, ContextMemOperand(function, index));
4866 }
4867
4868
LoadGlobalFunctionInitialMap(Register function,Register map,Register scratch)4869 void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
4870 Register map,
4871 Register scratch) {
4872 // Load the initial map. The global functions all have initial maps.
4873 Ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
4874 if (emit_debug_code()) {
4875 Label ok, fail;
4876 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK);
4877 B(&ok);
4878 Bind(&fail);
4879 Abort(kGlobalFunctionsMustHaveInitialMap);
4880 Bind(&ok);
4881 }
4882 }
4883
4884
4885 // This is the main Printf implementation. All other Printf variants call
4886 // PrintfNoPreserve after setting up one or more PreserveRegisterScopes.
PrintfNoPreserve(const char * format,const CPURegister & arg0,const CPURegister & arg1,const CPURegister & arg2,const CPURegister & arg3)4887 void MacroAssembler::PrintfNoPreserve(const char * format,
4888 const CPURegister& arg0,
4889 const CPURegister& arg1,
4890 const CPURegister& arg2,
4891 const CPURegister& arg3) {
4892 // We cannot handle a caller-saved stack pointer. It doesn't make much sense
4893 // in most cases anyway, so this restriction shouldn't be too serious.
4894 ASSERT(!kCallerSaved.IncludesAliasOf(__ StackPointer()));
4895
4896 // The provided arguments, and their proper procedure-call standard registers.
4897 CPURegister args[kPrintfMaxArgCount] = {arg0, arg1, arg2, arg3};
4898 CPURegister pcs[kPrintfMaxArgCount] = {NoReg, NoReg, NoReg, NoReg};
4899
4900 int arg_count = kPrintfMaxArgCount;
4901
4902 // The PCS varargs registers for printf. Note that x0 is used for the printf
4903 // format string.
4904 static const CPURegList kPCSVarargs =
4905 CPURegList(CPURegister::kRegister, kXRegSizeInBits, 1, arg_count);
4906 static const CPURegList kPCSVarargsFP =
4907 CPURegList(CPURegister::kFPRegister, kDRegSizeInBits, 0, arg_count - 1);
4908
4909 // We can use caller-saved registers as scratch values, except for the
4910 // arguments and the PCS registers where they might need to go.
4911 CPURegList tmp_list = kCallerSaved;
4912 tmp_list.Remove(x0); // Used to pass the format string.
4913 tmp_list.Remove(kPCSVarargs);
4914 tmp_list.Remove(arg0, arg1, arg2, arg3);
4915
4916 CPURegList fp_tmp_list = kCallerSavedFP;
4917 fp_tmp_list.Remove(kPCSVarargsFP);
4918 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
4919
4920 // Override the MacroAssembler's scratch register list. The lists will be
4921 // reset automatically at the end of the UseScratchRegisterScope.
4922 UseScratchRegisterScope temps(this);
4923 TmpList()->set_list(tmp_list.list());
4924 FPTmpList()->set_list(fp_tmp_list.list());
4925
4926 // Copies of the printf vararg registers that we can pop from.
4927 CPURegList pcs_varargs = kPCSVarargs;
4928 CPURegList pcs_varargs_fp = kPCSVarargsFP;
4929
4930 // Place the arguments. There are lots of clever tricks and optimizations we
4931 // could use here, but Printf is a debug tool so instead we just try to keep
4932 // it simple: Move each input that isn't already in the right place to a
4933 // scratch register, then move everything back.
4934 for (unsigned i = 0; i < kPrintfMaxArgCount; i++) {
4935 // Work out the proper PCS register for this argument.
4936 if (args[i].IsRegister()) {
4937 pcs[i] = pcs_varargs.PopLowestIndex().X();
4938 // We might only need a W register here. We need to know the size of the
4939 // argument so we can properly encode it for the simulator call.
4940 if (args[i].Is32Bits()) pcs[i] = pcs[i].W();
4941 } else if (args[i].IsFPRegister()) {
4942 // In C, floats are always cast to doubles for varargs calls.
4943 pcs[i] = pcs_varargs_fp.PopLowestIndex().D();
4944 } else {
4945 ASSERT(args[i].IsNone());
4946 arg_count = i;
4947 break;
4948 }
4949
4950 // If the argument is already in the right place, leave it where it is.
4951 if (args[i].Aliases(pcs[i])) continue;
4952
4953 // Otherwise, if the argument is in a PCS argument register, allocate an
4954 // appropriate scratch register and then move it out of the way.
4955 if (kPCSVarargs.IncludesAliasOf(args[i]) ||
4956 kPCSVarargsFP.IncludesAliasOf(args[i])) {
4957 if (args[i].IsRegister()) {
4958 Register old_arg = Register(args[i]);
4959 Register new_arg = temps.AcquireSameSizeAs(old_arg);
4960 Mov(new_arg, old_arg);
4961 args[i] = new_arg;
4962 } else {
4963 FPRegister old_arg = FPRegister(args[i]);
4964 FPRegister new_arg = temps.AcquireSameSizeAs(old_arg);
4965 Fmov(new_arg, old_arg);
4966 args[i] = new_arg;
4967 }
4968 }
4969 }
4970
4971 // Do a second pass to move values into their final positions and perform any
4972 // conversions that may be required.
4973 for (int i = 0; i < arg_count; i++) {
4974 ASSERT(pcs[i].type() == args[i].type());
4975 if (pcs[i].IsRegister()) {
4976 Mov(Register(pcs[i]), Register(args[i]), kDiscardForSameWReg);
4977 } else {
4978 ASSERT(pcs[i].IsFPRegister());
4979 if (pcs[i].SizeInBytes() == args[i].SizeInBytes()) {
4980 Fmov(FPRegister(pcs[i]), FPRegister(args[i]));
4981 } else {
4982 Fcvt(FPRegister(pcs[i]), FPRegister(args[i]));
4983 }
4984 }
4985 }
4986
4987 // Load the format string into x0, as per the procedure-call standard.
4988 //
4989 // To make the code as portable as possible, the format string is encoded
4990 // directly in the instruction stream. It might be cleaner to encode it in a
4991 // literal pool, but since Printf is usually used for debugging, it is
4992 // beneficial for it to be minimally dependent on other features.
4993 Label format_address;
4994 Adr(x0, &format_address);
4995
4996 // Emit the format string directly in the instruction stream.
4997 { BlockPoolsScope scope(this);
4998 Label after_data;
4999 B(&after_data);
5000 Bind(&format_address);
5001 EmitStringData(format);
5002 Unreachable();
5003 Bind(&after_data);
5004 }
5005
5006 // We don't pass any arguments on the stack, but we still need to align the C
5007 // stack pointer to a 16-byte boundary for PCS compliance.
5008 if (!csp.Is(StackPointer())) {
5009 Bic(csp, StackPointer(), 0xf);
5010 }
5011
5012 CallPrintf(arg_count, pcs);
5013 }
5014
5015
CallPrintf(int arg_count,const CPURegister * args)5016 void MacroAssembler::CallPrintf(int arg_count, const CPURegister * args) {
5017 // A call to printf needs special handling for the simulator, since the system
5018 // printf function will use a different instruction set and the procedure-call
5019 // standard will not be compatible.
5020 #ifdef USE_SIMULATOR
5021 { InstructionAccurateScope scope(this, kPrintfLength / kInstructionSize);
5022 hlt(kImmExceptionIsPrintf);
5023 dc32(arg_count); // kPrintfArgCountOffset
5024
5025 // Determine the argument pattern.
5026 uint32_t arg_pattern_list = 0;
5027 for (int i = 0; i < arg_count; i++) {
5028 uint32_t arg_pattern;
5029 if (args[i].IsRegister()) {
5030 arg_pattern = args[i].Is32Bits() ? kPrintfArgW : kPrintfArgX;
5031 } else {
5032 ASSERT(args[i].Is64Bits());
5033 arg_pattern = kPrintfArgD;
5034 }
5035 ASSERT(arg_pattern < (1 << kPrintfArgPatternBits));
5036 arg_pattern_list |= (arg_pattern << (kPrintfArgPatternBits * i));
5037 }
5038 dc32(arg_pattern_list); // kPrintfArgPatternListOffset
5039 }
5040 #else
5041 Call(FUNCTION_ADDR(printf), RelocInfo::EXTERNAL_REFERENCE);
5042 #endif
5043 }
5044
5045
Printf(const char * format,CPURegister arg0,CPURegister arg1,CPURegister arg2,CPURegister arg3)5046 void MacroAssembler::Printf(const char * format,
5047 CPURegister arg0,
5048 CPURegister arg1,
5049 CPURegister arg2,
5050 CPURegister arg3) {
5051 // We can only print sp if it is the current stack pointer.
5052 if (!csp.Is(StackPointer())) {
5053 ASSERT(!csp.Aliases(arg0));
5054 ASSERT(!csp.Aliases(arg1));
5055 ASSERT(!csp.Aliases(arg2));
5056 ASSERT(!csp.Aliases(arg3));
5057 }
5058
5059 // Printf is expected to preserve all registers, so make sure that none are
5060 // available as scratch registers until we've preserved them.
5061 RegList old_tmp_list = TmpList()->list();
5062 RegList old_fp_tmp_list = FPTmpList()->list();
5063 TmpList()->set_list(0);
5064 FPTmpList()->set_list(0);
5065
5066 // Preserve all caller-saved registers as well as NZCV.
5067 // If csp is the stack pointer, PushCPURegList asserts that the size of each
5068 // list is a multiple of 16 bytes.
5069 PushCPURegList(kCallerSaved);
5070 PushCPURegList(kCallerSavedFP);
5071
5072 // We can use caller-saved registers as scratch values (except for argN).
5073 CPURegList tmp_list = kCallerSaved;
5074 CPURegList fp_tmp_list = kCallerSavedFP;
5075 tmp_list.Remove(arg0, arg1, arg2, arg3);
5076 fp_tmp_list.Remove(arg0, arg1, arg2, arg3);
5077 TmpList()->set_list(tmp_list.list());
5078 FPTmpList()->set_list(fp_tmp_list.list());
5079
5080 { UseScratchRegisterScope temps(this);
5081 // If any of the arguments are the current stack pointer, allocate a new
5082 // register for them, and adjust the value to compensate for pushing the
5083 // caller-saved registers.
5084 bool arg0_sp = StackPointer().Aliases(arg0);
5085 bool arg1_sp = StackPointer().Aliases(arg1);
5086 bool arg2_sp = StackPointer().Aliases(arg2);
5087 bool arg3_sp = StackPointer().Aliases(arg3);
5088 if (arg0_sp || arg1_sp || arg2_sp || arg3_sp) {
5089 // Allocate a register to hold the original stack pointer value, to pass
5090 // to PrintfNoPreserve as an argument.
5091 Register arg_sp = temps.AcquireX();
5092 Add(arg_sp, StackPointer(),
5093 kCallerSaved.TotalSizeInBytes() + kCallerSavedFP.TotalSizeInBytes());
5094 if (arg0_sp) arg0 = Register::Create(arg_sp.code(), arg0.SizeInBits());
5095 if (arg1_sp) arg1 = Register::Create(arg_sp.code(), arg1.SizeInBits());
5096 if (arg2_sp) arg2 = Register::Create(arg_sp.code(), arg2.SizeInBits());
5097 if (arg3_sp) arg3 = Register::Create(arg_sp.code(), arg3.SizeInBits());
5098 }
5099
5100 // Preserve NZCV.
5101 { UseScratchRegisterScope temps(this);
5102 Register tmp = temps.AcquireX();
5103 Mrs(tmp, NZCV);
5104 Push(tmp, xzr);
5105 }
5106
5107 PrintfNoPreserve(format, arg0, arg1, arg2, arg3);
5108
5109 // Restore NZCV.
5110 { UseScratchRegisterScope temps(this);
5111 Register tmp = temps.AcquireX();
5112 Pop(xzr, tmp);
5113 Msr(NZCV, tmp);
5114 }
5115 }
5116
5117 PopCPURegList(kCallerSavedFP);
5118 PopCPURegList(kCallerSaved);
5119
5120 TmpList()->set_list(old_tmp_list);
5121 FPTmpList()->set_list(old_fp_tmp_list);
5122 }
5123
5124
EmitFrameSetupForCodeAgePatching()5125 void MacroAssembler::EmitFrameSetupForCodeAgePatching() {
5126 // TODO(jbramley): Other architectures use the internal memcpy to copy the
5127 // sequence. If this is a performance bottleneck, we should consider caching
5128 // the sequence and copying it in the same way.
5129 InstructionAccurateScope scope(this,
5130 kNoCodeAgeSequenceLength / kInstructionSize);
5131 ASSERT(jssp.Is(StackPointer()));
5132 EmitFrameSetupForCodeAgePatching(this);
5133 }
5134
5135
5136
EmitCodeAgeSequence(Code * stub)5137 void MacroAssembler::EmitCodeAgeSequence(Code* stub) {
5138 InstructionAccurateScope scope(this,
5139 kNoCodeAgeSequenceLength / kInstructionSize);
5140 ASSERT(jssp.Is(StackPointer()));
5141 EmitCodeAgeSequence(this, stub);
5142 }
5143
5144
5145 #undef __
5146 #define __ assm->
5147
5148
EmitFrameSetupForCodeAgePatching(Assembler * assm)5149 void MacroAssembler::EmitFrameSetupForCodeAgePatching(Assembler * assm) {
5150 Label start;
5151 __ bind(&start);
5152
5153 // We can do this sequence using four instructions, but the code ageing
5154 // sequence that patches it needs five, so we use the extra space to try to
5155 // simplify some addressing modes and remove some dependencies (compared to
5156 // using two stp instructions with write-back).
5157 __ sub(jssp, jssp, 4 * kXRegSize);
5158 __ sub(csp, csp, 4 * kXRegSize);
5159 __ stp(x1, cp, MemOperand(jssp, 0 * kXRegSize));
5160 __ stp(fp, lr, MemOperand(jssp, 2 * kXRegSize));
5161 __ add(fp, jssp, StandardFrameConstants::kFixedFrameSizeFromFp);
5162
5163 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5164 }
5165
5166
EmitCodeAgeSequence(Assembler * assm,Code * stub)5167 void MacroAssembler::EmitCodeAgeSequence(Assembler * assm,
5168 Code * stub) {
5169 Label start;
5170 __ bind(&start);
5171 // When the stub is called, the sequence is replaced with the young sequence
5172 // (as in EmitFrameSetupForCodeAgePatching). After the code is replaced, the
5173 // stub jumps to &start, stored in x0. The young sequence does not call the
5174 // stub so there is no infinite loop here.
5175 //
5176 // A branch (br) is used rather than a call (blr) because this code replaces
5177 // the frame setup code that would normally preserve lr.
5178 __ ldr_pcrel(ip0, kCodeAgeStubEntryOffset >> kLoadLiteralScaleLog2);
5179 __ adr(x0, &start);
5180 __ br(ip0);
5181 // IsCodeAgeSequence in codegen-arm64.cc assumes that the code generated up
5182 // until now (kCodeAgeStubEntryOffset) is the same for all code age sequences.
5183 __ AssertSizeOfCodeGeneratedSince(&start, kCodeAgeStubEntryOffset);
5184 if (stub) {
5185 __ dc64(reinterpret_cast<uint64_t>(stub->instruction_start()));
5186 __ AssertSizeOfCodeGeneratedSince(&start, kNoCodeAgeSequenceLength);
5187 }
5188 }
5189
5190
IsYoungSequence(Isolate * isolate,byte * sequence)5191 bool MacroAssembler::IsYoungSequence(Isolate* isolate, byte* sequence) {
5192 bool is_young = isolate->code_aging_helper()->IsYoung(sequence);
5193 ASSERT(is_young ||
5194 isolate->code_aging_helper()->IsOld(sequence));
5195 return is_young;
5196 }
5197
5198
TruncatingDiv(Register result,Register dividend,int32_t divisor)5199 void MacroAssembler::TruncatingDiv(Register result,
5200 Register dividend,
5201 int32_t divisor) {
5202 ASSERT(!AreAliased(result, dividend));
5203 ASSERT(result.Is32Bits() && dividend.Is32Bits());
5204 MultiplierAndShift ms(divisor);
5205 Mov(result, ms.multiplier());
5206 Smull(result.X(), dividend, result);
5207 Asr(result.X(), result.X(), 32);
5208 if (divisor > 0 && ms.multiplier() < 0) Add(result, result, dividend);
5209 if (divisor < 0 && ms.multiplier() > 0) Sub(result, result, dividend);
5210 if (ms.shift() > 0) Asr(result, result, ms.shift());
5211 Add(result, result, Operand(dividend, LSR, 31));
5212 }
5213
5214
5215 #undef __
5216
5217
~UseScratchRegisterScope()5218 UseScratchRegisterScope::~UseScratchRegisterScope() {
5219 available_->set_list(old_available_);
5220 availablefp_->set_list(old_availablefp_);
5221 }
5222
5223
AcquireSameSizeAs(const Register & reg)5224 Register UseScratchRegisterScope::AcquireSameSizeAs(const Register& reg) {
5225 int code = AcquireNextAvailable(available_).code();
5226 return Register::Create(code, reg.SizeInBits());
5227 }
5228
5229
AcquireSameSizeAs(const FPRegister & reg)5230 FPRegister UseScratchRegisterScope::AcquireSameSizeAs(const FPRegister& reg) {
5231 int code = AcquireNextAvailable(availablefp_).code();
5232 return FPRegister::Create(code, reg.SizeInBits());
5233 }
5234
5235
AcquireNextAvailable(CPURegList * available)5236 CPURegister UseScratchRegisterScope::AcquireNextAvailable(
5237 CPURegList* available) {
5238 CHECK(!available->IsEmpty());
5239 CPURegister result = available->PopLowestIndex();
5240 ASSERT(!AreAliased(result, xzr, csp));
5241 return result;
5242 }
5243
5244
UnsafeAcquire(CPURegList * available,const CPURegister & reg)5245 CPURegister UseScratchRegisterScope::UnsafeAcquire(CPURegList* available,
5246 const CPURegister& reg) {
5247 ASSERT(available->IncludesAliasOf(reg));
5248 available->Remove(reg);
5249 return reg;
5250 }
5251
5252
5253 #define __ masm->
5254
5255
Emit(MacroAssembler * masm,const Register & reg,const Label * smi_check)5256 void InlineSmiCheckInfo::Emit(MacroAssembler* masm, const Register& reg,
5257 const Label* smi_check) {
5258 Assembler::BlockPoolsScope scope(masm);
5259 if (reg.IsValid()) {
5260 ASSERT(smi_check->is_bound());
5261 ASSERT(reg.Is64Bits());
5262
5263 // Encode the register (x0-x30) in the lowest 5 bits, then the offset to
5264 // 'check' in the other bits. The possible offset is limited in that we
5265 // use BitField to pack the data, and the underlying data type is a
5266 // uint32_t.
5267 uint32_t delta = __ InstructionsGeneratedSince(smi_check);
5268 __ InlineData(RegisterBits::encode(reg.code()) | DeltaBits::encode(delta));
5269 } else {
5270 ASSERT(!smi_check->is_bound());
5271
5272 // An offset of 0 indicates that there is no patch site.
5273 __ InlineData(0);
5274 }
5275 }
5276
5277
InlineSmiCheckInfo(Address info)5278 InlineSmiCheckInfo::InlineSmiCheckInfo(Address info)
5279 : reg_(NoReg), smi_check_(NULL) {
5280 InstructionSequence* inline_data = InstructionSequence::At(info);
5281 ASSERT(inline_data->IsInlineData());
5282 if (inline_data->IsInlineData()) {
5283 uint64_t payload = inline_data->InlineData();
5284 // We use BitField to decode the payload, and BitField can only handle
5285 // 32-bit values.
5286 ASSERT(is_uint32(payload));
5287 if (payload != 0) {
5288 int reg_code = RegisterBits::decode(payload);
5289 reg_ = Register::XRegFromCode(reg_code);
5290 uint64_t smi_check_delta = DeltaBits::decode(payload);
5291 ASSERT(smi_check_delta != 0);
5292 smi_check_ = inline_data->preceding(smi_check_delta);
5293 }
5294 }
5295 }
5296
5297
5298 #undef __
5299
5300
5301 } } // namespace v8::internal
5302
5303 #endif // V8_TARGET_ARCH_ARM64
5304