1 //===--- CFG.cpp - Classes for representing and building CFGs----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the CFG and CFGBuilder classes for representing and
11 // building Control-Flow Graphs (CFGs) from ASTs.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Analysis/CFG.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/Attr.h"
18 #include "clang/AST/CharUnits.h"
19 #include "clang/AST/DeclCXX.h"
20 #include "clang/AST/PrettyPrinter.h"
21 #include "clang/AST/StmtVisitor.h"
22 #include "clang/Basic/Builtins.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include <memory>
25 #include "llvm/ADT/SmallPtrSet.h"
26 #include "llvm/Support/Allocator.h"
27 #include "llvm/Support/Format.h"
28 #include "llvm/Support/GraphWriter.h"
29 #include "llvm/Support/SaveAndRestore.h"
30
31 using namespace clang;
32
33 namespace {
34
GetEndLoc(Decl * D)35 static SourceLocation GetEndLoc(Decl *D) {
36 if (VarDecl *VD = dyn_cast<VarDecl>(D))
37 if (Expr *Ex = VD->getInit())
38 return Ex->getSourceRange().getEnd();
39 return D->getLocation();
40 }
41
42 class CFGBuilder;
43
44 /// The CFG builder uses a recursive algorithm to build the CFG. When
45 /// we process an expression, sometimes we know that we must add the
46 /// subexpressions as block-level expressions. For example:
47 ///
48 /// exp1 || exp2
49 ///
50 /// When processing the '||' expression, we know that exp1 and exp2
51 /// need to be added as block-level expressions, even though they
52 /// might not normally need to be. AddStmtChoice records this
53 /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then
54 /// the builder has an option not to add a subexpression as a
55 /// block-level expression.
56 ///
57 class AddStmtChoice {
58 public:
59 enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };
60
AddStmtChoice(Kind a_kind=NotAlwaysAdd)61 AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}
62
63 bool alwaysAdd(CFGBuilder &builder,
64 const Stmt *stmt) const;
65
66 /// Return a copy of this object, except with the 'always-add' bit
67 /// set as specified.
withAlwaysAdd(bool alwaysAdd) const68 AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
69 return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
70 }
71
72 private:
73 Kind kind;
74 };
75
76 /// LocalScope - Node in tree of local scopes created for C++ implicit
77 /// destructor calls generation. It contains list of automatic variables
78 /// declared in the scope and link to position in previous scope this scope
79 /// began in.
80 ///
81 /// The process of creating local scopes is as follows:
82 /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
83 /// - Before processing statements in scope (e.g. CompoundStmt) create
84 /// LocalScope object using CFGBuilder::ScopePos as link to previous scope
85 /// and set CFGBuilder::ScopePos to the end of new scope,
86 /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
87 /// at this VarDecl,
88 /// - For every normal (without jump) end of scope add to CFGBlock destructors
89 /// for objects in the current scope,
90 /// - For every jump add to CFGBlock destructors for objects
91 /// between CFGBuilder::ScopePos and local scope position saved for jump
92 /// target. Thanks to C++ restrictions on goto jumps we can be sure that
93 /// jump target position will be on the path to root from CFGBuilder::ScopePos
94 /// (adding any variable that doesn't need constructor to be called to
95 /// LocalScope can break this assumption),
96 ///
97 class LocalScope {
98 public:
99 typedef BumpVector<VarDecl*> AutomaticVarsTy;
100
101 /// const_iterator - Iterates local scope backwards and jumps to previous
102 /// scope on reaching the beginning of currently iterated scope.
103 class const_iterator {
104 const LocalScope* Scope;
105
106 /// VarIter is guaranteed to be greater then 0 for every valid iterator.
107 /// Invalid iterator (with null Scope) has VarIter equal to 0.
108 unsigned VarIter;
109
110 public:
111 /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
112 /// Incrementing invalid iterator is allowed and will result in invalid
113 /// iterator.
const_iterator()114 const_iterator()
115 : Scope(nullptr), VarIter(0) {}
116
117 /// Create valid iterator. In case when S.Prev is an invalid iterator and
118 /// I is equal to 0, this will create invalid iterator.
const_iterator(const LocalScope & S,unsigned I)119 const_iterator(const LocalScope& S, unsigned I)
120 : Scope(&S), VarIter(I) {
121 // Iterator to "end" of scope is not allowed. Handle it by going up
122 // in scopes tree possibly up to invalid iterator in the root.
123 if (VarIter == 0 && Scope)
124 *this = Scope->Prev;
125 }
126
operator ->() const127 VarDecl *const* operator->() const {
128 assert (Scope && "Dereferencing invalid iterator is not allowed");
129 assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
130 return &Scope->Vars[VarIter - 1];
131 }
operator *() const132 VarDecl *operator*() const {
133 return *this->operator->();
134 }
135
operator ++()136 const_iterator &operator++() {
137 if (!Scope)
138 return *this;
139
140 assert (VarIter != 0 && "Iterator has invalid value of VarIter member");
141 --VarIter;
142 if (VarIter == 0)
143 *this = Scope->Prev;
144 return *this;
145 }
operator ++(int)146 const_iterator operator++(int) {
147 const_iterator P = *this;
148 ++*this;
149 return P;
150 }
151
operator ==(const const_iterator & rhs) const152 bool operator==(const const_iterator &rhs) const {
153 return Scope == rhs.Scope && VarIter == rhs.VarIter;
154 }
operator !=(const const_iterator & rhs) const155 bool operator!=(const const_iterator &rhs) const {
156 return !(*this == rhs);
157 }
158
operator bool() const159 LLVM_EXPLICIT operator bool() const {
160 return *this != const_iterator();
161 }
162
163 int distance(const_iterator L);
164 };
165
166 friend class const_iterator;
167
168 private:
169 BumpVectorContext ctx;
170
171 /// Automatic variables in order of declaration.
172 AutomaticVarsTy Vars;
173 /// Iterator to variable in previous scope that was declared just before
174 /// begin of this scope.
175 const_iterator Prev;
176
177 public:
178 /// Constructs empty scope linked to previous scope in specified place.
LocalScope(BumpVectorContext & ctx,const_iterator P)179 LocalScope(BumpVectorContext &ctx, const_iterator P)
180 : ctx(ctx), Vars(ctx, 4), Prev(P) {}
181
182 /// Begin of scope in direction of CFG building (backwards).
begin() const183 const_iterator begin() const { return const_iterator(*this, Vars.size()); }
184
addVar(VarDecl * VD)185 void addVar(VarDecl *VD) {
186 Vars.push_back(VD, ctx);
187 }
188 };
189
190 /// distance - Calculates distance from this to L. L must be reachable from this
191 /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
192 /// number of scopes between this and L.
distance(LocalScope::const_iterator L)193 int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
194 int D = 0;
195 const_iterator F = *this;
196 while (F.Scope != L.Scope) {
197 assert (F != const_iterator()
198 && "L iterator is not reachable from F iterator.");
199 D += F.VarIter;
200 F = F.Scope->Prev;
201 }
202 D += F.VarIter - L.VarIter;
203 return D;
204 }
205
206 /// BlockScopePosPair - Structure for specifying position in CFG during its
207 /// build process. It consists of CFGBlock that specifies position in CFG graph
208 /// and LocalScope::const_iterator that specifies position in LocalScope graph.
209 struct BlockScopePosPair {
BlockScopePosPair__anonfd11ca230111::BlockScopePosPair210 BlockScopePosPair() : block(nullptr) {}
BlockScopePosPair__anonfd11ca230111::BlockScopePosPair211 BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
212 : block(b), scopePosition(scopePos) {}
213
214 CFGBlock *block;
215 LocalScope::const_iterator scopePosition;
216 };
217
218 /// TryResult - a class representing a variant over the values
219 /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool,
220 /// and is used by the CFGBuilder to decide if a branch condition
221 /// can be decided up front during CFG construction.
222 class TryResult {
223 int X;
224 public:
TryResult(bool b)225 TryResult(bool b) : X(b ? 1 : 0) {}
TryResult()226 TryResult() : X(-1) {}
227
isTrue() const228 bool isTrue() const { return X == 1; }
isFalse() const229 bool isFalse() const { return X == 0; }
isKnown() const230 bool isKnown() const { return X >= 0; }
negate()231 void negate() {
232 assert(isKnown());
233 X ^= 0x1;
234 }
235 };
236
237 class reverse_children {
238 llvm::SmallVector<Stmt *, 12> childrenBuf;
239 ArrayRef<Stmt*> children;
240 public:
241 reverse_children(Stmt *S);
242
243 typedef ArrayRef<Stmt*>::reverse_iterator iterator;
begin() const244 iterator begin() const { return children.rbegin(); }
end() const245 iterator end() const { return children.rend(); }
246 };
247
248
reverse_children(Stmt * S)249 reverse_children::reverse_children(Stmt *S) {
250 if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
251 children = CE->getRawSubExprs();
252 return;
253 }
254 switch (S->getStmtClass()) {
255 // Note: Fill in this switch with more cases we want to optimize.
256 case Stmt::InitListExprClass: {
257 InitListExpr *IE = cast<InitListExpr>(S);
258 children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
259 IE->getNumInits());
260 return;
261 }
262 default:
263 break;
264 }
265
266 // Default case for all other statements.
267 for (Stmt::child_range I = S->children(); I; ++I) {
268 childrenBuf.push_back(*I);
269 }
270
271 // This needs to be done *after* childrenBuf has been populated.
272 children = childrenBuf;
273 }
274
275 /// CFGBuilder - This class implements CFG construction from an AST.
276 /// The builder is stateful: an instance of the builder should be used to only
277 /// construct a single CFG.
278 ///
279 /// Example usage:
280 ///
281 /// CFGBuilder builder;
282 /// CFG* cfg = builder.BuildAST(stmt1);
283 ///
284 /// CFG construction is done via a recursive walk of an AST. We actually parse
285 /// the AST in reverse order so that the successor of a basic block is
286 /// constructed prior to its predecessor. This allows us to nicely capture
287 /// implicit fall-throughs without extra basic blocks.
288 ///
289 class CFGBuilder {
290 typedef BlockScopePosPair JumpTarget;
291 typedef BlockScopePosPair JumpSource;
292
293 ASTContext *Context;
294 std::unique_ptr<CFG> cfg;
295
296 CFGBlock *Block;
297 CFGBlock *Succ;
298 JumpTarget ContinueJumpTarget;
299 JumpTarget BreakJumpTarget;
300 CFGBlock *SwitchTerminatedBlock;
301 CFGBlock *DefaultCaseBlock;
302 CFGBlock *TryTerminatedBlock;
303
304 // Current position in local scope.
305 LocalScope::const_iterator ScopePos;
306
307 // LabelMap records the mapping from Label expressions to their jump targets.
308 typedef llvm::DenseMap<LabelDecl*, JumpTarget> LabelMapTy;
309 LabelMapTy LabelMap;
310
311 // A list of blocks that end with a "goto" that must be backpatched to their
312 // resolved targets upon completion of CFG construction.
313 typedef std::vector<JumpSource> BackpatchBlocksTy;
314 BackpatchBlocksTy BackpatchBlocks;
315
316 // A list of labels whose address has been taken (for indirect gotos).
317 typedef llvm::SmallPtrSet<LabelDecl*, 5> LabelSetTy;
318 LabelSetTy AddressTakenLabels;
319
320 bool badCFG;
321 const CFG::BuildOptions &BuildOpts;
322
323 // State to track for building switch statements.
324 bool switchExclusivelyCovered;
325 Expr::EvalResult *switchCond;
326
327 CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry;
328 const Stmt *lastLookup;
329
330 // Caches boolean evaluations of expressions to avoid multiple re-evaluations
331 // during construction of branches for chained logical operators.
332 typedef llvm::DenseMap<Expr *, TryResult> CachedBoolEvalsTy;
333 CachedBoolEvalsTy CachedBoolEvals;
334
335 public:
CFGBuilder(ASTContext * astContext,const CFG::BuildOptions & buildOpts)336 explicit CFGBuilder(ASTContext *astContext,
337 const CFG::BuildOptions &buildOpts)
338 : Context(astContext), cfg(new CFG()), // crew a new CFG
339 Block(nullptr), Succ(nullptr),
340 SwitchTerminatedBlock(nullptr), DefaultCaseBlock(nullptr),
341 TryTerminatedBlock(nullptr), badCFG(false), BuildOpts(buildOpts),
342 switchExclusivelyCovered(false), switchCond(nullptr),
343 cachedEntry(nullptr), lastLookup(nullptr) {}
344
345 // buildCFG - Used by external clients to construct the CFG.
346 CFG* buildCFG(const Decl *D, Stmt *Statement);
347
348 bool alwaysAdd(const Stmt *stmt);
349
350 private:
351 // Visitors to walk an AST and construct the CFG.
352 CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
353 CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
354 CFGBlock *VisitBreakStmt(BreakStmt *B);
355 CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
356 CFGBlock *VisitCaseStmt(CaseStmt *C);
357 CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
358 CFGBlock *VisitCompoundStmt(CompoundStmt *C);
359 CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
360 AddStmtChoice asc);
361 CFGBlock *VisitContinueStmt(ContinueStmt *C);
362 CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
363 AddStmtChoice asc);
364 CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
365 CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
366 CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
367 CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
368 CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
369 CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
370 AddStmtChoice asc);
371 CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
372 AddStmtChoice asc);
373 CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
374 CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
375 CFGBlock *VisitDeclStmt(DeclStmt *DS);
376 CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
377 CFGBlock *VisitDefaultStmt(DefaultStmt *D);
378 CFGBlock *VisitDoStmt(DoStmt *D);
379 CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, AddStmtChoice asc);
380 CFGBlock *VisitForStmt(ForStmt *F);
381 CFGBlock *VisitGotoStmt(GotoStmt *G);
382 CFGBlock *VisitIfStmt(IfStmt *I);
383 CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
384 CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
385 CFGBlock *VisitLabelStmt(LabelStmt *L);
386 CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
387 CFGBlock *VisitLogicalOperator(BinaryOperator *B);
388 std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
389 Stmt *Term,
390 CFGBlock *TrueBlock,
391 CFGBlock *FalseBlock);
392 CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
393 CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
394 CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
395 CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
396 CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
397 CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
398 CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
399 CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
400 CFGBlock *VisitReturnStmt(ReturnStmt *R);
401 CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
402 CFGBlock *VisitSwitchStmt(SwitchStmt *S);
403 CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
404 AddStmtChoice asc);
405 CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
406 CFGBlock *VisitWhileStmt(WhileStmt *W);
407
408 CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd);
409 CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
410 CFGBlock *VisitChildren(Stmt *S);
411 CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
412
413 // Visitors to walk an AST and generate destructors of temporaries in
414 // full expression.
415 CFGBlock *VisitForTemporaryDtors(Stmt *E, bool BindToTemporary = false);
416 CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E);
417 CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E);
418 CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr *E,
419 bool BindToTemporary);
420 CFGBlock *
421 VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator *E,
422 bool BindToTemporary);
423
424 // NYS == Not Yet Supported
NYS()425 CFGBlock *NYS() {
426 badCFG = true;
427 return Block;
428 }
429
autoCreateBlock()430 void autoCreateBlock() { if (!Block) Block = createBlock(); }
431 CFGBlock *createBlock(bool add_successor = true);
432 CFGBlock *createNoReturnBlock();
433
addStmt(Stmt * S)434 CFGBlock *addStmt(Stmt *S) {
435 return Visit(S, AddStmtChoice::AlwaysAdd);
436 }
437 CFGBlock *addInitializer(CXXCtorInitializer *I);
438 void addAutomaticObjDtors(LocalScope::const_iterator B,
439 LocalScope::const_iterator E, Stmt *S);
440 void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
441
442 // Local scopes creation.
443 LocalScope* createOrReuseLocalScope(LocalScope* Scope);
444
445 void addLocalScopeForStmt(Stmt *S);
446 LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
447 LocalScope* Scope = nullptr);
448 LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);
449
450 void addLocalScopeAndDtors(Stmt *S);
451
452 // Interface to CFGBlock - adding CFGElements.
appendStmt(CFGBlock * B,const Stmt * S)453 void appendStmt(CFGBlock *B, const Stmt *S) {
454 if (alwaysAdd(S) && cachedEntry)
455 cachedEntry->second = B;
456
457 // All block-level expressions should have already been IgnoreParens()ed.
458 assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
459 B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
460 }
appendInitializer(CFGBlock * B,CXXCtorInitializer * I)461 void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
462 B->appendInitializer(I, cfg->getBumpVectorContext());
463 }
appendNewAllocator(CFGBlock * B,CXXNewExpr * NE)464 void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
465 B->appendNewAllocator(NE, cfg->getBumpVectorContext());
466 }
appendBaseDtor(CFGBlock * B,const CXXBaseSpecifier * BS)467 void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
468 B->appendBaseDtor(BS, cfg->getBumpVectorContext());
469 }
appendMemberDtor(CFGBlock * B,FieldDecl * FD)470 void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
471 B->appendMemberDtor(FD, cfg->getBumpVectorContext());
472 }
appendTemporaryDtor(CFGBlock * B,CXXBindTemporaryExpr * E)473 void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
474 B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
475 }
appendAutomaticObjDtor(CFGBlock * B,VarDecl * VD,Stmt * S)476 void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
477 B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
478 }
479
appendDeleteDtor(CFGBlock * B,CXXRecordDecl * RD,CXXDeleteExpr * DE)480 void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
481 B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
482 }
483
484 void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
485 LocalScope::const_iterator B, LocalScope::const_iterator E);
486
addSuccessor(CFGBlock * B,CFGBlock * S,bool IsReachable=true)487 void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
488 B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
489 cfg->getBumpVectorContext());
490 }
491
492 /// Add a reachable successor to a block, with the alternate variant that is
493 /// unreachable.
addSuccessor(CFGBlock * B,CFGBlock * ReachableBlock,CFGBlock * AltBlock)494 void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
495 B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
496 cfg->getBumpVectorContext());
497 }
498
499 /// \brief Find a relational comparison with an expression evaluating to a
500 /// boolean and a constant other than 0 and 1.
501 /// e.g. if ((x < y) == 10)
checkIncorrectRelationalOperator(const BinaryOperator * B)502 TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
503 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
504 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
505
506 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
507 const Expr *BoolExpr = RHSExpr;
508 bool IntFirst = true;
509 if (!IntLiteral) {
510 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
511 BoolExpr = LHSExpr;
512 IntFirst = false;
513 }
514
515 if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
516 return TryResult();
517
518 llvm::APInt IntValue = IntLiteral->getValue();
519 if ((IntValue == 1) || (IntValue == 0))
520 return TryResult();
521
522 bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
523 !IntValue.isNegative();
524
525 BinaryOperatorKind Bok = B->getOpcode();
526 if (Bok == BO_GT || Bok == BO_GE) {
527 // Always true for 10 > bool and bool > -1
528 // Always false for -1 > bool and bool > 10
529 return TryResult(IntFirst == IntLarger);
530 } else {
531 // Always true for -1 < bool and bool < 10
532 // Always false for 10 < bool and bool < -1
533 return TryResult(IntFirst != IntLarger);
534 }
535 }
536
537 /// Find an incorrect equality comparison. Either with an expression
538 /// evaluating to a boolean and a constant other than 0 and 1.
539 /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
540 /// true/false e.q. (x & 8) == 4.
checkIncorrectEqualityOperator(const BinaryOperator * B)541 TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
542 const Expr *LHSExpr = B->getLHS()->IgnoreParens();
543 const Expr *RHSExpr = B->getRHS()->IgnoreParens();
544
545 const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
546 const Expr *BoolExpr = RHSExpr;
547
548 if (!IntLiteral) {
549 IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
550 BoolExpr = LHSExpr;
551 }
552
553 if (!IntLiteral)
554 return TryResult();
555
556 const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
557 if (BitOp && (BitOp->getOpcode() == BO_And ||
558 BitOp->getOpcode() == BO_Or)) {
559 const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
560 const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();
561
562 const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);
563
564 if (!IntLiteral2)
565 IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);
566
567 if (!IntLiteral2)
568 return TryResult();
569
570 llvm::APInt L1 = IntLiteral->getValue();
571 llvm::APInt L2 = IntLiteral2->getValue();
572 if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
573 (BitOp->getOpcode() == BO_Or && (L2 | L1) != L1)) {
574 if (BuildOpts.Observer)
575 BuildOpts.Observer->compareBitwiseEquality(B,
576 B->getOpcode() != BO_EQ);
577 TryResult(B->getOpcode() != BO_EQ);
578 }
579 } else if (BoolExpr->isKnownToHaveBooleanValue()) {
580 llvm::APInt IntValue = IntLiteral->getValue();
581 if ((IntValue == 1) || (IntValue == 0)) {
582 return TryResult();
583 }
584 return TryResult(B->getOpcode() != BO_EQ);
585 }
586
587 return TryResult();
588 }
589
analyzeLogicOperatorCondition(BinaryOperatorKind Relation,const llvm::APSInt & Value1,const llvm::APSInt & Value2)590 TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
591 const llvm::APSInt &Value1,
592 const llvm::APSInt &Value2) {
593 assert(Value1.isSigned() == Value2.isSigned());
594 switch (Relation) {
595 default:
596 return TryResult();
597 case BO_EQ:
598 return TryResult(Value1 == Value2);
599 case BO_NE:
600 return TryResult(Value1 != Value2);
601 case BO_LT:
602 return TryResult(Value1 < Value2);
603 case BO_LE:
604 return TryResult(Value1 <= Value2);
605 case BO_GT:
606 return TryResult(Value1 > Value2);
607 case BO_GE:
608 return TryResult(Value1 >= Value2);
609 }
610 }
611
612 /// \brief Find a pair of comparison expressions with or without parentheses
613 /// with a shared variable and constants and a logical operator between them
614 /// that always evaluates to either true or false.
615 /// e.g. if (x != 3 || x != 4)
checkIncorrectLogicOperator(const BinaryOperator * B)616 TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
617 assert(B->isLogicalOp());
618 const BinaryOperator *LHS =
619 dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
620 const BinaryOperator *RHS =
621 dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
622 if (!LHS || !RHS)
623 return TryResult();
624
625 if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
626 return TryResult();
627
628 BinaryOperatorKind BO1 = LHS->getOpcode();
629 const DeclRefExpr *Decl1 =
630 dyn_cast<DeclRefExpr>(LHS->getLHS()->IgnoreParenImpCasts());
631 const IntegerLiteral *Literal1 =
632 dyn_cast<IntegerLiteral>(LHS->getRHS()->IgnoreParens());
633 if (!Decl1 && !Literal1) {
634 if (BO1 == BO_GT)
635 BO1 = BO_LT;
636 else if (BO1 == BO_GE)
637 BO1 = BO_LE;
638 else if (BO1 == BO_LT)
639 BO1 = BO_GT;
640 else if (BO1 == BO_LE)
641 BO1 = BO_GE;
642 Decl1 = dyn_cast<DeclRefExpr>(LHS->getRHS()->IgnoreParenImpCasts());
643 Literal1 = dyn_cast<IntegerLiteral>(LHS->getLHS()->IgnoreParens());
644 }
645
646 if (!Decl1 || !Literal1)
647 return TryResult();
648
649 BinaryOperatorKind BO2 = RHS->getOpcode();
650 const DeclRefExpr *Decl2 =
651 dyn_cast<DeclRefExpr>(RHS->getLHS()->IgnoreParenImpCasts());
652 const IntegerLiteral *Literal2 =
653 dyn_cast<IntegerLiteral>(RHS->getRHS()->IgnoreParens());
654 if (!Decl2 && !Literal2) {
655 if (BO2 == BO_GT)
656 BO2 = BO_LT;
657 else if (BO2 == BO_GE)
658 BO2 = BO_LE;
659 else if (BO2 == BO_LT)
660 BO2 = BO_GT;
661 else if (BO2 == BO_LE)
662 BO2 = BO_GE;
663 Decl2 = dyn_cast<DeclRefExpr>(RHS->getRHS()->IgnoreParenImpCasts());
664 Literal2 = dyn_cast<IntegerLiteral>(RHS->getLHS()->IgnoreParens());
665 }
666
667 if (!Decl2 || !Literal2)
668 return TryResult();
669
670 // Check that it is the same variable on both sides.
671 if (Decl1->getDecl() != Decl2->getDecl())
672 return TryResult();
673
674 llvm::APSInt L1, L2;
675
676 if (!Literal1->EvaluateAsInt(L1, *Context) ||
677 !Literal2->EvaluateAsInt(L2, *Context))
678 return TryResult();
679
680 // Can't compare signed with unsigned or with different bit width.
681 if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
682 return TryResult();
683
684 // Values that will be used to determine if result of logical
685 // operator is always true/false
686 const llvm::APSInt Values[] = {
687 // Value less than both Value1 and Value2
688 llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
689 // L1
690 L1,
691 // Value between Value1 and Value2
692 ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
693 L1.isUnsigned()),
694 // L2
695 L2,
696 // Value greater than both Value1 and Value2
697 llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
698 };
699
700 // Check whether expression is always true/false by evaluating the following
701 // * variable x is less than the smallest literal.
702 // * variable x is equal to the smallest literal.
703 // * Variable x is between smallest and largest literal.
704 // * Variable x is equal to the largest literal.
705 // * Variable x is greater than largest literal.
706 bool AlwaysTrue = true, AlwaysFalse = true;
707 for (unsigned int ValueIndex = 0;
708 ValueIndex < sizeof(Values) / sizeof(Values[0]);
709 ++ValueIndex) {
710 llvm::APSInt Value = Values[ValueIndex];
711 TryResult Res1, Res2;
712 Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
713 Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);
714
715 if (!Res1.isKnown() || !Res2.isKnown())
716 return TryResult();
717
718 if (B->getOpcode() == BO_LAnd) {
719 AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
720 AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
721 } else {
722 AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
723 AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
724 }
725 }
726
727 if (AlwaysTrue || AlwaysFalse) {
728 if (BuildOpts.Observer)
729 BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
730 return TryResult(AlwaysTrue);
731 }
732 return TryResult();
733 }
734
735 /// Try and evaluate an expression to an integer constant.
tryEvaluate(Expr * S,Expr::EvalResult & outResult)736 bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
737 if (!BuildOpts.PruneTriviallyFalseEdges)
738 return false;
739 return !S->isTypeDependent() &&
740 !S->isValueDependent() &&
741 S->EvaluateAsRValue(outResult, *Context);
742 }
743
744 /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
745 /// if we can evaluate to a known value, otherwise return -1.
tryEvaluateBool(Expr * S)746 TryResult tryEvaluateBool(Expr *S) {
747 if (!BuildOpts.PruneTriviallyFalseEdges ||
748 S->isTypeDependent() || S->isValueDependent())
749 return TryResult();
750
751 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
752 if (Bop->isLogicalOp()) {
753 // Check the cache first.
754 CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
755 if (I != CachedBoolEvals.end())
756 return I->second; // already in map;
757
758 // Retrieve result at first, or the map might be updated.
759 TryResult Result = evaluateAsBooleanConditionNoCache(S);
760 CachedBoolEvals[S] = Result; // update or insert
761 return Result;
762 }
763 else {
764 switch (Bop->getOpcode()) {
765 default: break;
766 // For 'x & 0' and 'x * 0', we can determine that
767 // the value is always false.
768 case BO_Mul:
769 case BO_And: {
770 // If either operand is zero, we know the value
771 // must be false.
772 llvm::APSInt IntVal;
773 if (Bop->getLHS()->EvaluateAsInt(IntVal, *Context)) {
774 if (IntVal.getBoolValue() == false) {
775 return TryResult(false);
776 }
777 }
778 if (Bop->getRHS()->EvaluateAsInt(IntVal, *Context)) {
779 if (IntVal.getBoolValue() == false) {
780 return TryResult(false);
781 }
782 }
783 }
784 break;
785 }
786 }
787 }
788
789 return evaluateAsBooleanConditionNoCache(S);
790 }
791
792 /// \brief Evaluate as boolean \param E without using the cache.
evaluateAsBooleanConditionNoCache(Expr * E)793 TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
794 if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
795 if (Bop->isLogicalOp()) {
796 TryResult LHS = tryEvaluateBool(Bop->getLHS());
797 if (LHS.isKnown()) {
798 // We were able to evaluate the LHS, see if we can get away with not
799 // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
800 if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
801 return LHS.isTrue();
802
803 TryResult RHS = tryEvaluateBool(Bop->getRHS());
804 if (RHS.isKnown()) {
805 if (Bop->getOpcode() == BO_LOr)
806 return LHS.isTrue() || RHS.isTrue();
807 else
808 return LHS.isTrue() && RHS.isTrue();
809 }
810 } else {
811 TryResult RHS = tryEvaluateBool(Bop->getRHS());
812 if (RHS.isKnown()) {
813 // We can't evaluate the LHS; however, sometimes the result
814 // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
815 if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
816 return RHS.isTrue();
817 } else {
818 TryResult BopRes = checkIncorrectLogicOperator(Bop);
819 if (BopRes.isKnown())
820 return BopRes.isTrue();
821 }
822 }
823
824 return TryResult();
825 } else if (Bop->isEqualityOp()) {
826 TryResult BopRes = checkIncorrectEqualityOperator(Bop);
827 if (BopRes.isKnown())
828 return BopRes.isTrue();
829 } else if (Bop->isRelationalOp()) {
830 TryResult BopRes = checkIncorrectRelationalOperator(Bop);
831 if (BopRes.isKnown())
832 return BopRes.isTrue();
833 }
834 }
835
836 bool Result;
837 if (E->EvaluateAsBooleanCondition(Result, *Context))
838 return Result;
839
840 return TryResult();
841 }
842
843 };
844
alwaysAdd(CFGBuilder & builder,const Stmt * stmt) const845 inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
846 const Stmt *stmt) const {
847 return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
848 }
849
alwaysAdd(const Stmt * stmt)850 bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
851 bool shouldAdd = BuildOpts.alwaysAdd(stmt);
852
853 if (!BuildOpts.forcedBlkExprs)
854 return shouldAdd;
855
856 if (lastLookup == stmt) {
857 if (cachedEntry) {
858 assert(cachedEntry->first == stmt);
859 return true;
860 }
861 return shouldAdd;
862 }
863
864 lastLookup = stmt;
865
866 // Perform the lookup!
867 CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;
868
869 if (!fb) {
870 // No need to update 'cachedEntry', since it will always be null.
871 assert(!cachedEntry);
872 return shouldAdd;
873 }
874
875 CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
876 if (itr == fb->end()) {
877 cachedEntry = nullptr;
878 return shouldAdd;
879 }
880
881 cachedEntry = &*itr;
882 return true;
883 }
884
885 // FIXME: Add support for dependent-sized array types in C++?
886 // Does it even make sense to build a CFG for an uninstantiated template?
FindVA(const Type * t)887 static const VariableArrayType *FindVA(const Type *t) {
888 while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
889 if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
890 if (vat->getSizeExpr())
891 return vat;
892
893 t = vt->getElementType().getTypePtr();
894 }
895
896 return nullptr;
897 }
898
899 /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an
900 /// arbitrary statement. Examples include a single expression or a function
901 /// body (compound statement). The ownership of the returned CFG is
902 /// transferred to the caller. If CFG construction fails, this method returns
903 /// NULL.
buildCFG(const Decl * D,Stmt * Statement)904 CFG* CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
905 assert(cfg.get());
906 if (!Statement)
907 return nullptr;
908
909 // Create an empty block that will serve as the exit block for the CFG. Since
910 // this is the first block added to the CFG, it will be implicitly registered
911 // as the exit block.
912 Succ = createBlock();
913 assert(Succ == &cfg->getExit());
914 Block = nullptr; // the EXIT block is empty. Create all other blocks lazily.
915
916 if (BuildOpts.AddImplicitDtors)
917 if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
918 addImplicitDtorsForDestructor(DD);
919
920 // Visit the statements and create the CFG.
921 CFGBlock *B = addStmt(Statement);
922
923 if (badCFG)
924 return nullptr;
925
926 // For C++ constructor add initializers to CFG.
927 if (const CXXConstructorDecl *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
928 for (CXXConstructorDecl::init_const_reverse_iterator I = CD->init_rbegin(),
929 E = CD->init_rend(); I != E; ++I) {
930 B = addInitializer(*I);
931 if (badCFG)
932 return nullptr;
933 }
934 }
935
936 if (B)
937 Succ = B;
938
939 // Backpatch the gotos whose label -> block mappings we didn't know when we
940 // encountered them.
941 for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
942 E = BackpatchBlocks.end(); I != E; ++I ) {
943
944 CFGBlock *B = I->block;
945 const GotoStmt *G = cast<GotoStmt>(B->getTerminator());
946 LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
947
948 // If there is no target for the goto, then we are looking at an
949 // incomplete AST. Handle this by not registering a successor.
950 if (LI == LabelMap.end()) continue;
951
952 JumpTarget JT = LI->second;
953 prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
954 JT.scopePosition);
955 addSuccessor(B, JT.block);
956 }
957
958 // Add successors to the Indirect Goto Dispatch block (if we have one).
959 if (CFGBlock *B = cfg->getIndirectGotoBlock())
960 for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
961 E = AddressTakenLabels.end(); I != E; ++I ) {
962
963 // Lookup the target block.
964 LabelMapTy::iterator LI = LabelMap.find(*I);
965
966 // If there is no target block that contains label, then we are looking
967 // at an incomplete AST. Handle this by not registering a successor.
968 if (LI == LabelMap.end()) continue;
969
970 addSuccessor(B, LI->second.block);
971 }
972
973 // Create an empty entry block that has no predecessors.
974 cfg->setEntry(createBlock());
975
976 return cfg.release();
977 }
978
979 /// createBlock - Used to lazily create blocks that are connected
980 /// to the current (global) succcessor.
createBlock(bool add_successor)981 CFGBlock *CFGBuilder::createBlock(bool add_successor) {
982 CFGBlock *B = cfg->createBlock();
983 if (add_successor && Succ)
984 addSuccessor(B, Succ);
985 return B;
986 }
987
988 /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
989 /// CFG. It is *not* connected to the current (global) successor, and instead
990 /// directly tied to the exit block in order to be reachable.
createNoReturnBlock()991 CFGBlock *CFGBuilder::createNoReturnBlock() {
992 CFGBlock *B = createBlock(false);
993 B->setHasNoReturnElement();
994 addSuccessor(B, &cfg->getExit(), Succ);
995 return B;
996 }
997
998 /// addInitializer - Add C++ base or member initializer element to CFG.
addInitializer(CXXCtorInitializer * I)999 CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
1000 if (!BuildOpts.AddInitializers)
1001 return Block;
1002
1003 bool IsReference = false;
1004 bool HasTemporaries = false;
1005
1006 // Destructors of temporaries in initialization expression should be called
1007 // after initialization finishes.
1008 Expr *Init = I->getInit();
1009 if (Init) {
1010 if (FieldDecl *FD = I->getAnyMember())
1011 IsReference = FD->getType()->isReferenceType();
1012 HasTemporaries = isa<ExprWithCleanups>(Init);
1013
1014 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1015 // Generate destructors for temporaries in initialization expression.
1016 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1017 IsReference);
1018 }
1019 }
1020
1021 autoCreateBlock();
1022 appendInitializer(Block, I);
1023
1024 if (Init) {
1025 if (HasTemporaries) {
1026 // For expression with temporaries go directly to subexpression to omit
1027 // generating destructors for the second time.
1028 return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
1029 }
1030 return Visit(Init);
1031 }
1032
1033 return Block;
1034 }
1035
1036 /// \brief Retrieve the type of the temporary object whose lifetime was
1037 /// extended by a local reference with the given initializer.
getReferenceInitTemporaryType(ASTContext & Context,const Expr * Init)1038 static QualType getReferenceInitTemporaryType(ASTContext &Context,
1039 const Expr *Init) {
1040 while (true) {
1041 // Skip parentheses.
1042 Init = Init->IgnoreParens();
1043
1044 // Skip through cleanups.
1045 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
1046 Init = EWC->getSubExpr();
1047 continue;
1048 }
1049
1050 // Skip through the temporary-materialization expression.
1051 if (const MaterializeTemporaryExpr *MTE
1052 = dyn_cast<MaterializeTemporaryExpr>(Init)) {
1053 Init = MTE->GetTemporaryExpr();
1054 continue;
1055 }
1056
1057 // Skip derived-to-base and no-op casts.
1058 if (const CastExpr *CE = dyn_cast<CastExpr>(Init)) {
1059 if ((CE->getCastKind() == CK_DerivedToBase ||
1060 CE->getCastKind() == CK_UncheckedDerivedToBase ||
1061 CE->getCastKind() == CK_NoOp) &&
1062 Init->getType()->isRecordType()) {
1063 Init = CE->getSubExpr();
1064 continue;
1065 }
1066 }
1067
1068 // Skip member accesses into rvalues.
1069 if (const MemberExpr *ME = dyn_cast<MemberExpr>(Init)) {
1070 if (!ME->isArrow() && ME->getBase()->isRValue()) {
1071 Init = ME->getBase();
1072 continue;
1073 }
1074 }
1075
1076 break;
1077 }
1078
1079 return Init->getType();
1080 }
1081
1082 /// addAutomaticObjDtors - Add to current block automatic objects destructors
1083 /// for objects in range of local scope positions. Use S as trigger statement
1084 /// for destructors.
addAutomaticObjDtors(LocalScope::const_iterator B,LocalScope::const_iterator E,Stmt * S)1085 void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
1086 LocalScope::const_iterator E, Stmt *S) {
1087 if (!BuildOpts.AddImplicitDtors)
1088 return;
1089
1090 if (B == E)
1091 return;
1092
1093 // We need to append the destructors in reverse order, but any one of them
1094 // may be a no-return destructor which changes the CFG. As a result, buffer
1095 // this sequence up and replay them in reverse order when appending onto the
1096 // CFGBlock(s).
1097 SmallVector<VarDecl*, 10> Decls;
1098 Decls.reserve(B.distance(E));
1099 for (LocalScope::const_iterator I = B; I != E; ++I)
1100 Decls.push_back(*I);
1101
1102 for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
1103 E = Decls.rend();
1104 I != E; ++I) {
1105 // If this destructor is marked as a no-return destructor, we need to
1106 // create a new block for the destructor which does not have as a successor
1107 // anything built thus far: control won't flow out of this block.
1108 QualType Ty = (*I)->getType();
1109 if (Ty->isReferenceType()) {
1110 Ty = getReferenceInitTemporaryType(*Context, (*I)->getInit());
1111 }
1112 Ty = Context->getBaseElementType(Ty);
1113
1114 const CXXDestructorDecl *Dtor = Ty->getAsCXXRecordDecl()->getDestructor();
1115 if (Dtor->isNoReturn())
1116 Block = createNoReturnBlock();
1117 else
1118 autoCreateBlock();
1119
1120 appendAutomaticObjDtor(Block, *I, S);
1121 }
1122 }
1123
1124 /// addImplicitDtorsForDestructor - Add implicit destructors generated for
1125 /// base and member objects in destructor.
addImplicitDtorsForDestructor(const CXXDestructorDecl * DD)1126 void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
1127 assert (BuildOpts.AddImplicitDtors
1128 && "Can be called only when dtors should be added");
1129 const CXXRecordDecl *RD = DD->getParent();
1130
1131 // At the end destroy virtual base objects.
1132 for (const auto &VI : RD->vbases()) {
1133 const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
1134 if (!CD->hasTrivialDestructor()) {
1135 autoCreateBlock();
1136 appendBaseDtor(Block, &VI);
1137 }
1138 }
1139
1140 // Before virtual bases destroy direct base objects.
1141 for (const auto &BI : RD->bases()) {
1142 if (!BI.isVirtual()) {
1143 const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
1144 if (!CD->hasTrivialDestructor()) {
1145 autoCreateBlock();
1146 appendBaseDtor(Block, &BI);
1147 }
1148 }
1149 }
1150
1151 // First destroy member objects.
1152 for (auto *FI : RD->fields()) {
1153 // Check for constant size array. Set type to array element type.
1154 QualType QT = FI->getType();
1155 if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1156 if (AT->getSize() == 0)
1157 continue;
1158 QT = AT->getElementType();
1159 }
1160
1161 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1162 if (!CD->hasTrivialDestructor()) {
1163 autoCreateBlock();
1164 appendMemberDtor(Block, FI);
1165 }
1166 }
1167 }
1168
1169 /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
1170 /// way return valid LocalScope object.
createOrReuseLocalScope(LocalScope * Scope)1171 LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
1172 if (!Scope) {
1173 llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
1174 Scope = alloc.Allocate<LocalScope>();
1175 BumpVectorContext ctx(alloc);
1176 new (Scope) LocalScope(ctx, ScopePos);
1177 }
1178 return Scope;
1179 }
1180
1181 /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
1182 /// that should create implicit scope (e.g. if/else substatements).
addLocalScopeForStmt(Stmt * S)1183 void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
1184 if (!BuildOpts.AddImplicitDtors)
1185 return;
1186
1187 LocalScope *Scope = nullptr;
1188
1189 // For compound statement we will be creating explicit scope.
1190 if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1191 for (auto *BI : CS->body()) {
1192 Stmt *SI = BI->stripLabelLikeStatements();
1193 if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
1194 Scope = addLocalScopeForDeclStmt(DS, Scope);
1195 }
1196 return;
1197 }
1198
1199 // For any other statement scope will be implicit and as such will be
1200 // interesting only for DeclStmt.
1201 if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
1202 addLocalScopeForDeclStmt(DS);
1203 }
1204
1205 /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
1206 /// reuse Scope if not NULL.
addLocalScopeForDeclStmt(DeclStmt * DS,LocalScope * Scope)1207 LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
1208 LocalScope* Scope) {
1209 if (!BuildOpts.AddImplicitDtors)
1210 return Scope;
1211
1212 for (auto *DI : DS->decls())
1213 if (VarDecl *VD = dyn_cast<VarDecl>(DI))
1214 Scope = addLocalScopeForVarDecl(VD, Scope);
1215 return Scope;
1216 }
1217
1218 /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
1219 /// create add scope for automatic objects and temporary objects bound to
1220 /// const reference. Will reuse Scope if not NULL.
addLocalScopeForVarDecl(VarDecl * VD,LocalScope * Scope)1221 LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
1222 LocalScope* Scope) {
1223 if (!BuildOpts.AddImplicitDtors)
1224 return Scope;
1225
1226 // Check if variable is local.
1227 switch (VD->getStorageClass()) {
1228 case SC_None:
1229 case SC_Auto:
1230 case SC_Register:
1231 break;
1232 default: return Scope;
1233 }
1234
1235 // Check for const references bound to temporary. Set type to pointee.
1236 QualType QT = VD->getType();
1237 if (QT.getTypePtr()->isReferenceType()) {
1238 // Attempt to determine whether this declaration lifetime-extends a
1239 // temporary.
1240 //
1241 // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
1242 // temporaries, and a single declaration can extend multiple temporaries.
1243 // We should look at the storage duration on each nested
1244 // MaterializeTemporaryExpr instead.
1245 const Expr *Init = VD->getInit();
1246 if (!Init)
1247 return Scope;
1248 if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init))
1249 Init = EWC->getSubExpr();
1250 if (!isa<MaterializeTemporaryExpr>(Init))
1251 return Scope;
1252
1253 // Lifetime-extending a temporary.
1254 QT = getReferenceInitTemporaryType(*Context, Init);
1255 }
1256
1257 // Check for constant size array. Set type to array element type.
1258 while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
1259 if (AT->getSize() == 0)
1260 return Scope;
1261 QT = AT->getElementType();
1262 }
1263
1264 // Check if type is a C++ class with non-trivial destructor.
1265 if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
1266 if (!CD->hasTrivialDestructor()) {
1267 // Add the variable to scope
1268 Scope = createOrReuseLocalScope(Scope);
1269 Scope->addVar(VD);
1270 ScopePos = Scope->begin();
1271 }
1272 return Scope;
1273 }
1274
1275 /// addLocalScopeAndDtors - For given statement add local scope for it and
1276 /// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
addLocalScopeAndDtors(Stmt * S)1277 void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
1278 if (!BuildOpts.AddImplicitDtors)
1279 return;
1280
1281 LocalScope::const_iterator scopeBeginPos = ScopePos;
1282 addLocalScopeForStmt(S);
1283 addAutomaticObjDtors(ScopePos, scopeBeginPos, S);
1284 }
1285
1286 /// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
1287 /// variables with automatic storage duration to CFGBlock's elements vector.
1288 /// Elements will be prepended to physical beginning of the vector which
1289 /// happens to be logical end. Use blocks terminator as statement that specifies
1290 /// destructors call site.
1291 /// FIXME: This mechanism for adding automatic destructors doesn't handle
1292 /// no-return destructors properly.
prependAutomaticObjDtorsWithTerminator(CFGBlock * Blk,LocalScope::const_iterator B,LocalScope::const_iterator E)1293 void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
1294 LocalScope::const_iterator B, LocalScope::const_iterator E) {
1295 BumpVectorContext &C = cfg->getBumpVectorContext();
1296 CFGBlock::iterator InsertPos
1297 = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
1298 for (LocalScope::const_iterator I = B; I != E; ++I)
1299 InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
1300 Blk->getTerminator());
1301 }
1302
1303 /// Visit - Walk the subtree of a statement and add extra
1304 /// blocks for ternary operators, &&, and ||. We also process "," and
1305 /// DeclStmts (which may contain nested control-flow).
Visit(Stmt * S,AddStmtChoice asc)1306 CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc) {
1307 if (!S) {
1308 badCFG = true;
1309 return nullptr;
1310 }
1311
1312 if (Expr *E = dyn_cast<Expr>(S))
1313 S = E->IgnoreParens();
1314
1315 switch (S->getStmtClass()) {
1316 default:
1317 return VisitStmt(S, asc);
1318
1319 case Stmt::AddrLabelExprClass:
1320 return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);
1321
1322 case Stmt::BinaryConditionalOperatorClass:
1323 return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);
1324
1325 case Stmt::BinaryOperatorClass:
1326 return VisitBinaryOperator(cast<BinaryOperator>(S), asc);
1327
1328 case Stmt::BlockExprClass:
1329 return VisitNoRecurse(cast<Expr>(S), asc);
1330
1331 case Stmt::BreakStmtClass:
1332 return VisitBreakStmt(cast<BreakStmt>(S));
1333
1334 case Stmt::CallExprClass:
1335 case Stmt::CXXOperatorCallExprClass:
1336 case Stmt::CXXMemberCallExprClass:
1337 case Stmt::UserDefinedLiteralClass:
1338 return VisitCallExpr(cast<CallExpr>(S), asc);
1339
1340 case Stmt::CaseStmtClass:
1341 return VisitCaseStmt(cast<CaseStmt>(S));
1342
1343 case Stmt::ChooseExprClass:
1344 return VisitChooseExpr(cast<ChooseExpr>(S), asc);
1345
1346 case Stmt::CompoundStmtClass:
1347 return VisitCompoundStmt(cast<CompoundStmt>(S));
1348
1349 case Stmt::ConditionalOperatorClass:
1350 return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);
1351
1352 case Stmt::ContinueStmtClass:
1353 return VisitContinueStmt(cast<ContinueStmt>(S));
1354
1355 case Stmt::CXXCatchStmtClass:
1356 return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));
1357
1358 case Stmt::ExprWithCleanupsClass:
1359 return VisitExprWithCleanups(cast<ExprWithCleanups>(S), asc);
1360
1361 case Stmt::CXXDefaultArgExprClass:
1362 case Stmt::CXXDefaultInitExprClass:
1363 // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
1364 // called function's declaration, not by the caller. If we simply add
1365 // this expression to the CFG, we could end up with the same Expr
1366 // appearing multiple times.
1367 // PR13385 / <rdar://problem/12156507>
1368 //
1369 // It's likewise possible for multiple CXXDefaultInitExprs for the same
1370 // expression to be used in the same function (through aggregate
1371 // initialization).
1372 return VisitStmt(S, asc);
1373
1374 case Stmt::CXXBindTemporaryExprClass:
1375 return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);
1376
1377 case Stmt::CXXConstructExprClass:
1378 return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);
1379
1380 case Stmt::CXXNewExprClass:
1381 return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);
1382
1383 case Stmt::CXXDeleteExprClass:
1384 return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);
1385
1386 case Stmt::CXXFunctionalCastExprClass:
1387 return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);
1388
1389 case Stmt::CXXTemporaryObjectExprClass:
1390 return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);
1391
1392 case Stmt::CXXThrowExprClass:
1393 return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));
1394
1395 case Stmt::CXXTryStmtClass:
1396 return VisitCXXTryStmt(cast<CXXTryStmt>(S));
1397
1398 case Stmt::CXXForRangeStmtClass:
1399 return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));
1400
1401 case Stmt::DeclStmtClass:
1402 return VisitDeclStmt(cast<DeclStmt>(S));
1403
1404 case Stmt::DefaultStmtClass:
1405 return VisitDefaultStmt(cast<DefaultStmt>(S));
1406
1407 case Stmt::DoStmtClass:
1408 return VisitDoStmt(cast<DoStmt>(S));
1409
1410 case Stmt::ForStmtClass:
1411 return VisitForStmt(cast<ForStmt>(S));
1412
1413 case Stmt::GotoStmtClass:
1414 return VisitGotoStmt(cast<GotoStmt>(S));
1415
1416 case Stmt::IfStmtClass:
1417 return VisitIfStmt(cast<IfStmt>(S));
1418
1419 case Stmt::ImplicitCastExprClass:
1420 return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);
1421
1422 case Stmt::IndirectGotoStmtClass:
1423 return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));
1424
1425 case Stmt::LabelStmtClass:
1426 return VisitLabelStmt(cast<LabelStmt>(S));
1427
1428 case Stmt::LambdaExprClass:
1429 return VisitLambdaExpr(cast<LambdaExpr>(S), asc);
1430
1431 case Stmt::MemberExprClass:
1432 return VisitMemberExpr(cast<MemberExpr>(S), asc);
1433
1434 case Stmt::NullStmtClass:
1435 return Block;
1436
1437 case Stmt::ObjCAtCatchStmtClass:
1438 return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));
1439
1440 case Stmt::ObjCAutoreleasePoolStmtClass:
1441 return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));
1442
1443 case Stmt::ObjCAtSynchronizedStmtClass:
1444 return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));
1445
1446 case Stmt::ObjCAtThrowStmtClass:
1447 return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));
1448
1449 case Stmt::ObjCAtTryStmtClass:
1450 return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));
1451
1452 case Stmt::ObjCForCollectionStmtClass:
1453 return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));
1454
1455 case Stmt::OpaqueValueExprClass:
1456 return Block;
1457
1458 case Stmt::PseudoObjectExprClass:
1459 return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));
1460
1461 case Stmt::ReturnStmtClass:
1462 return VisitReturnStmt(cast<ReturnStmt>(S));
1463
1464 case Stmt::UnaryExprOrTypeTraitExprClass:
1465 return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
1466 asc);
1467
1468 case Stmt::StmtExprClass:
1469 return VisitStmtExpr(cast<StmtExpr>(S), asc);
1470
1471 case Stmt::SwitchStmtClass:
1472 return VisitSwitchStmt(cast<SwitchStmt>(S));
1473
1474 case Stmt::UnaryOperatorClass:
1475 return VisitUnaryOperator(cast<UnaryOperator>(S), asc);
1476
1477 case Stmt::WhileStmtClass:
1478 return VisitWhileStmt(cast<WhileStmt>(S));
1479 }
1480 }
1481
VisitStmt(Stmt * S,AddStmtChoice asc)1482 CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
1483 if (asc.alwaysAdd(*this, S)) {
1484 autoCreateBlock();
1485 appendStmt(Block, S);
1486 }
1487
1488 return VisitChildren(S);
1489 }
1490
1491 /// VisitChildren - Visit the children of a Stmt.
VisitChildren(Stmt * S)1492 CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
1493 CFGBlock *B = Block;
1494
1495 // Visit the children in their reverse order so that they appear in
1496 // left-to-right (natural) order in the CFG.
1497 reverse_children RChildren(S);
1498 for (reverse_children::iterator I = RChildren.begin(), E = RChildren.end();
1499 I != E; ++I) {
1500 if (Stmt *Child = *I)
1501 if (CFGBlock *R = Visit(Child))
1502 B = R;
1503 }
1504 return B;
1505 }
1506
VisitAddrLabelExpr(AddrLabelExpr * A,AddStmtChoice asc)1507 CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
1508 AddStmtChoice asc) {
1509 AddressTakenLabels.insert(A->getLabel());
1510
1511 if (asc.alwaysAdd(*this, A)) {
1512 autoCreateBlock();
1513 appendStmt(Block, A);
1514 }
1515
1516 return Block;
1517 }
1518
VisitUnaryOperator(UnaryOperator * U,AddStmtChoice asc)1519 CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
1520 AddStmtChoice asc) {
1521 if (asc.alwaysAdd(*this, U)) {
1522 autoCreateBlock();
1523 appendStmt(Block, U);
1524 }
1525
1526 return Visit(U->getSubExpr(), AddStmtChoice());
1527 }
1528
VisitLogicalOperator(BinaryOperator * B)1529 CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
1530 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1531 appendStmt(ConfluenceBlock, B);
1532
1533 if (badCFG)
1534 return nullptr;
1535
1536 return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
1537 ConfluenceBlock).first;
1538 }
1539
1540 std::pair<CFGBlock*, CFGBlock*>
VisitLogicalOperator(BinaryOperator * B,Stmt * Term,CFGBlock * TrueBlock,CFGBlock * FalseBlock)1541 CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
1542 Stmt *Term,
1543 CFGBlock *TrueBlock,
1544 CFGBlock *FalseBlock) {
1545
1546 // Introspect the RHS. If it is a nested logical operation, we recursively
1547 // build the CFG using this function. Otherwise, resort to default
1548 // CFG construction behavior.
1549 Expr *RHS = B->getRHS()->IgnoreParens();
1550 CFGBlock *RHSBlock, *ExitBlock;
1551
1552 do {
1553 if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
1554 if (B_RHS->isLogicalOp()) {
1555 std::tie(RHSBlock, ExitBlock) =
1556 VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
1557 break;
1558 }
1559
1560 // The RHS is not a nested logical operation. Don't push the terminator
1561 // down further, but instead visit RHS and construct the respective
1562 // pieces of the CFG, and link up the RHSBlock with the terminator
1563 // we have been provided.
1564 ExitBlock = RHSBlock = createBlock(false);
1565
1566 if (!Term) {
1567 assert(TrueBlock == FalseBlock);
1568 addSuccessor(RHSBlock, TrueBlock);
1569 }
1570 else {
1571 RHSBlock->setTerminator(Term);
1572 TryResult KnownVal = tryEvaluateBool(RHS);
1573 if (!KnownVal.isKnown())
1574 KnownVal = tryEvaluateBool(B);
1575 addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
1576 addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
1577 }
1578
1579 Block = RHSBlock;
1580 RHSBlock = addStmt(RHS);
1581 }
1582 while (false);
1583
1584 if (badCFG)
1585 return std::make_pair(nullptr, nullptr);
1586
1587 // Generate the blocks for evaluating the LHS.
1588 Expr *LHS = B->getLHS()->IgnoreParens();
1589
1590 if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
1591 if (B_LHS->isLogicalOp()) {
1592 if (B->getOpcode() == BO_LOr)
1593 FalseBlock = RHSBlock;
1594 else
1595 TrueBlock = RHSBlock;
1596
1597 // For the LHS, treat 'B' as the terminator that we want to sink
1598 // into the nested branch. The RHS always gets the top-most
1599 // terminator.
1600 return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
1601 }
1602
1603 // Create the block evaluating the LHS.
1604 // This contains the '&&' or '||' as the terminator.
1605 CFGBlock *LHSBlock = createBlock(false);
1606 LHSBlock->setTerminator(B);
1607
1608 Block = LHSBlock;
1609 CFGBlock *EntryLHSBlock = addStmt(LHS);
1610
1611 if (badCFG)
1612 return std::make_pair(nullptr, nullptr);
1613
1614 // See if this is a known constant.
1615 TryResult KnownVal = tryEvaluateBool(LHS);
1616
1617 // Now link the LHSBlock with RHSBlock.
1618 if (B->getOpcode() == BO_LOr) {
1619 addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
1620 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
1621 } else {
1622 assert(B->getOpcode() == BO_LAnd);
1623 addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
1624 addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
1625 }
1626
1627 return std::make_pair(EntryLHSBlock, ExitBlock);
1628 }
1629
1630
VisitBinaryOperator(BinaryOperator * B,AddStmtChoice asc)1631 CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
1632 AddStmtChoice asc) {
1633 // && or ||
1634 if (B->isLogicalOp())
1635 return VisitLogicalOperator(B);
1636
1637 if (B->getOpcode() == BO_Comma) { // ,
1638 autoCreateBlock();
1639 appendStmt(Block, B);
1640 addStmt(B->getRHS());
1641 return addStmt(B->getLHS());
1642 }
1643
1644 if (B->isAssignmentOp()) {
1645 if (asc.alwaysAdd(*this, B)) {
1646 autoCreateBlock();
1647 appendStmt(Block, B);
1648 }
1649 Visit(B->getLHS());
1650 return Visit(B->getRHS());
1651 }
1652
1653 if (asc.alwaysAdd(*this, B)) {
1654 autoCreateBlock();
1655 appendStmt(Block, B);
1656 }
1657
1658 CFGBlock *RBlock = Visit(B->getRHS());
1659 CFGBlock *LBlock = Visit(B->getLHS());
1660 // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
1661 // containing a DoStmt, and the LHS doesn't create a new block, then we should
1662 // return RBlock. Otherwise we'll incorrectly return NULL.
1663 return (LBlock ? LBlock : RBlock);
1664 }
1665
VisitNoRecurse(Expr * E,AddStmtChoice asc)1666 CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
1667 if (asc.alwaysAdd(*this, E)) {
1668 autoCreateBlock();
1669 appendStmt(Block, E);
1670 }
1671 return Block;
1672 }
1673
VisitBreakStmt(BreakStmt * B)1674 CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
1675 // "break" is a control-flow statement. Thus we stop processing the current
1676 // block.
1677 if (badCFG)
1678 return nullptr;
1679
1680 // Now create a new block that ends with the break statement.
1681 Block = createBlock(false);
1682 Block->setTerminator(B);
1683
1684 // If there is no target for the break, then we are looking at an incomplete
1685 // AST. This means that the CFG cannot be constructed.
1686 if (BreakJumpTarget.block) {
1687 addAutomaticObjDtors(ScopePos, BreakJumpTarget.scopePosition, B);
1688 addSuccessor(Block, BreakJumpTarget.block);
1689 } else
1690 badCFG = true;
1691
1692
1693 return Block;
1694 }
1695
CanThrow(Expr * E,ASTContext & Ctx)1696 static bool CanThrow(Expr *E, ASTContext &Ctx) {
1697 QualType Ty = E->getType();
1698 if (Ty->isFunctionPointerType())
1699 Ty = Ty->getAs<PointerType>()->getPointeeType();
1700 else if (Ty->isBlockPointerType())
1701 Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
1702
1703 const FunctionType *FT = Ty->getAs<FunctionType>();
1704 if (FT) {
1705 if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
1706 if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
1707 Proto->isNothrow(Ctx))
1708 return false;
1709 }
1710 return true;
1711 }
1712
VisitCallExpr(CallExpr * C,AddStmtChoice asc)1713 CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
1714 // Compute the callee type.
1715 QualType calleeType = C->getCallee()->getType();
1716 if (calleeType == Context->BoundMemberTy) {
1717 QualType boundType = Expr::findBoundMemberType(C->getCallee());
1718
1719 // We should only get a null bound type if processing a dependent
1720 // CFG. Recover by assuming nothing.
1721 if (!boundType.isNull()) calleeType = boundType;
1722 }
1723
1724 // If this is a call to a no-return function, this stops the block here.
1725 bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();
1726
1727 bool AddEHEdge = false;
1728
1729 // Languages without exceptions are assumed to not throw.
1730 if (Context->getLangOpts().Exceptions) {
1731 if (BuildOpts.AddEHEdges)
1732 AddEHEdge = true;
1733 }
1734
1735 // If this is a call to a builtin function, it might not actually evaluate
1736 // its arguments. Don't add them to the CFG if this is the case.
1737 bool OmitArguments = false;
1738
1739 if (FunctionDecl *FD = C->getDirectCallee()) {
1740 if (FD->isNoReturn())
1741 NoReturn = true;
1742 if (FD->hasAttr<NoThrowAttr>())
1743 AddEHEdge = false;
1744 if (FD->getBuiltinID() == Builtin::BI__builtin_object_size)
1745 OmitArguments = true;
1746 }
1747
1748 if (!CanThrow(C->getCallee(), *Context))
1749 AddEHEdge = false;
1750
1751 if (OmitArguments) {
1752 assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
1753 assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
1754 autoCreateBlock();
1755 appendStmt(Block, C);
1756 return Visit(C->getCallee());
1757 }
1758
1759 if (!NoReturn && !AddEHEdge) {
1760 return VisitStmt(C, asc.withAlwaysAdd(true));
1761 }
1762
1763 if (Block) {
1764 Succ = Block;
1765 if (badCFG)
1766 return nullptr;
1767 }
1768
1769 if (NoReturn)
1770 Block = createNoReturnBlock();
1771 else
1772 Block = createBlock();
1773
1774 appendStmt(Block, C);
1775
1776 if (AddEHEdge) {
1777 // Add exceptional edges.
1778 if (TryTerminatedBlock)
1779 addSuccessor(Block, TryTerminatedBlock);
1780 else
1781 addSuccessor(Block, &cfg->getExit());
1782 }
1783
1784 return VisitChildren(C);
1785 }
1786
VisitChooseExpr(ChooseExpr * C,AddStmtChoice asc)1787 CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
1788 AddStmtChoice asc) {
1789 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1790 appendStmt(ConfluenceBlock, C);
1791 if (badCFG)
1792 return nullptr;
1793
1794 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1795 Succ = ConfluenceBlock;
1796 Block = nullptr;
1797 CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
1798 if (badCFG)
1799 return nullptr;
1800
1801 Succ = ConfluenceBlock;
1802 Block = nullptr;
1803 CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
1804 if (badCFG)
1805 return nullptr;
1806
1807 Block = createBlock(false);
1808 // See if this is a known constant.
1809 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1810 addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
1811 addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
1812 Block->setTerminator(C);
1813 return addStmt(C->getCond());
1814 }
1815
1816
VisitCompoundStmt(CompoundStmt * C)1817 CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C) {
1818 addLocalScopeAndDtors(C);
1819 CFGBlock *LastBlock = Block;
1820
1821 for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
1822 I != E; ++I ) {
1823 // If we hit a segment of code just containing ';' (NullStmts), we can
1824 // get a null block back. In such cases, just use the LastBlock
1825 if (CFGBlock *newBlock = addStmt(*I))
1826 LastBlock = newBlock;
1827
1828 if (badCFG)
1829 return nullptr;
1830 }
1831
1832 return LastBlock;
1833 }
1834
VisitConditionalOperator(AbstractConditionalOperator * C,AddStmtChoice asc)1835 CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
1836 AddStmtChoice asc) {
1837 const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
1838 const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);
1839
1840 // Create the confluence block that will "merge" the results of the ternary
1841 // expression.
1842 CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
1843 appendStmt(ConfluenceBlock, C);
1844 if (badCFG)
1845 return nullptr;
1846
1847 AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
1848
1849 // Create a block for the LHS expression if there is an LHS expression. A
1850 // GCC extension allows LHS to be NULL, causing the condition to be the
1851 // value that is returned instead.
1852 // e.g: x ?: y is shorthand for: x ? x : y;
1853 Succ = ConfluenceBlock;
1854 Block = nullptr;
1855 CFGBlock *LHSBlock = nullptr;
1856 const Expr *trueExpr = C->getTrueExpr();
1857 if (trueExpr != opaqueValue) {
1858 LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
1859 if (badCFG)
1860 return nullptr;
1861 Block = nullptr;
1862 }
1863 else
1864 LHSBlock = ConfluenceBlock;
1865
1866 // Create the block for the RHS expression.
1867 Succ = ConfluenceBlock;
1868 CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
1869 if (badCFG)
1870 return nullptr;
1871
1872 // If the condition is a logical '&&' or '||', build a more accurate CFG.
1873 if (BinaryOperator *Cond =
1874 dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
1875 if (Cond->isLogicalOp())
1876 return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;
1877
1878 // Create the block that will contain the condition.
1879 Block = createBlock(false);
1880
1881 // See if this is a known constant.
1882 const TryResult& KnownVal = tryEvaluateBool(C->getCond());
1883 addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
1884 addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
1885 Block->setTerminator(C);
1886 Expr *condExpr = C->getCond();
1887
1888 if (opaqueValue) {
1889 // Run the condition expression if it's not trivially expressed in
1890 // terms of the opaque value (or if there is no opaque value).
1891 if (condExpr != opaqueValue)
1892 addStmt(condExpr);
1893
1894 // Before that, run the common subexpression if there was one.
1895 // At least one of this or the above will be run.
1896 return addStmt(BCO->getCommon());
1897 }
1898
1899 return addStmt(condExpr);
1900 }
1901
VisitDeclStmt(DeclStmt * DS)1902 CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
1903 // Check if the Decl is for an __label__. If so, elide it from the
1904 // CFG entirely.
1905 if (isa<LabelDecl>(*DS->decl_begin()))
1906 return Block;
1907
1908 // This case also handles static_asserts.
1909 if (DS->isSingleDecl())
1910 return VisitDeclSubExpr(DS);
1911
1912 CFGBlock *B = nullptr;
1913
1914 // Build an individual DeclStmt for each decl.
1915 for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
1916 E = DS->decl_rend();
1917 I != E; ++I) {
1918 // Get the alignment of the new DeclStmt, padding out to >=8 bytes.
1919 unsigned A = llvm::AlignOf<DeclStmt>::Alignment < 8
1920 ? 8 : llvm::AlignOf<DeclStmt>::Alignment;
1921
1922 // Allocate the DeclStmt using the BumpPtrAllocator. It will get
1923 // automatically freed with the CFG.
1924 DeclGroupRef DG(*I);
1925 Decl *D = *I;
1926 void *Mem = cfg->getAllocator().Allocate(sizeof(DeclStmt), A);
1927 DeclStmt *DSNew = new (Mem) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
1928 cfg->addSyntheticDeclStmt(DSNew, DS);
1929
1930 // Append the fake DeclStmt to block.
1931 B = VisitDeclSubExpr(DSNew);
1932 }
1933
1934 return B;
1935 }
1936
1937 /// VisitDeclSubExpr - Utility method to add block-level expressions for
1938 /// DeclStmts and initializers in them.
VisitDeclSubExpr(DeclStmt * DS)1939 CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
1940 assert(DS->isSingleDecl() && "Can handle single declarations only.");
1941 VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());
1942
1943 if (!VD) {
1944 // Of everything that can be declared in a DeclStmt, only VarDecls impact
1945 // runtime semantics.
1946 return Block;
1947 }
1948
1949 bool IsReference = false;
1950 bool HasTemporaries = false;
1951
1952 // Guard static initializers under a branch.
1953 CFGBlock *blockAfterStaticInit = nullptr;
1954
1955 if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
1956 // For static variables, we need to create a branch to track
1957 // whether or not they are initialized.
1958 if (Block) {
1959 Succ = Block;
1960 Block = nullptr;
1961 if (badCFG)
1962 return nullptr;
1963 }
1964 blockAfterStaticInit = Succ;
1965 }
1966
1967 // Destructors of temporaries in initialization expression should be called
1968 // after initialization finishes.
1969 Expr *Init = VD->getInit();
1970 if (Init) {
1971 IsReference = VD->getType()->isReferenceType();
1972 HasTemporaries = isa<ExprWithCleanups>(Init);
1973
1974 if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
1975 // Generate destructors for temporaries in initialization expression.
1976 VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
1977 IsReference);
1978 }
1979 }
1980
1981 autoCreateBlock();
1982 appendStmt(Block, DS);
1983
1984 // Keep track of the last non-null block, as 'Block' can be nulled out
1985 // if the initializer expression is something like a 'while' in a
1986 // statement-expression.
1987 CFGBlock *LastBlock = Block;
1988
1989 if (Init) {
1990 if (HasTemporaries) {
1991 // For expression with temporaries go directly to subexpression to omit
1992 // generating destructors for the second time.
1993 ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
1994 if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
1995 LastBlock = newBlock;
1996 }
1997 else {
1998 if (CFGBlock *newBlock = Visit(Init))
1999 LastBlock = newBlock;
2000 }
2001 }
2002
2003 // If the type of VD is a VLA, then we must process its size expressions.
2004 for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
2005 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
2006 if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
2007 LastBlock = newBlock;
2008 }
2009
2010 // Remove variable from local scope.
2011 if (ScopePos && VD == *ScopePos)
2012 ++ScopePos;
2013
2014 CFGBlock *B = LastBlock;
2015 if (blockAfterStaticInit) {
2016 Succ = B;
2017 Block = createBlock(false);
2018 Block->setTerminator(DS);
2019 addSuccessor(Block, blockAfterStaticInit);
2020 addSuccessor(Block, B);
2021 B = Block;
2022 }
2023
2024 return B;
2025 }
2026
VisitIfStmt(IfStmt * I)2027 CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
2028 // We may see an if statement in the middle of a basic block, or it may be the
2029 // first statement we are processing. In either case, we create a new basic
2030 // block. First, we create the blocks for the then...else statements, and
2031 // then we create the block containing the if statement. If we were in the
2032 // middle of a block, we stop processing that block. That block is then the
2033 // implicit successor for the "then" and "else" clauses.
2034
2035 // Save local scope position because in case of condition variable ScopePos
2036 // won't be restored when traversing AST.
2037 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2038
2039 // Create local scope for possible condition variable.
2040 // Store scope position. Add implicit destructor.
2041 if (VarDecl *VD = I->getConditionVariable()) {
2042 LocalScope::const_iterator BeginScopePos = ScopePos;
2043 addLocalScopeForVarDecl(VD);
2044 addAutomaticObjDtors(ScopePos, BeginScopePos, I);
2045 }
2046
2047 // The block we were processing is now finished. Make it the successor
2048 // block.
2049 if (Block) {
2050 Succ = Block;
2051 if (badCFG)
2052 return nullptr;
2053 }
2054
2055 // Process the false branch.
2056 CFGBlock *ElseBlock = Succ;
2057
2058 if (Stmt *Else = I->getElse()) {
2059 SaveAndRestore<CFGBlock*> sv(Succ);
2060
2061 // NULL out Block so that the recursive call to Visit will
2062 // create a new basic block.
2063 Block = nullptr;
2064
2065 // If branch is not a compound statement create implicit scope
2066 // and add destructors.
2067 if (!isa<CompoundStmt>(Else))
2068 addLocalScopeAndDtors(Else);
2069
2070 ElseBlock = addStmt(Else);
2071
2072 if (!ElseBlock) // Can occur when the Else body has all NullStmts.
2073 ElseBlock = sv.get();
2074 else if (Block) {
2075 if (badCFG)
2076 return nullptr;
2077 }
2078 }
2079
2080 // Process the true branch.
2081 CFGBlock *ThenBlock;
2082 {
2083 Stmt *Then = I->getThen();
2084 assert(Then);
2085 SaveAndRestore<CFGBlock*> sv(Succ);
2086 Block = nullptr;
2087
2088 // If branch is not a compound statement create implicit scope
2089 // and add destructors.
2090 if (!isa<CompoundStmt>(Then))
2091 addLocalScopeAndDtors(Then);
2092
2093 ThenBlock = addStmt(Then);
2094
2095 if (!ThenBlock) {
2096 // We can reach here if the "then" body has all NullStmts.
2097 // Create an empty block so we can distinguish between true and false
2098 // branches in path-sensitive analyses.
2099 ThenBlock = createBlock(false);
2100 addSuccessor(ThenBlock, sv.get());
2101 } else if (Block) {
2102 if (badCFG)
2103 return nullptr;
2104 }
2105 }
2106
2107 // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
2108 // having these handle the actual control-flow jump. Note that
2109 // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
2110 // we resort to the old control-flow behavior. This special handling
2111 // removes infeasible paths from the control-flow graph by having the
2112 // control-flow transfer of '&&' or '||' go directly into the then/else
2113 // blocks directly.
2114 if (!I->getConditionVariable())
2115 if (BinaryOperator *Cond =
2116 dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()))
2117 if (Cond->isLogicalOp())
2118 return VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
2119
2120 // Now create a new block containing the if statement.
2121 Block = createBlock(false);
2122
2123 // Set the terminator of the new block to the If statement.
2124 Block->setTerminator(I);
2125
2126 // See if this is a known constant.
2127 const TryResult &KnownVal = tryEvaluateBool(I->getCond());
2128
2129 // Add the successors. If we know that specific branches are
2130 // unreachable, inform addSuccessor() of that knowledge.
2131 addSuccessor(Block, ThenBlock, /* isReachable = */ !KnownVal.isFalse());
2132 addSuccessor(Block, ElseBlock, /* isReachable = */ !KnownVal.isTrue());
2133
2134 // Add the condition as the last statement in the new block. This may create
2135 // new blocks as the condition may contain control-flow. Any newly created
2136 // blocks will be pointed to be "Block".
2137 CFGBlock *LastBlock = addStmt(I->getCond());
2138
2139 // Finally, if the IfStmt contains a condition variable, add it and its
2140 // initializer to the CFG.
2141 if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
2142 autoCreateBlock();
2143 LastBlock = addStmt(const_cast<DeclStmt *>(DS));
2144 }
2145
2146 return LastBlock;
2147 }
2148
2149
VisitReturnStmt(ReturnStmt * R)2150 CFGBlock *CFGBuilder::VisitReturnStmt(ReturnStmt *R) {
2151 // If we were in the middle of a block we stop processing that block.
2152 //
2153 // NOTE: If a "return" appears in the middle of a block, this means that the
2154 // code afterwards is DEAD (unreachable). We still keep a basic block
2155 // for that code; a simple "mark-and-sweep" from the entry block will be
2156 // able to report such dead blocks.
2157
2158 // Create the new block.
2159 Block = createBlock(false);
2160
2161 addAutomaticObjDtors(ScopePos, LocalScope::const_iterator(), R);
2162
2163 // If the one of the destructors does not return, we already have the Exit
2164 // block as a successor.
2165 if (!Block->hasNoReturnElement())
2166 addSuccessor(Block, &cfg->getExit());
2167
2168 // Add the return statement to the block. This may create new blocks if R
2169 // contains control-flow (short-circuit operations).
2170 return VisitStmt(R, AddStmtChoice::AlwaysAdd);
2171 }
2172
VisitLabelStmt(LabelStmt * L)2173 CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
2174 // Get the block of the labeled statement. Add it to our map.
2175 addStmt(L->getSubStmt());
2176 CFGBlock *LabelBlock = Block;
2177
2178 if (!LabelBlock) // This can happen when the body is empty, i.e.
2179 LabelBlock = createBlock(); // scopes that only contains NullStmts.
2180
2181 assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
2182 "label already in map");
2183 LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);
2184
2185 // Labels partition blocks, so this is the end of the basic block we were
2186 // processing (L is the block's label). Because this is label (and we have
2187 // already processed the substatement) there is no extra control-flow to worry
2188 // about.
2189 LabelBlock->setLabel(L);
2190 if (badCFG)
2191 return nullptr;
2192
2193 // We set Block to NULL to allow lazy creation of a new block (if necessary);
2194 Block = nullptr;
2195
2196 // This block is now the implicit successor of other blocks.
2197 Succ = LabelBlock;
2198
2199 return LabelBlock;
2200 }
2201
VisitLambdaExpr(LambdaExpr * E,AddStmtChoice asc)2202 CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
2203 CFGBlock *LastBlock = VisitNoRecurse(E, asc);
2204 for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
2205 et = E->capture_init_end(); it != et; ++it) {
2206 if (Expr *Init = *it) {
2207 CFGBlock *Tmp = Visit(Init);
2208 if (Tmp)
2209 LastBlock = Tmp;
2210 }
2211 }
2212 return LastBlock;
2213 }
2214
VisitGotoStmt(GotoStmt * G)2215 CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
2216 // Goto is a control-flow statement. Thus we stop processing the current
2217 // block and create a new one.
2218
2219 Block = createBlock(false);
2220 Block->setTerminator(G);
2221
2222 // If we already know the mapping to the label block add the successor now.
2223 LabelMapTy::iterator I = LabelMap.find(G->getLabel());
2224
2225 if (I == LabelMap.end())
2226 // We will need to backpatch this block later.
2227 BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
2228 else {
2229 JumpTarget JT = I->second;
2230 addAutomaticObjDtors(ScopePos, JT.scopePosition, G);
2231 addSuccessor(Block, JT.block);
2232 }
2233
2234 return Block;
2235 }
2236
VisitForStmt(ForStmt * F)2237 CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
2238 CFGBlock *LoopSuccessor = nullptr;
2239
2240 // Save local scope position because in case of condition variable ScopePos
2241 // won't be restored when traversing AST.
2242 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2243
2244 // Create local scope for init statement and possible condition variable.
2245 // Add destructor for init statement and condition variable.
2246 // Store scope position for continue statement.
2247 if (Stmt *Init = F->getInit())
2248 addLocalScopeForStmt(Init);
2249 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2250
2251 if (VarDecl *VD = F->getConditionVariable())
2252 addLocalScopeForVarDecl(VD);
2253 LocalScope::const_iterator ContinueScopePos = ScopePos;
2254
2255 addAutomaticObjDtors(ScopePos, save_scope_pos.get(), F);
2256
2257 // "for" is a control-flow statement. Thus we stop processing the current
2258 // block.
2259 if (Block) {
2260 if (badCFG)
2261 return nullptr;
2262 LoopSuccessor = Block;
2263 } else
2264 LoopSuccessor = Succ;
2265
2266 // Save the current value for the break targets.
2267 // All breaks should go to the code following the loop.
2268 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2269 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2270
2271 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
2272
2273 // Now create the loop body.
2274 {
2275 assert(F->getBody());
2276
2277 // Save the current values for Block, Succ, continue and break targets.
2278 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2279 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
2280
2281 // Create an empty block to represent the transition block for looping back
2282 // to the head of the loop. If we have increment code, it will
2283 // go in this block as well.
2284 Block = Succ = TransitionBlock = createBlock(false);
2285 TransitionBlock->setLoopTarget(F);
2286
2287 if (Stmt *I = F->getInc()) {
2288 // Generate increment code in its own basic block. This is the target of
2289 // continue statements.
2290 Succ = addStmt(I);
2291 }
2292
2293 // Finish up the increment (or empty) block if it hasn't been already.
2294 if (Block) {
2295 assert(Block == Succ);
2296 if (badCFG)
2297 return nullptr;
2298 Block = nullptr;
2299 }
2300
2301 // The starting block for the loop increment is the block that should
2302 // represent the 'loop target' for looping back to the start of the loop.
2303 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
2304 ContinueJumpTarget.block->setLoopTarget(F);
2305
2306 // Loop body should end with destructor of Condition variable (if any).
2307 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, F);
2308
2309 // If body is not a compound statement create implicit scope
2310 // and add destructors.
2311 if (!isa<CompoundStmt>(F->getBody()))
2312 addLocalScopeAndDtors(F->getBody());
2313
2314 // Now populate the body block, and in the process create new blocks as we
2315 // walk the body of the loop.
2316 BodyBlock = addStmt(F->getBody());
2317
2318 if (!BodyBlock) {
2319 // In the case of "for (...;...;...);" we can have a null BodyBlock.
2320 // Use the continue jump target as the proxy for the body.
2321 BodyBlock = ContinueJumpTarget.block;
2322 }
2323 else if (badCFG)
2324 return nullptr;
2325 }
2326
2327 // Because of short-circuit evaluation, the condition of the loop can span
2328 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
2329 // evaluate the condition.
2330 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
2331
2332 do {
2333 Expr *C = F->getCond();
2334
2335 // Specially handle logical operators, which have a slightly
2336 // more optimal CFG representation.
2337 if (BinaryOperator *Cond =
2338 dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
2339 if (Cond->isLogicalOp()) {
2340 std::tie(EntryConditionBlock, ExitConditionBlock) =
2341 VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
2342 break;
2343 }
2344
2345 // The default case when not handling logical operators.
2346 EntryConditionBlock = ExitConditionBlock = createBlock(false);
2347 ExitConditionBlock->setTerminator(F);
2348
2349 // See if this is a known constant.
2350 TryResult KnownVal(true);
2351
2352 if (C) {
2353 // Now add the actual condition to the condition block.
2354 // Because the condition itself may contain control-flow, new blocks may
2355 // be created. Thus we update "Succ" after adding the condition.
2356 Block = ExitConditionBlock;
2357 EntryConditionBlock = addStmt(C);
2358
2359 // If this block contains a condition variable, add both the condition
2360 // variable and initializer to the CFG.
2361 if (VarDecl *VD = F->getConditionVariable()) {
2362 if (Expr *Init = VD->getInit()) {
2363 autoCreateBlock();
2364 appendStmt(Block, F->getConditionVariableDeclStmt());
2365 EntryConditionBlock = addStmt(Init);
2366 assert(Block == EntryConditionBlock);
2367 }
2368 }
2369
2370 if (Block && badCFG)
2371 return nullptr;
2372
2373 KnownVal = tryEvaluateBool(C);
2374 }
2375
2376 // Add the loop body entry as a successor to the condition.
2377 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
2378 // Link up the condition block with the code that follows the loop. (the
2379 // false branch).
2380 addSuccessor(ExitConditionBlock,
2381 KnownVal.isTrue() ? nullptr : LoopSuccessor);
2382
2383 } while (false);
2384
2385 // Link up the loop-back block to the entry condition block.
2386 addSuccessor(TransitionBlock, EntryConditionBlock);
2387
2388 // The condition block is the implicit successor for any code above the loop.
2389 Succ = EntryConditionBlock;
2390
2391 // If the loop contains initialization, create a new block for those
2392 // statements. This block can also contain statements that precede the loop.
2393 if (Stmt *I = F->getInit()) {
2394 Block = createBlock();
2395 return addStmt(I);
2396 }
2397
2398 // There is no loop initialization. We are thus basically a while loop.
2399 // NULL out Block to force lazy block construction.
2400 Block = nullptr;
2401 Succ = EntryConditionBlock;
2402 return EntryConditionBlock;
2403 }
2404
VisitMemberExpr(MemberExpr * M,AddStmtChoice asc)2405 CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
2406 if (asc.alwaysAdd(*this, M)) {
2407 autoCreateBlock();
2408 appendStmt(Block, M);
2409 }
2410 return Visit(M->getBase());
2411 }
2412
VisitObjCForCollectionStmt(ObjCForCollectionStmt * S)2413 CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
2414 // Objective-C fast enumeration 'for' statements:
2415 // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
2416 //
2417 // for ( Type newVariable in collection_expression ) { statements }
2418 //
2419 // becomes:
2420 //
2421 // prologue:
2422 // 1. collection_expression
2423 // T. jump to loop_entry
2424 // loop_entry:
2425 // 1. side-effects of element expression
2426 // 1. ObjCForCollectionStmt [performs binding to newVariable]
2427 // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil]
2428 // TB:
2429 // statements
2430 // T. jump to loop_entry
2431 // FB:
2432 // what comes after
2433 //
2434 // and
2435 //
2436 // Type existingItem;
2437 // for ( existingItem in expression ) { statements }
2438 //
2439 // becomes:
2440 //
2441 // the same with newVariable replaced with existingItem; the binding works
2442 // the same except that for one ObjCForCollectionStmt::getElement() returns
2443 // a DeclStmt and the other returns a DeclRefExpr.
2444 //
2445
2446 CFGBlock *LoopSuccessor = nullptr;
2447
2448 if (Block) {
2449 if (badCFG)
2450 return nullptr;
2451 LoopSuccessor = Block;
2452 Block = nullptr;
2453 } else
2454 LoopSuccessor = Succ;
2455
2456 // Build the condition blocks.
2457 CFGBlock *ExitConditionBlock = createBlock(false);
2458
2459 // Set the terminator for the "exit" condition block.
2460 ExitConditionBlock->setTerminator(S);
2461
2462 // The last statement in the block should be the ObjCForCollectionStmt, which
2463 // performs the actual binding to 'element' and determines if there are any
2464 // more items in the collection.
2465 appendStmt(ExitConditionBlock, S);
2466 Block = ExitConditionBlock;
2467
2468 // Walk the 'element' expression to see if there are any side-effects. We
2469 // generate new blocks as necessary. We DON'T add the statement by default to
2470 // the CFG unless it contains control-flow.
2471 CFGBlock *EntryConditionBlock = Visit(S->getElement(),
2472 AddStmtChoice::NotAlwaysAdd);
2473 if (Block) {
2474 if (badCFG)
2475 return nullptr;
2476 Block = nullptr;
2477 }
2478
2479 // The condition block is the implicit successor for the loop body as well as
2480 // any code above the loop.
2481 Succ = EntryConditionBlock;
2482
2483 // Now create the true branch.
2484 {
2485 // Save the current values for Succ, continue and break targets.
2486 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2487 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2488 save_break(BreakJumpTarget);
2489
2490 // Add an intermediate block between the BodyBlock and the
2491 // EntryConditionBlock to represent the "loop back" transition, for looping
2492 // back to the head of the loop.
2493 CFGBlock *LoopBackBlock = nullptr;
2494 Succ = LoopBackBlock = createBlock();
2495 LoopBackBlock->setLoopTarget(S);
2496
2497 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2498 ContinueJumpTarget = JumpTarget(Succ, ScopePos);
2499
2500 CFGBlock *BodyBlock = addStmt(S->getBody());
2501
2502 if (!BodyBlock)
2503 BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
2504 else if (Block) {
2505 if (badCFG)
2506 return nullptr;
2507 }
2508
2509 // This new body block is a successor to our "exit" condition block.
2510 addSuccessor(ExitConditionBlock, BodyBlock);
2511 }
2512
2513 // Link up the condition block with the code that follows the loop.
2514 // (the false branch).
2515 addSuccessor(ExitConditionBlock, LoopSuccessor);
2516
2517 // Now create a prologue block to contain the collection expression.
2518 Block = createBlock();
2519 return addStmt(S->getCollection());
2520 }
2521
VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt * S)2522 CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
2523 // Inline the body.
2524 return addStmt(S->getSubStmt());
2525 // TODO: consider adding cleanups for the end of @autoreleasepool scope.
2526 }
2527
VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt * S)2528 CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
2529 // FIXME: Add locking 'primitives' to CFG for @synchronized.
2530
2531 // Inline the body.
2532 CFGBlock *SyncBlock = addStmt(S->getSynchBody());
2533
2534 // The sync body starts its own basic block. This makes it a little easier
2535 // for diagnostic clients.
2536 if (SyncBlock) {
2537 if (badCFG)
2538 return nullptr;
2539
2540 Block = nullptr;
2541 Succ = SyncBlock;
2542 }
2543
2544 // Add the @synchronized to the CFG.
2545 autoCreateBlock();
2546 appendStmt(Block, S);
2547
2548 // Inline the sync expression.
2549 return addStmt(S->getSynchExpr());
2550 }
2551
VisitObjCAtTryStmt(ObjCAtTryStmt * S)2552 CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
2553 // FIXME
2554 return NYS();
2555 }
2556
VisitPseudoObjectExpr(PseudoObjectExpr * E)2557 CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
2558 autoCreateBlock();
2559
2560 // Add the PseudoObject as the last thing.
2561 appendStmt(Block, E);
2562
2563 CFGBlock *lastBlock = Block;
2564
2565 // Before that, evaluate all of the semantics in order. In
2566 // CFG-land, that means appending them in reverse order.
2567 for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
2568 Expr *Semantic = E->getSemanticExpr(--i);
2569
2570 // If the semantic is an opaque value, we're being asked to bind
2571 // it to its source expression.
2572 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
2573 Semantic = OVE->getSourceExpr();
2574
2575 if (CFGBlock *B = Visit(Semantic))
2576 lastBlock = B;
2577 }
2578
2579 return lastBlock;
2580 }
2581
VisitWhileStmt(WhileStmt * W)2582 CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
2583 CFGBlock *LoopSuccessor = nullptr;
2584
2585 // Save local scope position because in case of condition variable ScopePos
2586 // won't be restored when traversing AST.
2587 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2588
2589 // Create local scope for possible condition variable.
2590 // Store scope position for continue statement.
2591 LocalScope::const_iterator LoopBeginScopePos = ScopePos;
2592 if (VarDecl *VD = W->getConditionVariable()) {
2593 addLocalScopeForVarDecl(VD);
2594 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2595 }
2596
2597 // "while" is a control-flow statement. Thus we stop processing the current
2598 // block.
2599 if (Block) {
2600 if (badCFG)
2601 return nullptr;
2602 LoopSuccessor = Block;
2603 Block = nullptr;
2604 } else {
2605 LoopSuccessor = Succ;
2606 }
2607
2608 CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;
2609
2610 // Process the loop body.
2611 {
2612 assert(W->getBody());
2613
2614 // Save the current values for Block, Succ, continue and break targets.
2615 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2616 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2617 save_break(BreakJumpTarget);
2618
2619 // Create an empty block to represent the transition block for looping back
2620 // to the head of the loop.
2621 Succ = TransitionBlock = createBlock(false);
2622 TransitionBlock->setLoopTarget(W);
2623 ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);
2624
2625 // All breaks should go to the code following the loop.
2626 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2627
2628 // Loop body should end with destructor of Condition variable (if any).
2629 addAutomaticObjDtors(ScopePos, LoopBeginScopePos, W);
2630
2631 // If body is not a compound statement create implicit scope
2632 // and add destructors.
2633 if (!isa<CompoundStmt>(W->getBody()))
2634 addLocalScopeAndDtors(W->getBody());
2635
2636 // Create the body. The returned block is the entry to the loop body.
2637 BodyBlock = addStmt(W->getBody());
2638
2639 if (!BodyBlock)
2640 BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
2641 else if (Block && badCFG)
2642 return nullptr;
2643 }
2644
2645 // Because of short-circuit evaluation, the condition of the loop can span
2646 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
2647 // evaluate the condition.
2648 CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;
2649
2650 do {
2651 Expr *C = W->getCond();
2652
2653 // Specially handle logical operators, which have a slightly
2654 // more optimal CFG representation.
2655 if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
2656 if (Cond->isLogicalOp()) {
2657 std::tie(EntryConditionBlock, ExitConditionBlock) =
2658 VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
2659 break;
2660 }
2661
2662 // The default case when not handling logical operators.
2663 ExitConditionBlock = createBlock(false);
2664 ExitConditionBlock->setTerminator(W);
2665
2666 // Now add the actual condition to the condition block.
2667 // Because the condition itself may contain control-flow, new blocks may
2668 // be created. Thus we update "Succ" after adding the condition.
2669 Block = ExitConditionBlock;
2670 Block = EntryConditionBlock = addStmt(C);
2671
2672 // If this block contains a condition variable, add both the condition
2673 // variable and initializer to the CFG.
2674 if (VarDecl *VD = W->getConditionVariable()) {
2675 if (Expr *Init = VD->getInit()) {
2676 autoCreateBlock();
2677 appendStmt(Block, W->getConditionVariableDeclStmt());
2678 EntryConditionBlock = addStmt(Init);
2679 assert(Block == EntryConditionBlock);
2680 }
2681 }
2682
2683 if (Block && badCFG)
2684 return nullptr;
2685
2686 // See if this is a known constant.
2687 const TryResult& KnownVal = tryEvaluateBool(C);
2688
2689 // Add the loop body entry as a successor to the condition.
2690 addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
2691 // Link up the condition block with the code that follows the loop. (the
2692 // false branch).
2693 addSuccessor(ExitConditionBlock,
2694 KnownVal.isTrue() ? nullptr : LoopSuccessor);
2695
2696 } while(false);
2697
2698 // Link up the loop-back block to the entry condition block.
2699 addSuccessor(TransitionBlock, EntryConditionBlock);
2700
2701 // There can be no more statements in the condition block since we loop back
2702 // to this block. NULL out Block to force lazy creation of another block.
2703 Block = nullptr;
2704
2705 // Return the condition block, which is the dominating block for the loop.
2706 Succ = EntryConditionBlock;
2707 return EntryConditionBlock;
2708 }
2709
2710
VisitObjCAtCatchStmt(ObjCAtCatchStmt * S)2711 CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
2712 // FIXME: For now we pretend that @catch and the code it contains does not
2713 // exit.
2714 return Block;
2715 }
2716
VisitObjCAtThrowStmt(ObjCAtThrowStmt * S)2717 CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
2718 // FIXME: This isn't complete. We basically treat @throw like a return
2719 // statement.
2720
2721 // If we were in the middle of a block we stop processing that block.
2722 if (badCFG)
2723 return nullptr;
2724
2725 // Create the new block.
2726 Block = createBlock(false);
2727
2728 // The Exit block is the only successor.
2729 addSuccessor(Block, &cfg->getExit());
2730
2731 // Add the statement to the block. This may create new blocks if S contains
2732 // control-flow (short-circuit operations).
2733 return VisitStmt(S, AddStmtChoice::AlwaysAdd);
2734 }
2735
VisitCXXThrowExpr(CXXThrowExpr * T)2736 CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
2737 // If we were in the middle of a block we stop processing that block.
2738 if (badCFG)
2739 return nullptr;
2740
2741 // Create the new block.
2742 Block = createBlock(false);
2743
2744 if (TryTerminatedBlock)
2745 // The current try statement is the only successor.
2746 addSuccessor(Block, TryTerminatedBlock);
2747 else
2748 // otherwise the Exit block is the only successor.
2749 addSuccessor(Block, &cfg->getExit());
2750
2751 // Add the statement to the block. This may create new blocks if S contains
2752 // control-flow (short-circuit operations).
2753 return VisitStmt(T, AddStmtChoice::AlwaysAdd);
2754 }
2755
VisitDoStmt(DoStmt * D)2756 CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
2757 CFGBlock *LoopSuccessor = nullptr;
2758
2759 // "do...while" is a control-flow statement. Thus we stop processing the
2760 // current block.
2761 if (Block) {
2762 if (badCFG)
2763 return nullptr;
2764 LoopSuccessor = Block;
2765 } else
2766 LoopSuccessor = Succ;
2767
2768 // Because of short-circuit evaluation, the condition of the loop can span
2769 // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that
2770 // evaluate the condition.
2771 CFGBlock *ExitConditionBlock = createBlock(false);
2772 CFGBlock *EntryConditionBlock = ExitConditionBlock;
2773
2774 // Set the terminator for the "exit" condition block.
2775 ExitConditionBlock->setTerminator(D);
2776
2777 // Now add the actual condition to the condition block. Because the condition
2778 // itself may contain control-flow, new blocks may be created.
2779 if (Stmt *C = D->getCond()) {
2780 Block = ExitConditionBlock;
2781 EntryConditionBlock = addStmt(C);
2782 if (Block) {
2783 if (badCFG)
2784 return nullptr;
2785 }
2786 }
2787
2788 // The condition block is the implicit successor for the loop body.
2789 Succ = EntryConditionBlock;
2790
2791 // See if this is a known constant.
2792 const TryResult &KnownVal = tryEvaluateBool(D->getCond());
2793
2794 // Process the loop body.
2795 CFGBlock *BodyBlock = nullptr;
2796 {
2797 assert(D->getBody());
2798
2799 // Save the current values for Block, Succ, and continue and break targets
2800 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
2801 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
2802 save_break(BreakJumpTarget);
2803
2804 // All continues within this loop should go to the condition block
2805 ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);
2806
2807 // All breaks should go to the code following the loop.
2808 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
2809
2810 // NULL out Block to force lazy instantiation of blocks for the body.
2811 Block = nullptr;
2812
2813 // If body is not a compound statement create implicit scope
2814 // and add destructors.
2815 if (!isa<CompoundStmt>(D->getBody()))
2816 addLocalScopeAndDtors(D->getBody());
2817
2818 // Create the body. The returned block is the entry to the loop body.
2819 BodyBlock = addStmt(D->getBody());
2820
2821 if (!BodyBlock)
2822 BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
2823 else if (Block) {
2824 if (badCFG)
2825 return nullptr;
2826 }
2827
2828 if (!KnownVal.isFalse()) {
2829 // Add an intermediate block between the BodyBlock and the
2830 // ExitConditionBlock to represent the "loop back" transition. Create an
2831 // empty block to represent the transition block for looping back to the
2832 // head of the loop.
2833 // FIXME: Can we do this more efficiently without adding another block?
2834 Block = nullptr;
2835 Succ = BodyBlock;
2836 CFGBlock *LoopBackBlock = createBlock();
2837 LoopBackBlock->setLoopTarget(D);
2838
2839 // Add the loop body entry as a successor to the condition.
2840 addSuccessor(ExitConditionBlock, LoopBackBlock);
2841 }
2842 else
2843 addSuccessor(ExitConditionBlock, nullptr);
2844 }
2845
2846 // Link up the condition block with the code that follows the loop.
2847 // (the false branch).
2848 addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
2849
2850 // There can be no more statements in the body block(s) since we loop back to
2851 // the body. NULL out Block to force lazy creation of another block.
2852 Block = nullptr;
2853
2854 // Return the loop body, which is the dominating block for the loop.
2855 Succ = BodyBlock;
2856 return BodyBlock;
2857 }
2858
VisitContinueStmt(ContinueStmt * C)2859 CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
2860 // "continue" is a control-flow statement. Thus we stop processing the
2861 // current block.
2862 if (badCFG)
2863 return nullptr;
2864
2865 // Now create a new block that ends with the continue statement.
2866 Block = createBlock(false);
2867 Block->setTerminator(C);
2868
2869 // If there is no target for the continue, then we are looking at an
2870 // incomplete AST. This means the CFG cannot be constructed.
2871 if (ContinueJumpTarget.block) {
2872 addAutomaticObjDtors(ScopePos, ContinueJumpTarget.scopePosition, C);
2873 addSuccessor(Block, ContinueJumpTarget.block);
2874 } else
2875 badCFG = true;
2876
2877 return Block;
2878 }
2879
VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr * E,AddStmtChoice asc)2880 CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
2881 AddStmtChoice asc) {
2882
2883 if (asc.alwaysAdd(*this, E)) {
2884 autoCreateBlock();
2885 appendStmt(Block, E);
2886 }
2887
2888 // VLA types have expressions that must be evaluated.
2889 CFGBlock *lastBlock = Block;
2890
2891 if (E->isArgumentType()) {
2892 for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
2893 VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
2894 lastBlock = addStmt(VA->getSizeExpr());
2895 }
2896 return lastBlock;
2897 }
2898
2899 /// VisitStmtExpr - Utility method to handle (nested) statement
2900 /// expressions (a GCC extension).
VisitStmtExpr(StmtExpr * SE,AddStmtChoice asc)2901 CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
2902 if (asc.alwaysAdd(*this, SE)) {
2903 autoCreateBlock();
2904 appendStmt(Block, SE);
2905 }
2906 return VisitCompoundStmt(SE->getSubStmt());
2907 }
2908
VisitSwitchStmt(SwitchStmt * Terminator)2909 CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
2910 // "switch" is a control-flow statement. Thus we stop processing the current
2911 // block.
2912 CFGBlock *SwitchSuccessor = nullptr;
2913
2914 // Save local scope position because in case of condition variable ScopePos
2915 // won't be restored when traversing AST.
2916 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
2917
2918 // Create local scope for possible condition variable.
2919 // Store scope position. Add implicit destructor.
2920 if (VarDecl *VD = Terminator->getConditionVariable()) {
2921 LocalScope::const_iterator SwitchBeginScopePos = ScopePos;
2922 addLocalScopeForVarDecl(VD);
2923 addAutomaticObjDtors(ScopePos, SwitchBeginScopePos, Terminator);
2924 }
2925
2926 if (Block) {
2927 if (badCFG)
2928 return nullptr;
2929 SwitchSuccessor = Block;
2930 } else SwitchSuccessor = Succ;
2931
2932 // Save the current "switch" context.
2933 SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
2934 save_default(DefaultCaseBlock);
2935 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
2936
2937 // Set the "default" case to be the block after the switch statement. If the
2938 // switch statement contains a "default:", this value will be overwritten with
2939 // the block for that code.
2940 DefaultCaseBlock = SwitchSuccessor;
2941
2942 // Create a new block that will contain the switch statement.
2943 SwitchTerminatedBlock = createBlock(false);
2944
2945 // Now process the switch body. The code after the switch is the implicit
2946 // successor.
2947 Succ = SwitchSuccessor;
2948 BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);
2949
2950 // When visiting the body, the case statements should automatically get linked
2951 // up to the switch. We also don't keep a pointer to the body, since all
2952 // control-flow from the switch goes to case/default statements.
2953 assert(Terminator->getBody() && "switch must contain a non-NULL body");
2954 Block = nullptr;
2955
2956 // For pruning unreachable case statements, save the current state
2957 // for tracking the condition value.
2958 SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
2959 false);
2960
2961 // Determine if the switch condition can be explicitly evaluated.
2962 assert(Terminator->getCond() && "switch condition must be non-NULL");
2963 Expr::EvalResult result;
2964 bool b = tryEvaluate(Terminator->getCond(), result);
2965 SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
2966 b ? &result : nullptr);
2967
2968 // If body is not a compound statement create implicit scope
2969 // and add destructors.
2970 if (!isa<CompoundStmt>(Terminator->getBody()))
2971 addLocalScopeAndDtors(Terminator->getBody());
2972
2973 addStmt(Terminator->getBody());
2974 if (Block) {
2975 if (badCFG)
2976 return nullptr;
2977 }
2978
2979 // If we have no "default:" case, the default transition is to the code
2980 // following the switch body. Moreover, take into account if all the
2981 // cases of a switch are covered (e.g., switching on an enum value).
2982 //
2983 // Note: We add a successor to a switch that is considered covered yet has no
2984 // case statements if the enumeration has no enumerators.
2985 bool SwitchAlwaysHasSuccessor = false;
2986 SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
2987 SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
2988 Terminator->getSwitchCaseList();
2989 addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
2990 !SwitchAlwaysHasSuccessor);
2991
2992 // Add the terminator and condition in the switch block.
2993 SwitchTerminatedBlock->setTerminator(Terminator);
2994 Block = SwitchTerminatedBlock;
2995 CFGBlock *LastBlock = addStmt(Terminator->getCond());
2996
2997 // Finally, if the SwitchStmt contains a condition variable, add both the
2998 // SwitchStmt and the condition variable initialization to the CFG.
2999 if (VarDecl *VD = Terminator->getConditionVariable()) {
3000 if (Expr *Init = VD->getInit()) {
3001 autoCreateBlock();
3002 appendStmt(Block, Terminator->getConditionVariableDeclStmt());
3003 LastBlock = addStmt(Init);
3004 }
3005 }
3006
3007 return LastBlock;
3008 }
3009
shouldAddCase(bool & switchExclusivelyCovered,const Expr::EvalResult * switchCond,const CaseStmt * CS,ASTContext & Ctx)3010 static bool shouldAddCase(bool &switchExclusivelyCovered,
3011 const Expr::EvalResult *switchCond,
3012 const CaseStmt *CS,
3013 ASTContext &Ctx) {
3014 if (!switchCond)
3015 return true;
3016
3017 bool addCase = false;
3018
3019 if (!switchExclusivelyCovered) {
3020 if (switchCond->Val.isInt()) {
3021 // Evaluate the LHS of the case value.
3022 const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
3023 const llvm::APSInt &condInt = switchCond->Val.getInt();
3024
3025 if (condInt == lhsInt) {
3026 addCase = true;
3027 switchExclusivelyCovered = true;
3028 }
3029 else if (condInt < lhsInt) {
3030 if (const Expr *RHS = CS->getRHS()) {
3031 // Evaluate the RHS of the case value.
3032 const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
3033 if (V2 <= condInt) {
3034 addCase = true;
3035 switchExclusivelyCovered = true;
3036 }
3037 }
3038 }
3039 }
3040 else
3041 addCase = true;
3042 }
3043 return addCase;
3044 }
3045
VisitCaseStmt(CaseStmt * CS)3046 CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
3047 // CaseStmts are essentially labels, so they are the first statement in a
3048 // block.
3049 CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;
3050
3051 if (Stmt *Sub = CS->getSubStmt()) {
3052 // For deeply nested chains of CaseStmts, instead of doing a recursion
3053 // (which can blow out the stack), manually unroll and create blocks
3054 // along the way.
3055 while (isa<CaseStmt>(Sub)) {
3056 CFGBlock *currentBlock = createBlock(false);
3057 currentBlock->setLabel(CS);
3058
3059 if (TopBlock)
3060 addSuccessor(LastBlock, currentBlock);
3061 else
3062 TopBlock = currentBlock;
3063
3064 addSuccessor(SwitchTerminatedBlock,
3065 shouldAddCase(switchExclusivelyCovered, switchCond,
3066 CS, *Context)
3067 ? currentBlock : nullptr);
3068
3069 LastBlock = currentBlock;
3070 CS = cast<CaseStmt>(Sub);
3071 Sub = CS->getSubStmt();
3072 }
3073
3074 addStmt(Sub);
3075 }
3076
3077 CFGBlock *CaseBlock = Block;
3078 if (!CaseBlock)
3079 CaseBlock = createBlock();
3080
3081 // Cases statements partition blocks, so this is the top of the basic block we
3082 // were processing (the "case XXX:" is the label).
3083 CaseBlock->setLabel(CS);
3084
3085 if (badCFG)
3086 return nullptr;
3087
3088 // Add this block to the list of successors for the block with the switch
3089 // statement.
3090 assert(SwitchTerminatedBlock);
3091 addSuccessor(SwitchTerminatedBlock, CaseBlock,
3092 shouldAddCase(switchExclusivelyCovered, switchCond,
3093 CS, *Context));
3094
3095 // We set Block to NULL to allow lazy creation of a new block (if necessary)
3096 Block = nullptr;
3097
3098 if (TopBlock) {
3099 addSuccessor(LastBlock, CaseBlock);
3100 Succ = TopBlock;
3101 } else {
3102 // This block is now the implicit successor of other blocks.
3103 Succ = CaseBlock;
3104 }
3105
3106 return Succ;
3107 }
3108
VisitDefaultStmt(DefaultStmt * Terminator)3109 CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
3110 if (Terminator->getSubStmt())
3111 addStmt(Terminator->getSubStmt());
3112
3113 DefaultCaseBlock = Block;
3114
3115 if (!DefaultCaseBlock)
3116 DefaultCaseBlock = createBlock();
3117
3118 // Default statements partition blocks, so this is the top of the basic block
3119 // we were processing (the "default:" is the label).
3120 DefaultCaseBlock->setLabel(Terminator);
3121
3122 if (badCFG)
3123 return nullptr;
3124
3125 // Unlike case statements, we don't add the default block to the successors
3126 // for the switch statement immediately. This is done when we finish
3127 // processing the switch statement. This allows for the default case
3128 // (including a fall-through to the code after the switch statement) to always
3129 // be the last successor of a switch-terminated block.
3130
3131 // We set Block to NULL to allow lazy creation of a new block (if necessary)
3132 Block = nullptr;
3133
3134 // This block is now the implicit successor of other blocks.
3135 Succ = DefaultCaseBlock;
3136
3137 return DefaultCaseBlock;
3138 }
3139
VisitCXXTryStmt(CXXTryStmt * Terminator)3140 CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
3141 // "try"/"catch" is a control-flow statement. Thus we stop processing the
3142 // current block.
3143 CFGBlock *TrySuccessor = nullptr;
3144
3145 if (Block) {
3146 if (badCFG)
3147 return nullptr;
3148 TrySuccessor = Block;
3149 } else TrySuccessor = Succ;
3150
3151 CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;
3152
3153 // Create a new block that will contain the try statement.
3154 CFGBlock *NewTryTerminatedBlock = createBlock(false);
3155 // Add the terminator in the try block.
3156 NewTryTerminatedBlock->setTerminator(Terminator);
3157
3158 bool HasCatchAll = false;
3159 for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
3160 // The code after the try is the implicit successor.
3161 Succ = TrySuccessor;
3162 CXXCatchStmt *CS = Terminator->getHandler(h);
3163 if (CS->getExceptionDecl() == nullptr) {
3164 HasCatchAll = true;
3165 }
3166 Block = nullptr;
3167 CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
3168 if (!CatchBlock)
3169 return nullptr;
3170 // Add this block to the list of successors for the block with the try
3171 // statement.
3172 addSuccessor(NewTryTerminatedBlock, CatchBlock);
3173 }
3174 if (!HasCatchAll) {
3175 if (PrevTryTerminatedBlock)
3176 addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
3177 else
3178 addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
3179 }
3180
3181 // The code after the try is the implicit successor.
3182 Succ = TrySuccessor;
3183
3184 // Save the current "try" context.
3185 SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
3186 cfg->addTryDispatchBlock(TryTerminatedBlock);
3187
3188 assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
3189 Block = nullptr;
3190 return addStmt(Terminator->getTryBlock());
3191 }
3192
VisitCXXCatchStmt(CXXCatchStmt * CS)3193 CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
3194 // CXXCatchStmt are treated like labels, so they are the first statement in a
3195 // block.
3196
3197 // Save local scope position because in case of exception variable ScopePos
3198 // won't be restored when traversing AST.
3199 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3200
3201 // Create local scope for possible exception variable.
3202 // Store scope position. Add implicit destructor.
3203 if (VarDecl *VD = CS->getExceptionDecl()) {
3204 LocalScope::const_iterator BeginScopePos = ScopePos;
3205 addLocalScopeForVarDecl(VD);
3206 addAutomaticObjDtors(ScopePos, BeginScopePos, CS);
3207 }
3208
3209 if (CS->getHandlerBlock())
3210 addStmt(CS->getHandlerBlock());
3211
3212 CFGBlock *CatchBlock = Block;
3213 if (!CatchBlock)
3214 CatchBlock = createBlock();
3215
3216 // CXXCatchStmt is more than just a label. They have semantic meaning
3217 // as well, as they implicitly "initialize" the catch variable. Add
3218 // it to the CFG as a CFGElement so that the control-flow of these
3219 // semantics gets captured.
3220 appendStmt(CatchBlock, CS);
3221
3222 // Also add the CXXCatchStmt as a label, to mirror handling of regular
3223 // labels.
3224 CatchBlock->setLabel(CS);
3225
3226 // Bail out if the CFG is bad.
3227 if (badCFG)
3228 return nullptr;
3229
3230 // We set Block to NULL to allow lazy creation of a new block (if necessary)
3231 Block = nullptr;
3232
3233 return CatchBlock;
3234 }
3235
VisitCXXForRangeStmt(CXXForRangeStmt * S)3236 CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
3237 // C++0x for-range statements are specified as [stmt.ranged]:
3238 //
3239 // {
3240 // auto && __range = range-init;
3241 // for ( auto __begin = begin-expr,
3242 // __end = end-expr;
3243 // __begin != __end;
3244 // ++__begin ) {
3245 // for-range-declaration = *__begin;
3246 // statement
3247 // }
3248 // }
3249
3250 // Save local scope position before the addition of the implicit variables.
3251 SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
3252
3253 // Create local scopes and destructors for range, begin and end variables.
3254 if (Stmt *Range = S->getRangeStmt())
3255 addLocalScopeForStmt(Range);
3256 if (Stmt *BeginEnd = S->getBeginEndStmt())
3257 addLocalScopeForStmt(BeginEnd);
3258 addAutomaticObjDtors(ScopePos, save_scope_pos.get(), S);
3259
3260 LocalScope::const_iterator ContinueScopePos = ScopePos;
3261
3262 // "for" is a control-flow statement. Thus we stop processing the current
3263 // block.
3264 CFGBlock *LoopSuccessor = nullptr;
3265 if (Block) {
3266 if (badCFG)
3267 return nullptr;
3268 LoopSuccessor = Block;
3269 } else
3270 LoopSuccessor = Succ;
3271
3272 // Save the current value for the break targets.
3273 // All breaks should go to the code following the loop.
3274 SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
3275 BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
3276
3277 // The block for the __begin != __end expression.
3278 CFGBlock *ConditionBlock = createBlock(false);
3279 ConditionBlock->setTerminator(S);
3280
3281 // Now add the actual condition to the condition block.
3282 if (Expr *C = S->getCond()) {
3283 Block = ConditionBlock;
3284 CFGBlock *BeginConditionBlock = addStmt(C);
3285 if (badCFG)
3286 return nullptr;
3287 assert(BeginConditionBlock == ConditionBlock &&
3288 "condition block in for-range was unexpectedly complex");
3289 (void)BeginConditionBlock;
3290 }
3291
3292 // The condition block is the implicit successor for the loop body as well as
3293 // any code above the loop.
3294 Succ = ConditionBlock;
3295
3296 // See if this is a known constant.
3297 TryResult KnownVal(true);
3298
3299 if (S->getCond())
3300 KnownVal = tryEvaluateBool(S->getCond());
3301
3302 // Now create the loop body.
3303 {
3304 assert(S->getBody());
3305
3306 // Save the current values for Block, Succ, and continue targets.
3307 SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
3308 SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);
3309
3310 // Generate increment code in its own basic block. This is the target of
3311 // continue statements.
3312 Block = nullptr;
3313 Succ = addStmt(S->getInc());
3314 ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
3315
3316 // The starting block for the loop increment is the block that should
3317 // represent the 'loop target' for looping back to the start of the loop.
3318 ContinueJumpTarget.block->setLoopTarget(S);
3319
3320 // Finish up the increment block and prepare to start the loop body.
3321 assert(Block);
3322 if (badCFG)
3323 return nullptr;
3324 Block = nullptr;
3325
3326 // Add implicit scope and dtors for loop variable.
3327 addLocalScopeAndDtors(S->getLoopVarStmt());
3328
3329 // Populate a new block to contain the loop body and loop variable.
3330 addStmt(S->getBody());
3331 if (badCFG)
3332 return nullptr;
3333 CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
3334 if (badCFG)
3335 return nullptr;
3336
3337 // This new body block is a successor to our condition block.
3338 addSuccessor(ConditionBlock,
3339 KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
3340 }
3341
3342 // Link up the condition block with the code that follows the loop (the
3343 // false branch).
3344 addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);
3345
3346 // Add the initialization statements.
3347 Block = createBlock();
3348 addStmt(S->getBeginEndStmt());
3349 return addStmt(S->getRangeStmt());
3350 }
3351
VisitExprWithCleanups(ExprWithCleanups * E,AddStmtChoice asc)3352 CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
3353 AddStmtChoice asc) {
3354 if (BuildOpts.AddTemporaryDtors) {
3355 // If adding implicit destructors visit the full expression for adding
3356 // destructors of temporaries.
3357 VisitForTemporaryDtors(E->getSubExpr());
3358
3359 // Full expression has to be added as CFGStmt so it will be sequenced
3360 // before destructors of it's temporaries.
3361 asc = asc.withAlwaysAdd(true);
3362 }
3363 return Visit(E->getSubExpr(), asc);
3364 }
3365
VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr * E,AddStmtChoice asc)3366 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
3367 AddStmtChoice asc) {
3368 if (asc.alwaysAdd(*this, E)) {
3369 autoCreateBlock();
3370 appendStmt(Block, E);
3371
3372 // We do not want to propagate the AlwaysAdd property.
3373 asc = asc.withAlwaysAdd(false);
3374 }
3375 return Visit(E->getSubExpr(), asc);
3376 }
3377
VisitCXXConstructExpr(CXXConstructExpr * C,AddStmtChoice asc)3378 CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
3379 AddStmtChoice asc) {
3380 autoCreateBlock();
3381 appendStmt(Block, C);
3382
3383 return VisitChildren(C);
3384 }
3385
VisitCXXNewExpr(CXXNewExpr * NE,AddStmtChoice asc)3386 CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
3387 AddStmtChoice asc) {
3388
3389 autoCreateBlock();
3390 appendStmt(Block, NE);
3391
3392 if (NE->getInitializer())
3393 Block = Visit(NE->getInitializer());
3394 if (BuildOpts.AddCXXNewAllocator)
3395 appendNewAllocator(Block, NE);
3396 if (NE->isArray())
3397 Block = Visit(NE->getArraySize());
3398 for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
3399 E = NE->placement_arg_end(); I != E; ++I)
3400 Block = Visit(*I);
3401 return Block;
3402 }
3403
VisitCXXDeleteExpr(CXXDeleteExpr * DE,AddStmtChoice asc)3404 CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
3405 AddStmtChoice asc) {
3406 autoCreateBlock();
3407 appendStmt(Block, DE);
3408 QualType DTy = DE->getDestroyedType();
3409 DTy = DTy.getNonReferenceType();
3410 CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
3411 if (RD) {
3412 if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
3413 appendDeleteDtor(Block, RD, DE);
3414 }
3415
3416 return VisitChildren(DE);
3417 }
3418
VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr * E,AddStmtChoice asc)3419 CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
3420 AddStmtChoice asc) {
3421 if (asc.alwaysAdd(*this, E)) {
3422 autoCreateBlock();
3423 appendStmt(Block, E);
3424 // We do not want to propagate the AlwaysAdd property.
3425 asc = asc.withAlwaysAdd(false);
3426 }
3427 return Visit(E->getSubExpr(), asc);
3428 }
3429
VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr * C,AddStmtChoice asc)3430 CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
3431 AddStmtChoice asc) {
3432 autoCreateBlock();
3433 appendStmt(Block, C);
3434 return VisitChildren(C);
3435 }
3436
VisitImplicitCastExpr(ImplicitCastExpr * E,AddStmtChoice asc)3437 CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
3438 AddStmtChoice asc) {
3439 if (asc.alwaysAdd(*this, E)) {
3440 autoCreateBlock();
3441 appendStmt(Block, E);
3442 }
3443 return Visit(E->getSubExpr(), AddStmtChoice());
3444 }
3445
VisitIndirectGotoStmt(IndirectGotoStmt * I)3446 CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3447 // Lazily create the indirect-goto dispatch block if there isn't one already.
3448 CFGBlock *IBlock = cfg->getIndirectGotoBlock();
3449
3450 if (!IBlock) {
3451 IBlock = createBlock(false);
3452 cfg->setIndirectGotoBlock(IBlock);
3453 }
3454
3455 // IndirectGoto is a control-flow statement. Thus we stop processing the
3456 // current block and create a new one.
3457 if (badCFG)
3458 return nullptr;
3459
3460 Block = createBlock(false);
3461 Block->setTerminator(I);
3462 addSuccessor(Block, IBlock);
3463 return addStmt(I->getTarget());
3464 }
3465
VisitForTemporaryDtors(Stmt * E,bool BindToTemporary)3466 CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool BindToTemporary) {
3467 assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);
3468
3469 tryAgain:
3470 if (!E) {
3471 badCFG = true;
3472 return nullptr;
3473 }
3474 switch (E->getStmtClass()) {
3475 default:
3476 return VisitChildrenForTemporaryDtors(E);
3477
3478 case Stmt::BinaryOperatorClass:
3479 return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E));
3480
3481 case Stmt::CXXBindTemporaryExprClass:
3482 return VisitCXXBindTemporaryExprForTemporaryDtors(
3483 cast<CXXBindTemporaryExpr>(E), BindToTemporary);
3484
3485 case Stmt::BinaryConditionalOperatorClass:
3486 case Stmt::ConditionalOperatorClass:
3487 return VisitConditionalOperatorForTemporaryDtors(
3488 cast<AbstractConditionalOperator>(E), BindToTemporary);
3489
3490 case Stmt::ImplicitCastExprClass:
3491 // For implicit cast we want BindToTemporary to be passed further.
3492 E = cast<CastExpr>(E)->getSubExpr();
3493 goto tryAgain;
3494
3495 case Stmt::ParenExprClass:
3496 E = cast<ParenExpr>(E)->getSubExpr();
3497 goto tryAgain;
3498
3499 case Stmt::MaterializeTemporaryExprClass:
3500 E = cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr();
3501 goto tryAgain;
3502 }
3503 }
3504
VisitChildrenForTemporaryDtors(Stmt * E)3505 CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E) {
3506 // When visiting children for destructors we want to visit them in reverse
3507 // order that they will appear in the CFG. Because the CFG is built
3508 // bottom-up, this means we visit them in their natural order, which
3509 // reverses them in the CFG.
3510 CFGBlock *B = Block;
3511 for (Stmt::child_range I = E->children(); I; ++I) {
3512 if (Stmt *Child = *I)
3513 if (CFGBlock *R = VisitForTemporaryDtors(Child))
3514 B = R;
3515 }
3516 return B;
3517 }
3518
VisitBinaryOperatorForTemporaryDtors(BinaryOperator * E)3519 CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E) {
3520 if (E->isLogicalOp()) {
3521 // Destructors for temporaries in LHS expression should be called after
3522 // those for RHS expression. Even if this will unnecessarily create a block,
3523 // this block will be used at least by the full expression.
3524 autoCreateBlock();
3525 CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getLHS());
3526 if (badCFG)
3527 return nullptr;
3528
3529 Succ = ConfluenceBlock;
3530 Block = nullptr;
3531 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3532
3533 if (RHSBlock) {
3534 if (badCFG)
3535 return nullptr;
3536
3537 // If RHS expression did produce destructors we need to connect created
3538 // blocks to CFG in same manner as for binary operator itself.
3539 CFGBlock *LHSBlock = createBlock(false);
3540 LHSBlock->setTerminator(CFGTerminator(E, true));
3541
3542 // For binary operator LHS block is before RHS in list of predecessors
3543 // of ConfluenceBlock.
3544 std::reverse(ConfluenceBlock->pred_begin(),
3545 ConfluenceBlock->pred_end());
3546
3547 // See if this is a known constant.
3548 TryResult KnownVal = tryEvaluateBool(E->getLHS());
3549 if (KnownVal.isKnown() && (E->getOpcode() == BO_LOr))
3550 KnownVal.negate();
3551
3552 // Link LHSBlock with RHSBlock exactly the same way as for binary operator
3553 // itself.
3554 if (E->getOpcode() == BO_LOr) {
3555 addSuccessor(LHSBlock, KnownVal.isTrue() ? nullptr : ConfluenceBlock);
3556 addSuccessor(LHSBlock, KnownVal.isFalse() ? nullptr : RHSBlock);
3557 } else {
3558 assert (E->getOpcode() == BO_LAnd);
3559 addSuccessor(LHSBlock, KnownVal.isFalse() ? nullptr : RHSBlock);
3560 addSuccessor(LHSBlock, KnownVal.isTrue() ? nullptr : ConfluenceBlock);
3561 }
3562
3563 Block = LHSBlock;
3564 return LHSBlock;
3565 }
3566
3567 Block = ConfluenceBlock;
3568 return ConfluenceBlock;
3569 }
3570
3571 if (E->isAssignmentOp()) {
3572 // For assignment operator (=) LHS expression is visited
3573 // before RHS expression. For destructors visit them in reverse order.
3574 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3575 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3576 return LHSBlock ? LHSBlock : RHSBlock;
3577 }
3578
3579 // For any other binary operator RHS expression is visited before
3580 // LHS expression (order of children). For destructors visit them in reverse
3581 // order.
3582 CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS());
3583 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS());
3584 return RHSBlock ? RHSBlock : LHSBlock;
3585 }
3586
VisitCXXBindTemporaryExprForTemporaryDtors(CXXBindTemporaryExpr * E,bool BindToTemporary)3587 CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
3588 CXXBindTemporaryExpr *E, bool BindToTemporary) {
3589 // First add destructors for temporaries in subexpression.
3590 CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr());
3591 if (!BindToTemporary) {
3592 // If lifetime of temporary is not prolonged (by assigning to constant
3593 // reference) add destructor for it.
3594
3595 // If the destructor is marked as a no-return destructor, we need to create
3596 // a new block for the destructor which does not have as a successor
3597 // anything built thus far. Control won't flow out of this block.
3598 const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();
3599 if (Dtor->isNoReturn()) {
3600 Succ = B;
3601 Block = createNoReturnBlock();
3602 } else {
3603 autoCreateBlock();
3604 }
3605
3606 appendTemporaryDtor(Block, E);
3607 B = Block;
3608 }
3609 return B;
3610 }
3611
VisitConditionalOperatorForTemporaryDtors(AbstractConditionalOperator * E,bool BindToTemporary)3612 CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
3613 AbstractConditionalOperator *E, bool BindToTemporary) {
3614 // First add destructors for condition expression. Even if this will
3615 // unnecessarily create a block, this block will be used at least by the full
3616 // expression.
3617 autoCreateBlock();
3618 CFGBlock *ConfluenceBlock = VisitForTemporaryDtors(E->getCond());
3619 if (badCFG)
3620 return nullptr;
3621 if (BinaryConditionalOperator *BCO
3622 = dyn_cast<BinaryConditionalOperator>(E)) {
3623 ConfluenceBlock = VisitForTemporaryDtors(BCO->getCommon());
3624 if (badCFG)
3625 return nullptr;
3626 }
3627
3628 // Try to add block with destructors for LHS expression.
3629 CFGBlock *LHSBlock = nullptr;
3630 Succ = ConfluenceBlock;
3631 Block = nullptr;
3632 LHSBlock = VisitForTemporaryDtors(E->getTrueExpr(), BindToTemporary);
3633 if (badCFG)
3634 return nullptr;
3635
3636 // Try to add block with destructors for RHS expression;
3637 Succ = ConfluenceBlock;
3638 Block = nullptr;
3639 CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getFalseExpr(),
3640 BindToTemporary);
3641 if (badCFG)
3642 return nullptr;
3643
3644 if (!RHSBlock && !LHSBlock) {
3645 // If neither LHS nor RHS expression had temporaries to destroy don't create
3646 // more blocks.
3647 Block = ConfluenceBlock;
3648 return Block;
3649 }
3650
3651 Block = createBlock(false);
3652 Block->setTerminator(CFGTerminator(E, true));
3653 assert(Block->getTerminator().isTemporaryDtorsBranch());
3654
3655 // See if this is a known constant.
3656 const TryResult &KnownVal = tryEvaluateBool(E->getCond());
3657
3658 if (LHSBlock) {
3659 addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
3660 } else if (KnownVal.isFalse()) {
3661 addSuccessor(Block, nullptr);
3662 } else {
3663 addSuccessor(Block, ConfluenceBlock);
3664 std::reverse(ConfluenceBlock->pred_begin(), ConfluenceBlock->pred_end());
3665 }
3666
3667 if (!RHSBlock)
3668 RHSBlock = ConfluenceBlock;
3669
3670 addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
3671
3672 return Block;
3673 }
3674
3675 } // end anonymous namespace
3676
3677 /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has
3678 /// no successors or predecessors. If this is the first block created in the
3679 /// CFG, it is automatically set to be the Entry and Exit of the CFG.
createBlock()3680 CFGBlock *CFG::createBlock() {
3681 bool first_block = begin() == end();
3682
3683 // Create the block.
3684 CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
3685 new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
3686 Blocks.push_back(Mem, BlkBVC);
3687
3688 // If this is the first block, set it as the Entry and Exit.
3689 if (first_block)
3690 Entry = Exit = &back();
3691
3692 // Return the block.
3693 return &back();
3694 }
3695
3696 /// buildCFG - Constructs a CFG from an AST. Ownership of the returned
3697 /// CFG is returned to the caller.
buildCFG(const Decl * D,Stmt * Statement,ASTContext * C,const BuildOptions & BO)3698 CFG* CFG::buildCFG(const Decl *D, Stmt *Statement, ASTContext *C,
3699 const BuildOptions &BO) {
3700 CFGBuilder Builder(C, BO);
3701 return Builder.buildCFG(D, Statement);
3702 }
3703
3704 const CXXDestructorDecl *
getDestructorDecl(ASTContext & astContext) const3705 CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
3706 switch (getKind()) {
3707 case CFGElement::Statement:
3708 case CFGElement::Initializer:
3709 case CFGElement::NewAllocator:
3710 llvm_unreachable("getDestructorDecl should only be used with "
3711 "ImplicitDtors");
3712 case CFGElement::AutomaticObjectDtor: {
3713 const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
3714 QualType ty = var->getType();
3715 ty = ty.getNonReferenceType();
3716 while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
3717 ty = arrayType->getElementType();
3718 }
3719 const RecordType *recordType = ty->getAs<RecordType>();
3720 const CXXRecordDecl *classDecl =
3721 cast<CXXRecordDecl>(recordType->getDecl());
3722 return classDecl->getDestructor();
3723 }
3724 case CFGElement::DeleteDtor: {
3725 const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
3726 QualType DTy = DE->getDestroyedType();
3727 DTy = DTy.getNonReferenceType();
3728 const CXXRecordDecl *classDecl =
3729 astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
3730 return classDecl->getDestructor();
3731 }
3732 case CFGElement::TemporaryDtor: {
3733 const CXXBindTemporaryExpr *bindExpr =
3734 castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
3735 const CXXTemporary *temp = bindExpr->getTemporary();
3736 return temp->getDestructor();
3737 }
3738 case CFGElement::BaseDtor:
3739 case CFGElement::MemberDtor:
3740
3741 // Not yet supported.
3742 return nullptr;
3743 }
3744 llvm_unreachable("getKind() returned bogus value");
3745 }
3746
isNoReturn(ASTContext & astContext) const3747 bool CFGImplicitDtor::isNoReturn(ASTContext &astContext) const {
3748 if (const CXXDestructorDecl *DD = getDestructorDecl(astContext))
3749 return DD->isNoReturn();
3750 return false;
3751 }
3752
3753 //===----------------------------------------------------------------------===//
3754 // CFGBlock operations.
3755 //===----------------------------------------------------------------------===//
3756
AdjacentBlock(CFGBlock * B,bool IsReachable)3757 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
3758 : ReachableBlock(IsReachable ? B : nullptr),
3759 UnreachableBlock(!IsReachable ? B : nullptr,
3760 B && IsReachable ? AB_Normal : AB_Unreachable) {}
3761
AdjacentBlock(CFGBlock * B,CFGBlock * AlternateBlock)3762 CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
3763 : ReachableBlock(B),
3764 UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
3765 B == AlternateBlock ? AB_Alternate : AB_Normal) {}
3766
addSuccessor(AdjacentBlock Succ,BumpVectorContext & C)3767 void CFGBlock::addSuccessor(AdjacentBlock Succ,
3768 BumpVectorContext &C) {
3769 if (CFGBlock *B = Succ.getReachableBlock())
3770 B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);
3771
3772 if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
3773 UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);
3774
3775 Succs.push_back(Succ, C);
3776 }
3777
FilterEdge(const CFGBlock::FilterOptions & F,const CFGBlock * From,const CFGBlock * To)3778 bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
3779 const CFGBlock *From, const CFGBlock *To) {
3780
3781 if (F.IgnoreNullPredecessors && !From)
3782 return true;
3783
3784 if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
3785 // If the 'To' has no label or is labeled but the label isn't a
3786 // CaseStmt then filter this edge.
3787 if (const SwitchStmt *S =
3788 dyn_cast_or_null<SwitchStmt>(From->getTerminator().getStmt())) {
3789 if (S->isAllEnumCasesCovered()) {
3790 const Stmt *L = To->getLabel();
3791 if (!L || !isa<CaseStmt>(L))
3792 return true;
3793 }
3794 }
3795 }
3796
3797 return false;
3798 }
3799
3800 //===----------------------------------------------------------------------===//
3801 // CFG pretty printing
3802 //===----------------------------------------------------------------------===//
3803
3804 namespace {
3805
3806 class StmtPrinterHelper : public PrinterHelper {
3807 typedef llvm::DenseMap<const Stmt*,std::pair<unsigned,unsigned> > StmtMapTy;
3808 typedef llvm::DenseMap<const Decl*,std::pair<unsigned,unsigned> > DeclMapTy;
3809 StmtMapTy StmtMap;
3810 DeclMapTy DeclMap;
3811 signed currentBlock;
3812 unsigned currStmt;
3813 const LangOptions &LangOpts;
3814 public:
3815
StmtPrinterHelper(const CFG * cfg,const LangOptions & LO)3816 StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
3817 : currentBlock(0), currStmt(0), LangOpts(LO)
3818 {
3819 for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
3820 unsigned j = 1;
3821 for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
3822 BI != BEnd; ++BI, ++j ) {
3823 if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
3824 const Stmt *stmt= SE->getStmt();
3825 std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
3826 StmtMap[stmt] = P;
3827
3828 switch (stmt->getStmtClass()) {
3829 case Stmt::DeclStmtClass:
3830 DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
3831 break;
3832 case Stmt::IfStmtClass: {
3833 const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
3834 if (var)
3835 DeclMap[var] = P;
3836 break;
3837 }
3838 case Stmt::ForStmtClass: {
3839 const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
3840 if (var)
3841 DeclMap[var] = P;
3842 break;
3843 }
3844 case Stmt::WhileStmtClass: {
3845 const VarDecl *var =
3846 cast<WhileStmt>(stmt)->getConditionVariable();
3847 if (var)
3848 DeclMap[var] = P;
3849 break;
3850 }
3851 case Stmt::SwitchStmtClass: {
3852 const VarDecl *var =
3853 cast<SwitchStmt>(stmt)->getConditionVariable();
3854 if (var)
3855 DeclMap[var] = P;
3856 break;
3857 }
3858 case Stmt::CXXCatchStmtClass: {
3859 const VarDecl *var =
3860 cast<CXXCatchStmt>(stmt)->getExceptionDecl();
3861 if (var)
3862 DeclMap[var] = P;
3863 break;
3864 }
3865 default:
3866 break;
3867 }
3868 }
3869 }
3870 }
3871 }
3872
3873
~StmtPrinterHelper()3874 virtual ~StmtPrinterHelper() {}
3875
getLangOpts() const3876 const LangOptions &getLangOpts() const { return LangOpts; }
setBlockID(signed i)3877 void setBlockID(signed i) { currentBlock = i; }
setStmtID(unsigned i)3878 void setStmtID(unsigned i) { currStmt = i; }
3879
handledStmt(Stmt * S,raw_ostream & OS)3880 bool handledStmt(Stmt *S, raw_ostream &OS) override {
3881 StmtMapTy::iterator I = StmtMap.find(S);
3882
3883 if (I == StmtMap.end())
3884 return false;
3885
3886 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3887 && I->second.second == currStmt) {
3888 return false;
3889 }
3890
3891 OS << "[B" << I->second.first << "." << I->second.second << "]";
3892 return true;
3893 }
3894
handleDecl(const Decl * D,raw_ostream & OS)3895 bool handleDecl(const Decl *D, raw_ostream &OS) {
3896 DeclMapTy::iterator I = DeclMap.find(D);
3897
3898 if (I == DeclMap.end())
3899 return false;
3900
3901 if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
3902 && I->second.second == currStmt) {
3903 return false;
3904 }
3905
3906 OS << "[B" << I->second.first << "." << I->second.second << "]";
3907 return true;
3908 }
3909 };
3910 } // end anonymous namespace
3911
3912
3913 namespace {
3914 class CFGBlockTerminatorPrint
3915 : public StmtVisitor<CFGBlockTerminatorPrint,void> {
3916
3917 raw_ostream &OS;
3918 StmtPrinterHelper* Helper;
3919 PrintingPolicy Policy;
3920 public:
CFGBlockTerminatorPrint(raw_ostream & os,StmtPrinterHelper * helper,const PrintingPolicy & Policy)3921 CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
3922 const PrintingPolicy &Policy)
3923 : OS(os), Helper(helper), Policy(Policy) {
3924 this->Policy.IncludeNewlines = false;
3925 }
3926
VisitIfStmt(IfStmt * I)3927 void VisitIfStmt(IfStmt *I) {
3928 OS << "if ";
3929 if (Stmt *C = I->getCond())
3930 C->printPretty(OS, Helper, Policy);
3931 }
3932
3933 // Default case.
VisitStmt(Stmt * Terminator)3934 void VisitStmt(Stmt *Terminator) {
3935 Terminator->printPretty(OS, Helper, Policy);
3936 }
3937
VisitDeclStmt(DeclStmt * DS)3938 void VisitDeclStmt(DeclStmt *DS) {
3939 VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
3940 OS << "static init " << VD->getName();
3941 }
3942
VisitForStmt(ForStmt * F)3943 void VisitForStmt(ForStmt *F) {
3944 OS << "for (" ;
3945 if (F->getInit())
3946 OS << "...";
3947 OS << "; ";
3948 if (Stmt *C = F->getCond())
3949 C->printPretty(OS, Helper, Policy);
3950 OS << "; ";
3951 if (F->getInc())
3952 OS << "...";
3953 OS << ")";
3954 }
3955
VisitWhileStmt(WhileStmt * W)3956 void VisitWhileStmt(WhileStmt *W) {
3957 OS << "while " ;
3958 if (Stmt *C = W->getCond())
3959 C->printPretty(OS, Helper, Policy);
3960 }
3961
VisitDoStmt(DoStmt * D)3962 void VisitDoStmt(DoStmt *D) {
3963 OS << "do ... while ";
3964 if (Stmt *C = D->getCond())
3965 C->printPretty(OS, Helper, Policy);
3966 }
3967
VisitSwitchStmt(SwitchStmt * Terminator)3968 void VisitSwitchStmt(SwitchStmt *Terminator) {
3969 OS << "switch ";
3970 Terminator->getCond()->printPretty(OS, Helper, Policy);
3971 }
3972
VisitCXXTryStmt(CXXTryStmt * CS)3973 void VisitCXXTryStmt(CXXTryStmt *CS) {
3974 OS << "try ...";
3975 }
3976
VisitAbstractConditionalOperator(AbstractConditionalOperator * C)3977 void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
3978 if (Stmt *Cond = C->getCond())
3979 Cond->printPretty(OS, Helper, Policy);
3980 OS << " ? ... : ...";
3981 }
3982
VisitChooseExpr(ChooseExpr * C)3983 void VisitChooseExpr(ChooseExpr *C) {
3984 OS << "__builtin_choose_expr( ";
3985 if (Stmt *Cond = C->getCond())
3986 Cond->printPretty(OS, Helper, Policy);
3987 OS << " )";
3988 }
3989
VisitIndirectGotoStmt(IndirectGotoStmt * I)3990 void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
3991 OS << "goto *";
3992 if (Stmt *T = I->getTarget())
3993 T->printPretty(OS, Helper, Policy);
3994 }
3995
VisitBinaryOperator(BinaryOperator * B)3996 void VisitBinaryOperator(BinaryOperator* B) {
3997 if (!B->isLogicalOp()) {
3998 VisitExpr(B);
3999 return;
4000 }
4001
4002 if (B->getLHS())
4003 B->getLHS()->printPretty(OS, Helper, Policy);
4004
4005 switch (B->getOpcode()) {
4006 case BO_LOr:
4007 OS << " || ...";
4008 return;
4009 case BO_LAnd:
4010 OS << " && ...";
4011 return;
4012 default:
4013 llvm_unreachable("Invalid logical operator.");
4014 }
4015 }
4016
VisitExpr(Expr * E)4017 void VisitExpr(Expr *E) {
4018 E->printPretty(OS, Helper, Policy);
4019 }
4020
4021 public:
print(CFGTerminator T)4022 void print(CFGTerminator T) {
4023 if (T.isTemporaryDtorsBranch())
4024 OS << "(Temp Dtor) ";
4025 Visit(T.getStmt());
4026 }
4027 };
4028 } // end anonymous namespace
4029
print_elem(raw_ostream & OS,StmtPrinterHelper & Helper,const CFGElement & E)4030 static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
4031 const CFGElement &E) {
4032 if (Optional<CFGStmt> CS = E.getAs<CFGStmt>()) {
4033 const Stmt *S = CS->getStmt();
4034 assert(S != nullptr && "Expecting non-null Stmt");
4035
4036 // special printing for statement-expressions.
4037 if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
4038 const CompoundStmt *Sub = SE->getSubStmt();
4039
4040 if (Sub->children()) {
4041 OS << "({ ... ; ";
4042 Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
4043 OS << " })\n";
4044 return;
4045 }
4046 }
4047 // special printing for comma expressions.
4048 if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
4049 if (B->getOpcode() == BO_Comma) {
4050 OS << "... , ";
4051 Helper.handledStmt(B->getRHS(),OS);
4052 OS << '\n';
4053 return;
4054 }
4055 }
4056 S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
4057
4058 if (isa<CXXOperatorCallExpr>(S)) {
4059 OS << " (OperatorCall)";
4060 }
4061 else if (isa<CXXBindTemporaryExpr>(S)) {
4062 OS << " (BindTemporary)";
4063 }
4064 else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
4065 OS << " (CXXConstructExpr, " << CCE->getType().getAsString() << ")";
4066 }
4067 else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
4068 OS << " (" << CE->getStmtClassName() << ", "
4069 << CE->getCastKindName()
4070 << ", " << CE->getType().getAsString()
4071 << ")";
4072 }
4073
4074 // Expressions need a newline.
4075 if (isa<Expr>(S))
4076 OS << '\n';
4077
4078 } else if (Optional<CFGInitializer> IE = E.getAs<CFGInitializer>()) {
4079 const CXXCtorInitializer *I = IE->getInitializer();
4080 if (I->isBaseInitializer())
4081 OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
4082 else if (I->isDelegatingInitializer())
4083 OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
4084 else OS << I->getAnyMember()->getName();
4085
4086 OS << "(";
4087 if (Expr *IE = I->getInit())
4088 IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
4089 OS << ")";
4090
4091 if (I->isBaseInitializer())
4092 OS << " (Base initializer)\n";
4093 else if (I->isDelegatingInitializer())
4094 OS << " (Delegating initializer)\n";
4095 else OS << " (Member initializer)\n";
4096
4097 } else if (Optional<CFGAutomaticObjDtor> DE =
4098 E.getAs<CFGAutomaticObjDtor>()) {
4099 const VarDecl *VD = DE->getVarDecl();
4100 Helper.handleDecl(VD, OS);
4101
4102 const Type* T = VD->getType().getTypePtr();
4103 if (const ReferenceType* RT = T->getAs<ReferenceType>())
4104 T = RT->getPointeeType().getTypePtr();
4105 T = T->getBaseElementTypeUnsafe();
4106
4107 OS << ".~" << T->getAsCXXRecordDecl()->getName().str() << "()";
4108 OS << " (Implicit destructor)\n";
4109
4110 } else if (Optional<CFGNewAllocator> NE = E.getAs<CFGNewAllocator>()) {
4111 OS << "CFGNewAllocator(";
4112 if (const CXXNewExpr *AllocExpr = NE->getAllocatorExpr())
4113 AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
4114 OS << ")\n";
4115 } else if (Optional<CFGDeleteDtor> DE = E.getAs<CFGDeleteDtor>()) {
4116 const CXXRecordDecl *RD = DE->getCXXRecordDecl();
4117 if (!RD)
4118 return;
4119 CXXDeleteExpr *DelExpr =
4120 const_cast<CXXDeleteExpr*>(DE->getDeleteExpr());
4121 Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
4122 OS << "->~" << RD->getName().str() << "()";
4123 OS << " (Implicit destructor)\n";
4124 } else if (Optional<CFGBaseDtor> BE = E.getAs<CFGBaseDtor>()) {
4125 const CXXBaseSpecifier *BS = BE->getBaseSpecifier();
4126 OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
4127 OS << " (Base object destructor)\n";
4128
4129 } else if (Optional<CFGMemberDtor> ME = E.getAs<CFGMemberDtor>()) {
4130 const FieldDecl *FD = ME->getFieldDecl();
4131 const Type *T = FD->getType()->getBaseElementTypeUnsafe();
4132 OS << "this->" << FD->getName();
4133 OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
4134 OS << " (Member object destructor)\n";
4135
4136 } else if (Optional<CFGTemporaryDtor> TE = E.getAs<CFGTemporaryDtor>()) {
4137 const CXXBindTemporaryExpr *BT = TE->getBindTemporaryExpr();
4138 OS << "~";
4139 BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
4140 OS << "() (Temporary object destructor)\n";
4141 }
4142 }
4143
print_block(raw_ostream & OS,const CFG * cfg,const CFGBlock & B,StmtPrinterHelper & Helper,bool print_edges,bool ShowColors)4144 static void print_block(raw_ostream &OS, const CFG* cfg,
4145 const CFGBlock &B,
4146 StmtPrinterHelper &Helper, bool print_edges,
4147 bool ShowColors) {
4148
4149 Helper.setBlockID(B.getBlockID());
4150
4151 // Print the header.
4152 if (ShowColors)
4153 OS.changeColor(raw_ostream::YELLOW, true);
4154
4155 OS << "\n [B" << B.getBlockID();
4156
4157 if (&B == &cfg->getEntry())
4158 OS << " (ENTRY)]\n";
4159 else if (&B == &cfg->getExit())
4160 OS << " (EXIT)]\n";
4161 else if (&B == cfg->getIndirectGotoBlock())
4162 OS << " (INDIRECT GOTO DISPATCH)]\n";
4163 else if (B.hasNoReturnElement())
4164 OS << " (NORETURN)]\n";
4165 else
4166 OS << "]\n";
4167
4168 if (ShowColors)
4169 OS.resetColor();
4170
4171 // Print the label of this block.
4172 if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
4173
4174 if (print_edges)
4175 OS << " ";
4176
4177 if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
4178 OS << L->getName();
4179 else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
4180 OS << "case ";
4181 if (C->getLHS())
4182 C->getLHS()->printPretty(OS, &Helper,
4183 PrintingPolicy(Helper.getLangOpts()));
4184 if (C->getRHS()) {
4185 OS << " ... ";
4186 C->getRHS()->printPretty(OS, &Helper,
4187 PrintingPolicy(Helper.getLangOpts()));
4188 }
4189 } else if (isa<DefaultStmt>(Label))
4190 OS << "default";
4191 else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
4192 OS << "catch (";
4193 if (CS->getExceptionDecl())
4194 CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
4195 0);
4196 else
4197 OS << "...";
4198 OS << ")";
4199
4200 } else
4201 llvm_unreachable("Invalid label statement in CFGBlock.");
4202
4203 OS << ":\n";
4204 }
4205
4206 // Iterate through the statements in the block and print them.
4207 unsigned j = 1;
4208
4209 for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
4210 I != E ; ++I, ++j ) {
4211
4212 // Print the statement # in the basic block and the statement itself.
4213 if (print_edges)
4214 OS << " ";
4215
4216 OS << llvm::format("%3d", j) << ": ";
4217
4218 Helper.setStmtID(j);
4219
4220 print_elem(OS, Helper, *I);
4221 }
4222
4223 // Print the terminator of this block.
4224 if (B.getTerminator()) {
4225 if (ShowColors)
4226 OS.changeColor(raw_ostream::GREEN);
4227
4228 OS << " T: ";
4229
4230 Helper.setBlockID(-1);
4231
4232 PrintingPolicy PP(Helper.getLangOpts());
4233 CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
4234 TPrinter.print(B.getTerminator());
4235 OS << '\n';
4236
4237 if (ShowColors)
4238 OS.resetColor();
4239 }
4240
4241 if (print_edges) {
4242 // Print the predecessors of this block.
4243 if (!B.pred_empty()) {
4244 const raw_ostream::Colors Color = raw_ostream::BLUE;
4245 if (ShowColors)
4246 OS.changeColor(Color);
4247 OS << " Preds " ;
4248 if (ShowColors)
4249 OS.resetColor();
4250 OS << '(' << B.pred_size() << "):";
4251 unsigned i = 0;
4252
4253 if (ShowColors)
4254 OS.changeColor(Color);
4255
4256 for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
4257 I != E; ++I, ++i) {
4258
4259 if (i % 10 == 8)
4260 OS << "\n ";
4261
4262 CFGBlock *B = *I;
4263 bool Reachable = true;
4264 if (!B) {
4265 Reachable = false;
4266 B = I->getPossiblyUnreachableBlock();
4267 }
4268
4269 OS << " B" << B->getBlockID();
4270 if (!Reachable)
4271 OS << "(Unreachable)";
4272 }
4273
4274 if (ShowColors)
4275 OS.resetColor();
4276
4277 OS << '\n';
4278 }
4279
4280 // Print the successors of this block.
4281 if (!B.succ_empty()) {
4282 const raw_ostream::Colors Color = raw_ostream::MAGENTA;
4283 if (ShowColors)
4284 OS.changeColor(Color);
4285 OS << " Succs ";
4286 if (ShowColors)
4287 OS.resetColor();
4288 OS << '(' << B.succ_size() << "):";
4289 unsigned i = 0;
4290
4291 if (ShowColors)
4292 OS.changeColor(Color);
4293
4294 for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
4295 I != E; ++I, ++i) {
4296
4297 if (i % 10 == 8)
4298 OS << "\n ";
4299
4300 CFGBlock *B = *I;
4301
4302 bool Reachable = true;
4303 if (!B) {
4304 Reachable = false;
4305 B = I->getPossiblyUnreachableBlock();
4306 }
4307
4308 if (B) {
4309 OS << " B" << B->getBlockID();
4310 if (!Reachable)
4311 OS << "(Unreachable)";
4312 }
4313 else {
4314 OS << " NULL";
4315 }
4316 }
4317
4318 if (ShowColors)
4319 OS.resetColor();
4320 OS << '\n';
4321 }
4322 }
4323 }
4324
4325
4326 /// dump - A simple pretty printer of a CFG that outputs to stderr.
dump(const LangOptions & LO,bool ShowColors) const4327 void CFG::dump(const LangOptions &LO, bool ShowColors) const {
4328 print(llvm::errs(), LO, ShowColors);
4329 }
4330
4331 /// print - A simple pretty printer of a CFG that outputs to an ostream.
print(raw_ostream & OS,const LangOptions & LO,bool ShowColors) const4332 void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
4333 StmtPrinterHelper Helper(this, LO);
4334
4335 // Print the entry block.
4336 print_block(OS, this, getEntry(), Helper, true, ShowColors);
4337
4338 // Iterate through the CFGBlocks and print them one by one.
4339 for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
4340 // Skip the entry block, because we already printed it.
4341 if (&(**I) == &getEntry() || &(**I) == &getExit())
4342 continue;
4343
4344 print_block(OS, this, **I, Helper, true, ShowColors);
4345 }
4346
4347 // Print the exit block.
4348 print_block(OS, this, getExit(), Helper, true, ShowColors);
4349 OS << '\n';
4350 OS.flush();
4351 }
4352
4353 /// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
dump(const CFG * cfg,const LangOptions & LO,bool ShowColors) const4354 void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
4355 bool ShowColors) const {
4356 print(llvm::errs(), cfg, LO, ShowColors);
4357 }
4358
dump() const4359 void CFGBlock::dump() const {
4360 dump(getParent(), LangOptions(), false);
4361 }
4362
4363 /// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
4364 /// Generally this will only be called from CFG::print.
print(raw_ostream & OS,const CFG * cfg,const LangOptions & LO,bool ShowColors) const4365 void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
4366 const LangOptions &LO, bool ShowColors) const {
4367 StmtPrinterHelper Helper(cfg, LO);
4368 print_block(OS, cfg, *this, Helper, true, ShowColors);
4369 OS << '\n';
4370 }
4371
4372 /// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
printTerminator(raw_ostream & OS,const LangOptions & LO) const4373 void CFGBlock::printTerminator(raw_ostream &OS,
4374 const LangOptions &LO) const {
4375 CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
4376 TPrinter.print(getTerminator());
4377 }
4378
getTerminatorCondition(bool StripParens)4379 Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
4380 Stmt *Terminator = this->Terminator;
4381 if (!Terminator)
4382 return nullptr;
4383
4384 Expr *E = nullptr;
4385
4386 switch (Terminator->getStmtClass()) {
4387 default:
4388 break;
4389
4390 case Stmt::CXXForRangeStmtClass:
4391 E = cast<CXXForRangeStmt>(Terminator)->getCond();
4392 break;
4393
4394 case Stmt::ForStmtClass:
4395 E = cast<ForStmt>(Terminator)->getCond();
4396 break;
4397
4398 case Stmt::WhileStmtClass:
4399 E = cast<WhileStmt>(Terminator)->getCond();
4400 break;
4401
4402 case Stmt::DoStmtClass:
4403 E = cast<DoStmt>(Terminator)->getCond();
4404 break;
4405
4406 case Stmt::IfStmtClass:
4407 E = cast<IfStmt>(Terminator)->getCond();
4408 break;
4409
4410 case Stmt::ChooseExprClass:
4411 E = cast<ChooseExpr>(Terminator)->getCond();
4412 break;
4413
4414 case Stmt::IndirectGotoStmtClass:
4415 E = cast<IndirectGotoStmt>(Terminator)->getTarget();
4416 break;
4417
4418 case Stmt::SwitchStmtClass:
4419 E = cast<SwitchStmt>(Terminator)->getCond();
4420 break;
4421
4422 case Stmt::BinaryConditionalOperatorClass:
4423 E = cast<BinaryConditionalOperator>(Terminator)->getCond();
4424 break;
4425
4426 case Stmt::ConditionalOperatorClass:
4427 E = cast<ConditionalOperator>(Terminator)->getCond();
4428 break;
4429
4430 case Stmt::BinaryOperatorClass: // '&&' and '||'
4431 E = cast<BinaryOperator>(Terminator)->getLHS();
4432 break;
4433
4434 case Stmt::ObjCForCollectionStmtClass:
4435 return Terminator;
4436 }
4437
4438 if (!StripParens)
4439 return E;
4440
4441 return E ? E->IgnoreParens() : nullptr;
4442 }
4443
4444 //===----------------------------------------------------------------------===//
4445 // CFG Graphviz Visualization
4446 //===----------------------------------------------------------------------===//
4447
4448
4449 #ifndef NDEBUG
4450 static StmtPrinterHelper* GraphHelper;
4451 #endif
4452
viewCFG(const LangOptions & LO) const4453 void CFG::viewCFG(const LangOptions &LO) const {
4454 #ifndef NDEBUG
4455 StmtPrinterHelper H(this, LO);
4456 GraphHelper = &H;
4457 llvm::ViewGraph(this,"CFG");
4458 GraphHelper = nullptr;
4459 #endif
4460 }
4461
4462 namespace llvm {
4463 template<>
4464 struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
4465
DOTGraphTraitsllvm::DOTGraphTraits4466 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
4467
getNodeLabelllvm::DOTGraphTraits4468 static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
4469
4470 #ifndef NDEBUG
4471 std::string OutSStr;
4472 llvm::raw_string_ostream Out(OutSStr);
4473 print_block(Out,Graph, *Node, *GraphHelper, false, false);
4474 std::string& OutStr = Out.str();
4475
4476 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
4477
4478 // Process string output to make it nicer...
4479 for (unsigned i = 0; i != OutStr.length(); ++i)
4480 if (OutStr[i] == '\n') { // Left justify
4481 OutStr[i] = '\\';
4482 OutStr.insert(OutStr.begin()+i+1, 'l');
4483 }
4484
4485 return OutStr;
4486 #else
4487 return "";
4488 #endif
4489 }
4490 };
4491 } // end namespace llvm
4492