• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *  * Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  *  * Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in
12  *    the documentation and/or other materials provided with the
13  *    distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28 
29 #include "linker_phdr.h"
30 
31 #include <errno.h>
32 #include <machine/exec.h>
33 #include <sys/mman.h>
34 #include <sys/types.h>
35 #include <sys/stat.h>
36 #include <unistd.h>
37 
38 #include "linker.h"
39 #include "linker_debug.h"
40 
41 /**
42   TECHNICAL NOTE ON ELF LOADING.
43 
44   An ELF file's program header table contains one or more PT_LOAD
45   segments, which corresponds to portions of the file that need to
46   be mapped into the process' address space.
47 
48   Each loadable segment has the following important properties:
49 
50     p_offset  -> segment file offset
51     p_filesz  -> segment file size
52     p_memsz   -> segment memory size (always >= p_filesz)
53     p_vaddr   -> segment's virtual address
54     p_flags   -> segment flags (e.g. readable, writable, executable)
55 
56   We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
57 
58   The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
59   ranges of virtual addresses. A few rules apply:
60 
61   - the virtual address ranges should not overlap.
62 
63   - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
64     between them should always be initialized to 0.
65 
66   - ranges do not necessarily start or end at page boundaries. Two distinct
67     segments can have their start and end on the same page. In this case, the
68     page inherits the mapping flags of the latter segment.
69 
70   Finally, the real load addrs of each segment is not p_vaddr. Instead the
71   loader decides where to load the first segment, then will load all others
72   relative to the first one to respect the initial range layout.
73 
74   For example, consider the following list:
75 
76     [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
77     [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
78 
79   This corresponds to two segments that cover these virtual address ranges:
80 
81        0x30000...0x34000
82        0x40000...0x48000
83 
84   If the loader decides to load the first segment at address 0xa0000000
85   then the segments' load address ranges will be:
86 
87        0xa0030000...0xa0034000
88        0xa0040000...0xa0048000
89 
90   In other words, all segments must be loaded at an address that has the same
91   constant offset from their p_vaddr value. This offset is computed as the
92   difference between the first segment's load address, and its p_vaddr value.
93 
94   However, in practice, segments do _not_ start at page boundaries. Since we
95   can only memory-map at page boundaries, this means that the bias is
96   computed as:
97 
98        load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
99 
100   (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
101           possible wrap around UINT32_MAX for possible large p_vaddr values).
102 
103   And that the phdr0_load_address must start at a page boundary, with
104   the segment's real content starting at:
105 
106        phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
107 
108   Note that ELF requires the following condition to make the mmap()-ing work:
109 
110       PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
111 
112   The load_bias must be added to any p_vaddr value read from the ELF file to
113   determine the corresponding memory address.
114 
115  **/
116 
117 #define MAYBE_MAP_FLAG(x, from, to)  (((x) & (from)) ? (to) : 0)
118 #define PFLAGS_TO_PROT(x)            (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
119                                       MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
120                                       MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
121 
ElfReader(const char * name,int fd)122 ElfReader::ElfReader(const char* name, int fd)
123     : name_(name), fd_(fd),
124       phdr_num_(0), phdr_mmap_(NULL), phdr_table_(NULL), phdr_size_(0),
125       load_start_(NULL), load_size_(0), load_bias_(0),
126       loaded_phdr_(NULL) {
127 }
128 
~ElfReader()129 ElfReader::~ElfReader() {
130   if (phdr_mmap_ != NULL) {
131     munmap(phdr_mmap_, phdr_size_);
132   }
133 }
134 
Load(const android_dlextinfo * extinfo)135 bool ElfReader::Load(const android_dlextinfo* extinfo) {
136   return ReadElfHeader() &&
137          VerifyElfHeader() &&
138          ReadProgramHeader() &&
139          ReserveAddressSpace(extinfo) &&
140          LoadSegments() &&
141          FindPhdr();
142 }
143 
ReadElfHeader()144 bool ElfReader::ReadElfHeader() {
145   ssize_t rc = TEMP_FAILURE_RETRY(read(fd_, &header_, sizeof(header_)));
146   if (rc < 0) {
147     DL_ERR("can't read file \"%s\": %s", name_, strerror(errno));
148     return false;
149   }
150   if (rc != sizeof(header_)) {
151     DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_,
152            static_cast<size_t>(rc));
153     return false;
154   }
155   return true;
156 }
157 
VerifyElfHeader()158 bool ElfReader::VerifyElfHeader() {
159   if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
160     DL_ERR("\"%s\" has bad ELF magic", name_);
161     return false;
162   }
163 
164   // Try to give a clear diagnostic for ELF class mismatches, since they're
165   // an easy mistake to make during the 32-bit/64-bit transition period.
166   int elf_class = header_.e_ident[EI_CLASS];
167 #if defined(__LP64__)
168   if (elf_class != ELFCLASS64) {
169     if (elf_class == ELFCLASS32) {
170       DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_);
171     } else {
172       DL_ERR("\"%s\" has unknown ELF class: %d", name_, elf_class);
173     }
174     return false;
175   }
176 #else
177   if (elf_class != ELFCLASS32) {
178     if (elf_class == ELFCLASS64) {
179       DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_);
180     } else {
181       DL_ERR("\"%s\" has unknown ELF class: %d", name_, elf_class);
182     }
183     return false;
184   }
185 #endif
186 
187   if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
188     DL_ERR("\"%s\" not little-endian: %d", name_, header_.e_ident[EI_DATA]);
189     return false;
190   }
191 
192   if (header_.e_type != ET_DYN) {
193     DL_ERR("\"%s\" has unexpected e_type: %d", name_, header_.e_type);
194     return false;
195   }
196 
197   if (header_.e_version != EV_CURRENT) {
198     DL_ERR("\"%s\" has unexpected e_version: %d", name_, header_.e_version);
199     return false;
200   }
201 
202   if (header_.e_machine != ELF_TARG_MACH) {
203     DL_ERR("\"%s\" has unexpected e_machine: %d", name_, header_.e_machine);
204     return false;
205   }
206 
207   return true;
208 }
209 
210 // Loads the program header table from an ELF file into a read-only private
211 // anonymous mmap-ed block.
ReadProgramHeader()212 bool ElfReader::ReadProgramHeader() {
213   phdr_num_ = header_.e_phnum;
214 
215   // Like the kernel, we only accept program header tables that
216   // are smaller than 64KiB.
217   if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
218     DL_ERR("\"%s\" has invalid e_phnum: %zd", name_, phdr_num_);
219     return false;
220   }
221 
222   ElfW(Addr) page_min = PAGE_START(header_.e_phoff);
223   ElfW(Addr) page_max = PAGE_END(header_.e_phoff + (phdr_num_ * sizeof(ElfW(Phdr))));
224   ElfW(Addr) page_offset = PAGE_OFFSET(header_.e_phoff);
225 
226   phdr_size_ = page_max - page_min;
227 
228   void* mmap_result = mmap(NULL, phdr_size_, PROT_READ, MAP_PRIVATE, fd_, page_min);
229   if (mmap_result == MAP_FAILED) {
230     DL_ERR("\"%s\" phdr mmap failed: %s", name_, strerror(errno));
231     return false;
232   }
233 
234   phdr_mmap_ = mmap_result;
235   phdr_table_ = reinterpret_cast<ElfW(Phdr)*>(reinterpret_cast<char*>(mmap_result) + page_offset);
236   return true;
237 }
238 
239 /* Returns the size of the extent of all the possibly non-contiguous
240  * loadable segments in an ELF program header table. This corresponds
241  * to the page-aligned size in bytes that needs to be reserved in the
242  * process' address space. If there are no loadable segments, 0 is
243  * returned.
244  *
245  * If out_min_vaddr or out_max_vaddr are non-NULL, they will be
246  * set to the minimum and maximum addresses of pages to be reserved,
247  * or 0 if there is nothing to load.
248  */
phdr_table_get_load_size(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)* out_min_vaddr,ElfW (Addr)* out_max_vaddr)249 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
250                                 ElfW(Addr)* out_min_vaddr,
251                                 ElfW(Addr)* out_max_vaddr) {
252   ElfW(Addr) min_vaddr = UINTPTR_MAX;
253   ElfW(Addr) max_vaddr = 0;
254 
255   bool found_pt_load = false;
256   for (size_t i = 0; i < phdr_count; ++i) {
257     const ElfW(Phdr)* phdr = &phdr_table[i];
258 
259     if (phdr->p_type != PT_LOAD) {
260       continue;
261     }
262     found_pt_load = true;
263 
264     if (phdr->p_vaddr < min_vaddr) {
265       min_vaddr = phdr->p_vaddr;
266     }
267 
268     if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
269       max_vaddr = phdr->p_vaddr + phdr->p_memsz;
270     }
271   }
272   if (!found_pt_load) {
273     min_vaddr = 0;
274   }
275 
276   min_vaddr = PAGE_START(min_vaddr);
277   max_vaddr = PAGE_END(max_vaddr);
278 
279   if (out_min_vaddr != NULL) {
280     *out_min_vaddr = min_vaddr;
281   }
282   if (out_max_vaddr != NULL) {
283     *out_max_vaddr = max_vaddr;
284   }
285   return max_vaddr - min_vaddr;
286 }
287 
288 // Reserve a virtual address range big enough to hold all loadable
289 // segments of a program header table. This is done by creating a
290 // private anonymous mmap() with PROT_NONE.
ReserveAddressSpace(const android_dlextinfo * extinfo)291 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
292   ElfW(Addr) min_vaddr;
293   load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
294   if (load_size_ == 0) {
295     DL_ERR("\"%s\" has no loadable segments", name_);
296     return false;
297   }
298 
299   uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
300   void* start;
301   size_t reserved_size = 0;
302   bool reserved_hint = true;
303 
304   if (extinfo != NULL) {
305     if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
306       reserved_size = extinfo->reserved_size;
307       reserved_hint = false;
308     } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
309       reserved_size = extinfo->reserved_size;
310     }
311   }
312 
313   if (load_size_ > reserved_size) {
314     if (!reserved_hint) {
315       DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
316              reserved_size - load_size_, load_size_, name_);
317       return false;
318     }
319     int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
320     start = mmap(addr, load_size_, PROT_NONE, mmap_flags, -1, 0);
321     if (start == MAP_FAILED) {
322       DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_);
323       return false;
324     }
325   } else {
326     start = extinfo->reserved_addr;
327   }
328 
329   load_start_ = start;
330   load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
331   return true;
332 }
333 
LoadSegments()334 bool ElfReader::LoadSegments() {
335   for (size_t i = 0; i < phdr_num_; ++i) {
336     const ElfW(Phdr)* phdr = &phdr_table_[i];
337 
338     if (phdr->p_type != PT_LOAD) {
339       continue;
340     }
341 
342     // Segment addresses in memory.
343     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
344     ElfW(Addr) seg_end   = seg_start + phdr->p_memsz;
345 
346     ElfW(Addr) seg_page_start = PAGE_START(seg_start);
347     ElfW(Addr) seg_page_end   = PAGE_END(seg_end);
348 
349     ElfW(Addr) seg_file_end   = seg_start + phdr->p_filesz;
350 
351     // File offsets.
352     ElfW(Addr) file_start = phdr->p_offset;
353     ElfW(Addr) file_end   = file_start + phdr->p_filesz;
354 
355     ElfW(Addr) file_page_start = PAGE_START(file_start);
356     ElfW(Addr) file_length = file_end - file_page_start;
357 
358     if (file_length != 0) {
359       void* seg_addr = mmap(reinterpret_cast<void*>(seg_page_start),
360                             file_length,
361                             PFLAGS_TO_PROT(phdr->p_flags),
362                             MAP_FIXED|MAP_PRIVATE,
363                             fd_,
364                             file_page_start);
365       if (seg_addr == MAP_FAILED) {
366         DL_ERR("couldn't map \"%s\" segment %zd: %s", name_, i, strerror(errno));
367         return false;
368       }
369     }
370 
371     // if the segment is writable, and does not end on a page boundary,
372     // zero-fill it until the page limit.
373     if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
374       memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
375     }
376 
377     seg_file_end = PAGE_END(seg_file_end);
378 
379     // seg_file_end is now the first page address after the file
380     // content. If seg_end is larger, we need to zero anything
381     // between them. This is done by using a private anonymous
382     // map for all extra pages.
383     if (seg_page_end > seg_file_end) {
384       void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
385                            seg_page_end - seg_file_end,
386                            PFLAGS_TO_PROT(phdr->p_flags),
387                            MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
388                            -1,
389                            0);
390       if (zeromap == MAP_FAILED) {
391         DL_ERR("couldn't zero fill \"%s\" gap: %s", name_, strerror(errno));
392         return false;
393       }
394     }
395   }
396   return true;
397 }
398 
399 /* Used internally. Used to set the protection bits of all loaded segments
400  * with optional extra flags (i.e. really PROT_WRITE). Used by
401  * phdr_table_protect_segments and phdr_table_unprotect_segments.
402  */
_phdr_table_set_load_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int extra_prot_flags)403 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
404                                      ElfW(Addr) load_bias, int extra_prot_flags) {
405   const ElfW(Phdr)* phdr = phdr_table;
406   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
407 
408   for (; phdr < phdr_limit; phdr++) {
409     if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
410       continue;
411     }
412 
413     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
414     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
415 
416     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
417                        seg_page_end - seg_page_start,
418                        PFLAGS_TO_PROT(phdr->p_flags) | extra_prot_flags);
419     if (ret < 0) {
420       return -1;
421     }
422   }
423   return 0;
424 }
425 
426 /* Restore the original protection modes for all loadable segments.
427  * You should only call this after phdr_table_unprotect_segments and
428  * applying all relocations.
429  *
430  * Input:
431  *   phdr_table  -> program header table
432  *   phdr_count  -> number of entries in tables
433  *   load_bias   -> load bias
434  * Return:
435  *   0 on error, -1 on failure (error code in errno).
436  */
phdr_table_protect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)437 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias) {
438   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
439 }
440 
441 /* Change the protection of all loaded segments in memory to writable.
442  * This is useful before performing relocations. Once completed, you
443  * will have to call phdr_table_protect_segments to restore the original
444  * protection flags on all segments.
445  *
446  * Note that some writable segments can also have their content turned
447  * to read-only by calling phdr_table_protect_gnu_relro. This is no
448  * performed here.
449  *
450  * Input:
451  *   phdr_table  -> program header table
452  *   phdr_count  -> number of entries in tables
453  *   load_bias   -> load bias
454  * Return:
455  *   0 on error, -1 on failure (error code in errno).
456  */
phdr_table_unprotect_segments(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)457 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias) {
458   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
459 }
460 
461 /* Used internally by phdr_table_protect_gnu_relro and
462  * phdr_table_unprotect_gnu_relro.
463  */
_phdr_table_set_gnu_relro_prot(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int prot_flags)464 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
465                                           ElfW(Addr) load_bias, int prot_flags) {
466   const ElfW(Phdr)* phdr = phdr_table;
467   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
468 
469   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
470     if (phdr->p_type != PT_GNU_RELRO) {
471       continue;
472     }
473 
474     // Tricky: what happens when the relro segment does not start
475     // or end at page boundaries? We're going to be over-protective
476     // here and put every page touched by the segment as read-only.
477 
478     // This seems to match Ian Lance Taylor's description of the
479     // feature at http://www.airs.com/blog/archives/189.
480 
481     //    Extract:
482     //       Note that the current dynamic linker code will only work
483     //       correctly if the PT_GNU_RELRO segment starts on a page
484     //       boundary. This is because the dynamic linker rounds the
485     //       p_vaddr field down to the previous page boundary. If
486     //       there is anything on the page which should not be read-only,
487     //       the program is likely to fail at runtime. So in effect the
488     //       linker must only emit a PT_GNU_RELRO segment if it ensures
489     //       that it starts on a page boundary.
490     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
491     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
492 
493     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
494                        seg_page_end - seg_page_start,
495                        prot_flags);
496     if (ret < 0) {
497       return -1;
498     }
499   }
500   return 0;
501 }
502 
503 /* Apply GNU relro protection if specified by the program header. This will
504  * turn some of the pages of a writable PT_LOAD segment to read-only, as
505  * specified by one or more PT_GNU_RELRO segments. This must be always
506  * performed after relocations.
507  *
508  * The areas typically covered are .got and .data.rel.ro, these are
509  * read-only from the program's POV, but contain absolute addresses
510  * that need to be relocated before use.
511  *
512  * Input:
513  *   phdr_table  -> program header table
514  *   phdr_count  -> number of entries in tables
515  *   load_bias   -> load bias
516  * Return:
517  *   0 on error, -1 on failure (error code in errno).
518  */
phdr_table_protect_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias)519 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias) {
520   return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
521 }
522 
523 /* Serialize the GNU relro segments to the given file descriptor. This can be
524  * performed after relocations to allow another process to later share the
525  * relocated segment, if it was loaded at the same address.
526  *
527  * Input:
528  *   phdr_table  -> program header table
529  *   phdr_count  -> number of entries in tables
530  *   load_bias   -> load bias
531  *   fd          -> writable file descriptor to use
532  * Return:
533  *   0 on error, -1 on failure (error code in errno).
534  */
phdr_table_serialize_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)535 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias,
536                                    int fd) {
537   const ElfW(Phdr)* phdr = phdr_table;
538   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
539   ssize_t file_offset = 0;
540 
541   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
542     if (phdr->p_type != PT_GNU_RELRO) {
543       continue;
544     }
545 
546     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
547     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
548     ssize_t size = seg_page_end - seg_page_start;
549 
550     ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
551     if (written != size) {
552       return -1;
553     }
554     void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
555                      MAP_PRIVATE|MAP_FIXED, fd, file_offset);
556     if (map == MAP_FAILED) {
557       return -1;
558     }
559     file_offset += size;
560   }
561   return 0;
562 }
563 
564 /* Where possible, replace the GNU relro segments with mappings of the given
565  * file descriptor. This can be performed after relocations to allow a file
566  * previously created by phdr_table_serialize_gnu_relro in another process to
567  * replace the dirty relocated pages, saving memory, if it was loaded at the
568  * same address. We have to compare the data before we map over it, since some
569  * parts of the relro segment may not be identical due to other libraries in
570  * the process being loaded at different addresses.
571  *
572  * Input:
573  *   phdr_table  -> program header table
574  *   phdr_count  -> number of entries in tables
575  *   load_bias   -> load bias
576  *   fd          -> readable file descriptor to use
577  * Return:
578  *   0 on error, -1 on failure (error code in errno).
579  */
phdr_table_map_gnu_relro(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,int fd)580 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table, size_t phdr_count, ElfW(Addr) load_bias,
581                              int fd) {
582   // Map the file at a temporary location so we can compare its contents.
583   struct stat file_stat;
584   if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
585     return -1;
586   }
587   off_t file_size = file_stat.st_size;
588   void* temp_mapping = NULL;
589   if (file_size > 0) {
590     temp_mapping = mmap(NULL, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
591     if (temp_mapping == MAP_FAILED) {
592       return -1;
593     }
594   }
595   size_t file_offset = 0;
596 
597   // Iterate over the relro segments and compare/remap the pages.
598   const ElfW(Phdr)* phdr = phdr_table;
599   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
600 
601   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
602     if (phdr->p_type != PT_GNU_RELRO) {
603       continue;
604     }
605 
606     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
607     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
608 
609     char* file_base = static_cast<char*>(temp_mapping) + file_offset;
610     char* mem_base = reinterpret_cast<char*>(seg_page_start);
611     size_t match_offset = 0;
612     size_t size = seg_page_end - seg_page_start;
613 
614     if (file_size - file_offset < size) {
615       // File is too short to compare to this segment. The contents are likely
616       // different as well (it's probably for a different library version) so
617       // just don't bother checking.
618       break;
619     }
620 
621     while (match_offset < size) {
622       // Skip over dissimilar pages.
623       while (match_offset < size &&
624              memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
625         match_offset += PAGE_SIZE;
626       }
627 
628       // Count similar pages.
629       size_t mismatch_offset = match_offset;
630       while (mismatch_offset < size &&
631              memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
632         mismatch_offset += PAGE_SIZE;
633       }
634 
635       // Map over similar pages.
636       if (mismatch_offset > match_offset) {
637         void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
638                          PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
639         if (map == MAP_FAILED) {
640           munmap(temp_mapping, file_size);
641           return -1;
642         }
643       }
644 
645       match_offset = mismatch_offset;
646     }
647 
648     // Add to the base file offset in case there are multiple relro segments.
649     file_offset += size;
650   }
651   munmap(temp_mapping, file_size);
652   return 0;
653 }
654 
655 
656 #if defined(__arm__)
657 
658 #  ifndef PT_ARM_EXIDX
659 #    define PT_ARM_EXIDX    0x70000001      /* .ARM.exidx segment */
660 #  endif
661 
662 /* Return the address and size of the .ARM.exidx section in memory,
663  * if present.
664  *
665  * Input:
666  *   phdr_table  -> program header table
667  *   phdr_count  -> number of entries in tables
668  *   load_bias   -> load bias
669  * Output:
670  *   arm_exidx       -> address of table in memory (NULL on failure).
671  *   arm_exidx_count -> number of items in table (0 on failure).
672  * Return:
673  *   0 on error, -1 on failure (_no_ error code in errno)
674  */
phdr_table_get_arm_exidx(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Addr)** arm_exidx,unsigned * arm_exidx_count)675 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
676                              ElfW(Addr) load_bias,
677                              ElfW(Addr)** arm_exidx, unsigned* arm_exidx_count) {
678   const ElfW(Phdr)* phdr = phdr_table;
679   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
680 
681   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
682     if (phdr->p_type != PT_ARM_EXIDX) {
683       continue;
684     }
685 
686     *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
687     *arm_exidx_count = (unsigned)(phdr->p_memsz / 8);
688     return 0;
689   }
690   *arm_exidx = NULL;
691   *arm_exidx_count = 0;
692   return -1;
693 }
694 #endif
695 
696 /* Return the address and size of the ELF file's .dynamic section in memory,
697  * or NULL if missing.
698  *
699  * Input:
700  *   phdr_table  -> program header table
701  *   phdr_count  -> number of entries in tables
702  *   load_bias   -> load bias
703  * Output:
704  *   dynamic       -> address of table in memory (NULL on failure).
705  *   dynamic_count -> number of items in table (0 on failure).
706  *   dynamic_flags -> protection flags for section (unset on failure)
707  * Return:
708  *   void
709  */
phdr_table_get_dynamic_section(const ElfW (Phdr)* phdr_table,size_t phdr_count,ElfW (Addr)load_bias,ElfW (Dyn)** dynamic,size_t * dynamic_count,ElfW (Word)* dynamic_flags)710 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
711                                     ElfW(Addr) load_bias,
712                                     ElfW(Dyn)** dynamic, size_t* dynamic_count, ElfW(Word)* dynamic_flags) {
713   const ElfW(Phdr)* phdr = phdr_table;
714   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
715 
716   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
717     if (phdr->p_type != PT_DYNAMIC) {
718       continue;
719     }
720 
721     *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr->p_vaddr);
722     if (dynamic_count) {
723       *dynamic_count = (unsigned)(phdr->p_memsz / 8);
724     }
725     if (dynamic_flags) {
726       *dynamic_flags = phdr->p_flags;
727     }
728     return;
729   }
730   *dynamic = NULL;
731   if (dynamic_count) {
732     *dynamic_count = 0;
733   }
734 }
735 
736 // Returns the address of the program header table as it appears in the loaded
737 // segments in memory. This is in contrast with 'phdr_table_' which
738 // is temporary and will be released before the library is relocated.
FindPhdr()739 bool ElfReader::FindPhdr() {
740   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
741 
742   // If there is a PT_PHDR, use it directly.
743   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
744     if (phdr->p_type == PT_PHDR) {
745       return CheckPhdr(load_bias_ + phdr->p_vaddr);
746     }
747   }
748 
749   // Otherwise, check the first loadable segment. If its file offset
750   // is 0, it starts with the ELF header, and we can trivially find the
751   // loaded program header from it.
752   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
753     if (phdr->p_type == PT_LOAD) {
754       if (phdr->p_offset == 0) {
755         ElfW(Addr)  elf_addr = load_bias_ + phdr->p_vaddr;
756         const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
757         ElfW(Addr)  offset = ehdr->e_phoff;
758         return CheckPhdr((ElfW(Addr))ehdr + offset);
759       }
760       break;
761     }
762   }
763 
764   DL_ERR("can't find loaded phdr for \"%s\"", name_);
765   return false;
766 }
767 
768 // Ensures that our program header is actually within a loadable
769 // segment. This should help catch badly-formed ELF files that
770 // would cause the linker to crash later when trying to access it.
CheckPhdr(ElfW (Addr)loaded)771 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
772   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
773   ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
774   for (ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
775     if (phdr->p_type != PT_LOAD) {
776       continue;
777     }
778     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
779     ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
780     if (seg_start <= loaded && loaded_end <= seg_end) {
781       loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
782       return true;
783     }
784   }
785   DL_ERR("\"%s\" loaded phdr %p not in loadable segment", name_, reinterpret_cast<void*>(loaded));
786   return false;
787 }
788