• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a flow-sensitive, path-insensitive analysis of
11 // determining reachable blocks within a CFG.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "clang/Analysis/Analyses/ReachableCode.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/Analysis/AnalysisContext.h"
23 #include "clang/Analysis/CFG.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/SmallVector.h"
27 
28 using namespace clang;
29 
30 //===----------------------------------------------------------------------===//
31 // Core Reachability Analysis routines.
32 //===----------------------------------------------------------------------===//
33 
isEnumConstant(const Expr * Ex)34 static bool isEnumConstant(const Expr *Ex) {
35   const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
36   if (!DR)
37     return false;
38   return isa<EnumConstantDecl>(DR->getDecl());
39 }
40 
isTrivialExpression(const Expr * Ex)41 static bool isTrivialExpression(const Expr *Ex) {
42   Ex = Ex->IgnoreParenCasts();
43   return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
44          isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
45          isa<CharacterLiteral>(Ex) ||
46          isEnumConstant(Ex);
47 }
48 
isTrivialDoWhile(const CFGBlock * B,const Stmt * S)49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
50   // Check if the block ends with a do...while() and see if 'S' is the
51   // condition.
52   if (const Stmt *Term = B->getTerminator()) {
53     if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
54       const Expr *Cond = DS->getCond()->IgnoreParenCasts();
55       return Cond == S && isTrivialExpression(Cond);
56     }
57   }
58   return false;
59 }
60 
isDeadReturn(const CFGBlock * B,const Stmt * S)61 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
62   // Look to see if the current control flow ends with a 'return', and see if
63   // 'S' is a substatement. The 'return' may not be the last element in the
64   // block, or may be in a subsequent block because of destructors.
65   const CFGBlock *Current = B;
66   while (true) {
67     for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
68                                           E = Current->rend();
69          I != E; ++I) {
70       if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
71         if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
72           if (RS == S)
73             return true;
74           if (const Expr *RE = RS->getRetValue()) {
75             RE = RE->IgnoreParenCasts();
76             if (RE == S)
77               return true;
78             ParentMap PM(const_cast<Expr *>(RE));
79             // If 'S' is in the ParentMap, it is a subexpression of
80             // the return statement.
81             return PM.getParent(S);
82           }
83         }
84         break;
85       }
86     }
87     // Note also that we are restricting the search for the return statement
88     // to stop at control-flow; only part of a return statement may be dead,
89     // without the whole return statement being dead.
90     if (Current->getTerminator().isTemporaryDtorsBranch()) {
91       // Temporary destructors have a predictable control flow, thus we want to
92       // look into the next block for the return statement.
93       // We look into the false branch, as we know the true branch only contains
94       // the call to the destructor.
95       assert(Current->succ_size() == 2);
96       Current = *(Current->succ_begin() + 1);
97     } else if (!Current->getTerminator() && Current->succ_size() == 1) {
98       // If there is only one successor, we're not dealing with outgoing control
99       // flow. Thus, look into the next block.
100       Current = *Current->succ_begin();
101       if (Current->pred_size() > 1) {
102         // If there is more than one predecessor, we're dealing with incoming
103         // control flow - if the return statement is in that block, it might
104         // well be reachable via a different control flow, thus it's not dead.
105         return false;
106       }
107     } else {
108       // We hit control flow or a dead end. Stop searching.
109       return false;
110     }
111   }
112   llvm_unreachable("Broke out of infinite loop.");
113 }
114 
getTopMostMacro(SourceLocation Loc,SourceManager & SM)115 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
116   assert(Loc.isMacroID());
117   SourceLocation Last;
118   while (Loc.isMacroID()) {
119     Last = Loc;
120     Loc = SM.getImmediateMacroCallerLoc(Loc);
121   }
122   return Last;
123 }
124 
125 /// Returns true if the statement is expanded from a configuration macro.
isExpandedFromConfigurationMacro(const Stmt * S,Preprocessor & PP,bool IgnoreYES_NO=false)126 static bool isExpandedFromConfigurationMacro(const Stmt *S,
127                                              Preprocessor &PP,
128                                              bool IgnoreYES_NO = false) {
129   // FIXME: This is not very precise.  Here we just check to see if the
130   // value comes from a macro, but we can do much better.  This is likely
131   // to be over conservative.  This logic is factored into a separate function
132   // so that we can refine it later.
133   SourceLocation L = S->getLocStart();
134   if (L.isMacroID()) {
135     if (IgnoreYES_NO) {
136       // The Objective-C constant 'YES' and 'NO'
137       // are defined as macros.  Do not treat them
138       // as configuration values.
139       SourceManager &SM = PP.getSourceManager();
140       SourceLocation TopL = getTopMostMacro(L, SM);
141       StringRef MacroName = PP.getImmediateMacroName(TopL);
142       if (MacroName == "YES" || MacroName == "NO")
143         return false;
144     }
145     return true;
146   }
147   return false;
148 }
149 
150 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
151 
152 /// Returns true if the statement represents a configuration value.
153 ///
154 /// A configuration value is something usually determined at compile-time
155 /// to conditionally always execute some branch.  Such guards are for
156 /// "sometimes unreachable" code.  Such code is usually not interesting
157 /// to report as unreachable, and may mask truly unreachable code within
158 /// those blocks.
isConfigurationValue(const Stmt * S,Preprocessor & PP,SourceRange * SilenceableCondVal=nullptr,bool IncludeIntegers=true,bool WrappedInParens=false)159 static bool isConfigurationValue(const Stmt *S,
160                                  Preprocessor &PP,
161                                  SourceRange *SilenceableCondVal = nullptr,
162                                  bool IncludeIntegers = true,
163                                  bool WrappedInParens = false) {
164   if (!S)
165     return false;
166 
167   if (const Expr *Ex = dyn_cast<Expr>(S))
168     S = Ex->IgnoreCasts();
169 
170   // Special case looking for the sigil '()' around an integer literal.
171   if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
172     if (!PE->getLocStart().isMacroID())
173       return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
174                                   IncludeIntegers, true);
175 
176   if (const Expr *Ex = dyn_cast<Expr>(S))
177     S = Ex->IgnoreCasts();
178 
179   bool IgnoreYES_NO = false;
180 
181   switch (S->getStmtClass()) {
182     case Stmt::CallExprClass: {
183       const FunctionDecl *Callee =
184         dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
185       return Callee ? Callee->isConstexpr() : false;
186     }
187     case Stmt::DeclRefExprClass:
188       return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
189     case Stmt::ObjCBoolLiteralExprClass:
190       IgnoreYES_NO = true;
191       // Fallthrough.
192     case Stmt::CXXBoolLiteralExprClass:
193     case Stmt::IntegerLiteralClass: {
194       const Expr *E = cast<Expr>(S);
195       if (IncludeIntegers) {
196         if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
197           *SilenceableCondVal = E->getSourceRange();
198         return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
199       }
200       return false;
201     }
202     case Stmt::MemberExprClass:
203       return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
204     case Stmt::UnaryExprOrTypeTraitExprClass:
205       return true;
206     case Stmt::BinaryOperatorClass: {
207       const BinaryOperator *B = cast<BinaryOperator>(S);
208       // Only include raw integers (not enums) as configuration
209       // values if they are used in a logical or comparison operator
210       // (not arithmetic).
211       IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
212       return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
213                                   IncludeIntegers) ||
214              isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
215                                   IncludeIntegers);
216     }
217     case Stmt::UnaryOperatorClass: {
218       const UnaryOperator *UO = cast<UnaryOperator>(S);
219       if (SilenceableCondVal)
220         *SilenceableCondVal = UO->getSourceRange();
221       return UO->getOpcode() == UO_LNot &&
222              isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
223                                   IncludeIntegers, WrappedInParens);
224     }
225     default:
226       return false;
227   }
228 }
229 
isConfigurationValue(const ValueDecl * D,Preprocessor & PP)230 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
231   if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
232     return isConfigurationValue(ED->getInitExpr(), PP);
233   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
234     // As a heuristic, treat globals as configuration values.  Note
235     // that we only will get here if Sema evaluated this
236     // condition to a constant expression, which means the global
237     // had to be declared in a way to be a truly constant value.
238     // We could generalize this to local variables, but it isn't
239     // clear if those truly represent configuration values that
240     // gate unreachable code.
241     if (!VD->hasLocalStorage())
242       return true;
243 
244     // As a heuristic, locals that have been marked 'const' explicitly
245     // can be treated as configuration values as well.
246     return VD->getType().isLocalConstQualified();
247   }
248   return false;
249 }
250 
251 /// Returns true if we should always explore all successors of a block.
shouldTreatSuccessorsAsReachable(const CFGBlock * B,Preprocessor & PP)252 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
253                                              Preprocessor &PP) {
254   if (const Stmt *Term = B->getTerminator()) {
255     if (isa<SwitchStmt>(Term))
256       return true;
257     // Specially handle '||' and '&&'.
258     if (isa<BinaryOperator>(Term)) {
259       return isConfigurationValue(Term, PP);
260     }
261   }
262 
263   const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
264   return isConfigurationValue(Cond, PP);
265 }
266 
scanFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable,Preprocessor * PP,bool IncludeSometimesUnreachableEdges)267 static unsigned scanFromBlock(const CFGBlock *Start,
268                               llvm::BitVector &Reachable,
269                               Preprocessor *PP,
270                               bool IncludeSometimesUnreachableEdges) {
271   unsigned count = 0;
272 
273   // Prep work queue
274   SmallVector<const CFGBlock*, 32> WL;
275 
276   // The entry block may have already been marked reachable
277   // by the caller.
278   if (!Reachable[Start->getBlockID()]) {
279     ++count;
280     Reachable[Start->getBlockID()] = true;
281   }
282 
283   WL.push_back(Start);
284 
285   // Find the reachable blocks from 'Start'.
286   while (!WL.empty()) {
287     const CFGBlock *item = WL.pop_back_val();
288 
289     // There are cases where we want to treat all successors as reachable.
290     // The idea is that some "sometimes unreachable" code is not interesting,
291     // and that we should forge ahead and explore those branches anyway.
292     // This allows us to potentially uncover some "always unreachable" code
293     // within the "sometimes unreachable" code.
294     // Look at the successors and mark then reachable.
295     Optional<bool> TreatAllSuccessorsAsReachable;
296     if (!IncludeSometimesUnreachableEdges)
297       TreatAllSuccessorsAsReachable = false;
298 
299     for (CFGBlock::const_succ_iterator I = item->succ_begin(),
300          E = item->succ_end(); I != E; ++I) {
301       const CFGBlock *B = *I;
302       if (!B) do {
303         const CFGBlock *UB = I->getPossiblyUnreachableBlock();
304         if (!UB)
305           break;
306 
307         if (!TreatAllSuccessorsAsReachable.hasValue()) {
308           assert(PP);
309           TreatAllSuccessorsAsReachable =
310             shouldTreatSuccessorsAsReachable(item, *PP);
311         }
312 
313         if (TreatAllSuccessorsAsReachable.getValue()) {
314           B = UB;
315           break;
316         }
317       }
318       while (false);
319 
320       if (B) {
321         unsigned blockID = B->getBlockID();
322         if (!Reachable[blockID]) {
323           Reachable.set(blockID);
324           WL.push_back(B);
325           ++count;
326         }
327       }
328     }
329   }
330   return count;
331 }
332 
scanMaybeReachableFromBlock(const CFGBlock * Start,Preprocessor & PP,llvm::BitVector & Reachable)333 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
334                                             Preprocessor &PP,
335                                             llvm::BitVector &Reachable) {
336   return scanFromBlock(Start, Reachable, &PP, true);
337 }
338 
339 //===----------------------------------------------------------------------===//
340 // Dead Code Scanner.
341 //===----------------------------------------------------------------------===//
342 
343 namespace {
344   class DeadCodeScan {
345     llvm::BitVector Visited;
346     llvm::BitVector &Reachable;
347     SmallVector<const CFGBlock *, 10> WorkList;
348     Preprocessor &PP;
349 
350     typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
351     DeferredLocsTy;
352 
353     DeferredLocsTy DeferredLocs;
354 
355   public:
DeadCodeScan(llvm::BitVector & reachable,Preprocessor & PP)356     DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP)
357     : Visited(reachable.size()),
358       Reachable(reachable),
359       PP(PP) {}
360 
361     void enqueue(const CFGBlock *block);
362     unsigned scanBackwards(const CFGBlock *Start,
363     clang::reachable_code::Callback &CB);
364 
365     bool isDeadCodeRoot(const CFGBlock *Block);
366 
367     const Stmt *findDeadCode(const CFGBlock *Block);
368 
369     void reportDeadCode(const CFGBlock *B,
370                         const Stmt *S,
371                         clang::reachable_code::Callback &CB);
372   };
373 }
374 
enqueue(const CFGBlock * block)375 void DeadCodeScan::enqueue(const CFGBlock *block) {
376   unsigned blockID = block->getBlockID();
377   if (Reachable[blockID] || Visited[blockID])
378     return;
379   Visited[blockID] = true;
380   WorkList.push_back(block);
381 }
382 
isDeadCodeRoot(const clang::CFGBlock * Block)383 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
384   bool isDeadRoot = true;
385 
386   for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
387        E = Block->pred_end(); I != E; ++I) {
388     if (const CFGBlock *PredBlock = *I) {
389       unsigned blockID = PredBlock->getBlockID();
390       if (Visited[blockID]) {
391         isDeadRoot = false;
392         continue;
393       }
394       if (!Reachable[blockID]) {
395         isDeadRoot = false;
396         Visited[blockID] = true;
397         WorkList.push_back(PredBlock);
398         continue;
399       }
400     }
401   }
402 
403   return isDeadRoot;
404 }
405 
isValidDeadStmt(const Stmt * S)406 static bool isValidDeadStmt(const Stmt *S) {
407   if (S->getLocStart().isInvalid())
408     return false;
409   if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
410     return BO->getOpcode() != BO_Comma;
411   return true;
412 }
413 
findDeadCode(const clang::CFGBlock * Block)414 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
415   for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
416     if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
417       const Stmt *S = CS->getStmt();
418       if (isValidDeadStmt(S))
419         return S;
420     }
421 
422   if (CFGTerminator T = Block->getTerminator()) {
423     if (!T.isTemporaryDtorsBranch()) {
424       const Stmt *S = T.getStmt();
425       if (isValidDeadStmt(S))
426         return S;
427     }
428   }
429 
430   return nullptr;
431 }
432 
SrcCmp(const std::pair<const CFGBlock *,const Stmt * > * p1,const std::pair<const CFGBlock *,const Stmt * > * p2)433 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
434                   const std::pair<const CFGBlock *, const Stmt *> *p2) {
435   if (p1->second->getLocStart() < p2->second->getLocStart())
436     return -1;
437   if (p2->second->getLocStart() < p1->second->getLocStart())
438     return 1;
439   return 0;
440 }
441 
scanBackwards(const clang::CFGBlock * Start,clang::reachable_code::Callback & CB)442 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
443                                      clang::reachable_code::Callback &CB) {
444 
445   unsigned count = 0;
446   enqueue(Start);
447 
448   while (!WorkList.empty()) {
449     const CFGBlock *Block = WorkList.pop_back_val();
450 
451     // It is possible that this block has been marked reachable after
452     // it was enqueued.
453     if (Reachable[Block->getBlockID()])
454       continue;
455 
456     // Look for any dead code within the block.
457     const Stmt *S = findDeadCode(Block);
458 
459     if (!S) {
460       // No dead code.  Possibly an empty block.  Look at dead predecessors.
461       for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
462            E = Block->pred_end(); I != E; ++I) {
463         if (const CFGBlock *predBlock = *I)
464           enqueue(predBlock);
465       }
466       continue;
467     }
468 
469     // Specially handle macro-expanded code.
470     if (S->getLocStart().isMacroID()) {
471       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
472       continue;
473     }
474 
475     if (isDeadCodeRoot(Block)) {
476       reportDeadCode(Block, S, CB);
477       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
478     }
479     else {
480       // Record this statement as the possibly best location in a
481       // strongly-connected component of dead code for emitting a
482       // warning.
483       DeferredLocs.push_back(std::make_pair(Block, S));
484     }
485   }
486 
487   // If we didn't find a dead root, then report the dead code with the
488   // earliest location.
489   if (!DeferredLocs.empty()) {
490     llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
491     for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
492          E = DeferredLocs.end(); I != E; ++I) {
493       const CFGBlock *Block = I->first;
494       if (Reachable[Block->getBlockID()])
495         continue;
496       reportDeadCode(Block, I->second, CB);
497       count += scanMaybeReachableFromBlock(Block, PP, Reachable);
498     }
499   }
500 
501   return count;
502 }
503 
GetUnreachableLoc(const Stmt * S,SourceRange & R1,SourceRange & R2)504 static SourceLocation GetUnreachableLoc(const Stmt *S,
505                                         SourceRange &R1,
506                                         SourceRange &R2) {
507   R1 = R2 = SourceRange();
508 
509   if (const Expr *Ex = dyn_cast<Expr>(S))
510     S = Ex->IgnoreParenImpCasts();
511 
512   switch (S->getStmtClass()) {
513     case Expr::BinaryOperatorClass: {
514       const BinaryOperator *BO = cast<BinaryOperator>(S);
515       return BO->getOperatorLoc();
516     }
517     case Expr::UnaryOperatorClass: {
518       const UnaryOperator *UO = cast<UnaryOperator>(S);
519       R1 = UO->getSubExpr()->getSourceRange();
520       return UO->getOperatorLoc();
521     }
522     case Expr::CompoundAssignOperatorClass: {
523       const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
524       R1 = CAO->getLHS()->getSourceRange();
525       R2 = CAO->getRHS()->getSourceRange();
526       return CAO->getOperatorLoc();
527     }
528     case Expr::BinaryConditionalOperatorClass:
529     case Expr::ConditionalOperatorClass: {
530       const AbstractConditionalOperator *CO =
531       cast<AbstractConditionalOperator>(S);
532       return CO->getQuestionLoc();
533     }
534     case Expr::MemberExprClass: {
535       const MemberExpr *ME = cast<MemberExpr>(S);
536       R1 = ME->getSourceRange();
537       return ME->getMemberLoc();
538     }
539     case Expr::ArraySubscriptExprClass: {
540       const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
541       R1 = ASE->getLHS()->getSourceRange();
542       R2 = ASE->getRHS()->getSourceRange();
543       return ASE->getRBracketLoc();
544     }
545     case Expr::CStyleCastExprClass: {
546       const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
547       R1 = CSC->getSubExpr()->getSourceRange();
548       return CSC->getLParenLoc();
549     }
550     case Expr::CXXFunctionalCastExprClass: {
551       const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
552       R1 = CE->getSubExpr()->getSourceRange();
553       return CE->getLocStart();
554     }
555     case Stmt::CXXTryStmtClass: {
556       return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
557     }
558     case Expr::ObjCBridgedCastExprClass: {
559       const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
560       R1 = CSC->getSubExpr()->getSourceRange();
561       return CSC->getLParenLoc();
562     }
563     default: ;
564   }
565   R1 = S->getSourceRange();
566   return S->getLocStart();
567 }
568 
reportDeadCode(const CFGBlock * B,const Stmt * S,clang::reachable_code::Callback & CB)569 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
570                                   const Stmt *S,
571                                   clang::reachable_code::Callback &CB) {
572   // Classify the unreachable code found, or suppress it in some cases.
573   reachable_code::UnreachableKind UK = reachable_code::UK_Other;
574 
575   if (isa<BreakStmt>(S)) {
576     UK = reachable_code::UK_Break;
577   }
578   else if (isTrivialDoWhile(B, S)) {
579     return;
580   }
581   else if (isDeadReturn(B, S)) {
582     UK = reachable_code::UK_Return;
583   }
584 
585   SourceRange SilenceableCondVal;
586 
587   if (UK == reachable_code::UK_Other) {
588     // Check if the dead code is part of the "loop target" of
589     // a for/for-range loop.  This is the block that contains
590     // the increment code.
591     if (const Stmt *LoopTarget = B->getLoopTarget()) {
592       SourceLocation Loc = LoopTarget->getLocStart();
593       SourceRange R1(Loc, Loc), R2;
594 
595       if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
596         const Expr *Inc = FS->getInc();
597         Loc = Inc->getLocStart();
598         R2 = Inc->getSourceRange();
599       }
600 
601       CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
602                            Loc, SourceRange(), SourceRange(Loc, Loc), R2);
603       return;
604     }
605 
606     // Check if the dead block has a predecessor whose branch has
607     // a configuration value that *could* be modified to
608     // silence the warning.
609     CFGBlock::const_pred_iterator PI = B->pred_begin();
610     if (PI != B->pred_end()) {
611       if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
612         const Stmt *TermCond =
613             PredBlock->getTerminatorCondition(/* strip parens */ false);
614         isConfigurationValue(TermCond, PP, &SilenceableCondVal);
615       }
616     }
617   }
618 
619   SourceRange R1, R2;
620   SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
621   CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
622 }
623 
624 //===----------------------------------------------------------------------===//
625 // Reachability APIs.
626 //===----------------------------------------------------------------------===//
627 
628 namespace clang { namespace reachable_code {
629 
anchor()630 void Callback::anchor() { }
631 
ScanReachableFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable)632 unsigned ScanReachableFromBlock(const CFGBlock *Start,
633                                 llvm::BitVector &Reachable) {
634   return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
635 }
636 
FindUnreachableCode(AnalysisDeclContext & AC,Preprocessor & PP,Callback & CB)637 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
638                          Callback &CB) {
639 
640   CFG *cfg = AC.getCFG();
641   if (!cfg)
642     return;
643 
644   // Scan for reachable blocks from the entrance of the CFG.
645   // If there are no unreachable blocks, we're done.
646   llvm::BitVector reachable(cfg->getNumBlockIDs());
647   unsigned numReachable =
648     scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
649   if (numReachable == cfg->getNumBlockIDs())
650     return;
651 
652   // If there aren't explicit EH edges, we should include the 'try' dispatch
653   // blocks as roots.
654   if (!AC.getCFGBuildOptions().AddEHEdges) {
655     for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
656          E = cfg->try_blocks_end() ; I != E; ++I) {
657       numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
658     }
659     if (numReachable == cfg->getNumBlockIDs())
660       return;
661   }
662 
663   // There are some unreachable blocks.  We need to find the root blocks that
664   // contain code that should be considered unreachable.
665   for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
666     const CFGBlock *block = *I;
667     // A block may have been marked reachable during this loop.
668     if (reachable[block->getBlockID()])
669       continue;
670 
671     DeadCodeScan DS(reachable, PP);
672     numReachable += DS.scanBackwards(block, CB);
673 
674     if (numReachable == cfg->getNumBlockIDs())
675       return;
676   }
677 }
678 
679 }} // end namespace clang::reachable_code
680