1 //=- ReachableCodePathInsensitive.cpp ---------------------------*- C++ --*-==//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a flow-sensitive, path-insensitive analysis of
11 // determining reachable blocks within a CFG.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "clang/Analysis/Analyses/ReachableCode.h"
16 #include "clang/Lex/Preprocessor.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/ExprObjC.h"
20 #include "clang/AST/StmtCXX.h"
21 #include "clang/AST/ParentMap.h"
22 #include "clang/Analysis/AnalysisContext.h"
23 #include "clang/Analysis/CFG.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "llvm/ADT/BitVector.h"
26 #include "llvm/ADT/SmallVector.h"
27
28 using namespace clang;
29
30 //===----------------------------------------------------------------------===//
31 // Core Reachability Analysis routines.
32 //===----------------------------------------------------------------------===//
33
isEnumConstant(const Expr * Ex)34 static bool isEnumConstant(const Expr *Ex) {
35 const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Ex);
36 if (!DR)
37 return false;
38 return isa<EnumConstantDecl>(DR->getDecl());
39 }
40
isTrivialExpression(const Expr * Ex)41 static bool isTrivialExpression(const Expr *Ex) {
42 Ex = Ex->IgnoreParenCasts();
43 return isa<IntegerLiteral>(Ex) || isa<StringLiteral>(Ex) ||
44 isa<CXXBoolLiteralExpr>(Ex) || isa<ObjCBoolLiteralExpr>(Ex) ||
45 isa<CharacterLiteral>(Ex) ||
46 isEnumConstant(Ex);
47 }
48
isTrivialDoWhile(const CFGBlock * B,const Stmt * S)49 static bool isTrivialDoWhile(const CFGBlock *B, const Stmt *S) {
50 // Check if the block ends with a do...while() and see if 'S' is the
51 // condition.
52 if (const Stmt *Term = B->getTerminator()) {
53 if (const DoStmt *DS = dyn_cast<DoStmt>(Term)) {
54 const Expr *Cond = DS->getCond()->IgnoreParenCasts();
55 return Cond == S && isTrivialExpression(Cond);
56 }
57 }
58 return false;
59 }
60
isDeadReturn(const CFGBlock * B,const Stmt * S)61 static bool isDeadReturn(const CFGBlock *B, const Stmt *S) {
62 // Look to see if the current control flow ends with a 'return', and see if
63 // 'S' is a substatement. The 'return' may not be the last element in the
64 // block, or may be in a subsequent block because of destructors.
65 const CFGBlock *Current = B;
66 while (true) {
67 for (CFGBlock::const_reverse_iterator I = Current->rbegin(),
68 E = Current->rend();
69 I != E; ++I) {
70 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
71 if (const ReturnStmt *RS = dyn_cast<ReturnStmt>(CS->getStmt())) {
72 if (RS == S)
73 return true;
74 if (const Expr *RE = RS->getRetValue()) {
75 RE = RE->IgnoreParenCasts();
76 if (RE == S)
77 return true;
78 ParentMap PM(const_cast<Expr *>(RE));
79 // If 'S' is in the ParentMap, it is a subexpression of
80 // the return statement.
81 return PM.getParent(S);
82 }
83 }
84 break;
85 }
86 }
87 // Note also that we are restricting the search for the return statement
88 // to stop at control-flow; only part of a return statement may be dead,
89 // without the whole return statement being dead.
90 if (Current->getTerminator().isTemporaryDtorsBranch()) {
91 // Temporary destructors have a predictable control flow, thus we want to
92 // look into the next block for the return statement.
93 // We look into the false branch, as we know the true branch only contains
94 // the call to the destructor.
95 assert(Current->succ_size() == 2);
96 Current = *(Current->succ_begin() + 1);
97 } else if (!Current->getTerminator() && Current->succ_size() == 1) {
98 // If there is only one successor, we're not dealing with outgoing control
99 // flow. Thus, look into the next block.
100 Current = *Current->succ_begin();
101 if (Current->pred_size() > 1) {
102 // If there is more than one predecessor, we're dealing with incoming
103 // control flow - if the return statement is in that block, it might
104 // well be reachable via a different control flow, thus it's not dead.
105 return false;
106 }
107 } else {
108 // We hit control flow or a dead end. Stop searching.
109 return false;
110 }
111 }
112 llvm_unreachable("Broke out of infinite loop.");
113 }
114
getTopMostMacro(SourceLocation Loc,SourceManager & SM)115 static SourceLocation getTopMostMacro(SourceLocation Loc, SourceManager &SM) {
116 assert(Loc.isMacroID());
117 SourceLocation Last;
118 while (Loc.isMacroID()) {
119 Last = Loc;
120 Loc = SM.getImmediateMacroCallerLoc(Loc);
121 }
122 return Last;
123 }
124
125 /// Returns true if the statement is expanded from a configuration macro.
isExpandedFromConfigurationMacro(const Stmt * S,Preprocessor & PP,bool IgnoreYES_NO=false)126 static bool isExpandedFromConfigurationMacro(const Stmt *S,
127 Preprocessor &PP,
128 bool IgnoreYES_NO = false) {
129 // FIXME: This is not very precise. Here we just check to see if the
130 // value comes from a macro, but we can do much better. This is likely
131 // to be over conservative. This logic is factored into a separate function
132 // so that we can refine it later.
133 SourceLocation L = S->getLocStart();
134 if (L.isMacroID()) {
135 if (IgnoreYES_NO) {
136 // The Objective-C constant 'YES' and 'NO'
137 // are defined as macros. Do not treat them
138 // as configuration values.
139 SourceManager &SM = PP.getSourceManager();
140 SourceLocation TopL = getTopMostMacro(L, SM);
141 StringRef MacroName = PP.getImmediateMacroName(TopL);
142 if (MacroName == "YES" || MacroName == "NO")
143 return false;
144 }
145 return true;
146 }
147 return false;
148 }
149
150 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP);
151
152 /// Returns true if the statement represents a configuration value.
153 ///
154 /// A configuration value is something usually determined at compile-time
155 /// to conditionally always execute some branch. Such guards are for
156 /// "sometimes unreachable" code. Such code is usually not interesting
157 /// to report as unreachable, and may mask truly unreachable code within
158 /// those blocks.
isConfigurationValue(const Stmt * S,Preprocessor & PP,SourceRange * SilenceableCondVal=nullptr,bool IncludeIntegers=true,bool WrappedInParens=false)159 static bool isConfigurationValue(const Stmt *S,
160 Preprocessor &PP,
161 SourceRange *SilenceableCondVal = nullptr,
162 bool IncludeIntegers = true,
163 bool WrappedInParens = false) {
164 if (!S)
165 return false;
166
167 if (const Expr *Ex = dyn_cast<Expr>(S))
168 S = Ex->IgnoreCasts();
169
170 // Special case looking for the sigil '()' around an integer literal.
171 if (const ParenExpr *PE = dyn_cast<ParenExpr>(S))
172 if (!PE->getLocStart().isMacroID())
173 return isConfigurationValue(PE->getSubExpr(), PP, SilenceableCondVal,
174 IncludeIntegers, true);
175
176 if (const Expr *Ex = dyn_cast<Expr>(S))
177 S = Ex->IgnoreCasts();
178
179 bool IgnoreYES_NO = false;
180
181 switch (S->getStmtClass()) {
182 case Stmt::CallExprClass: {
183 const FunctionDecl *Callee =
184 dyn_cast_or_null<FunctionDecl>(cast<CallExpr>(S)->getCalleeDecl());
185 return Callee ? Callee->isConstexpr() : false;
186 }
187 case Stmt::DeclRefExprClass:
188 return isConfigurationValue(cast<DeclRefExpr>(S)->getDecl(), PP);
189 case Stmt::ObjCBoolLiteralExprClass:
190 IgnoreYES_NO = true;
191 // Fallthrough.
192 case Stmt::CXXBoolLiteralExprClass:
193 case Stmt::IntegerLiteralClass: {
194 const Expr *E = cast<Expr>(S);
195 if (IncludeIntegers) {
196 if (SilenceableCondVal && !SilenceableCondVal->getBegin().isValid())
197 *SilenceableCondVal = E->getSourceRange();
198 return WrappedInParens || isExpandedFromConfigurationMacro(E, PP, IgnoreYES_NO);
199 }
200 return false;
201 }
202 case Stmt::MemberExprClass:
203 return isConfigurationValue(cast<MemberExpr>(S)->getMemberDecl(), PP);
204 case Stmt::UnaryExprOrTypeTraitExprClass:
205 return true;
206 case Stmt::BinaryOperatorClass: {
207 const BinaryOperator *B = cast<BinaryOperator>(S);
208 // Only include raw integers (not enums) as configuration
209 // values if they are used in a logical or comparison operator
210 // (not arithmetic).
211 IncludeIntegers &= (B->isLogicalOp() || B->isComparisonOp());
212 return isConfigurationValue(B->getLHS(), PP, SilenceableCondVal,
213 IncludeIntegers) ||
214 isConfigurationValue(B->getRHS(), PP, SilenceableCondVal,
215 IncludeIntegers);
216 }
217 case Stmt::UnaryOperatorClass: {
218 const UnaryOperator *UO = cast<UnaryOperator>(S);
219 if (SilenceableCondVal)
220 *SilenceableCondVal = UO->getSourceRange();
221 return UO->getOpcode() == UO_LNot &&
222 isConfigurationValue(UO->getSubExpr(), PP, SilenceableCondVal,
223 IncludeIntegers, WrappedInParens);
224 }
225 default:
226 return false;
227 }
228 }
229
isConfigurationValue(const ValueDecl * D,Preprocessor & PP)230 static bool isConfigurationValue(const ValueDecl *D, Preprocessor &PP) {
231 if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D))
232 return isConfigurationValue(ED->getInitExpr(), PP);
233 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
234 // As a heuristic, treat globals as configuration values. Note
235 // that we only will get here if Sema evaluated this
236 // condition to a constant expression, which means the global
237 // had to be declared in a way to be a truly constant value.
238 // We could generalize this to local variables, but it isn't
239 // clear if those truly represent configuration values that
240 // gate unreachable code.
241 if (!VD->hasLocalStorage())
242 return true;
243
244 // As a heuristic, locals that have been marked 'const' explicitly
245 // can be treated as configuration values as well.
246 return VD->getType().isLocalConstQualified();
247 }
248 return false;
249 }
250
251 /// Returns true if we should always explore all successors of a block.
shouldTreatSuccessorsAsReachable(const CFGBlock * B,Preprocessor & PP)252 static bool shouldTreatSuccessorsAsReachable(const CFGBlock *B,
253 Preprocessor &PP) {
254 if (const Stmt *Term = B->getTerminator()) {
255 if (isa<SwitchStmt>(Term))
256 return true;
257 // Specially handle '||' and '&&'.
258 if (isa<BinaryOperator>(Term)) {
259 return isConfigurationValue(Term, PP);
260 }
261 }
262
263 const Stmt *Cond = B->getTerminatorCondition(/* stripParens */ false);
264 return isConfigurationValue(Cond, PP);
265 }
266
scanFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable,Preprocessor * PP,bool IncludeSometimesUnreachableEdges)267 static unsigned scanFromBlock(const CFGBlock *Start,
268 llvm::BitVector &Reachable,
269 Preprocessor *PP,
270 bool IncludeSometimesUnreachableEdges) {
271 unsigned count = 0;
272
273 // Prep work queue
274 SmallVector<const CFGBlock*, 32> WL;
275
276 // The entry block may have already been marked reachable
277 // by the caller.
278 if (!Reachable[Start->getBlockID()]) {
279 ++count;
280 Reachable[Start->getBlockID()] = true;
281 }
282
283 WL.push_back(Start);
284
285 // Find the reachable blocks from 'Start'.
286 while (!WL.empty()) {
287 const CFGBlock *item = WL.pop_back_val();
288
289 // There are cases where we want to treat all successors as reachable.
290 // The idea is that some "sometimes unreachable" code is not interesting,
291 // and that we should forge ahead and explore those branches anyway.
292 // This allows us to potentially uncover some "always unreachable" code
293 // within the "sometimes unreachable" code.
294 // Look at the successors and mark then reachable.
295 Optional<bool> TreatAllSuccessorsAsReachable;
296 if (!IncludeSometimesUnreachableEdges)
297 TreatAllSuccessorsAsReachable = false;
298
299 for (CFGBlock::const_succ_iterator I = item->succ_begin(),
300 E = item->succ_end(); I != E; ++I) {
301 const CFGBlock *B = *I;
302 if (!B) do {
303 const CFGBlock *UB = I->getPossiblyUnreachableBlock();
304 if (!UB)
305 break;
306
307 if (!TreatAllSuccessorsAsReachable.hasValue()) {
308 assert(PP);
309 TreatAllSuccessorsAsReachable =
310 shouldTreatSuccessorsAsReachable(item, *PP);
311 }
312
313 if (TreatAllSuccessorsAsReachable.getValue()) {
314 B = UB;
315 break;
316 }
317 }
318 while (false);
319
320 if (B) {
321 unsigned blockID = B->getBlockID();
322 if (!Reachable[blockID]) {
323 Reachable.set(blockID);
324 WL.push_back(B);
325 ++count;
326 }
327 }
328 }
329 }
330 return count;
331 }
332
scanMaybeReachableFromBlock(const CFGBlock * Start,Preprocessor & PP,llvm::BitVector & Reachable)333 static unsigned scanMaybeReachableFromBlock(const CFGBlock *Start,
334 Preprocessor &PP,
335 llvm::BitVector &Reachable) {
336 return scanFromBlock(Start, Reachable, &PP, true);
337 }
338
339 //===----------------------------------------------------------------------===//
340 // Dead Code Scanner.
341 //===----------------------------------------------------------------------===//
342
343 namespace {
344 class DeadCodeScan {
345 llvm::BitVector Visited;
346 llvm::BitVector &Reachable;
347 SmallVector<const CFGBlock *, 10> WorkList;
348 Preprocessor &PP;
349
350 typedef SmallVector<std::pair<const CFGBlock *, const Stmt *>, 12>
351 DeferredLocsTy;
352
353 DeferredLocsTy DeferredLocs;
354
355 public:
DeadCodeScan(llvm::BitVector & reachable,Preprocessor & PP)356 DeadCodeScan(llvm::BitVector &reachable, Preprocessor &PP)
357 : Visited(reachable.size()),
358 Reachable(reachable),
359 PP(PP) {}
360
361 void enqueue(const CFGBlock *block);
362 unsigned scanBackwards(const CFGBlock *Start,
363 clang::reachable_code::Callback &CB);
364
365 bool isDeadCodeRoot(const CFGBlock *Block);
366
367 const Stmt *findDeadCode(const CFGBlock *Block);
368
369 void reportDeadCode(const CFGBlock *B,
370 const Stmt *S,
371 clang::reachable_code::Callback &CB);
372 };
373 }
374
enqueue(const CFGBlock * block)375 void DeadCodeScan::enqueue(const CFGBlock *block) {
376 unsigned blockID = block->getBlockID();
377 if (Reachable[blockID] || Visited[blockID])
378 return;
379 Visited[blockID] = true;
380 WorkList.push_back(block);
381 }
382
isDeadCodeRoot(const clang::CFGBlock * Block)383 bool DeadCodeScan::isDeadCodeRoot(const clang::CFGBlock *Block) {
384 bool isDeadRoot = true;
385
386 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
387 E = Block->pred_end(); I != E; ++I) {
388 if (const CFGBlock *PredBlock = *I) {
389 unsigned blockID = PredBlock->getBlockID();
390 if (Visited[blockID]) {
391 isDeadRoot = false;
392 continue;
393 }
394 if (!Reachable[blockID]) {
395 isDeadRoot = false;
396 Visited[blockID] = true;
397 WorkList.push_back(PredBlock);
398 continue;
399 }
400 }
401 }
402
403 return isDeadRoot;
404 }
405
isValidDeadStmt(const Stmt * S)406 static bool isValidDeadStmt(const Stmt *S) {
407 if (S->getLocStart().isInvalid())
408 return false;
409 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(S))
410 return BO->getOpcode() != BO_Comma;
411 return true;
412 }
413
findDeadCode(const clang::CFGBlock * Block)414 const Stmt *DeadCodeScan::findDeadCode(const clang::CFGBlock *Block) {
415 for (CFGBlock::const_iterator I = Block->begin(), E = Block->end(); I!=E; ++I)
416 if (Optional<CFGStmt> CS = I->getAs<CFGStmt>()) {
417 const Stmt *S = CS->getStmt();
418 if (isValidDeadStmt(S))
419 return S;
420 }
421
422 if (CFGTerminator T = Block->getTerminator()) {
423 if (!T.isTemporaryDtorsBranch()) {
424 const Stmt *S = T.getStmt();
425 if (isValidDeadStmt(S))
426 return S;
427 }
428 }
429
430 return nullptr;
431 }
432
SrcCmp(const std::pair<const CFGBlock *,const Stmt * > * p1,const std::pair<const CFGBlock *,const Stmt * > * p2)433 static int SrcCmp(const std::pair<const CFGBlock *, const Stmt *> *p1,
434 const std::pair<const CFGBlock *, const Stmt *> *p2) {
435 if (p1->second->getLocStart() < p2->second->getLocStart())
436 return -1;
437 if (p2->second->getLocStart() < p1->second->getLocStart())
438 return 1;
439 return 0;
440 }
441
scanBackwards(const clang::CFGBlock * Start,clang::reachable_code::Callback & CB)442 unsigned DeadCodeScan::scanBackwards(const clang::CFGBlock *Start,
443 clang::reachable_code::Callback &CB) {
444
445 unsigned count = 0;
446 enqueue(Start);
447
448 while (!WorkList.empty()) {
449 const CFGBlock *Block = WorkList.pop_back_val();
450
451 // It is possible that this block has been marked reachable after
452 // it was enqueued.
453 if (Reachable[Block->getBlockID()])
454 continue;
455
456 // Look for any dead code within the block.
457 const Stmt *S = findDeadCode(Block);
458
459 if (!S) {
460 // No dead code. Possibly an empty block. Look at dead predecessors.
461 for (CFGBlock::const_pred_iterator I = Block->pred_begin(),
462 E = Block->pred_end(); I != E; ++I) {
463 if (const CFGBlock *predBlock = *I)
464 enqueue(predBlock);
465 }
466 continue;
467 }
468
469 // Specially handle macro-expanded code.
470 if (S->getLocStart().isMacroID()) {
471 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
472 continue;
473 }
474
475 if (isDeadCodeRoot(Block)) {
476 reportDeadCode(Block, S, CB);
477 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
478 }
479 else {
480 // Record this statement as the possibly best location in a
481 // strongly-connected component of dead code for emitting a
482 // warning.
483 DeferredLocs.push_back(std::make_pair(Block, S));
484 }
485 }
486
487 // If we didn't find a dead root, then report the dead code with the
488 // earliest location.
489 if (!DeferredLocs.empty()) {
490 llvm::array_pod_sort(DeferredLocs.begin(), DeferredLocs.end(), SrcCmp);
491 for (DeferredLocsTy::iterator I = DeferredLocs.begin(),
492 E = DeferredLocs.end(); I != E; ++I) {
493 const CFGBlock *Block = I->first;
494 if (Reachable[Block->getBlockID()])
495 continue;
496 reportDeadCode(Block, I->second, CB);
497 count += scanMaybeReachableFromBlock(Block, PP, Reachable);
498 }
499 }
500
501 return count;
502 }
503
GetUnreachableLoc(const Stmt * S,SourceRange & R1,SourceRange & R2)504 static SourceLocation GetUnreachableLoc(const Stmt *S,
505 SourceRange &R1,
506 SourceRange &R2) {
507 R1 = R2 = SourceRange();
508
509 if (const Expr *Ex = dyn_cast<Expr>(S))
510 S = Ex->IgnoreParenImpCasts();
511
512 switch (S->getStmtClass()) {
513 case Expr::BinaryOperatorClass: {
514 const BinaryOperator *BO = cast<BinaryOperator>(S);
515 return BO->getOperatorLoc();
516 }
517 case Expr::UnaryOperatorClass: {
518 const UnaryOperator *UO = cast<UnaryOperator>(S);
519 R1 = UO->getSubExpr()->getSourceRange();
520 return UO->getOperatorLoc();
521 }
522 case Expr::CompoundAssignOperatorClass: {
523 const CompoundAssignOperator *CAO = cast<CompoundAssignOperator>(S);
524 R1 = CAO->getLHS()->getSourceRange();
525 R2 = CAO->getRHS()->getSourceRange();
526 return CAO->getOperatorLoc();
527 }
528 case Expr::BinaryConditionalOperatorClass:
529 case Expr::ConditionalOperatorClass: {
530 const AbstractConditionalOperator *CO =
531 cast<AbstractConditionalOperator>(S);
532 return CO->getQuestionLoc();
533 }
534 case Expr::MemberExprClass: {
535 const MemberExpr *ME = cast<MemberExpr>(S);
536 R1 = ME->getSourceRange();
537 return ME->getMemberLoc();
538 }
539 case Expr::ArraySubscriptExprClass: {
540 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(S);
541 R1 = ASE->getLHS()->getSourceRange();
542 R2 = ASE->getRHS()->getSourceRange();
543 return ASE->getRBracketLoc();
544 }
545 case Expr::CStyleCastExprClass: {
546 const CStyleCastExpr *CSC = cast<CStyleCastExpr>(S);
547 R1 = CSC->getSubExpr()->getSourceRange();
548 return CSC->getLParenLoc();
549 }
550 case Expr::CXXFunctionalCastExprClass: {
551 const CXXFunctionalCastExpr *CE = cast <CXXFunctionalCastExpr>(S);
552 R1 = CE->getSubExpr()->getSourceRange();
553 return CE->getLocStart();
554 }
555 case Stmt::CXXTryStmtClass: {
556 return cast<CXXTryStmt>(S)->getHandler(0)->getCatchLoc();
557 }
558 case Expr::ObjCBridgedCastExprClass: {
559 const ObjCBridgedCastExpr *CSC = cast<ObjCBridgedCastExpr>(S);
560 R1 = CSC->getSubExpr()->getSourceRange();
561 return CSC->getLParenLoc();
562 }
563 default: ;
564 }
565 R1 = S->getSourceRange();
566 return S->getLocStart();
567 }
568
reportDeadCode(const CFGBlock * B,const Stmt * S,clang::reachable_code::Callback & CB)569 void DeadCodeScan::reportDeadCode(const CFGBlock *B,
570 const Stmt *S,
571 clang::reachable_code::Callback &CB) {
572 // Classify the unreachable code found, or suppress it in some cases.
573 reachable_code::UnreachableKind UK = reachable_code::UK_Other;
574
575 if (isa<BreakStmt>(S)) {
576 UK = reachable_code::UK_Break;
577 }
578 else if (isTrivialDoWhile(B, S)) {
579 return;
580 }
581 else if (isDeadReturn(B, S)) {
582 UK = reachable_code::UK_Return;
583 }
584
585 SourceRange SilenceableCondVal;
586
587 if (UK == reachable_code::UK_Other) {
588 // Check if the dead code is part of the "loop target" of
589 // a for/for-range loop. This is the block that contains
590 // the increment code.
591 if (const Stmt *LoopTarget = B->getLoopTarget()) {
592 SourceLocation Loc = LoopTarget->getLocStart();
593 SourceRange R1(Loc, Loc), R2;
594
595 if (const ForStmt *FS = dyn_cast<ForStmt>(LoopTarget)) {
596 const Expr *Inc = FS->getInc();
597 Loc = Inc->getLocStart();
598 R2 = Inc->getSourceRange();
599 }
600
601 CB.HandleUnreachable(reachable_code::UK_Loop_Increment,
602 Loc, SourceRange(), SourceRange(Loc, Loc), R2);
603 return;
604 }
605
606 // Check if the dead block has a predecessor whose branch has
607 // a configuration value that *could* be modified to
608 // silence the warning.
609 CFGBlock::const_pred_iterator PI = B->pred_begin();
610 if (PI != B->pred_end()) {
611 if (const CFGBlock *PredBlock = PI->getPossiblyUnreachableBlock()) {
612 const Stmt *TermCond =
613 PredBlock->getTerminatorCondition(/* strip parens */ false);
614 isConfigurationValue(TermCond, PP, &SilenceableCondVal);
615 }
616 }
617 }
618
619 SourceRange R1, R2;
620 SourceLocation Loc = GetUnreachableLoc(S, R1, R2);
621 CB.HandleUnreachable(UK, Loc, SilenceableCondVal, R1, R2);
622 }
623
624 //===----------------------------------------------------------------------===//
625 // Reachability APIs.
626 //===----------------------------------------------------------------------===//
627
628 namespace clang { namespace reachable_code {
629
anchor()630 void Callback::anchor() { }
631
ScanReachableFromBlock(const CFGBlock * Start,llvm::BitVector & Reachable)632 unsigned ScanReachableFromBlock(const CFGBlock *Start,
633 llvm::BitVector &Reachable) {
634 return scanFromBlock(Start, Reachable, /* SourceManager* */ nullptr, false);
635 }
636
FindUnreachableCode(AnalysisDeclContext & AC,Preprocessor & PP,Callback & CB)637 void FindUnreachableCode(AnalysisDeclContext &AC, Preprocessor &PP,
638 Callback &CB) {
639
640 CFG *cfg = AC.getCFG();
641 if (!cfg)
642 return;
643
644 // Scan for reachable blocks from the entrance of the CFG.
645 // If there are no unreachable blocks, we're done.
646 llvm::BitVector reachable(cfg->getNumBlockIDs());
647 unsigned numReachable =
648 scanMaybeReachableFromBlock(&cfg->getEntry(), PP, reachable);
649 if (numReachable == cfg->getNumBlockIDs())
650 return;
651
652 // If there aren't explicit EH edges, we should include the 'try' dispatch
653 // blocks as roots.
654 if (!AC.getCFGBuildOptions().AddEHEdges) {
655 for (CFG::try_block_iterator I = cfg->try_blocks_begin(),
656 E = cfg->try_blocks_end() ; I != E; ++I) {
657 numReachable += scanMaybeReachableFromBlock(*I, PP, reachable);
658 }
659 if (numReachable == cfg->getNumBlockIDs())
660 return;
661 }
662
663 // There are some unreachable blocks. We need to find the root blocks that
664 // contain code that should be considered unreachable.
665 for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
666 const CFGBlock *block = *I;
667 // A block may have been marked reachable during this loop.
668 if (reachable[block->getBlockID()])
669 continue;
670
671 DeadCodeScan DS(reachable, PP);
672 numReachable += DS.scanBackwards(block, CB);
673
674 if (numReachable == cfg->getNumBlockIDs())
675 return;
676 }
677 }
678
679 }} // end namespace clang::reachable_code
680