• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #ifndef V8_IC_H_
6 #define V8_IC_H_
7 
8 #include "src/macro-assembler.h"
9 
10 namespace v8 {
11 namespace internal {
12 
13 
14 const int kMaxKeyedPolymorphism = 4;
15 
16 
17 // IC_UTIL_LIST defines all utility functions called from generated
18 // inline caching code. The argument for the macro, ICU, is the function name.
19 #define IC_UTIL_LIST(ICU)                             \
20   ICU(LoadIC_Miss)                                    \
21   ICU(KeyedLoadIC_Miss)                               \
22   ICU(CallIC_Miss)                                    \
23   ICU(CallIC_Customization_Miss)                      \
24   ICU(StoreIC_Miss)                                   \
25   ICU(StoreIC_ArrayLength)                            \
26   ICU(StoreIC_Slow)                                   \
27   ICU(SharedStoreIC_ExtendStorage)                    \
28   ICU(KeyedStoreIC_Miss)                              \
29   ICU(KeyedStoreIC_Slow)                              \
30   /* Utilities for IC stubs. */                       \
31   ICU(StoreCallbackProperty)                          \
32   ICU(LoadPropertyWithInterceptorOnly)                \
33   ICU(LoadPropertyWithInterceptor)                    \
34   ICU(KeyedLoadPropertyWithInterceptor)               \
35   ICU(StoreInterceptorProperty)                       \
36   ICU(CompareIC_Miss)                                 \
37   ICU(BinaryOpIC_Miss)                                \
38   ICU(CompareNilIC_Miss)                              \
39   ICU(Unreachable)                                    \
40   ICU(ToBooleanIC_Miss)
41 //
42 // IC is the base class for LoadIC, StoreIC, KeyedLoadIC, and KeyedStoreIC.
43 //
44 class IC {
45  public:
46   // The ids for utility called from the generated code.
47   enum UtilityId {
48   #define CONST_NAME(name) k##name,
49     IC_UTIL_LIST(CONST_NAME)
50   #undef CONST_NAME
51     kUtilityCount
52   };
53 
54   // Looks up the address of the named utility.
55   static Address AddressFromUtilityId(UtilityId id);
56 
57   // Alias the inline cache state type to make the IC code more readable.
58   typedef InlineCacheState State;
59 
60   // The IC code is either invoked with no extra frames on the stack
61   // or with a single extra frame for supporting calls.
62   enum FrameDepth {
63     NO_EXTRA_FRAME = 0,
64     EXTRA_CALL_FRAME = 1
65   };
66 
67   // Construct the IC structure with the given number of extra
68   // JavaScript frames on the stack.
69   IC(FrameDepth depth, Isolate* isolate);
~IC()70   virtual ~IC() {}
71 
state()72   State state() const { return state_; }
73   inline Address address() const;
74 
75   // Compute the current IC state based on the target stub, receiver and name.
76   void UpdateState(Handle<Object> receiver, Handle<Object> name);
77 
78   bool IsNameCompatibleWithMonomorphicPrototypeFailure(Handle<Object> name);
TryMarkMonomorphicPrototypeFailure(Handle<Object> name)79   bool TryMarkMonomorphicPrototypeFailure(Handle<Object> name) {
80     if (IsNameCompatibleWithMonomorphicPrototypeFailure(name)) {
81       state_ = MONOMORPHIC_PROTOTYPE_FAILURE;
82       return true;
83     }
84     return false;
85   }
86 
87   // If the stub contains weak maps then this function adds the stub to
88   // the dependent code array of each weak map.
89   static void RegisterWeakMapDependency(Handle<Code> stub);
90 
91   // This function is called when a weak map in the stub is dying,
92   // invalidates the stub by setting maps in it to undefined.
93   static void InvalidateMaps(Code* stub);
94 
95   // Clear the inline cache to initial state.
96   static void Clear(Isolate* isolate,
97                     Address address,
98                     ConstantPoolArray* constant_pool);
99 
100 #ifdef DEBUG
IsLoadStub()101   bool IsLoadStub() const {
102     return target()->is_load_stub() || target()->is_keyed_load_stub();
103   }
104 
IsStoreStub()105   bool IsStoreStub() const {
106     return target()->is_store_stub() || target()->is_keyed_store_stub();
107   }
108 
IsCallStub()109   bool IsCallStub() const {
110     return target()->is_call_stub();
111   }
112 #endif
113 
114   // Determines which map must be used for keeping the code stub.
115   // These methods should not be called with undefined or null.
116   static inline InlineCacheHolderFlag GetCodeCacheForObject(Object* object);
117   // TODO(verwaest): This currently returns a HeapObject rather than JSObject*
118   // since loading the IC for loading the length from strings are stored on
119   // the string map directly, rather than on the JSObject-typed prototype.
120   static inline HeapObject* GetCodeCacheHolder(Isolate* isolate,
121                                                Object* object,
122                                                InlineCacheHolderFlag holder);
123 
124   static inline InlineCacheHolderFlag GetCodeCacheFlag(HeapType* type);
125   static inline Handle<Map> GetCodeCacheHolder(InlineCacheHolderFlag flag,
126                                                HeapType* type,
127                                                Isolate* isolate);
128 
IsCleared(Code * code)129   static bool IsCleared(Code* code) {
130     InlineCacheState state = code->ic_state();
131     return state == UNINITIALIZED || state == PREMONOMORPHIC;
132   }
133 
134   // Utility functions to convert maps to types and back. There are two special
135   // cases:
136   // - The heap_number_map is used as a marker which includes heap numbers as
137   //   well as smis.
138   // - The oddball map is only used for booleans.
139   static Handle<Map> TypeToMap(HeapType* type, Isolate* isolate);
140   template <class T>
141   static typename T::TypeHandle MapToType(Handle<Map> map,
142                                           typename T::Region* region);
143 
144   static Handle<HeapType> CurrentTypeOf(Handle<Object> object,
145                                         Isolate* isolate);
146 
147  protected:
148   // Get the call-site target; used for determining the state.
target()149   Handle<Code> target() const { return target_; }
150 
fp()151   Address fp() const { return fp_; }
pc()152   Address pc() const { return *pc_address_; }
isolate()153   Isolate* isolate() const { return isolate_; }
154 
155   // Get the shared function info of the caller.
156   SharedFunctionInfo* GetSharedFunctionInfo() const;
157   // Get the code object of the caller.
158   Code* GetCode() const;
159   // Get the original (non-breakpointed) code object of the caller.
160   Code* GetOriginalCode() const;
161 
162   // Set the call-site target.
set_target(Code * code)163   void set_target(Code* code) {
164 #ifdef VERIFY_HEAP
165     code->VerifyEmbeddedObjectsDependency();
166 #endif
167     SetTargetAtAddress(address(), code, constant_pool());
168     target_set_ = true;
169   }
170 
is_target_set()171   bool is_target_set() { return target_set_; }
172 
173 #ifdef DEBUG
174   char TransitionMarkFromState(IC::State state);
175 
176   void TraceIC(const char* type, Handle<Object> name);
177 #endif
178 
179   MaybeHandle<Object> TypeError(const char* type,
180                                 Handle<Object> object,
181                                 Handle<Object> key);
182   MaybeHandle<Object> ReferenceError(const char* type, Handle<String> name);
183 
184   // Access the target code for the given IC address.
185   static inline Code* GetTargetAtAddress(Address address,
186                                          ConstantPoolArray* constant_pool);
187   static inline void SetTargetAtAddress(Address address,
188                                         Code* target,
189                                         ConstantPoolArray* constant_pool);
190   static void PostPatching(Address address, Code* target, Code* old_target);
191 
192   // Compute the handler either by compiling or by retrieving a cached version.
193   Handle<Code> ComputeHandler(LookupResult* lookup,
194                               Handle<Object> object,
195                               Handle<String> name,
196                               Handle<Object> value = Handle<Code>::null());
CompileHandler(LookupResult * lookup,Handle<Object> object,Handle<String> name,Handle<Object> value,InlineCacheHolderFlag cache_holder)197   virtual Handle<Code> CompileHandler(LookupResult* lookup,
198                                       Handle<Object> object,
199                                       Handle<String> name,
200                                       Handle<Object> value,
201                                       InlineCacheHolderFlag cache_holder) {
202     UNREACHABLE();
203     return Handle<Code>::null();
204   }
205 
206   void UpdateMonomorphicIC(Handle<HeapType> type,
207                            Handle<Code> handler,
208                            Handle<String> name);
209 
210   bool UpdatePolymorphicIC(Handle<HeapType> type,
211                            Handle<String> name,
212                            Handle<Code> code);
213 
214   virtual void UpdateMegamorphicCache(HeapType* type, Name* name, Code* code);
215 
216   void CopyICToMegamorphicCache(Handle<String> name);
217   bool IsTransitionOfMonomorphicTarget(Map* source_map, Map* target_map);
218   void PatchCache(Handle<HeapType> type,
219                   Handle<String> name,
220                   Handle<Code> code);
kind()221   virtual Code::Kind kind() const {
222     UNREACHABLE();
223     return Code::STUB;
224   }
slow_stub()225   virtual Handle<Code> slow_stub() const {
226     UNREACHABLE();
227     return Handle<Code>::null();
228   }
megamorphic_stub()229   virtual Handle<Code> megamorphic_stub() {
230     UNREACHABLE();
231     return Handle<Code>::null();
232   }
generic_stub()233   virtual Handle<Code> generic_stub() const {
234     UNREACHABLE();
235     return Handle<Code>::null();
236   }
237 
238   bool TryRemoveInvalidPrototypeDependentStub(Handle<Object> receiver,
239                                               Handle<String> name);
240   void TryRemoveInvalidHandlers(Handle<Map> map, Handle<String> name);
241 
extra_ic_state()242   ExtraICState extra_ic_state() const { return extra_ic_state_; }
set_extra_ic_state(ExtraICState state)243   void set_extra_ic_state(ExtraICState state) {
244     extra_ic_state_ = state;
245   }
246 
TargetMaps(MapHandleList * list)247   void TargetMaps(MapHandleList* list) {
248     FindTargetMaps();
249     for (int i = 0; i < target_maps_.length(); i++) {
250       list->Add(target_maps_.at(i));
251     }
252   }
253 
TargetTypes(TypeHandleList * list)254   void TargetTypes(TypeHandleList* list) {
255     FindTargetMaps();
256     for (int i = 0; i < target_maps_.length(); i++) {
257       list->Add(IC::MapToType<HeapType>(target_maps_.at(i), isolate_));
258     }
259   }
260 
FirstTargetMap()261   Map* FirstTargetMap() {
262     FindTargetMaps();
263     return target_maps_.length() > 0 ? *target_maps_.at(0) : NULL;
264   }
265 
266  protected:
UpdateTarget()267   void UpdateTarget() {
268     target_ = handle(raw_target(), isolate_);
269   }
270 
271  private:
raw_target()272   Code* raw_target() const {
273     return GetTargetAtAddress(address(), constant_pool());
274   }
275   inline ConstantPoolArray* constant_pool() const;
276   inline ConstantPoolArray* raw_constant_pool() const;
277 
FindTargetMaps()278   void FindTargetMaps() {
279     if (target_maps_set_) return;
280     target_maps_set_ = true;
281     if (state_ == MONOMORPHIC) {
282       Map* map = target_->FindFirstMap();
283       if (map != NULL) target_maps_.Add(handle(map));
284     } else if (state_ != UNINITIALIZED && state_ != PREMONOMORPHIC) {
285       target_->FindAllMaps(&target_maps_);
286     }
287   }
288 
289   // Frame pointer for the frame that uses (calls) the IC.
290   Address fp_;
291 
292   // All access to the program counter of an IC structure is indirect
293   // to make the code GC safe. This feature is crucial since
294   // GetProperty and SetProperty are called and they in turn might
295   // invoke the garbage collector.
296   Address* pc_address_;
297 
298   Isolate* isolate_;
299 
300   // The constant pool of the code which originally called the IC (which might
301   // be for the breakpointed copy of the original code).
302   Handle<ConstantPoolArray> raw_constant_pool_;
303 
304   // The original code target that missed.
305   Handle<Code> target_;
306   State state_;
307   bool target_set_;
308 
309   ExtraICState extra_ic_state_;
310   MapHandleList target_maps_;
311   bool target_maps_set_;
312 
313   DISALLOW_IMPLICIT_CONSTRUCTORS(IC);
314 };
315 
316 
317 // An IC_Utility encapsulates IC::UtilityId. It exists mainly because you
318 // cannot make forward declarations to an enum.
319 class IC_Utility {
320  public:
IC_Utility(IC::UtilityId id)321   explicit IC_Utility(IC::UtilityId id)
322     : address_(IC::AddressFromUtilityId(id)), id_(id) {}
323 
address()324   Address address() const { return address_; }
325 
id()326   IC::UtilityId id() const { return id_; }
327  private:
328   Address address_;
329   IC::UtilityId id_;
330 };
331 
332 
333 class CallIC: public IC {
334  public:
335   enum CallType { METHOD, FUNCTION };
336 
337   class State V8_FINAL BASE_EMBEDDED {
338    public:
339     explicit State(ExtraICState extra_ic_state);
340 
State(int argc,CallType call_type)341     State(int argc, CallType call_type)
342         : argc_(argc), call_type_(call_type) {
343     }
344 
GetICState()345     InlineCacheState GetICState() const { return ::v8::internal::GENERIC; }
346 
347     ExtraICState GetExtraICState() const;
348 
349     static void GenerateAheadOfTime(
350         Isolate*, void (*Generate)(Isolate*, const State&));
351 
arg_count()352     int arg_count() const { return argc_; }
call_type()353     CallType call_type() const { return call_type_; }
354 
CallAsMethod()355     bool CallAsMethod() const { return call_type_ == METHOD; }
356 
357     void Print(StringStream* stream) const;
358 
359    private:
360     class ArgcBits: public BitField<int, 0, Code::kArgumentsBits> {};
361     class CallTypeBits: public BitField<CallType, Code::kArgumentsBits, 1> {};
362 
363     const int argc_;
364     const CallType call_type_;
365   };
366 
CallIC(Isolate * isolate)367   explicit CallIC(Isolate* isolate)
368       : IC(EXTRA_CALL_FRAME, isolate) {
369   }
370 
371   void PatchMegamorphic(Handle<FixedArray> vector, Handle<Smi> slot);
372 
373   void HandleMiss(Handle<Object> receiver,
374                   Handle<Object> function,
375                   Handle<FixedArray> vector,
376                   Handle<Smi> slot);
377 
378   // Returns true if a custom handler was installed.
379   bool DoCustomHandler(Handle<Object> receiver,
380                        Handle<Object> function,
381                        Handle<FixedArray> vector,
382                        Handle<Smi> slot,
383                        const State& state);
384 
385   // Code generator routines.
386   static Handle<Code> initialize_stub(Isolate* isolate,
387                                       int argc,
388                                       CallType call_type);
389 
390   static void Clear(Isolate* isolate, Address address, Code* target,
391                     ConstantPoolArray* constant_pool);
392 };
393 
394 
395 class LoadIC: public IC {
396  public:
397   // ExtraICState bits
398   class ContextualModeBits: public BitField<ContextualMode, 0, 1> {};
399   STATIC_ASSERT(static_cast<int>(NOT_CONTEXTUAL) == 0);
400 
ComputeExtraICState(ContextualMode contextual_mode)401   static ExtraICState ComputeExtraICState(ContextualMode contextual_mode) {
402     return ContextualModeBits::encode(contextual_mode);
403   }
404 
GetContextualMode(ExtraICState state)405   static ContextualMode GetContextualMode(ExtraICState state) {
406     return ContextualModeBits::decode(state);
407   }
408 
contextual_mode()409   ContextualMode contextual_mode() const {
410     return ContextualModeBits::decode(extra_ic_state());
411   }
412 
LoadIC(FrameDepth depth,Isolate * isolate)413   explicit LoadIC(FrameDepth depth, Isolate* isolate)
414       : IC(depth, isolate) {
415     ASSERT(IsLoadStub());
416   }
417 
418   // Returns if this IC is for contextual (no explicit receiver)
419   // access to properties.
IsUndeclaredGlobal(Handle<Object> receiver)420   bool IsUndeclaredGlobal(Handle<Object> receiver) {
421     if (receiver->IsGlobalObject()) {
422       return contextual_mode() == CONTEXTUAL;
423     } else {
424       ASSERT(contextual_mode() != CONTEXTUAL);
425       return false;
426     }
427   }
428 
429   // Code generator routines.
GenerateInitialize(MacroAssembler * masm)430   static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
GeneratePreMonomorphic(MacroAssembler * masm)431   static void GeneratePreMonomorphic(MacroAssembler* masm) {
432     GenerateMiss(masm);
433   }
434   static void GenerateMiss(MacroAssembler* masm);
435   static void GenerateMegamorphic(MacroAssembler* masm);
436   static void GenerateNormal(MacroAssembler* masm);
437   static void GenerateRuntimeGetProperty(MacroAssembler* masm);
438 
439   static Handle<Code> initialize_stub(Isolate* isolate,
440                                       ExtraICState extra_state);
441 
442   MUST_USE_RESULT MaybeHandle<Object> Load(Handle<Object> object,
443                                            Handle<String> name);
444 
445  protected:
kind()446   virtual Code::Kind kind() const { return Code::LOAD_IC; }
447 
set_target(Code * code)448   void set_target(Code* code) {
449     // The contextual mode must be preserved across IC patching.
450     ASSERT(GetContextualMode(code->extra_ic_state()) ==
451            GetContextualMode(target()->extra_ic_state()));
452 
453     IC::set_target(code);
454   }
455 
slow_stub()456   virtual Handle<Code> slow_stub() const {
457     return isolate()->builtins()->LoadIC_Slow();
458   }
459 
460   virtual Handle<Code> megamorphic_stub();
461 
462   // Update the inline cache and the global stub cache based on the
463   // lookup result.
464   void UpdateCaches(LookupResult* lookup,
465                     Handle<Object> object,
466                     Handle<String> name);
467 
468   virtual Handle<Code> CompileHandler(LookupResult* lookup,
469                                       Handle<Object> object,
470                                       Handle<String> name,
471                                       Handle<Object> unused,
472                                       InlineCacheHolderFlag cache_holder);
473 
474  private:
475   // Stub accessors.
476   static Handle<Code> pre_monomorphic_stub(Isolate* isolate,
477                                            ExtraICState exstra_state);
478 
pre_monomorphic_stub()479   virtual Handle<Code> pre_monomorphic_stub() {
480     return pre_monomorphic_stub(isolate(), extra_ic_state());
481   }
482 
483   Handle<Code> SimpleFieldLoad(FieldIndex index);
484 
485   static void Clear(Isolate* isolate,
486                     Address address,
487                     Code* target,
488                     ConstantPoolArray* constant_pool);
489 
490   friend class IC;
491 };
492 
493 
494 class KeyedLoadIC: public LoadIC {
495  public:
KeyedLoadIC(FrameDepth depth,Isolate * isolate)496   explicit KeyedLoadIC(FrameDepth depth, Isolate* isolate)
497       : LoadIC(depth, isolate) {
498     ASSERT(target()->is_keyed_load_stub());
499   }
500 
501   MUST_USE_RESULT MaybeHandle<Object> Load(Handle<Object> object,
502                                            Handle<Object> key);
503 
504   // Code generator routines.
505   static void GenerateMiss(MacroAssembler* masm);
506   static void GenerateRuntimeGetProperty(MacroAssembler* masm);
GenerateInitialize(MacroAssembler * masm)507   static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
GeneratePreMonomorphic(MacroAssembler * masm)508   static void GeneratePreMonomorphic(MacroAssembler* masm) {
509     GenerateMiss(masm);
510   }
511   static void GenerateGeneric(MacroAssembler* masm);
512   static void GenerateString(MacroAssembler* masm);
513   static void GenerateIndexedInterceptor(MacroAssembler* masm);
514   static void GenerateSloppyArguments(MacroAssembler* masm);
515 
516   // Bit mask to be tested against bit field for the cases when
517   // generic stub should go into slow case.
518   // Access check is necessary explicitly since generic stub does not perform
519   // map checks.
520   static const int kSlowCaseBitFieldMask =
521       (1 << Map::kIsAccessCheckNeeded) | (1 << Map::kHasIndexedInterceptor);
522 
523  protected:
kind()524   virtual Code::Kind kind() const { return Code::KEYED_LOAD_IC; }
525 
526   Handle<Code> LoadElementStub(Handle<JSObject> receiver);
527 
528   virtual Handle<Code> megamorphic_stub();
529   virtual Handle<Code> generic_stub() const;
530 
slow_stub()531   virtual Handle<Code> slow_stub() const {
532     return isolate()->builtins()->KeyedLoadIC_Slow();
533   }
534 
UpdateMegamorphicCache(HeapType * type,Name * name,Code * code)535   virtual void UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {}
536 
537  private:
538   // Stub accessors.
pre_monomorphic_stub(Isolate * isolate)539   static Handle<Code> pre_monomorphic_stub(Isolate* isolate) {
540     return isolate->builtins()->KeyedLoadIC_PreMonomorphic();
541   }
pre_monomorphic_stub()542   virtual Handle<Code> pre_monomorphic_stub() {
543     return pre_monomorphic_stub(isolate());
544   }
indexed_interceptor_stub()545   Handle<Code> indexed_interceptor_stub() {
546     return isolate()->builtins()->KeyedLoadIC_IndexedInterceptor();
547   }
sloppy_arguments_stub()548   Handle<Code> sloppy_arguments_stub() {
549     return isolate()->builtins()->KeyedLoadIC_SloppyArguments();
550   }
string_stub()551   Handle<Code> string_stub() {
552     return isolate()->builtins()->KeyedLoadIC_String();
553   }
554 
555   static void Clear(Isolate* isolate,
556                     Address address,
557                     Code* target,
558                     ConstantPoolArray* constant_pool);
559 
560   friend class IC;
561 };
562 
563 
564 class StoreIC: public IC {
565  public:
566   class StrictModeState: public BitField<StrictMode, 1, 1> {};
ComputeExtraICState(StrictMode flag)567   static ExtraICState ComputeExtraICState(StrictMode flag) {
568     return StrictModeState::encode(flag);
569   }
GetStrictMode(ExtraICState state)570   static StrictMode GetStrictMode(ExtraICState state) {
571     return StrictModeState::decode(state);
572   }
573 
574   // For convenience, a statically declared encoding of strict mode extra
575   // IC state.
576   static const ExtraICState kStrictModeState =
577       1 << StrictModeState::kShift;
578 
StoreIC(FrameDepth depth,Isolate * isolate)579   StoreIC(FrameDepth depth, Isolate* isolate)
580       : IC(depth, isolate) {
581     ASSERT(IsStoreStub());
582   }
583 
strict_mode()584   StrictMode strict_mode() const {
585     return StrictModeState::decode(extra_ic_state());
586   }
587 
588   // Code generators for stub routines. Only called once at startup.
589   static void GenerateSlow(MacroAssembler* masm);
GenerateInitialize(MacroAssembler * masm)590   static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
GeneratePreMonomorphic(MacroAssembler * masm)591   static void GeneratePreMonomorphic(MacroAssembler* masm) {
592     GenerateMiss(masm);
593   }
594   static void GenerateMiss(MacroAssembler* masm);
595   static void GenerateMegamorphic(MacroAssembler* masm);
596   static void GenerateNormal(MacroAssembler* masm);
597   static void GenerateRuntimeSetProperty(MacroAssembler* masm,
598                                          StrictMode strict_mode);
599 
600   static Handle<Code> initialize_stub(Isolate* isolate,
601                                       StrictMode strict_mode);
602 
603   MUST_USE_RESULT MaybeHandle<Object> Store(
604       Handle<Object> object,
605       Handle<String> name,
606       Handle<Object> value,
607       JSReceiver::StoreFromKeyed store_mode =
608           JSReceiver::CERTAINLY_NOT_STORE_FROM_KEYED);
609 
610  protected:
kind()611   virtual Code::Kind kind() const { return Code::STORE_IC; }
612   virtual Handle<Code> megamorphic_stub();
613 
614   // Stub accessors.
615   virtual Handle<Code> generic_stub() const;
616 
slow_stub()617   virtual Handle<Code> slow_stub() const {
618     return isolate()->builtins()->StoreIC_Slow();
619   }
620 
pre_monomorphic_stub()621   virtual Handle<Code> pre_monomorphic_stub() {
622     return pre_monomorphic_stub(isolate(), strict_mode());
623   }
624 
625   static Handle<Code> pre_monomorphic_stub(Isolate* isolate,
626                                            StrictMode strict_mode);
627 
628   // Update the inline cache and the global stub cache based on the
629   // lookup result.
630   void UpdateCaches(LookupResult* lookup,
631                     Handle<JSObject> receiver,
632                     Handle<String> name,
633                     Handle<Object> value);
634   virtual Handle<Code> CompileHandler(LookupResult* lookup,
635                                       Handle<Object> object,
636                                       Handle<String> name,
637                                       Handle<Object> value,
638                                       InlineCacheHolderFlag cache_holder);
639 
640  private:
set_target(Code * code)641   void set_target(Code* code) {
642     // Strict mode must be preserved across IC patching.
643     ASSERT(GetStrictMode(code->extra_ic_state()) ==
644            GetStrictMode(target()->extra_ic_state()));
645     IC::set_target(code);
646   }
647 
648   static void Clear(Isolate* isolate,
649                     Address address,
650                     Code* target,
651                     ConstantPoolArray* constant_pool);
652 
653   friend class IC;
654 };
655 
656 
657 enum KeyedStoreCheckMap {
658   kDontCheckMap,
659   kCheckMap
660 };
661 
662 
663 enum KeyedStoreIncrementLength {
664   kDontIncrementLength,
665   kIncrementLength
666 };
667 
668 
669 class KeyedStoreIC: public StoreIC {
670  public:
671   // ExtraICState bits (building on IC)
672   // ExtraICState bits
673   class ExtraICStateKeyedAccessStoreMode:
674       public BitField<KeyedAccessStoreMode, 2, 4> {};  // NOLINT
675 
ComputeExtraICState(StrictMode flag,KeyedAccessStoreMode mode)676   static ExtraICState ComputeExtraICState(StrictMode flag,
677                                           KeyedAccessStoreMode mode) {
678     return StrictModeState::encode(flag) |
679         ExtraICStateKeyedAccessStoreMode::encode(mode);
680   }
681 
GetKeyedAccessStoreMode(ExtraICState extra_state)682   static KeyedAccessStoreMode GetKeyedAccessStoreMode(
683       ExtraICState extra_state) {
684     return ExtraICStateKeyedAccessStoreMode::decode(extra_state);
685   }
686 
KeyedStoreIC(FrameDepth depth,Isolate * isolate)687   KeyedStoreIC(FrameDepth depth, Isolate* isolate)
688       : StoreIC(depth, isolate) {
689     ASSERT(target()->is_keyed_store_stub());
690   }
691 
692   MUST_USE_RESULT MaybeHandle<Object> Store(Handle<Object> object,
693                                             Handle<Object> name,
694                                             Handle<Object> value);
695 
696   // Code generators for stub routines.  Only called once at startup.
GenerateInitialize(MacroAssembler * masm)697   static void GenerateInitialize(MacroAssembler* masm) { GenerateMiss(masm); }
GeneratePreMonomorphic(MacroAssembler * masm)698   static void GeneratePreMonomorphic(MacroAssembler* masm) {
699     GenerateMiss(masm);
700   }
701   static void GenerateMiss(MacroAssembler* masm);
702   static void GenerateSlow(MacroAssembler* masm);
703   static void GenerateRuntimeSetProperty(MacroAssembler* masm,
704                                          StrictMode strict_mode);
705   static void GenerateGeneric(MacroAssembler* masm, StrictMode strict_mode);
706   static void GenerateSloppyArguments(MacroAssembler* masm);
707 
708  protected:
kind()709   virtual Code::Kind kind() const { return Code::KEYED_STORE_IC; }
710 
UpdateMegamorphicCache(HeapType * type,Name * name,Code * code)711   virtual void UpdateMegamorphicCache(HeapType* type, Name* name, Code* code) {}
712 
pre_monomorphic_stub()713   virtual Handle<Code> pre_monomorphic_stub() {
714     return pre_monomorphic_stub(isolate(), strict_mode());
715   }
pre_monomorphic_stub(Isolate * isolate,StrictMode strict_mode)716   static Handle<Code> pre_monomorphic_stub(Isolate* isolate,
717                                            StrictMode strict_mode) {
718     if (strict_mode == STRICT) {
719       return isolate->builtins()->KeyedStoreIC_PreMonomorphic_Strict();
720     } else {
721       return isolate->builtins()->KeyedStoreIC_PreMonomorphic();
722     }
723   }
slow_stub()724   virtual Handle<Code> slow_stub() const {
725     return isolate()->builtins()->KeyedStoreIC_Slow();
726   }
megamorphic_stub()727   virtual Handle<Code> megamorphic_stub() {
728     if (strict_mode() == STRICT) {
729       return isolate()->builtins()->KeyedStoreIC_Generic_Strict();
730     } else {
731       return isolate()->builtins()->KeyedStoreIC_Generic();
732     }
733   }
734 
735   Handle<Code> StoreElementStub(Handle<JSObject> receiver,
736                                 KeyedAccessStoreMode store_mode);
737 
738  private:
set_target(Code * code)739   void set_target(Code* code) {
740     // Strict mode must be preserved across IC patching.
741     ASSERT(GetStrictMode(code->extra_ic_state()) == strict_mode());
742     IC::set_target(code);
743   }
744 
745   // Stub accessors.
generic_stub()746   virtual Handle<Code> generic_stub() const {
747     if (strict_mode() == STRICT) {
748       return isolate()->builtins()->KeyedStoreIC_Generic_Strict();
749     } else {
750       return isolate()->builtins()->KeyedStoreIC_Generic();
751     }
752   }
753 
sloppy_arguments_stub()754   Handle<Code> sloppy_arguments_stub() {
755     return isolate()->builtins()->KeyedStoreIC_SloppyArguments();
756   }
757 
758   static void Clear(Isolate* isolate,
759                     Address address,
760                     Code* target,
761                     ConstantPoolArray* constant_pool);
762 
763   KeyedAccessStoreMode GetStoreMode(Handle<JSObject> receiver,
764                                     Handle<Object> key,
765                                     Handle<Object> value);
766 
767   Handle<Map> ComputeTransitionedMap(Handle<Map> map,
768                                      KeyedAccessStoreMode store_mode);
769 
770   friend class IC;
771 };
772 
773 
774 // Mode to overwrite BinaryExpression values.
775 enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT };
776 
777 // Type Recording BinaryOpIC, that records the types of the inputs and outputs.
778 class BinaryOpIC: public IC {
779  public:
780   class State V8_FINAL BASE_EMBEDDED {
781    public:
782     State(Isolate* isolate, ExtraICState extra_ic_state);
783 
State(Isolate * isolate,Token::Value op,OverwriteMode mode)784     State(Isolate* isolate, Token::Value op, OverwriteMode mode)
785         : op_(op), mode_(mode), left_kind_(NONE), right_kind_(NONE),
786           result_kind_(NONE), isolate_(isolate) {
787       ASSERT_LE(FIRST_TOKEN, op);
788       ASSERT_LE(op, LAST_TOKEN);
789     }
790 
GetICState()791     InlineCacheState GetICState() const {
792       if (Max(left_kind_, right_kind_) == NONE) {
793         return ::v8::internal::UNINITIALIZED;
794       }
795       if (Max(left_kind_, right_kind_) == GENERIC) {
796         return ::v8::internal::MEGAMORPHIC;
797       }
798       if (Min(left_kind_, right_kind_) == GENERIC) {
799         return ::v8::internal::GENERIC;
800       }
801       return ::v8::internal::MONOMORPHIC;
802     }
803 
804     ExtraICState GetExtraICState() const;
805 
806     static void GenerateAheadOfTime(
807         Isolate*, void (*Generate)(Isolate*, const State&));
808 
CanReuseDoubleBox()809     bool CanReuseDoubleBox() const {
810       return (result_kind_ > SMI && result_kind_ <= NUMBER) &&
811           ((mode_ == OVERWRITE_LEFT &&
812             left_kind_ > SMI && left_kind_ <= NUMBER) ||
813            (mode_ == OVERWRITE_RIGHT &&
814             right_kind_ > SMI && right_kind_ <= NUMBER));
815     }
816 
817     // Returns true if the IC _could_ create allocation mementos.
CouldCreateAllocationMementos()818     bool CouldCreateAllocationMementos() const {
819       if (left_kind_ == STRING || right_kind_ == STRING) {
820         ASSERT_EQ(Token::ADD, op_);
821         return true;
822       }
823       return false;
824     }
825 
826     // Returns true if the IC _should_ create allocation mementos.
ShouldCreateAllocationMementos()827     bool ShouldCreateAllocationMementos() const {
828       return FLAG_allocation_site_pretenuring &&
829           CouldCreateAllocationMementos();
830     }
831 
HasSideEffects()832     bool HasSideEffects() const {
833       return Max(left_kind_, right_kind_) == GENERIC;
834     }
835 
836     // Returns true if the IC should enable the inline smi code (i.e. if either
837     // parameter may be a smi).
UseInlinedSmiCode()838     bool UseInlinedSmiCode() const {
839       return KindMaybeSmi(left_kind_) || KindMaybeSmi(right_kind_);
840     }
841 
842     static const int FIRST_TOKEN = Token::BIT_OR;
843     static const int LAST_TOKEN = Token::MOD;
844 
op()845     Token::Value op() const { return op_; }
mode()846     OverwriteMode mode() const { return mode_; }
fixed_right_arg()847     Maybe<int> fixed_right_arg() const { return fixed_right_arg_; }
848 
GetLeftType(Zone * zone)849     Type* GetLeftType(Zone* zone) const {
850       return KindToType(left_kind_, zone);
851     }
GetRightType(Zone * zone)852     Type* GetRightType(Zone* zone) const {
853       return KindToType(right_kind_, zone);
854     }
855     Type* GetResultType(Zone* zone) const;
856 
857     void Print(StringStream* stream) const;
858 
859     void Update(Handle<Object> left,
860                 Handle<Object> right,
861                 Handle<Object> result);
862 
isolate()863     Isolate* isolate() const { return isolate_; }
864 
865    private:
866     enum Kind { NONE, SMI, INT32, NUMBER, STRING, GENERIC };
867 
868     Kind UpdateKind(Handle<Object> object, Kind kind) const;
869 
870     static const char* KindToString(Kind kind);
871     static Type* KindToType(Kind kind, Zone* zone);
KindMaybeSmi(Kind kind)872     static bool KindMaybeSmi(Kind kind) {
873       return (kind >= SMI && kind <= NUMBER) || kind == GENERIC;
874     }
875 
876     // We truncate the last bit of the token.
877     STATIC_ASSERT(LAST_TOKEN - FIRST_TOKEN < (1 << 4));
878     class OpField:                 public BitField<int, 0, 4> {};
879     class OverwriteModeField:      public BitField<OverwriteMode, 4, 2> {};
880     class ResultKindField:         public BitField<Kind, 6, 3> {};
881     class LeftKindField:           public BitField<Kind, 9,  3> {};
882     // When fixed right arg is set, we don't need to store the right kind.
883     // Thus the two fields can overlap.
884     class HasFixedRightArgField:   public BitField<bool, 12, 1> {};
885     class FixedRightArgValueField: public BitField<int,  13, 4> {};
886     class RightKindField:          public BitField<Kind, 13, 3> {};
887 
888     Token::Value op_;
889     OverwriteMode mode_;
890     Kind left_kind_;
891     Kind right_kind_;
892     Kind result_kind_;
893     Maybe<int> fixed_right_arg_;
894     Isolate* isolate_;
895   };
896 
BinaryOpIC(Isolate * isolate)897   explicit BinaryOpIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) { }
898 
899   static Builtins::JavaScript TokenToJSBuiltin(Token::Value op);
900 
901   MaybeHandle<Object> Transition(Handle<AllocationSite> allocation_site,
902                                  Handle<Object> left,
903                                  Handle<Object> right) V8_WARN_UNUSED_RESULT;
904 };
905 
906 
907 class CompareIC: public IC {
908  public:
909   // The type/state lattice is defined by the following inequations:
910   //   UNINITIALIZED < ...
911   //   ... < GENERIC
912   //   SMI < NUMBER
913   //   INTERNALIZED_STRING < STRING
914   //   KNOWN_OBJECT < OBJECT
915   enum State {
916     UNINITIALIZED,
917     SMI,
918     NUMBER,
919     STRING,
920     INTERNALIZED_STRING,
921     UNIQUE_NAME,    // Symbol or InternalizedString
922     OBJECT,         // JSObject
923     KNOWN_OBJECT,   // JSObject with specific map (faster check)
924     GENERIC
925   };
926 
927   static State NewInputState(State old_state, Handle<Object> value);
928 
929   static Type* StateToType(Zone* zone,
930                            State state,
931                            Handle<Map> map = Handle<Map>());
932 
933   static void StubInfoToType(int stub_minor_key,
934                              Type** left_type,
935                              Type** right_type,
936                              Type** overall_type,
937                              Handle<Map> map,
938                              Zone* zone);
939 
CompareIC(Isolate * isolate,Token::Value op)940   CompareIC(Isolate* isolate, Token::Value op)
941       : IC(EXTRA_CALL_FRAME, isolate), op_(op) { }
942 
943   // Update the inline cache for the given operands.
944   Code* UpdateCaches(Handle<Object> x, Handle<Object> y);
945 
946 
947   // Factory method for getting an uninitialized compare stub.
948   static Handle<Code> GetUninitialized(Isolate* isolate, Token::Value op);
949 
950   // Helper function for computing the condition for a compare operation.
951   static Condition ComputeCondition(Token::Value op);
952 
953   static const char* GetStateName(State state);
954 
955  private:
956   static bool HasInlinedSmiCode(Address address);
957 
958   State TargetState(State old_state,
959                     State old_left,
960                     State old_right,
961                     bool has_inlined_smi_code,
962                     Handle<Object> x,
963                     Handle<Object> y);
964 
strict()965   bool strict() const { return op_ == Token::EQ_STRICT; }
GetCondition()966   Condition GetCondition() const { return ComputeCondition(op_); }
967 
968   static Code* GetRawUninitialized(Isolate* isolate, Token::Value op);
969 
970   static void Clear(Isolate* isolate,
971                     Address address,
972                     Code* target,
973                     ConstantPoolArray* constant_pool);
974 
975   Token::Value op_;
976 
977   friend class IC;
978 };
979 
980 
981 class CompareNilIC: public IC {
982  public:
CompareNilIC(Isolate * isolate)983   explicit CompareNilIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) {}
984 
985   Handle<Object> CompareNil(Handle<Object> object);
986 
987   static Handle<Code> GetUninitialized();
988 
989   static void Clear(Address address,
990                     Code* target,
991                     ConstantPoolArray* constant_pool);
992 
993   static Handle<Object> DoCompareNilSlow(Isolate* isolate, NilValue nil,
994                                          Handle<Object> object);
995 };
996 
997 
998 class ToBooleanIC: public IC {
999  public:
ToBooleanIC(Isolate * isolate)1000   explicit ToBooleanIC(Isolate* isolate) : IC(EXTRA_CALL_FRAME, isolate) { }
1001 
1002   Handle<Object> ToBoolean(Handle<Object> object);
1003 };
1004 
1005 
1006 // Helper for BinaryOpIC and CompareIC.
1007 enum InlinedSmiCheck { ENABLE_INLINED_SMI_CHECK, DISABLE_INLINED_SMI_CHECK };
1008 void PatchInlinedSmiCode(Address address, InlinedSmiCheck check);
1009 
1010 DECLARE_RUNTIME_FUNCTION(KeyedLoadIC_MissFromStubFailure);
1011 DECLARE_RUNTIME_FUNCTION(KeyedStoreIC_MissFromStubFailure);
1012 DECLARE_RUNTIME_FUNCTION(UnaryOpIC_Miss);
1013 DECLARE_RUNTIME_FUNCTION(StoreIC_MissFromStubFailure);
1014 DECLARE_RUNTIME_FUNCTION(ElementsTransitionAndStoreIC_Miss);
1015 DECLARE_RUNTIME_FUNCTION(BinaryOpIC_Miss);
1016 DECLARE_RUNTIME_FUNCTION(BinaryOpIC_MissWithAllocationSite);
1017 DECLARE_RUNTIME_FUNCTION(CompareNilIC_Miss);
1018 DECLARE_RUNTIME_FUNCTION(ToBooleanIC_Miss);
1019 
1020 
1021 } }  // namespace v8::internal
1022 
1023 #endif  // V8_IC_H_
1024