• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "dex/compiler_ir.h"
17 #include "dex/compiler_internals.h"
18 #include "dex/quick/arm/arm_lir.h"
19 #include "dex/quick/mir_to_lir-inl.h"
20 #include "entrypoints/quick/quick_entrypoints.h"
21 #include "mirror/array.h"
22 #include "mirror/object_array-inl.h"
23 #include "mirror/object-inl.h"
24 #include "mirror/object_reference.h"
25 #include "verifier/method_verifier.h"
26 #include <functional>
27 
28 namespace art {
29 
30 // Shortcuts to repeatedly used long types.
31 typedef mirror::ObjectArray<mirror::Object> ObjArray;
32 typedef mirror::ObjectArray<mirror::Class> ClassArray;
33 
34 /*
35  * This source files contains "gen" codegen routines that should
36  * be applicable to most targets.  Only mid-level support utilities
37  * and "op" calls may be used here.
38  */
39 
40 /*
41  * Generate a kPseudoBarrier marker to indicate the boundary of special
42  * blocks.
43  */
GenBarrier()44 void Mir2Lir::GenBarrier() {
45   LIR* barrier = NewLIR0(kPseudoBarrier);
46   /* Mark all resources as being clobbered */
47   DCHECK(!barrier->flags.use_def_invalid);
48   barrier->u.m.def_mask = &kEncodeAll;
49 }
50 
GenDivZeroException()51 void Mir2Lir::GenDivZeroException() {
52   LIR* branch = OpUnconditionalBranch(nullptr);
53   AddDivZeroCheckSlowPath(branch);
54 }
55 
GenDivZeroCheck(ConditionCode c_code)56 void Mir2Lir::GenDivZeroCheck(ConditionCode c_code) {
57   LIR* branch = OpCondBranch(c_code, nullptr);
58   AddDivZeroCheckSlowPath(branch);
59 }
60 
GenDivZeroCheck(RegStorage reg)61 void Mir2Lir::GenDivZeroCheck(RegStorage reg) {
62   LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
63   AddDivZeroCheckSlowPath(branch);
64 }
65 
AddDivZeroCheckSlowPath(LIR * branch)66 void Mir2Lir::AddDivZeroCheckSlowPath(LIR* branch) {
67   class DivZeroCheckSlowPath : public Mir2Lir::LIRSlowPath {
68    public:
69     DivZeroCheckSlowPath(Mir2Lir* m2l, LIR* branch)
70         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
71     }
72 
73     void Compile() OVERRIDE {
74       m2l_->ResetRegPool();
75       m2l_->ResetDefTracking();
76       GenerateTargetLabel(kPseudoThrowTarget);
77       m2l_->CallRuntimeHelper(kQuickThrowDivZero, true);
78     }
79   };
80 
81   AddSlowPath(new (arena_) DivZeroCheckSlowPath(this, branch));
82 }
83 
GenArrayBoundsCheck(RegStorage index,RegStorage length)84 void Mir2Lir::GenArrayBoundsCheck(RegStorage index, RegStorage length) {
85   class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
86    public:
87     ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, RegStorage index, RegStorage length)
88         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
89           index_(index), length_(length) {
90     }
91 
92     void Compile() OVERRIDE {
93       m2l_->ResetRegPool();
94       m2l_->ResetDefTracking();
95       GenerateTargetLabel(kPseudoThrowTarget);
96       m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, index_, length_, true);
97     }
98 
99    private:
100     const RegStorage index_;
101     const RegStorage length_;
102   };
103 
104   LIR* branch = OpCmpBranch(kCondUge, index, length, nullptr);
105   AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
106 }
107 
GenArrayBoundsCheck(int index,RegStorage length)108 void Mir2Lir::GenArrayBoundsCheck(int index, RegStorage length) {
109   class ArrayBoundsCheckSlowPath : public Mir2Lir::LIRSlowPath {
110    public:
111     ArrayBoundsCheckSlowPath(Mir2Lir* m2l, LIR* branch, int index, RegStorage length)
112         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch),
113           index_(index), length_(length) {
114     }
115 
116     void Compile() OVERRIDE {
117       m2l_->ResetRegPool();
118       m2l_->ResetDefTracking();
119       GenerateTargetLabel(kPseudoThrowTarget);
120 
121       RegStorage arg1_32 = m2l_->TargetReg(kArg1, kNotWide);
122       RegStorage arg0_32 = m2l_->TargetReg(kArg0, kNotWide);
123 
124       m2l_->OpRegCopy(arg1_32, length_);
125       m2l_->LoadConstant(arg0_32, index_);
126       m2l_->CallRuntimeHelperRegReg(kQuickThrowArrayBounds, arg0_32, arg1_32, true);
127     }
128 
129    private:
130     const int32_t index_;
131     const RegStorage length_;
132   };
133 
134   LIR* branch = OpCmpImmBranch(kCondLs, length, index, nullptr);
135   AddSlowPath(new (arena_) ArrayBoundsCheckSlowPath(this, branch, index, length));
136 }
137 
GenNullCheck(RegStorage reg)138 LIR* Mir2Lir::GenNullCheck(RegStorage reg) {
139   class NullCheckSlowPath : public Mir2Lir::LIRSlowPath {
140    public:
141     NullCheckSlowPath(Mir2Lir* m2l, LIR* branch)
142         : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch) {
143     }
144 
145     void Compile() OVERRIDE {
146       m2l_->ResetRegPool();
147       m2l_->ResetDefTracking();
148       GenerateTargetLabel(kPseudoThrowTarget);
149       m2l_->CallRuntimeHelper(kQuickThrowNullPointer, true);
150     }
151   };
152 
153   LIR* branch = OpCmpImmBranch(kCondEq, reg, 0, nullptr);
154   AddSlowPath(new (arena_) NullCheckSlowPath(this, branch));
155   return branch;
156 }
157 
158 /* Perform null-check on a register.  */
GenNullCheck(RegStorage m_reg,int opt_flags)159 LIR* Mir2Lir::GenNullCheck(RegStorage m_reg, int opt_flags) {
160   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
161     return GenExplicitNullCheck(m_reg, opt_flags);
162   }
163   return nullptr;
164 }
165 
166 /* Perform an explicit null-check on a register.  */
GenExplicitNullCheck(RegStorage m_reg,int opt_flags)167 LIR* Mir2Lir::GenExplicitNullCheck(RegStorage m_reg, int opt_flags) {
168   if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
169     return NULL;
170   }
171   return GenNullCheck(m_reg);
172 }
173 
MarkPossibleNullPointerException(int opt_flags)174 void Mir2Lir::MarkPossibleNullPointerException(int opt_flags) {
175   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
176     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
177       return;
178     }
179     // Insert after last instruction.
180     MarkSafepointPC(last_lir_insn_);
181   }
182 }
183 
MarkPossibleNullPointerExceptionAfter(int opt_flags,LIR * after)184 void Mir2Lir::MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after) {
185   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
186     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
187       return;
188     }
189     MarkSafepointPCAfter(after);
190   }
191 }
192 
MarkPossibleStackOverflowException()193 void Mir2Lir::MarkPossibleStackOverflowException() {
194   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitStackOverflowChecks()) {
195     MarkSafepointPC(last_lir_insn_);
196   }
197 }
198 
ForceImplicitNullCheck(RegStorage reg,int opt_flags)199 void Mir2Lir::ForceImplicitNullCheck(RegStorage reg, int opt_flags) {
200   if (cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
201     if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
202       return;
203     }
204     // Force an implicit null check by performing a memory operation (load) from the given
205     // register with offset 0.  This will cause a signal if the register contains 0 (null).
206     RegStorage tmp = AllocTemp();
207     // TODO: for Mips, would be best to use rZERO as the bogus register target.
208     LIR* load = Load32Disp(reg, 0, tmp);
209     FreeTemp(tmp);
210     MarkSafepointPC(load);
211   }
212 }
213 
GenCompareAndBranch(Instruction::Code opcode,RegLocation rl_src1,RegLocation rl_src2,LIR * taken,LIR * fall_through)214 void Mir2Lir::GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1,
215                                   RegLocation rl_src2, LIR* taken,
216                                   LIR* fall_through) {
217   DCHECK(!rl_src1.fp);
218   DCHECK(!rl_src2.fp);
219   ConditionCode cond;
220   switch (opcode) {
221     case Instruction::IF_EQ:
222       cond = kCondEq;
223       break;
224     case Instruction::IF_NE:
225       cond = kCondNe;
226       break;
227     case Instruction::IF_LT:
228       cond = kCondLt;
229       break;
230     case Instruction::IF_GE:
231       cond = kCondGe;
232       break;
233     case Instruction::IF_GT:
234       cond = kCondGt;
235       break;
236     case Instruction::IF_LE:
237       cond = kCondLe;
238       break;
239     default:
240       cond = static_cast<ConditionCode>(0);
241       LOG(FATAL) << "Unexpected opcode " << opcode;
242   }
243 
244   // Normalize such that if either operand is constant, src2 will be constant
245   if (rl_src1.is_const) {
246     RegLocation rl_temp = rl_src1;
247     rl_src1 = rl_src2;
248     rl_src2 = rl_temp;
249     cond = FlipComparisonOrder(cond);
250   }
251 
252   rl_src1 = LoadValue(rl_src1);
253   // Is this really an immediate comparison?
254   if (rl_src2.is_const) {
255     // If it's already live in a register or not easily materialized, just keep going
256     RegLocation rl_temp = UpdateLoc(rl_src2);
257     int32_t constant_value = mir_graph_->ConstantValue(rl_src2);
258     if ((rl_temp.location == kLocDalvikFrame) &&
259         InexpensiveConstantInt(constant_value, opcode)) {
260       // OK - convert this to a compare immediate and branch
261       OpCmpImmBranch(cond, rl_src1.reg, mir_graph_->ConstantValue(rl_src2), taken);
262       return;
263     }
264 
265     // It's also commonly more efficient to have a test against zero with Eq/Ne. This is not worse
266     // for x86, and allows a cbz/cbnz for Arm and Mips. At the same time, it works around a register
267     // mismatch for 64b systems, where a reference is compared against null, as dex bytecode uses
268     // the 32b literal 0 for null.
269     if (constant_value == 0 && (cond == kCondEq || cond == kCondNe)) {
270       // Use the OpCmpImmBranch and ignore the value in the register.
271       OpCmpImmBranch(cond, rl_src1.reg, 0, taken);
272       return;
273     }
274   }
275 
276   rl_src2 = LoadValue(rl_src2);
277   OpCmpBranch(cond, rl_src1.reg, rl_src2.reg, taken);
278 }
279 
GenCompareZeroAndBranch(Instruction::Code opcode,RegLocation rl_src,LIR * taken,LIR * fall_through)280 void Mir2Lir::GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken,
281                                       LIR* fall_through) {
282   ConditionCode cond;
283   DCHECK(!rl_src.fp);
284   rl_src = LoadValue(rl_src);
285   switch (opcode) {
286     case Instruction::IF_EQZ:
287       cond = kCondEq;
288       break;
289     case Instruction::IF_NEZ:
290       cond = kCondNe;
291       break;
292     case Instruction::IF_LTZ:
293       cond = kCondLt;
294       break;
295     case Instruction::IF_GEZ:
296       cond = kCondGe;
297       break;
298     case Instruction::IF_GTZ:
299       cond = kCondGt;
300       break;
301     case Instruction::IF_LEZ:
302       cond = kCondLe;
303       break;
304     default:
305       cond = static_cast<ConditionCode>(0);
306       LOG(FATAL) << "Unexpected opcode " << opcode;
307   }
308   OpCmpImmBranch(cond, rl_src.reg, 0, taken);
309 }
310 
GenIntToLong(RegLocation rl_dest,RegLocation rl_src)311 void Mir2Lir::GenIntToLong(RegLocation rl_dest, RegLocation rl_src) {
312   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
313   if (rl_src.location == kLocPhysReg) {
314     OpRegCopy(rl_result.reg, rl_src.reg);
315   } else {
316     LoadValueDirect(rl_src, rl_result.reg.GetLow());
317   }
318   OpRegRegImm(kOpAsr, rl_result.reg.GetHigh(), rl_result.reg.GetLow(), 31);
319   StoreValueWide(rl_dest, rl_result);
320 }
321 
GenIntNarrowing(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src)322 void Mir2Lir::GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
323                               RegLocation rl_src) {
324   rl_src = LoadValue(rl_src, kCoreReg);
325   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
326   OpKind op = kOpInvalid;
327   switch (opcode) {
328     case Instruction::INT_TO_BYTE:
329       op = kOp2Byte;
330       break;
331     case Instruction::INT_TO_SHORT:
332        op = kOp2Short;
333        break;
334     case Instruction::INT_TO_CHAR:
335        op = kOp2Char;
336        break;
337     default:
338       LOG(ERROR) << "Bad int conversion type";
339   }
340   OpRegReg(op, rl_result.reg, rl_src.reg);
341   StoreValue(rl_dest, rl_result);
342 }
343 
344 /*
345  * Let helper function take care of everything.  Will call
346  * Array::AllocFromCode(type_idx, method, count);
347  * Note: AllocFromCode will handle checks for errNegativeArraySize.
348  */
GenNewArray(uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)349 void Mir2Lir::GenNewArray(uint32_t type_idx, RegLocation rl_dest,
350                           RegLocation rl_src) {
351   FlushAllRegs();  /* Everything to home location */
352   const DexFile* dex_file = cu_->dex_file;
353   CompilerDriver* driver = cu_->compiler_driver;
354   if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
355     bool is_type_initialized;  // Ignored as an array does not have an initializer.
356     bool use_direct_type_ptr;
357     uintptr_t direct_type_ptr;
358     bool is_finalizable;
359     if (kEmbedClassInCode &&
360         driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
361                                    &direct_type_ptr, &is_finalizable)) {
362       // The fast path.
363       if (!use_direct_type_ptr) {
364         LoadClassType(type_idx, kArg0);
365         CallRuntimeHelperRegMethodRegLocation(kQuickAllocArrayResolved, TargetReg(kArg0, kNotWide),
366                                               rl_src, true);
367       } else {
368         // Use the direct pointer.
369         CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayResolved, direct_type_ptr, rl_src,
370                                               true);
371       }
372     } else {
373       // The slow path.
374       CallRuntimeHelperImmMethodRegLocation(kQuickAllocArray, type_idx, rl_src, true);
375     }
376   } else {
377     CallRuntimeHelperImmMethodRegLocation(kQuickAllocArrayWithAccessCheck, type_idx, rl_src, true);
378   }
379   StoreValue(rl_dest, GetReturn(kRefReg));
380 }
381 
382 /*
383  * Similar to GenNewArray, but with post-allocation initialization.
384  * Verifier guarantees we're dealing with an array class.  Current
385  * code throws runtime exception "bad Filled array req" for 'D' and 'J'.
386  * Current code also throws internal unimp if not 'L', '[' or 'I'.
387  */
GenFilledNewArray(CallInfo * info)388 void Mir2Lir::GenFilledNewArray(CallInfo* info) {
389   int elems = info->num_arg_words;
390   int type_idx = info->index;
391   FlushAllRegs();  /* Everything to home location */
392   QuickEntrypointEnum target;
393   if (cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx, *cu_->dex_file,
394                                                        type_idx)) {
395     target = kQuickCheckAndAllocArray;
396   } else {
397     target = kQuickCheckAndAllocArrayWithAccessCheck;
398   }
399   CallRuntimeHelperImmMethodImm(target, type_idx, elems, true);
400   FreeTemp(TargetReg(kArg2, kNotWide));
401   FreeTemp(TargetReg(kArg1, kNotWide));
402   /*
403    * NOTE: the implicit target for Instruction::FILLED_NEW_ARRAY is the
404    * return region.  Because AllocFromCode placed the new array
405    * in kRet0, we'll just lock it into place.  When debugger support is
406    * added, it may be necessary to additionally copy all return
407    * values to a home location in thread-local storage
408    */
409   RegStorage ref_reg = TargetReg(kRet0, kRef);
410   LockTemp(ref_reg);
411 
412   // TODO: use the correct component size, currently all supported types
413   // share array alignment with ints (see comment at head of function)
414   size_t component_size = sizeof(int32_t);
415 
416   // Having a range of 0 is legal
417   if (info->is_range && (elems > 0)) {
418     /*
419      * Bit of ugliness here.  We're going generate a mem copy loop
420      * on the register range, but it is possible that some regs
421      * in the range have been promoted.  This is unlikely, but
422      * before generating the copy, we'll just force a flush
423      * of any regs in the source range that have been promoted to
424      * home location.
425      */
426     for (int i = 0; i < elems; i++) {
427       RegLocation loc = UpdateLoc(info->args[i]);
428       if (loc.location == kLocPhysReg) {
429         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
430         Store32Disp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg);
431       }
432     }
433     /*
434      * TUNING note: generated code here could be much improved, but
435      * this is an uncommon operation and isn't especially performance
436      * critical.
437      */
438     // This is addressing the stack, which may be out of the 4G area.
439     RegStorage r_src = AllocTempRef();
440     RegStorage r_dst = AllocTempRef();
441     RegStorage r_idx = AllocTempRef();  // Not really a reference, but match src/dst.
442     RegStorage r_val;
443     switch (cu_->instruction_set) {
444       case kThumb2:
445       case kArm64:
446         r_val = TargetReg(kLr, kNotWide);
447         break;
448       case kX86:
449       case kX86_64:
450         FreeTemp(ref_reg);
451         r_val = AllocTemp();
452         break;
453       case kMips:
454         r_val = AllocTemp();
455         break;
456       default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
457     }
458     // Set up source pointer
459     RegLocation rl_first = info->args[0];
460     OpRegRegImm(kOpAdd, r_src, TargetPtrReg(kSp), SRegOffset(rl_first.s_reg_low));
461     // Set up the target pointer
462     OpRegRegImm(kOpAdd, r_dst, ref_reg,
463                 mirror::Array::DataOffset(component_size).Int32Value());
464     // Set up the loop counter (known to be > 0)
465     LoadConstant(r_idx, elems - 1);
466     // Generate the copy loop.  Going backwards for convenience
467     LIR* target = NewLIR0(kPseudoTargetLabel);
468     // Copy next element
469     {
470       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
471       LoadBaseIndexed(r_src, r_idx, r_val, 2, k32);
472       // NOTE: No dalvik register annotation, local optimizations will be stopped
473       // by the loop boundaries.
474     }
475     StoreBaseIndexed(r_dst, r_idx, r_val, 2, k32);
476     FreeTemp(r_val);
477     OpDecAndBranch(kCondGe, r_idx, target);
478     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
479       // Restore the target pointer
480       OpRegRegImm(kOpAdd, ref_reg, r_dst,
481                   -mirror::Array::DataOffset(component_size).Int32Value());
482     }
483   } else if (!info->is_range) {
484     // TUNING: interleave
485     for (int i = 0; i < elems; i++) {
486       RegLocation rl_arg = LoadValue(info->args[i], kCoreReg);
487       Store32Disp(ref_reg,
488                   mirror::Array::DataOffset(component_size).Int32Value() + i * 4, rl_arg.reg);
489       // If the LoadValue caused a temp to be allocated, free it
490       if (IsTemp(rl_arg.reg)) {
491         FreeTemp(rl_arg.reg);
492       }
493     }
494   }
495   if (info->result.location != kLocInvalid) {
496     StoreValue(info->result, GetReturn(kRefReg));
497   }
498 }
499 
500 //
501 // Slow path to ensure a class is initialized for sget/sput.
502 //
503 class StaticFieldSlowPath : public Mir2Lir::LIRSlowPath {
504  public:
StaticFieldSlowPath(Mir2Lir * m2l,LIR * unresolved,LIR * uninit,LIR * cont,int storage_index,RegStorage r_base)505   StaticFieldSlowPath(Mir2Lir* m2l, LIR* unresolved, LIR* uninit, LIR* cont, int storage_index,
506                       RegStorage r_base) :
507     LIRSlowPath(m2l, m2l->GetCurrentDexPc(), unresolved, cont), uninit_(uninit),
508                storage_index_(storage_index), r_base_(r_base) {
509   }
510 
Compile()511   void Compile() {
512     LIR* unresolved_target = GenerateTargetLabel();
513     uninit_->target = unresolved_target;
514     m2l_->CallRuntimeHelperImm(kQuickInitializeStaticStorage, storage_index_, true);
515     // Copy helper's result into r_base, a no-op on all but MIPS.
516     m2l_->OpRegCopy(r_base_,  m2l_->TargetReg(kRet0, kRef));
517 
518     m2l_->OpUnconditionalBranch(cont_);
519   }
520 
521  private:
522   LIR* const uninit_;
523   const int storage_index_;
524   const RegStorage r_base_;
525 };
526 
GenSput(MIR * mir,RegLocation rl_src,bool is_long_or_double,bool is_object)527 void Mir2Lir::GenSput(MIR* mir, RegLocation rl_src, bool is_long_or_double,
528                       bool is_object) {
529   const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
530   cu_->compiler_driver->ProcessedStaticField(field_info.FastPut(), field_info.IsReferrersClass());
531   OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
532   if (!SLOW_FIELD_PATH && field_info.FastPut()) {
533     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
534     RegStorage r_base;
535     if (field_info.IsReferrersClass()) {
536       // Fast path, static storage base is this method's class
537       RegLocation rl_method = LoadCurrMethod();
538       r_base = AllocTempRef();
539       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
540                   kNotVolatile);
541       if (IsTemp(rl_method.reg)) {
542         FreeTemp(rl_method.reg);
543       }
544     } else {
545       // Medium path, static storage base in a different class which requires checks that the other
546       // class is initialized.
547       // TODO: remove initialized check now that we are initializing classes in the compiler driver.
548       DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
549       // May do runtime call so everything to home locations.
550       FlushAllRegs();
551       // Using fixed register to sync with possible call to runtime support.
552       RegStorage r_method = TargetReg(kArg1, kRef);
553       LockTemp(r_method);
554       LoadCurrMethodDirect(r_method);
555       r_base = TargetReg(kArg0, kRef);
556       LockTemp(r_base);
557       LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
558                   kNotVolatile);
559       int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
560       LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
561       // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
562       if (!field_info.IsInitialized() &&
563           (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
564         // Check if r_base is NULL or a not yet initialized class.
565 
566         // The slow path is invoked if the r_base is NULL or the class pointed
567         // to by it is not initialized.
568         LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
569         RegStorage r_tmp = TargetReg(kArg2, kNotWide);
570         LockTemp(r_tmp);
571         LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
572                                           mirror::Class::StatusOffset().Int32Value(),
573                                           mirror::Class::kStatusInitialized, nullptr, nullptr);
574         LIR* cont = NewLIR0(kPseudoTargetLabel);
575 
576         AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
577                                                      field_info.StorageIndex(), r_base));
578 
579         FreeTemp(r_tmp);
580         // Ensure load of status and store of value don't re-order.
581         // TODO: Presumably the actual value store is control-dependent on the status load,
582         // and will thus not be reordered in any case, since stores are never speculated.
583         // Does later code "know" that the class is now initialized?  If so, we still
584         // need the barrier to guard later static loads.
585         GenMemBarrier(kLoadAny);
586       }
587       FreeTemp(r_method);
588     }
589     // rBase now holds static storage base
590     RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
591     if (is_long_or_double) {
592       rl_src = LoadValueWide(rl_src, reg_class);
593     } else {
594       rl_src = LoadValue(rl_src, reg_class);
595     }
596     if (is_object) {
597       StoreRefDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg,
598                    field_info.IsVolatile() ? kVolatile : kNotVolatile);
599     } else {
600       StoreBaseDisp(r_base, field_info.FieldOffset().Int32Value(), rl_src.reg, store_size,
601                     field_info.IsVolatile() ? kVolatile : kNotVolatile);
602     }
603     if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
604       MarkGCCard(rl_src.reg, r_base);
605     }
606     FreeTemp(r_base);
607   } else {
608     FlushAllRegs();  // Everything to home locations
609     QuickEntrypointEnum target =
610         is_long_or_double ? kQuickSet64Static
611             : (is_object ? kQuickSetObjStatic : kQuickSet32Static);
612     CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_src, true);
613   }
614 }
615 
GenSget(MIR * mir,RegLocation rl_dest,bool is_long_or_double,bool is_object)616 void Mir2Lir::GenSget(MIR* mir, RegLocation rl_dest,
617                       bool is_long_or_double, bool is_object) {
618   const MirSFieldLoweringInfo& field_info = mir_graph_->GetSFieldLoweringInfo(mir);
619   cu_->compiler_driver->ProcessedStaticField(field_info.FastGet(), field_info.IsReferrersClass());
620   OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
621   if (!SLOW_FIELD_PATH && field_info.FastGet()) {
622     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
623     RegStorage r_base;
624     if (field_info.IsReferrersClass()) {
625       // Fast path, static storage base is this method's class
626       RegLocation rl_method  = LoadCurrMethod();
627       r_base = AllocTempRef();
628       LoadRefDisp(rl_method.reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), r_base,
629                   kNotVolatile);
630     } else {
631       // Medium path, static storage base in a different class which requires checks that the other
632       // class is initialized
633       DCHECK_NE(field_info.StorageIndex(), DexFile::kDexNoIndex);
634       // May do runtime call so everything to home locations.
635       FlushAllRegs();
636       // Using fixed register to sync with possible call to runtime support.
637       RegStorage r_method = TargetReg(kArg1, kRef);
638       LockTemp(r_method);
639       LoadCurrMethodDirect(r_method);
640       r_base = TargetReg(kArg0, kRef);
641       LockTemp(r_base);
642       LoadRefDisp(r_method, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(), r_base,
643                   kNotVolatile);
644       int32_t offset_of_field = ObjArray::OffsetOfElement(field_info.StorageIndex()).Int32Value();
645       LoadRefDisp(r_base, offset_of_field, r_base, kNotVolatile);
646       // r_base now points at static storage (Class*) or NULL if the type is not yet resolved.
647       if (!field_info.IsInitialized() &&
648           (mir->optimization_flags & MIR_IGNORE_CLINIT_CHECK) == 0) {
649         // Check if r_base is NULL or a not yet initialized class.
650 
651         // The slow path is invoked if the r_base is NULL or the class pointed
652         // to by it is not initialized.
653         LIR* unresolved_branch = OpCmpImmBranch(kCondEq, r_base, 0, NULL);
654         RegStorage r_tmp = TargetReg(kArg2, kNotWide);
655         LockTemp(r_tmp);
656         LIR* uninit_branch = OpCmpMemImmBranch(kCondLt, r_tmp, r_base,
657                                           mirror::Class::StatusOffset().Int32Value(),
658                                           mirror::Class::kStatusInitialized, nullptr, nullptr);
659         LIR* cont = NewLIR0(kPseudoTargetLabel);
660 
661         AddSlowPath(new (arena_) StaticFieldSlowPath(this, unresolved_branch, uninit_branch, cont,
662                                                      field_info.StorageIndex(), r_base));
663 
664         FreeTemp(r_tmp);
665         // Ensure load of status and load of value don't re-order.
666         GenMemBarrier(kLoadAny);
667       }
668       FreeTemp(r_method);
669     }
670     // r_base now holds static storage base
671     RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
672     RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
673 
674     int field_offset = field_info.FieldOffset().Int32Value();
675     if (is_object) {
676       LoadRefDisp(r_base, field_offset, rl_result.reg, field_info.IsVolatile() ? kVolatile :
677           kNotVolatile);
678     } else {
679       LoadBaseDisp(r_base, field_offset, rl_result.reg, load_size, field_info.IsVolatile() ?
680           kVolatile : kNotVolatile);
681     }
682     FreeTemp(r_base);
683 
684     if (is_long_or_double) {
685       StoreValueWide(rl_dest, rl_result);
686     } else {
687       StoreValue(rl_dest, rl_result);
688     }
689   } else {
690     FlushAllRegs();  // Everything to home locations
691     QuickEntrypointEnum target =
692         is_long_or_double ? kQuickGet64Static
693             : (is_object ? kQuickGetObjStatic : kQuickGet32Static);
694     CallRuntimeHelperImm(target, field_info.FieldIndex(), true);
695 
696     // FIXME: pGetXXStatic always return an int or int64 regardless of rl_dest.fp.
697     if (is_long_or_double) {
698       RegLocation rl_result = GetReturnWide(kCoreReg);
699       StoreValueWide(rl_dest, rl_result);
700     } else {
701       RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
702       StoreValue(rl_dest, rl_result);
703     }
704   }
705 }
706 
707 // Generate code for all slow paths.
HandleSlowPaths()708 void Mir2Lir::HandleSlowPaths() {
709   // We should check slow_paths_.Size() every time, because a new slow path
710   // may be created during slowpath->Compile().
711   for (size_t i = 0; i < slow_paths_.Size(); ++i) {
712     LIRSlowPath* slowpath = slow_paths_.Get(i);
713     slowpath->Compile();
714   }
715   slow_paths_.Reset();
716 }
717 
GenIGet(MIR * mir,int opt_flags,OpSize size,RegLocation rl_dest,RegLocation rl_obj,bool is_long_or_double,bool is_object)718 void Mir2Lir::GenIGet(MIR* mir, int opt_flags, OpSize size,
719                       RegLocation rl_dest, RegLocation rl_obj, bool is_long_or_double,
720                       bool is_object) {
721   const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
722   cu_->compiler_driver->ProcessedInstanceField(field_info.FastGet());
723   OpSize load_size = LoadStoreOpSize(is_long_or_double, is_object);
724   if (!SLOW_FIELD_PATH && field_info.FastGet()) {
725     RegisterClass reg_class = RegClassForFieldLoadStore(load_size, field_info.IsVolatile());
726     // A load of the class will lead to an iget with offset 0.
727     DCHECK_GE(field_info.FieldOffset().Int32Value(), 0);
728     rl_obj = LoadValue(rl_obj, kRefReg);
729     GenNullCheck(rl_obj.reg, opt_flags);
730     RegLocation rl_result = EvalLoc(rl_dest, reg_class, true);
731     int field_offset = field_info.FieldOffset().Int32Value();
732     LIR* load_lir;
733     if (is_object) {
734       load_lir = LoadRefDisp(rl_obj.reg, field_offset, rl_result.reg, field_info.IsVolatile() ?
735           kVolatile : kNotVolatile);
736     } else {
737       load_lir = LoadBaseDisp(rl_obj.reg, field_offset, rl_result.reg, load_size,
738                               field_info.IsVolatile() ? kVolatile : kNotVolatile);
739     }
740     MarkPossibleNullPointerExceptionAfter(opt_flags, load_lir);
741     if (is_long_or_double) {
742       StoreValueWide(rl_dest, rl_result);
743     } else {
744       StoreValue(rl_dest, rl_result);
745     }
746   } else {
747     QuickEntrypointEnum target =
748         is_long_or_double ? kQuickGet64Instance
749             : (is_object ? kQuickGetObjInstance : kQuickGet32Instance);
750     // Second argument of pGetXXInstance is always a reference.
751     DCHECK_EQ(static_cast<unsigned int>(rl_obj.wide), 0U);
752     CallRuntimeHelperImmRegLocation(target, field_info.FieldIndex(), rl_obj, true);
753 
754     // FIXME: pGetXXInstance always return an int or int64 regardless of rl_dest.fp.
755     if (is_long_or_double) {
756       RegLocation rl_result = GetReturnWide(kCoreReg);
757       StoreValueWide(rl_dest, rl_result);
758     } else {
759       RegLocation rl_result = GetReturn(rl_dest.ref ? kRefReg : kCoreReg);
760       StoreValue(rl_dest, rl_result);
761     }
762   }
763 }
764 
GenIPut(MIR * mir,int opt_flags,OpSize size,RegLocation rl_src,RegLocation rl_obj,bool is_long_or_double,bool is_object)765 void Mir2Lir::GenIPut(MIR* mir, int opt_flags, OpSize size,
766                       RegLocation rl_src, RegLocation rl_obj, bool is_long_or_double,
767                       bool is_object) {
768   const MirIFieldLoweringInfo& field_info = mir_graph_->GetIFieldLoweringInfo(mir);
769   cu_->compiler_driver->ProcessedInstanceField(field_info.FastPut());
770   OpSize store_size = LoadStoreOpSize(is_long_or_double, is_object);
771   if (!SLOW_FIELD_PATH && field_info.FastPut()) {
772     RegisterClass reg_class = RegClassForFieldLoadStore(store_size, field_info.IsVolatile());
773     // Dex code never writes to the class field.
774     DCHECK_GE(static_cast<uint32_t>(field_info.FieldOffset().Int32Value()),
775               sizeof(mirror::HeapReference<mirror::Class>));
776     rl_obj = LoadValue(rl_obj, kRefReg);
777     if (is_long_or_double) {
778       rl_src = LoadValueWide(rl_src, reg_class);
779     } else {
780       rl_src = LoadValue(rl_src, reg_class);
781     }
782     GenNullCheck(rl_obj.reg, opt_flags);
783     int field_offset = field_info.FieldOffset().Int32Value();
784     LIR* store;
785     if (is_object) {
786       store = StoreRefDisp(rl_obj.reg, field_offset, rl_src.reg, field_info.IsVolatile() ?
787           kVolatile : kNotVolatile);
788     } else {
789       store = StoreBaseDisp(rl_obj.reg, field_offset, rl_src.reg, store_size,
790                             field_info.IsVolatile() ? kVolatile : kNotVolatile);
791     }
792     MarkPossibleNullPointerExceptionAfter(opt_flags, store);
793     if (is_object && !mir_graph_->IsConstantNullRef(rl_src)) {
794       MarkGCCard(rl_src.reg, rl_obj.reg);
795     }
796   } else {
797     QuickEntrypointEnum target =
798         is_long_or_double ? kQuickSet64Instance
799             : (is_object ? kQuickSetObjInstance : kQuickSet32Instance);
800     CallRuntimeHelperImmRegLocationRegLocation(target, field_info.FieldIndex(), rl_obj, rl_src,
801                                                true);
802   }
803 }
804 
GenArrayObjPut(int opt_flags,RegLocation rl_array,RegLocation rl_index,RegLocation rl_src)805 void Mir2Lir::GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
806                              RegLocation rl_src) {
807   bool needs_range_check = !(opt_flags & MIR_IGNORE_RANGE_CHECK);
808   bool needs_null_check = !((cu_->disable_opt & (1 << kNullCheckElimination)) &&
809       (opt_flags & MIR_IGNORE_NULL_CHECK));
810   QuickEntrypointEnum target = needs_range_check
811         ? (needs_null_check ? kQuickAputObjectWithNullAndBoundCheck
812                             : kQuickAputObjectWithBoundCheck)
813         : kQuickAputObject;
814   CallRuntimeHelperRegLocationRegLocationRegLocation(target, rl_array, rl_index, rl_src, true);
815 }
816 
GenConstClass(uint32_t type_idx,RegLocation rl_dest)817 void Mir2Lir::GenConstClass(uint32_t type_idx, RegLocation rl_dest) {
818   RegLocation rl_method = LoadCurrMethod();
819   CheckRegLocation(rl_method);
820   RegStorage res_reg = AllocTempRef();
821   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
822   if (!cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
823                                                         *cu_->dex_file,
824                                                         type_idx)) {
825     // Call out to helper which resolves type and verifies access.
826     // Resolved type returned in kRet0.
827     CallRuntimeHelperImmReg(kQuickInitializeTypeAndVerifyAccess, type_idx, rl_method.reg, true);
828     RegLocation rl_result = GetReturn(kRefReg);
829     StoreValue(rl_dest, rl_result);
830   } else {
831     // We're don't need access checks, load type from dex cache
832     int32_t dex_cache_offset =
833         mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value();
834     LoadRefDisp(rl_method.reg, dex_cache_offset, res_reg, kNotVolatile);
835     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
836     LoadRefDisp(res_reg, offset_of_type, rl_result.reg, kNotVolatile);
837     if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file,
838         type_idx) || SLOW_TYPE_PATH) {
839       // Slow path, at runtime test if type is null and if so initialize
840       FlushAllRegs();
841       LIR* branch = OpCmpImmBranch(kCondEq, rl_result.reg, 0, NULL);
842       LIR* cont = NewLIR0(kPseudoTargetLabel);
843 
844       // Object to generate the slow path for class resolution.
845       class SlowPath : public LIRSlowPath {
846        public:
847         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
848                  const RegLocation& rl_method, const RegLocation& rl_result) :
849                    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
850                    rl_method_(rl_method), rl_result_(rl_result) {
851         }
852 
853         void Compile() {
854           GenerateTargetLabel();
855 
856           m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_, rl_method_.reg, true);
857           m2l_->OpRegCopy(rl_result_.reg,  m2l_->TargetReg(kRet0, kRef));
858           m2l_->OpUnconditionalBranch(cont_);
859         }
860 
861        private:
862         const int type_idx_;
863         const RegLocation rl_method_;
864         const RegLocation rl_result_;
865       };
866 
867       // Add to list for future.
868       AddSlowPath(new (arena_) SlowPath(this, branch, cont, type_idx, rl_method, rl_result));
869 
870       StoreValue(rl_dest, rl_result);
871      } else {
872       // Fast path, we're done - just store result
873       StoreValue(rl_dest, rl_result);
874     }
875   }
876 }
877 
GenConstString(uint32_t string_idx,RegLocation rl_dest)878 void Mir2Lir::GenConstString(uint32_t string_idx, RegLocation rl_dest) {
879   /* NOTE: Most strings should be available at compile time */
880   int32_t offset_of_string = mirror::ObjectArray<mirror::String>::OffsetOfElement(string_idx).
881                                                                                       Int32Value();
882   if (!cu_->compiler_driver->CanAssumeStringIsPresentInDexCache(
883       *cu_->dex_file, string_idx) || SLOW_STRING_PATH) {
884     // slow path, resolve string if not in dex cache
885     FlushAllRegs();
886     LockCallTemps();  // Using explicit registers
887 
888     // If the Method* is already in a register, we can save a copy.
889     RegLocation rl_method = mir_graph_->GetMethodLoc();
890     RegStorage r_method;
891     if (rl_method.location == kLocPhysReg) {
892       // A temp would conflict with register use below.
893       DCHECK(!IsTemp(rl_method.reg));
894       r_method = rl_method.reg;
895     } else {
896       r_method = TargetReg(kArg2, kRef);
897       LoadCurrMethodDirect(r_method);
898     }
899     LoadRefDisp(r_method, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(),
900                 TargetReg(kArg0, kRef), kNotVolatile);
901 
902     // Might call out to helper, which will return resolved string in kRet0
903     LoadRefDisp(TargetReg(kArg0, kRef), offset_of_string, TargetReg(kRet0, kRef), kNotVolatile);
904     LIR* fromfast = OpCmpImmBranch(kCondEq, TargetReg(kRet0, kRef), 0, NULL);
905     LIR* cont = NewLIR0(kPseudoTargetLabel);
906 
907     {
908       // Object to generate the slow path for string resolution.
909       class SlowPath : public LIRSlowPath {
910        public:
911         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, RegStorage r_method, int32_t string_idx) :
912           LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont),
913           r_method_(r_method), string_idx_(string_idx) {
914         }
915 
916         void Compile() {
917           GenerateTargetLabel();
918           m2l_->CallRuntimeHelperRegImm(kQuickResolveString, r_method_, string_idx_, true);
919           m2l_->OpUnconditionalBranch(cont_);
920         }
921 
922        private:
923          const RegStorage r_method_;
924          const int32_t string_idx_;
925       };
926 
927       AddSlowPath(new (arena_) SlowPath(this, fromfast, cont, r_method, string_idx));
928     }
929 
930     GenBarrier();
931     StoreValue(rl_dest, GetReturn(kRefReg));
932   } else {
933     RegLocation rl_method = LoadCurrMethod();
934     RegStorage res_reg = AllocTempRef();
935     RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
936     LoadRefDisp(rl_method.reg, mirror::ArtMethod::DexCacheStringsOffset().Int32Value(), res_reg,
937                 kNotVolatile);
938     LoadRefDisp(res_reg, offset_of_string, rl_result.reg, kNotVolatile);
939     StoreValue(rl_dest, rl_result);
940   }
941 }
942 
943 /*
944  * Let helper function take care of everything.  Will
945  * call Class::NewInstanceFromCode(type_idx, method);
946  */
GenNewInstance(uint32_t type_idx,RegLocation rl_dest)947 void Mir2Lir::GenNewInstance(uint32_t type_idx, RegLocation rl_dest) {
948   FlushAllRegs();  /* Everything to home location */
949   // alloc will always check for resolution, do we also need to verify
950   // access because the verifier was unable to?
951   const DexFile* dex_file = cu_->dex_file;
952   CompilerDriver* driver = cu_->compiler_driver;
953   if (driver->CanAccessInstantiableTypeWithoutChecks(cu_->method_idx, *dex_file, type_idx)) {
954     bool is_type_initialized;
955     bool use_direct_type_ptr;
956     uintptr_t direct_type_ptr;
957     bool is_finalizable;
958     if (kEmbedClassInCode &&
959         driver->CanEmbedTypeInCode(*dex_file, type_idx, &is_type_initialized, &use_direct_type_ptr,
960                                    &direct_type_ptr, &is_finalizable) &&
961                                    !is_finalizable) {
962       // The fast path.
963       if (!use_direct_type_ptr) {
964         LoadClassType(type_idx, kArg0);
965         if (!is_type_initialized) {
966           CallRuntimeHelperRegMethod(kQuickAllocObjectResolved, TargetReg(kArg0, kRef), true);
967         } else {
968           CallRuntimeHelperRegMethod(kQuickAllocObjectInitialized, TargetReg(kArg0, kRef), true);
969         }
970       } else {
971         // Use the direct pointer.
972         if (!is_type_initialized) {
973           CallRuntimeHelperImmMethod(kQuickAllocObjectResolved, direct_type_ptr, true);
974         } else {
975           CallRuntimeHelperImmMethod(kQuickAllocObjectInitialized, direct_type_ptr, true);
976         }
977       }
978     } else {
979       // The slow path.
980       CallRuntimeHelperImmMethod(kQuickAllocObject, type_idx, true);
981     }
982   } else {
983     CallRuntimeHelperImmMethod(kQuickAllocObjectWithAccessCheck, type_idx, true);
984   }
985   StoreValue(rl_dest, GetReturn(kRefReg));
986 }
987 
GenThrow(RegLocation rl_src)988 void Mir2Lir::GenThrow(RegLocation rl_src) {
989   FlushAllRegs();
990   CallRuntimeHelperRegLocation(kQuickDeliverException, rl_src, true);
991 }
992 
993 // For final classes there are no sub-classes to check and so we can answer the instance-of
994 // question with simple comparisons.
GenInstanceofFinal(bool use_declaring_class,uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)995 void Mir2Lir::GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx, RegLocation rl_dest,
996                                  RegLocation rl_src) {
997   // X86 has its own implementation.
998   DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
999 
1000   RegLocation object = LoadValue(rl_src, kRefReg);
1001   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1002   RegStorage result_reg = rl_result.reg;
1003   if (IsSameReg(result_reg, object.reg)) {
1004     result_reg = AllocTypedTemp(false, kCoreReg);
1005     DCHECK(!IsSameReg(result_reg, object.reg));
1006   }
1007   LoadConstant(result_reg, 0);     // assume false
1008   LIR* null_branchover = OpCmpImmBranch(kCondEq, object.reg, 0, NULL);
1009 
1010   RegStorage check_class = AllocTypedTemp(false, kRefReg);
1011   RegStorage object_class = AllocTypedTemp(false, kRefReg);
1012 
1013   LoadCurrMethodDirect(check_class);
1014   if (use_declaring_class) {
1015     LoadRefDisp(check_class, mirror::ArtMethod::DeclaringClassOffset().Int32Value(), check_class,
1016                 kNotVolatile);
1017     LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1018                 kNotVolatile);
1019   } else {
1020     LoadRefDisp(check_class, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1021                 check_class, kNotVolatile);
1022     LoadRefDisp(object.reg,  mirror::Object::ClassOffset().Int32Value(), object_class,
1023                 kNotVolatile);
1024     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1025     LoadRefDisp(check_class, offset_of_type, check_class, kNotVolatile);
1026   }
1027 
1028   // FIXME: what should we be comparing here? compressed or decompressed references?
1029   if (cu_->instruction_set == kThumb2) {
1030     OpRegReg(kOpCmp, check_class, object_class);  // Same?
1031     LIR* it = OpIT(kCondEq, "");   // if-convert the test
1032     LoadConstant(result_reg, 1);     // .eq case - load true
1033     OpEndIT(it);
1034   } else {
1035     GenSelectConst32(check_class, object_class, kCondEq, 1, 0, result_reg, kCoreReg);
1036   }
1037   LIR* target = NewLIR0(kPseudoTargetLabel);
1038   null_branchover->target = target;
1039   FreeTemp(object_class);
1040   FreeTemp(check_class);
1041   if (IsTemp(result_reg)) {
1042     OpRegCopy(rl_result.reg, result_reg);
1043     FreeTemp(result_reg);
1044   }
1045   StoreValue(rl_dest, rl_result);
1046 }
1047 
GenInstanceofCallingHelper(bool needs_access_check,bool type_known_final,bool type_known_abstract,bool use_declaring_class,bool can_assume_type_is_in_dex_cache,uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)1048 void Mir2Lir::GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
1049                                          bool type_known_abstract, bool use_declaring_class,
1050                                          bool can_assume_type_is_in_dex_cache,
1051                                          uint32_t type_idx, RegLocation rl_dest,
1052                                          RegLocation rl_src) {
1053   FlushAllRegs();
1054   // May generate a call - use explicit registers
1055   LockCallTemps();
1056   RegStorage method_reg = TargetReg(kArg1, kRef);
1057   LoadCurrMethodDirect(method_reg);   // kArg1 <= current Method*
1058   RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1059   RegStorage ref_reg = TargetReg(kArg0, kRef);  // kArg0 will hold the ref.
1060   RegStorage ret_reg = GetReturn(kRefReg).reg;
1061   if (needs_access_check) {
1062     // Check we have access to type_idx and if not throw IllegalAccessError,
1063     // returns Class* in kArg0
1064     CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1065     OpRegCopy(class_reg, ret_reg);  // Align usage with fast path
1066     LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1067   } else if (use_declaring_class) {
1068     LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1069     LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1070                 class_reg, kNotVolatile);
1071   } else {
1072     if (can_assume_type_is_in_dex_cache) {
1073       // Conditionally, as in the other case we will also load it.
1074       LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1075     }
1076 
1077     // Load dex cache entry into class_reg (kArg2)
1078     LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1079                 class_reg, kNotVolatile);
1080     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1081     LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1082     if (!can_assume_type_is_in_dex_cache) {
1083       LIR* slow_path_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1084       LIR* slow_path_target = NewLIR0(kPseudoTargetLabel);
1085 
1086       // Should load value here.
1087       LoadValueDirectFixed(rl_src, ref_reg);  // kArg0 <= ref
1088 
1089       class InitTypeSlowPath : public Mir2Lir::LIRSlowPath {
1090        public:
1091         InitTypeSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont, uint32_t type_idx,
1092                          RegLocation rl_src)
1093             : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont), type_idx_(type_idx),
1094               rl_src_(rl_src) {
1095         }
1096 
1097         void Compile() OVERRIDE {
1098           GenerateTargetLabel();
1099 
1100           m2l_->CallRuntimeHelperImm(kQuickInitializeType, type_idx_, true);
1101           m2l_->OpRegCopy(m2l_->TargetReg(kArg2, kRef),
1102                           m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1103           m2l_->OpUnconditionalBranch(cont_);
1104         }
1105 
1106        private:
1107         uint32_t type_idx_;
1108         RegLocation rl_src_;
1109       };
1110 
1111       AddSlowPath(new (arena_) InitTypeSlowPath(this, slow_path_branch, slow_path_target,
1112                                                 type_idx, rl_src));
1113     }
1114   }
1115   /* kArg0 is ref, kArg2 is class. If ref==null, use directly as bool result */
1116   RegLocation rl_result = GetReturn(kCoreReg);
1117   if (!IsSameReg(rl_result.reg, ref_reg)) {
1118     // On MIPS and x86_64 rArg0 != rl_result, place false in result if branch is taken.
1119     LoadConstant(rl_result.reg, 0);
1120   }
1121   LIR* branch1 = OpCmpImmBranch(kCondEq, ref_reg, 0, NULL);
1122 
1123   /* load object->klass_ */
1124   RegStorage ref_class_reg = TargetReg(kArg1, kRef);  // kArg1 will hold the Class* of ref.
1125   DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1126   LoadRefDisp(ref_reg, mirror::Object::ClassOffset().Int32Value(),
1127               ref_class_reg, kNotVolatile);
1128   /* kArg0 is ref, kArg1 is ref->klass_, kArg2 is class */
1129   LIR* branchover = NULL;
1130   if (type_known_final) {
1131     // rl_result == ref == class.
1132     GenSelectConst32(ref_class_reg, class_reg, kCondEq, 1, 0, rl_result.reg,
1133                      kCoreReg);
1134   } else {
1135     if (cu_->instruction_set == kThumb2) {
1136       RegStorage r_tgt = LoadHelper(kQuickInstanceofNonTrivial);
1137       LIR* it = nullptr;
1138       if (!type_known_abstract) {
1139       /* Uses conditional nullification */
1140         OpRegReg(kOpCmp, ref_class_reg, class_reg);  // Same?
1141         it = OpIT(kCondEq, "EE");   // if-convert the test
1142         LoadConstant(rl_result.reg, 1);     // .eq case - load true
1143       }
1144       OpRegCopy(ref_reg, class_reg);    // .ne case - arg0 <= class
1145       OpReg(kOpBlx, r_tgt);    // .ne case: helper(class, ref->class)
1146       if (it != nullptr) {
1147         OpEndIT(it);
1148       }
1149       FreeTemp(r_tgt);
1150     } else {
1151       if (!type_known_abstract) {
1152         /* Uses branchovers */
1153         LoadConstant(rl_result.reg, 1);     // assume true
1154         branchover = OpCmpBranch(kCondEq, TargetReg(kArg1, kRef), TargetReg(kArg2, kRef), NULL);
1155       }
1156 
1157       OpRegCopy(TargetReg(kArg0, kRef), class_reg);    // .ne case - arg0 <= class
1158       CallRuntimeHelper(kQuickInstanceofNonTrivial, false);
1159     }
1160   }
1161   // TODO: only clobber when type isn't final?
1162   ClobberCallerSave();
1163   /* branch targets here */
1164   LIR* target = NewLIR0(kPseudoTargetLabel);
1165   StoreValue(rl_dest, rl_result);
1166   branch1->target = target;
1167   if (branchover != nullptr) {
1168     branchover->target = target;
1169   }
1170 }
1171 
GenInstanceof(uint32_t type_idx,RegLocation rl_dest,RegLocation rl_src)1172 void Mir2Lir::GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src) {
1173   bool type_known_final, type_known_abstract, use_declaring_class;
1174   bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1175                                                                               *cu_->dex_file,
1176                                                                               type_idx,
1177                                                                               &type_known_final,
1178                                                                               &type_known_abstract,
1179                                                                               &use_declaring_class);
1180   bool can_assume_type_is_in_dex_cache = !needs_access_check &&
1181       cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx);
1182 
1183   if ((use_declaring_class || can_assume_type_is_in_dex_cache) && type_known_final) {
1184     GenInstanceofFinal(use_declaring_class, type_idx, rl_dest, rl_src);
1185   } else {
1186     GenInstanceofCallingHelper(needs_access_check, type_known_final, type_known_abstract,
1187                                use_declaring_class, can_assume_type_is_in_dex_cache,
1188                                type_idx, rl_dest, rl_src);
1189   }
1190 }
1191 
GenCheckCast(uint32_t insn_idx,uint32_t type_idx,RegLocation rl_src)1192 void Mir2Lir::GenCheckCast(uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src) {
1193   bool type_known_final, type_known_abstract, use_declaring_class;
1194   bool needs_access_check = !cu_->compiler_driver->CanAccessTypeWithoutChecks(cu_->method_idx,
1195                                                                               *cu_->dex_file,
1196                                                                               type_idx,
1197                                                                               &type_known_final,
1198                                                                               &type_known_abstract,
1199                                                                               &use_declaring_class);
1200   // Note: currently type_known_final is unused, as optimizing will only improve the performance
1201   // of the exception throw path.
1202   DexCompilationUnit* cu = mir_graph_->GetCurrentDexCompilationUnit();
1203   if (!needs_access_check && cu_->compiler_driver->IsSafeCast(cu, insn_idx)) {
1204     // Verifier type analysis proved this check cast would never cause an exception.
1205     return;
1206   }
1207   FlushAllRegs();
1208   // May generate a call - use explicit registers
1209   LockCallTemps();
1210   RegStorage method_reg = TargetReg(kArg1, kRef);
1211   LoadCurrMethodDirect(method_reg);  // kArg1 <= current Method*
1212   RegStorage class_reg = TargetReg(kArg2, kRef);  // kArg2 will hold the Class*
1213   if (needs_access_check) {
1214     // Check we have access to type_idx and if not throw IllegalAccessError,
1215     // returns Class* in kRet0
1216     // InitializeTypeAndVerifyAccess(idx, method)
1217     CallRuntimeHelperImm(kQuickInitializeTypeAndVerifyAccess, type_idx, true);
1218     OpRegCopy(class_reg, TargetReg(kRet0, kRef));  // Align usage with fast path
1219   } else if (use_declaring_class) {
1220     LoadRefDisp(method_reg, mirror::ArtMethod::DeclaringClassOffset().Int32Value(),
1221                 class_reg, kNotVolatile);
1222   } else {
1223     // Load dex cache entry into class_reg (kArg2)
1224     LoadRefDisp(method_reg, mirror::ArtMethod::DexCacheResolvedTypesOffset().Int32Value(),
1225                 class_reg, kNotVolatile);
1226     int32_t offset_of_type = ClassArray::OffsetOfElement(type_idx).Int32Value();
1227     LoadRefDisp(class_reg, offset_of_type, class_reg, kNotVolatile);
1228     if (!cu_->compiler_driver->CanAssumeTypeIsPresentInDexCache(*cu_->dex_file, type_idx)) {
1229       // Need to test presence of type in dex cache at runtime
1230       LIR* hop_branch = OpCmpImmBranch(kCondEq, class_reg, 0, NULL);
1231       LIR* cont = NewLIR0(kPseudoTargetLabel);
1232 
1233       // Slow path to initialize the type.  Executed if the type is NULL.
1234       class SlowPath : public LIRSlowPath {
1235        public:
1236         SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, const int type_idx,
1237                  const RegStorage class_reg) :
1238                    LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), type_idx_(type_idx),
1239                    class_reg_(class_reg) {
1240         }
1241 
1242         void Compile() {
1243           GenerateTargetLabel();
1244 
1245           // Call out to helper, which will return resolved type in kArg0
1246           // InitializeTypeFromCode(idx, method)
1247           m2l_->CallRuntimeHelperImmReg(kQuickInitializeType, type_idx_,
1248                                         m2l_->TargetReg(kArg1, kRef), true);
1249           m2l_->OpRegCopy(class_reg_, m2l_->TargetReg(kRet0, kRef));  // Align usage with fast path
1250           m2l_->OpUnconditionalBranch(cont_);
1251         }
1252 
1253        public:
1254         const int type_idx_;
1255         const RegStorage class_reg_;
1256       };
1257 
1258       AddSlowPath(new (arena_) SlowPath(this, hop_branch, cont, type_idx, class_reg));
1259     }
1260   }
1261   // At this point, class_reg (kArg2) has class
1262   LoadValueDirectFixed(rl_src, TargetReg(kArg0, kRef));  // kArg0 <= ref
1263 
1264   // Slow path for the case where the classes are not equal.  In this case we need
1265   // to call a helper function to do the check.
1266   class SlowPath : public LIRSlowPath {
1267    public:
1268     SlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont, bool load):
1269                LIRSlowPath(m2l, m2l->GetCurrentDexPc(), fromfast, cont), load_(load) {
1270     }
1271 
1272     void Compile() {
1273       GenerateTargetLabel();
1274 
1275       if (load_) {
1276         m2l_->LoadRefDisp(m2l_->TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1277                           m2l_->TargetReg(kArg1, kRef), kNotVolatile);
1278       }
1279       m2l_->CallRuntimeHelperRegReg(kQuickCheckCast, m2l_->TargetReg(kArg2, kRef),
1280                                     m2l_->TargetReg(kArg1, kRef), true);
1281       m2l_->OpUnconditionalBranch(cont_);
1282     }
1283 
1284    private:
1285     const bool load_;
1286   };
1287 
1288   if (type_known_abstract) {
1289     // Easier case, run slow path if target is non-null (slow path will load from target)
1290     LIR* branch = OpCmpImmBranch(kCondNe, TargetReg(kArg0, kRef), 0, nullptr);
1291     LIR* cont = NewLIR0(kPseudoTargetLabel);
1292     AddSlowPath(new (arena_) SlowPath(this, branch, cont, true));
1293   } else {
1294     // Harder, more common case.  We need to generate a forward branch over the load
1295     // if the target is null.  If it's non-null we perform the load and branch to the
1296     // slow path if the classes are not equal.
1297 
1298     /* Null is OK - continue */
1299     LIR* branch1 = OpCmpImmBranch(kCondEq, TargetReg(kArg0, kRef), 0, nullptr);
1300     /* load object->klass_ */
1301     DCHECK_EQ(mirror::Object::ClassOffset().Int32Value(), 0);
1302     LoadRefDisp(TargetReg(kArg0, kRef), mirror::Object::ClassOffset().Int32Value(),
1303                 TargetReg(kArg1, kRef), kNotVolatile);
1304 
1305     LIR* branch2 = OpCmpBranch(kCondNe, TargetReg(kArg1, kRef), class_reg, nullptr);
1306     LIR* cont = NewLIR0(kPseudoTargetLabel);
1307 
1308     // Add the slow path that will not perform load since this is already done.
1309     AddSlowPath(new (arena_) SlowPath(this, branch2, cont, false));
1310 
1311     // Set the null check to branch to the continuation.
1312     branch1->target = cont;
1313   }
1314 }
1315 
GenLong3Addr(OpKind first_op,OpKind second_op,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1316 void Mir2Lir::GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
1317                            RegLocation rl_src1, RegLocation rl_src2) {
1318   RegLocation rl_result;
1319   if (cu_->instruction_set == kThumb2) {
1320     /*
1321      * NOTE:  This is the one place in the code in which we might have
1322      * as many as six live temporary registers.  There are 5 in the normal
1323      * set for Arm.  Until we have spill capabilities, temporarily add
1324      * lr to the temp set.  It is safe to do this locally, but note that
1325      * lr is used explicitly elsewhere in the code generator and cannot
1326      * normally be used as a general temp register.
1327      */
1328     MarkTemp(TargetReg(kLr, kNotWide));   // Add lr to the temp pool
1329     FreeTemp(TargetReg(kLr, kNotWide));   // and make it available
1330   }
1331   rl_src1 = LoadValueWide(rl_src1, kCoreReg);
1332   rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1333   rl_result = EvalLoc(rl_dest, kCoreReg, true);
1334   // The longs may overlap - use intermediate temp if so
1335   if ((rl_result.reg.GetLowReg() == rl_src1.reg.GetHighReg()) || (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg())) {
1336     RegStorage t_reg = AllocTemp();
1337     OpRegRegReg(first_op, t_reg, rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1338     OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1339     OpRegCopy(rl_result.reg.GetLow(), t_reg);
1340     FreeTemp(t_reg);
1341   } else {
1342     OpRegRegReg(first_op, rl_result.reg.GetLow(), rl_src1.reg.GetLow(), rl_src2.reg.GetLow());
1343     OpRegRegReg(second_op, rl_result.reg.GetHigh(), rl_src1.reg.GetHigh(), rl_src2.reg.GetHigh());
1344   }
1345   /*
1346    * NOTE: If rl_dest refers to a frame variable in a large frame, the
1347    * following StoreValueWide might need to allocate a temp register.
1348    * To further work around the lack of a spill capability, explicitly
1349    * free any temps from rl_src1 & rl_src2 that aren't still live in rl_result.
1350    * Remove when spill is functional.
1351    */
1352   FreeRegLocTemps(rl_result, rl_src1);
1353   FreeRegLocTemps(rl_result, rl_src2);
1354   StoreValueWide(rl_dest, rl_result);
1355   if (cu_->instruction_set == kThumb2) {
1356     Clobber(TargetReg(kLr, kNotWide));
1357     UnmarkTemp(TargetReg(kLr, kNotWide));  // Remove lr from the temp pool
1358   }
1359 }
1360 
GenShiftOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_shift)1361 void Mir2Lir::GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
1362                              RegLocation rl_src1, RegLocation rl_shift) {
1363   QuickEntrypointEnum target;
1364   switch (opcode) {
1365     case Instruction::SHL_LONG:
1366     case Instruction::SHL_LONG_2ADDR:
1367       target = kQuickShlLong;
1368       break;
1369     case Instruction::SHR_LONG:
1370     case Instruction::SHR_LONG_2ADDR:
1371       target = kQuickShrLong;
1372       break;
1373     case Instruction::USHR_LONG:
1374     case Instruction::USHR_LONG_2ADDR:
1375       target = kQuickUshrLong;
1376       break;
1377     default:
1378       LOG(FATAL) << "Unexpected case";
1379       target = kQuickShlLong;
1380   }
1381   FlushAllRegs();   /* Send everything to home location */
1382   CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_shift, false);
1383   RegLocation rl_result = GetReturnWide(kCoreReg);
1384   StoreValueWide(rl_dest, rl_result);
1385 }
1386 
1387 
GenArithOpInt(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1388 void Mir2Lir::GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
1389                             RegLocation rl_src1, RegLocation rl_src2) {
1390   DCHECK(cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64);
1391   OpKind op = kOpBkpt;
1392   bool is_div_rem = false;
1393   bool check_zero = false;
1394   bool unary = false;
1395   RegLocation rl_result;
1396   bool shift_op = false;
1397   switch (opcode) {
1398     case Instruction::NEG_INT:
1399       op = kOpNeg;
1400       unary = true;
1401       break;
1402     case Instruction::NOT_INT:
1403       op = kOpMvn;
1404       unary = true;
1405       break;
1406     case Instruction::ADD_INT:
1407     case Instruction::ADD_INT_2ADDR:
1408       op = kOpAdd;
1409       break;
1410     case Instruction::SUB_INT:
1411     case Instruction::SUB_INT_2ADDR:
1412       op = kOpSub;
1413       break;
1414     case Instruction::MUL_INT:
1415     case Instruction::MUL_INT_2ADDR:
1416       op = kOpMul;
1417       break;
1418     case Instruction::DIV_INT:
1419     case Instruction::DIV_INT_2ADDR:
1420       check_zero = true;
1421       op = kOpDiv;
1422       is_div_rem = true;
1423       break;
1424     /* NOTE: returns in kArg1 */
1425     case Instruction::REM_INT:
1426     case Instruction::REM_INT_2ADDR:
1427       check_zero = true;
1428       op = kOpRem;
1429       is_div_rem = true;
1430       break;
1431     case Instruction::AND_INT:
1432     case Instruction::AND_INT_2ADDR:
1433       op = kOpAnd;
1434       break;
1435     case Instruction::OR_INT:
1436     case Instruction::OR_INT_2ADDR:
1437       op = kOpOr;
1438       break;
1439     case Instruction::XOR_INT:
1440     case Instruction::XOR_INT_2ADDR:
1441       op = kOpXor;
1442       break;
1443     case Instruction::SHL_INT:
1444     case Instruction::SHL_INT_2ADDR:
1445       shift_op = true;
1446       op = kOpLsl;
1447       break;
1448     case Instruction::SHR_INT:
1449     case Instruction::SHR_INT_2ADDR:
1450       shift_op = true;
1451       op = kOpAsr;
1452       break;
1453     case Instruction::USHR_INT:
1454     case Instruction::USHR_INT_2ADDR:
1455       shift_op = true;
1456       op = kOpLsr;
1457       break;
1458     default:
1459       LOG(FATAL) << "Invalid word arith op: " << opcode;
1460   }
1461   if (!is_div_rem) {
1462     if (unary) {
1463       rl_src1 = LoadValue(rl_src1, kCoreReg);
1464       rl_result = EvalLoc(rl_dest, kCoreReg, true);
1465       OpRegReg(op, rl_result.reg, rl_src1.reg);
1466     } else {
1467       if ((shift_op) && (cu_->instruction_set != kArm64)) {
1468         rl_src2 = LoadValue(rl_src2, kCoreReg);
1469         RegStorage t_reg = AllocTemp();
1470         OpRegRegImm(kOpAnd, t_reg, rl_src2.reg, 31);
1471         rl_src1 = LoadValue(rl_src1, kCoreReg);
1472         rl_result = EvalLoc(rl_dest, kCoreReg, true);
1473         OpRegRegReg(op, rl_result.reg, rl_src1.reg, t_reg);
1474         FreeTemp(t_reg);
1475       } else {
1476         rl_src1 = LoadValue(rl_src1, kCoreReg);
1477         rl_src2 = LoadValue(rl_src2, kCoreReg);
1478         rl_result = EvalLoc(rl_dest, kCoreReg, true);
1479         OpRegRegReg(op, rl_result.reg, rl_src1.reg, rl_src2.reg);
1480       }
1481     }
1482     StoreValue(rl_dest, rl_result);
1483   } else {
1484     bool done = false;      // Set to true if we happen to find a way to use a real instruction.
1485     if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1486       rl_src1 = LoadValue(rl_src1, kCoreReg);
1487       rl_src2 = LoadValue(rl_src2, kCoreReg);
1488       if (check_zero) {
1489         GenDivZeroCheck(rl_src2.reg);
1490       }
1491       rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1492       done = true;
1493     } else if (cu_->instruction_set == kThumb2) {
1494       if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1495         // Use ARM SDIV instruction for division.  For remainder we also need to
1496         // calculate using a MUL and subtract.
1497         rl_src1 = LoadValue(rl_src1, kCoreReg);
1498         rl_src2 = LoadValue(rl_src2, kCoreReg);
1499         if (check_zero) {
1500           GenDivZeroCheck(rl_src2.reg);
1501         }
1502         rl_result = GenDivRem(rl_dest, rl_src1.reg, rl_src2.reg, op == kOpDiv);
1503         done = true;
1504       }
1505     }
1506 
1507     // If we haven't already generated the code use the callout function.
1508     if (!done) {
1509       FlushAllRegs();   /* Send everything to home location */
1510       LoadValueDirectFixed(rl_src2, TargetReg(kArg1, kNotWide));
1511       RegStorage r_tgt = CallHelperSetup(kQuickIdivmod);
1512       LoadValueDirectFixed(rl_src1, TargetReg(kArg0, kNotWide));
1513       if (check_zero) {
1514         GenDivZeroCheck(TargetReg(kArg1, kNotWide));
1515       }
1516       // NOTE: callout here is not a safepoint.
1517       CallHelper(r_tgt, kQuickIdivmod, false /* not a safepoint */);
1518       if (op == kOpDiv)
1519         rl_result = GetReturn(kCoreReg);
1520       else
1521         rl_result = GetReturnAlt();
1522     }
1523     StoreValue(rl_dest, rl_result);
1524   }
1525 }
1526 
1527 /*
1528  * The following are the first-level codegen routines that analyze the format
1529  * of each bytecode then either dispatch special purpose codegen routines
1530  * or produce corresponding Thumb instructions directly.
1531  */
1532 
1533 // Returns true if no more than two bits are set in 'x'.
IsPopCountLE2(unsigned int x)1534 static bool IsPopCountLE2(unsigned int x) {
1535   x &= x - 1;
1536   return (x & (x - 1)) == 0;
1537 }
1538 
1539 // Returns true if it added instructions to 'cu' to divide 'rl_src' by 'lit'
1540 // and store the result in 'rl_dest'.
HandleEasyDivRem(Instruction::Code dalvik_opcode,bool is_div,RegLocation rl_src,RegLocation rl_dest,int lit)1541 bool Mir2Lir::HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
1542                                RegLocation rl_src, RegLocation rl_dest, int lit) {
1543   if ((lit < 2) || ((cu_->instruction_set != kThumb2) && !IsPowerOfTwo(lit))) {
1544     return false;
1545   }
1546   // No divide instruction for Arm, so check for more special cases
1547   if ((cu_->instruction_set == kThumb2) && !IsPowerOfTwo(lit)) {
1548     return SmallLiteralDivRem(dalvik_opcode, is_div, rl_src, rl_dest, lit);
1549   }
1550   int k = LowestSetBit(lit);
1551   if (k >= 30) {
1552     // Avoid special cases.
1553     return false;
1554   }
1555   rl_src = LoadValue(rl_src, kCoreReg);
1556   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1557   if (is_div) {
1558     RegStorage t_reg = AllocTemp();
1559     if (lit == 2) {
1560       // Division by 2 is by far the most common division by constant.
1561       OpRegRegImm(kOpLsr, t_reg, rl_src.reg, 32 - k);
1562       OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1563       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1564     } else {
1565       OpRegRegImm(kOpAsr, t_reg, rl_src.reg, 31);
1566       OpRegRegImm(kOpLsr, t_reg, t_reg, 32 - k);
1567       OpRegRegReg(kOpAdd, t_reg, t_reg, rl_src.reg);
1568       OpRegRegImm(kOpAsr, rl_result.reg, t_reg, k);
1569     }
1570   } else {
1571     RegStorage t_reg1 = AllocTemp();
1572     RegStorage t_reg2 = AllocTemp();
1573     if (lit == 2) {
1574       OpRegRegImm(kOpLsr, t_reg1, rl_src.reg, 32 - k);
1575       OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1576       OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit -1);
1577       OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1578     } else {
1579       OpRegRegImm(kOpAsr, t_reg1, rl_src.reg, 31);
1580       OpRegRegImm(kOpLsr, t_reg1, t_reg1, 32 - k);
1581       OpRegRegReg(kOpAdd, t_reg2, t_reg1, rl_src.reg);
1582       OpRegRegImm(kOpAnd, t_reg2, t_reg2, lit - 1);
1583       OpRegRegReg(kOpSub, rl_result.reg, t_reg2, t_reg1);
1584     }
1585   }
1586   StoreValue(rl_dest, rl_result);
1587   return true;
1588 }
1589 
1590 // Returns true if it added instructions to 'cu' to multiply 'rl_src' by 'lit'
1591 // and store the result in 'rl_dest'.
HandleEasyMultiply(RegLocation rl_src,RegLocation rl_dest,int lit)1592 bool Mir2Lir::HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) {
1593   if (lit < 0) {
1594     return false;
1595   }
1596   if (lit == 0) {
1597     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1598     LoadConstant(rl_result.reg, 0);
1599     StoreValue(rl_dest, rl_result);
1600     return true;
1601   }
1602   if (lit == 1) {
1603     rl_src = LoadValue(rl_src, kCoreReg);
1604     RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1605     OpRegCopy(rl_result.reg, rl_src.reg);
1606     StoreValue(rl_dest, rl_result);
1607     return true;
1608   }
1609   // There is RegRegRegShift on Arm, so check for more special cases
1610   if (cu_->instruction_set == kThumb2) {
1611     return EasyMultiply(rl_src, rl_dest, lit);
1612   }
1613   // Can we simplify this multiplication?
1614   bool power_of_two = false;
1615   bool pop_count_le2 = false;
1616   bool power_of_two_minus_one = false;
1617   if (IsPowerOfTwo(lit)) {
1618     power_of_two = true;
1619   } else if (IsPopCountLE2(lit)) {
1620     pop_count_le2 = true;
1621   } else if (IsPowerOfTwo(lit + 1)) {
1622     power_of_two_minus_one = true;
1623   } else {
1624     return false;
1625   }
1626   rl_src = LoadValue(rl_src, kCoreReg);
1627   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
1628   if (power_of_two) {
1629     // Shift.
1630     OpRegRegImm(kOpLsl, rl_result.reg, rl_src.reg, LowestSetBit(lit));
1631   } else if (pop_count_le2) {
1632     // Shift and add and shift.
1633     int first_bit = LowestSetBit(lit);
1634     int second_bit = LowestSetBit(lit ^ (1 << first_bit));
1635     GenMultiplyByTwoBitMultiplier(rl_src, rl_result, lit, first_bit, second_bit);
1636   } else {
1637     // Reverse subtract: (src << (shift + 1)) - src.
1638     DCHECK(power_of_two_minus_one);
1639     // TUNING: rsb dst, src, src lsl#LowestSetBit(lit + 1)
1640     RegStorage t_reg = AllocTemp();
1641     OpRegRegImm(kOpLsl, t_reg, rl_src.reg, LowestSetBit(lit + 1));
1642     OpRegRegReg(kOpSub, rl_result.reg, t_reg, rl_src.reg);
1643   }
1644   StoreValue(rl_dest, rl_result);
1645   return true;
1646 }
1647 
GenArithOpIntLit(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src,int lit)1648 void Mir2Lir::GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest, RegLocation rl_src,
1649                                int lit) {
1650   RegLocation rl_result;
1651   OpKind op = static_cast<OpKind>(0);    /* Make gcc happy */
1652   int shift_op = false;
1653   bool is_div = false;
1654 
1655   switch (opcode) {
1656     case Instruction::RSUB_INT_LIT8:
1657     case Instruction::RSUB_INT: {
1658       rl_src = LoadValue(rl_src, kCoreReg);
1659       rl_result = EvalLoc(rl_dest, kCoreReg, true);
1660       if (cu_->instruction_set == kThumb2) {
1661         OpRegRegImm(kOpRsub, rl_result.reg, rl_src.reg, lit);
1662       } else {
1663         OpRegReg(kOpNeg, rl_result.reg, rl_src.reg);
1664         OpRegImm(kOpAdd, rl_result.reg, lit);
1665       }
1666       StoreValue(rl_dest, rl_result);
1667       return;
1668     }
1669 
1670     case Instruction::SUB_INT:
1671     case Instruction::SUB_INT_2ADDR:
1672       lit = -lit;
1673       // Intended fallthrough
1674     case Instruction::ADD_INT:
1675     case Instruction::ADD_INT_2ADDR:
1676     case Instruction::ADD_INT_LIT8:
1677     case Instruction::ADD_INT_LIT16:
1678       op = kOpAdd;
1679       break;
1680     case Instruction::MUL_INT:
1681     case Instruction::MUL_INT_2ADDR:
1682     case Instruction::MUL_INT_LIT8:
1683     case Instruction::MUL_INT_LIT16: {
1684       if (HandleEasyMultiply(rl_src, rl_dest, lit)) {
1685         return;
1686       }
1687       op = kOpMul;
1688       break;
1689     }
1690     case Instruction::AND_INT:
1691     case Instruction::AND_INT_2ADDR:
1692     case Instruction::AND_INT_LIT8:
1693     case Instruction::AND_INT_LIT16:
1694       op = kOpAnd;
1695       break;
1696     case Instruction::OR_INT:
1697     case Instruction::OR_INT_2ADDR:
1698     case Instruction::OR_INT_LIT8:
1699     case Instruction::OR_INT_LIT16:
1700       op = kOpOr;
1701       break;
1702     case Instruction::XOR_INT:
1703     case Instruction::XOR_INT_2ADDR:
1704     case Instruction::XOR_INT_LIT8:
1705     case Instruction::XOR_INT_LIT16:
1706       op = kOpXor;
1707       break;
1708     case Instruction::SHL_INT_LIT8:
1709     case Instruction::SHL_INT:
1710     case Instruction::SHL_INT_2ADDR:
1711       lit &= 31;
1712       shift_op = true;
1713       op = kOpLsl;
1714       break;
1715     case Instruction::SHR_INT_LIT8:
1716     case Instruction::SHR_INT:
1717     case Instruction::SHR_INT_2ADDR:
1718       lit &= 31;
1719       shift_op = true;
1720       op = kOpAsr;
1721       break;
1722     case Instruction::USHR_INT_LIT8:
1723     case Instruction::USHR_INT:
1724     case Instruction::USHR_INT_2ADDR:
1725       lit &= 31;
1726       shift_op = true;
1727       op = kOpLsr;
1728       break;
1729 
1730     case Instruction::DIV_INT:
1731     case Instruction::DIV_INT_2ADDR:
1732     case Instruction::DIV_INT_LIT8:
1733     case Instruction::DIV_INT_LIT16:
1734     case Instruction::REM_INT:
1735     case Instruction::REM_INT_2ADDR:
1736     case Instruction::REM_INT_LIT8:
1737     case Instruction::REM_INT_LIT16: {
1738       if (lit == 0) {
1739         GenDivZeroException();
1740         return;
1741       }
1742       if ((opcode == Instruction::DIV_INT) ||
1743           (opcode == Instruction::DIV_INT_2ADDR) ||
1744           (opcode == Instruction::DIV_INT_LIT8) ||
1745           (opcode == Instruction::DIV_INT_LIT16)) {
1746         is_div = true;
1747       } else {
1748         is_div = false;
1749       }
1750       if (HandleEasyDivRem(opcode, is_div, rl_src, rl_dest, lit)) {
1751         return;
1752       }
1753 
1754       bool done = false;
1755       if (cu_->instruction_set == kMips || cu_->instruction_set == kArm64) {
1756         rl_src = LoadValue(rl_src, kCoreReg);
1757         rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1758         done = true;
1759       } else if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
1760         rl_result = GenDivRemLit(rl_dest, rl_src, lit, is_div);
1761         done = true;
1762       } else if (cu_->instruction_set == kThumb2) {
1763         if (cu_->GetInstructionSetFeatures().HasDivideInstruction()) {
1764           // Use ARM SDIV instruction for division.  For remainder we also need to
1765           // calculate using a MUL and subtract.
1766           rl_src = LoadValue(rl_src, kCoreReg);
1767           rl_result = GenDivRemLit(rl_dest, rl_src.reg, lit, is_div);
1768           done = true;
1769         }
1770       }
1771 
1772       if (!done) {
1773         FlushAllRegs();   /* Everything to home location. */
1774         LoadValueDirectFixed(rl_src, TargetReg(kArg0, kNotWide));
1775         Clobber(TargetReg(kArg0, kNotWide));
1776         CallRuntimeHelperRegImm(kQuickIdivmod, TargetReg(kArg0, kNotWide), lit, false);
1777         if (is_div)
1778           rl_result = GetReturn(kCoreReg);
1779         else
1780           rl_result = GetReturnAlt();
1781       }
1782       StoreValue(rl_dest, rl_result);
1783       return;
1784     }
1785     default:
1786       LOG(FATAL) << "Unexpected opcode " << opcode;
1787   }
1788   rl_src = LoadValue(rl_src, kCoreReg);
1789   rl_result = EvalLoc(rl_dest, kCoreReg, true);
1790   // Avoid shifts by literal 0 - no support in Thumb.  Change to copy.
1791   if (shift_op && (lit == 0)) {
1792     OpRegCopy(rl_result.reg, rl_src.reg);
1793   } else {
1794     OpRegRegImm(op, rl_result.reg, rl_src.reg, lit);
1795   }
1796   StoreValue(rl_dest, rl_result);
1797 }
1798 
GenArithOpLong(Instruction::Code opcode,RegLocation rl_dest,RegLocation rl_src1,RegLocation rl_src2)1799 void Mir2Lir::GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
1800                              RegLocation rl_src1, RegLocation rl_src2) {
1801   RegLocation rl_result;
1802   OpKind first_op = kOpBkpt;
1803   OpKind second_op = kOpBkpt;
1804   bool call_out = false;
1805   bool check_zero = false;
1806   int ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1807   QuickEntrypointEnum target;
1808 
1809   switch (opcode) {
1810     case Instruction::NOT_LONG:
1811       rl_src2 = LoadValueWide(rl_src2, kCoreReg);
1812       rl_result = EvalLoc(rl_dest, kCoreReg, true);
1813       // Check for destructive overlap
1814       if (rl_result.reg.GetLowReg() == rl_src2.reg.GetHighReg()) {
1815         RegStorage t_reg = AllocTemp();
1816         OpRegCopy(t_reg, rl_src2.reg.GetHigh());
1817         OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1818         OpRegReg(kOpMvn, rl_result.reg.GetHigh(), t_reg);
1819         FreeTemp(t_reg);
1820       } else {
1821         OpRegReg(kOpMvn, rl_result.reg.GetLow(), rl_src2.reg.GetLow());
1822         OpRegReg(kOpMvn, rl_result.reg.GetHigh(), rl_src2.reg.GetHigh());
1823       }
1824       StoreValueWide(rl_dest, rl_result);
1825       return;
1826     case Instruction::ADD_LONG:
1827     case Instruction::ADD_LONG_2ADDR:
1828       first_op = kOpAdd;
1829       second_op = kOpAdc;
1830       break;
1831     case Instruction::SUB_LONG:
1832     case Instruction::SUB_LONG_2ADDR:
1833       first_op = kOpSub;
1834       second_op = kOpSbc;
1835       break;
1836     case Instruction::MUL_LONG:
1837     case Instruction::MUL_LONG_2ADDR:
1838       call_out = true;
1839       ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1840       target = kQuickLmul;
1841       break;
1842     case Instruction::DIV_LONG:
1843     case Instruction::DIV_LONG_2ADDR:
1844       call_out = true;
1845       check_zero = true;
1846       ret_reg = TargetReg(kRet0, kNotWide).GetReg();
1847       target = kQuickLdiv;
1848       break;
1849     case Instruction::REM_LONG:
1850     case Instruction::REM_LONG_2ADDR:
1851       call_out = true;
1852       check_zero = true;
1853       target = kQuickLmod;
1854       /* NOTE - for Arm, result is in kArg2/kArg3 instead of kRet0/kRet1 */
1855       ret_reg = (cu_->instruction_set == kThumb2) ? TargetReg(kArg2, kNotWide).GetReg() :
1856           TargetReg(kRet0, kNotWide).GetReg();
1857       break;
1858     case Instruction::AND_LONG_2ADDR:
1859     case Instruction::AND_LONG:
1860       first_op = kOpAnd;
1861       second_op = kOpAnd;
1862       break;
1863     case Instruction::OR_LONG:
1864     case Instruction::OR_LONG_2ADDR:
1865       first_op = kOpOr;
1866       second_op = kOpOr;
1867       break;
1868     case Instruction::XOR_LONG:
1869     case Instruction::XOR_LONG_2ADDR:
1870       first_op = kOpXor;
1871       second_op = kOpXor;
1872       break;
1873     default:
1874       LOG(FATAL) << "Invalid long arith op";
1875   }
1876   if (!call_out) {
1877     GenLong3Addr(first_op, second_op, rl_dest, rl_src1, rl_src2);
1878   } else {
1879     FlushAllRegs();   /* Send everything to home location */
1880     if (check_zero) {
1881       RegStorage r_tmp1 = TargetReg(kArg0, kWide);
1882       RegStorage r_tmp2 = TargetReg(kArg2, kWide);
1883       LoadValueDirectWideFixed(rl_src2, r_tmp2);
1884       RegStorage r_tgt = CallHelperSetup(target);
1885       GenDivZeroCheckWide(r_tmp2);
1886       LoadValueDirectWideFixed(rl_src1, r_tmp1);
1887       // NOTE: callout here is not a safepoint
1888       CallHelper(r_tgt, target, false /* not safepoint */);
1889     } else {
1890       CallRuntimeHelperRegLocationRegLocation(target, rl_src1, rl_src2, false);
1891     }
1892     // Adjust return regs in to handle case of rem returning kArg2/kArg3
1893     if (ret_reg == TargetReg(kRet0, kNotWide).GetReg())
1894       rl_result = GetReturnWide(kCoreReg);
1895     else
1896       rl_result = GetReturnWideAlt();
1897     StoreValueWide(rl_dest, rl_result);
1898   }
1899 }
1900 
GenConst(RegLocation rl_dest,int value)1901 void Mir2Lir::GenConst(RegLocation rl_dest, int value) {
1902   RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
1903   LoadConstantNoClobber(rl_result.reg, value);
1904   StoreValue(rl_dest, rl_result);
1905   if (value == 0) {
1906     Workaround7250540(rl_dest, rl_result.reg);
1907   }
1908 }
1909 
GenConversionCall(QuickEntrypointEnum trampoline,RegLocation rl_dest,RegLocation rl_src)1910 void Mir2Lir::GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest,
1911                                 RegLocation rl_src) {
1912   /*
1913    * Don't optimize the register usage since it calls out to support
1914    * functions
1915    */
1916 
1917   FlushAllRegs();   /* Send everything to home location */
1918   CallRuntimeHelperRegLocation(trampoline, rl_src, false);
1919   if (rl_dest.wide) {
1920     RegLocation rl_result;
1921     rl_result = GetReturnWide(LocToRegClass(rl_dest));
1922     StoreValueWide(rl_dest, rl_result);
1923   } else {
1924     RegLocation rl_result;
1925     rl_result = GetReturn(LocToRegClass(rl_dest));
1926     StoreValue(rl_dest, rl_result);
1927   }
1928 }
1929 
1930 class SuspendCheckSlowPath : public Mir2Lir::LIRSlowPath {
1931  public:
SuspendCheckSlowPath(Mir2Lir * m2l,LIR * branch,LIR * cont)1932   SuspendCheckSlowPath(Mir2Lir* m2l, LIR* branch, LIR* cont)
1933       : LIRSlowPath(m2l, m2l->GetCurrentDexPc(), branch, cont) {
1934   }
1935 
Compile()1936   void Compile() OVERRIDE {
1937     m2l_->ResetRegPool();
1938     m2l_->ResetDefTracking();
1939     GenerateTargetLabel(kPseudoSuspendTarget);
1940     m2l_->CallRuntimeHelper(kQuickTestSuspend, true);
1941     if (cont_ != nullptr) {
1942       m2l_->OpUnconditionalBranch(cont_);
1943     }
1944   }
1945 };
1946 
1947 /* Check if we need to check for pending suspend request */
GenSuspendTest(int opt_flags)1948 void Mir2Lir::GenSuspendTest(int opt_flags) {
1949   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
1950     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1951       return;
1952     }
1953     FlushAllRegs();
1954     LIR* branch = OpTestSuspend(NULL);
1955     LIR* cont = NewLIR0(kPseudoTargetLabel);
1956     AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, cont));
1957   } else {
1958     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1959       return;
1960     }
1961     FlushAllRegs();     // TODO: needed?
1962     LIR* inst = CheckSuspendUsingLoad();
1963     MarkSafepointPC(inst);
1964   }
1965 }
1966 
1967 /* Check if we need to check for pending suspend request */
GenSuspendTestAndBranch(int opt_flags,LIR * target)1968 void Mir2Lir::GenSuspendTestAndBranch(int opt_flags, LIR* target) {
1969   if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitSuspendChecks()) {
1970     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1971       OpUnconditionalBranch(target);
1972       return;
1973     }
1974     OpTestSuspend(target);
1975     FlushAllRegs();
1976     LIR* branch = OpUnconditionalBranch(nullptr);
1977     AddSlowPath(new (arena_) SuspendCheckSlowPath(this, branch, target));
1978   } else {
1979     // For the implicit suspend check, just perform the trigger
1980     // load and branch to the target.
1981     if (NO_SUSPEND || (opt_flags & MIR_IGNORE_SUSPEND_CHECK)) {
1982       OpUnconditionalBranch(target);
1983       return;
1984     }
1985     FlushAllRegs();
1986     LIR* inst = CheckSuspendUsingLoad();
1987     MarkSafepointPC(inst);
1988     OpUnconditionalBranch(target);
1989   }
1990 }
1991 
1992 /* Call out to helper assembly routine that will null check obj and then lock it. */
GenMonitorEnter(int opt_flags,RegLocation rl_src)1993 void Mir2Lir::GenMonitorEnter(int opt_flags, RegLocation rl_src) {
1994   FlushAllRegs();
1995   CallRuntimeHelperRegLocation(kQuickLockObject, rl_src, true);
1996 }
1997 
1998 /* Call out to helper assembly routine that will null check obj and then unlock it. */
GenMonitorExit(int opt_flags,RegLocation rl_src)1999 void Mir2Lir::GenMonitorExit(int opt_flags, RegLocation rl_src) {
2000   FlushAllRegs();
2001   CallRuntimeHelperRegLocation(kQuickUnlockObject, rl_src, true);
2002 }
2003 
2004 /* Generic code for generating a wide constant into a VR. */
GenConstWide(RegLocation rl_dest,int64_t value)2005 void Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
2006   RegLocation rl_result = EvalLoc(rl_dest, kAnyReg, true);
2007   LoadConstantWide(rl_result.reg, value);
2008   StoreValueWide(rl_dest, rl_result);
2009 }
2010 
GenSmallPackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2011 void Mir2Lir::GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2012   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2013   const uint16_t entries = table[1];
2014   // Chained cmp-and-branch.
2015   const int32_t* as_int32 = reinterpret_cast<const int32_t*>(&table[2]);
2016   int32_t current_key = as_int32[0];
2017   const int32_t* targets = &as_int32[1];
2018   rl_src = LoadValue(rl_src, kCoreReg);
2019   int i = 0;
2020   for (; i < entries; i++, current_key++) {
2021     if (!InexpensiveConstantInt(current_key, Instruction::Code::IF_EQ)) {
2022       // Switch to using a temp and add.
2023       break;
2024     }
2025     BasicBlock* case_block =
2026         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2027     OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2028   }
2029   if (i < entries) {
2030     // The rest do not seem to be inexpensive. Try to allocate a temp and use add.
2031     RegStorage key_temp = AllocTypedTemp(false, kCoreReg, false);
2032     if (key_temp.Valid()) {
2033       LoadConstantNoClobber(key_temp, current_key);
2034       for (; i < entries - 1; i++, current_key++) {
2035         BasicBlock* case_block =
2036             mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2037         OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2038         OpRegImm(kOpAdd, key_temp, 1);  // Increment key.
2039       }
2040       BasicBlock* case_block =
2041           mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2042       OpCmpBranch(kCondEq, rl_src.reg, key_temp, &block_label_list_[case_block->id]);
2043     } else {
2044       // No free temp, just finish the old loop.
2045       for (; i < entries; i++, current_key++) {
2046         BasicBlock* case_block =
2047             mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2048         OpCmpImmBranch(kCondEq, rl_src.reg, current_key, &block_label_list_[case_block->id]);
2049       }
2050     }
2051   }
2052 }
2053 
GenPackedSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2054 void Mir2Lir::GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2055   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2056   if (cu_->verbose) {
2057     DumpSparseSwitchTable(table);
2058   }
2059 
2060   const uint16_t entries = table[1];
2061   if (entries <= kSmallSwitchThreshold) {
2062     GenSmallPackedSwitch(mir, table_offset, rl_src);
2063   } else {
2064     // Use the backend-specific implementation.
2065     GenLargePackedSwitch(mir, table_offset, rl_src);
2066   }
2067 }
2068 
GenSmallSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2069 void Mir2Lir::GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2070   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2071   const uint16_t entries = table[1];
2072   // Chained cmp-and-branch.
2073   const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
2074   const int32_t* targets = &keys[entries];
2075   rl_src = LoadValue(rl_src, kCoreReg);
2076   for (int i = 0; i < entries; i++) {
2077     int key = keys[i];
2078     BasicBlock* case_block =
2079         mir_graph_->FindBlock(current_dalvik_offset_ + targets[i]);
2080     OpCmpImmBranch(kCondEq, rl_src.reg, key, &block_label_list_[case_block->id]);
2081   }
2082 }
2083 
GenSparseSwitch(MIR * mir,DexOffset table_offset,RegLocation rl_src)2084 void Mir2Lir::GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) {
2085   const uint16_t* table = cu_->insns + current_dalvik_offset_ + table_offset;
2086   if (cu_->verbose) {
2087     DumpSparseSwitchTable(table);
2088   }
2089 
2090   const uint16_t entries = table[1];
2091   if (entries <= kSmallSwitchThreshold) {
2092     GenSmallSparseSwitch(mir, table_offset, rl_src);
2093   } else {
2094     // Use the backend-specific implementation.
2095     GenLargeSparseSwitch(mir, table_offset, rl_src);
2096   }
2097 }
2098 
2099 }  // namespace art
2100