• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "utils.h"
18 
19 #include <inttypes.h>
20 #include <pthread.h>
21 #include <sys/stat.h>
22 #include <sys/syscall.h>
23 #include <sys/types.h>
24 #include <sys/wait.h>
25 #include <unistd.h>
26 #include <memory>
27 
28 #include "base/stl_util.h"
29 #include "base/unix_file/fd_file.h"
30 #include "dex_file-inl.h"
31 #include "field_helper.h"
32 #include "mirror/art_field-inl.h"
33 #include "mirror/art_method-inl.h"
34 #include "mirror/class-inl.h"
35 #include "mirror/class_loader.h"
36 #include "mirror/object-inl.h"
37 #include "mirror/object_array-inl.h"
38 #include "mirror/string.h"
39 #include "os.h"
40 #include "scoped_thread_state_change.h"
41 #include "utf-inl.h"
42 
43 #if !defined(HAVE_POSIX_CLOCKS)
44 #include <sys/time.h>
45 #endif
46 
47 #if defined(HAVE_PRCTL)
48 #include <sys/prctl.h>
49 #endif
50 
51 #if defined(__APPLE__)
52 #include "AvailabilityMacros.h"  // For MAC_OS_X_VERSION_MAX_ALLOWED
53 #include <sys/syscall.h>
54 #endif
55 
56 #include <backtrace/Backtrace.h>  // For DumpNativeStack.
57 
58 #if defined(__linux__)
59 #include <linux/unistd.h>
60 #endif
61 
62 namespace art {
63 
GetTid()64 pid_t GetTid() {
65 #if defined(__APPLE__)
66   uint64_t owner;
67   CHECK_PTHREAD_CALL(pthread_threadid_np, (NULL, &owner), __FUNCTION__);  // Requires Mac OS 10.6
68   return owner;
69 #else
70   // Neither bionic nor glibc exposes gettid(2).
71   return syscall(__NR_gettid);
72 #endif
73 }
74 
GetThreadName(pid_t tid)75 std::string GetThreadName(pid_t tid) {
76   std::string result;
77   if (ReadFileToString(StringPrintf("/proc/self/task/%d/comm", tid), &result)) {
78     result.resize(result.size() - 1);  // Lose the trailing '\n'.
79   } else {
80     result = "<unknown>";
81   }
82   return result;
83 }
84 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)85 void GetThreadStack(pthread_t thread, void** stack_base, size_t* stack_size, size_t* guard_size) {
86 #if defined(__APPLE__)
87   *stack_size = pthread_get_stacksize_np(thread);
88   void* stack_addr = pthread_get_stackaddr_np(thread);
89 
90   // Check whether stack_addr is the base or end of the stack.
91   // (On Mac OS 10.7, it's the end.)
92   int stack_variable;
93   if (stack_addr > &stack_variable) {
94     *stack_base = reinterpret_cast<byte*>(stack_addr) - *stack_size;
95   } else {
96     *stack_base = stack_addr;
97   }
98 
99   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
100   pthread_attr_t attributes;
101   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
102   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
103   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
104 #else
105   pthread_attr_t attributes;
106   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
107   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
108   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
109   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
110 #endif
111 }
112 
ReadFileToString(const std::string & file_name,std::string * result)113 bool ReadFileToString(const std::string& file_name, std::string* result) {
114   std::unique_ptr<File> file(new File);
115   if (!file->Open(file_name, O_RDONLY)) {
116     return false;
117   }
118 
119   std::vector<char> buf(8 * KB);
120   while (true) {
121     int64_t n = TEMP_FAILURE_RETRY(read(file->Fd(), &buf[0], buf.size()));
122     if (n == -1) {
123       return false;
124     }
125     if (n == 0) {
126       return true;
127     }
128     result->append(&buf[0], n);
129   }
130 }
131 
GetIsoDate()132 std::string GetIsoDate() {
133   time_t now = time(NULL);
134   tm tmbuf;
135   tm* ptm = localtime_r(&now, &tmbuf);
136   return StringPrintf("%04d-%02d-%02d %02d:%02d:%02d",
137       ptm->tm_year + 1900, ptm->tm_mon+1, ptm->tm_mday,
138       ptm->tm_hour, ptm->tm_min, ptm->tm_sec);
139 }
140 
MilliTime()141 uint64_t MilliTime() {
142 #if defined(HAVE_POSIX_CLOCKS)
143   timespec now;
144   clock_gettime(CLOCK_MONOTONIC, &now);
145   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_nsec / UINT64_C(1000000);
146 #else
147   timeval now;
148   gettimeofday(&now, NULL);
149   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000) + now.tv_usec / UINT64_C(1000);
150 #endif
151 }
152 
MicroTime()153 uint64_t MicroTime() {
154 #if defined(HAVE_POSIX_CLOCKS)
155   timespec now;
156   clock_gettime(CLOCK_MONOTONIC, &now);
157   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
158 #else
159   timeval now;
160   gettimeofday(&now, NULL);
161   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_usec;
162 #endif
163 }
164 
NanoTime()165 uint64_t NanoTime() {
166 #if defined(HAVE_POSIX_CLOCKS)
167   timespec now;
168   clock_gettime(CLOCK_MONOTONIC, &now);
169   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
170 #else
171   timeval now;
172   gettimeofday(&now, NULL);
173   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_usec * UINT64_C(1000);
174 #endif
175 }
176 
ThreadCpuNanoTime()177 uint64_t ThreadCpuNanoTime() {
178 #if defined(HAVE_POSIX_CLOCKS)
179   timespec now;
180   clock_gettime(CLOCK_THREAD_CPUTIME_ID, &now);
181   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000000) + now.tv_nsec;
182 #else
183   UNIMPLEMENTED(WARNING);
184   return -1;
185 #endif
186 }
187 
NanoSleep(uint64_t ns)188 void NanoSleep(uint64_t ns) {
189   timespec tm;
190   tm.tv_sec = 0;
191   tm.tv_nsec = ns;
192   nanosleep(&tm, NULL);
193 }
194 
InitTimeSpec(bool absolute,int clock,int64_t ms,int32_t ns,timespec * ts)195 void InitTimeSpec(bool absolute, int clock, int64_t ms, int32_t ns, timespec* ts) {
196   int64_t endSec;
197 
198   if (absolute) {
199 #if !defined(__APPLE__)
200     clock_gettime(clock, ts);
201 #else
202     UNUSED(clock);
203     timeval tv;
204     gettimeofday(&tv, NULL);
205     ts->tv_sec = tv.tv_sec;
206     ts->tv_nsec = tv.tv_usec * 1000;
207 #endif
208   } else {
209     ts->tv_sec = 0;
210     ts->tv_nsec = 0;
211   }
212   endSec = ts->tv_sec + ms / 1000;
213   if (UNLIKELY(endSec >= 0x7fffffff)) {
214     std::ostringstream ss;
215     LOG(INFO) << "Note: end time exceeds epoch: " << ss.str();
216     endSec = 0x7ffffffe;
217   }
218   ts->tv_sec = endSec;
219   ts->tv_nsec = (ts->tv_nsec + (ms % 1000) * 1000000) + ns;
220 
221   // Catch rollover.
222   if (ts->tv_nsec >= 1000000000L) {
223     ts->tv_sec++;
224     ts->tv_nsec -= 1000000000L;
225   }
226 }
227 
PrettyDescriptor(mirror::String * java_descriptor)228 std::string PrettyDescriptor(mirror::String* java_descriptor) {
229   if (java_descriptor == NULL) {
230     return "null";
231   }
232   return PrettyDescriptor(java_descriptor->ToModifiedUtf8().c_str());
233 }
234 
PrettyDescriptor(mirror::Class * klass)235 std::string PrettyDescriptor(mirror::Class* klass) {
236   if (klass == NULL) {
237     return "null";
238   }
239   std::string temp;
240   return PrettyDescriptor(klass->GetDescriptor(&temp));
241 }
242 
PrettyDescriptor(const char * descriptor)243 std::string PrettyDescriptor(const char* descriptor) {
244   // Count the number of '['s to get the dimensionality.
245   const char* c = descriptor;
246   size_t dim = 0;
247   while (*c == '[') {
248     dim++;
249     c++;
250   }
251 
252   // Reference or primitive?
253   if (*c == 'L') {
254     // "[[La/b/C;" -> "a.b.C[][]".
255     c++;  // Skip the 'L'.
256   } else {
257     // "[[B" -> "byte[][]".
258     // To make life easier, we make primitives look like unqualified
259     // reference types.
260     switch (*c) {
261     case 'B': c = "byte;"; break;
262     case 'C': c = "char;"; break;
263     case 'D': c = "double;"; break;
264     case 'F': c = "float;"; break;
265     case 'I': c = "int;"; break;
266     case 'J': c = "long;"; break;
267     case 'S': c = "short;"; break;
268     case 'Z': c = "boolean;"; break;
269     case 'V': c = "void;"; break;  // Used when decoding return types.
270     default: return descriptor;
271     }
272   }
273 
274   // At this point, 'c' is a string of the form "fully/qualified/Type;"
275   // or "primitive;". Rewrite the type with '.' instead of '/':
276   std::string result;
277   const char* p = c;
278   while (*p != ';') {
279     char ch = *p++;
280     if (ch == '/') {
281       ch = '.';
282     }
283     result.push_back(ch);
284   }
285   // ...and replace the semicolon with 'dim' "[]" pairs:
286   for (size_t i = 0; i < dim; ++i) {
287     result += "[]";
288   }
289   return result;
290 }
291 
PrettyField(mirror::ArtField * f,bool with_type)292 std::string PrettyField(mirror::ArtField* f, bool with_type) {
293   if (f == NULL) {
294     return "null";
295   }
296   std::string result;
297   if (with_type) {
298     result += PrettyDescriptor(f->GetTypeDescriptor());
299     result += ' ';
300   }
301   StackHandleScope<1> hs(Thread::Current());
302   result += PrettyDescriptor(FieldHelper(hs.NewHandle(f)).GetDeclaringClassDescriptor());
303   result += '.';
304   result += f->GetName();
305   return result;
306 }
307 
PrettyField(uint32_t field_idx,const DexFile & dex_file,bool with_type)308 std::string PrettyField(uint32_t field_idx, const DexFile& dex_file, bool with_type) {
309   if (field_idx >= dex_file.NumFieldIds()) {
310     return StringPrintf("<<invalid-field-idx-%d>>", field_idx);
311   }
312   const DexFile::FieldId& field_id = dex_file.GetFieldId(field_idx);
313   std::string result;
314   if (with_type) {
315     result += dex_file.GetFieldTypeDescriptor(field_id);
316     result += ' ';
317   }
318   result += PrettyDescriptor(dex_file.GetFieldDeclaringClassDescriptor(field_id));
319   result += '.';
320   result += dex_file.GetFieldName(field_id);
321   return result;
322 }
323 
PrettyType(uint32_t type_idx,const DexFile & dex_file)324 std::string PrettyType(uint32_t type_idx, const DexFile& dex_file) {
325   if (type_idx >= dex_file.NumTypeIds()) {
326     return StringPrintf("<<invalid-type-idx-%d>>", type_idx);
327   }
328   const DexFile::TypeId& type_id = dex_file.GetTypeId(type_idx);
329   return PrettyDescriptor(dex_file.GetTypeDescriptor(type_id));
330 }
331 
PrettyArguments(const char * signature)332 std::string PrettyArguments(const char* signature) {
333   std::string result;
334   result += '(';
335   CHECK_EQ(*signature, '(');
336   ++signature;  // Skip the '('.
337   while (*signature != ')') {
338     size_t argument_length = 0;
339     while (signature[argument_length] == '[') {
340       ++argument_length;
341     }
342     if (signature[argument_length] == 'L') {
343       argument_length = (strchr(signature, ';') - signature + 1);
344     } else {
345       ++argument_length;
346     }
347     {
348       std::string argument_descriptor(signature, argument_length);
349       result += PrettyDescriptor(argument_descriptor.c_str());
350     }
351     if (signature[argument_length] != ')') {
352       result += ", ";
353     }
354     signature += argument_length;
355   }
356   CHECK_EQ(*signature, ')');
357   ++signature;  // Skip the ')'.
358   result += ')';
359   return result;
360 }
361 
PrettyReturnType(const char * signature)362 std::string PrettyReturnType(const char* signature) {
363   const char* return_type = strchr(signature, ')');
364   CHECK(return_type != NULL);
365   ++return_type;  // Skip ')'.
366   return PrettyDescriptor(return_type);
367 }
368 
PrettyMethod(mirror::ArtMethod * m,bool with_signature)369 std::string PrettyMethod(mirror::ArtMethod* m, bool with_signature) {
370   if (m == nullptr) {
371     return "null";
372   }
373   std::string result(PrettyDescriptor(m->GetDeclaringClassDescriptor()));
374   result += '.';
375   result += m->GetName();
376   if (UNLIKELY(m->IsFastNative())) {
377     result += "!";
378   }
379   if (with_signature) {
380     const Signature signature = m->GetSignature();
381     std::string sig_as_string(signature.ToString());
382     if (signature == Signature::NoSignature()) {
383       return result + sig_as_string;
384     }
385     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
386         PrettyArguments(sig_as_string.c_str());
387   }
388   return result;
389 }
390 
PrettyMethod(uint32_t method_idx,const DexFile & dex_file,bool with_signature)391 std::string PrettyMethod(uint32_t method_idx, const DexFile& dex_file, bool with_signature) {
392   if (method_idx >= dex_file.NumMethodIds()) {
393     return StringPrintf("<<invalid-method-idx-%d>>", method_idx);
394   }
395   const DexFile::MethodId& method_id = dex_file.GetMethodId(method_idx);
396   std::string result(PrettyDescriptor(dex_file.GetMethodDeclaringClassDescriptor(method_id)));
397   result += '.';
398   result += dex_file.GetMethodName(method_id);
399   if (with_signature) {
400     const Signature signature = dex_file.GetMethodSignature(method_id);
401     std::string sig_as_string(signature.ToString());
402     if (signature == Signature::NoSignature()) {
403       return result + sig_as_string;
404     }
405     result = PrettyReturnType(sig_as_string.c_str()) + " " + result +
406         PrettyArguments(sig_as_string.c_str());
407   }
408   return result;
409 }
410 
PrettyTypeOf(mirror::Object * obj)411 std::string PrettyTypeOf(mirror::Object* obj) {
412   if (obj == NULL) {
413     return "null";
414   }
415   if (obj->GetClass() == NULL) {
416     return "(raw)";
417   }
418   std::string temp;
419   std::string result(PrettyDescriptor(obj->GetClass()->GetDescriptor(&temp)));
420   if (obj->IsClass()) {
421     result += "<" + PrettyDescriptor(obj->AsClass()->GetDescriptor(&temp)) + ">";
422   }
423   return result;
424 }
425 
PrettyClass(mirror::Class * c)426 std::string PrettyClass(mirror::Class* c) {
427   if (c == NULL) {
428     return "null";
429   }
430   std::string result;
431   result += "java.lang.Class<";
432   result += PrettyDescriptor(c);
433   result += ">";
434   return result;
435 }
436 
PrettyClassAndClassLoader(mirror::Class * c)437 std::string PrettyClassAndClassLoader(mirror::Class* c) {
438   if (c == NULL) {
439     return "null";
440   }
441   std::string result;
442   result += "java.lang.Class<";
443   result += PrettyDescriptor(c);
444   result += ",";
445   result += PrettyTypeOf(c->GetClassLoader());
446   // TODO: add an identifying hash value for the loader
447   result += ">";
448   return result;
449 }
450 
PrettySize(int64_t byte_count)451 std::string PrettySize(int64_t byte_count) {
452   // The byte thresholds at which we display amounts.  A byte count is displayed
453   // in unit U when kUnitThresholds[U] <= bytes < kUnitThresholds[U+1].
454   static const int64_t kUnitThresholds[] = {
455     0,              // B up to...
456     3*1024,         // KB up to...
457     2*1024*1024,    // MB up to...
458     1024*1024*1024  // GB from here.
459   };
460   static const int64_t kBytesPerUnit[] = { 1, KB, MB, GB };
461   static const char* const kUnitStrings[] = { "B", "KB", "MB", "GB" };
462   const char* negative_str = "";
463   if (byte_count < 0) {
464     negative_str = "-";
465     byte_count = -byte_count;
466   }
467   int i = arraysize(kUnitThresholds);
468   while (--i > 0) {
469     if (byte_count >= kUnitThresholds[i]) {
470       break;
471     }
472   }
473   return StringPrintf("%s%" PRId64 "%s",
474                       negative_str, byte_count / kBytesPerUnit[i], kUnitStrings[i]);
475 }
476 
PrettyDuration(uint64_t nano_duration,size_t max_fraction_digits)477 std::string PrettyDuration(uint64_t nano_duration, size_t max_fraction_digits) {
478   if (nano_duration == 0) {
479     return "0";
480   } else {
481     return FormatDuration(nano_duration, GetAppropriateTimeUnit(nano_duration),
482                           max_fraction_digits);
483   }
484 }
485 
GetAppropriateTimeUnit(uint64_t nano_duration)486 TimeUnit GetAppropriateTimeUnit(uint64_t nano_duration) {
487   const uint64_t one_sec = 1000 * 1000 * 1000;
488   const uint64_t one_ms  = 1000 * 1000;
489   const uint64_t one_us  = 1000;
490   if (nano_duration >= one_sec) {
491     return kTimeUnitSecond;
492   } else if (nano_duration >= one_ms) {
493     return kTimeUnitMillisecond;
494   } else if (nano_duration >= one_us) {
495     return kTimeUnitMicrosecond;
496   } else {
497     return kTimeUnitNanosecond;
498   }
499 }
500 
GetNsToTimeUnitDivisor(TimeUnit time_unit)501 uint64_t GetNsToTimeUnitDivisor(TimeUnit time_unit) {
502   const uint64_t one_sec = 1000 * 1000 * 1000;
503   const uint64_t one_ms  = 1000 * 1000;
504   const uint64_t one_us  = 1000;
505 
506   switch (time_unit) {
507     case kTimeUnitSecond:
508       return one_sec;
509     case kTimeUnitMillisecond:
510       return one_ms;
511     case kTimeUnitMicrosecond:
512       return one_us;
513     case kTimeUnitNanosecond:
514       return 1;
515   }
516   return 0;
517 }
518 
FormatDuration(uint64_t nano_duration,TimeUnit time_unit,size_t max_fraction_digits)519 std::string FormatDuration(uint64_t nano_duration, TimeUnit time_unit,
520                            size_t max_fraction_digits) {
521   const char* unit = nullptr;
522   uint64_t divisor = GetNsToTimeUnitDivisor(time_unit);
523   switch (time_unit) {
524     case kTimeUnitSecond:
525       unit = "s";
526       break;
527     case kTimeUnitMillisecond:
528       unit = "ms";
529       break;
530     case kTimeUnitMicrosecond:
531       unit = "us";
532       break;
533     case kTimeUnitNanosecond:
534       unit = "ns";
535       break;
536   }
537   const uint64_t whole_part = nano_duration / divisor;
538   uint64_t fractional_part = nano_duration % divisor;
539   if (fractional_part == 0) {
540     return StringPrintf("%" PRIu64 "%s", whole_part, unit);
541   } else {
542     static constexpr size_t kMaxDigits = 30;
543     size_t avail_digits = kMaxDigits;
544     char fraction_buffer[kMaxDigits];
545     char* ptr = fraction_buffer;
546     uint64_t multiplier = 10;
547     // This infinite loops if fractional part is 0.
548     while (avail_digits > 1 && fractional_part * multiplier < divisor) {
549       multiplier *= 10;
550       *ptr++ = '0';
551       avail_digits--;
552     }
553     snprintf(ptr, avail_digits, "%" PRIu64, fractional_part);
554     fraction_buffer[std::min(kMaxDigits - 1, max_fraction_digits)] = '\0';
555     return StringPrintf("%" PRIu64 ".%s%s", whole_part, fraction_buffer, unit);
556   }
557 }
558 
PrintableChar(uint16_t ch)559 std::string PrintableChar(uint16_t ch) {
560   std::string result;
561   result += '\'';
562   if (NeedsEscaping(ch)) {
563     StringAppendF(&result, "\\u%04x", ch);
564   } else {
565     result += ch;
566   }
567   result += '\'';
568   return result;
569 }
570 
PrintableString(const char * utf)571 std::string PrintableString(const char* utf) {
572   std::string result;
573   result += '"';
574   const char* p = utf;
575   size_t char_count = CountModifiedUtf8Chars(p);
576   for (size_t i = 0; i < char_count; ++i) {
577     uint16_t ch = GetUtf16FromUtf8(&p);
578     if (ch == '\\') {
579       result += "\\\\";
580     } else if (ch == '\n') {
581       result += "\\n";
582     } else if (ch == '\r') {
583       result += "\\r";
584     } else if (ch == '\t') {
585       result += "\\t";
586     } else if (NeedsEscaping(ch)) {
587       StringAppendF(&result, "\\u%04x", ch);
588     } else {
589       result += ch;
590     }
591   }
592   result += '"';
593   return result;
594 }
595 
596 // See http://java.sun.com/j2se/1.5.0/docs/guide/jni/spec/design.html#wp615 for the full rules.
MangleForJni(const std::string & s)597 std::string MangleForJni(const std::string& s) {
598   std::string result;
599   size_t char_count = CountModifiedUtf8Chars(s.c_str());
600   const char* cp = &s[0];
601   for (size_t i = 0; i < char_count; ++i) {
602     uint16_t ch = GetUtf16FromUtf8(&cp);
603     if ((ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || (ch >= '0' && ch <= '9')) {
604       result.push_back(ch);
605     } else if (ch == '.' || ch == '/') {
606       result += "_";
607     } else if (ch == '_') {
608       result += "_1";
609     } else if (ch == ';') {
610       result += "_2";
611     } else if (ch == '[') {
612       result += "_3";
613     } else {
614       StringAppendF(&result, "_0%04x", ch);
615     }
616   }
617   return result;
618 }
619 
DotToDescriptor(const char * class_name)620 std::string DotToDescriptor(const char* class_name) {
621   std::string descriptor(class_name);
622   std::replace(descriptor.begin(), descriptor.end(), '.', '/');
623   if (descriptor.length() > 0 && descriptor[0] != '[') {
624     descriptor = "L" + descriptor + ";";
625   }
626   return descriptor;
627 }
628 
DescriptorToDot(const char * descriptor)629 std::string DescriptorToDot(const char* descriptor) {
630   size_t length = strlen(descriptor);
631   if (length > 1) {
632     if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
633       // Descriptors have the leading 'L' and trailing ';' stripped.
634       std::string result(descriptor + 1, length - 2);
635       std::replace(result.begin(), result.end(), '/', '.');
636       return result;
637     } else {
638       // For arrays the 'L' and ';' remain intact.
639       std::string result(descriptor);
640       std::replace(result.begin(), result.end(), '/', '.');
641       return result;
642     }
643   }
644   // Do nothing for non-class/array descriptors.
645   return descriptor;
646 }
647 
DescriptorToName(const char * descriptor)648 std::string DescriptorToName(const char* descriptor) {
649   size_t length = strlen(descriptor);
650   if (descriptor[0] == 'L' && descriptor[length - 1] == ';') {
651     std::string result(descriptor + 1, length - 2);
652     return result;
653   }
654   return descriptor;
655 }
656 
JniShortName(mirror::ArtMethod * m)657 std::string JniShortName(mirror::ArtMethod* m) {
658   std::string class_name(m->GetDeclaringClassDescriptor());
659   // Remove the leading 'L' and trailing ';'...
660   CHECK_EQ(class_name[0], 'L') << class_name;
661   CHECK_EQ(class_name[class_name.size() - 1], ';') << class_name;
662   class_name.erase(0, 1);
663   class_name.erase(class_name.size() - 1, 1);
664 
665   std::string method_name(m->GetName());
666 
667   std::string short_name;
668   short_name += "Java_";
669   short_name += MangleForJni(class_name);
670   short_name += "_";
671   short_name += MangleForJni(method_name);
672   return short_name;
673 }
674 
JniLongName(mirror::ArtMethod * m)675 std::string JniLongName(mirror::ArtMethod* m) {
676   std::string long_name;
677   long_name += JniShortName(m);
678   long_name += "__";
679 
680   std::string signature(m->GetSignature().ToString());
681   signature.erase(0, 1);
682   signature.erase(signature.begin() + signature.find(')'), signature.end());
683 
684   long_name += MangleForJni(signature);
685 
686   return long_name;
687 }
688 
689 // Helper for IsValidPartOfMemberNameUtf8(), a bit vector indicating valid low ascii.
690 uint32_t DEX_MEMBER_VALID_LOW_ASCII[4] = {
691   0x00000000,  // 00..1f low control characters; nothing valid
692   0x03ff2010,  // 20..3f digits and symbols; valid: '0'..'9', '$', '-'
693   0x87fffffe,  // 40..5f uppercase etc.; valid: 'A'..'Z', '_'
694   0x07fffffe   // 60..7f lowercase etc.; valid: 'a'..'z'
695 };
696 
697 // Helper for IsValidPartOfMemberNameUtf8(); do not call directly.
IsValidPartOfMemberNameUtf8Slow(const char ** pUtf8Ptr)698 bool IsValidPartOfMemberNameUtf8Slow(const char** pUtf8Ptr) {
699   /*
700    * It's a multibyte encoded character. Decode it and analyze. We
701    * accept anything that isn't (a) an improperly encoded low value,
702    * (b) an improper surrogate pair, (c) an encoded '\0', (d) a high
703    * control character, or (e) a high space, layout, or special
704    * character (U+00a0, U+2000..U+200f, U+2028..U+202f,
705    * U+fff0..U+ffff). This is all specified in the dex format
706    * document.
707    */
708 
709   uint16_t utf16 = GetUtf16FromUtf8(pUtf8Ptr);
710 
711   // Perform follow-up tests based on the high 8 bits.
712   switch (utf16 >> 8) {
713   case 0x00:
714     // It's only valid if it's above the ISO-8859-1 high space (0xa0).
715     return (utf16 > 0x00a0);
716   case 0xd8:
717   case 0xd9:
718   case 0xda:
719   case 0xdb:
720     // It's a leading surrogate. Check to see that a trailing
721     // surrogate follows.
722     utf16 = GetUtf16FromUtf8(pUtf8Ptr);
723     return (utf16 >= 0xdc00) && (utf16 <= 0xdfff);
724   case 0xdc:
725   case 0xdd:
726   case 0xde:
727   case 0xdf:
728     // It's a trailing surrogate, which is not valid at this point.
729     return false;
730   case 0x20:
731   case 0xff:
732     // It's in the range that has spaces, controls, and specials.
733     switch (utf16 & 0xfff8) {
734     case 0x2000:
735     case 0x2008:
736     case 0x2028:
737     case 0xfff0:
738     case 0xfff8:
739       return false;
740     }
741     break;
742   }
743   return true;
744 }
745 
746 /* Return whether the pointed-at modified-UTF-8 encoded character is
747  * valid as part of a member name, updating the pointer to point past
748  * the consumed character. This will consume two encoded UTF-16 code
749  * points if the character is encoded as a surrogate pair. Also, if
750  * this function returns false, then the given pointer may only have
751  * been partially advanced.
752  */
IsValidPartOfMemberNameUtf8(const char ** pUtf8Ptr)753 static bool IsValidPartOfMemberNameUtf8(const char** pUtf8Ptr) {
754   uint8_t c = (uint8_t) **pUtf8Ptr;
755   if (LIKELY(c <= 0x7f)) {
756     // It's low-ascii, so check the table.
757     uint32_t wordIdx = c >> 5;
758     uint32_t bitIdx = c & 0x1f;
759     (*pUtf8Ptr)++;
760     return (DEX_MEMBER_VALID_LOW_ASCII[wordIdx] & (1 << bitIdx)) != 0;
761   }
762 
763   // It's a multibyte encoded character. Call a non-inline function
764   // for the heavy lifting.
765   return IsValidPartOfMemberNameUtf8Slow(pUtf8Ptr);
766 }
767 
IsValidMemberName(const char * s)768 bool IsValidMemberName(const char* s) {
769   bool angle_name = false;
770 
771   switch (*s) {
772     case '\0':
773       // The empty string is not a valid name.
774       return false;
775     case '<':
776       angle_name = true;
777       s++;
778       break;
779   }
780 
781   while (true) {
782     switch (*s) {
783       case '\0':
784         return !angle_name;
785       case '>':
786         return angle_name && s[1] == '\0';
787     }
788 
789     if (!IsValidPartOfMemberNameUtf8(&s)) {
790       return false;
791     }
792   }
793 }
794 
795 enum ClassNameType { kName, kDescriptor };
IsValidClassName(const char * s,ClassNameType type,char separator)796 static bool IsValidClassName(const char* s, ClassNameType type, char separator) {
797   int arrayCount = 0;
798   while (*s == '[') {
799     arrayCount++;
800     s++;
801   }
802 
803   if (arrayCount > 255) {
804     // Arrays may have no more than 255 dimensions.
805     return false;
806   }
807 
808   if (arrayCount != 0) {
809     /*
810      * If we're looking at an array of some sort, then it doesn't
811      * matter if what is being asked for is a class name; the
812      * format looks the same as a type descriptor in that case, so
813      * treat it as such.
814      */
815     type = kDescriptor;
816   }
817 
818   if (type == kDescriptor) {
819     /*
820      * We are looking for a descriptor. Either validate it as a
821      * single-character primitive type, or continue on to check the
822      * embedded class name (bracketed by "L" and ";").
823      */
824     switch (*(s++)) {
825     case 'B':
826     case 'C':
827     case 'D':
828     case 'F':
829     case 'I':
830     case 'J':
831     case 'S':
832     case 'Z':
833       // These are all single-character descriptors for primitive types.
834       return (*s == '\0');
835     case 'V':
836       // Non-array void is valid, but you can't have an array of void.
837       return (arrayCount == 0) && (*s == '\0');
838     case 'L':
839       // Class name: Break out and continue below.
840       break;
841     default:
842       // Oddball descriptor character.
843       return false;
844     }
845   }
846 
847   /*
848    * We just consumed the 'L' that introduces a class name as part
849    * of a type descriptor, or we are looking for an unadorned class
850    * name.
851    */
852 
853   bool sepOrFirst = true;  // first character or just encountered a separator.
854   for (;;) {
855     uint8_t c = (uint8_t) *s;
856     switch (c) {
857     case '\0':
858       /*
859        * Premature end for a type descriptor, but valid for
860        * a class name as long as we haven't encountered an
861        * empty component (including the degenerate case of
862        * the empty string "").
863        */
864       return (type == kName) && !sepOrFirst;
865     case ';':
866       /*
867        * Invalid character for a class name, but the
868        * legitimate end of a type descriptor. In the latter
869        * case, make sure that this is the end of the string
870        * and that it doesn't end with an empty component
871        * (including the degenerate case of "L;").
872        */
873       return (type == kDescriptor) && !sepOrFirst && (s[1] == '\0');
874     case '/':
875     case '.':
876       if (c != separator) {
877         // The wrong separator character.
878         return false;
879       }
880       if (sepOrFirst) {
881         // Separator at start or two separators in a row.
882         return false;
883       }
884       sepOrFirst = true;
885       s++;
886       break;
887     default:
888       if (!IsValidPartOfMemberNameUtf8(&s)) {
889         return false;
890       }
891       sepOrFirst = false;
892       break;
893     }
894   }
895 }
896 
IsValidBinaryClassName(const char * s)897 bool IsValidBinaryClassName(const char* s) {
898   return IsValidClassName(s, kName, '.');
899 }
900 
IsValidJniClassName(const char * s)901 bool IsValidJniClassName(const char* s) {
902   return IsValidClassName(s, kName, '/');
903 }
904 
IsValidDescriptor(const char * s)905 bool IsValidDescriptor(const char* s) {
906   return IsValidClassName(s, kDescriptor, '/');
907 }
908 
Split(const std::string & s,char separator,std::vector<std::string> & result)909 void Split(const std::string& s, char separator, std::vector<std::string>& result) {
910   const char* p = s.data();
911   const char* end = p + s.size();
912   while (p != end) {
913     if (*p == separator) {
914       ++p;
915     } else {
916       const char* start = p;
917       while (++p != end && *p != separator) {
918         // Skip to the next occurrence of the separator.
919       }
920       result.push_back(std::string(start, p - start));
921     }
922   }
923 }
924 
Trim(std::string s)925 std::string Trim(std::string s) {
926   std::string result;
927   unsigned int start_index = 0;
928   unsigned int end_index = s.size() - 1;
929 
930   // Skip initial whitespace.
931   while (start_index < s.size()) {
932     if (!isspace(s[start_index])) {
933       break;
934     }
935     start_index++;
936   }
937 
938   // Skip terminating whitespace.
939   while (end_index >= start_index) {
940     if (!isspace(s[end_index])) {
941       break;
942     }
943     end_index--;
944   }
945 
946   // All spaces, no beef.
947   if (end_index < start_index) {
948     return "";
949   }
950   // Start_index is the first non-space, end_index is the last one.
951   return s.substr(start_index, end_index - start_index + 1);
952 }
953 
954 template <typename StringT>
Join(std::vector<StringT> & strings,char separator)955 std::string Join(std::vector<StringT>& strings, char separator) {
956   if (strings.empty()) {
957     return "";
958   }
959 
960   std::string result(strings[0]);
961   for (size_t i = 1; i < strings.size(); ++i) {
962     result += separator;
963     result += strings[i];
964   }
965   return result;
966 }
967 
968 // Explicit instantiations.
969 template std::string Join<std::string>(std::vector<std::string>& strings, char separator);
970 template std::string Join<const char*>(std::vector<const char*>& strings, char separator);
971 template std::string Join<char*>(std::vector<char*>& strings, char separator);
972 
StartsWith(const std::string & s,const char * prefix)973 bool StartsWith(const std::string& s, const char* prefix) {
974   return s.compare(0, strlen(prefix), prefix) == 0;
975 }
976 
EndsWith(const std::string & s,const char * suffix)977 bool EndsWith(const std::string& s, const char* suffix) {
978   size_t suffix_length = strlen(suffix);
979   size_t string_length = s.size();
980   if (suffix_length > string_length) {
981     return false;
982   }
983   size_t offset = string_length - suffix_length;
984   return s.compare(offset, suffix_length, suffix) == 0;
985 }
986 
SetThreadName(const char * thread_name)987 void SetThreadName(const char* thread_name) {
988   int hasAt = 0;
989   int hasDot = 0;
990   const char* s = thread_name;
991   while (*s) {
992     if (*s == '.') {
993       hasDot = 1;
994     } else if (*s == '@') {
995       hasAt = 1;
996     }
997     s++;
998   }
999   int len = s - thread_name;
1000   if (len < 15 || hasAt || !hasDot) {
1001     s = thread_name;
1002   } else {
1003     s = thread_name + len - 15;
1004   }
1005 #if defined(HAVE_ANDROID_PTHREAD_SETNAME_NP)
1006   // pthread_setname_np fails rather than truncating long strings.
1007   char buf[16];       // MAX_TASK_COMM_LEN=16 is hard-coded into bionic
1008   strncpy(buf, s, sizeof(buf)-1);
1009   buf[sizeof(buf)-1] = '\0';
1010   errno = pthread_setname_np(pthread_self(), buf);
1011   if (errno != 0) {
1012     PLOG(WARNING) << "Unable to set the name of current thread to '" << buf << "'";
1013   }
1014 #elif defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED >= 1060
1015   pthread_setname_np(thread_name);
1016 #elif defined(HAVE_PRCTL)
1017   prctl(PR_SET_NAME, (unsigned long) s, 0, 0, 0);  // NOLINT (unsigned long)
1018 #else
1019   UNIMPLEMENTED(WARNING) << thread_name;
1020 #endif
1021 }
1022 
GetTaskStats(pid_t tid,char * state,int * utime,int * stime,int * task_cpu)1023 void GetTaskStats(pid_t tid, char* state, int* utime, int* stime, int* task_cpu) {
1024   *utime = *stime = *task_cpu = 0;
1025   std::string stats;
1026   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/stat", tid), &stats)) {
1027     return;
1028   }
1029   // Skip the command, which may contain spaces.
1030   stats = stats.substr(stats.find(')') + 2);
1031   // Extract the three fields we care about.
1032   std::vector<std::string> fields;
1033   Split(stats, ' ', fields);
1034   *state = fields[0][0];
1035   *utime = strtoull(fields[11].c_str(), NULL, 10);
1036   *stime = strtoull(fields[12].c_str(), NULL, 10);
1037   *task_cpu = strtoull(fields[36].c_str(), NULL, 10);
1038 }
1039 
GetSchedulerGroupName(pid_t tid)1040 std::string GetSchedulerGroupName(pid_t tid) {
1041   // /proc/<pid>/cgroup looks like this:
1042   // 2:devices:/
1043   // 1:cpuacct,cpu:/
1044   // We want the third field from the line whose second field contains the "cpu" token.
1045   std::string cgroup_file;
1046   if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
1047     return "";
1048   }
1049   std::vector<std::string> cgroup_lines;
1050   Split(cgroup_file, '\n', cgroup_lines);
1051   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1052     std::vector<std::string> cgroup_fields;
1053     Split(cgroup_lines[i], ':', cgroup_fields);
1054     std::vector<std::string> cgroups;
1055     Split(cgroup_fields[1], ',', cgroups);
1056     for (size_t i = 0; i < cgroups.size(); ++i) {
1057       if (cgroups[i] == "cpu") {
1058         return cgroup_fields[2].substr(1);  // Skip the leading slash.
1059       }
1060     }
1061   }
1062   return "";
1063 }
1064 
DumpNativeStack(std::ostream & os,pid_t tid,const char * prefix,mirror::ArtMethod * current_method)1065 void DumpNativeStack(std::ostream& os, pid_t tid, const char* prefix,
1066     mirror::ArtMethod* current_method) {
1067   // We may be called from contexts where current_method is not null, so we must assert this.
1068   if (current_method != nullptr) {
1069     Locks::mutator_lock_->AssertSharedHeld(Thread::Current());
1070   }
1071 #ifdef __linux__
1072   std::unique_ptr<Backtrace> backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid));
1073   if (!backtrace->Unwind(0)) {
1074     os << prefix << "(backtrace::Unwind failed for thread " << tid << ")\n";
1075     return;
1076   } else if (backtrace->NumFrames() == 0) {
1077     os << prefix << "(no native stack frames for thread " << tid << ")\n";
1078     return;
1079   }
1080 
1081   for (Backtrace::const_iterator it = backtrace->begin();
1082        it != backtrace->end(); ++it) {
1083     // We produce output like this:
1084     // ]    #00 pc 000075bb8  /system/lib/libc.so (unwind_backtrace_thread+536)
1085     // In order for parsing tools to continue to function, the stack dump
1086     // format must at least adhere to this format:
1087     //  #XX pc <RELATIVE_ADDR>  <FULL_PATH_TO_SHARED_LIBRARY> ...
1088     // The parsers require a single space before and after pc, and two spaces
1089     // after the <RELATIVE_ADDR>. There can be any prefix data before the
1090     // #XX. <RELATIVE_ADDR> has to be a hex number but with no 0x prefix.
1091     os << prefix << StringPrintf("#%02zu pc ", it->num);
1092     if (!it->map) {
1093       os << StringPrintf("%08" PRIxPTR "  ???", it->pc);
1094     } else {
1095       os << StringPrintf("%08" PRIxPTR "  ", it->pc - it->map->start)
1096          << it->map->name << " (";
1097       if (!it->func_name.empty()) {
1098         os << it->func_name;
1099         if (it->func_offset != 0) {
1100           os << "+" << it->func_offset;
1101         }
1102       } else if (current_method != nullptr && current_method->IsWithinQuickCode(it->pc)) {
1103         const void* start_of_code = current_method->GetEntryPointFromQuickCompiledCode();
1104         os << JniLongName(current_method) << "+"
1105            << (it->pc - reinterpret_cast<uintptr_t>(start_of_code));
1106       } else {
1107         os << "???";
1108       }
1109       os << ")";
1110     }
1111     os << "\n";
1112   }
1113 #endif
1114 }
1115 
1116 #if defined(__APPLE__)
1117 
1118 // TODO: is there any way to get the kernel stack on Mac OS?
DumpKernelStack(std::ostream &,pid_t,const char *,bool)1119 void DumpKernelStack(std::ostream&, pid_t, const char*, bool) {}
1120 
1121 #else
1122 
DumpKernelStack(std::ostream & os,pid_t tid,const char * prefix,bool include_count)1123 void DumpKernelStack(std::ostream& os, pid_t tid, const char* prefix, bool include_count) {
1124   if (tid == GetTid()) {
1125     // There's no point showing that we're reading our stack out of /proc!
1126     return;
1127   }
1128 
1129   std::string kernel_stack_filename(StringPrintf("/proc/self/task/%d/stack", tid));
1130   std::string kernel_stack;
1131   if (!ReadFileToString(kernel_stack_filename, &kernel_stack)) {
1132     os << prefix << "(couldn't read " << kernel_stack_filename << ")\n";
1133     return;
1134   }
1135 
1136   std::vector<std::string> kernel_stack_frames;
1137   Split(kernel_stack, '\n', kernel_stack_frames);
1138   // We skip the last stack frame because it's always equivalent to "[<ffffffff>] 0xffffffff",
1139   // which looking at the source appears to be the kernel's way of saying "that's all, folks!".
1140   kernel_stack_frames.pop_back();
1141   for (size_t i = 0; i < kernel_stack_frames.size(); ++i) {
1142     // Turn "[<ffffffff8109156d>] futex_wait_queue_me+0xcd/0x110"
1143     // into "futex_wait_queue_me+0xcd/0x110".
1144     const char* text = kernel_stack_frames[i].c_str();
1145     const char* close_bracket = strchr(text, ']');
1146     if (close_bracket != NULL) {
1147       text = close_bracket + 2;
1148     }
1149     os << prefix;
1150     if (include_count) {
1151       os << StringPrintf("#%02zd ", i);
1152     }
1153     os << text << "\n";
1154   }
1155 }
1156 
1157 #endif
1158 
GetAndroidRoot()1159 const char* GetAndroidRoot() {
1160   const char* android_root = getenv("ANDROID_ROOT");
1161   if (android_root == NULL) {
1162     if (OS::DirectoryExists("/system")) {
1163       android_root = "/system";
1164     } else {
1165       LOG(FATAL) << "ANDROID_ROOT not set and /system does not exist";
1166       return "";
1167     }
1168   }
1169   if (!OS::DirectoryExists(android_root)) {
1170     LOG(FATAL) << "Failed to find ANDROID_ROOT directory " << android_root;
1171     return "";
1172   }
1173   return android_root;
1174 }
1175 
GetAndroidData()1176 const char* GetAndroidData() {
1177   std::string error_msg;
1178   const char* dir = GetAndroidDataSafe(&error_msg);
1179   if (dir != nullptr) {
1180     return dir;
1181   } else {
1182     LOG(FATAL) << error_msg;
1183     return "";
1184   }
1185 }
1186 
GetAndroidDataSafe(std::string * error_msg)1187 const char* GetAndroidDataSafe(std::string* error_msg) {
1188   const char* android_data = getenv("ANDROID_DATA");
1189   if (android_data == NULL) {
1190     if (OS::DirectoryExists("/data")) {
1191       android_data = "/data";
1192     } else {
1193       *error_msg = "ANDROID_DATA not set and /data does not exist";
1194       return nullptr;
1195     }
1196   }
1197   if (!OS::DirectoryExists(android_data)) {
1198     *error_msg = StringPrintf("Failed to find ANDROID_DATA directory %s", android_data);
1199     return nullptr;
1200   }
1201   return android_data;
1202 }
1203 
GetDalvikCache(const char * subdir,const bool create_if_absent,std::string * dalvik_cache,bool * have_android_data,bool * dalvik_cache_exists,bool * is_global_cache)1204 void GetDalvikCache(const char* subdir, const bool create_if_absent, std::string* dalvik_cache,
1205                     bool* have_android_data, bool* dalvik_cache_exists, bool* is_global_cache) {
1206   CHECK(subdir != nullptr);
1207   std::string error_msg;
1208   const char* android_data = GetAndroidDataSafe(&error_msg);
1209   if (android_data == nullptr) {
1210     *have_android_data = false;
1211     *dalvik_cache_exists = false;
1212     *is_global_cache = false;
1213     return;
1214   } else {
1215     *have_android_data = true;
1216   }
1217   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
1218   *dalvik_cache = dalvik_cache_root + subdir;
1219   *dalvik_cache_exists = OS::DirectoryExists(dalvik_cache->c_str());
1220   *is_global_cache = strcmp(android_data, "/data") == 0;
1221   if (create_if_absent && !*dalvik_cache_exists && !*is_global_cache) {
1222     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
1223     *dalvik_cache_exists = ((mkdir(dalvik_cache_root.c_str(), 0700) == 0 || errno == EEXIST) &&
1224                             (mkdir(dalvik_cache->c_str(), 0700) == 0 || errno == EEXIST));
1225   }
1226 }
1227 
GetDalvikCacheOrDie(const char * subdir,const bool create_if_absent)1228 std::string GetDalvikCacheOrDie(const char* subdir, const bool create_if_absent) {
1229   CHECK(subdir != nullptr);
1230   const char* android_data = GetAndroidData();
1231   const std::string dalvik_cache_root(StringPrintf("%s/dalvik-cache/", android_data));
1232   const std::string dalvik_cache = dalvik_cache_root + subdir;
1233   if (create_if_absent && !OS::DirectoryExists(dalvik_cache.c_str())) {
1234     // Don't create the system's /data/dalvik-cache/... because it needs special permissions.
1235     if (strcmp(android_data, "/data") != 0) {
1236       int result = mkdir(dalvik_cache_root.c_str(), 0700);
1237       if (result != 0 && errno != EEXIST) {
1238         PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache_root;
1239         return "";
1240       }
1241       result = mkdir(dalvik_cache.c_str(), 0700);
1242       if (result != 0) {
1243         PLOG(FATAL) << "Failed to create dalvik-cache directory " << dalvik_cache;
1244         return "";
1245       }
1246     } else {
1247       LOG(FATAL) << "Failed to find dalvik-cache directory " << dalvik_cache;
1248       return "";
1249     }
1250   }
1251   return dalvik_cache;
1252 }
1253 
GetDalvikCacheFilename(const char * location,const char * cache_location,std::string * filename,std::string * error_msg)1254 bool GetDalvikCacheFilename(const char* location, const char* cache_location,
1255                             std::string* filename, std::string* error_msg) {
1256   if (location[0] != '/') {
1257     *error_msg = StringPrintf("Expected path in location to be absolute: %s", location);
1258     return false;
1259   }
1260   std::string cache_file(&location[1]);  // skip leading slash
1261   if (!EndsWith(location, ".dex") && !EndsWith(location, ".art") && !EndsWith(location, ".oat")) {
1262     cache_file += "/";
1263     cache_file += DexFile::kClassesDex;
1264   }
1265   std::replace(cache_file.begin(), cache_file.end(), '/', '@');
1266   *filename = StringPrintf("%s/%s", cache_location, cache_file.c_str());
1267   return true;
1268 }
1269 
GetDalvikCacheFilenameOrDie(const char * location,const char * cache_location)1270 std::string GetDalvikCacheFilenameOrDie(const char* location, const char* cache_location) {
1271   std::string ret;
1272   std::string error_msg;
1273   if (!GetDalvikCacheFilename(location, cache_location, &ret, &error_msg)) {
1274     LOG(FATAL) << error_msg;
1275   }
1276   return ret;
1277 }
1278 
InsertIsaDirectory(const InstructionSet isa,std::string * filename)1279 static void InsertIsaDirectory(const InstructionSet isa, std::string* filename) {
1280   // in = /foo/bar/baz
1281   // out = /foo/bar/<isa>/baz
1282   size_t pos = filename->rfind('/');
1283   CHECK_NE(pos, std::string::npos) << *filename << " " << isa;
1284   filename->insert(pos, "/", 1);
1285   filename->insert(pos + 1, GetInstructionSetString(isa));
1286 }
1287 
GetSystemImageFilename(const char * location,const InstructionSet isa)1288 std::string GetSystemImageFilename(const char* location, const InstructionSet isa) {
1289   // location = /system/framework/boot.art
1290   // filename = /system/framework/<isa>/boot.art
1291   std::string filename(location);
1292   InsertIsaDirectory(isa, &filename);
1293   return filename;
1294 }
1295 
DexFilenameToOdexFilename(const std::string & location,const InstructionSet isa)1296 std::string DexFilenameToOdexFilename(const std::string& location, const InstructionSet isa) {
1297   // location = /foo/bar/baz.jar
1298   // odex_location = /foo/bar/<isa>/baz.odex
1299 
1300   CHECK_GE(location.size(), 4U) << location;  // must be at least .123
1301   std::string odex_location(location);
1302   InsertIsaDirectory(isa, &odex_location);
1303   size_t dot_index = odex_location.size() - 3 - 1;  // 3=dex or zip or apk
1304   CHECK_EQ('.', odex_location[dot_index]) << location;
1305   odex_location.resize(dot_index + 1);
1306   CHECK_EQ('.', odex_location[odex_location.size()-1]) << location << " " << odex_location;
1307   odex_location += "odex";
1308   return odex_location;
1309 }
1310 
IsZipMagic(uint32_t magic)1311 bool IsZipMagic(uint32_t magic) {
1312   return (('P' == ((magic >> 0) & 0xff)) &&
1313           ('K' == ((magic >> 8) & 0xff)));
1314 }
1315 
IsDexMagic(uint32_t magic)1316 bool IsDexMagic(uint32_t magic) {
1317   return DexFile::IsMagicValid(reinterpret_cast<const byte*>(&magic));
1318 }
1319 
IsOatMagic(uint32_t magic)1320 bool IsOatMagic(uint32_t magic) {
1321   return (memcmp(reinterpret_cast<const byte*>(magic),
1322                  OatHeader::kOatMagic,
1323                  sizeof(OatHeader::kOatMagic)) == 0);
1324 }
1325 
Exec(std::vector<std::string> & arg_vector,std::string * error_msg)1326 bool Exec(std::vector<std::string>& arg_vector, std::string* error_msg) {
1327   const std::string command_line(Join(arg_vector, ' '));
1328 
1329   CHECK_GE(arg_vector.size(), 1U) << command_line;
1330 
1331   // Convert the args to char pointers.
1332   const char* program = arg_vector[0].c_str();
1333   std::vector<char*> args;
1334   for (size_t i = 0; i < arg_vector.size(); ++i) {
1335     const std::string& arg = arg_vector[i];
1336     char* arg_str = const_cast<char*>(arg.c_str());
1337     CHECK(arg_str != nullptr) << i;
1338     args.push_back(arg_str);
1339   }
1340   args.push_back(NULL);
1341 
1342   // fork and exec
1343   pid_t pid = fork();
1344   if (pid == 0) {
1345     // no allocation allowed between fork and exec
1346 
1347     // change process groups, so we don't get reaped by ProcessManager
1348     setpgid(0, 0);
1349 
1350     execv(program, &args[0]);
1351 
1352     PLOG(ERROR) << "Failed to execv(" << command_line << ")";
1353     exit(1);
1354   } else {
1355     if (pid == -1) {
1356       *error_msg = StringPrintf("Failed to execv(%s) because fork failed: %s",
1357                                 command_line.c_str(), strerror(errno));
1358       return false;
1359     }
1360 
1361     // wait for subprocess to finish
1362     int status;
1363     pid_t got_pid = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
1364     if (got_pid != pid) {
1365       *error_msg = StringPrintf("Failed after fork for execv(%s) because waitpid failed: "
1366                                 "wanted %d, got %d: %s",
1367                                 command_line.c_str(), pid, got_pid, strerror(errno));
1368       return false;
1369     }
1370     if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
1371       *error_msg = StringPrintf("Failed execv(%s) because non-0 exit status",
1372                                 command_line.c_str());
1373       return false;
1374     }
1375   }
1376   return true;
1377 }
1378 
PrettyDescriptor(Primitive::Type type)1379 std::string PrettyDescriptor(Primitive::Type type) {
1380   return PrettyDescriptor(Primitive::Descriptor(type));
1381 }
1382 
1383 }  // namespace art
1384