• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 
18 #define ATRACE_TAG ATRACE_TAG_DALVIK
19 #include <stdio.h>
20 #include <cutils/trace.h>
21 
22 #include "timing_logger.h"
23 
24 #include "base/logging.h"
25 #include "thread-inl.h"
26 #include "base/stl_util.h"
27 #include "base/histogram-inl.h"
28 
29 #include <cmath>
30 #include <iomanip>
31 
32 namespace art {
33 
34 constexpr size_t CumulativeLogger::kLowMemoryBucketCount;
35 constexpr size_t CumulativeLogger::kDefaultBucketCount;
36 constexpr size_t TimingLogger::kIndexNotFound;
37 
CumulativeLogger(const std::string & name)38 CumulativeLogger::CumulativeLogger(const std::string& name)
39     : name_(name),
40       lock_name_("CumulativeLoggerLock" + name),
41       lock_(lock_name_.c_str(), kDefaultMutexLevel, true) {
42   Reset();
43 }
44 
~CumulativeLogger()45 CumulativeLogger::~CumulativeLogger() {
46   STLDeleteElements(&histograms_);
47 }
48 
SetName(const std::string & name)49 void CumulativeLogger::SetName(const std::string& name) {
50   MutexLock mu(Thread::Current(), lock_);
51   name_.assign(name);
52 }
53 
Start()54 void CumulativeLogger::Start() {
55 }
56 
End()57 void CumulativeLogger::End() {
58   MutexLock mu(Thread::Current(), lock_);
59   ++iterations_;
60 }
61 
Reset()62 void CumulativeLogger::Reset() {
63   MutexLock mu(Thread::Current(), lock_);
64   iterations_ = 0;
65   total_time_ = 0;
66   STLDeleteElements(&histograms_);
67 }
68 
AddLogger(const TimingLogger & logger)69 void CumulativeLogger::AddLogger(const TimingLogger &logger) {
70   MutexLock mu(Thread::Current(), lock_);
71   TimingLogger::TimingData timing_data(logger.CalculateTimingData());
72   const std::vector<TimingLogger::Timing>& timings = logger.GetTimings();
73   for (size_t i = 0; i < timings.size(); ++i) {
74     if (timings[i].IsStartTiming()) {
75       AddPair(timings[i].GetName(), timing_data.GetExclusiveTime(i));
76     }
77   }
78   ++iterations_;
79 }
80 
GetIterations() const81 size_t CumulativeLogger::GetIterations() const {
82   MutexLock mu(Thread::Current(), lock_);
83   return iterations_;
84 }
85 
Dump(std::ostream & os) const86 void CumulativeLogger::Dump(std::ostream &os) const {
87   MutexLock mu(Thread::Current(), lock_);
88   DumpHistogram(os);
89 }
90 
AddPair(const std::string & label,uint64_t delta_time)91 void CumulativeLogger::AddPair(const std::string& label, uint64_t delta_time) {
92   // Convert delta time to microseconds so that we don't overflow our counters.
93   delta_time /= kAdjust;
94   total_time_ += delta_time;
95   Histogram<uint64_t>* histogram;
96   Histogram<uint64_t> dummy(label.c_str());
97   auto it = histograms_.find(&dummy);
98   if (it == histograms_.end()) {
99     const size_t max_buckets = Runtime::Current()->GetHeap()->IsLowMemoryMode() ?
100         kLowMemoryBucketCount : kDefaultBucketCount;
101     histogram = new Histogram<uint64_t>(label.c_str(), kInitialBucketSize, max_buckets);
102     histograms_.insert(histogram);
103   } else {
104     histogram = *it;
105   }
106   histogram->AddValue(delta_time);
107 }
108 
109 class CompareHistorgramByTimeSpentDeclining {
110  public:
operator ()(const Histogram<uint64_t> * a,const Histogram<uint64_t> * b) const111   bool operator()(const Histogram<uint64_t>* a, const Histogram<uint64_t>* b) const {
112     return a->Sum() > b->Sum();
113   }
114 };
115 
DumpHistogram(std::ostream & os) const116 void CumulativeLogger::DumpHistogram(std::ostream &os) const {
117   os << "Start Dumping histograms for " << iterations_ << " iterations"
118      << " for " << name_ << "\n";
119   std::set<Histogram<uint64_t>*, CompareHistorgramByTimeSpentDeclining>
120       sorted_histograms(histograms_.begin(), histograms_.end());
121   for (Histogram<uint64_t>* histogram : sorted_histograms) {
122     Histogram<uint64_t>::CumulativeData cumulative_data;
123     // We don't expect DumpHistogram to be called often, so it is not performance critical.
124     histogram->CreateHistogram(&cumulative_data);
125     histogram->PrintConfidenceIntervals(os, 0.99, cumulative_data);
126   }
127   os << "Done Dumping histograms \n";
128 }
129 
TimingLogger(const char * name,bool precise,bool verbose)130 TimingLogger::TimingLogger(const char* name, bool precise, bool verbose)
131     : name_(name), precise_(precise), verbose_(verbose) {
132 }
133 
Reset()134 void TimingLogger::Reset() {
135   timings_.clear();
136 }
137 
StartTiming(const char * label)138 void TimingLogger::StartTiming(const char* label) {
139   DCHECK(label != nullptr);
140   timings_.push_back(Timing(NanoTime(), label));
141   ATRACE_BEGIN(label);
142 }
143 
EndTiming()144 void TimingLogger::EndTiming() {
145   timings_.push_back(Timing(NanoTime(), nullptr));
146   ATRACE_END();
147 }
148 
GetTotalNs() const149 uint64_t TimingLogger::GetTotalNs() const {
150   if (timings_.size() < 2) {
151     return 0;
152   }
153   return timings_.back().GetTime() - timings_.front().GetTime();
154 }
155 
FindTimingIndex(const char * name,size_t start_idx) const156 size_t TimingLogger::FindTimingIndex(const char* name, size_t start_idx) const {
157   DCHECK_LT(start_idx, timings_.size());
158   for (size_t i = start_idx; i < timings_.size(); ++i) {
159     if (timings_[i].IsStartTiming() && strcmp(timings_[i].GetName(), name) == 0) {
160       return i;
161     }
162   }
163   return kIndexNotFound;
164 }
165 
CalculateTimingData() const166 TimingLogger::TimingData TimingLogger::CalculateTimingData() const {
167   TimingLogger::TimingData ret;
168   ret.data_.resize(timings_.size());
169   std::vector<size_t> open_stack;
170   for (size_t i = 0; i < timings_.size(); ++i) {
171     if (timings_[i].IsEndTiming()) {
172       CHECK(!open_stack.empty()) << "No starting split for ending split at index " << i;
173       size_t open_idx = open_stack.back();
174       uint64_t time = timings_[i].GetTime() - timings_[open_idx].GetTime();
175       ret.data_[open_idx].exclusive_time += time;
176       DCHECK_EQ(ret.data_[open_idx].total_time, 0U);
177       ret.data_[open_idx].total_time += time;
178       // Each open split has exactly one end.
179       open_stack.pop_back();
180       // If there is a parent node, subtract from the exclusive time.
181       if (!open_stack.empty()) {
182         // Note this may go negative, but will work due to 2s complement when we add the value
183         // total time value later.
184         ret.data_[open_stack.back()].exclusive_time -= time;
185       }
186     } else {
187       open_stack.push_back(i);
188     }
189   }
190   CHECK(open_stack.empty()) << "Missing ending for timing "
191       << timings_[open_stack.back()].GetName() << " at index " << open_stack.back();
192   return ret;  // No need to fear, C++11 move semantics are here.
193 }
194 
Dump(std::ostream & os,const char * indent_string) const195 void TimingLogger::Dump(std::ostream &os, const char* indent_string) const {
196   static constexpr size_t kFractionalDigits = 3;
197   TimingLogger::TimingData timing_data(CalculateTimingData());
198   uint64_t longest_split = 0;
199   for (size_t i = 0; i < timings_.size(); ++i) {
200     longest_split = std::max(longest_split, timing_data.GetTotalTime(i));
201   }
202   // Compute which type of unit we will use for printing the timings.
203   TimeUnit tu = GetAppropriateTimeUnit(longest_split);
204   uint64_t divisor = GetNsToTimeUnitDivisor(tu);
205   uint64_t mod_fraction = divisor >= 1000 ? divisor / 1000 : 1;
206   // Print formatted splits.
207   size_t tab_count = 1;
208   os << name_ << " [Exclusive time] [Total time]\n";
209   for (size_t i = 0; i < timings_.size(); ++i) {
210     if (timings_[i].IsStartTiming()) {
211       uint64_t exclusive_time = timing_data.GetExclusiveTime(i);
212       uint64_t total_time = timing_data.GetTotalTime(i);
213       if (!precise_) {
214         // Make the fractional part 0.
215         exclusive_time -= exclusive_time % mod_fraction;
216         total_time -= total_time % mod_fraction;
217       }
218       for (size_t j = 0; j < tab_count; ++j) {
219         os << indent_string;
220       }
221       os << FormatDuration(exclusive_time, tu, kFractionalDigits);
222       // If they are the same, just print one value to prevent spam.
223       if (exclusive_time != total_time) {
224         os << "/" << FormatDuration(total_time, tu, kFractionalDigits);
225       }
226       os << " " << timings_[i].GetName() << "\n";
227       ++tab_count;
228     } else {
229       --tab_count;
230     }
231   }
232   os << name_ << ": end, " << PrettyDuration(GetTotalNs()) << "\n";
233 }
234 
Verify()235 void TimingLogger::Verify() {
236   size_t counts[2] = { 0 };
237   for (size_t i = 0; i < timings_.size(); ++i) {
238     if (i > 0) {
239       CHECK_LE(timings_[i - 1].GetTime(), timings_[i].GetTime());
240     }
241     ++counts[timings_[i].IsStartTiming() ? 0 : 1];
242   }
243   CHECK_EQ(counts[0], counts[1]) << "Number of StartTiming and EndTiming doesn't match";
244 }
245 
~TimingLogger()246 TimingLogger::~TimingLogger() {
247   if (kIsDebugBuild) {
248     Verify();
249   }
250 }
251 
252 }  // namespace art
253